1
|
Lee J, Noh K, Lee S, Kim KH, Chung S, Lim H, Hwang M, Lee JH, Chung WS, Chang S, Lee SJ. Ganglioside GT1b prevents selective spinal synapse removal following peripheral nerve injury. EMBO Rep 2025:10.1038/s44319-025-00452-2. [PMID: 40307621 DOI: 10.1038/s44319-025-00452-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 03/28/2025] [Accepted: 04/07/2025] [Indexed: 05/02/2025] Open
Abstract
After peripheral nerve injury, the structure of the spinal cord is actively regulated by glial cells, contributing to the chronicity of neuropathic pain. However, the mechanism by which peripheral nerve injury leads to synaptic imbalance remains elusive. Here, we use a pH-reporter system and find that nerve injury triggers a reorganization of excitatory synapses that is influenced by the accumulation of the ganglioside GT1b at afferent terminals. GT1b acts as a protective signal against nerve injury-induced spinal synapse elimination. Inhibition of GT1b-synthesis increases glial phagocytosis of excitatory pre-synapses and reduces excitatory synapses post-injury. In vitro analyses reveal a positive correlation between GT1b accumulation and the frequency of pre-synaptic calcium activity, with GT1b-mediated suppression of glial phagocytosis occurring through SYK dephosphorylation. Our study highlights GT1b's pivotal role in preventing synapse elimination after nerve injury and offers new insight into the molecular underpinning of activity-dependent synaptic stability and glial phagocytosis.
Collapse
Affiliation(s)
- Jaesung Lee
- Department of Neuroscience and Physiology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Physiology and Biomedical Sciences, Dementia Research Center, College of Medicine, Seoul National University, Seoul, 08226, Republic of Korea
| | - Kyungchul Noh
- Department of Neuroscience and Physiology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Subeen Lee
- Interdisciplinary Program in Neuroscience, College of Natural Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kwang Hwan Kim
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seohyun Chung
- Department of Neuroscience and Physiology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyoungsub Lim
- Department of Neuroscience and Physiology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Minkyu Hwang
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Joon-Hyuk Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Won-Suk Chung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Sunghoe Chang
- Department of Physiology and Biomedical Sciences, Dementia Research Center, College of Medicine, Seoul National University, Seoul, 08226, Republic of Korea.
| | - Sung Joong Lee
- Department of Neuroscience and Physiology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 08826, Republic of Korea.
- Interdisciplinary Program in Neuroscience, College of Natural Science, Seoul National University, Seoul, 08826, Republic of Korea.
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
2
|
Li Y, Wang Y, Han X, Xu J, Liu E, Cheng J, Ma Y, Yang T, Wu J, Sun H, Fan K, Shen D, Li J, Chen X, Yu S, Shu H. Glioma-derived SPARCL1 promotes the formation of peritumoral neuron-glioma synapses. J Neurooncol 2025:10.1007/s11060-025-05007-y. [PMID: 40227556 DOI: 10.1007/s11060-025-05007-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 03/10/2025] [Indexed: 04/15/2025]
Abstract
PURPOSE Gliomas are the most common type of primary malignant brain tumor with high degree of malignancy and rapid progression, and patients often have complications such as epilepsy and cognitive impairment. Thus, identifying related therapeutic targets, prolonging patient survival time and improving patient quality of life are urgently needed. Recent studies have shown that glutamatergic neurons around tumors and glioma cells form synapses, neuron-glioma synapses (NGSs), which have electrophysiological properties and participate in the proliferation, infiltration and invasion of tumors. Therefore, we aimed to explore the molecular mechanisms underlying NGS formation. METHODS We used bioinformatic analysis to screen for the expression of SPARCL1, which may play a role in promoting NGS formation, and we evaluated clinical samples through immunofluorescence, Western blot, and reverse transcriptase polymerase chain reaction (RT‒PCR) assays to validate the bioinformatic analysis results. Vitro neuron-glioma cell coculture model was established and allowed us to edit SPARCL1 expression in glioma cells, further allowing us to investigate the role of SPARCL1 in NGS formation. RESULTS Bioinformatic analysis revealed that SPARCL1 is highly expressed in glioma cells and is associated with synaptogenesis. Clinical samples were evaluated to verify the bioinformatics results, and SPARCL1 was found to be highly distributed in the tumor peripheral region. In the vitro neuron-glioma cell coculture model, NGSs were clearly observed, and SPARCL1 overexpression promoted NGS formation. CONCLUSION Taken together, these findings suggest that SPARCL1 is one of the molecules that promotes NGS formation in the tumor peripheral region.
Collapse
Affiliation(s)
- Yang Li
- Department of Neurosurgery, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
- Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai, 200092, China
| | - Yao Wang
- Department of Neurosurgery, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Xingyue Han
- Department of Neurosurgery, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Jing Xu
- Department of Neurosurgery, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Enyu Liu
- Department of Neurosurgery, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Jingmin Cheng
- Department of Neurosurgery, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yuan Ma
- Department of Neurosurgery, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Tao Yang
- Department of Neurosurgery, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Jianping Wu
- Department of Neurosurgery, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Haodong Sun
- Department of Neurosurgery, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Kexia Fan
- Department of Neurosurgery, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Danyi Shen
- Department of Neurosurgery, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Jie Li
- Department of Neurosurgery, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Xin Chen
- Department of Neurosurgery, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Sixun Yu
- Department of Neurosurgery, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Haifeng Shu
- Department of Neurosurgery, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
3
|
Ocharán-Mercado A, Loaeza-Loaeza J, Hernández-Sotelo D, Cid L, Hernández-Kelly LC, Felder-Shmittbuhl MP, Ortega A. Fluoride Exposure Increases the Activity of the Cystine/Glutamate Exchanger in Glia Cells. Neurochem Res 2025; 50:105. [PMID: 39998572 PMCID: PMC11861166 DOI: 10.1007/s11064-025-04358-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025]
Abstract
Fluoride exposure in drinking water has been widely related to impairment of cognitive function. Even though this ion has been described as neurotoxic for more than two decades, the molecular mechanisms of fluoride neurotoxicity are not fully understood, however, increasing evidence suggests that glial cells are the site of early injury in fluoride neurotoxicity. Nevertheless, a convergence point of many studies is the effect on glutamatergic neurotransmission and the generation of reactive oxygen species. In this context, we evaluated here the expression and regulation of the cystine/glutamate exchanger upon fluoride exposure since this transporter is in the interface between excitotoxicity and the antioxidant response. We demonstrate here the functional expression of the cystine /glutamate exchanger in both the U373 human glioblastoma cells and chick cerebellar Bergmann glia cells. Using a [3H]-L-Glutamate uptake assay, we demonstrate that fluoride increases the activity of the exchanger in a time and dose-dependent manner. This augmentation is mitigated by the antioxidant Trolox. To gain insight into fluoride neurotoxicity mechanisms, we evaluated its effect on human antigen R, a RNA binding protein, that binds to the 3'-UTR region of exchanger mRNA increasing its half time life. An increase in human antigen R protein was recorded after a 6 h fluoride exposure, suggesting that this ion regulates the exchanger through this RNA-binding protein. Furthermore, we show that fluoride exposure increases both the exchanger and human antigen R mRNAs half-life. These results provide insights into fluoride neurotoxicity mechanisms and support the notion of a central role of glial cells in neuronal glutamatergic transmission disruption that leads to neuronal cell death.
Collapse
Affiliation(s)
- Andrea Ocharán-Mercado
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, San Pedro, Zacatenco, 07360, México
| | - Jaqueline Loaeza-Loaeza
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, San Pedro, Zacatenco, 07360, México
| | - Daniel Hernández-Sotelo
- Laboratorio de Epigenética del Cáncer, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas 88, 39086, Chilpancingo, Guerrero, México
| | - Luis Cid
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, San Pedro, Zacatenco, 07360, México
| | - Luisa C Hernández-Kelly
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, San Pedro, Zacatenco, 07360, México
| | - Marie-Paule Felder-Shmittbuhl
- Centre National de La Recherche Scientifique, Institut Des Neurosciences Cellulaires Et Intégratives (UPR 3212), Université de Strasbourg, Strasbourg, France
| | - Arturo Ortega
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, San Pedro, Zacatenco, 07360, México.
| |
Collapse
|
4
|
Smith EM, Coughlan ML, Maday S. Turning garbage into gold: Autophagy in synaptic function. Curr Opin Neurobiol 2025; 90:102937. [PMID: 39667255 PMCID: PMC11903044 DOI: 10.1016/j.conb.2024.102937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 10/26/2024] [Accepted: 11/13/2024] [Indexed: 12/14/2024]
Abstract
Trillions of synapses in the human brain enable thought and behavior. Synaptic connections must be established and maintained, while retaining dynamic flexibility to respond to experiences. These processes require active remodeling of the synapse to control the composition and integrity of proteins and organelles. Macroautophagy (hereafter, autophagy) provides a mechanism to edit and prune the synaptic proteome. Canonically, autophagy has been viewed as a homeostatic process, which eliminates aged and damaged proteins to maintain neuronal survival. However, accumulating evidence suggests that autophagy also degrades specific cargoes in response to neuronal activity to impact neuronal transmission, excitability, and synaptic plasticity. Here, we will discuss the diverse roles, regulation, and mechanisms of neuronal autophagy in synaptic function and contributions from glial autophagy in these processes.
Collapse
Affiliation(s)
- Erin Marie Smith
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maeve Louise Coughlan
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sandra Maday
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
5
|
Palazzo C, Nutarelli S, Mastrantonio R, Tamagnone L, Viscomi MT. Glia-glia crosstalk via semaphorins: Emerging implications in neurodegeneration. Ageing Res Rev 2025; 104:102618. [PMID: 39638095 DOI: 10.1016/j.arr.2024.102618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
The central nervous system (CNS) is wired by a complex network of integrated glial and neuronal signals, which is critical for its development and homeostasis. In this context, glia-glia communication is a complex and dynamic process that is essential for ensuring optimal CNS function. Semaphorins, which include secreted and transmembrane molecules, and their receptors, mainly found in the plexin and neuropilin families, are expressed in a wide range of cell types, including glia. In the CNS, semaphorin signalling is involved in a spectrum of processes, including neurogenesis, neuronal migration and wiring, and glial cell recruitment. Recently, semaphorins and plexins have attracted intense research aimed at elucidating their roles in instructing glial cell behavior during development or in response to inflammatory stimuli. In this review, we provide an overview of the multifaceted role of semaphorins in glia-glia communication, highlighting recent discoveries about semaphoring-dependent regulation of glia functions in healthy conditions. We also discuss the mechanisms of gliaglia crosstalk mediated by semaphorins under pathological conditions, and how these interactions may provide potential avenues for therapeutic intervention in neuroinflammation-mediated neurodegeneration.
Collapse
Affiliation(s)
- Claudia Palazzo
- Department of Life Sciences and Public Health, Section of Histology and Embryology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Sofia Nutarelli
- Department of Life Sciences and Public Health, Section of Histology and Embryology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Roberta Mastrantonio
- Department of Life Sciences and Public Health, Section of Histology and Embryology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Luca Tamagnone
- Department of Life Sciences and Public Health, Section of Histology and Embryology, Università Cattolica del Sacro Cuore, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli, Rome, Italy.
| | - Maria Teresa Viscomi
- Department of Life Sciences and Public Health, Section of Histology and Embryology, Università Cattolica del Sacro Cuore, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli, Rome, Italy.
| |
Collapse
|
6
|
Onciul R, Tataru CI, Dumitru AV, Crivoi C, Serban M, Covache-Busuioc RA, Radoi MP, Toader C. Artificial Intelligence and Neuroscience: Transformative Synergies in Brain Research and Clinical Applications. J Clin Med 2025; 14:550. [PMID: 39860555 PMCID: PMC11766073 DOI: 10.3390/jcm14020550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
The convergence of Artificial Intelligence (AI) and neuroscience is redefining our understanding of the brain, unlocking new possibilities in research, diagnosis, and therapy. This review explores how AI's cutting-edge algorithms-ranging from deep learning to neuromorphic computing-are revolutionizing neuroscience by enabling the analysis of complex neural datasets, from neuroimaging and electrophysiology to genomic profiling. These advancements are transforming the early detection of neurological disorders, enhancing brain-computer interfaces, and driving personalized medicine, paving the way for more precise and adaptive treatments. Beyond applications, neuroscience itself has inspired AI innovations, with neural architectures and brain-like processes shaping advances in learning algorithms and explainable models. This bidirectional exchange has fueled breakthroughs such as dynamic connectivity mapping, real-time neural decoding, and closed-loop brain-computer systems that adaptively respond to neural states. However, challenges persist, including issues of data integration, ethical considerations, and the "black-box" nature of many AI systems, underscoring the need for transparent, equitable, and interdisciplinary approaches. By synthesizing the latest breakthroughs and identifying future opportunities, this review charts a path forward for the integration of AI and neuroscience. From harnessing multimodal data to enabling cognitive augmentation, the fusion of these fields is not just transforming brain science, it is reimagining human potential. This partnership promises a future where the mysteries of the brain are unlocked, offering unprecedented advancements in healthcare, technology, and beyond.
Collapse
Affiliation(s)
- Razvan Onciul
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.O.); (M.S.); (R.-A.C.-B.); (M.P.R.); (C.T.)
- Neurosurgery Department, Emergency University Hospital, 050098 Bucharest, Romania
| | - Catalina-Ioana Tataru
- Clinical Department of Ophthalmology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Ophthalmology, Clinical Hospital for Ophthalmological Emergencies, 010464 Bucharest, Romania
| | - Adrian Vasile Dumitru
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.O.); (M.S.); (R.-A.C.-B.); (M.P.R.); (C.T.)
- Department of Morphopathology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Emergency University Hospital, 050098 Bucharest, Romania
| | - Carla Crivoi
- Department of Computer Science, Faculty of Mathematics and Computer Science, University of Bucharest, 010014 Bucharest, Romania;
| | - Matei Serban
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.O.); (M.S.); (R.-A.C.-B.); (M.P.R.); (C.T.)
- Department of Vascular Neurosurgery, National Institute of Neurovascular Disease, 077160 Bucharest, Romania
- Puls Med Association, 051885 Bucharest, Romania
| | - Razvan-Adrian Covache-Busuioc
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.O.); (M.S.); (R.-A.C.-B.); (M.P.R.); (C.T.)
- Department of Vascular Neurosurgery, National Institute of Neurovascular Disease, 077160 Bucharest, Romania
- Puls Med Association, 051885 Bucharest, Romania
| | - Mugurel Petrinel Radoi
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.O.); (M.S.); (R.-A.C.-B.); (M.P.R.); (C.T.)
- Department of Vascular Neurosurgery, National Institute of Neurovascular Disease, 077160 Bucharest, Romania
| | - Corneliu Toader
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.O.); (M.S.); (R.-A.C.-B.); (M.P.R.); (C.T.)
- Department of Vascular Neurosurgery, National Institute of Neurovascular Disease, 077160 Bucharest, Romania
| |
Collapse
|
7
|
Nagumanova A, Seeholzer LR, Di Benedetto B. Cortical Organotypic Brain Slice Cultures to Examine Sex- and Age-Dependent Astrocyte-Mediated Synaptic Phagocytosis. Methods Mol Biol 2025; 2896:203-214. [PMID: 40111607 DOI: 10.1007/978-1-0716-4366-2_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Astrocytes, the most abundant glial cells in the brain, are an integral part of the synaptic compartment and contribute to synaptic pruning, a key process for refining neural circuits during early postnatal development (PND). Dysregulations in this process are implicated in various neuropsychiatric disorders, including major depressive disorder (MDD). To investigate astrocyte functions in a physiologically relevatpdelnt context, organotypic brain slice cultures (OBSCs) offer a powerful model, reproducing more closely in vivo conditions than traditional cell cultures and preserving complex brain architecture and interactions. Here, we present OBSCs as an ex vivo culturing method to provide a platform to explore astrocyte-mediated synaptic pruning dynamics in the rat prefrontal cortex (PFC) during PND. Our approach is based on assessing the role of MEGF10, a key protein involved in synaptic pruning, alongside the synaptic markers synaptophysin and PSD95, using Western blotting to analyze the expression levels of these markers in the cortex of developing rat pups. Additionally, we combine immunofluorescence staining with confocal imaging and IMARIS 9.8 software-assisted analysis to investigate the colocalization of the lysosomal marker LAMP1 with synaptic and astrocytic markers to evaluate the precise rate of synaptic engulfment. The methods presented here allow a deeper examination of an astrocyte-mediated synaptic remodeling in healthy and pathophysiological conditions.
Collapse
Affiliation(s)
- Anastasiia Nagumanova
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Lea R Seeholzer
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Barbara Di Benedetto
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany.
- Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
8
|
Cai Y, Wang T. Regulation of presynaptic homeostatic plasticity by glial signalling in Alzheimer's disease. J Physiol 2024. [PMID: 39705214 DOI: 10.1113/jp286751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 12/04/2024] [Indexed: 12/22/2024] Open
Abstract
Alzheimer's disease (AD), the most common form of dementia among the elderly, affects numerous individuals worldwide. Despite advances in understanding the molecular underpinnings of AD pathology, effective treatments to prevent or cure the disease remain elusive. AD is characterized not only by pathological hallmarks such as amyloid plaques and neurofibrillary tangles but also by impairments in synaptic physiology, circuit activity and cognitive function. Synaptic homeostatic plasticity plays a vital role in maintaining the stability of synaptic and neural functions amid genetic and environmental disturbances. A key component of this regulation is presynaptic homeostatic potentiation, where increased presynaptic neurotransmitter release compensates for reduced postsynaptic glutamate receptor functionality, thereby stabilizing neuronal excitability. The role of presynaptic homeostatic plasticity in synapse stabilization in AD, however, remains unclear. Moreover, recent advances in transcriptomics have illuminated the complex roles of glial cells in regulating synaptic function in ageing brains and in the progression of neurodegenerative diseases. Yet, the impact of AD-related abnormalities in glial signalling on synaptic homeostatic plasticity has not been fully delineated. This review discusses recent findings on how glial dysregulation in AD affects presynaptic homeostatic plasticity. There is increasing evidence that disrupted glial signalling, particularly through aberrant histone acetylation and transcriptomic changes in glia, compromises this plasticity in AD. Notably, the sphingosine signalling pathway has been identified as being protective in stabilizing synaptic physiology through epigenetic and homeostatic mechanisms, presenting potential therapeutic targets for treating neurodegenerative disorders.
Collapse
Affiliation(s)
- Yimei Cai
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, D.C., USA
| | - Tingting Wang
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, D.C., USA
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, D.C., USA
| |
Collapse
|
9
|
Rangel-Gomez M, Alberini CM, Deneen B, Drummond GT, Manninen T, Sur M, Vicentic A. Neuron-Glial Interactions: Implications for Plasticity, Behavior, and Cognition. J Neurosci 2024; 44:e1231242024. [PMID: 39358030 PMCID: PMC11450529 DOI: 10.1523/jneurosci.1231-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 10/04/2024] Open
Abstract
The traditional view of glial cells as mere supportive tissue has shifted, due to advances in technology and theoretical conceptualization, to include a diversity of other functions, such as regulation of complex behaviors. Astrocytes, the most abundant glial cells in the central nervous system (CNS), have been shown to modulate synaptic functions through gliotransmitter-mediated neurotransmitter reuptake, influencing neuronal signaling and behavioral functions. Contemporary studies further highlight astrocytes' involvement in complex cognitive functions. For instance, inhibiting astrocytes in the hippocampus can lead to memory deficits, suggesting their integral role in memory processes. Moreover, astrocytic calcium activity and astrocyte-neuron metabolic coupling have been linked to changes in synaptic strength and learning. Microglia, another type of glial cell, also extend beyond their supportive roles, contributing to learning and memory processes, with microglial reductions impacting these functions in a developmentally dependent manner. Oligodendrocytes, traditionally thought to have limited roles postdevelopment, are now recognized for their activity-dependent modulation of myelination and plasticity, thus influencing behavioral responses. Recent advancements in technology and computational modeling have expanded our understanding of glial functions, particularly how astrocytes influence neuronal circuits and behaviors. This review underscores the importance of glial cells in CNS functions and the need for further research to unravel the complexities of neuron-glia interactions, the impact of these interactions on brain functions, and potential implications for neurological diseases.
Collapse
Affiliation(s)
- Mauricio Rangel-Gomez
- Division of Neuroscience and Basic Behavioral Sciences, National Institute of Mental Health, Bethesda, Maryland 20852
| | | | - Benjamin Deneen
- Center for Cell and Gene Therapy, Center for Cancer Neuroscience, and Department of Neurosurgery, Baylor College of Medicine, Houston, Texas 77030
| | - Gabrielle T Drummond
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Tiina Manninen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland 33720
| | - Mriganka Sur
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Aleksandra Vicentic
- Division of Neuroscience and Basic Behavioral Sciences, National Institute of Mental Health, Bethesda, Maryland 20852
| |
Collapse
|
10
|
Di Bella DJ, Domínguez-Iturza N, Brown JR, Arlotta P. Making Ramón y Cajal proud: Development of cell identity and diversity in the cerebral cortex. Neuron 2024; 112:2091-2111. [PMID: 38754415 PMCID: PMC11771131 DOI: 10.1016/j.neuron.2024.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/28/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024]
Abstract
Since the beautiful images of Santiago Ramón y Cajal provided a first glimpse into the immense diversity and complexity of cell types found in the cerebral cortex, neuroscience has been challenged and inspired to understand how these diverse cells are generated and how they interact with each other to orchestrate the development of this remarkable tissue. Some fundamental questions drive the field's quest to understand cortical development: what are the mechanistic principles that govern the emergence of neuronal diversity? How do extrinsic and intrinsic signals integrate with physical forces and activity to shape cell identity? How do the diverse populations of neurons and glia influence each other during development to guarantee proper integration and function? The advent of powerful new technologies to profile and perturb cortical development at unprecedented resolution and across a variety of modalities has offered a new opportunity to integrate past knowledge with brand new data. Here, we review some of this progress using cortical excitatory projection neurons as a system to draw out general principles of cell diversification and the role of cell-cell interactions during cortical development.
Collapse
Affiliation(s)
- Daniela J Di Bella
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Nuria Domínguez-Iturza
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Juliana R Brown
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Paola Arlotta
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
11
|
Hasaniani N, Nouri S, Shirzad M, Rostami-Mansoor S. Potential therapeutic and diagnostic approaches of exosomes in multiple sclerosis pathophysiology. Life Sci 2024; 347:122668. [PMID: 38670451 DOI: 10.1016/j.lfs.2024.122668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Exosomes are bilayer lipid vesicles that are released by cells and contain proteins, nucleic acids, and lipids. They can be internalized by other cells, inducing inflammatory responses and instigating toxicities in the recipient cells. Exosomes can also serve as therapeutic vehicles by transporting protective cargo to maintain homeostasis. Multiple studies have shown that exosomes can initiate and participate in the regulation of neuroinflammation, improve neurogenesis, and are closely related to the pathogenesis of central nervous system (CNS) diseases, including multiple sclerosis (MS). Exosomes can be secreted by both neurons and glial cells in the CNS, and their contents change with disease occurrence. Due to their ability to penetrate the blood-brain barrier and their stability in peripheral fluids, exosomes are attractive biomarkers of CNS diseases. In recent years, exosomes have emerged as potential therapeutic agents for CNS diseases, including MS. However, the molecular pathways in the pathogenesis of MS are still unknown, and further research is needed to fully understand the role of exosomes in the occurrence or improvement of MS disease. Thereby, in this review, we intend to provide a more complete understanding of the pathways in which exosomes are involved and affect the occurrence or improvement of MS disease.
Collapse
Affiliation(s)
- Nima Hasaniani
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Sina Nouri
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Urmia University of Medical Sciences, Urmia, Iran
| | - Moein Shirzad
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Sahar Rostami-Mansoor
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
12
|
Rojas-Colón LA, Redell JB, Dash PK, Vegas PE, Vélez-Torres W. 4R-cembranoid suppresses glial cells inflammatory phenotypes and prevents hippocampal neuronal loss in LPS-treated mice. J Neurosci Res 2024; 102:e25336. [PMID: 38656664 PMCID: PMC11073245 DOI: 10.1002/jnr.25336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/08/2024] [Accepted: 04/06/2024] [Indexed: 04/26/2024]
Abstract
Chronic neuroinflammation has been implicated in neurodegenerative disease pathogenesis. A key feature of neuroinflammation is neuronal loss and glial activation, including microglia and astrocytes. 4R-cembranoid (4R) is a natural compound that inhibits hippocampal pro-inflammatory cytokines and increases memory function in mice. We used the lipopolysaccharide (LPS) injection model to study the effect of 4R on neuronal density and microglia and astrocyte activation. C57BL/6J wild-type mice were injected with LPS (5 mg/kg) and 2 h later received either 4R (6 mg/kg) or vehicle. Mice were sacrificed after 72 h for analysis of brain pathology. Confocal images of brain sections immunostained for microglial, astrocyte, and neuronal markers were used to quantify cellular hippocampal phenotypes and neurons. Hippocampal lysates were used to measure the expression levels of neuronal nuclear protein (NeuN), inducible nitrous oxide synthase (iNOS), arginase-1, thrombospondin-1 (THBS1), glial cell-derived neurotrophic factor (GDNF), and orosomucoid-2 (ORM2) by western blot. iNOS and arginase-1 are widely used protein markers of pro- and anti-inflammatory microglia, respectively. GDNF promotes neuronal survival, and ORM2 and THBS1 are astrocytic proteins that regulate synaptic plasticity and inhibit microglial activation. 4R administration significantly reduced neuronal loss and the number of pro-inflammatory microglia 72 h after LPS injection. It also decreased the expression of the pro-inflammatory protein iNOS while increasing arginase-1 expression, supporting its anti-inflammatory role. The protein expression of THBS1, GDNF, and ORM2 was increased by 4R. Our data show that 4R preserves the integrity of hippocampal neurons against LPS-induced neuroinflammation in mice.
Collapse
Affiliation(s)
- Luis A Rojas-Colón
- Department of Biochemistry, Universidad Central del Caribe School of Medicine, Bayamón, Puerto Rico
| | - John B Redell
- Department of Neurobiology and Anatomy, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Pramod K Dash
- Department of Neurobiology and Anatomy, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Pedro E Vegas
- Department of Biochemistry, Universidad Central del Caribe School of Medicine, Bayamón, Puerto Rico
| | - Wanda Vélez-Torres
- Department of Biochemistry, Universidad Central del Caribe School of Medicine, Bayamón, Puerto Rico
| |
Collapse
|
13
|
López-Murillo C, Hinestroza-Morales S, Henny P, Toledo J, Cardona-Gómez GP, Rivera-Gutiérrez H, Posada-Duque R. Differences in vocal brain areas and astrocytes between the house wren and the rufous-tailed hummingbird. Front Neuroanat 2024; 18:1339308. [PMID: 38601797 PMCID: PMC11004282 DOI: 10.3389/fnana.2024.1339308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/06/2024] [Indexed: 04/12/2024] Open
Abstract
The house wren shows complex song, and the rufous-tailed hummingbird has a simple song. The location of vocal brain areas supports the song's complexity; however, these still need to be studied. The astrocytic population in songbirds appears to be associated with change in vocal control nuclei; however, astrocytic distribution and morphology have not been described in these species. Consequently, we compared the distribution and volume of the vocal brain areas: HVC, RA, Area X, and LMAN, cell density, and the morphology of astrocytes in the house wren and the rufous-tailed hummingbird. Individuals of the two species were collected, and their brains were analyzed using serial Nissl- NeuN- and MAP2-stained tissue scanner imaging, followed by 3D reconstructions of the vocal areas; and GFAP and S100β astrocytes were analyzed in both species. We found that vocal areas were located close to the cerebral midline in the house wren and a more lateralized position in the rufous-tailed hummingbird. The LMAN occupied a larger volume in the rufous-tailed hummingbird, while the RA and HVC were larger in the house wren. While Area X showed higher cell density in the house wren than the rufous-tailed hummingbird, the LMAN showed a higher density in the rufous-tailed hummingbird. In the house wren, GFAP astrocytes in the same bregma where the vocal areas were located were observed at the laminar edge of the pallium (LEP) and in the vascular region, as well as in vocal motor relay regions in the pallidum and mesencephalon. In contrast, GFAP astrocytes were found in LEP, but not in the pallidum and mesencephalon in hummingbirds. Finally, when comparing GFAP astrocytes in the LEP region of both species, house wren astrocytes exhibited significantly more complex morphology than those of the rufous-tailed hummingbird. These findings suggest a difference in the location and cellular density of vocal circuits, as well as morphology of GFAP astrocytes between the house wren and the rufous-tailed hummingbird.
Collapse
Affiliation(s)
- Carolina López-Murillo
- Área de Neurofisiología Celular, Grupo de Neurociencias de Antioquia, Instituto de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellin, Colombia
| | - Santiago Hinestroza-Morales
- Área de Neurofisiología Celular, Grupo de Neurociencias de Antioquia, Instituto de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellin, Colombia
| | - Pablo Henny
- Laboratorio de Neuroanatomía, Departamento de Anatomía, and Centro Interdisciplinario de Neurociencia, NeuroUC, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jorge Toledo
- Scientific Equipment Network REDECA, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Gloria Patricia Cardona-Gómez
- Área de Neurobiología Celular y Molecular, Grupo de Neurociencias de Antioquia, Facultad de Medicina, Sede de Investigaciones Universitarias, Universidad de Antioquia, Medellin, Colombia
| | - Héctor Rivera-Gutiérrez
- Grupo de Investigación de Ecología y Evolución de Vertebrados, Instituto de Biología, Universidad de Antioquia, Medellin, Colombia
| | - Rafael Posada-Duque
- Área de Neurofisiología Celular, Grupo de Neurociencias de Antioquia, Instituto de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellin, Colombia
| |
Collapse
|
14
|
Cantando I, Centofanti C, D’Alessandro G, Limatola C, Bezzi P. Metabolic dynamics in astrocytes and microglia during post-natal development and their implications for autism spectrum disorders. Front Cell Neurosci 2024; 18:1354259. [PMID: 38419654 PMCID: PMC10899402 DOI: 10.3389/fncel.2024.1354259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024] Open
Abstract
Autism Spectrum Disorder (ASD) is a complex neurodevelopmental condition characterized by elusive underlying mechanisms. Recent attention has focused on the involvement of astrocytes and microglia in ASD pathology. These glial cells play pivotal roles in maintaining neuronal homeostasis, including the regulation of metabolism. Emerging evidence suggests a potential association between ASD and inborn errors of metabolism. Therefore, gaining a comprehensive understanding of the functions of microglia and astrocytes in ASD is crucial for the development of effective therapeutic interventions. This review aims to provide a summary of the metabolism of astrocytes and microglia during post-natal development and the evidence of disrupted metabolic pathways in ASD, with particular emphasis on those potentially important for the regulation of neuronal post-natal maturation by astrocytes and microglia.
Collapse
Affiliation(s)
- Iva Cantando
- Department of Fundamental Neurosciences (DNF), University of Lausanne, Lausanne, Switzerland
| | - Cristiana Centofanti
- Department of Fundamental Neurosciences (DNF), University of Lausanne, Lausanne, Switzerland
| | - Giuseppina D’Alessandro
- Department of Physiology and Pharmacology, University of Rome Sapienza, Rome, Italy
- Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed Via Atinese 18, Pozzilli, Italy
| | - Cristina Limatola
- Department of Physiology and Pharmacology, University of Rome Sapienza, Rome, Italy
- Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed Via Atinese 18, Pozzilli, Italy
| | - Paola Bezzi
- Department of Fundamental Neurosciences (DNF), University of Lausanne, Lausanne, Switzerland
- Department of Physiology and Pharmacology, University of Rome Sapienza, Rome, Italy
| |
Collapse
|
15
|
Ivanova M, Belaya I, Kucháriková N, de Sousa Maciel I, Saveleva L, Alatalo A, Juvonen I, Thind N, Andrès C, Lampinen R, Chew S, Kanninen KM. Upregulation of Integrin beta-3 in astrocytes upon Alzheimer's disease progression in the 5xFAD mouse model. Neurobiol Dis 2024; 191:106410. [PMID: 38220131 DOI: 10.1016/j.nbd.2024.106410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 01/16/2024] Open
Abstract
Integrins are receptors that have been linked to various brain disorders, including Alzheimer's disease (AD), the most prevalent neurodegenerative disorder. While Integrin beta-3 (ITGB3) is known to participate in multiple cellular processes such as adhesion, migration, and signaling, its specific role in AD remains poorly understood, particularly in astrocytes, the main glial cell type in the brain. In this study, we investigated alterations in ITGB3 gene and protein expression during aging in different brain regions of the 5xFAD mouse model of AD and assessed the interplay between ITGB3 and astrocytes. Primary cultures from adult mouse brains were used to gain further insight into the connection between ITGB3 and amyloid beta (Aβ) in astrocytes. In vivo studies showed a correlation between ITGB3 and the astrocytic marker GFAP in the 5xFAD brains, indicating its association with reactive astrocytes. In vitro studies revealed increased gene expression of ITGB3 upon Aβ treatment. Our findings underscore the potential significance of ITGB3 in astrocyte reactivity in the context of Alzheimer's disease.
Collapse
Affiliation(s)
- Mariia Ivanova
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Irina Belaya
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Nina Kucháriková
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Izaque de Sousa Maciel
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Liudmila Saveleva
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Arto Alatalo
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ilona Juvonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Navjot Thind
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Clarisse Andrès
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Riikka Lampinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Sweelin Chew
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Katja M Kanninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
16
|
Wu J, Yang OJ, Soderblom EJ, Yan D. Heat Shock Proteins Function as Signaling Molecules to Mediate Neuron-Glia Communication During Aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.18.576052. [PMID: 38293019 PMCID: PMC10827141 DOI: 10.1101/2024.01.18.576052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The nervous system is primarily composed of neurons and glia, and the communication between them plays profound roles in regulating the development and function of the brain. Neuron-glia signal transduction is known to be mediated by secreted or juxtacrine signals through ligand-receptor interactions on the cell membrane. Here, we report a novel mechanism for neuron-glia signal transduction, wherein neurons transmit proteins to glia through extracellular vesicles, activating glial signaling pathways. We find that in the amphid sensory organ of Caenorhabditis elegans, different sensory neurons exhibit varying aging rates. This discrepancy in aging is governed by the crosstalk between neurons and glia. We demonstrate that early-aged neurons can transmit heat shock proteins (HSP) to glia via extracellular vesicles. These neuronal HSPs activate the IRE1-XBP1 pathway, further increasing their expression in glia, forming a positive feedback loop. Ultimately, the activation of the IRE1-XBP-1 pathway leads to the transcriptional regulation of chondroitin synthases to protect glia-embedded neurons from aging-associated functional decline. Therefore, our studies unveil a novel mechanism for neuron-glia communication in the nervous system and provide new insights into our understanding of brain aging.
Collapse
Affiliation(s)
- Jieyu Wu
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Olivia Jiaming Yang
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
- East Chapel Hill High School, Chapel Hill, NC 27514, USA
| | - Erik J. Soderblom
- Proteomics and Metabolomics Core Facility, Duke University Medical School, Durham, NC 27710, USA
| | - Dong Yan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Cell biology, Department of Neurobiology, Regeneration next, and Duke Institute for Brain Sciences, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
17
|
Varadi G. Mechanism of Analgesia by Gabapentinoid Drugs: Involvement of Modulation of Synaptogenesis and Trafficking of Glutamate-Gated Ion Channels. J Pharmacol Exp Ther 2024; 388:121-133. [PMID: 37918854 DOI: 10.1124/jpet.123.001669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023] Open
Abstract
Gabapentinoids have clinically been used for treating epilepsy, neuropathic pain, and several other neurologic disorders for >30 years; however, the definitive molecular mechanism responsible for their therapeutic actions remained uncertain. The conventional pharmacological observation regarding their efficacy in chronic pain modulation is the weakening of glutamate release at presynaptic terminals in the spinal cord. While the α2/δ-1 subunit of voltage-gated calcium channels (VGCCs) has been identified as the primary drug receptor for gabapentinoids, the lack of consistent effect of this drug class on VGCC function is indicative of a minor role in regulating this ion channel's activity. The current review targets the efficacy and mechanism of gabapentinoids in treating chronic pain. The discovery of interaction of α2/δ-1 with thrombospondins established this protein as a major synaptogenic neuronal receptor for thrombospondins. Other findings identified α2/δ-1 as a powerful regulator of N-methyl-D-aspartate receptor (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) by potentiating the synaptic expression, a putative pathophysiological mechanism of neuropathic pain. Further, the interdependent interactions between thrombospondin and α2/δ-1 contribute to chronic pain states, while gabapentinoid ligands efficaciously reverse such pain conditions. Gabapentin normalizes and even blocks NMDAR and AMPAR synaptic targeting and activity elicited by nerve injury. SIGNIFICANCE STATEMENT: Gabapentinoid drugs are used to treat various neurological conditions including chronic pain. In chronic pain states, gene expression of cacnα2/δ-1 and thrombospondins are upregulated and promote aberrant excitatory synaptogenesis. The complex trait of protein associations that involve interdependent interactions between α2/δ-1 and thrombospondins, further, association of N-methyl-D-aspartate receptor and alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor with the C-tail of α2/δ-1, constitutes a macromolecular signaling complex that forms the crucial elements for the pharmacological mode of action of gabapentinoids.
Collapse
|
18
|
Vivi E, Seeholzer LR, Nagumanova A, Di Benedetto B. Early Age- and Sex-Dependent Regulation of Astrocyte-Mediated Glutamatergic Synapse Elimination in the Rat Prefrontal Cortex: Establishing an Organotypic Brain Slice Culture Investigating Tool. Cells 2023; 12:2761. [PMID: 38067189 PMCID: PMC10705965 DOI: 10.3390/cells12232761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023] Open
Abstract
Clinical and pre-clinical studies of neuropsychiatric (NP) disorders show altered astrocyte properties and synaptic networks. These are refined during early postnatal developmental (PND) stages. Thus, investigating early brain maturational trajectories is essential to understand NP disorders. However, animal experiments are highly time-/resource-consuming, thereby calling for alternative methodological approaches. The function of MEGF10 in astrocyte-mediated synapse elimination (pruning) is crucial to refine neuronal networks during development and adulthood. To investigate the impact of MEGF10 during PND in the rat prefrontal cortex (PFC) and its putative role in brain disorders, we established and validated an organotypic brain slice culture (OBSC) system. Using Western blot, we characterized the expression of MEGF10 and the synaptic markers synaptophysin and PSD95 in the cortex of developing pups. We then combined immunofluorescent-immunohistochemistry with Imaris-supported 3D analysis to compare age- and sex-dependent astrocyte-mediated pruning within the PFC in pups and OBSCs. We thereby validated this system to investigate age-dependent astrocyte-mediated changes in pruning during PND. However, further optimizations are required to use OBSCs for revealing sex-dependent differences. In conclusion, OBSCs offer a valid alternative to study physiological astrocyte-mediated synaptic remodeling during PND and might be exploited to investigate the pathomechanisms of brain disorders with aberrant synaptic development.
Collapse
Affiliation(s)
- Eugenia Vivi
- Laboratory of Neuro-Glia Pharmacology, Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany; (E.V.); (L.R.S.); (A.N.)
| | - Lea R. Seeholzer
- Laboratory of Neuro-Glia Pharmacology, Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany; (E.V.); (L.R.S.); (A.N.)
| | - Anastasiia Nagumanova
- Laboratory of Neuro-Glia Pharmacology, Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany; (E.V.); (L.R.S.); (A.N.)
| | - Barbara Di Benedetto
- Laboratory of Neuro-Glia Pharmacology, Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany; (E.V.); (L.R.S.); (A.N.)
- Regensburg Center of Neuroscience, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
19
|
Cai Y, Cui T, Yin P, Paganelli P, Vicini S, Wang T. Dysregulated glial genes in Alzheimer's disease are essential for homeostatic plasticity: Evidence from integrative epigenetic and single cell analyses. Aging Cell 2023; 22:e13989. [PMID: 37712202 PMCID: PMC10652298 DOI: 10.1111/acel.13989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/18/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023] Open
Abstract
Synaptic homeostatic plasticity is a foundational regulatory mechanism that maintains the stability of synaptic and neural functions within the nervous system. Impairment of homeostatic regulation has been linked to synapse destabilization during the progression of Alzheimer's disease (AD). Recent epigenetic and transcriptomic characterizations of the nervous system have revealed intricate molecular details about the aging brain and the pathogenesis of neurodegenerative diseases. Yet, how abnormal epigenetic and transcriptomic alterations in different cell types in AD affect synaptic homeostatic plasticity remains to be elucidated. Various glial cell types play critical roles in modulating synaptic functions both during the aging process and in the context of AD. Here, we investigated the impact of glial dysregulation of histone acetylation and transcriptome in AD on synaptic homeostatic plasticity, using computational analysis combined with electrophysiological methods in Drosophila. By integrating snRNA-seq and H3K9ac ChIP-seq data from the same AD patient cohort, we pinpointed cell type-specific signature genes that were transcriptionally altered by histone acetylation. We subsequently investigated the role of these glial genes in regulating presynaptic homeostatic potentiation in Drosophila. Remarkably, nine glial-specific genes, which were identified through our computational method as targets of H3K9ac and transcriptional dysregulation, were found to be crucial for the regulation of synaptic homeostatic plasticity in Drosophila. Our genetic evidence connects abnormal glial transcriptomic changes in AD with the impairment of homeostatic plasticity in the nervous system. In summary, our integrative computational and genetic studies highlight specific glial genes as potential key players in the homeostatic imbalance observed in AD.
Collapse
Affiliation(s)
- Yimei Cai
- Department of Pharmacology & PhysiologyGeorgetown University Medical CenterWashingtonD.C.USA
| | - Tao Cui
- Department of Pharmacology & PhysiologyGeorgetown University Medical CenterWashingtonD.C.USA
- Interdisciplinary Program in NeuroscienceGeorgetown University Medical CenterWashingtonD.C.USA
| | - Pengqi Yin
- Department of Pharmacology & PhysiologyGeorgetown University Medical CenterWashingtonD.C.USA
- Present address:
Department of Neurology, Shanghai General HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Present address:
Department of Neurology, First Affiliated HospitalHarbin Medical UniversityHarbinChina
| | - Paxton Paganelli
- Department of Pharmacology & PhysiologyGeorgetown University Medical CenterWashingtonD.C.USA
| | - Stefano Vicini
- Department of Pharmacology & PhysiologyGeorgetown University Medical CenterWashingtonD.C.USA
- Interdisciplinary Program in NeuroscienceGeorgetown University Medical CenterWashingtonD.C.USA
| | - Tingting Wang
- Department of Pharmacology & PhysiologyGeorgetown University Medical CenterWashingtonD.C.USA
- Interdisciplinary Program in NeuroscienceGeorgetown University Medical CenterWashingtonD.C.USA
| |
Collapse
|
20
|
Yin P, Cai Y, Cui T, Berg AJ, Wang T, Morency DT, Paganelli PM, Lok C, Xue Y, Vicini S, Wang T. Glial Sphingosine-Mediated Epigenetic Regulation Stabilizes Synaptic Function in Drosophila Models of Alzheimer's Disease. J Neurosci 2023; 43:6954-6971. [PMID: 37669862 PMCID: PMC10586542 DOI: 10.1523/jneurosci.0515-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/25/2023] [Accepted: 08/10/2023] [Indexed: 09/07/2023] Open
Abstract
Destabilization of neural activity caused by failures of homeostatic regulation has been hypothesized to drive the progression of Alzheimer's Disease (AD). However, the underpinning mechanisms that connect synaptic homeostasis and the disease etiology are yet to be fully understood. Here, we demonstrated that neuronal overexpression of amyloid β (Aβ) causes abnormal histone acetylation in peripheral glia and completely blocks presynaptic homeostatic potentiation (PHP) at the neuromuscular junction in Drosophila The synaptic deficits caused by Aβ overexpression in motoneurons are associated with motor function impairment at the adult stage. Moreover, we found that a sphingosine analog drug, Fingolimod, ameliorates synaptic homeostatic plasticity impairment, abnormal glial histone acetylation, and motor behavior defects in the Aβ models. We further demonstrated that perineurial glial sphingosine kinase 2 (Sk2) is not only required for PHP, but also plays a beneficial role in modulating PHP in the Aβ models. Glial overexpression of Sk2 rescues PHP, glial histone acetylation, and motor function deficits that are associated with Aβ in Drosophila Finally, we showed that glial overexpression of Sk2 restores PHP and glial histone acetylation in a genetic loss-of-function mutant of the Spt-Ada-Gcn5 Acetyltransferase complex, strongly suggesting that Sk2 modulates PHP through epigenetic regulation. Both male and female animals were used in the experiments and analyses in this study. Collectively, we provided genetic evidence demonstrating that abnormal glial epigenetic alterations in Aβ models in Drosophila are associated with the impairment of PHP and that the sphingosine signaling pathway displays protective activities in stabilizing synaptic physiology.SIGNIFICANCE STATEMENT Fingolimod, an oral drug to treat multiple sclerosis, is phosphorylated by sphingosine kinases to generate its active form. It is known that Fingolimod enhances the cognitive function in mouse models of Alzheimer's disease (AD), but the role of sphingosine kinases in AD is not clear. We bridge this knowledge gap by demonstrating the relationship between impaired homeostatic plasticity and AD. We show that sphingosine kinase 2 (Sk2) in glial cells is necessary for homeostatic plasticity and that glial Sk2-mediated epigenetic signaling has a protective role in synapse stabilization. Our findings demonstrate the potential of the glial sphingosine signaling as a key player in glia-neuron interactions during homeostatic plasticity, suggesting it could be a promising target for sustaining synaptic function in AD.
Collapse
Affiliation(s)
- Pengqi Yin
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, DC 20007
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Department of Neurology, First Affiliated Hospital, Harbin Medical University, Harbin 150081, China
| | - Yimei Cai
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, DC 20007
| | - Tao Cui
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, DC 20007
| | - Andrew J Berg
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, DC 20007
| | - Ting Wang
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, DC 20007
| | - Danielle T Morency
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, DC 20007
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC 20007
| | - Paxton M Paganelli
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, DC 20007
| | - Chloe Lok
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, DC 20007
- Department of Biology, Georgetown University, Washington, DC 20007
| | - Yang Xue
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, DC 20007
- Department of Neurology, First Affiliated Hospital, Harbin Medical University, Harbin 150081, China
| | - Stefano Vicini
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, DC 20007
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC 20007
| | - Tingting Wang
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, DC 20007
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC 20007
| |
Collapse
|
21
|
Fan J, Dong X, Tang Y, Wang X, Lin D, Gong L, Chen C, Jiang J, Shen W, Xu A, Zhang X, Xie Y, Huang X, Zeng L. Preferential pruning of inhibitory synapses by microglia contributes to alteration of the balance between excitatory and inhibitory synapses in the hippocampus in temporal lobe epilepsy. CNS Neurosci Ther 2023; 29:2884-2900. [PMID: 37072932 PMCID: PMC10493672 DOI: 10.1111/cns.14224] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND A consensus has formed that neural circuits in the brain underlie the pathogenesis of temporal lobe epilepsy (TLE). In particular, the synaptic excitation/inhibition balance (E/I balance) has been implicated in shifting towards elevated excitation during the development of TLE. METHODS Sprague Dawley (SD) rats were intraperitoneally subjected to kainic acid (KA) to generate a model of TLE. Next, electroencephalography (EEG) recording was applied to verify the stability and detectability of spontaneous recurrent seizures (SRS) in rats. Moreover, hippocampal slices from rats and patients with mesial temporal lobe epilepsy (mTLE) were assessed using immunofluorescence to determine the alterations of excitatory and inhibitory synapses and microglial phagocytosis. RESULTS We found that KA induced stable SRSs 14 days after status epilepticus (SE) onset. Furthermore, we discovered a continuous increase in excitatory synapses during epileptogenesis, where the total area of vesicular glutamate transporter 1 (vGluT1) rose considerably in the stratum radiatum (SR) of cornu ammonis 1 (CA1), the stratum lucidum (SL) of CA3, and the polymorphic layer (PML) of the dentate gyrus (DG). In contrast, inhibitory synapses decreased significantly, with the total area of glutamate decarboxylase 65 (GAD65) in the SL and PML diminishing enormously. Moreover, microglia conducted active synaptic phagocytosis after the formation of SRSs, especially in the SL and PML. Finally, microglia preferentially pruned inhibitory synapses during recurrent seizures in both rat and human hippocampal slices, which contributed to the synaptic alteration in hippocampal subregions. CONCLUSIONS Our findings elaborately characterize the alteration of neural circuits and demonstrate the selectivity of synaptic phagocytosis mediated by microglia in TLE, which could strengthen the comprehension of the pathogenesis of TLE and inspire potential therapeutic targets for epilepsy treatment.
Collapse
Affiliation(s)
- Jianchen Fan
- College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Key Laboratory of Medical Neurobiology of the Ministry of Health of ChinaZhejiang UniversityHangzhouChina
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of MedicineHangzhou City UniversityHangzhouChina
| | - Xinyan Dong
- Department of NeurologyThe Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child HealthHangzhouChina
| | - Yejiao Tang
- College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Key Laboratory of Medical Neurobiology of the Ministry of Health of ChinaZhejiang UniversityHangzhouChina
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of MedicineHangzhou City UniversityHangzhouChina
| | - Xuehui Wang
- Department of NeurologyThe Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child HealthHangzhouChina
| | - Donghui Lin
- Department of NeurologyThe Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child HealthHangzhouChina
| | - Lifen Gong
- Department of NeurologyThe Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child HealthHangzhouChina
| | - Chen Chen
- Department of NeurologyThe Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child HealthHangzhouChina
| | - Jie Jiang
- Department of NeurologyThe Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child HealthHangzhouChina
| | - Weida Shen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of MedicineHangzhou City UniversityHangzhouChina
| | - Anyu Xu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of MedicineHangzhou City UniversityHangzhouChina
| | - Xiangnan Zhang
- College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Key Laboratory of Medical Neurobiology of the Ministry of Health of ChinaZhejiang UniversityHangzhouChina
| | - Yicheng Xie
- Department of NeurologyThe Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child HealthHangzhouChina
| | - Xin Huang
- Department of NeurosurgeryThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Linghui Zeng
- College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Key Laboratory of Medical Neurobiology of the Ministry of Health of ChinaZhejiang UniversityHangzhouChina
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of MedicineHangzhou City UniversityHangzhouChina
| |
Collapse
|
22
|
Cealie MY, Douglas JC, Le LHD, Vonkaenel ED, McCall MN, Drew PD, Majewska AK. Developmental ethanol exposure has minimal impact on cerebellar microglial dynamics, morphology, and interactions with Purkinje cells during adolescence. Front Neurosci 2023; 17:1176581. [PMID: 37214408 PMCID: PMC10198441 DOI: 10.3389/fnins.2023.1176581] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/17/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction Fetal alcohol spectrum disorders (FASD) are the most common cause of non-heritable, preventable mental disability, occurring in almost 5% of births in the United States. FASD lead to physical, behavioral, and cognitive impairments, including deficits related to the cerebellum. There is no known cure for FASD and their mechanisms remain poorly understood. To better understand these mechanisms, we examined the cerebellum on a cellular level by studying microglia, the principal immune cells of the central nervous system, and Purkinje cells, the sole output of the cerebellum. Both cell types have been shown to be affected in models of FASD, with increased cell death, immune activation of microglia, and altered firing in Purkinje cells. While ethanol administered in adulthood can acutely depress the dynamics of the microglial process arbor, it is unknown how developmental ethanol exposure impacts microglia dynamics and their interactions with Purkinje cells in the long term. Methods To address this question, we used a mouse model of human 3rd trimester exposure, whereby L7cre/Ai9+/-/Cx3cr1G/+ mice (with fluorescently labeled microglia and Purkinje cells) of both sexes were subcutaneously treated with a binge-level dose of ethanol (5.0 g/kg/day) or saline from postnatal days 4-9. Cranial windows were implanted in adolescent mice above the cerebellum to examine the long-term effects of developmental ethanol exposure on cerebellar microglia and Purkinje cell interactions using in vivo two-photon imaging. Results We found that cerebellar microglia dynamics and morphology were not affected after developmental ethanol exposure. Microglia dynamics were also largely unaltered with respect to how they interact with Purkinje cells, although subtle changes in these interactions were observed in females in the molecular layer of the cerebellum. Discussion This work suggests that there are limited in vivo long-term effects of ethanol exposure on microglia morphology, dynamics, and neuronal interactions, so other avenues of research may be important in elucidating the mechanisms of FASD.
Collapse
Affiliation(s)
- MaKenna Y. Cealie
- Majewska Laboratory, Department of Neuroscience, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
| | - James C. Douglas
- Drew Laboratory, Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Linh H. D. Le
- Majewska Laboratory, Department of Neuroscience, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
| | - Erik D. Vonkaenel
- McCall Laboratory, Department of Biostatistics and Computational Biology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
| | - Matthew N. McCall
- McCall Laboratory, Department of Biostatistics and Computational Biology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
| | - Paul D. Drew
- Drew Laboratory, Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Ania K. Majewska
- Majewska Laboratory, Department of Neuroscience, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
| |
Collapse
|
23
|
Nascimento GC, Lucas G, Leite-Panissi CRA. Emerging role of microglia and astrocyte in the affective-motivational response induced by a rat model of persistent orofacial pain. Brain Res Bull 2023; 195:86-98. [PMID: 36781112 DOI: 10.1016/j.brainresbull.2023.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 12/31/2022] [Accepted: 02/10/2023] [Indexed: 02/13/2023]
Abstract
Few studies are approaching the neural basis underlying the aggregation of emotional disorders in orofacial pain despite the stress, depression, and anxiety are some of the most commonly reported risk factors. Using a persistent orofacial pain rat model induced by complete Freund's adjuvant (CFA) injection into the temporomandibular joint, we have investigated the plasticity astrocytes and microglia key brain regions for the affective-emotional component of pain. We measured the expression and morphologic pattern of reactivation of glial fibrillary acidic protein (GFAP, astrocyte marker) and Iba-1 (microglial marker) by western blotting and immunohistochemistry analysis. The results showed no alterations on motor activity during inflammatory pain, indicating an exclusive effect of nociceptive behavior on the plasticity of limbic regions. CFA-induced temporomandibular inflammation changed GFAP and Iba-1 expression in distinct regions related to emotional behavior in a time-dependent manner. A significant increase in GFAP and Iba-1 expression was observed in the central nucleus of the amygdala, hippocampus and periaqueductal grey matter from day 3 to day 10 post-CFA injection. Moreover, a positive correlation between GFAP and Iba-1 upregulation and an increased mechanical hypersensitivity was observed. Conversely, no change on GFAP and Iba-1 expression was observed in the hypothalamus and colliculus during orofacial inflammatory pain. Our data suggest an important role for glial cells in the affective-motivational dimension of orofacial pain beyond their well-explored role in the traditional nociceptive transmission circuits.
Collapse
Affiliation(s)
- Glauce Crivelaro Nascimento
- Department of Psychology, Faculty of Philosophy, Science and Letters of Ribeirao Preto, University of São Paulo, Brazil; Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, 14040-900 SP, Brazil
| | - Guilherme Lucas
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, 14040-900 SP, Brazil
| | | |
Collapse
|
24
|
Jasutkar HG, Yamamoto A. Autophagy at the synapse, an early site of dysfunction in neurodegeneration. CURRENT OPINION IN PHYSIOLOGY 2023; 32:100631. [PMID: 36968133 PMCID: PMC10035630 DOI: 10.1016/j.cophys.2023.100631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Macroautophagy, herein referred to as autophagy, has long been implicated in the pathophysiology of neurodegenerative diseases. However, an incomplete understanding of how autophagy contributes to disease pathogenesis has limited progress in acting on this potential target for the development of disease modifying therapeutics. Research in the past few decades has revealed that autophagy plays a specialized role in the synapse, a site of early dysfunction in multiple neurodegenerative diseases. In this review we discuss the evidence suggesting that inadequate autophagy at the synapse may contribute to neurodegeneration, and why the functions of autophagy may be particularly relevant for synaptic function.
Collapse
Affiliation(s)
- Hilary Grosso Jasutkar
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854
| | - Ai Yamamoto
- Departments of Neurology and Pathology and Cell Biology, Columbia University, New York, NY 10032
| |
Collapse
|
25
|
Khaspekov LG, Frumkina LE. Molecular Mechanisms of Astrocyte Involvement in Synaptogenesis and Brain Synaptic Plasticity. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:502-514. [PMID: 37080936 DOI: 10.1134/s0006297923040065] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Astrocytes perform a wide range of important functions in the brain. As structural and functional components of synapses, astrocytes secrete various factors (proteins, lipids, small molecules, etc.) that bind to neuronal receptor and contribute to synaptogenesis and regulation of synaptic contacts. Astrocytic factors play a key role in the formation of neural networks undergoing short- and long-term synaptic morphological and functional rearrangements essential in the memory formation and behavior. The review summarizes the data on the molecular mechanisms mediating the involvement of astrocyte-secreted factors in synaptogenesis in the brain and provides up-to-date information on the role of astrocytes and astrocytic synaptogenic factors in the long-term plastic rearrangements of synaptic contacts.
Collapse
|
26
|
Song C, Broadie K. Fragile X mental retardation protein coordinates neuron-to-glia communication for clearance of developmentally transient brain neurons. Proc Natl Acad Sci U S A 2023; 120:e2216887120. [PMID: 36920921 PMCID: PMC10041173 DOI: 10.1073/pnas.2216887120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/07/2023] [Indexed: 03/16/2023] Open
Abstract
In the developmental remodeling of brain circuits, neurons are removed by glial phagocytosis to optimize adult behavior. Fragile X mental retardation protein (FMRP) regulates neuron-to-glia signaling to drive glial phagocytosis for targeted neuron pruning. We find that FMRP acts in a mothers against decapentaplegic (Mad)-insulin receptor (InR)-protein kinase B (Akt) pathway to regulate pretaporter (Prtp) and amyloid precursor protein-like (APPL) signals directing this glial clearance. Neuronal RNAi of Drosophila fragile X mental retardation 1 (dfmr1) elevates mad transcript levels and increases pMad signaling. Neuronal dfmr1 and mad RNAi both elevate phospho-protein kinase B (pAkt) and delay neuron removal but cause opposite effects on InR expression. Genetically correcting pAkt levels in the mad RNAi background restores normal remodeling. Consistently, neuronal dfmr1 and mad RNAi both decrease Prtp levels, whereas neuronal InR and akt RNAi increase Prtp levels, indicating FMRP works with pMad and insulin signaling to tightly regulate Prtp signaling and thus control glial phagocytosis for correct circuit remodeling. Neuronal dfmr1 and mad and akt RNAi all decrease APPL levels, with the pathway signaling higher glial endolysosome activity for phagocytosis. These findings reveal a FMRP-dependent control pathway for neuron-to-glia communication in neuronal pruning, identifying potential molecular mechanisms for devising fragile X syndrome treatments.
Collapse
Affiliation(s)
- Chunzhu Song
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN37235
| | - Kendal Broadie
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN37235
- Department of Cell and Developmental Biology, Vanderbilt University and Medical Center, Nashville, TN37235
- Kennedy Center for Research on Human Development, Vanderbilt University and Medical Center, Nashville, TN37235
- Vanderbilt Brain Institute, Vanderbilt University and Medical Center, Nashville, TN37235
| |
Collapse
|
27
|
Salmon CK, Syed TA, Kacerovsky JB, Alivodej N, Schober AL, Sloan TFW, Pratte MT, Rosen MP, Green M, Chirgwin-Dasgupta A, Mehta S, Jilani A, Wang Y, Vali H, Mandato CA, Siddiqi K, Murai KK. Organizing principles of astrocytic nanoarchitecture in the mouse cerebral cortex. Curr Biol 2023; 33:957-972.e5. [PMID: 36805126 DOI: 10.1016/j.cub.2023.01.043] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/01/2022] [Accepted: 01/20/2023] [Indexed: 02/18/2023]
Abstract
Astrocytes are increasingly understood to be important regulators of central nervous system (CNS) function in health and disease; yet, we have little quantitative understanding of their complex architecture. While broad categories of astrocytic structures are known, the discrete building blocks that compose them, along with their geometry and organizing principles, are poorly understood. Quantitative investigation of astrocytic complexity is impeded by the absence of high-resolution datasets and robust computational approaches to analyze these intricate cells. To address this, we produced four ultra-high-resolution datasets of mouse cerebral cortex using serial electron microscopy and developed astrocyte-tailored computer vision methods for accurate structural analysis. We unearthed specific anatomical building blocks, structural motifs, connectivity hubs, and hierarchical organizations of astrocytes. Furthermore, we found that astrocytes interact with discrete clusters of synapses and that astrocytic mitochondria are distributed to lie closer to larger clusters of synapses. Our findings provide a geometrically principled, quantitative understanding of astrocytic nanoarchitecture and point to an unexpected level of complexity in how astrocytes interact with CNS microanatomy.
Collapse
Affiliation(s)
- Christopher K Salmon
- Centre for Research in Neuroscience, Department of Neurology & Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, 1650 Cedar Avenue, Montreal, QC H3G 1A4, Canada
| | - Tabish A Syed
- School of Computer Science and Centre for Intelligent Machines, McGill University, 3480 Rue University, Montreal, QC H3A 2A7, Canada; MILA - Québec AI Institute, 6666 Rue Saint-Urbain, Montreal, QC H2S 3H1, Canada
| | - J Benjamin Kacerovsky
- Centre for Research in Neuroscience, Department of Neurology & Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, 1650 Cedar Avenue, Montreal, QC H3G 1A4, Canada
| | - Nensi Alivodej
- Centre for Research in Neuroscience, Department of Neurology & Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, 1650 Cedar Avenue, Montreal, QC H3G 1A4, Canada
| | - Alexandra L Schober
- Centre for Research in Neuroscience, Department of Neurology & Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, 1650 Cedar Avenue, Montreal, QC H3G 1A4, Canada
| | | | - Michael T Pratte
- Centre for Research in Neuroscience, Department of Neurology & Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, 1650 Cedar Avenue, Montreal, QC H3G 1A4, Canada
| | - Michael P Rosen
- Centre for Research in Neuroscience, Department of Neurology & Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, 1650 Cedar Avenue, Montreal, QC H3G 1A4, Canada
| | - Miranda Green
- Centre for Research in Neuroscience, Department of Neurology & Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, 1650 Cedar Avenue, Montreal, QC H3G 1A4, Canada
| | - Adario Chirgwin-Dasgupta
- Centre for Research in Neuroscience, Department of Neurology & Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, 1650 Cedar Avenue, Montreal, QC H3G 1A4, Canada
| | - Shaurya Mehta
- School of Computer Science and Centre for Intelligent Machines, McGill University, 3480 Rue University, Montreal, QC H3A 2A7, Canada
| | - Affan Jilani
- School of Computer Science and Centre for Intelligent Machines, McGill University, 3480 Rue University, Montreal, QC H3A 2A7, Canada
| | - Yanan Wang
- School of Computer Science and Centre for Intelligent Machines, McGill University, 3480 Rue University, Montreal, QC H3A 2A7, Canada
| | - Hojatollah Vali
- Department of Anatomy & Cell Biology, McGill University, 3640 Rue University, Montreal, QC H3A 0C7, Canada
| | - Craig A Mandato
- Department of Anatomy & Cell Biology, McGill University, 3640 Rue University, Montreal, QC H3A 0C7, Canada
| | - Kaleem Siddiqi
- School of Computer Science and Centre for Intelligent Machines, McGill University, 3480 Rue University, Montreal, QC H3A 2A7, Canada; MILA - Québec AI Institute, 6666 Rue Saint-Urbain, Montreal, QC H2S 3H1, Canada.
| | - Keith K Murai
- Centre for Research in Neuroscience, Department of Neurology & Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, 1650 Cedar Avenue, Montreal, QC H3G 1A4, Canada.
| |
Collapse
|
28
|
Stevens HE, Scuderi S, Collica SC, Tomasi S, Horvath TL, Vaccarino FM. Neonatal loss of FGFR2 in astroglial cells affects locomotion, sociability, working memory, and glia-neuron interactions in mice. Transl Psychiatry 2023; 13:89. [PMID: 36906620 PMCID: PMC10008554 DOI: 10.1038/s41398-023-02372-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 03/13/2023] Open
Abstract
Fibroblast growth factor receptor 2 (FGFR2) is almost exclusively expressed in glial cells in postnatal mouse brain, but its impact in glia for brain behavioral functioning is poorly understood. We compared behavioral effects from FGFR2 loss in both neurons and astroglial cells and from FGFR2 loss in astroglial cells by using either the pluripotent progenitor-driven hGFAP-cre or the tamoxifen-inducible astrocyte-driven GFAP-creERT2 in Fgfr2 floxed mice. When FGFR2 was eliminated in embryonic pluripotent precursors or in early postnatal astroglia, mice were hyperactive, and had small changes in working memory, sociability, and anxiety-like behavior. In contrast, FGFR2 loss in astrocytes starting at 8 weeks of age resulted only in reduced anxiety-like behavior. Therefore, early postnatal loss of FGFR2 in astroglia is critical for broad behavioral dysregulation. Neurobiological assessments demonstrated that astrocyte-neuron membrane contact was reduced and glial glutamine synthetase expression increased only by early postnatal FGFR2 loss. We conclude that altered astroglial cell function dependent on FGFR2 in the early postnatal period may result in impaired synaptic development and behavioral regulation, modeling childhood behavioral deficits like attention deficit hyperactivity disorder (ADHD).
Collapse
Affiliation(s)
- Hanna E Stevens
- Child Study Center, Yale School of Medicine, New Haven, CT, 06520, USA.
- Department of Psychiatry, Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA, 52246, USA.
| | - Soraya Scuderi
- Child Study Center, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Sarah C Collica
- Child Study Center, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Simone Tomasi
- Child Study Center, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Tamas L Horvath
- Department of Neuroscience, Yale University, New Haven, CT, 06520, USA
- Department of Comparative Medicine, Department of Obstetrics and Gynecology, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Flora M Vaccarino
- Child Study Center, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Neuroscience, Yale University, New Haven, CT, 06520, USA
| |
Collapse
|
29
|
Wang YY, Zhou YN, Jiang L, Wang S, Zhu L, Zhang SS, Yang H, He Q, Liu L, Xie YH, Liang X, Tang J, Chao FL, Tang Y. Long-term voluntary exercise inhibited AGE/RAGE and microglial activation and reduced the loss of dendritic spines in the hippocampi of APP/PS1 transgenic mice. Exp Neurol 2023; 363:114371. [PMID: 36871860 DOI: 10.1016/j.expneurol.2023.114371] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/22/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023]
Abstract
Alzheimer's disease (AD) is closely related to hippocampal synapse loss, which can be alleviated by running exercise. However, further studies are needed to determine whether running exercise reduces synapse loss in the hippocampus in an AD model by regulating microglia. Ten-month-old male wild-type mice and APP/PS1 mice were randomly divided into control and running groups. All mice in the running groups were subjected to voluntary running exercise for four months. After the behavioral tests, immunohistochemistry, stereological methods, immunofluorescence staining, 3D reconstruction, western blotting and RNA-Seq were performed. Running exercise improved the spatial learning and memory abilities of APP/PS1 mice and increased the total number of dendritic spines, the levels of the PSD-95 and Synapsin Ia/b proteins, the colocalization of PSD-95 and neuronal dendrites (MAP-2) and the number of PSD-95-contacting astrocytes (GFAP) in the hippocampi of APP/PS1 mice. Moreover, running exercise reduced the relative expression of CD68 and Iba-1, the number of Iba-1+ microglia and the colocalization of PSD-95 and Iba-1+ microglia in the hippocampi of APP/PS1 mice. The RNA-Seq results showed that some differentially expressed genes (DEGs) related to the complement system (Cd59b, Serping1, Cfh, A2m, and Trem2) were upregulated in the hippocampi of APP/PS1 mice, while running exercise downregulated the C3 gene. At the protein level, running exercise also reduced the expression of advanced glycation end products (AGEs), receptor for advanced glycation end products (RAGE), C1q and C3 in the hippocampus and AGEs and RAGE in hippocampal microglia in APP/PS1 mice. Furthermore, the Col6a3, Scn5a, Cxcl5, Tdg and Clec4n genes were upregulated in the hippocampi of APP/PS1 mice but downregulated after running, and these genes were associated with the C3 and RAGE genes according to protein-protein interaction (PPI) analysis. These findings indicate that long-term voluntary exercise might protect hippocampal synapses and affect the function and activation of microglia, the AGE/RAGE signaling pathway in microglia and the C1q/C3 complement system in the hippocampus in APP/PS1 mice, and these effects may be related to the Col6a3, Scn5a, Cxcl5, Tdg and Clec4n genes. The current results provide an important basis for identifying targets for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Yi-Ying Wang
- Department of Histology and Embryology, Faculty of Basic Medical College, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical College, Chongqing Medical University, Chongqing 400016, PR China
| | - Yu-Ning Zhou
- Department of Histology and Embryology, Faculty of Basic Medical College, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical College, Chongqing Medical University, Chongqing 400016, PR China
| | - Lin Jiang
- Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, PR China
| | - Shun Wang
- Department of Histology and Embryology, Faculty of Basic Medical College, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical College, Chongqing Medical University, Chongqing 400016, PR China
| | - Lin Zhu
- Department of Histology and Embryology, Faculty of Basic Medical College, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical College, Chongqing Medical University, Chongqing 400016, PR China
| | - Shan-Shan Zhang
- Department of Histology and Embryology, Faculty of Basic Medical College, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical College, Chongqing Medical University, Chongqing 400016, PR China
| | - Hao Yang
- Department of Histology and Embryology, Faculty of Basic Medical College, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical College, Chongqing Medical University, Chongqing 400016, PR China
| | - Qi He
- Department of Histology and Embryology, Faculty of Basic Medical College, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical College, Chongqing Medical University, Chongqing 400016, PR China
| | - Li Liu
- Department of Histology and Embryology, Faculty of Basic Medical College, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical College, Chongqing Medical University, Chongqing 400016, PR China
| | - Yu-Han Xie
- Department of Histology and Embryology, Faculty of Basic Medical College, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical College, Chongqing Medical University, Chongqing 400016, PR China
| | - Xin Liang
- Department of Pathophysiology, Faculty of Basic Medical College, Chongqing Medical University, Chongqing 400016, PR China
| | - Jing Tang
- Department of Histology and Embryology, Faculty of Basic Medical College, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical College, Chongqing Medical University, Chongqing 400016, PR China
| | - Feng-Lei Chao
- Department of Histology and Embryology, Faculty of Basic Medical College, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical College, Chongqing Medical University, Chongqing 400016, PR China.
| | - Yong Tang
- Department of Histology and Embryology, Faculty of Basic Medical College, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical College, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
30
|
Astrocytes regulate neuronal network activity by mediating synapse remodeling. Neurosci Res 2023; 187:3-13. [PMID: 36170922 DOI: 10.1016/j.neures.2022.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 11/22/2022]
Abstract
Based on experience during our life, neuronal connectivity continuously changes through structural remodeling of synapses. Recent studies have shown that the complex interaction between astrocytes and synapses regulates structural synapse remodeling by inducing the formation and elimination of synapses, as well as their functional maturation. Defects in this astrocyte-mediated synapse remodeling cause problems in not only neuronal network activities but also animal behaviors. Moreover, in various neurological disorders, astrocytes have been shown to play central roles in the initiation and progression of synaptic pathophysiology through impaired interactions with synapses. In this review, we will discuss recent studies identifying the novel roles of astrocytes in neuronal circuit remodeling, focusing on synapse formation and elimination. We will also discuss the potential implication of defective astrocytic function in evoking various brain disorders.
Collapse
|
31
|
Anastasaki C, Gao Y, Gutmann DH. Neurons as stromal drivers of nervous system cancer formation and progression. Dev Cell 2023; 58:81-93. [PMID: 36693322 PMCID: PMC9883043 DOI: 10.1016/j.devcel.2022.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/24/2022] [Accepted: 12/27/2022] [Indexed: 01/24/2023]
Abstract
Similar to their pivotal roles in nervous system development, neurons have emerged as critical regulators of cancer initiation, maintenance, and progression. Focusing on nervous system tumors, we describe the normal relationships between neurons and other cell types relevant to normal nerve function, and discuss how disruptions of these interactions promote tumor evolution, focusing on electrical (gap junctions) and chemical (synaptic) coupling, as well as the establishment of new paracrine relationships. We also review how neuron-tumor communication contributes to some of the complications of cancer, including neuropathy, chemobrain, seizures, and pain. Finally, we consider the implications of cancer neuroscience in establishing risk for tumor penetrance and in the design of future anti-tumoral treatments.
Collapse
Affiliation(s)
- Corina Anastasaki
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yunqing Gao
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
32
|
Chun BJ, Aryal SP, Varughese P, Sun B, Bruno JA, Richards CI, Bachstetter AD, Kekenes-Huskey PM. Purinoreceptors and ectonucleotidases control ATP-induced calcium waveforms and calcium-dependent responses in microglia: Roles of P2 receptors and CD39 in ATP-stimulated microglia. Front Physiol 2023; 13:1037417. [PMID: 36699679 PMCID: PMC9868579 DOI: 10.3389/fphys.2022.1037417] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
Adenosine triphosphate (ATP) and its metabolites drive microglia migration and cytokine production by activating P2X- and P2Y- class purinergic receptors. Purinergic receptor activation gives rise to diverse intracellular calcium (Ca2+ signals, or waveforms, that differ in amplitude, duration, and frequency. Whether and how these characteristics of diverse waveforms influence microglia function is not well-established. We developed a computational model trained with data from published primary murine microglia studies. We simulate how purinoreceptors influence Ca2+ signaling and migration, as well as, how purinoreceptor expression modifies these processes. Our simulation confirmed that P2 receptors encode the amplitude and duration of the ATP-induced Ca2+ waveforms. Our simulations also implicate CD39, an ectonucleotidase that rapidly degrades ATP, as a regulator of purinergic receptor-induced Ca2+ responses. Namely, it was necessary to account for CD39 metabolism of ATP to align the model's predicted purinoreceptor responses with published experimental data. In addition, our modeling results indicate that small Ca2+ transients accompany migration, while large and sustained transients are needed for cytokine responses. Lastly, as a proof-of-principal, we predict Ca2+ transients and cell membrane displacements in a BV2 microglia cell line using published P2 receptor mRNA data to illustrate how our computer model may be extrapolated to other microglia subtypes. These findings provide important insights into how differences in purinergic receptor expression influence microglial responses to ATP.
Collapse
Affiliation(s)
- Byeong J. Chun
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, IL, United States,*Correspondence: Byeong J. Chun, ; Peter M. Kekenes-Huskey,
| | - Surya P. Aryal
- Department of Chemistry, University of Kentucky, Lexington, KY, United States
| | - Peter Varughese
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, IL, United States
| | - Bin Sun
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, IL, United States
| | - Joshua A. Bruno
- Department of Physics, Loyola University Chicago, Chicago, IL, United States
| | - Chris I. Richards
- Department of Chemistry, University of Kentucky, Lexington, KY, United States
| | | | - Peter M. Kekenes-Huskey
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, IL, United States,*Correspondence: Byeong J. Chun, ; Peter M. Kekenes-Huskey,
| |
Collapse
|
33
|
Unnisa A, Greig NH, Kamal MA. Modelling the Interplay Between Neuron-Glia Cell Dysfunction and Glial Therapy in Autism Spectrum Disorder. Curr Neuropharmacol 2023; 21:547-559. [PMID: 36545725 PMCID: PMC10207919 DOI: 10.2174/1570159x21666221221142743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/27/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022] Open
Abstract
Autism spectrum disorder (ASD) is a complicated, interpersonally defined, static condition of the underdeveloped brain. Although the aetiology of autism remains unclear, disturbance of neuronglia interactions has lately been proposed as a significant event in the pathophysiology of ASD. In recent years, the contribution of glial cells to autism has been overlooked. In addition to neurons, glial cells play an essential role in mental activities, and a new strategy that emphasises neuron-glia interactions should be applied. Disturbance of neuron-glia connections has lately been proposed as a significant event in the pathophysiology of ASD because aberrant neuronal network formation and dysfunctional neurotransmission are fundamental to the pathology of the condition. In ASD, neuron and glial cell number changes cause brain circuits to malfunction and impact behaviour. A study revealed that reactive glial cells result in the loss of synaptic functioning and induce autism under inflammatory conditions. Recent discoveries also suggest that dysfunction or changes in the ability of microglia to carry out physiological and defensive functions (such as failure in synaptic elimination or aberrant microglial activation) may be crucial for developing brain diseases, especially autism. The cerebellum, white matter, and cortical regions of autistic patients showed significant microglial activation. Reactive glial cells result in the loss of synaptic functioning and induce autism under inflammatory conditions. Replacement of defective glial cells (Cell-replacement treatment), glial progenitor cell-based therapy, and medication therapy (inhibition of microglia activation) are all utilised to treat glial dysfunction. This review discusses the role of glial cells in ASD and the various potential approaches to treating glial cell dysfunction.
Collapse
Affiliation(s)
- Aziz Unnisa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, KSA;
| | - Nigel H. Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, MD 21224, USA
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
- Enzymoics, Novel Global Community Educational Foundation, Peterlee place, Hebersham, NSW 2770, Australia
| |
Collapse
|
34
|
Abstract
Neurons in the developing brain undergo extensive structural refinement as nascent circuits adopt their mature form. This physical transformation of neurons is facilitated by the engulfment and degradation of axonal branches and synapses by surrounding glial cells, including microglia and astrocytes. However, the small size of phagocytic organelles and the complex, highly ramified morphology of glia have made it difficult to define the contribution of these and other glial cell types to this crucial process. Here, we used large-scale, serial section transmission electron microscopy (TEM) with computational volume segmentation to reconstruct the complete 3D morphologies of distinct glial types in the mouse visual cortex, providing unprecedented resolution of their morphology and composition. Unexpectedly, we discovered that the fine processes of oligodendrocyte precursor cells (OPCs), a population of abundant, highly dynamic glial progenitors, frequently surrounded small branches of axons. Numerous phagosomes and phagolysosomes (PLs) containing fragments of axons and vesicular structures were present inside their processes, suggesting that OPCs engage in axon pruning. Single-nucleus RNA sequencing from the developing mouse cortex revealed that OPCs express key phagocytic genes at this stage, as well as neuronal transcripts, consistent with active axon engulfment. Although microglia are thought to be responsible for the majority of synaptic pruning and structural refinement, PLs were ten times more abundant in OPCs than in microglia at this stage, and these structures were markedly less abundant in newly generated oligodendrocytes, suggesting that OPCs contribute substantially to the refinement of neuronal circuits during cortical development.
Collapse
|
35
|
Flores-Muñoz C, García-Rojas F, Pérez MA, Santander O, Mery E, Ordenes S, Illanes-González J, López-Espíndola D, González-Jamett AM, Fuenzalida M, Martínez AD, Ardiles ÁO. The Long-Term Pannexin 1 Ablation Produces Structural and Functional Modifications in Hippocampal Neurons. Cells 2022; 11:cells11223646. [PMID: 36429074 PMCID: PMC9688914 DOI: 10.3390/cells11223646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/29/2022] [Accepted: 11/10/2022] [Indexed: 11/19/2022] Open
Abstract
Enhanced activity and overexpression of Pannexin 1 (Panx1) channels contribute to neuronal pathologies such as epilepsy and Alzheimer's disease (AD). The Panx1 channel ablation alters the hippocampus's glutamatergic neurotransmission, synaptic plasticity, and memory flexibility. Nevertheless, Panx1-knockout (Panx1-KO) mice still retain the ability to learn, suggesting that compensatory mechanisms stabilize their neuronal activity. Here, we show that the absence of Panx1 in the adult brain promotes a series of structural and functional modifications in the Panx1-KO hippocampal synapses, preserving spontaneous activity. Compared to the wild-type (WT) condition, the adult hippocampal neurons of Panx1-KO mice exhibit enhanced excitability, a more complex dendritic branching, enhanced spine maturation, and an increased proportion of multiple synaptic contacts. These modifications seem to rely on the actin-cytoskeleton dynamics as an increase in the actin polymerization and an imbalance between the Rac1 and the RhoA GTPase activities were observed in Panx1-KO brain tissues. Our findings highlight a novel interaction between Panx1 channels, actin, and Rho GTPases, which appear to be relevant for synapse stability.
Collapse
Affiliation(s)
- Carolina Flores-Muñoz
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Centro de Neurología Traslacional, Facultad de Medicina, Universidad de Valparaíso, Valparaíso 2341386, Chile
- Programa de Doctorado en Ciencias, Mención Neurociencia, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Francisca García-Rojas
- Programa de Doctorado en Ciencias, Mención Neurociencia, Universidad de Valparaíso, Valparaíso 2340000, Chile
- Centro de Neurobiología y Fisiopatología integrativa, CENFI, Instituto de Fisiología, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Miguel A. Pérez
- Centro de Neurobiología y Fisiopatología integrativa, CENFI, Instituto de Fisiología, Universidad de Valparaíso, Valparaíso 2340000, Chile
- Escuela de Ciencias de la Salud, Universidad de Viña del Mar, Viña del Mar 2572007, Chile
| | - Odra Santander
- Programa de Doctorado en Ciencias, Mención Neurociencia, Universidad de Valparaíso, Valparaíso 2340000, Chile
- Centro de Neurobiología y Fisiopatología integrativa, CENFI, Instituto de Fisiología, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Elena Mery
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Centro de Neurología Traslacional, Facultad de Medicina, Universidad de Valparaíso, Valparaíso 2341386, Chile
| | - Stefany Ordenes
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Centro de Neurología Traslacional, Facultad de Medicina, Universidad de Valparaíso, Valparaíso 2341386, Chile
- Programa de Doctorado en Ciencias, Mención Neurociencia, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Javiera Illanes-González
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Centro de Neurología Traslacional, Facultad de Medicina, Universidad de Valparaíso, Valparaíso 2341386, Chile
- Programa de Doctorado en Ciencias, Mención Neurociencia, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Daniela López-Espíndola
- Escuela de Tecnología Médica, Facultad de Medicina, Universidad de Valparaíso, Valparaíso 2529002, Chile
- Centro de Investigaciones Biomédicas, Escuela de Medicina, Facultad de Medicina, Universidad de Valparaíso, Viña del Mar 2529002, Chile
| | - Arlek M. González-Jamett
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Marco Fuenzalida
- Centro de Neurobiología y Fisiopatología integrativa, CENFI, Instituto de Fisiología, Universidad de Valparaíso, Valparaíso 2340000, Chile
- Correspondence: (M.F.); (A.D.M.); (Á.O.A.)
| | - Agustín D. Martínez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Correspondence: (M.F.); (A.D.M.); (Á.O.A.)
| | - Álvaro O. Ardiles
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Centro de Neurología Traslacional, Facultad de Medicina, Universidad de Valparaíso, Valparaíso 2341386, Chile
- Centro Interdisciplinario de estudios en salud, Escuela de Medicina, Facultad de Medicina, Universidad de Valparaíso, Viña del Mar 2572007, Chile
- Correspondence: (M.F.); (A.D.M.); (Á.O.A.)
| |
Collapse
|
36
|
Qin S, Zhang Z, Zhao Y, Liu J, Qiu J, Gong Y, Fan W, Guo Y, Guo Y, Xu Z, Guo Y. The impact of acupuncture on neuroplasticity after ischemic stroke: a literature review and perspectives. Front Cell Neurosci 2022; 16:817732. [PMID: 36439200 PMCID: PMC9685811 DOI: 10.3389/fncel.2022.817732] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 10/24/2022] [Indexed: 09/07/2023] Open
Abstract
Ischemic stroke is common in the elderly, and is one of the main causes of long-term disability worldwide. After ischemic stroke, spontaneous recovery and functional reconstruction take place. These processes are possible thanks to neuroplasticity, which involves neurogenesis, synaptogenesis, and angiogenesis. However, the repair of ischemic damage is not complete, and neurological deficits develop eventually. The WHO recommends acupuncture as an alternative and complementary method for the treatment of stroke. Moreover, clinical and experimental evidence has documented the potential of acupuncture to ameliorate ischemic stroke-induced neurological deficits, particularly sequelae such as dyskinesia, spasticity, cognitive impairment, and dysphagia. These effects are related to the ability of acupuncture to promote spontaneous neuroplasticity after ischemic stroke. Specifically, acupuncture can stimulate neurogenesis, activate axonal regeneration and sprouting, and improve the structure and function of synapses. These processes modify the neural network and function of the damaged brain area, producing the improvement of various skills and adaptability. Astrocytes and microglia may be involved in the regulation of neuroplasticity by acupuncture, such as by the production and release of a variety of neurotrophic factors, including brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF). Moreover, the evidence presented indicates that acupuncture promotes neuroplasticity by modulating the functional reconstruction of the whole brain after ischemia. Therefore, the promotion of neuroplasticity is expected to become a new target for acupuncture in the treatment of neurological deficits after ischemic stroke, and research into the mechanisms responsible for these actions will be of significant clinical value.
Collapse
Affiliation(s)
- Siru Qin
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zichen Zhang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yadan Zhao
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jingyi Liu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiwen Qiu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yinan Gong
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wen Fan
- Department of Rehabilitation Physical Therapy Course, Faculty of Health Science, Suzuka University of Medical Science, Suzuka, Japan
| | - Yongming Guo
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yi Guo
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhifang Xu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yang Guo
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Acupuncture Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
37
|
Murtaza N, Cheng AA, Brown CO, Meka DP, Hong S, Uy JA, El-Hajjar J, Pipko N, Unda BK, Schwanke B, Xing S, Thiruvahindrapuram B, Engchuan W, Trost B, Deneault E, Calderon de Anda F, Doble BW, Ellis J, Anagnostou E, Bader GD, Scherer SW, Lu Y, Singh KK. Neuron-specific protein network mapping of autism risk genes identifies shared biological mechanisms and disease-relevant pathologies. Cell Rep 2022; 41:111678. [DOI: 10.1016/j.celrep.2022.111678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/16/2022] [Accepted: 10/25/2022] [Indexed: 11/23/2022] Open
|
38
|
Brain structure and synaptic protein expression alterations after antidepressant treatment in a Wistar-Kyoto rat model of depression. J Affect Disord 2022; 314:293-302. [PMID: 35878834 DOI: 10.1016/j.jad.2022.07.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/20/2022] [Accepted: 07/17/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Structural MRI has demonstrated brain alterations in depression pathology and antidepressants treatment. While synaptic plasticity has been previously proposed as the potential underlying mechanism of MRI findings at a cellular and molecular scale, there is still insufficient evidence to link the MRI findings and synaptic plasticity mechanisms in depression pathology. METHODS In this study, a Wistar-Kyoto (WKY) depression rat model was treated with antidepressants (citalopram or Jie-Yu Pills) and tested in a series of behavioral tests and a 7.0 MRI scanner. We then measured dendritic spine density within altered brain regions. We also examined expression of synaptic marker proteins (PSD-95 and SYP). RESULTS WKY rats exhibited depression-like behaviors in the sucrose preference test (SPT) and forced swim test (FST), and anxiety-like behaviors in the open field test (OFT). Both antidepressants reversed behavioral changes in SPT and OFT but not in FST. We found a correlation between SPT performance and brain volumes as detected by MRI. All structural changes were consistent with alterations of the corpus callosum (white matter), dendritic spine density, as well as PSD95 and SYP expression at different levels. Two antidepressants similarly reversed these macro- and micro-changes. LIMITATIONS The single dose of antidepressants was the major limitation of this study. Further studies should focus on the white matter microstructure changes and myelin-related protein alterations, in addition to comparing the effects of ketamine. CONCLUSION Translational evidence links structural MRI changes and synaptic plasticity alterations, which promote our understanding of SPT mechanisms and antidepressant response in WKY rats.
Collapse
|
39
|
Gold OMS, Bardsley EN, Ponnampalam AP, Pauza AG, Paton JFR. Cellular basis of learning and memory in the carotid body. Front Synaptic Neurosci 2022; 14:902319. [PMID: 36046221 PMCID: PMC9420943 DOI: 10.3389/fnsyn.2022.902319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
The carotid body is the primary peripheral chemoreceptor in the body, and critical for respiration and cardiovascular adjustments during hypoxia. Yet considerable evidence now implicates the carotid body as a multimodal sensor, mediating the chemoreflexes of a wide range of physiological responses, including pH, temperature, and acidosis as well as hormonal, glucose and immune regulation. How does the carotid body detect and initiate appropriate physiological responses for these diverse stimuli? The answer to this may lie in the structure of the carotid body itself. We suggest that at an organ-level the carotid body is comparable to a miniature brain with compartmentalized discrete regions of clustered glomus cells defined by their neurotransmitter expression and receptor profiles, and with connectivity to defined reflex arcs that play a key role in initiating distinct physiological responses, similar in many ways to a switchboard that connects specific inputs to selective outputs. Similarly, within the central nervous system, specific physiological outcomes are co-ordinated, through signaling via distinct neuronal connectivity. As with the brain, we propose that highly organized cellular connectivity is critical for mediating co-ordinated outputs from the carotid body to a given stimulus. Moreover, it appears that the rudimentary components for synaptic plasticity, and learning and memory are conserved in the carotid body including the presence of glutamate and GABAergic systems, where evidence pinpoints that pathophysiology of common diseases of the carotid body may be linked to deviations in these processes. Several decades of research have contributed to our understanding of the central nervous system in health and disease, and we discuss that understanding the key processes involved in neuronal dysfunction and synaptic activity may be translated to the carotid body, offering new insights and avenues for therapeutic innovation.
Collapse
|
40
|
Chin EW, Ma Q, Ruan H, Chin C, Somasundaram A, Zhang C, Liu C, Lewis MD, White M, Smith TL, Battersby M, Yao WD, Lu XY, Arap W, Licinio J, Wong ML. The epigenetic reader PHF21B modulates murine social memory and synaptic plasticity-related genes. JCI Insight 2022; 7:e158081. [PMID: 35866480 PMCID: PMC9431697 DOI: 10.1172/jci.insight.158081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022] Open
Abstract
Synaptic dysfunction is a manifestation of several neurobehavioral and neurological disorders. A major therapeutic challenge lies in uncovering the upstream regulatory factors controlling synaptic processes. Plant homeodomain (PHD) finger proteins are epigenetic readers whose dysfunctions are implicated in neurological disorders. However, the molecular mechanisms linking PHD protein deficits to disease remain unclear. Here, we generated a PHD finger protein 21B-depleted (Phf21b-depleted) mutant CRISPR mouse model (hereafter called Phf21bΔ4/Δ4) to examine Phf21b's roles in the brain. Phf21bΔ4/Δ4 animals exhibited impaired social memory. In addition, reduced expression of synaptic proteins and impaired long-term potentiation were observed in the Phf21bΔ4/Δ4 hippocampi. Transcriptome profiling revealed differential expression of genes involved in synaptic plasticity processes. Furthermore, we characterized a potentially novel interaction of PHF21B with histone H3 trimethylated lysine 36 (H3K36me3), a histone modification associated with transcriptional activation, and the transcriptional factor CREB. These results establish PHF21B as an important upstream regulator of synaptic plasticity-related genes and a candidate therapeutic target for neurobehavioral dysfunction in mice, with potential applications in human neurological and psychiatric disorders.
Collapse
Affiliation(s)
| | - Qi Ma
- Department of Psychiatry and Behavioral Sciences
| | - Hongyu Ruan
- Department of Psychiatry and Behavioral Sciences
| | | | | | - Chunling Zhang
- Department of Neuroscience & Physiology, Norton College of Medicine, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - Chunyu Liu
- Department of Psychiatry and Behavioral Sciences
- Department of Neuroscience & Physiology, Norton College of Medicine, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - Martin D. Lewis
- Neuropsychiatric Laboratory, Lifelong Health Research Unit, and
| | - Melissa White
- Gene Editing Research Unit, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- SA Genome Editing Facility, University of Adelaide, Adelaide, South Australia, Australia
| | - Tracey L. Smith
- Rutgers Cancer Institute of New Jersey, Newark, New Jersey, USA
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Malcolm Battersby
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Wei-Dong Yao
- Department of Psychiatry and Behavioral Sciences
- Department of Neuroscience & Physiology, Norton College of Medicine, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - Xin-Yun Lu
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Wadih Arap
- Rutgers Cancer Institute of New Jersey, Newark, New Jersey, USA
- Division of Hematology/Oncology, Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Julio Licinio
- Department of Psychiatry and Behavioral Sciences
- Department of Neuroscience & Physiology, Norton College of Medicine, State University of New York Upstate Medical University, Syracuse, New York, USA
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Ma-Li Wong
- Department of Psychiatry and Behavioral Sciences
- Department of Neuroscience & Physiology, Norton College of Medicine, State University of New York Upstate Medical University, Syracuse, New York, USA
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| |
Collapse
|
41
|
de Oliveira Figueiredo EC, Calì C, Petrelli F, Bezzi P. Emerging evidence for astrocyte dysfunction in schizophrenia. Glia 2022; 70:1585-1604. [PMID: 35634946 PMCID: PMC9544982 DOI: 10.1002/glia.24221] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 12/30/2022]
Abstract
Schizophrenia is a complex, chronic mental health disorder whose heterogeneous genetic and neurobiological background influences early brain development, and whose precise etiology is still poorly understood. Schizophrenia is not characterized by gross brain pathology, but involves subtle pathological changes in neuronal populations and glial cells. Among the latter, astrocytes critically contribute to the regulation of early neurodevelopmental processes, and any dysfunctions in their morphological and functional maturation may lead to aberrant neurodevelopmental processes involved in the pathogenesis of schizophrenia, such as mitochondrial biogenesis, synaptogenesis, and glutamatergic and dopaminergic transmission. Studies of the mechanisms regulating astrocyte maturation may therefore improve our understanding of the cellular and molecular mechanisms underlying the pathogenesis of schizophrenia.
Collapse
Affiliation(s)
| | - Corrado Calì
- Department of Neuroscience, University of Torino, Torino, Italy.,Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy
| | - Francesco Petrelli
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Paola Bezzi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.,Department of Pharmacology and Physiology, University of Rome Sapienza, Rome, Italy
| |
Collapse
|
42
|
Linne ML, Aćimović J, Saudargiene A, Manninen T. Neuron-Glia Interactions and Brain Circuits. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1359:87-103. [PMID: 35471536 DOI: 10.1007/978-3-030-89439-9_4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Recent evidence suggests that glial cells take an active role in a number of brain functions that were previously attributed solely to neurons. For example, astrocytes, one type of glial cells, have been shown to promote coordinated activation of neuronal networks, modulate sensory-evoked neuronal network activity, and influence brain state transitions during development. This reinforces the idea that astrocytes not only provide the "housekeeping" for the neurons, but that they also play a vital role in supporting and expanding the functions of brain circuits and networks. Despite this accumulated knowledge, the field of computational neuroscience has mostly focused on modeling neuronal functions, ignoring the glial cells and the interactions they have with the neurons. In this chapter, we introduce the biology of neuron-glia interactions, summarize the existing computational models and tools, and emphasize the glial properties that may be important in modeling brain functions in the future.
Collapse
Affiliation(s)
- Marja-Leena Linne
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
| | - Jugoslava Aćimović
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Ausra Saudargiene
- Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania.,Department of Informatics, Vytautas Magnus University, Kaunas, Lithuania
| | - Tiina Manninen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
43
|
Abstract
Chandelier cells (ChCs) are a unique type of GABAergic interneuron that form axo-axonic synapses exclusively on the axon initial segment (AIS) of neocortical pyramidal neurons (PyNs), allowing them to exert powerful yet precise control over PyN firing and population output. The importance of proper ChC function is further underscored by the association of ChC connectivity defects with various neurological conditions. Despite this, the cellular mechanisms governing ChC axo-axonic synapse formation remain poorly understood. Here, we identify microglia as key regulators of ChC axonal morphogenesis and AIS synaptogenesis, and show that disease-induced aberrant microglial activation perturbs proper ChC synaptic development/connectivity in the neocortex. In doing so, such findings highlight the therapeutic potential of manipulating microglia to ensure proper brain wiring. Microglia have emerged as critical regulators of synapse development and circuit formation in the healthy brain. To date, examination of microglia in such processes has largely been focused on excitatory synapses. Their roles, however, in the modulation of GABAergic interneuron synapses—particularly those targeting the axon initial segment (AIS)—during development remain enigmatic. Here, we identify a synaptogenic/growth-promoting role for microglia in regulating pyramidal neuron (PyN) AIS synapse formation by chandelier cells (ChCs), a unique interneuron subtype whose axonal terminals, called cartridges, selectively target the AIS. We show that a subset of microglia contacts PyN AISs and ChC cartridges and that such tripartite interactions, which rely on the unique AIS cytoskeleton and microglial GABAB1 receptors, are associated with increased ChC cartridge length and bouton number and AIS synaptogenesis. Conversely, microglia depletion or disease-induced aberrant microglia activation impairs the proper development and maintenance of ChC cartridges and boutons, as well as AIS synaptogenesis. These findings unveil key roles for homeostatic, AIS-associated microglia in regulating proper ChC axonal morphogenesis and synaptic connectivity in the neocortex.
Collapse
|
44
|
Stress vulnerability shapes disruption of motor cortical neuroplasticity. Transl Psychiatry 2022; 12:91. [PMID: 35246507 PMCID: PMC8897461 DOI: 10.1038/s41398-022-01855-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 02/06/2023] Open
Abstract
Chronic stress is a major cause of neuropsychiatric conditions such as depression. Stress vulnerability varies individually in mice and humans, measured by behavioral changes. In contrast to affective symptoms, motor retardation as a consequence of stress is not well understood. We repeatedly imaged dendritic spines of the motor cortex in Thy1-GFP M mice before and after chronic social defeat stress. Susceptible and resilient phenotypes were discriminated by symptom load and their motor learning abilities were assessed by a gross and fine motor task. Stress phenotypes presented individual short- and long-term changes in the hypothalamic-pituitary-adrenal axis as well as distinct patterns of altered motor learning. Importantly, stress was generally accompanied by a marked reduction of spine density in the motor cortex and spine dynamics depended on the stress phenotype. We found astrogliosis and altered microglia morphology along with increased microglia-neuron interaction in the motor cortex of susceptible mice. In cerebrospinal fluid, proteomic fingerprints link the behavioral changes and structural alterations in the brain to neurodegenerative disorders and dysregulated synaptic homeostasis. Our work emphasizes the importance of synaptic integrity and the risk of neurodegeneration within depression as a threat to brain health.
Collapse
|
45
|
Allison RL, Welby E, Khayrullina G, Burnett BG, Ebert AD. Viral mediated knockdown of GATA6 in SMA iPSC-derived astrocytes prevents motor neuron loss and microglial activation. Glia 2022; 70:989-1004. [PMID: 35088910 PMCID: PMC9303278 DOI: 10.1002/glia.24153] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 12/22/2022]
Abstract
Spinal muscular atrophy (SMA), a pediatric genetic disorder, is characterized by the profound loss of spinal cord motor neurons and subsequent muscle atrophy and death. Although the mechanisms underlying motor neuron loss are not entirely clear, data from our work and others support the idea that glial cells contribute to disease pathology. GATA6, a transcription factor that we have previously shown to be upregulated in SMA astrocytes, is negatively regulated by SMN (survival motor neuron) and can increase the expression of inflammatory regulator NFκB. In this study, we identified upregulated GATA6 as a contributor to increased activation, pro-inflammatory ligand production, and neurotoxicity in spinal-cord patterned astrocytes differentiated from SMA patient induced pluripotent stem cells. Reducing GATA6 expression in SMA astrocytes via lentiviral infection ameliorated these effects to healthy control levels. Additionally, we found that SMA astrocytes contribute to SMA microglial phagocytosis, which was again decreased by lentiviral-mediated knockdown of GATA6. Together these data identify a role of GATA6 in SMA astrocyte pathology and further highlight glia as important targets of therapeutic intervention in SMA.
Collapse
Affiliation(s)
- Reilly L Allison
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Emily Welby
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Guzal Khayrullina
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University, Bethesda, Maryland, USA
| | - Barrington G Burnett
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University, Bethesda, Maryland, USA
| | - Allison D Ebert
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
46
|
Singh SK, Kordula T, Spiegel S. Neuronal contact upregulates astrocytic sphingosine-1-phosphate receptor 1 to coordinate astrocyte-neuron cross communication. Glia 2021; 70:712-727. [PMID: 34958493 DOI: 10.1002/glia.24135] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 11/29/2021] [Accepted: 12/17/2021] [Indexed: 12/13/2022]
Abstract
Astrocytes, the most abundant glial cells in the mammalian brain, directly associate with and regulate neuronal processes and synapses and are important regulators of brain development. Yet little is known of the molecular mechanisms that control the establishment of astrocyte morphology and the bi-directional communication between astrocytes and neurons. Here we show that neuronal contact stimulates expression of S1PR1, the receptor for the bioactive sphingolipid metabolite sphingosine-1-phosphate (S1P), on perisynaptic astrocyte processes and that S1PR1 drives astrocyte morphological complexity and morphogenesis. Moreover, the S1P/S1PR1 axis increases neuronal contact-induced expression of astrocyte secreted synaptogenic factors SPARCL1 and thrombospondin 4 that are involved in neural circuit assembly. Our findings have uncovered new functions for astrocytic S1PR1 signaling in regulation of bi-directional astrocyte-neuron crosstalk at the nexus of astrocyte morphogenesis and synaptogenesis.
Collapse
Affiliation(s)
- Sandeep K Singh
- Department of Biochemistry and Molecular Biology and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Tomasz Kordula
- Department of Biochemistry and Molecular Biology and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
47
|
Koizumi S, Shigetomi E, Sano F, Saito K, Kim SK, Nabekura J. Abnormal Ca 2+ Signals in Reactive Astrocytes as a Common Cause of Brain Diseases. Int J Mol Sci 2021; 23:149. [PMID: 35008573 PMCID: PMC8745111 DOI: 10.3390/ijms23010149] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 11/30/2022] Open
Abstract
In pathological brain conditions, glial cells become reactive and show a variety of responses. We examined Ca2+ signals in pathological brains and found that reactive astrocytes share abnormal Ca2+ signals, even in different types of diseases. In a neuropathic pain model, astrocytes in the primary sensory cortex became reactive and showed frequent Ca2+ signals, resulting in the production of synaptogenic molecules, which led to misconnections of tactile and pain networks in the sensory cortex, thus causing neuropathic pain. In an epileptogenic model, hippocampal astrocytes also became reactive and showed frequent Ca2+ signals. In an Alexander disease (AxD) model, hGFAP-R239H knock-in mice showed accumulation of Rosenthal fibers, a typical pathological marker of AxD, and excessively large Ca2+ signals. Because the abnormal astrocytic Ca2+ signals observed in the above three disease models are dependent on type II inositol 1,4,5-trisphosphate receptors (IP3RII), we reanalyzed these pathological events using IP3RII-deficient mice and found that all abnormal Ca2+ signals and pathologies were markedly reduced. These findings indicate that abnormal Ca2+ signaling is not only a consequence but may also be greatly involved in the cause of these diseases. Abnormal Ca2+ signals in reactive astrocytes may represent an underlying pathology common to multiple diseases.
Collapse
Affiliation(s)
- Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan; (E.S.); (F.S.); (K.S.)
- GLIA Center, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Eiji Shigetomi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan; (E.S.); (F.S.); (K.S.)
- GLIA Center, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Fumikazu Sano
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan; (E.S.); (F.S.); (K.S.)
- GLIA Center, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
- Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Kozo Saito
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan; (E.S.); (F.S.); (K.S.)
- GLIA Center, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Sun Kwang Kim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea;
| | - Junichi Nabekura
- Division of Homeostatic Development, National Institute for Physiological Sciences, Okazaki 444-8585, Japan;
| |
Collapse
|
48
|
Vilpoux C, Fouquet G, Deschamps C, Lefebvre E, Gosset P, Antol J, Zabijak L, Marcq I, Naassila M, Pierrefiche O. Astrogliosis and compensatory neurogenesis after the first ethanol binge drinking-like exposure in the adolescent rat. Alcohol Clin Exp Res 2021; 46:207-220. [PMID: 34862633 DOI: 10.1111/acer.14757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 11/22/2021] [Accepted: 11/29/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Multiple ethanol binge drinking-like exposures during adolescence in the rat induce neuroinflammation, loss of neurogenesis, and cognitive deficits in adulthood. Interestingly, the first ethanol binge drinking-like exposure during adolescence also induces short- term impairments in cognition and synaptic plasticity in the hippocampus though the cellular mechanisms of these effects are unclear. Here, we sought to determine which of the cellular effects of ethanol might play a role in the disturbances in cognition and synaptic plasticity observed in the adolescent male rat after two binge-like ethanol exposures. METHODS Using immunochemistry, we measured neurogenesis, neuronal loss, astrogliosis, neuroinflammation, and synaptogenesis in the hippocampus of adolescent rats 48 h after two binge-like ethanol exposures (3 g/kg, i.p., 9 h apart). We used flow cytometry to analyze activated microglia and identify the TLR4-expressing cell types. RESULTS We detected increased hippocampal doublecortin immunoreactivity in the subgranular zone (SGZ) of the dentate gyrus (DG), astrogliosis in the SGZ, and a reduced number of mature neurons in the DG and in CA3, suggesting compensatory neurogenesis. Synaptic density decreased in the stratum oriens of CA1 revealing structural plasticity. There was no change in microglial TLR4 expression or in the number of activated microglia, suggesting a lack of neuroinflammatory processes, although neuronal TLR4 was decreased in CA1 and DG. CONCLUSIONS Our findings demonstrate that the cognitive deficits associated with hippocampal synaptic plasticity alterations that we previously characterized 48 h after the first binge-like ethanol exposures are associated with hippocampal structural plasticity, astrogliosis, and decreased neuronal TLR4 expression, but not with microglia reactivity.
Collapse
Affiliation(s)
- Catherine Vilpoux
- UMR1247 INSERM, Groupe de Recherche sur l'Alcool et les Pharmacodépendances, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France
| | - Gregory Fouquet
- UMR1247 INSERM, Groupe de Recherche sur l'Alcool et les Pharmacodépendances, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France
| | - Chloe Deschamps
- UMR1247 INSERM, Groupe de Recherche sur l'Alcool et les Pharmacodépendances, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France
| | - Elise Lefebvre
- UMR1247 INSERM, Groupe de Recherche sur l'Alcool et les Pharmacodépendances, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France
| | - Philippe Gosset
- UMR1247 INSERM, Groupe de Recherche sur l'Alcool et les Pharmacodépendances, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France
| | - Johann Antol
- UMR1247 INSERM, Groupe de Recherche sur l'Alcool et les Pharmacodépendances, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France
| | - Luciane Zabijak
- UMR1247 INSERM, Groupe de Recherche sur l'Alcool et les Pharmacodépendances, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France.,Plateforme d'Ingénierie Cellulaire & Analyses des Protéines (ICAP), Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France
| | - Ingrid Marcq
- UMR1247 INSERM, Groupe de Recherche sur l'Alcool et les Pharmacodépendances, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France
| | - Mickael Naassila
- UMR1247 INSERM, Groupe de Recherche sur l'Alcool et les Pharmacodépendances, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France
| | - Olivier Pierrefiche
- UMR1247 INSERM, Groupe de Recherche sur l'Alcool et les Pharmacodépendances, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France
| |
Collapse
|
49
|
Neely SA, Lyons DA. Insights Into Central Nervous System Glial Cell Formation and Function From Zebrafish. Front Cell Dev Biol 2021; 9:754606. [PMID: 34912801 PMCID: PMC8666443 DOI: 10.3389/fcell.2021.754606] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/05/2021] [Indexed: 12/23/2022] Open
Abstract
The term glia describes a heterogenous collection of distinct cell types that make up a large proportion of our nervous system. Although once considered the glue of the nervous system, the study of glial cells has evolved significantly in recent years, with a large body of literature now highlighting their complex and diverse roles in development and throughout life. This progress is due, in part, to advances in animal models in which the molecular and cellular mechanisms of glial cell development and function as well as neuron-glial cell interactions can be directly studied in vivo in real time, in intact neural circuits. In this review we highlight the instrumental role that zebrafish have played as a vertebrate model system for the study of glial cells, and discuss how the experimental advantages of the zebrafish lend themselves to investigate glial cell interactions and diversity. We focus in particular on recent studies that have provided insight into the formation and function of the major glial cell types in the central nervous system in zebrafish.
Collapse
Affiliation(s)
- Sarah A. Neely
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - David A. Lyons
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
50
|
Kahali S, Raichle ME, Yablonskiy DA. The Role of the Human Brain Neuron-Glia-Synapse Composition in Forming Resting-State Functional Connectivity Networks. Brain Sci 2021; 11:1565. [PMID: 34942867 PMCID: PMC8699258 DOI: 10.3390/brainsci11121565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/17/2022] Open
Abstract
While significant progress has been achieved in studying resting-state functional networks in a healthy human brain and in a wide range of clinical conditions, many questions related to their relationship to the brain's cellular constituents remain. Here, we use quantitative Gradient-Recalled Echo (qGRE) MRI for mapping the human brain cellular composition and BOLD (blood-oxygen level-dependent) MRI to explore how the brain cellular constituents relate to resting-state functional networks. Results show that the BOLD signal-defined synchrony of connections between cellular circuits in network-defined individual functional units is mainly associated with the regional neuronal density, while the between-functional units' connectivity strength is also influenced by the glia and synaptic components of brain tissue cellular constituents. These mechanisms lead to a rather broad distribution of resting-state functional network properties. Visual networks with the highest neuronal density (but lowest density of glial cells and synapses) exhibit the strongest coherence of the BOLD signal as well as the strongest intra-network connectivity. The Default Mode Network (DMN) is positioned near the opposite part of the spectrum with relatively low coherence of the BOLD signal but with a remarkably balanced cellular contents, enabling DMN to have a prominent role in the overall organization of the brain and hierarchy of functional networks.
Collapse
Affiliation(s)
- Sayan Kahali
- Department of Radiology, Washington University in Saint Louis, Saint Louis, MO 63110, USA; (S.K.); (M.E.R.)
| | - Marcus E. Raichle
- Department of Radiology, Washington University in Saint Louis, Saint Louis, MO 63110, USA; (S.K.); (M.E.R.)
- Department of Neurology, Washington University in Saint Louis, Saint Louis, MO 63110, USA
| | - Dmitriy A. Yablonskiy
- Department of Radiology, Washington University in Saint Louis, Saint Louis, MO 63110, USA; (S.K.); (M.E.R.)
| |
Collapse
|