1
|
Li X, Lin Z, Qiu C, Zhang Y, Lei C, Shen S, Zhang W, Lai C, Li W, Huang H, Qiu T. Transfer learning drives automatic HER2 scoring on HE-stained WSIs for breast cancer: a multi-cohort study. Breast Cancer Res 2025; 27:62. [PMID: 40269991 DOI: 10.1186/s13058-025-02008-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 03/24/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Streamlining the clinical procedure of human epidermal growth factor receptor 2 (HER2) examination is challenging. Previous studies neglected the intra-class variability within both HER2-positive and -negative groups and lacked multi-cohort validation. To address this deficiency, this study collected data from multiple cohorts to develop a robust model for HER2 scoring utilizing only Hematoxylin&Eosin-stained whole slide images (WSIs). METHODS A total of 578 WSIs were collected from five cohorts, including three public and two private datasets. Each WSI underwent adaptive scale cropping. The transfer-learning-based probabilistic aggregation (TL-PA) model and multi-instance learning (MIL)-based models were compared, both of which were trained on Cohort A and validated on Cohorts B-D. The model demonstrating superior performance was further evaluated in the neoadjuvant therapy (NAT) cohort. Scoring performance was assessed using the area under the receiver operating characteristic curve (AUC). Correlation between the model scores and specific grades (HER2 levels, pathological complete response (pCR) status, residual cancer burden (RCB) grades) were evaluated using Spearman rank correlation and Dunn's test. Patch analysis was performed with manually defined features. RESULTS For HER2 scoring, the TL-PA significantly outperformed the MIL-based models, achieving robust AUCs in four validation cohorts (Cohort A: 0.75, Cohort B: 0.75, Cohort C: 0.77, Cohort D: 0.77). Correlation analysis confirmed a moderate association between model scores and manual reader-defined HER2-IHC status (Coefficient(Spearman) = 0.37, P(Spearman) = 0.001) as well as RCB grades (Coefficient(Spearman) = 0.45, P(Spearman) = 0.0006). In Cohort NAT, with the non-pCR as the positive control, the AUC was 0.77. Patch analysis revealed a core-to-peritumoral probability decrease pattern as malignancy spread outward from the lesion's core. CONCLUSION TL-PA shows robust generalization for HER2 scoring with minimal data; however, it still inadequately capture intra-class variability. This indicates that future deep-learning endeavors should incorporate more detailed annotations to better align the model's focus with the reasoning of pathologists.
Collapse
Affiliation(s)
- Xiaoping Li
- Breast Department, Jiangmen Central Hospital, Jiangmen, China
| | | | - Chaoran Qiu
- Breast Department, Jiangmen Central Hospital, Jiangmen, China
| | - Yiwen Zhang
- Breast Department, Jiangmen Central Hospital, Jiangmen, China
| | - Chuqian Lei
- Breast Department, Jiangmen Central Hospital, Jiangmen, China
| | - Shaofei Shen
- Shanxi Key Lab for Modernization of TCVM, College of Life Science, Shanxi Agricultural University, Taiyuan, 030000, Shanxi, China
| | - Weibin Zhang
- Department of Pathology, Jiangmen Central Hospital, Jiangmen, China
| | - Chan Lai
- Radiology Department, Jiangmen Central Hospital, Jiangmen, China
| | - Weiwen Li
- Breast Department, Jiangmen Central Hospital, Jiangmen, China
| | - Hui Huang
- Department of Breast Surgery, Jiangmen Maternity and Child Health Care Hospital, Jiangmen, 529000, Guangdong, China.
| | - Tian Qiu
- Wuyi University, 99 Yinbin Avenue, Jiangmen, 529000, Guangdong, China.
| |
Collapse
|
2
|
Kınıkoğlu O, Altıntaş YE, Yıldız A, Akdağ G, Bal H, Yaşar ZY, Özkerim U, Yıldız HŞ, Öksüz S, Tünbekici S, Doğan A, Işık D, Yaşar A, Başoğlu T, Sürmeli H, Odabaş H, Turan N. Tumor-infiltrating lymphocytes as predictive biomarkers in neoadjuvant treatment of HER2-positive breast cancer. Oncologist 2025; 30:oyaf054. [PMID: 40271640 DOI: 10.1093/oncolo/oyaf054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 02/19/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Tumor-infiltrating lymphocytes (TILs) have emerged as predictive biomarkers in HER2-positive breast cancer, correlating with treatment response and survival outcomes. This study evaluates the impact of TIL levels and Ki67 suppression on neoadjuvant therapy efficacy in this patient population. MATERIALS AND METHODS A retrospective analysis of 136 HER2-positive breast cancer patients was conducted. Patients were stratified by TIL levels, and clinical outcomes, including Ki67 expression, pathological complete response (pCR), and disease-free survival (DFS), were assessed. RESULTS High TIL levels (≥ 40%) were significantly associated with higher pCR rates (60.32% vs. 39.73%, P = .02) and with TIL ≥ 10% greater Ki67 suppression. In patients with low TIL levels, high Ki67 expression correlated with better pCR rates (57.1% vs 30.8%, P = 0.010), while in high TIL patients, no significant difference was observed between high and low Ki67 groups (P = 0.317). A trend toward improved DFS was noted in the high TIL group, with 3-year survival rates of 91.9% vs. 80.7% in the low TIL group, though this was not statistically significant (P = .062). CONCLUSION TIL levels are robust predictors of pCR and Ki67 suppression in HER2-positive breast cancer, particularly in patients with high initial TILs. These findings highlight the potential for integrating TIL evaluation into personalized treatment strategies to optimize neoadjuvant therapy outcomes. Further research is warranted to validate these results and explore underlying mechanisms.
Collapse
Affiliation(s)
- Oğuzcan Kınıkoğlu
- Kartal Dr. Lütfi Kirdar City Hospital, Health Science University, Department of Medical Oncology, Istanbul, Turkey
| | - Yunus Emre Altıntaş
- Kartal Dr. Lütfi Kirdar City Hospital, Health Science University, Department of Medical Oncology, Istanbul, Turkey
| | - Anıl Yıldız
- Istanbul University Oncology Institute, Department of Medical Oncology, Istanbul, Turkey
| | - Goncagül Akdağ
- Kartal Dr. Lütfi Kirdar City Hospital, Health Science University, Department of Medical Oncology, Istanbul, Turkey
| | - Hamit Bal
- Kartal Dr. Lütfi Kirdar City Hospital, Health Science University, Department of Medical Oncology, Istanbul, Turkey
| | - Zeynep Yüksel Yaşar
- Kartal Dr. Lütfi Kirdar City Hospital, Health Science University, Department of Medical Oncology, Istanbul, Turkey
| | - Uğur Özkerim
- Kartal Dr. Lütfi Kirdar City Hospital, Health Science University, Department of Medical Oncology, Istanbul, Turkey
| | - Hacer Şahika Yıldız
- Kartal Dr. Lütfi Kirdar City Hospital, Health Science University, Department of Medical Oncology, Istanbul, Turkey
| | - Sıla Öksüz
- Kartal Dr. Lütfi Kirdar City Hospital, Health Science University, Department of Medical Oncology, Istanbul, Turkey
| | - Salih Tünbekici
- Ege University Faculty of Medicine, Department of Medical Oncology, Izmir, Turkey
| | - Akif Doğan
- Sancaktepe Şehit Prof. Dr. İlhan Varank City Hospital, Health Science University, Department of Medical Oncology, Istanbul, Turkey
| | - Deniz Işık
- Kartal Dr. Lütfi Kirdar City Hospital, Health Science University, Department of Medical Oncology, Istanbul, Turkey
| | - Alper Yaşar
- Kartal Dr. Lütfi Kirdar City Hospital, Health Science University, Department of Medical Oncology, Istanbul, Turkey
| | - Tuğba Başoğlu
- Kartal Dr. Lütfi Kirdar City Hospital, Health Science University, Department of Medical Oncology, Istanbul, Turkey
| | - Heves Sürmeli
- Kartal Dr. Lütfi Kirdar City Hospital, Health Science University, Department of Medical Oncology, Istanbul, Turkey
| | - Hatice Odabaş
- Kartal Dr. Lütfi Kirdar City Hospital, Health Science University, Department of Medical Oncology, Istanbul, Turkey
| | - Nedim Turan
- Kartal Dr. Lütfi Kirdar City Hospital, Health Science University, Department of Medical Oncology, Istanbul, Turkey
| |
Collapse
|
3
|
Fernandez-Martinez A, Tanioka M, Ahn SG, Zagami P, Pascual T, Rediti M, Tang G, Hoadley KA, Venet D, Rashid NU, Spears PA, Di Cosimo S, de Azambuja E, Choudhury A, Rastogi P, Islam MN, Cortes J, Llombart-Cussac A, Swain SM, Sotiriou C, Prat A, Perou CM, Carey LA. Prognostic value of residual disease (RD) biology and gene expression changes during the neoadjuvant treatment in patients with HER2-positive early breast cancer (EBC). Ann Oncol 2025; 36:403-413. [PMID: 39706338 PMCID: PMC11949722 DOI: 10.1016/j.annonc.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND In human epidermal growth factor receptor 2 (HER2)-positive early breast cancer (EBC), we investigated tumor and immune changes during neoadjuvant treatment and their impact on residual disease (RD) biology and prognostic implications across four neoadjuvant studies of trastuzumab with or without lapatinib, and with or without chemotherapy: CALGB 40601, PAMELA, NeoALTTO, and NSABP B-41. PATIENTS AND METHODS We compared tumor and immune gene expression changes during neoadjuvant treatment and their association with event-free survival (EFS) by uni- and multivariable Cox regression models in different cohorts and timepoints: 452 RD samples at baseline including 169 with a paired RD, and biomarker changes during neoadjuvant therapy, evaluating model performance via the c-index. RESULTS Analysis of 169 paired tumor samples revealed a shift in intrinsic subtype proportions from HER2-enriched at baseline (50.3%) to normal-like (49.1%) followed by luminal A (18.9%) in RD. This luminal phenotypic change was supported by decreased correlation to the HER2-enriched centroid, ERBB2, and HER2 amplicon genes and increased correlation to the luminal A centroid (Wilcoxon test P < 0.001). Additionally, RD showed relative immune activation marked by significant increases in B-cell, CD8 T-cell, and natural killer cell signatures (Wilcoxon test P < 0.05). In multivariable Cox models, intrinsic subtypes at baseline provided more prognostic information, while immune gene expression signatures provided more prognostic information in RD. Notably, the best multivariable EFS model (c-index = 0.77) integrated the immunoglobulin G signature from RD samples (adjusted hazard ratio 0.45, 95% confidence interval 0.30-0.67, adjusted P = 0.002). CONCLUSIONS In patients with HER2-positive EBC and RD, tumor biomarkers provide more prognostic information at baseline. In contrast, immune biomarkers perform better for EFS prognosis in RD.
Collapse
Affiliation(s)
- A Fernandez-Martinez
- Lineberger Comprehensive Center, University of North Carolina, Chapel Hill, USA; Department of Genetics, University of North Carolina, Chapel Hill, USA
| | - M Tanioka
- Okayama University, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Medical AI Project, Okayama, Japan
| | - S G Ahn
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - P Zagami
- Lineberger Comprehensive Center, University of North Carolina, Chapel Hill, USA; University of Milan, Milan, Italy
| | - T Pascual
- Department of Medical Oncology, Hospital Clínic de Barcelona, Barcelona, Spain; Translational Genomics and Targeted Therapeutics in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain; SOLTI Breast Cancer Cooperative Group, Barcelona, Spain; Department of Medicine, University of Barcelona, Barcelona, Spain
| | - M Rediti
- Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Hôpital Universitaire de Bruxelles (H.U.B), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - G Tang
- National Surgical Adjuvant Breast and Bowel Project (NSABP), Pittsburgh, USA; Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, USA
| | - K A Hoadley
- Lineberger Comprehensive Center, University of North Carolina, Chapel Hill, USA; Department of Genetics, University of North Carolina, Chapel Hill, USA
| | - D Venet
- Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Hôpital Universitaire de Bruxelles (H.U.B), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - N U Rashid
- Lineberger Comprehensive Center, University of North Carolina, Chapel Hill, USA; Department of Biostatistics, University of North Carolina, Chapel Hill, USA
| | - P A Spears
- Lineberger Comprehensive Center, University of North Carolina, Chapel Hill, USA
| | - S Di Cosimo
- Integrated Biology Platform, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - E de Azambuja
- Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B.), Institut Jules Bordet, Service d'Oncologie Médicale, Brussels, Belgium
| | - A Choudhury
- FTE of Novartis Healthcare Pvt. Ltd., Hyderabad, India
| | - P Rastogi
- National Surgical Adjuvant Breast and Bowel Project (NSABP), Pittsburgh, USA; UPMC Hillman Cancer Center, Pittsburgh, USA
| | - M N Islam
- Genomics and Epigenomics Shared Resource (GESR), Georgetown University Medical Center, Washington, USA
| | - J Cortes
- Oncology Department, International Breast Cancer Center (IBCC), Pangaea Oncology, Quironsalud Group, Barcelona, Spain; IOB Madrid, Institute of Oncology, Hospital Beata Maria Ana, Madrid, Spain; Medica Scientia Innovation Research (MEDSIR), Barcelona, Spain; Department of Medicine, Universidad Europea de Madrid, Faculty of Biomedical and Health Sciences, Madrid, Spain
| | - A Llombart-Cussac
- Medical Oncology Department, Hospital Arnau de Vilanova, Valencia, Spain
| | - S M Swain
- National Surgical Adjuvant Breast and Bowel Project (NSABP), Pittsburgh, USA; Lombardi Comprehensive Cancer Center, Georgetown University Medical Center and MedStar Health, Washington, USA
| | - C Sotiriou
- Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Hôpital Universitaire de Bruxelles (H.U.B), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - A Prat
- Department of Medical Oncology, Hospital Clínic de Barcelona, Barcelona, Spain; Translational Genomics and Targeted Therapeutics in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - C M Perou
- Lineberger Comprehensive Center, University of North Carolina, Chapel Hill, USA; Department of Genetics, University of North Carolina, Chapel Hill, USA
| | - L A Carey
- Lineberger Comprehensive Center, University of North Carolina, Chapel Hill, USA; Division of Hematology-Oncology, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, USA.
| |
Collapse
|
4
|
Dieci MV, Bisagni G, Bartolini S, Schirone A, Cavanna L, Musolino A, Giotta F, Rimanti A, Garrone O, Bertone E, Cagossi K, Sarti S, Ferro A, Piacentini F, Orvieto E, Sanders M, Miglietta F, Massa D, Balduzzi S, Conte P, D’Amico R, Guarneri V. Tumor-Infiltrating Lymphocytes and Survival Outcomes in Early ERBB2-Positive Breast Cancer: 10-Year Analysis of the ShortHER Randomized Clinical Trial. JAMA Oncol 2025; 11:386-393. [PMID: 39946142 PMCID: PMC11826437 DOI: 10.1001/jamaoncol.2024.6872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/10/2024] [Indexed: 02/16/2025]
Abstract
Importance For patients with early ERBB2 (formerly HER2)-positive breast cancer, there is a need to identify biomarkers to guide treatment de-escalation. Objective To evaluate the association of tumor-infiltrating lymphocytes (TILs) with distant disease-free (DDFS) and overall survival (OS) for patients with ERBB2-positive early breast cancer. Design, Setting, and Participants The ShortHER randomized clinical trial was a multicentric trial in Italy that enrolled patients with ERBB2-positive breast cancer from December 2007 to October 2013. Patients received 9 weeks or 1 year of adjuvant trastuzumab combined with chemotherapy. Tumor samples were evaluated for TILs. Herein, patients were evaluated at a median follow-up of 9 years, and data were analyzed from February 2023 to August 2024. Intervention Four cycles of anthracycline-based chemotherapy followed by 4 courses of taxanes combined with trastuzumab for 1 year (long arm) or 3 courses of taxanes combined with trastuzumab for 9 weeks followed by reduced-dose anthracycline-based chemotherapy for 3 courses (short arm). Main Outcomes and Measures The association of TILs with DDFS and OS was assessed with Cox models. Results Of 1253 patients enrolled in the ShortHER trial, 866 women (median [IQR] age, 56 [48-64] years) had evaluable TILs. In Cox models with relevant factors, each 5% TIL increment was associated with improved DDFS (hazard ratio [HR], 0.87; 95% CI, 0.80-0.95; P = .001) and OS (HR, 0.89; 95% CI, 0.81-0.98; P = .01). The 10-year OS rate was 91.3% for patients with TILs 20% or higher, 93.3% for patients with TILs 30% or higher, and 98.1% for patients with TILs 50% or higher, resulting higher vs lower TIL counterparts. Patients with TILs lower than 20% showed a better outcome with the long vs short treatment (10-year DDFS, 88.7% vs 81.0%), whereas patients with TILs 20% or higher showed the opposite (10-year DDFS, 87.1% vs 92.2%; P for interaction = .01). Similarly, patients with TILs 20% or higher had a 10-year OS rate of 89.3% in the long arm vs 93.1% in the short arm (HR, 0.36; 95% CI, 0.10-1.36); patients with TILs lower than 20% had a 10-year OS rate of 91.3% in the long arm vs 86.9% in the short arm (HR, 1.36; 95% CI, 0.82-2.23; P for interaction = .06). Conclusions and Relevance This follow-up analysis of the ShortHER randomized clinical trial is, to our knowledge, the first demonstration of an independent effect of TILs in terms of OS for patients with ERBB2-positive early breast cancer treated with adjuvant chemotherapy and anti-ERBB2 therapy. Patients with TILs 20% or higher who de-escalated trastuzumab duration and chemotherapy dose were not exposed to an excess risk of distant relapse or death. Trial Registration EudraCT: 2007-004326-25.
Collapse
Affiliation(s)
- Maria Vittoria Dieci
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padova, Padova, Italy
- Oncology 2, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Giancarlo Bisagni
- Department of Oncology and Advanced Technologies, Azienda USL-IRCCS, Reggio Emilia, Italy
| | - Stefania Bartolini
- Department of Nervous System Medical Oncology, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | | | - Luigi Cavanna
- Internal Medicine and Oncology, Clinica Piacenza, Piacenza, Italy
| | - Antonino Musolino
- Medical Oncology, Breast and GYN Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori,” Meldola, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | | | | | - Ornella Garrone
- Medical Oncology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milano, Italy
| | | | - Katia Cagossi
- Breast Unit Ausl Modena, Ramazzini Hospital, Carpi, Italy
| | - Samanta Sarti
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori,” Meldola, Italy
| | - Antonella Ferro
- Rete Clinica Senologica-Oncologia Medica S. Chiara, APSS, Trento, Italy
| | - Federico Piacentini
- Department of Medical and Surgical Sciences for Children and Adults, University Hospital of Modena, Modena, Italy
- Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | | | - Melinda Sanders
- Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Federica Miglietta
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padova, Padova, Italy
- Oncology 2, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Davide Massa
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padova, Padova, Italy
- Oncology 2, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Sara Balduzzi
- University of Modena and Reggio Emilia, Modena, Italy
| | - Pierfranco Conte
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padova, Padova, Italy
| | - Roberto D’Amico
- Department of Medical and Surgical Sciences for Children and Adults, University Hospital of Modena, Modena, Italy
| | - Valentina Guarneri
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padova, Padova, Italy
- Oncology 2, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| |
Collapse
|
5
|
Zhou Y, Li Z, Wang G, Yu H, Zhou Y, Li Y, Chen W, Dai H, He Y, Li L. Understanding the relationship between silicone implants, tumor antigens, and breast cancer risk: An immunological study in rats. Int Immunopharmacol 2025; 147:113991. [PMID: 39805174 DOI: 10.1016/j.intimp.2024.113991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/29/2024] [Accepted: 12/29/2024] [Indexed: 01/16/2025]
Abstract
This study aimed to investigate the effects of silicone implants on the incidence of breast cancer in rats, as well as their impact on immune surveillance mechanisms. Female SD rats were divided into three groups: a Placebo Surgery Group (PSG), a Thoracic Implant Group (TIG), and a Back Implant Group (BIG). Following the corresponding surgical procedures, we measured Secretoglobin Family 2A, Member 2(SCGB2A2) and Mucin-1 (MUC1) antigen levels using ELISA, and statistical analyses were conducted to evaluate immune responses. The N-Methyl-N-Nitrosourea(MNU)-induced breast cancer model and pathological analyses indicated that the incidence of breast cancer in the thoracic implant group was lower, suggesting that silicone implants may reduce the risk of breast cancer. Additionally, laser speckle blood flow imaging and immunohistochemical analysis revealed blood perfusion in the implant capsule area and an active response of immune cells, indicating that immune surveillance may exert local effects. These findings provide the first evidence of a relationship between tumor antigens, silicone implants, and breast cancer incidence, offering a new immunological perspective on the safety of silicone implants.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Zihao Li
- Department of First Clinical Medical School, Wenzhou Medical University, Wenzhou, PR China
| | - Gaoyi Wang
- Department of Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Hua Yu
- Department of Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Yaqin Zhou
- Department of Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Yijun Li
- Department of Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Wanying Chen
- Department of Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Hao Dai
- Department of Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Yucang He
- Department of Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China; National Key Clinical Specialty (Wound Healing), The First Affiliate d Hospital Of Wenzhou Medical University, PR China
| | - Liqun Li
- Department of Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China; National Key Clinical Specialty (Wound Healing), The First Affiliate d Hospital Of Wenzhou Medical University, PR China.
| |
Collapse
|
6
|
Aliyeva T, Aktas BY, Gundogdu F, Chalabiyev E, Arik Z, Usubutun A. The predictive role of PD-L1 expression and CD8 + TIL levels in determining the neoadjuvant chemotherapy response in advanced ovarian cancer. J Ovarian Res 2024; 17:234. [PMID: 39580458 PMCID: PMC11585239 DOI: 10.1186/s13048-024-01533-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 10/08/2024] [Indexed: 11/25/2024] Open
Abstract
OBJECTIVE To analyze how the PD-L1 expression and CD8 + tumor infiltrating lymphocyte (TIL) levels in biopsy samples before neoadjuvant chemotherapy (NACT) can predict chemotherapy response score and survival for advanced high-grade serous ovarian cancer (HGSC). METHODS We retrospectively analyzed 45 patients with advanced epithelial ovarian cancer between 2010 and 2018, who had received at least three cycles of NACT. PD-L1 expression and CD8 + TIL levels were evaluated by immunohistochemical staining in the pre-NAC tumor samples from which the patients had been diagnosed. The post-NACT tissue samples taken during interval debulking surgery (IDS) were used to evaluate the chemotherapy response score (CRS). RESULTS Among all the patients, CRS 1 (no response) was found in 8 patients, CRS 2 (partial response) in 28 patients, and CRS 3 (complete response) in 9 patients. A total of 20 (44.4%) patients had high intratumoral CD8 + TILs (iCD8 + TILs) levels, and 35 (77.8%) patients had high expression stromal CD8 + TILs (sCD8 + TILs). No statistically significant relationship was found between high and low expression of i/s CD8 + TILs levels with PFS and CRS. The study found that 33 (73.3%) patients had high levels of stromal PD-L1 (sPD-L1) expression and 28 (62.2%) patients had high levels of intratumoral PD-L1 (iPD-L1) expression. In the iPD-L1 group, patients with low expression had a PFS of 28 months, whereas those with high expression had a PFS of 17 months (p = 0.028). Among the patients with high iPD-L1 expression, 23 (82.1%) patients showed CRS2, 4 (14.3%) showed CRS3, and only 1 (3.6%) showed CRS1 (p < 0.001). However, high or low expression sPD-L1 did not significantly affect PFS and CRS (p = 0.928 and p = 0.305; respectively). CONCLUSIONS We found that iPD-L1 expression levels in diagnostic biopsy in ovarian cancer can predict the chemotherapy response score in interval debulking surgery.
Collapse
Affiliation(s)
- T Aliyeva
- Department of Internal Medicine, Hacettepe University School of Medicine, Ankara, Turkey.
| | - B Y Aktas
- Division of Medical Oncology, Hacettepe University School of Medicine, Ankara, Turkey
| | - F Gundogdu
- Department of Pathology, Hacettepe University School of Medicine, Ankara, Turkey
| | - E Chalabiyev
- Division of Medical Oncology, Hacettepe University School of Medicine, Ankara, Turkey
| | - Z Arik
- Division of Medical Oncology, Hacettepe University School of Medicine, Ankara, Turkey
| | - A Usubutun
- Department of Pathology, Hacettepe University School of Medicine, Ankara, Turkey
| |
Collapse
|
7
|
Chen X, Cai Q, Deng L, Chen M, Xu M, Chen L, Lin Y, Li Y, Wang Y, Chen H, Liu S, Wu J, Tong X, Fu F, Wang C. Association of inflammatory blood markers and pathological complete response in HER2-positive breast cancer: a retrospective single-center cohort study. Front Immunol 2024; 15:1465862. [PMID: 39628488 PMCID: PMC11611895 DOI: 10.3389/fimmu.2024.1465862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/28/2024] [Indexed: 12/06/2024] Open
Abstract
Introduction The association between inflammatory blood markers (IBMs) (monocyte-to-lymphocyte ratio [MLR], neutrophil-to-lymphocyte ratio [NLR], and platelet-to-lymphocyte ratio [PLR]) and breast cancer has been extensively studied. However, the predictive role of IBMs in the neoadjuvant response of human epidermal growth factor receptor 2 (HER2)-positive breast cancer remains unclear. Methods This study included 744 patients with HER2 positive breast cancer treated with neoadjuvant therapy. Baseline MLR, NLR, and PLR data were collected to investigate the association between IBMs and pathological complete response (pCR). Results MLR, NLR, and PLR were not associated with neoadjuvant response in the overall population before and after matching. Subgroup analysis stratified by neoadjuvant therapy suggested that these IBMs play a diverse predictive role in response to chemotherapy alone and chemotherapy plus anti-HER2 therapy. A high MLR and NLR, but not PLR, were associated with lower pCR rates in HER2-targeted therapy (MLR: OR=0.67, P=0.023; NLR: OR=0.665, P=0.02; PLR: OR=0.801, P=0.203). Among the anti-HER2 treatment population, patients with a high MLRs (pCR rate, 40.2%) could be divided into MLRhigh/NLRhigh (pCR rate, 36.3%) and MLRhigh/NLRlow (pCR rate, 48.9%) groups when the NLR was considered. The pCR rates of the MLRhigh/NLRlow and low-MLR groups were similar (pCR rate, 47.6%). A comparable stratification effect was observed in patients with high NLR. Conclusions IBMs play a diverse predictive role in pCR in HER2-positive breast cancer stratified by neoadjuvant regimens. The combination of high MLR and high NLR enabled better identification of patients with poor responses to anti-HER2 therapy than high MLR or NLR alone.
Collapse
Affiliation(s)
- Xiaobin Chen
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian, China
| | - Qindong Cai
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian, China
| | - Lin Deng
- Department of General Surgery, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of General Surgery, The 900 Hospital of Joint Logistic Support Force, Fuzhou, China
| | - Minyan Chen
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian, China
| | - Min Xu
- Department of Thyroid and Breast Surgery, The Third Hospital of Xiamen, Xiamen, China
| | - Lili Chen
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian, China
| | - Yuxiang Lin
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian, China
| | - Yan Li
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian, China
| | - Yali Wang
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian, China
| | - Hanxi Chen
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian, China
| | - Shunyi Liu
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian, China
| | - Jinqiao Wu
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian, China
| | - Xin Tong
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian, China
| | - Fangmeng Fu
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian, China
| | - Chuan Wang
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
8
|
Li YW, Dai LJ, Wu XR, Zhao S, Xu YZ, Jin X, Xiao Y, Wang Y, Lin CJ, Zhou YF, Fu T, Yang WT, Li M, Lv H, Chen S, Grigoriadis A, Jiang YZ, Ma D, Shao ZM. Molecular Characterization and Classification of HER2-Positive Breast Cancer Inform Tailored Therapeutic Strategies. Cancer Res 2024; 84:3669-3683. [PMID: 39186675 DOI: 10.1158/0008-5472.can-23-4066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/19/2024] [Accepted: 08/08/2024] [Indexed: 08/28/2024]
Abstract
HER2-positive breast cancer is an aggressive subtype that accounts for 15% to 20% of all breast cancers. Recent studies have suggested that HER2-positive breast cancer is a group of heterogeneous diseases with different sensitivities to standard treatment regimens. Revealing the molecular heterogeneity of HER2-positive breast cancer could potentially enable more precise treatment strategies. In this study, we performed multiomics profiling on a HER2-positive breast cancer cohort and identified four transcriptome-based subtypes. The classical HER2 (HER2-CLA) subtype comprised 28.3% of the samples and displayed high ERBB2 activation and significant benefit from anti-HER2 therapy. The immunomodulatory (HER2-IM) subtype (20%) featured an immune-activated microenvironment, potentially suitable for de-escalated treatment and immunotherapy. The luminal-like (HER2-LUM) subtype (30.6%) possessed similar molecular features of hormone receptor-positive HER2-negative breast cancer, suggesting endocrine therapy and CDK4/6 inhibitors as a potential therapeutic strategy. Lastly, the basal/mesenchymal-like (HER2-BM) subtype (21.1%) had a poor response to current dual HER2-targeted therapy and could potentially benefit from tyrosine kinase inhibitors. The molecular characteristics and clinical features of the subtypes were further explored across multiple cohorts, and the feasibility of the proposed treatment strategies was validated in patient-derived organoid and patient-derived tumor fragment models. This study elucidates the molecular heterogeneity of HER2-positive breast cancer and paves the way for a more tailored treatment. Significance: Illumination of the inherent heterogeneity within HER2-positive breast cancers through the delineation of distinct molecular subtypes lays the groundwork for developing more personalized treatment strategies based on specific patient characteristics.
Collapse
Affiliation(s)
- Yu-Wei Li
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lei-Jie Dai
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiang-Rong Wu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shen Zhao
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu-Zheng Xu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xi Jin
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi Xiao
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ying Wang
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cai-Jin Lin
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi-Fan Zhou
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Tong Fu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wen-Tao Yang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Ming Li
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Hong Lv
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Siyuan Chen
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Anita Grigoriadis
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Yi-Zhou Jiang
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ding Ma
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhi-Ming Shao
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Guedes H, João D, Caldas M, Antunes P, Costa T, Alves A, Helguero L, Joaquim A. Exploring the effect of exercise training on breast cancer's pathologic response and tumor immune microenvironment after neoadjuvant chemotherapy. Support Care Cancer 2024; 32:739. [PMID: 39432116 DOI: 10.1007/s00520-024-08942-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND Pathological complete response (pCR) after neoadjuvant chemotherapy (NAC) and the percentage of tumor-infiltrating lymphocytes (TILs) are established prognostic biomarkers in early breast cancer (BC). While exercise training is effective as supportive care throughout the BC journey, its impact on the efficacy of NAC is unknown. This study aims to investigate the influence of a supervised exercise training program (SETP) on pCR and TILs in BC women undergoing NAC. METHODS Retrospective exploratory analysis of the subgroup of BC patients treated with NAC included in a clinical trial randomizing to STEP and control arm. Endpoints were pCR, biopsy, and stromal TILs. RESULTS Sixty-four participants were included, with a mean age of 50.3 ± 10.1 years, predominantly stage II and III disease (n = 58, 90.6%), HER2 + (n = 23, 35.9%), or triple-negative (n = 19, 29.7%) tumors. pCR was achieved in 56.7% and 55.9% in the STEP and control arm (p = 0.950). In the STEP arm, median TILs were 5.0 (0.0-80.0) and 5.0 (5.0-30.0), while in the control arm, 5.0 (0.0-90.0) and 0.0 (0.0-30.0) for biopsy and tumor site, respectively. The difference in TILs between arms was 0.04 (confidence interval (CI 95%) - 13.6, 13.7; p = 0.995) and - 4.3 (CI 95% - 11.5, 2.9; (p = 0.233) for biopsy and tumor site, respectively. No statistically significant difference was discerned between the groups concerning TILs of the biopsy. However, a marginally higher TIL level at the tumor site was associated with the SETP arm. CONCLUSIONS No differences were discerned within and between groups on both pCR and TILs, in possible relation to the exploratory nature of the analysis. Future adequately powered research is warranted.
Collapse
Affiliation(s)
- Helena Guedes
- Medical Oncology Department, Unidade Local de Saúde Gaia E Espinho, Vila Nova de Gaia, Portugal.
| | - David João
- Pathology Department, Unidade Local de Saúde Gaia E Espinho, Vila Nova de Gaia, Portugal
| | - Margarida Caldas
- Pathology Department, Unidade Local de Saúde Gaia E Espinho, Vila Nova de Gaia, Portugal
| | - Pedro Antunes
- Research Center in Sport Sciences, Health and Human Development, Sport Sciences Department, University of Beira Interior, Covilhã, Portugal
- ONCOMOVE - Associação de Investigação de Cuidados de Suporte Em Oncologia (AICSO), Vila Nova de Gaia, Portugal
| | - Telma Costa
- ONCOMOVE - Associação de Investigação de Cuidados de Suporte Em Oncologia (AICSO), Vila Nova de Gaia, Portugal
| | - Alberto Alves
- ONCOMOVE - Associação de Investigação de Cuidados de Suporte Em Oncologia (AICSO), Vila Nova de Gaia, Portugal
- Research Center in Sport Sciences, Health and Human Development, University of Maia, Maia, Portugal
| | - Luísa Helguero
- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Ana Joaquim
- Medical Oncology Department, Unidade Local de Saúde Gaia E Espinho, Vila Nova de Gaia, Portugal
- ONCOMOVE - Associação de Investigação de Cuidados de Suporte Em Oncologia (AICSO), Vila Nova de Gaia, Portugal
| |
Collapse
|
10
|
Jung YJ, Lee S, Kang SK, Kim JY, Choo KS, Nam KJ, Joo JH, Kim JJ, Kim HY. Clinicopathological Factors Predicting Pathological Complete Response to Neoadjuvant Anti-HER2 Therapy in HER2-Positive Breast Cancer. Oncology 2024:1-9. [PMID: 39250898 DOI: 10.1159/000541019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024]
Abstract
INTRODUCTION Human epidermal growth factor receptor 2 (HER2)-targeted therapies have shown effectiveness against HER2-positive breast cancer. This makes neoadjuvant chemotherapy (NAC) a valuable option for treating both early and advanced stages of the disease. The tumor's response to HER2-targeted NAC provides crucial prognostic information. Additionally, it allows for tailoring adjuvant treatment strategies for HER2+ breast cancer based on pathological responses. This study aimed to investigate the clinicopathological factors that influence tumor response. METHODS We retrospectively analyzed 122 patients diagnosed with HER2+ breast cancer. These patients received NAC and HER2-directed therapy between January 2018 and December 2022 at the Pusan National University Yangsan Hospital. Following surgery, tumor response was evaluated, categorizing patients into two groups: pathological complete response (pCR) and non-pCR groups. We analyzed data on various factors, including age, NAC regimen, type of breast and axillary surgery, clinical stage (cTNM), historical grade, and preoperative levels of carcinoembryonic antigen, cancer antigen 15-3 (CA 15-3), estrogen receptor (ER), progesterone receptor (PR), HER2, p53, and KI-67. RESULTS Out of the 122 patients, 75 achieved pCR, while 47 did not. Most clinicopathological factors showed no significant difference between the pCR and non-pCR groups. However, several factors were associated with a higher pCR rate: normal preoperative CA 15-3 levels (odds ratio [OR]: 3.74, confidence interval [CI]: 1.19-11.72, p = 0.02), preoperative ER positivity (OR: 2.65, CI: 1.25-5.59, p = 0.01), PR negativity (OR: 3.92, CI: 1.82-8.45, p < 0.05), and strong preoperative HER2 immunohistochemistry (IHC) 3+ staining. Multivariate analysis confirmed that PR negativity (OR: 2.8, CI: 1.23-6.42, p = 0.01) and strong preoperative HER2 IHC 3+ staining (OR: 0.18, CI: 0.03-0.84, p = 0.04) were independent predictors of a higher pCR rate. CONCLUSIONS A pCR after NAC impacts patient prognosis and influences the choice of adjuvant treatment for HER2+ breast cancer. Clinicopathological factors can help predict responses to HER2-targeted NAC. In our study, pre-ER/PR negativity, high pre-HER2 levels, and normal CA 15-3 levels were found to be potential predictors of pCR. These findings may contribute to developing more effective treatment strategies for HER2+ breast cancer.
Collapse
Affiliation(s)
- Youn Joo Jung
- Department of Surgery, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Seungju Lee
- Department of Surgery, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Seok Kyeong Kang
- Department of Surgery, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Jee Yeon Kim
- Department of Pathology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Ki Seok Choo
- Department of Radiology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Kyung Jin Nam
- Department of Radiology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Ji Hyeon Joo
- Department of Radiation Oncology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Jae Joon Kim
- Department of Hematology and Oncology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Hyun Yul Kim
- Department of Surgery, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, Republic of Korea
| |
Collapse
|
11
|
Vinayak S, Cecil DL, Disis ML. Vaccines for breast cancer prevention: Are we there yet? Mol Aspects Med 2024; 98:101292. [PMID: 38991631 DOI: 10.1016/j.mam.2024.101292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 06/10/2024] [Accepted: 06/30/2024] [Indexed: 07/13/2024]
Affiliation(s)
- Shaveta Vinayak
- University of Washington, Division of Oncology, Seattle, WA, USA; Fred Hutchinson Cancer Center, Seattle, WA, USA.
| | - Denise L Cecil
- University of Washington, Division of Oncology, Seattle, WA, USA
| | - Mary L Disis
- University of Washington, Division of Oncology, Seattle, WA, USA; Fred Hutchinson Cancer Center, Seattle, WA, USA
| |
Collapse
|
12
|
Qin W, Li J, Gao N, Kong X, Guo L, Chen Y, Huang L, Chen X, Qi F. Multiomics-based molecular subtyping based on the commensal microbiome predicts molecular characteristics and the therapeutic response in breast cancer. Mol Cancer 2024; 23:99. [PMID: 38730464 PMCID: PMC11083817 DOI: 10.1186/s12943-024-02017-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/04/2024] [Indexed: 05/12/2024] Open
Abstract
The gut microbiota has been demonstrated to be correlated with the clinical phenotypes of diseases, including cancers. However, there are few studies on clinical subtyping based on the gut microbiota, especially in breast cancer (BC) patients. Here, using machine learning methods, we analysed the gut microbiota of BC, colorectal cancer (CRC), and gastric cancer (GC) patients to identify their shared metabolic pathways and the importance of these pathways in cancer development. Based on the gut microbiota-related metabolic pathways, human gene expression profile and patient prognosis, we established a novel BC subtyping system and identified a subtype called "challenging BC". Tumours with this subtype have more genetic mutations and a more complex immune environment than those of other subtypes. A score index was proposed for in-depth analysis and showed a significant negative correlation with patient prognosis. Notably, activation of the TPK1-FOXP3-mediated Hedgehog signalling pathway and TPK1-ITGAE-mediated mTOR signalling pathway was linked to poor prognosis in "challenging BC" patients with high scores, as validated in a patient-derived xenograft (PDX) model. Furthermore, our subtyping system and score index are effective predictors of the response to current neoadjuvant therapy regimens, with the score index significantly negatively correlated with both treatment efficacy and the number of immune cells. Therefore, our findings provide valuable insights into predicting molecular characteristics and treatment responses in "challenging BC" patients.
Collapse
Affiliation(s)
- Wenxing Qin
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, PR China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China.
| | - Jia Li
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Na Gao
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, PR China
| | - Xiuyan Kong
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Liting Guo
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Yang Chen
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, PR China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China
| | - Liang Huang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China.
- Department of Breast Surgery, Shanghai Medical College, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, PR China.
| | - Xiaobing Chen
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, No. 127, Dongming Road, Zhengzhou, 450008, PR China.
| | - Feng Qi
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China.
| |
Collapse
|
13
|
Çetin K, Kökten Ş, Sarıkamış B, Yıldırım S, Gökçe ON, Barışık NÖ, Kılıç Ü. The association of PD-L1 expression and CD8-positive T cell infiltration rate with the pathological complete response after neoadjuvant treatment in HER2-positive breast cancer. Breast Cancer Res Treat 2024; 205:17-27. [PMID: 38273215 PMCID: PMC11062965 DOI: 10.1007/s10549-023-07242-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024]
Abstract
PURPOSE Achieving a pathological complete response (pCR) after neoadjuvant therapy in HER2-positive breast cancer patients is the most significant prognostic indicator, suggesting a low risk of recurrence and a survival advantage. This study aims to investigate clinicopathological parameters that can predict the response to neoadjuvant treatment in HER2 + breast cancers and to explore the roles of tumour-infiltrating lymphocytes (TILs), CD8 + T lymphocytes and PD-L1 expression. METHODS This single-centre retrospective study was conducted with 85 HER2-positive breast cancer patients who underwent surgery after receiving neoadjuvant therapy between January 2017 and January 2020. Paraffin blocks from these patients were selected for immunohistochemical studies. RESULTS A complete pathological response to neoadjuvant treatment was determined in 39 (45.9%) patients. High Ki-67 index (> 30%), moderate to high TIL infiltration, PD-L1 positivity and high CD8 cell count (≥ 25) were significantly associated with pCR in univariate analyses (p: 0.023, 0.025, 0.017 and 0.003, respectively). Multivariate regression analysis identified high Ki-67 index (> 30%) and CD8 cell infiltration as independent predictors for pCR in HER2-positive breast cancer. CONCLUSIONS High Ki-67 index, and high CD8 cell count are strong predictors for pCR in HER2-positive breast cancer. Tumours with high Ki-67 index, high TILs and CD8 infiltration may represent a subgroup where standard therapies are adequate. Conversely, those with low TILs and CD8 infiltration may identify a subgroup where use of novel strategies, including those that increase CD8 infiltration could be applied.
Collapse
Affiliation(s)
- Kenan Çetin
- Department of General Surgery, Faculty of Medicine, Çanakkale Onsekiz Mart University, Çanakkale, Turkey.
| | - Şermin Kökten
- Department of Pathology, University of Health Sciences, Kartal Dr. Lutfi Kırdar Training and Research Hospital, Istanbul, Turkey
| | - Bahar Sarıkamış
- Department of Medical Biology, Faculty of Medicine, University of Health Sciences, Istanbul, Turkey
| | - Sedat Yıldırım
- Department of Medical Oncology, University of Health Sciences, Kartal Dr. Lutfi Kırdar Training and Research Hospital, Istanbul, Turkey
| | - Oruç Numan Gökçe
- Department of General Surgery, Faculty of Medicine, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Nagehan Özdemir Barışık
- Department of Pathology, University of Health Sciences, Kartal Dr. Lutfi Kırdar Training and Research Hospital, Istanbul, Turkey
| | - Ülkan Kılıç
- Department of Medical Biology, Faculty of Medicine, University of Health Sciences, Istanbul, Turkey
| |
Collapse
|
14
|
Fernandez-Martinez A, Rediti M, Tang G, Pascual T, Hoadley KA, Venet D, Rashid NU, Spears PA, Islam MN, El-Abed S, Bliss J, Lambertini M, Di Cosimo S, Huobe J, Goerlitz D, Hu R, Lucas PC, Swain SM, Sotiriou C, Perou CM, Carey LA. Tumor Intrinsic Subtypes and Gene Expression Signatures in Early-Stage ERBB2/HER2-Positive Breast Cancer: A Pooled Analysis of CALGB 40601, NeoALTTO, and NSABP B-41 Trials. JAMA Oncol 2024; 10:603-611. [PMID: 38546612 PMCID: PMC10979363 DOI: 10.1001/jamaoncol.2023.7304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/08/2023] [Indexed: 04/01/2024]
Abstract
Importance Biologic features may affect pathologic complete response (pCR) and event-free survival (EFS) after neoadjuvant chemotherapy plus ERBB2/HER2 blockade in ERBB2/HER2-positive early breast cancer (EBC). Objective To define the quantitative association between pCR and EFS by intrinsic subtype and by other gene expression signatures in a pooled analysis of 3 phase 3 trials: CALGB 40601, NeoALTTO, and NSABP B-41. Design, Setting, and Participants In this retrospective pooled analysis, 1289 patients with EBC received chemotherapy plus either trastuzumab, lapatinib, or the combination, with a combined median follow-up of 5.5 years. Gene expression profiling by RNA sequencing was obtained from 758 samples, and intrinsic subtypes and 618 gene expression signatures were calculated. Data analyses were performed from June 1, 2020, to January 1, 2023. Main Outcomes and Measures The association of clinical variables and gene expression biomarkers with pCR and EFS were studied by logistic regression and Cox analyses. Results In the pooled analysis, of 758 women, median age was 49 years, 12% were Asian, 6% Black, and 75% were White. Overall, pCR results were associated with EFS in the ERBB2-enriched (hazard ratio [HR], 0.45; 95% CI, 0.29-0.70; P < .001) and basal-like (HR, 0.19; 95% CI, 0.04-0.86; P = .03) subtypes but not in luminal A or B tumors. Dual trastuzumab plus lapatinib blockade over trastuzumab alone had a trend toward EFS benefit in the intention-to-treat population; however, in the ERBB2-enriched subtype there was a significant and independent EFS benefit of trastuzumab plus lapatinib vs trastuzumab alone (HR, 0.47; 95% CI, 0.27-0.83; P = .009). Overall, 275 of 618 gene expression signatures (44.5%) were significantly associated with pCR and 9 of 618 (1.5%) with EFS. The ERBB2/HER2 amplicon and multiple immune signatures were significantly associated with pCR. Luminal-related signatures were associated with lower pCR rates but better EFS, especially among patients with residual disease and independent of hormone receptor status. There was significant adjusted HR for pCR ranging from 0.45 to 0.81 (higher pCR) and 1.21-1.94 (lower pCR rate); significant adjusted HR for EFS ranged from 0.71 to 0.94. Conclusions and relevance In patients with ERBB2/HER2-positive EBC, the association between pCR and EFS differed by tumor intrinsic subtype, and the benefit of dual ERBB2/HER2 blockade was limited to ERBB2-enriched tumors. Immune-activated signatures were concordantly associated with higher pCR rates and better EFS, whereas luminal signatures were associated with lower pCR rates.
Collapse
Affiliation(s)
- Aranzazu Fernandez-Martinez
- Lineberger Comprehensive Center, University of North Carolina, Chapel Hill
- Department of Genetics, University of North Carolina, Chapel Hill
| | - Mattia Rediti
- Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Hôpital Universitaire de Bruxelles (H.U.B), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Gong Tang
- NSABP Foundation Inc., Pittsburgh, Pennsylvania
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Tomás Pascual
- Lineberger Comprehensive Center, University of North Carolina, Chapel Hill
- Department of Medical Oncology, Hospital Clínic de Barcelona, Spain
- Translational Genomics and Targeted Therapeutics in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- SOLTI Breast Cancer Cooperative Group, Barcelona, Spain
| | - Katherine A. Hoadley
- Lineberger Comprehensive Center, University of North Carolina, Chapel Hill
- Department of Genetics, University of North Carolina, Chapel Hill
| | - David Venet
- Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Hôpital Universitaire de Bruxelles (H.U.B), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Naim U. Rashid
- Department of Biostatistics, University of North Carolina, Chapel Hill
| | - Patricia A. Spears
- Lineberger Comprehensive Center, University of North Carolina, Chapel Hill
| | - Md N. Islam
- Genomics and Epigenomics Shared Resource (GESR), Georgetown University Medical Center, Washington, DC
| | | | - Judith Bliss
- The Institute of Cancer Research, Clinical Trials & Statistics Unit, London, United Kingdom
| | - Matteo Lambertini
- Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genova, Italy
- Department of Medical Oncology, UOC Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Serena Di Cosimo
- Integrated Biology Platform, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Jens Huobe
- Kantonsspital St. Gallen, Brustzentrum, Departement Interdisziplinäre medizinische Dienste, St. Gallen, Switzerland
| | - David Goerlitz
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC
| | - Rong Hu
- Genomics and Epigenomics Shared Resource (GESR), Georgetown University Medical Center, Washington, DC
| | - Peter C. Lucas
- NSABP Foundation Inc., Pittsburgh, Pennsylvania
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sandra M. Swain
- NSABP Foundation Inc., Pittsburgh, Pennsylvania
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC
| | - Christos Sotiriou
- Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Hôpital Universitaire de Bruxelles (H.U.B), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Charles M. Perou
- Lineberger Comprehensive Center, University of North Carolina, Chapel Hill
- Department of Genetics, University of North Carolina, Chapel Hill
| | - Lisa A. Carey
- Lineberger Comprehensive Center, University of North Carolina, Chapel Hill
- Division of Hematology-Oncology, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
15
|
Liefaard MC, van der Voort A, van Seijen M, Thijssen B, Sanders J, Vonk S, Mittempergher L, Bhaskaran R, de Munck L, van Leeuwen-Stok AE, Salgado R, Horlings HM, Lips EH, Sonke GS. Tumor-infiltrating lymphocytes in HER2-positive breast cancer treated with neoadjuvant chemotherapy and dual HER2-blockade. NPJ Breast Cancer 2024; 10:29. [PMID: 38637568 PMCID: PMC11026378 DOI: 10.1038/s41523-024-00636-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 04/05/2024] [Indexed: 04/20/2024] Open
Abstract
Tumor-infiltrating lymphocytes (TILs) have been associated with outcomes in HER2-positive breast cancer patients treated with neoadjuvant chemotherapy and trastuzumab. However, it remains unclear if TILs could be a prognostic and/or predictive biomarker in the context of dual HER2-targeting treatment. In this study, we evaluated the association between TILs and pathological response (pCR) and invasive-disease free survival (IDFS) in 389 patients with stage II-III HER2 positive breast cancer who received neoadjuvant anthracycline-containing or anthracycline-free chemotherapy combined with trastuzumab and pertuzumab in the TRAIN-2 trial. Although no significant association was seen between TILs and pCR, patients with TIL scores ≥60% demonstrated an excellent 3-year IDFS of 100% (95% CI 100-100), regardless of hormone receptor status, nodal stage and attainment of pCR. Additionally, in patients with hormone receptor positive disease, TILs as a continuous variable showed a trend to a positive association with pCR (adjusted Odds Ratio per 10% increase in TILs 1.15, 95% CI 0.99-1.34, p = 0.070) and IDFS (adjusted Hazard Ratio per 10% increase in TILs 0.71, 95% CI 0.50-1.01, p = 0.058). We found no interactions between TILs and anthracycline treatment. Our results suggest that high TIL scores might be able to identify stage II-III HER2-positive breast cancer patients with a favorable prognosis.
Collapse
Affiliation(s)
- M C Liefaard
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - A van der Voort
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - M van Seijen
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - B Thijssen
- Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - J Sanders
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - S Vonk
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Core Facility Molecular Pathology & Biobanking, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - L Mittempergher
- Department of Research and Development, Agendia NV, Amsterdam, The Netherlands
| | - R Bhaskaran
- Department of Research and Development, Agendia NV, Amsterdam, The Netherlands
| | - L de Munck
- Department of Research and Development, Netherlands Comprehensive Cancer Organisation (IKNL), Utrecht, The Netherlands
| | - A E van Leeuwen-Stok
- Dutch Breast Cancer Research Group, BOOG Study Center, Amsterdam, The Netherlands
| | - R Salgado
- Department of Pathology, GZA-ZNA Hospitals, Wilrijk, Antwerp, Belgium
| | - H M Horlings
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - E H Lips
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - G S Sonke
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
16
|
Ciarka A, Piątek M, Pęksa R, Kunc M, Senkus E. Tumor-Infiltrating Lymphocytes (TILs) in Breast Cancer: Prognostic and Predictive Significance across Molecular Subtypes. Biomedicines 2024; 12:763. [PMID: 38672117 PMCID: PMC11048219 DOI: 10.3390/biomedicines12040763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Tumor-infiltrating lymphocytes (TILs) are pivotal in the immune response against breast cancer (BC), with their prognostic and predictive significance varying across BC subtypes. In triple-negative BC (TNBC), higher TIL levels correlate with improved prognosis and treatment response, guiding therapeutic strategies and potentially offering avenues for treatment de-escalation. In metastatic TNBC, TILs identify patients with enhanced immunotherapy response. HER2+ BC, similar to TNBC, exhibits positive correlations between TILs and treatment response, especially in neoadjuvant settings. Luminal BC generally has low TILs, with limited prognostic impact. Single hormone receptor-positive BCs show distinct TIL associations, emphasizing subtype-specific considerations. TILs in ductal carcinoma in situ (DCIS) display ambiguous prognostic significance, necessitating further investigation. Standardizing TIL assessment methods is crucial for unlocking their full potential as biomarkers, guiding treatment decisions, and enhancing patient care in BC.
Collapse
Affiliation(s)
- Aleksandra Ciarka
- Department of Pathomorphology, Medical University of Gdańsk, M. Skłodowskiej-Curie 3a, 80-214 Gdańsk, Poland (M.K.)
| | - Michał Piątek
- Department of Oncology, Institute of Medical Sciences, University of Opole, pl. Kopernika 11a, 45-040 Opole, Poland
| | - Rafał Pęksa
- Department of Pathomorphology, Medical University of Gdańsk, M. Skłodowskiej-Curie 3a, 80-214 Gdańsk, Poland (M.K.)
| | - Michał Kunc
- Department of Pathomorphology, Medical University of Gdańsk, M. Skłodowskiej-Curie 3a, 80-214 Gdańsk, Poland (M.K.)
| | - Elżbieta Senkus
- Department of Oncology and Radiotherapy, Medical University of Gdańsk, M. Skłodowskiej-Curie 3a, 80-214 Gdansk, Poland
| |
Collapse
|
17
|
Tommasi C, Airò G, Pratticò F, Testi I, Corianò M, Pellegrino B, Denaro N, Demurtas L, Dessì M, Murgia S, Mura G, Wekking D, Scartozzi M, Musolino A, Solinas C. Hormone Receptor-Positive/HER2-Positive Breast Cancer: Hormone Therapy and Anti-HER2 Treatment: An Update on Treatment Strategies. J Clin Med 2024; 13:1873. [PMID: 38610638 PMCID: PMC11012464 DOI: 10.3390/jcm13071873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/16/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Hormone receptor (HR)-positive/HER2-positive breast cancer represents a distinct subtype expressing estrogen and progesterone receptors with an overexpression of HER2. Approximately 14% of female breast cancer cases are HER2-positive, with the majority being HR-positive. These tumors show a cross-talk between the hormonal and HER2 pathways; the interaction has implications for the treatment options for the disease. In this review, we analyze the biology of HR-positive/HER2-positive breast cancer and summarize the evidence concerning the standard of care options both in neoadjuvant/adjuvant settings and in advanced disease. Additionally, we focus on new trials and drugs for HR-positive/HER2-positive breast cancer and the new entity: HER2-low breast cancer.
Collapse
Affiliation(s)
- Chiara Tommasi
- Medical Oncology and Breast Unit, University Hospital of Parma, 43126 Parma, Italy; (G.A.); (F.P.); (I.T.); (M.C.); (B.P.)
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
- GOIRC (Gruppo Oncologico Italiano di Ricerca Clinica), 43100 Parma, Italy
| | - Giulia Airò
- Medical Oncology and Breast Unit, University Hospital of Parma, 43126 Parma, Italy; (G.A.); (F.P.); (I.T.); (M.C.); (B.P.)
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
- GOIRC (Gruppo Oncologico Italiano di Ricerca Clinica), 43100 Parma, Italy
| | - Fabiana Pratticò
- Medical Oncology and Breast Unit, University Hospital of Parma, 43126 Parma, Italy; (G.A.); (F.P.); (I.T.); (M.C.); (B.P.)
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
- GOIRC (Gruppo Oncologico Italiano di Ricerca Clinica), 43100 Parma, Italy
| | - Irene Testi
- Medical Oncology and Breast Unit, University Hospital of Parma, 43126 Parma, Italy; (G.A.); (F.P.); (I.T.); (M.C.); (B.P.)
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
| | - Matilde Corianò
- Medical Oncology and Breast Unit, University Hospital of Parma, 43126 Parma, Italy; (G.A.); (F.P.); (I.T.); (M.C.); (B.P.)
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
- GOIRC (Gruppo Oncologico Italiano di Ricerca Clinica), 43100 Parma, Italy
| | - Benedetta Pellegrino
- Medical Oncology and Breast Unit, University Hospital of Parma, 43126 Parma, Italy; (G.A.); (F.P.); (I.T.); (M.C.); (B.P.)
- GOIRC (Gruppo Oncologico Italiano di Ricerca Clinica), 43100 Parma, Italy
| | - Nerina Denaro
- Medical Oncology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy
| | - Laura Demurtas
- Medical Oncology, AOU Cagliari, Policlinico Duilio Casula, 09042 Monserrato, Italy (C.S.)
| | - Mariele Dessì
- Medical Oncology, AOU Cagliari, Policlinico Duilio Casula, 09042 Monserrato, Italy (C.S.)
| | - Sara Murgia
- Medical Oncology, University of Cagliari, 09124 Cagliari, Italy
| | - Giovanni Mura
- Pathological Anatomy, Laboratory Valdès, 81200 Cagliari, Italy
| | - Demi Wekking
- Academic Medical Centre, Amsterdam University Medical Center, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Mario Scartozzi
- Medical Oncology, AOU Cagliari, Policlinico Duilio Casula, 09042 Monserrato, Italy (C.S.)
- Medical Oncology, University of Cagliari, 09124 Cagliari, Italy
| | - Antonino Musolino
- Medical Oncology and Breast Unit, University Hospital of Parma, 43126 Parma, Italy; (G.A.); (F.P.); (I.T.); (M.C.); (B.P.)
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
- GOIRC (Gruppo Oncologico Italiano di Ricerca Clinica), 43100 Parma, Italy
| | - Cinzia Solinas
- Medical Oncology, AOU Cagliari, Policlinico Duilio Casula, 09042 Monserrato, Italy (C.S.)
| |
Collapse
|
18
|
Arqueros C, Gallardo A, Vidal S, Osuna-Gómez R, Tibau A, Lidia Bell O, Ramón Y Cajal T, Lerma E, Lobato-Delgado B, Salazar J, Barnadas A. Clinical Relevance of Tumour-Infiltrating Immune Cells in HER2-Negative Breast Cancer Treated with Neoadjuvant Therapy. Int J Mol Sci 2024; 25:2627. [PMID: 38473874 DOI: 10.3390/ijms25052627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Currently, therapy response cannot be accurately predicted in HER2-negative breast cancer (BC). Measuring stromal tumour-infiltrating lymphocytes (sTILs) and mediators of the tumour microenvironment and characterizing tumour-infiltrating immune cells (TIICs) may improve treatment response in the neoadjuvant setting. Tumour tissue and peripheral blood samples were retrospectively collected from 118 patients, and sTILs were evaluated. Circulating exosomes and myeloid-derived suppressor cells were determined by flow cytometry. TIICs markers (CD4, CD8, CD20, CD1a, and CD68) were assessed immunohistochemically. High sTILs were significantly associated with pathological complete response (pCR; p = 0.048) and event-free survival (EFS; p = 0.027). High-CD68 cells were significantly associated with pCR in triple-negative (TN, p = 0.027) and high-CD1a cells with EFS in luminal-B (p = 0.012) BC. Cluster analyses of TIICs revealed two groups of tumours (C1 and C2) that had different immune patterns and clinical outcomes. An immunoscore based on clinicopathological variables was developed to identify high risk (C1) or low-risk (C2) patients. Additionally, cluster analyses revealed two groups of tumours for both luminal-B and TNBC. Our findings support the association of sTILs with pCR and show an immunological component in a subset of patients with HER2-negative BC. Our immunoscore may be useful for future escalation or de-escalation treatments.
Collapse
Affiliation(s)
- Cristina Arqueros
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
- Department of Medicine, Faculty of Medicine, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Alberto Gallardo
- Department of Pathology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
- Department of Morphological Sciences, Faculty of Medicine, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
- Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Institut de Recerca Sant Pau-CERCA Center, 08041 Barcelona, Spain
| | - Silvia Vidal
- Inflammatory Diseases, Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Institut de Recerca Sant Pau-CERCA Center, 08041 Barcelona, Spain
| | - Rubén Osuna-Gómez
- Inflammatory Diseases, Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Institut de Recerca Sant Pau-CERCA Center, 08041 Barcelona, Spain
| | - Ariadna Tibau
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
| | - Olga Lidia Bell
- Translational Medical Oncology Laboratory, Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Institut de Recerca Sant Pau-CERCA Center, 08041 Barcelona, Spain
| | - Teresa Ramón Y Cajal
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
| | - Enrique Lerma
- Department of Pathology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
- Department of Morphological Sciences, Faculty of Medicine, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
- Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Institut de Recerca Sant Pau-CERCA Center, 08041 Barcelona, Spain
| | - Bárbara Lobato-Delgado
- Unitat de Genòmica de Malalties Complexes, Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau-CERCA Center, 08041 Barcelona, Spain
| | - Juliana Salazar
- Translational Medical Oncology Laboratory, Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Institut de Recerca Sant Pau-CERCA Center, 08041 Barcelona, Spain
| | - Agustí Barnadas
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
- Department of Medicine, Faculty of Medicine, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
- Translational Medical Oncology Laboratory, Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Institut de Recerca Sant Pau-CERCA Center, 08041 Barcelona, Spain
- Centro de Investigación Biomedica en Red Cancer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
19
|
Fang S, Xia W, Zhang H, Ni C, Wu J, Mo Q, Jiang M, Guan D, Yuan H, Chen W. A real-world clinicopathological model for predicting pathological complete response to neoadjuvant chemotherapy in breast cancer. Front Oncol 2024; 14:1323226. [PMID: 38420013 PMCID: PMC10899694 DOI: 10.3389/fonc.2024.1323226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Purpose This study aimed to develop and validate a clinicopathological model to predict pathological complete response (pCR) to neoadjuvant chemotherapy (NAC) in breast cancer patients and identify key prognostic factors. Methods This retrospective study analyzed data from 279 breast cancer patients who received NAC at Zhejiang Provincial People's Hospital from 2011 to 2021. Additionally, an external validation dataset, comprising 50 patients from Lanxi People's Hospital and Second Affiliated Hospital, Zhejiang University School of Medicine from 2022 to 2023 was utilized for model verification. A multivariate logistic regression model was established incorporating clinical, ultrasound features, circulating tumor cells (CTCs), and pathology variables at baseline and post-NAC. Model performance for predicting pCR was evaluated. Prognostic factors were identified using survival analysis. Results In the 279 patients enrolled, a pathologic complete response (pCR) rate of 27.96% (78 out of 279) was achieved. The predictive model incorporated independent predictors such as stromal tumor-infiltrating lymphocyte (sTIL) levels, Ki-67 expression, molecular subtype, and ultrasound echo features. The model demonstrated strong predictive accuracy for pCR (C-statistics/AUC 0.874), especially in human epidermal growth factor receptor 2 (HER2)-enriched (C-statistics/AUC 0.878) and triple-negative (C-statistics/AUC 0.870) subtypes, and the model performed well in external validation data set (C-statistics/AUC 0.836). Incorporating circulating tumor cell (CTC) changes post-NAC and tumor size changes further improved predictive performance (C-statistics/AUC 0.945) in the CTC detection subgroup. Key prognostic factors included tumor size >5cm, lymph node metastasis, sTIL levels, estrogen receptor (ER) status and pCR. Despite varied pCR rates, overall prognosis after standard systemic therapy was consistent across molecular subtypes. Conclusion The developed predictive model showcases robust performance in forecasting pCR in NAC-treated breast cancer patients, marking a step toward more personalized therapeutic strategies in breast cancer.
Collapse
Affiliation(s)
- Shan Fang
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Wenjie Xia
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Haibo Zhang
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Chao Ni
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Wu
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Qiuping Mo
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Mengjie Jiang
- Department of Radiotherapy, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Dandan Guan
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Hongjun Yuan
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Wuzhen Chen
- Department of Oncology, Lanxi People’s Hospital, Jinhua, China
| |
Collapse
|
20
|
Hart S, Garcia V, Dudgeon SN, Hanna MG, Li X, Blenman KRM, Elfer K, Ly A, Salgado R, Saltz J, Gupta R, Hytopoulos E, Larsimont D, Lennerz J, Gallas BD. Initial interactions with the FDA on developing a validation dataset as a medical device development tool. J Pathol 2023; 261:378-384. [PMID: 37794720 PMCID: PMC10841854 DOI: 10.1002/path.6208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/14/2023] [Accepted: 08/24/2023] [Indexed: 10/06/2023]
Abstract
Quantifying tumor-infiltrating lymphocytes (TILs) in breast cancer tumors is a challenging task for pathologists. With the advent of whole slide imaging that digitizes glass slides, it is possible to apply computational models to quantify TILs for pathologists. Development of computational models requires significant time, expertise, consensus, and investment. To reduce this burden, we are preparing a dataset for developers to validate their models and a proposal to the Medical Device Development Tool (MDDT) program in the Center for Devices and Radiological Health of the U.S. Food and Drug Administration (FDA). If the FDA qualifies the dataset for its submitted context of use, model developers can use it in a regulatory submission within the qualified context of use without additional documentation. Our dataset aims at reducing the regulatory burden placed on developers of models that estimate the density of TILs and will allow head-to-head comparison of multiple computational models on the same data. In this paper, we discuss the MDDT preparation and submission process, including the feedback we received from our initial interactions with the FDA and propose how a qualified MDDT validation dataset could be a mechanism for open, fair, and consistent measures of computational model performance. Our experiences will help the community understand what the FDA considers relevant and appropriate (from the perspective of the submitter), at the early stages of the MDDT submission process, for validating stromal TIL density estimation models and other potential computational models. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Steven Hart
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester MN, USA
| | - Victor Garcia
- Division of Imaging, Diagnostics, and Software Reliability, Office Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD, USA
| | - Sarah N. Dudgeon
- Computational Biology and Bioinformatics Program, Yale University, New Haven, CT, USA
| | | | - Xiaoxian Li
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - Kim RM Blenman
- Department of Internal Medicine, Section of Medical Oncology, School of Medicine, Yale University, New Haven, CT, USA
- Department of Computer Science, School of Engineering and Applied Science, Yale University, New Haven, CT, USA
| | - Katherine Elfer
- Division of Imaging, Diagnostics, and Software Reliability, Office Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD, USA
| | - Amy Ly
- Department of Pathology, Massachusetts General Hospital, MA, USA
| | - Roberto Salgado
- Department of Pathology, GZA-ZNA Hospitals, Antwerp, Belgium
- Division of Research, Peter Mac Callum Cancer Centre, Melbourne, Australia
| | - Joel Saltz
- Department of Biomedical Informatics, Stony Brook School of Medicine, Stony Brook NY, USA
| | - Rajarsi Gupta
- Department of Biomedical Informatics, Stony Brook School of Medicine, Stony Brook NY, USA
| | | | - Denis Larsimont
- Department of Pathology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Jochen Lennerz
- Massachusetts General Hospital/Massachusetts General Hospital, Center for Integrated Diagnostics, Boston, MA, USA
| | - Brandon D. Gallas
- Division of Imaging, Diagnostics, and Software Reliability, Office Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
21
|
Zeng F, Fan Z, Li S, Li L, Sun T, Qiu Y, Nie L, Huang G. Tumor Microenvironment Activated Photoacoustic-Fluorescence Bimodal Nanoprobe for Precise Chemo-immunotherapy and Immune Response Tracing of Glioblastoma. ACS NANO 2023; 17:19753-19766. [PMID: 37812513 DOI: 10.1021/acsnano.3c03378] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Synergistic therapy strategy and prognostic monitoring of glioblastoma's immune response to treatment are crucial to optimize patient care and advance clinical outcomes. However, current systemic temozolomide (TMZ) chemotherapy and imaging methods for in vivo tracing of immune responses are inadequate. Herein, we report an all-in-one theranostic nanoprobe (PEG/αCD25-Cy7/TMZ) for precise chemotherapy and real-time immune response tracing of glioblastoma by photoacoustic-fluorescence imaging. The nanoprobe was loaded with TMZ and targeted regulatory T lymphocyte optical dye αCD25-Cy7 encapsulated by glutathione-responsive DSPE-SS-PEG2000. The results showed that the targeted efficiency of the nanoprobe to regulatory T lymphocytes is up to 92.3%. The activation of PEG/αCD25-Cy7/TMZ by glutathione enhanced the precise delivery of TMZ to the tumor microenvironment for local chemotherapy and monitored glioblastoma's boundary by photoacoustic-fluorescence imaging. Immunotherapy with indoleamine 2,3-dioxygenase inhibitors after chemotherapy could promote immunological responses and reduce regulatory T lymphocyte infiltration, which could improve the survival rate. Photoacoustic imaging has in real-time and noninvasively depicted the dynamic process of immune response on a micrometer scale, showing that the infiltration of regulatory T lymphocytes after chemotherapy was up-regulated and would down-regulate after IDO inhibitor treatment. This all-in-one theranostic strategy is a promising method for precisely delivering TMZ and long-term dynamically tracing regulatory T lymphocytes to evaluate the immune response in situ for accurate tumor chemo-immunotherapy.
Collapse
Affiliation(s)
- Fanchu Zeng
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Zhijin Fan
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- School of Medicine, South China University of Technology, Guangzhou 510000, China
| | - Shiying Li
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- Guangdong Cardiovsacular Institute, Guangzhou 510000, China
| | - Lanqing Li
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Tong Sun
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Yang Qiu
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Liming Nie
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510000, China
| | - Guojia Huang
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510000, China
| |
Collapse
|
22
|
Gaynor N, Blanco A, Madden SF, Moran B, Fletcher JM, Kaukonen D, Ramírez JS, Eustace AJ, McDermott MSJ, Canonici A, Toomey S, Teiserskiene A, Hennessy BT, O'Donovan N, Crown J, Collins DM. Alterations in immune cell phenotype and cytotoxic capacity in HER2+ breast cancer patients receiving HER2-targeted neo-adjuvant therapy. Br J Cancer 2023; 129:1022-1031. [PMID: 37507543 PMCID: PMC10491671 DOI: 10.1038/s41416-023-02375-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/13/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND The phase II neo-adjuvant clinical trial ICORG10-05 (NCT01485926) compared chemotherapy in combination with trastuzumab, lapatinib or both in patients with HER2+ breast cancer. We studied circulating immune cells looking for alterations in phenotype, genotype and cytotoxic capacity (direct and antibody-dependent cell-mediated cytotoxicity (ADCC)) in the context of treatment response. METHODS Peripheral blood mononuclear cells (PBMCs) were isolated from pre- (n = 41) and post- (n = 25) neo-adjuvant treatment blood samples. Direct/trastuzumab-ADCC cytotoxicity of patient-derived PBMCs against K562/SKBR3 cell lines was determined ex vivo. Pembrolizumab was interrogated in 21 pre-treatment PBMC ADCC assays. Thirty-nine pre-treatment and 21 post-treatment PBMC samples were immunophenotyped. Fc receptor genotype, tumour infiltrating lymphocyte (TIL) levels and oestrogen receptor (ER) status were quantified. RESULTS Treatment attenuated the cytotoxicity/ADCC of PBMCs. CD3+/CD4+/CD8+ T cells increased following therapy, while CD56+ NK cells/CD14+ monocytes/CD19+ B cells decreased with significant post-treatment immune cell changes confined to patients with residual disease. Pembrolizumab-augmented ex vivo PBMC ADCC activity was associated with residual disease, but not pathological complete response. Pembrolizumab-responsive PBMCs were associated with lower baseline TIL levels and ER+ tumours. CONCLUSIONS PBMCs display altered phenotype and function following completion of neo-adjuvant treatment. Anti-PD-1-responsive PBMCs in ex vivo ADCC assays may be a biomarker of treatment response.
Collapse
Affiliation(s)
- Nicola Gaynor
- Cancer Biotherapeutics Research Group, National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Alfonso Blanco
- Flow Cytometry Core Technology, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Stephen F Madden
- Data Science Centre, School of Population Heath Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Barry Moran
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Jean M Fletcher
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Damien Kaukonen
- Data Science Centre, School of Population Heath Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Javier Sánchez Ramírez
- Cancer Biotherapeutics Research Group, National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Alex J Eustace
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Martina S J McDermott
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Alexandra Canonici
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Sinead Toomey
- Medical Oncology Group, Department of Molecular Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Ausra Teiserskiene
- Cancer Trials Ireland, RCSI House, 121 St. Stephen's Green, Dublin, Ireland
| | - Bryan T Hennessy
- Medical Oncology Group, Department of Molecular Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Cancer Trials Ireland, RCSI House, 121 St. Stephen's Green, Dublin, Ireland
| | - Norma O'Donovan
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - John Crown
- Cancer Biotherapeutics Research Group, National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
- Department of Medical Oncology, St Vincent's University Hospital, Dublin, Ireland
| | - Denis M Collins
- Cancer Biotherapeutics Research Group, National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland.
| |
Collapse
|
23
|
Kim DH, Lim Y, Kim S, Ock C, Youk J, Kim M, Kim TM, Kim D, Kim HJ, Koh J, Jung KC, Na KJ, Kang CH, Keam B. Artificial intelligence-powered spatial analysis of tumor-infiltrating lymphocytes as a biomarker in locally advanced unresectable thymic epithelial neoplasm: A single-center, retrospective, longitudinal cohort study. Thorac Cancer 2023; 14:3001-3011. [PMID: 37675597 PMCID: PMC10599973 DOI: 10.1111/1759-7714.15089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/16/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND Thymic epithelial tumors (TET) are rare malignancies and lack well-defined biomarkers for neoadjuvant therapy. This study aimed to evaluate the clinical utility of artificial intelligence (AI)-powered tumor-infiltrating lymphocyte (TIL) analysis in TET. METHODS Patients initially diagnosed with unresectable thymoma or thymic carcinoma who underwent neoadjuvant therapy between January 2004 and December 2021 formed our study population. Hematoxylin and eosin-stained sections from the initial biopsy and surgery were analyzed using an AI-powered spatial TIL analyzer. Intratumoral TIL (iTIL) and stromal TIL (sTIL) were quantified and their immune phenotype (IP) was identified. RESULTS Thirty-five patients were included in this study. The proportion of patients with partial response to neoadjuvant therapy was higher in the group with nondesert IP in preneoadjuvant biopsy (63.6% vs. 17.6%, p = 0.038). A significant increase in both iTIL (median 22.18/mm2 vs. 340.69/mm2 , p < 0.001) and sTIL (median 175.19/mm2 vs. 531.02/mm2 , p = 0.004) was observed after neoadjuvant therapy. Patients with higher iTIL (>147/mm2 ) exhibited longer disease-free survival (median, 29 months vs. 12 months, p = 0.009) and overall survival (OS) (median, 62 months vs. 45 months, p = 0.002). Patients with higher sTIL (>232.1/mm2 ) exhibited longer OS (median 62 months vs. 30 months, p = 0.021). CONCLUSIONS Nondesert IP in initial biopsy was associated with a better response to neoadjuvant therapy. Increased infiltration of both iTIL and sTIL in surgical specimens were associated with longer OS in patients with TET who underwent resection followed by neoadjuvant therapy.
Collapse
Affiliation(s)
- Dong Hyun Kim
- Department of Internal MedicineSeoul National University HospitalSeoulRepublic of Korea
| | | | | | | | - Jeonghwan Youk
- Department of Internal MedicineSeoul National University HospitalSeoulRepublic of Korea
- Cancer Research InstituteSeoul National University College of MedicineSeoulRepublic of Korea
| | - Miso Kim
- Department of Internal MedicineSeoul National University HospitalSeoulRepublic of Korea
- Cancer Research InstituteSeoul National University College of MedicineSeoulRepublic of Korea
| | - Tae Min Kim
- Department of Internal MedicineSeoul National University HospitalSeoulRepublic of Korea
- Cancer Research InstituteSeoul National University College of MedicineSeoulRepublic of Korea
| | - Dong‐Wan Kim
- Department of Internal MedicineSeoul National University HospitalSeoulRepublic of Korea
- Cancer Research InstituteSeoul National University College of MedicineSeoulRepublic of Korea
| | - Hak Jae Kim
- Department of Radiation OncologySeoul National University HospitalSeoulRepublic of Korea
| | - Jiwon Koh
- Department of PathologySeoul National University HospitalSeoulRepublic of Korea
| | - Kyeong Cheon Jung
- Department of PathologySeoul National University HospitalSeoulRepublic of Korea
| | - Kwon Joong Na
- Department of Thoracic and Cardiovascular SurgerySeoul National University HospitalSeoulRepublic of Korea
| | - Chang Hyun Kang
- Department of Thoracic and Cardiovascular SurgerySeoul National University HospitalSeoulRepublic of Korea
| | - Bhumsuk Keam
- Department of Internal MedicineSeoul National University HospitalSeoulRepublic of Korea
- Cancer Research InstituteSeoul National University College of MedicineSeoulRepublic of Korea
| |
Collapse
|
24
|
Angelico G, Broggi G, Tinnirello G, Puzzo L, Vecchio GM, Salvatorelli L, Memeo L, Santoro A, Farina J, Mulé A, Magro G, Caltabiano R. Tumor Infiltrating Lymphocytes (TILS) and PD-L1 Expression in Breast Cancer: A Review of Current Evidence and Prognostic Implications from Pathologist's Perspective. Cancers (Basel) 2023; 15:4479. [PMID: 37760449 PMCID: PMC10526828 DOI: 10.3390/cancers15184479] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
With the rise of novel immunotherapies able to stimulate the antitumor immune response, increasing literature concerning the immunogenicity of breast cancer has been published in recent years. Numerous clinical studies have been conducted in order to identify novel biomarkers that could reflect the immunogenicity of BC and predict response to immunotherapy. In this regard, TILs have emerged as an important immunological biomarker related to the antitumor immune response in BC. TILs are more frequently observed in triple-negative breast cancer and HER2+ subtypes, where increased TIL levels have been linked to a better response to neoadjuvant chemotherapy and improved survival. PD-L1 is a type 1 transmembrane protein ligand expressed on T lymphocytes, B lymphocytes, and antigen-presenting cells and is considered a key inhibitory checkpoint involved in cancer immune regulation. PD-L1 immunohistochemical expression in breast cancer is observed in about 10-30% of cases and is extremely variable based on tumor stage and molecular subtypes. Briefly, TNBC shows the highest percentage of PD-L1 positivity, followed by HER2+ tumors. On the other hand, PD-L1 is rarely expressed (0-10% of cases) in hormone-receptor-positive BC. The prognostic role of PD-L1 expression in BC is still controversial since different immunohistochemistry (IHC) clones, cut-off points, and scoring systems have been utilized across published studies. In the present paper, an extensive review of the current knowledge of the immune landscape of BC is provided. TILS and PD-L1 expression across different BC subtypes are discussed, providing a guide for their pathological assessment and reporting.
Collapse
Affiliation(s)
- Giuseppe Angelico
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (G.B.); (G.T.); (L.P.); (G.M.V.); (L.S.); (J.F.); (G.M.); (R.C.)
| | - Giuseppe Broggi
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (G.B.); (G.T.); (L.P.); (G.M.V.); (L.S.); (J.F.); (G.M.); (R.C.)
| | - Giordana Tinnirello
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (G.B.); (G.T.); (L.P.); (G.M.V.); (L.S.); (J.F.); (G.M.); (R.C.)
| | - Lidia Puzzo
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (G.B.); (G.T.); (L.P.); (G.M.V.); (L.S.); (J.F.); (G.M.); (R.C.)
| | - Giada Maria Vecchio
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (G.B.); (G.T.); (L.P.); (G.M.V.); (L.S.); (J.F.); (G.M.); (R.C.)
| | - Lucia Salvatorelli
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (G.B.); (G.T.); (L.P.); (G.M.V.); (L.S.); (J.F.); (G.M.); (R.C.)
| | - Lorenzo Memeo
- Department of Experimental Oncology, Mediterranean Institute of Oncology, 95029 Catania, Italy;
| | - Angela Santoro
- Pathology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (A.S.); (A.M.)
| | - Jessica Farina
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (G.B.); (G.T.); (L.P.); (G.M.V.); (L.S.); (J.F.); (G.M.); (R.C.)
| | - Antonino Mulé
- Pathology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (A.S.); (A.M.)
| | - Gaetano Magro
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (G.B.); (G.T.); (L.P.); (G.M.V.); (L.S.); (J.F.); (G.M.); (R.C.)
| | - Rosario Caltabiano
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (G.B.); (G.T.); (L.P.); (G.M.V.); (L.S.); (J.F.); (G.M.); (R.C.)
| |
Collapse
|
25
|
Orrù S, Pascariello E, Pes B, Rallo V, Barbara R, Muntoni M, Notari F, Fancello G, Mocci C, Muroni MR, Cossu-Rocca P, Angius A, De Miglio MR. Biomarker dynamics affecting neoadjuvant therapy response and outcome of HER2-positive breast cancer subtype. Sci Rep 2023; 13:12869. [PMID: 37553381 PMCID: PMC10409859 DOI: 10.1038/s41598-023-40071-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/03/2023] [Indexed: 08/10/2023] Open
Abstract
HER2+ breast cancer (BC) is an aggressive subtype genetically and biologically heterogeneous. We evaluate the predictive and prognostic role of HER2 protein/gene expression levels combined with clinico-pathologic features in 154 HER2+ BCs patients who received trastuzumab-based neoadjuvant chemotherapy (NACT). The tumoral pathological complete response (pCR) rate was 40.9%. High tumoral pCR show a scarce mortality rate vs subjects with a lower response. 93.7% of ypT0 were HER2 IHC3+ BC, 6.3% were HER2 IHC 2+/SISH+ and 86.7% of ypN0 were HER2 IHC3+, the remaining were HER2 IHC2+/SISH+. Better pCR rate correlate with a high percentage of infiltrating immune cells and right-sided tumors, that reduce distant metastasis and improve survival, but no incidence difference. HER2 IHC score and laterality emerge as strong predictors of tumoral pCR after NACT from machine learning analysis. HER2 IHC3+ and G3 are poor prognostic factors for HER2+ BC patients, and could be considered in the application of neoadjuvant therapy. Increasing TILs concentrations, lower lymph node ratio and lower residual tumor cellularity are associated with a better outcome. The immune microenvironment and scarce lymph node involvement have crucial role in clinical outcomes. The combination of all predictors might offer new options for NACT effectiveness prediction and stratification of HER2+ BC during clinical decision-making.
Collapse
Affiliation(s)
- Sandra Orrù
- Department of Pathology, "A. Businco" Oncologic Hospital, ARNA S Brotzu, Via Edward Jenner 1, 09121, Cagliari, Italy
| | - Emanuele Pascariello
- Department of Pathology, "A. Businco" Oncologic Hospital, ARNA S Brotzu, Via Edward Jenner 1, 09121, Cagliari, Italy
| | - Barbara Pes
- Dipartimento di Matematica e Informatica, University of Cagliari, Palazzo delle Scienze, Via Ospedale 72, 09124, Cagliari, Italy
| | - Vincenzo Rallo
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche, CNR, Cittadella Universitaria di Cagliari, 09042, Monserrato, Cagliari, Italy
| | - Raffaele Barbara
- Department of Radiotherapy, "A. Businco" Oncologic Hospital, ARNAS Brotzu, Via Edward Jenner 1, 09121, Cagliari, Italy
| | - Marta Muntoni
- Department of Pathology, "A. Businco" Oncologic Hospital, ARNA S Brotzu, Via Edward Jenner 1, 09121, Cagliari, Italy
| | - Francesca Notari
- Department of Pathology, "A. Businco" Oncologic Hospital, ARNA S Brotzu, Via Edward Jenner 1, 09121, Cagliari, Italy
| | - Gianfranco Fancello
- Breast Surgery Department, "A. Businco" Oncologic Hospital, ARNAS Brotzu, Via Edward Jenner 1, 09121, Cagliari, Italy
| | - Cristina Mocci
- Department of Pathology, "A. Businco" Oncologic Hospital, ARNA S Brotzu, Via Edward Jenner 1, 09121, Cagliari, Italy
| | - Maria Rosaria Muroni
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via P. Manzella 4, 07100, Sassari, Italy
| | - Paolo Cossu-Rocca
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via P. Manzella 4, 07100, Sassari, Italy
- Department of Diagnostic Services, "Giovanni Paolo II" Hospital, ASSL Olbia-ATS Sardegna, Via Bazzoni-Sircana, 07026, Olbia, Italy
| | - Andrea Angius
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche, CNR, Cittadella Universitaria di Cagliari, 09042, Monserrato, Cagliari, Italy.
| | - Maria Rosaria De Miglio
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via P. Manzella 4, 07100, Sassari, Italy.
| |
Collapse
|
26
|
Li R, Sant S, Brown E, Caramia F, Nikolic B, Clarke K, Byrne A, Lara Gonzalez LE, Savas P, Luen SJ, Teo ZL, Virassamy B, Neeson PJ, Darcy PK, Loi S. Tucatinib promotes immune activation and synergizes with programmed cell death-1 and programmed cell death-ligand 1 inhibition in HER2-positive breast cancer. J Natl Cancer Inst 2023; 115:805-814. [PMID: 37166471 PMCID: PMC10323890 DOI: 10.1093/jnci/djad072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 01/02/2023] [Accepted: 04/25/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND Programmed cell death-1 (PD-1) and programmed cell death-ligand 1 (PD-L1) inhibitors have poor efficacy in patients with trastuzumab-resistant advanced HER2-positive breast cancer. Tucatinib is a potent, selective anti-HER2 tyrosine kinase inhibitor with proven clinical benefit in the advanced setting in patients with trastuzumab resistance. We investigated if tucatinib can alter the tumor microenvironment and if this could be harnessed for therapeutic efficacy. METHODS We investigated the antitumor efficacy and contribution of the immune response of tucatinib using 2 immunocompetent, HER2-positive murine breast cancer models (trastuzumab-sensitive H2N113; trastuzumab-resistant Fo5) and the efficacy of tucatinib with trastuzumab and PD-1 or PD-L1 checkpoint inhibitors. RESULTS In both models, tucatinib statistically significantly inhibited tumor growth and demonstrated dose-dependent efficacy. Ex vivo analysis by flow cytometry of tumor-infiltrating lymphocytes in mice treated with tucatinib showed increased frequency, higher proliferation, and enhanced effector function of CD8+ effector memory T cells. Tucatinib treatment also increased frequency of CD8+PD-1+ and CD8+TIM3+ T cells, CD49+ natural killer cells, monocytes, and major histocompatibility complex II expression on dendritic cells and macrophages and a decrease in myeloid-derived suppressor cells. Gene expression analysis revealed statistically significant enrichment in pathways associated with immune activation, type I and II interferon response, adaptive immune response, and antigen receptor signaling. In vivo, tucatinib and α-PD-L1 or α-PD-1 demonstrated statistically significantly increased efficacy and improved survival of mice compared with tucatinib alone. CONCLUSION Tucatinib modulates the immune microenvironment favorably, and combination treatment with α-PD-L1 or α-PD-1 demonstrated increased efficacy in preclinical HER2-positive tumor models. These findings provide a rationale for investigation of tucatinib and immune checkpoint inhibition in the clinic.
Collapse
Affiliation(s)
- Ran Li
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Australia
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, Australia
- Department of Surgery, Sir Charles Gairdner Hospital, QEII Medical Centre, Nedlands, Australia
| | - Sneha Sant
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Emmaline Brown
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Franco Caramia
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Bronte Nikolic
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Kylie Clarke
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Ann Byrne
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Luis E Lara Gonzalez
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Peter Savas
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Stephen J Luen
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Zhi Ling Teo
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Balaji Virassamy
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Paul J Neeson
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Phillip K Darcy
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Sherene Loi
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
27
|
Martínez-Sáez O, Waks AG. Individualizing Curative-Intent Therapy in HER2-Positive Early-Stage Breast Cancer. Curr Treat Options Oncol 2023; 24:479-495. [PMID: 36995527 DOI: 10.1007/s11864-023-01070-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2023] [Indexed: 03/31/2023]
Abstract
OPINION STATEMENT Human epidermal growth factor receptor 2-positive (HER2+) breast cancers have been historically considered an aggressive entity with high rates of recurrence and poor survival. However, during the last 20 years, there has been a dramatic change in prognosis due to the incorporation of different anti-HER2 therapies into the neo/adjuvant chemotherapy backbone. Neoadjuvant dual blockade with trastuzumab and pertuzumab has become the standard of care for women with stage II and III HER2+ breast cancer. Trastuzumab emtansine (T-DM1) has been shown to improve outcomes if pathological complete response (pCR) is not achieved, and adjuvant extended therapy with neratinib has increased disease-free survival (DFS) and may have an impact in central nervous system (CNS) recurrences. However, these agents are both toxic for individual patients and costly for the overall healthcare system, and there are still patients that experience recurrence despite therapy improvements. At the same time, it has been shown that some patients with early-stage HER2+ breast cancer can be effectively treated with less intensive systemic therapy, using only taxane and trastuzumab, or that the chemotherapy backbone can be omitted completely. The current challenge is to properly identify which patients can receive a de-intensified regimen and which need new intensification strategies. Tumor size, nodal status, and pCR achievement after neoadjuvant treatment are well-known risk factors that can aid in making clinical decisions, but they do not accurately predict all patient outcomes. Various biomarkers have been proposed to better characterize the clinical and biological heterogeneity of HER2+ breast cancer. Immune infiltration, intrinsic subtype, intratumoral heterogeneity, and dynamic changes during treatment have been described as important prognostic and/or predictive features. The integration of all these factors will be key in the proper identification of the true risk, and individualized treatment strategy, for each patient.
Collapse
Affiliation(s)
- Olga Martínez-Sáez
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Department of Medical Oncology, Hospital Clinic of Barcelona, Barcelona, Spain
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA
| | - Adrienne G Waks
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Division of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Ave, Yawkey 1250, Boston, MA, 02215, USA.
| |
Collapse
|
28
|
Dowling GP, Keelan S, Toomey S, Daly GR, Hennessy BT, Hill ADK. Review of the status of neoadjuvant therapy in HER2-positive breast cancer. Front Oncol 2023; 13:1066007. [PMID: 36793602 PMCID: PMC9923093 DOI: 10.3389/fonc.2023.1066007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/16/2023] [Indexed: 01/31/2023] Open
Abstract
Purpose The development of human epidermal growth factor receptor 2 (HER2)-directed therapies has revolutionized the treatment of HER2-positive breast cancer. The aim of this article is to review the continually evolving treatment strategies in the neoadjuvant setting of HER2-positive breast cancer, as well as the current challenges and future perspectives. Methods Searches were undertaken on PubMed and Clinicaltrials.gov for relevant publications and trials. Findings The current standard of care in high-risk HER2-positive breast cancer is to combine chemotherapy with dual anti-HER2 therapy, for a synergistic anti-tumor effect. We discuss the pivotal trials which led to the adoption of this approach, as well as the benefit of these neoadjuvant strategies for guiding appropriate adjuvant therapy. De-escalation strategies are currently being investigated to avoid over treatment, and aim to safely reduce chemotherapy, while optimizing HER2-targeted therapies. The development and validation of a reliable biomarker is essential to enable these de-escalation strategies and personalization of treatment. In addition, promising novel therapies are currently being explored to further improve outcomes in HER2-positive breast cancer.
Collapse
Affiliation(s)
- Gavin P Dowling
- Medical Oncology Lab, Department of Molecular Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland.,The Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland.,The Department of Surgery, Beaumont Hospital, Dublin, Ireland
| | - Stephen Keelan
- The Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland.,The Department of Surgery, Beaumont Hospital, Dublin, Ireland
| | - Sinead Toomey
- Medical Oncology Lab, Department of Molecular Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Gordon R Daly
- The Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland.,The Department of Surgery, Beaumont Hospital, Dublin, Ireland
| | - Bryan T Hennessy
- Medical Oncology Lab, Department of Molecular Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Arnold D K Hill
- The Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland.,The Department of Surgery, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
29
|
Riaz N, Jeen T, Whelan TJ, Nielsen TO. Recent Advances in Optimizing Radiation Therapy Decisions in Early Invasive Breast Cancer. Cancers (Basel) 2023; 15:1260. [PMID: 36831598 PMCID: PMC9954587 DOI: 10.3390/cancers15041260] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Adjuvant whole breast irradiation after breast-conserving surgery is a well-established treatment standard for early invasive breast cancer. Screening, early diagnosis, refinement in surgical techniques, the knowledge of new and specific molecular prognostic factors, and now the standard use of more effective neo/adjuvant systemic therapies have proven instrumental in reducing the rates of locoregional relapses. This underscores the need for reliably identifying women with such low-risk disease burdens in whom elimination of radiation from the treatment plan would not compromise oncological safety. This review summarizes the current evidence for radiation de-intensification strategies and details ongoing prospective clinical trials investigating the omission of adjuvant whole breast irradiation in molecularly defined low-risk breast cancers and related evidence supporting the potential for radiation de-escalation in HER2+ and triple-negative clinical subtypes. Furthermore, we discuss the current evidence for the de-escalation of regional nodal irradiation after neoadjuvant chemotherapy. Finally, we also detail the current knowledge of the clinical value of stromal tumor-infiltrating lymphocytes and liquid-based biomarkers as prognostic factors for locoregional relapse.
Collapse
Affiliation(s)
- Nazia Riaz
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Tiffany Jeen
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Timothy J. Whelan
- Department of Oncology, McMaster University, Hamilton, ON L8S 4L8, Canada
- Division of Radiation Oncology, Juravinski Cancer Centre at Hamilton Health Sciences, Hamilton, ON L8V 5C2, Canada
| | - Torsten O. Nielsen
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
30
|
Valenza C, Taurelli Salimbeni B, Santoro C, Trapani D, Antonarelli G, Curigliano G. Tumor Infiltrating Lymphocytes across Breast Cancer Subtypes: Current Issues for Biomarker Assessment. Cancers (Basel) 2023; 15:cancers15030767. [PMID: 36765724 PMCID: PMC9913599 DOI: 10.3390/cancers15030767] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
Tumor-infiltrating lymphocytes (TILs) represent a surrogate biomarker of anti-tumor, lymphocyte-mediated immunity. In early, triple-negative breast cancer, TILs have level 1B of evidence to predict clinical outcomes. TILs represent a promising biomarker to select patients who can experience a better prognosis with de-intensified cancer treatments and derive larger benefits from immune checkpoint inhibitors. However, the assessment and the validation of TILs as a biomarker require a prospective and rigorous demonstration of its clinical validity and utility, provided reproducible analytical performance. With pending data about the prospective validation of TILs' clinical validity to modulate treatments in early breast cancer, this review summarizes the most important current issues and future challenges related to the implementation of TILs assessments across all breast cancer subtypes and their potential integration into clinical practice.
Collapse
Affiliation(s)
- Carmine Valenza
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Via Ripamonti 435, 20141 Milan, Italy
- Department of Oncology and Hematology-Oncology, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy
| | - Beatrice Taurelli Salimbeni
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Via Ripamonti 435, 20141 Milan, Italy
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Celeste Santoro
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Via Ripamonti 435, 20141 Milan, Italy
- Department of Oncology and Hematology-Oncology, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy
| | - Dario Trapani
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Via Ripamonti 435, 20141 Milan, Italy
- Department of Oncology and Hematology-Oncology, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy
| | - Gabriele Antonarelli
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Via Ripamonti 435, 20141 Milan, Italy
- Department of Oncology and Hematology-Oncology, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Via Ripamonti 435, 20141 Milan, Italy
- Department of Oncology and Hematology-Oncology, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy
- Correspondence: ; Tel.: +39-02-5748-9599
| |
Collapse
|
31
|
Castoldi A, Lee J, de Siqueira Carvalho D, Souto FO. CD8 + T cell metabolic changes in breast cancer. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166565. [PMID: 36220587 DOI: 10.1016/j.bbadis.2022.166565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/22/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022]
Abstract
Immunometabolism has advanced our understanding of how the cellular environment and nutrient availability regulates immune cell fate. Not only are metabolic pathways closely tied to cell signaling and differentiation, but can induce different subsets of immune cells to adopt unique metabolic programs, influencing disease progression. Dysregulation of immune cell metabolism plays an essential role in the progression of several diseases including breast cancer (BC). Metabolic reprogramming plays a critical role in regulating T cell functions. CD8+ T cells are an essential cell type within the tumor microenvironment (TME). To induce antitumor responses, CD8+ T cells need to adapt their metabolism to fulfill their energy requirement for effective function. However, different markers and immunologic techniques have made identifying specific CD8+ T cells subtypes in BC a challenge to the field. This review discusses the immunometabolic processes of CD8+ T cell in the TME in the context of BC and highlights the role of CD8+ T cell metabolic changes in tumor progression.
Collapse
Affiliation(s)
- Angela Castoldi
- Instituto Keizo Asami, Universidade Federal de Pernambuco, Recife, Brazil; Núcleo de Ciências da Vida, Centro Acadêmico do Agreste, Universidade Federal de Pernambuco, Caruaru, Brazil; Programa de Pós-Graduação em Biologia Aplicada à Saúde, Universidade Federal de Pernambuco, Recife, Brazil.
| | - Jennifer Lee
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | | | - Fabrício Oliveira Souto
- Instituto Keizo Asami, Universidade Federal de Pernambuco, Recife, Brazil; Núcleo de Ciências da Vida, Centro Acadêmico do Agreste, Universidade Federal de Pernambuco, Caruaru, Brazil; Programa de Pós-Graduação em Biologia Aplicada à Saúde, Universidade Federal de Pernambuco, Recife, Brazil
| |
Collapse
|
32
|
Derouane F, van Marcke C, Berlière M, Gerday A, Fellah L, Leconte I, Van Bockstal MR, Galant C, Corbet C, Duhoux FP. Predictive Biomarkers of Response to Neoadjuvant Chemotherapy in Breast Cancer: Current and Future Perspectives for Precision Medicine. Cancers (Basel) 2022; 14:3876. [PMID: 36010869 PMCID: PMC9405974 DOI: 10.3390/cancers14163876] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 02/07/2023] Open
Abstract
Pathological complete response (pCR) after neoadjuvant chemotherapy in patients with early breast cancer is correlated with better survival. Meanwhile, an expanding arsenal of post-neoadjuvant treatment strategies have proven beneficial in the absence of pCR, leading to an increased use of neoadjuvant systemic therapy in patients with early breast cancer and the search for predictive biomarkers of response. The better prediction of response to neoadjuvant chemotherapy could enable the escalation or de-escalation of neoadjuvant treatment strategies, with the ultimate goal of improving the clinical management of early breast cancer. Clinico-pathological prognostic factors are currently used to estimate the potential benefit of neoadjuvant systemic treatment but are not accurate enough to allow for personalized response prediction. Other factors have recently been proposed but are not yet implementable in daily clinical practice or remain of limited utility due to the intertumoral heterogeneity of breast cancer. In this review, we describe the current knowledge about predictive factors for response to neoadjuvant chemotherapy in breast cancer patients and highlight the future perspectives that could lead to the better prediction of response, focusing on the current biomarkers used for clinical decision making and the different gene signatures that have recently been proposed for patient stratification and the prediction of response to therapies. We also discuss the intratumoral phenotypic heterogeneity in breast cancers as well as the emerging techniques and relevant pre-clinical models that could integrate this biological factor currently limiting the reliable prediction of response to neoadjuvant systemic therapy.
Collapse
Affiliation(s)
- Françoise Derouane
- Department of Medical Oncology, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium
- Breast Clinic, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium
- Institut de Recherche Expérimentale et Clinique (IREC), Pole of Medical Imaging, Radiotherapy and Oncology (MIRO), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Cédric van Marcke
- Department of Medical Oncology, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium
- Breast Clinic, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium
- Institut de Recherche Expérimentale et Clinique (IREC), Pole of Medical Imaging, Radiotherapy and Oncology (MIRO), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Martine Berlière
- Breast Clinic, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium
- Department of Gynecology, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium
- Institut de Recherche Expérimentale et Clinique (IREC), Pole of Gynecology (GYNE), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Amandine Gerday
- Breast Clinic, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium
- Department of Gynecology, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium
| | - Latifa Fellah
- Breast Clinic, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium
- Department of Radiology, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium
| | - Isabelle Leconte
- Breast Clinic, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium
- Department of Radiology, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium
| | - Mieke R. Van Bockstal
- Breast Clinic, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium
- Department of Pathology, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium
| | - Christine Galant
- Breast Clinic, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium
- Department of Pathology, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium
| | - Cyril Corbet
- Institut de Recherche Expérimentale et Clinique (IREC), Pole of Pharmacology and Therapeutics (FATH), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Francois P. Duhoux
- Department of Medical Oncology, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium
- Breast Clinic, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium
- Institut de Recherche Expérimentale et Clinique (IREC), Pole of Medical Imaging, Radiotherapy and Oncology (MIRO), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| |
Collapse
|
33
|
Hong J, Park YH. Perioperative HER2 targeted treatment in early stage HER2-positive breast cancer. Ther Adv Med Oncol 2022; 14:17588359221106564. [PMID: 35756967 PMCID: PMC9218503 DOI: 10.1177/17588359221106564] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/25/2022] [Indexed: 11/16/2022] Open
Abstract
Although human epidermal growth factor receptor 2 (HER2)-positive breast cancer was associated with poor prognosis, it has been changed after the development of trastuzumab. There has been great progress in perioperative HER2-targeting treatment, and investigations of several novel drugs and their combinations are ongoing. Adjuvant trastuzumab with or without pertuzumab for 1 year in combination with concomitant chemotherapy has become a standard treatment in high-risk node-negative tumors or node-positive HER2-positive early breast cancer patients without residual disease or who have not received neoadjuvant treatment. For low-risk HER2-positive early breast cancer patients, adjuvant paclitaxel and 1-year trastuzumab are possible alternatives. For residual disease after neoadjuvant treatment, adjuvant trastuzumab emtansine (T-DM1) for 14 cycles is a standard treatment. Non-anthracycline chemotherapy with dual anti-HER2 targeting of trastuzumab and pertuzumab represents one of the preferred neoadjuvant regimens to achieve higher pathologic complete response (pCR) rates and better clinical outcomes. Further research is needed to develop and validate potential biomarkers to predict pCR, which could help escalate or de-escalate anti-HER2 therapy. Trials incorporating novel agents such as T-DM1, trastuzumab deruxtecan (T-DXd), and immune checkpoint inhibitors and trying to de-escalate treatments in neoadjuvant setting are ongoing. In the future, tailored treatments such as no adjuvant therapy, various HER2-directed therapies alone with chemotherapy, combinations of various HER2-directed therapies and chemotherapy, addition of immune checkpoint inhibitors, and omission of surgery will be individualized in HER2-positive early breast cancer patients.
Collapse
Affiliation(s)
- Joohyun Hong
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yeon Hee Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea
| |
Collapse
|
34
|
Yin W, Wang Y, Wu Z, Ye Y, Zhou L, Xu S, Lin Y, Du Y, Yan T, Yang F, Zhang J, Liu Q, Lu J. Neoadjuvant Trastuzumab and Pyrotinib for Locally Advanced HER2-Positive Breast Cancer (NeoATP): Primary Analysis of a Phase II Study. Clin Cancer Res 2022; 28:3677-3685. [PMID: 35713517 DOI: 10.1158/1078-0432.ccr-22-0446] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/08/2022] [Accepted: 06/15/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE Despite accumulating evidence on dual blockade of human epidermal growth factor receptor 2 (HER2) for locally advanced HER2-positive breast cancer, no robust evidence supports the addition of pyrotinib to trastuzumab in the neoadjuvant setting. The NeoATP trial aimed to evaluate the efficacy and safety of pyrotinib with neoadjuvant trastuzumab and chemotherapy. METHODS The phase II NeoATP trial included female patients with histologically confirmed stage IIA-IIIC and HER2-positive primary invasive breast cancer. Eligible patients received pyrotinib and trastuzumab with weekly paclitaxel-cisplatin neoadjuvant chemotherapy for four cycles. The primary endpoint was pathological complete response (pCR; ypT0 ypN0) rate. Key secondary endpoints included locoregional pCR (ypT0/is ypN0) rate, biomarker analysis and safety. RESULTS Among 53 enrolled patients (median age, 47 years; 73.58% stage III), 52 completed the study treatment and surgery. Overall, 37 patients (69.81%) achieved pCR. For women with hormone receptor negative and positive tumors, the pCR rates were 85.71% and 59.38% (P = 0.041), while the corresponding rates were 69.23% and 70.00% respectively for those with and without PIK3CA mutation (P = 0.958). The most frequently reported grade 3 to 4 adverse events were diarrhea (45.28%), leukopenia (39.62%) and neutropenia (32.08%). No deaths occurred, and no left ventricular ejection fraction <50% or >10 points drop from baseline to before surgery was reported. CONCLUSIONS The addition of pyrotinib to trastuzumab plus chemotherapy is an efficacious and safe regimen for patients with HER2-positive locally advanced breast cancer in the neoadjuvant setting. The randomized controlled clinical trial is warranted to validate our results.
Collapse
Affiliation(s)
- Wenjin Yin
- Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yaohui Wang
- Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Ziping Wu
- Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yumei Ye
- Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Liheng Zhou
- Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Shuguang Xu
- Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yanping Lin
- Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, Shanghai, China
| | - Yueyao Du
- Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Tingting Yan
- Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Fan Yang
- Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jie Zhang
- Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Qiang Liu
- Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P.R. China, Shanghai, China
| | - Jinsong Lu
- Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
35
|
Ramamoorthi G, Kodumudi K, Snyder C, Grover P, Zhang H, Greene MI, Basu A, Gallen C, Wiener D, Costa RLB, Han HS, Koski G, Czerniecki BJ. Intratumoral delivery of dendritic cells plus anti-HER2 therapy triggers both robust systemic antitumor immunity and complete regression in HER2 mammary carcinoma. J Immunother Cancer 2022; 10:jitc-2022-004841. [PMID: 35710296 PMCID: PMC9204433 DOI: 10.1136/jitc-2022-004841] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2022] [Indexed: 11/23/2022] Open
Abstract
Background Human epidermal growth factor receptor 2 (HER2) targeted antibodies in combination with chemotherapy has improved outcomes of HER2 positive (pos) breast cancer (BC) but toxicity of therapy remains a problem. High levels of tumor-infiltrating lymphocytes are associated with increased pathologic complete responses for patients treated with neoadjuvant therapy. Here we sought to investigate whether delivery of intratumoral (i.t.) multiepitope major histocompatibility complex (MHC) class II HER2 peptides-pulsed type I polarized dendritic cells (HER2-DC1) in combination with anti-HER2 antibodies without chemotherapy could enhance tumor regression by increasing anti-HER2 lymphocyte infiltration into the tumor. Methods BALB/c mice bearing orthotopic TUBO tumors, BALB/c mice bearing subcutaneous (s.c.) CT26 hHER2 tumors, or BALB-HER2/neu transgenic mice were all treated with i.t. or s.c. HER2-DC1, anti-HER2 antibodies, paclitaxel, T-DM1 or in combination. Immune response, host immune cells and effector function were analyzed using flow cytometry, interferon-γ ELISA and cytokine/chemokine arrays. The contributions of CD4+ and CD8+ T cells and antibody dependent cellular cytotoxicity (ADCC) were assessed using depleting antibodies and FcγR KO mice. Molecular changes were evaluated by immunohistochemistry and western blot. Results HER2-DC1 combined with anti-HER2 antibodies delivered i.t. compared to s.c. induced complete tumor regression in 75–80% of treated mice, with increased tumor infiltrating CD4+ and CD8+ T, B, natural killer T cells (NKT) and natural killer cells, and strong anti-HER2 responses in all HER2pos BC models tested. The therapy caused regression of untreated distant tumors. Labeled HER2-DC1 migrated prominently into the distant tumor and induced infiltration of various DC subsets into tumors. HER2-DC1 i.t. combined with anti-HER2 antibodies displayed superior antitumor response compared to standard chemotherapy with anti-HER2 antibodies. Lasting immunity was attained which prevented secondary tumor formation. The presence of CD4+ and CD8+ T cells and ADCC were required for complete tumor regression. In the HER2pos BC models, HER2-DC1 i.t. combined with anti-HER2 antibodies effectively diminished activation of HER2-mediated oncogenic signaling pathways. Conclusions HER2-DC1 i.t. with anti-HER2 antibodies mediates tumor regression through combined activation of T and B cell compartments and provides evidence that HER2-DC1 i.t. in combination with anti-HER2 antibodies can be tested as an effective alternative therapeutic strategy to current chemotherapy and anti-HER2 antibodies in HER2pos BC.
Collapse
Affiliation(s)
- Ganesan Ramamoorthi
- Clinical Science & Immunology Program, Moffitt Cancer Center, Tampa, Florida, USA
| | - Krithika Kodumudi
- Clinical Science & Immunology Program, Moffitt Cancer Center, Tampa, Florida, USA
| | - Colin Snyder
- Clinical Science & Immunology Program, Moffitt Cancer Center, Tampa, Florida, USA
| | - Payal Grover
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hongtao Zhang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mark I Greene
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Amrita Basu
- Clinical Science & Immunology Program, Moffitt Cancer Center, Tampa, Florida, USA
| | - Corey Gallen
- Clinical Science & Immunology Program, Moffitt Cancer Center, Tampa, Florida, USA
| | - Doris Wiener
- Clinical Science & Immunology Program, Moffitt Cancer Center, Tampa, Florida, USA
| | - Ricardo L B Costa
- Department of Breast Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Hyo S Han
- Department of Breast Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Gary Koski
- Biological Sciences, Kent State University, Kent, Ohio, USA
| | - Brian J Czerniecki
- Clinical Science & Immunology Program, Moffitt Cancer Center, Tampa, Florida, USA .,Department of Breast Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| |
Collapse
|
36
|
Tumor immune microenvironment and response to neoadjuvant chemotherapy in hormone receptor/HER2+ early stage breast cancer. Clin Breast Cancer 2022; 22:538-546. [PMID: 35610143 PMCID: PMC10266131 DOI: 10.1016/j.clbc.2022.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/05/2022] [Accepted: 04/11/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Pathologic response at the time of surgery after neoadjuvant therapy for HER2 positive early breast cancer impacts both prognosis and subsequent adjuvant therapy. Comprehensive descriptions of the tumor microenvironment (TME) in patients with HER2 positive early breast cancer is not well described. We utilized standard stromal pathologist-assessed tumor infiltrating lymphocyte (TIL) quantification, quantitative multiplex immunofluorescence, and RNA-based gene pathway signatures to assess pretreatment TME characteristics associated pathologic complete response in patients with hormone receptor positive, HER2 positive early breast cancer treated in the neoadjuvant setting. METHODS We utilized standard stromal pathologist-assessed TIL quantification, quantitative multiplex immunofluorescence, and RNA-based gene pathway signatures to assess pretreatment TME characteristics associated pathologic complete response in 28 patients with hormone receptor positive, HER2 positive early breast cancer treated in the neoadjuvant setting. RESULTS Pathologist-assessed stromal TILs were significantly associated with pathologic complete response (pCR). By quantitative multiplex immunofluorescence, univariate analysis revealed significant increases in CD3+, CD3+CD8-FOXP3-, CD8+ and FOXP3+ T-cell densities as well as increased immune cell aggregates in pCR patients. In subsets of paired pre/post-treatment samples, we observed significant changes in gene expression signatures in non-pCR patients and significant decreases in CD8+ densities after treatment in pCR patients. No RNA based pathway signature was associated with pCR. CONCLUSION TME characterization HER2 positive breast cancer patients revealed several stromal T-cell densities and immune cell aggregates associated with pCR. These results demonstrate the feasibility of these novel methods in TME evaluation and contribute to ongoing investigations of the TME in HER2+ early breast cancer to identify robust biomarkers to best identify patients eligible for systemic de-escalation strategies.
Collapse
|
37
|
Shang M, Chi Y, Zhang J, Chang J, Yang H, Yin S, Tan Q, Man X, Li H. The Therapeutic Effectiveness of Neoadjuvant Trastuzumab Plus Chemotherapy for HER2-Positive Breast Cancer Can Be Predicted by Tumor-Infiltrating Lymphocytes and PD-L1 Expression. Front Oncol 2022; 11:706606. [PMID: 35070953 PMCID: PMC8766296 DOI: 10.3389/fonc.2021.706606] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 12/06/2021] [Indexed: 12/05/2022] Open
Abstract
Introduction Neoadjuvant trastuzumab plus chemotherapy may affect programmed death-ligand 1 (PD-L1) expression and tumor-infiltrating lymphocytes (TILs) in HER2-positive breast cancer. Discordant results were shown on the correlation between PD-L1 expression or TILs and the effectiveness of neoadjuvant therapy in HER2-positive breast cancer patients. This study aimed to clarify the predictive value of PD-L1 expression and TILs in neoadjuvant therapy in patients with HER2-positive breast cancer. Methods HER2-positive breast cancer cases receiving neoadjuvant treatment (NAT; n = 155) were retrospectively collected from July 2013 to November 2018. Histopathologic analysis of TILs was performed on hematoxylin and eosin (H&E)-stained sections from pre- and post-NAT specimens. The TIL score as a categorical variable can be divided into high (≥30%) and low (<30%) categories. The expression of PD-L1 was detected by immunohistochemistry, and the percentage of positive membranous staining (at least 1%) in tumor cells (PD-L1+TC) and TILs (PD-L1+TILs) was scored. Results In our study, 87 patients received neoadjuvant chemotherapy alone and 68 received neoadjuvant trastuzumab plus chemotherapy. Multivariate logistic regression analysis confirmed that lymph node metastasis, high TILs, and PD-L1+TILs in pre-neoadjuvant therapy specimens were independent predictors of pathological complete response (pCR) in neoadjuvant therapy (p < 0.05, for all). Among all patients, TILs were increased in breast cancer tissues post-neoadjuvant therapy (p < 0.001). Consistent results were found in the subgroup analysis of the trastuzumab plus chemotherapy group and the chemotherapy alone group (p < 0.05, for both). In 116 non-pCR patients, PD-L1+TC was decreased in breast cancer tissues post-neoadjuvant therapy (p = 0.0219). Consistent results were found in 43 non-pCR patients who received neoadjuvant trastuzumab plus chemotherapy (p = 0.0437). However, in 73 non-pCR patients who received neoadjuvant chemotherapy, there was no significant difference in PD-L1+TC expression in pre- and post-neoadjuvant therapy specimens (p = 0.1465). On the other hand, in the general population, the neoadjuvant trastuzumab plus chemotherapy group, and the neoadjuvant chemotherapy group, PD-L1+TILs decreased after treatment (p < 0.05, for both). Conclusion Higher TIL counts and PD-L1+TILs in pre-neoadjuvant therapy specimens and lymph node metastasis are independent predictors of pCR in patients with HER2-positive breast cancer treated with neoadjuvant therapy. TIL counts, PD-L1+TC, and PD-L1+TILs changed before and after neoadjuvant trastuzumab plus chemotherapy for HER2-positive breast cancer, which may suggest that, in HER2-positive breast cancer, neoadjuvant trastuzumab plus chemotherapy may stimulate the antitumor immune effect of the host, thereby preventing tumor immune escape.
Collapse
Affiliation(s)
- Mao Shang
- Department of Breast Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China.,Department of Oncology, Jinan Central Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yajing Chi
- Department of Breast Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Jianbo Zhang
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Jin Chang
- Department of Radiation Oncology, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Hui Yang
- Department of Pathology, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Sha Yin
- Department of Breast Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Qiaorui Tan
- Department of Breast Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaochu Man
- Department of Breast Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Huihui Li
- Department of Breast Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
38
|
Zhong X, He P, Chen J, Yan X, Wei B, Zhang Z, Bu H, Li J, Tian T, Lv Q, Wang X, Li H, Wang J, Huang J, Suo J, Liu X, Zheng H, Luo T. Neoadjuvant pyrotinib plus trastuzumab and nab-paclitaxel for HER2-positive early or locally advanced breast cancer: an exploratory phase II trial. Gland Surg 2022; 11:216-225. [PMID: 35242683 PMCID: PMC8825531 DOI: 10.21037/gs-21-911] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/17/2022] [Indexed: 01/03/2024]
Abstract
BACKGROUND The anti-tumor activity and acceptable tolerability of pyrotinib plus chemotherapy have been demonstrated in phase III trials in human epidermal growth factor receptor 2-positive metastatic breast cancer (BC). In this study, we assessed the efficacy and safety of neoadjuvant pyrotinib plus trastuzumab and albumin-bound paclitaxel in women with human epidermal growth factor receptor 2-positive early or locally advanced BC. METHODS In this single-arm exploratory phase II trial, patients with untreated human epidermal growth factor receptor 2-positive BC (stage IIA-IIIC) received pyrotinib 400 mg once daily, trastuzumab 4 mg/kg loading dose, followed by 2 mg/kg once a week, and albumin-bound paclitaxel 125 mg/m2 once a week for four 21-day cycles before surgery. The primary endpoint of the study was total pathological complete response (pCR) rate, defined as no microscopic invasive tumor remnants in the breast and axillary lymph nodes. The secondary endpoints were investigator-assessed objective response rate (ORR) and adverse event profiles. RESULTS Between May 17, 2019 and November 26, 2019, a total of 21 patients were enrolled. The total pCR rate was 57.1% (12/21), whereas 23.8% (5/21) and 19.0% (4/21) of patients had minimal and moderate residual disease (RD), respectively. The ORR reached 100% (21/21) at the end of the neoadjuvant therapy. Grade ≥3 treatment-related adverse events were observed in 42.9% (9/21) of patients, including decreased neutrophil count [7 (33.3%)], diarrhoea [6 (28.6%)], decreased white blood cell count [5 (23.8%)], and vomiting [2 (9.5%)]. Adverse event-related dose reduction and interruption of pyrotinib occurred in 6 (28.6%) and 11 (52.4%) patients, respectively. CONCLUSIONS In women with human epidermal growth factor receptor 2-positive early or locally advanced BC, neoadjuvant pyrotinib plus trastuzumab and albumin-bound paclitaxel effectively promoted total pCR rate with an acceptable safety profile (ClinicalTrials.gov, NCT04152057).
Collapse
Affiliation(s)
- Xiaorong Zhong
- Department of Head, Neck, and Mammary Gland Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Molecular Diagnosis of Cancer, Clinical Research Center for Breast, West China Hospital, Sichuan University, Chengdu, China
| | - Ping He
- Department of Head, Neck, and Mammary Gland Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Chen
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Xi Yan
- Department of Head, Neck, and Mammary Gland Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Bin Wei
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Zhang Zhang
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Bu
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Li
- The Chinese Cochrane Center, West China Hospital, Sichuan University, Chengdu, China
| | - Tinglun Tian
- Department of Head, Neck, and Mammary Gland Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qing Lv
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaodong Wang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Hongjiang Li
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Wang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Juan Huang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Jiaojiao Suo
- Department of Head, Neck, and Mammary Gland Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoxiao Liu
- Department of Radiation Oncology, Cancer Center, Affiliated Hospital of Xuzhou Medical University, Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Hong Zheng
- Department of Head, Neck, and Mammary Gland Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Molecular Diagnosis of Cancer, Clinical Research Center for Breast, West China Hospital, Sichuan University, Chengdu, China
| | - Ting Luo
- Department of Head, Neck, and Mammary Gland Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Molecular Diagnosis of Cancer, Clinical Research Center for Breast, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
39
|
Radziuviene G, Rasmusson A, Augulis R, Grineviciute RB, Zilenaite D, Laurinaviciene A, Ostapenko V, Laurinavicius A. Intratumoral Heterogeneity and Immune Response Indicators to Predict Overall Survival in a Retrospective Study of HER2-Borderline (IHC 2+) Breast Cancer Patients. Front Oncol 2021; 11:774088. [PMID: 34858854 PMCID: PMC8631965 DOI: 10.3389/fonc.2021.774088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/22/2021] [Indexed: 11/13/2022] Open
Abstract
Breast cancer (BC) categorized as human epidermal growth factor receptor 2 (HER2) borderline [2+ by immunohistochemistry (IHC 2+)] presents challenges for the testing, frequently obscured by intratumoral heterogeneity (ITH). This leads to difficulties in therapy decisions. We aimed to establish prognostic models of overall survival (OS) of these patients, which take into account spatial aspects of ITH and tumor microenvironment by using hexagonal tiling analytics of digital image analysis (DIA). In particular, we assessed the prognostic value of Immunogradient indicators at the tumor–stroma interface zone (IZ) as a feature of antitumor immune response. Surgical excision samples stained for estrogen receptor (ER), progesterone receptor (PR), Ki67, HER2, and CD8 from 275 patients with HER2 IHC 2+ invasive ductal BC were used in the study. DIA outputs were subsampled by HexT for ITH quantification and tumor microenvironment extraction for Immunogradient indicators. Multiple Cox regression revealed HER2 membrane completeness (HER2 MC) (HR: 0.18, p = 0.0007), its spatial entropy (HR: 0.37, p = 0.0341), and ER contrast (HR: 0.21, p = 0.0449) as independent predictors of better OS, with worse OS predicted by pT status (HR: 6.04, p = 0.0014) in the HER2 non-amplified patients. In the HER2-amplified patients, HER2 MC contrast (HR: 0.35, p = 0.0367) and CEP17 copy number (HR: 0.19, p = 0.0035) were independent predictors of better OS along with worse OS predicted by pN status (HR: 4.75, p = 0.0018). In the non-amplified tumors, three Immunogradient indicators provided the independent prognostic value: CD8 density in the tumor aspect of the IZ and CD8 center of mass were associated with better OS (HR: 0.23, p = 0.0079 and 0.14, p = 0.0014, respectively), and CD8 density variance along the tumor edge predicted worse OS (HR: 9.45, p = 0.0002). Combining these three computational indicators of the CD8 cell spatial distribution within the tumor microenvironment augmented prognostic stratification of the patients. In the HER2-amplified group, CD8 cell density in the tumor aspect of the IZ was the only independent immune response feature to predict better OS (HR: 0.22, p = 0.0047). In conclusion, we present novel prognostic models, based on computational ITH and Immunogradient indicators of the IHC biomarkers, in HER2 IHC 2+ BC patients.
Collapse
Affiliation(s)
- Gedmante Radziuviene
- National Center of Pathology, Affiliate of Vilnius University Hospital Santaros Clinics, Vilnius, Lithuania.,Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Allan Rasmusson
- National Center of Pathology, Affiliate of Vilnius University Hospital Santaros Clinics, Vilnius, Lithuania.,Faculty of Medicine, Institute of Biomedical Sciences, Vilnius University, Vilnius, Lithuania
| | - Renaldas Augulis
- National Center of Pathology, Affiliate of Vilnius University Hospital Santaros Clinics, Vilnius, Lithuania.,Faculty of Medicine, Institute of Biomedical Sciences, Vilnius University, Vilnius, Lithuania
| | - Ruta Barbora Grineviciute
- National Center of Pathology, Affiliate of Vilnius University Hospital Santaros Clinics, Vilnius, Lithuania
| | - Dovile Zilenaite
- National Center of Pathology, Affiliate of Vilnius University Hospital Santaros Clinics, Vilnius, Lithuania.,Faculty of Medicine, Institute of Biomedical Sciences, Vilnius University, Vilnius, Lithuania
| | - Aida Laurinaviciene
- National Center of Pathology, Affiliate of Vilnius University Hospital Santaros Clinics, Vilnius, Lithuania.,Faculty of Medicine, Institute of Biomedical Sciences, Vilnius University, Vilnius, Lithuania
| | - Valerijus Ostapenko
- Department of Breast Surgery and Oncology, National Cancer Institute, Vilnius, Lithuania
| | - Arvydas Laurinavicius
- National Center of Pathology, Affiliate of Vilnius University Hospital Santaros Clinics, Vilnius, Lithuania.,Faculty of Medicine, Institute of Biomedical Sciences, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
40
|
El Bairi K, Haynes HR, Blackley E, Fineberg S, Shear J, Turner S, de Freitas JR, Sur D, Amendola LC, Gharib M, Kallala A, Arun I, Azmoudeh-Ardalan F, Fujimoto L, Sua LF, Liu SW, Lien HC, Kirtani P, Balancin M, El Attar H, Guleria P, Yang W, Shash E, Chen IC, Bautista V, Do Prado Moura JF, Rapoport BL, Castaneda C, Spengler E, Acosta-Haab G, Frahm I, Sanchez J, Castillo M, Bouchmaa N, Md Zin RR, Shui R, Onyuma T, Yang W, Husain Z, Willard-Gallo K, Coosemans A, Perez EA, Provenzano E, Ericsson PG, Richardet E, Mehrotra R, Sarancone S, Ehinger A, Rimm DL, Bartlett JMS, Viale G, Denkert C, Hida AI, Sotiriou C, Loibl S, Hewitt SM, Badve S, Symmans WF, Kim RS, Pruneri G, Goel S, Francis PA, Inurrigarro G, Yamaguchi R, Garcia-Rivello H, Horlings H, Afqir S, Salgado R, Adams S, Kok M, Dieci MV, Michiels S, Demaria S, Loi S. The tale of TILs in breast cancer: A report from The International Immuno-Oncology Biomarker Working Group. NPJ Breast Cancer 2021; 7:150. [PMID: 34853355 PMCID: PMC8636568 DOI: 10.1038/s41523-021-00346-1] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 09/28/2021] [Indexed: 02/08/2023] Open
Abstract
The advent of immune-checkpoint inhibitors (ICI) in modern oncology has significantly improved survival in several cancer settings. A subgroup of women with breast cancer (BC) has immunogenic infiltration of lymphocytes with expression of programmed death-ligand 1 (PD-L1). These patients may potentially benefit from ICI targeting the programmed death 1 (PD-1)/PD-L1 signaling axis. The use of tumor-infiltrating lymphocytes (TILs) as predictive and prognostic biomarkers has been under intense examination. Emerging data suggest that TILs are associated with response to both cytotoxic treatments and immunotherapy, particularly for patients with triple-negative BC. In this review from The International Immuno-Oncology Biomarker Working Group, we discuss (a) the biological understanding of TILs, (b) their analytical and clinical validity and efforts toward the clinical utility in BC, and (c) the current status of PD-L1 and TIL testing across different continents, including experiences from low-to-middle-income countries, incorporating also the view of a patient advocate. This information will help set the stage for future approaches to optimize the understanding and clinical utilization of TIL analysis in patients with BC.
Collapse
Affiliation(s)
- Khalid El Bairi
- Department of Medical Oncology, Mohammed VI University Hospital, Faculty of Medicine and Pharmacy, Mohammed Ist University, Oujda, Morocco.
| | - Harry R Haynes
- Department of Cellular Pathology, Great Western Hospital, Swindon, UK
- Translational Health Sciences, University of Bristol, Bristol, UK
| | - Elizabeth Blackley
- Division of Research, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Susan Fineberg
- Department of Pathology, Montefiore Medical Center and the Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jeffrey Shear
- Chief Information Officer, WISS & Company, LLP and President J. Shear Consulting, LLC-Ardsley, Ardsley, NY, USA
| | | | - Juliana Ribeiro de Freitas
- Department of Pathology and Legal Medicine, Medical School of the Federal University of Bahia, Salvador, Brazil
| | - Daniel Sur
- Department of Medical Oncology, University of Medicine "I. Hatieganu", Cluj Napoca, Romania
| | | | - Masoumeh Gharib
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Indu Arun
- Department of Histopathology, Tata Medical Center, Kolkata, India
| | - Farid Azmoudeh-Ardalan
- Department of Pathology, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Luciana Fujimoto
- Pathology and Legal Medicine, Amazon Federal University, Belém, Brazil
| | - Luz F Sua
- Department of Pathology and Laboratory Medicine, Fundacion Valle del Lili, and Faculty of Health Sciences, Universidad ICESI, Cali, Colombia
| | | | - Huang-Chun Lien
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Pawan Kirtani
- Department of Histopathology, Manipal Hospitals Dwarka, New Delhi, India
| | - Marcelo Balancin
- Department of Pathology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | | | - Prerna Guleria
- Army Hospital Research and Referral, Delhi Cantt, New Delhi, India
| | | | - Emad Shash
- Breast Cancer Comprehensive Center, National Cancer Institute, Cairo University, Cairo, Egypt
| | - I-Chun Chen
- Department of Oncology, National Taiwan University Cancer Center, Taipei, Taiwan
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Veronica Bautista
- Department of Pathology, Breast Cancer Center FUCAM, Mexico City, Mexico
| | | | - Bernardo L Rapoport
- The Medical Oncology Centre of Rosebank, Johannesburg, South Africa
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, corner Doctor Savage Road and Bophelo Road, Pretoria, 0002, South Africa
| | - Carlos Castaneda
- Department of Medical Oncology, Instituto Nacional de Enfermedades Neoplásicas, Lima, 15038, Peru
- Faculty of Health Sciences, Universidad Cientifica del Sur, Lima, Peru
| | - Eunice Spengler
- Departmento de Patologia, Hospital Universitario Austral, Pilar, Argentina
| | - Gabriela Acosta-Haab
- Department of Pathology, Hospital de Oncología Maria Curie, Buenos Aires, Argentina
| | - Isabel Frahm
- Department of Pathology, Sanatorio Mater Dei, Buenos Aires, Argentina
| | - Joselyn Sanchez
- Department of Research, Instituto Nacional de Enfermedades Neoplasicas, Lima, 15038, Peru
| | - Miluska Castillo
- Department of Research, Instituto Nacional de Enfermedades Neoplasicas, Lima, 15038, Peru
| | - Najat Bouchmaa
- Institute of Biological Sciences, Mohammed VI Polytechnic University (UM6P), 43 150, Ben-Guerir, Morocco
| | - Reena R Md Zin
- Department of Pathology, Faculty of Medicine, UKM Medical Centre, Kuala Lumpur, Malaysia
| | - Ruohong Shui
- Department of Pathology, Fudan University Cancer Center, Shanghai, China
| | | | - Wentao Yang
- Department of Pathology, Fudan University Cancer Center, Shanghai, China
| | | | - Karen Willard-Gallo
- Molecular Immunology Unit, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - An Coosemans
- Laboratory of Tumour Immunology and Immunotherapy, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Edith A Perez
- Department of Hematology/Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Elena Provenzano
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Paula Gonzalez Ericsson
- Breast Cancer Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eduardo Richardet
- Clinical Oncology Unit, Instituto Oncológico Córdoba, Córdoba, Argentina
| | - Ravi Mehrotra
- India Cancer Research Consortium-ICMR, Department of Health Research, New Delhi, India
| | - Sandra Sarancone
- Department of Pathology, Laboratorio QUANTUM, Rosario, Argentina
| | - Anna Ehinger
- Department of Clinical Genetics and Pathology, Skåne University Hospital, Lund University, Lund, Sweden
| | - David L Rimm
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - John M S Bartlett
- Diagnostic Development, Ontario Institute for Cancer Research, Toronto, Canada
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Giuseppe Viale
- Department of Pathology, Istituto Europeo di Oncologia IRCCS, and University of Milan, Milan, Italy
| | - Carsten Denkert
- Institute of Pathology, Universitätsklinikum Gießen und Marburg GmbH, Standort Marburg and Philipps-Universität Marburg, Marburg, Germany
| | - Akira I Hida
- Department of Pathology, Matsuyama Shimin Hospital, Matsuyama, Japan
| | - Christos Sotiriou
- Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Stephen M Hewitt
- Laboratory of Pathology, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Sunil Badve
- Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, USA
| | - William Fraser Symmans
- Department of Pathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Rim S Kim
- National Surgical Adjuvant Breast and Bowel Project (NSABP)/NRG Oncology, Pittsburgh, PA, USA
| | - Giancarlo Pruneri
- Department of Pathology, RCCS Fondazione Istituto Nazionale Tumori and University of Milan, School of Medicine, Milan, Italy
| | - Shom Goel
- Division of Research, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| | - Prudence A Francis
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
- Medical Oncology Department, Peter MacCallum Cancer Centre, Melbourne, Australia
| | | | - Rin Yamaguchi
- Department of Pathology and Laboratory Medicine, Kurume University Medical Center, Kurume, Fukuoka, Japan
| | - Hernan Garcia-Rivello
- Servicio de Anatomía Patológica, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Hugo Horlings
- Division of Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Said Afqir
- Department of Medical Oncology, Mohammed VI University Hospital, Faculty of Medicine and Pharmacy, Mohammed Ist University, Oujda, Morocco
| | - Roberto Salgado
- Division of Research, Peter MacCallum Cancer Centre, Melbourne, Australia
- Department of Pathology, GZA-ZNA Hospitals, Antwerp, Belgium
| | - Sylvia Adams
- Perlmutter Cancer Center, New York University Medical School, New York, NY, USA
| | - Marleen Kok
- Divisions of Medical Oncology, Molecular Oncology & Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Maria Vittoria Dieci
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
- Medical Oncology 2, Istituto Oncologico Veneto IOV-IRCCS, Padova, Italy
| | - Stefan Michiels
- Service de Biostatistique et d'Epidémiologie, Gustave Roussy, Oncostat U1018, Inserm, University Paris-Saclay, labeled Ligue Contre le Cancer, Villejuif, France
| | - Sandra Demaria
- Department of Radiation Oncology, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Sherene Loi
- Division of Research, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
41
|
Zhao D, Fu X, Rohr J, Wang Y, Li M, Zhang X, Qin J, Xu M, Li C, Sun G, Wang Z, Guo S. Poor histologic tumor response after adjuvant therapy in basal-like HER2-positive breast carcinoma. Pathol Res Pract 2021; 228:153677. [PMID: 34775151 DOI: 10.1016/j.prp.2021.153677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 12/21/2022]
Abstract
AIMS HER2-positive breast carcinomas are all treated with first-line anti-HER2 therapy. However, immunohistochemical and molecular profiling demonstrates significant heterogeneity among HER2-positive carcinomas. Basal-like HER2-positive breast carcinomas are poorly differentiated from pure HER2-positive breast carcinomas. MATERIALS AND METHODS Seventy-five patients with HER2-positive, ER- and PR-negative breast carcinomas who received anti-HER2 based neoadjuvant therapy were retrospectively analyzed. Thirty-seven cases were classified as basal-like HER2-positive breast carcinoma with any positivity for CK5/6, and thirty-eight cases were classified as pure HER2-positive breast carcinoma with completely negativity for CK5/6. The clinicopathological features and tumor responses after neoadjuvant therapy and outcomes were analyzed. RESULTS Compared to non-basal HER2-positive breast carcinoma, basal-like HER2-positive breast carcinoma showed distinctive histologic features including poor differentiation and syncytial tumor cells with pushing, invasive borders and a significantly higher proportion of apocrine metaplasia. They also demonstrated significantly higher histologic grade; 18/37 (48.6%) of basal-like carcinomas were grade 3, whereas only 5/38 (13.2%) of non-basal carcinomas were grade 3 (p = 0.001), Furthermore, basal-like HER2-positive breast carcinomas were more likely to be positive or completely negative for p53 (p = 0.009), and demonstrated a higher percentage of TP53 mutation (p = 0.17). These tumors were less responsive to anti-HER2 based neoadjuvant therapy, with Miller-Payne grades 1-3 higher than pure HER2-positive breast carcinoma (25/37 [67.6%] vs 16/38 [42.1%]), and the percentage of grade 4-5 was lower (12/37 [32.4%] vs 22/38 [57.9%]; p = 0.027). CONCLUSIONS Basal-like HER2-positive breast carcinoma has distinctive clinicopathological features and less histologic tumor response after neoadjuvant therapy. There is urgent need to recognize basal-like HER2-positive breast carcinoma to be treated precisely.
Collapse
Affiliation(s)
- Danhui Zhao
- Department of Pathology, the First Affinity Hospital of the Air Force Military Medical University, Xi'an, Shaan Xi Province, 710032, China
| | - Xin Fu
- Department of Pathology, the First Affinity Hospital of the Air Force Military Medical University, Xi'an, Shaan Xi Province, 710032, China
| | - Joseph Rohr
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, 68105, NE, USA
| | - Yingmei Wang
- Department of Pathology, the First Affinity Hospital of the Air Force Military Medical University, Xi'an, Shaan Xi Province, 710032, China
| | - Mingyang Li
- Department of Pathology, the First Affinity Hospital of the Air Force Military Medical University, Xi'an, Shaan Xi Province, 710032, China
| | - Xiuming Zhang
- Department of Pathology, the First Affinity Hospital of the Air Force Military Medical University, Xi'an, Shaan Xi Province, 710032, China
| | - Junhui Qin
- Department of Pathology, the First Affinity Hospital of the Air Force Military Medical University, Xi'an, Shaan Xi Province, 710032, China
| | - Mengwei Xu
- Department of Pathology, the First Affinity Hospital of the Air Force Military Medical University, Xi'an, Shaan Xi Province, 710032, China
| | - Chao Li
- Department of Pathology, the First Affinity Hospital of the Air Force Military Medical University, Xi'an, Shaan Xi Province, 710032, China
| | - Guorui Sun
- Department of Pathology, the First Affinity Hospital of the Air Force Military Medical University, Xi'an, Shaan Xi Province, 710032, China
| | - Zhe Wang
- Department of Pathology, the First Affinity Hospital of the Air Force Military Medical University, Xi'an, Shaan Xi Province, 710032, China.
| | - Shuangping Guo
- Department of Pathology, the First Affinity Hospital of the Air Force Military Medical University, Xi'an, Shaan Xi Province, 710032, China.
| |
Collapse
|
42
|
Zhao F, Huo X, Wang M, Liu Z, Zhao Y, Ren D, Xie Q, Liu Z, Li Z, Du F, Shen G, Zhao J. Comparing Biomarkers for Predicting Pathological Responses to Neoadjuvant Therapy in HER2-Positive Breast Cancer: A Systematic Review and Meta-Analysis. Front Oncol 2021; 11:731148. [PMID: 34778044 PMCID: PMC8581664 DOI: 10.3389/fonc.2021.731148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 10/08/2021] [Indexed: 01/09/2023] Open
Abstract
INTRODUCTION The predictive strength and accuracy of some biomarkers for the pathological complete response (pCR) to neoadjuvant therapy for HER2-positive breast cancer remain unclear. This study aimed to compare the accuracy of the HER2-enriched subtype and the presence of PIK3CA mutations, namely, TILs, HRs, and Ki-67, in predicting the pCR to HER2-positive breast cancer therapy. METHODS We screened studies that included pCR predicted by one of the following biomarkers: the HER2-enriched subtype and the presence of PIK3CA mutations, TILs, HRs, or Ki-67. We then calculated the pooled sensitivity, specificity, positive and negative predictive values (PPVs and NPVs, respectively), and positive and negative likelihood ratios (LRs). Summary receiver operating characteristic (SROC) curves and areas under the curve (AUCs) were used to estimate the diagnostic accuracy. RESULTS The pooled estimates of sensitivity and specificity for the HER2-enriched subtype and the presence of PIK3CA mutations, namely, TILs, HRs, and Ki-67, were 0.66 and 0.62, 0.85 and 0.27, 0.49 and 0.61, 0.54 and 0.64, and 0.68 and 0.51, respectively. The AUC of the HER2-enriched subtype was significantly higher (0.71) than those for the presence of TILs (0.59, p = 0.003), HRs (0.65, p = 0.003), and Ki-67 (0.62, p = 0.005). The AUC of the HER2-enriched subtype had a tendency to be higher than that of the presence of PIK3CA mutations (0.58, p = 0.220). Moreover, it had relatively high PPV (0.58) and LR+ (1.77), similar NPV (0.73), and low LR- (0.54) compared with the other four biomarkers. CONCLUSIONS The HER2-enriched subtype has a moderate breast cancer diagnostic accuracy, which is better than those of the presence of PIK3CA mutations, TILs, HRs, and Ki-67.
Collapse
Affiliation(s)
- Fuxing Zhao
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, China
| | - Xingfa Huo
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, China
| | - Miaozhou Wang
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, China
| | - Zhen Liu
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, China
| | - Yi Zhao
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, China
| | - Dengfeng Ren
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, China
| | - Qiqi Xie
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, China
| | - Zhilin Liu
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, China
| | - Zitao Li
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, China
| | - Feng Du
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), The VIPII Gastrointestinal Cancer Division of Medical Department, Peking University Cancer Hospital and Institute, Beijing, China
| | - Guoshuang Shen
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, China
| | - Jiuda Zhao
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, China
| |
Collapse
|
43
|
Breast Cancer Consensus Subtypes: A system for subtyping breast cancer tumors based on gene expression. NPJ Breast Cancer 2021; 7:136. [PMID: 34642313 PMCID: PMC8511026 DOI: 10.1038/s41523-021-00345-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 09/21/2021] [Indexed: 12/11/2022] Open
Abstract
Breast cancer is heterogeneous in prognoses and drug responses. To organize breast cancers by gene expression independent of statistical methodology, we identified the Breast Cancer Consensus Subtypes (BCCS) as the consensus groupings of six different subtyping methods. Our classification software identified seven BCCS subtypes in a study cohort of publicly available data (n = 5950) including METABRIC, TCGA-BRCA, and data assayed by Affymetrix arrays. All samples were fresh-frozen from primary tumors. The estrogen receptor-positive (ER+) BCCS subtypes were: PCS1 (18%) good prognosis, stromal infiltration; PCS2 (15%) poor prognosis, highly proliferative; PCS3 (13%) poor prognosis, highly proliferative, activated IFN-gamma signaling, cytotoxic lymphocyte infiltration, high tumor mutation burden; PCS4 (18%) good prognosis, hormone response genes highly expressed. The ER− BCCS subtypes were: NCS1 (11%) basal; NCS2 (10%) elevated androgen response; NCS3 (5%) cytotoxic lymphocyte infiltration; unclassified tumors (9%). HER2+ tumors were heterogeneous with respect to BCCS.
Collapse
|
44
|
Pellegrino B, Tommasi C, Cursio OE, Musolino A, Migliori E, De Silva P, Senevirathne TH, Schena M, Scartozzi M, Farci D, Willard-Gallo K, Solinas C. A review of immune checkpoint blockade in breast cancer. Semin Oncol 2021; 48:208-225. [PMID: 34620502 DOI: 10.1053/j.seminoncol.2021.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 08/27/2021] [Accepted: 09/01/2021] [Indexed: 11/11/2022]
Abstract
In the recent years characterized by the cancer immunotherapy revolution, attention has turned to how to potentially boost and/or generate an efficient anti-tumor immune response in breast cancer (BC). Clinical activity of immune checkpoint blockade (ICB) targeting PD-1 or PD-L1 in BC has been more evident in the triple negative subtype and in earlier lines of the treatment. Remarkably, some responders to single agent ICB have achieved durable responses with metastatic disease, possibly as a result of treatment-induced immunological memory. However, most BC are immunologically quiescent and current research efforts developing ICB combinations are attempting to convert "cold" into "hot" tumors by manipulating the tumor microenvironment, expanding anti-tumor T cells improving efficient antigen presentation, and suppressing pro-tumor inhibitory cells. The aim of this review is to summarize existing data on the efficacy of immune checkpoint blockers as single agents and combination strategies in all BC subtypes, highlighting the BC subgroups that benefit most from ICB.
Collapse
Affiliation(s)
- Benedetta Pellegrino
- Department of Medicine and Surgery, University of Parma, Italy; Medical Oncology and Breast Unit, University Hospital of Parma, Italy.
| | - Chiara Tommasi
- Department of Medicine and Surgery, University of Parma, Italy
| | | | - Antonino Musolino
- Department of Medicine and Surgery, University of Parma, Italy; Medical Oncology and Breast Unit, University Hospital of Parma, Italy
| | - Edoardo Migliori
- Columbia University Medical Center, Columbia Center for Translational Immunology, New York, NY, United States
| | - Pushpamali De Silva
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | | | - Marina Schena
- Regional Hospital of Aosta, Azienda USL Valle d'Aosta, Aosta, Italy
| | | | - Daniele Farci
- Medical Oncology, Casa di Cura Decimomannu, Cagliari, Italy
| | | | - Cinzia Solinas
- Medical Oncology, S. Francesco Hospital, Nuoro, Azienda Tutela della Salute della Sardegna, Italy.
| |
Collapse
|
45
|
Hong J, Rui W, Fei X, Chen X, Shen K. Association of tumor-infiltrating lymphocytes before and after neoadjuvant chemotherapy with pathological complete response and prognosis in patients with breast cancer. Cancer Med 2021; 10:7921-7933. [PMID: 34562054 PMCID: PMC8607245 DOI: 10.1002/cam4.4302] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/25/2021] [Accepted: 08/27/2021] [Indexed: 12/30/2022] Open
Abstract
Purpose To evaluate the predictive and prognostic value of tumor‐infiltrating lymphocytes (TILs) before and after neoadjuvant chemotherapy (NAC) in patients with breast cancer. Patients and methods Consecutive breast cancer patients treated with NAC between August 2008 and November 2019 were retrospectively analyzed. TIL levels were evaluated of invasive tumor samples, and high expression was defined as TILs >10%. Total pathological complete response (pCR) was defined as no invasive tumor in the breast or lymph nodes. Univariate and multivariate analyses were used to assess factors associated with pCR rate, disease‐free survival (DFS), and overall survival. Results A total of 461 patients were included. The mean pre‐NAC TIL level was higher among patients with pCR than among patients without pCR (24.28% ± 2.34% vs. 11.34% ± 0.60%, respectively, p < 0.0001). The multivariate analysis demonstrated that a high pre‐NAC TIL level was an independent risk factor for a higher pCR (odds ratio = 3.92, 95% CI = 2.23–6.90, p < 0.001). Patients with high pre‐NAC TIL levels had a better 5‐year DFS than those with low pre‐NAC TIL levels (84.5% vs. 68.9%, HR = 0.50, 95% CI = 0.31–0.81, p = 0.005). The multivariate analysis showed that pre‐NAC TIL (HR = 0.48; 95% CI = 0.29–0.81, p = 0.006) but not post‐NAC TIL (HR = 0.89, 95% CI = 0.50–1.59, p = 0.699) was significantly associated with DFS among patients without pCR. Furthermore, patients with low pre‐ and post‐NAC TIL levels had a worse 5‐year DFS than those with high pre‐NAC TIL levels (HR = 2.09, 95% CI = 1.23–3.56, p = 0.007). Conclusions Pre‐NAC TIL level can predict pCR and DFS in patients with breast cancer receiving NAC. For patients without pCR, pre‐NAC TIL, and TIL category change, but not post‐NAC TIL, were significantly associated with DFS.
Collapse
Affiliation(s)
- Jin Hong
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Weiwei Rui
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaochun Fei
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaosong Chen
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kunwei Shen
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
46
|
Fracol M, Shah N, Dolivo D, Hong S, Giragosian L, Galiano R, Mustoe T, Kim JYS. Can Breast Implants Induce Breast Cancer Immunosurveillance? An Analysis of Antibody Response to Breast Cancer Antigen following Implant Placement. Plast Reconstr Surg 2021; 148:287-298. [PMID: 34398081 DOI: 10.1097/prs.0000000000008165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Women with cosmetic breast implants have significantly lower rates of subsequent breast cancer than the general population (relative risk, 0.63; 95 percent CI, 0.56 to 0.71). The authors hypothesize that breast implant-induced local inflammation stimulates immunosurveillance recognition of breast tumor antigen. METHODS Sera were collected from two cohorts of healthy women: women with long-term breast implants (i.e., breast implants for >6 months) and breast implant-naive women. Antibody responses to breast tumor antigens were tested by enzyme-linked immunosorbent assay and compared between cohorts by unpaired t test. Of the implant-naive cohort, nine women underwent breast augmentation, and antibody responses before and after implant placement were compared by paired t test. RESULTS Sera were collected from 104 women: 36 (34.6 percent) long-term breast implants and 68 (65.4 percent) implant-naive women. Women with long-term breast implants had higher antibody responses than implant-naive women to mammaglobin-A (optical density at 450 nm, 0.33 versus 0.22; p = 0.003) and mucin-1 (optical density at 450 nm, 0.42 versus 0.34; p = 0.02). There was no difference in antibody responses to breast cancer susceptibility gene 2, carcinoembryonic antigen, human epidermal growth factor receptor-2, or tetanus. Nine women with longitudinal samples preoperatively and 1 month postoperatively demonstrated significantly elevated antibody responses following implant placement to mammaglobin-A (mean difference, 0.13; p = 0.0002) and mucin-1 (mean difference 0.08; p = 0.02). There was no difference in postimplant responses to other breast tumor antigens, or tetanus. CONCLUSIONS Women with long-term breast implants have higher antibody recognition of mammaglobin-A and mucin-1. This study provides the first evidence of implant-related immune responses to breast cancer antigens. CLINICAL QUESTION/LEVEL OF EVIDENCE Therapeutic, V.
Collapse
Affiliation(s)
- Megan Fracol
- From the Division of Plastic and Reconstructive Surgery, Northwestern University Feinberg School of Medicine
| | - Nikita Shah
- From the Division of Plastic and Reconstructive Surgery, Northwestern University Feinberg School of Medicine
| | - David Dolivo
- From the Division of Plastic and Reconstructive Surgery, Northwestern University Feinberg School of Medicine
| | - Seok Hong
- From the Division of Plastic and Reconstructive Surgery, Northwestern University Feinberg School of Medicine
| | - Lexa Giragosian
- From the Division of Plastic and Reconstructive Surgery, Northwestern University Feinberg School of Medicine
| | - Robert Galiano
- From the Division of Plastic and Reconstructive Surgery, Northwestern University Feinberg School of Medicine
| | - Thomas Mustoe
- From the Division of Plastic and Reconstructive Surgery, Northwestern University Feinberg School of Medicine
| | - John Y S Kim
- From the Division of Plastic and Reconstructive Surgery, Northwestern University Feinberg School of Medicine
| |
Collapse
|
47
|
Shen G, Zhao F, Huo X, Ren D, Du F, Zheng F, Zhao J. Meta-Analysis of HER2-Enriched Subtype Predicting the Pathological Complete Response Within HER2-Positive Breast Cancer in Patients Who Received Neoadjuvant Treatment. Front Oncol 2021; 11:632357. [PMID: 34367947 PMCID: PMC8343531 DOI: 10.3389/fonc.2021.632357] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 07/02/2021] [Indexed: 01/01/2023] Open
Abstract
Background This meta-analysis aimed to better elucidate the predictive value of human epidermal growth factor receptor 2 (HER2)-enriched subtype of pathological complete response (pCR) rate within HER2-positive breast cancer patients receiving neoadjuvant treatment. Methods We identified prospective trials that evaluated the correlation between an HER2-enriched subtype and pCR rate in HER2-positive breast cancer. Pooled odds ratio (OR) values with 95% confidence intervals (CIs) were computed. Results Fifteen studies comprising 2,190 patients met the inclusion criteria. The HER2-enriched subtype was associated with increased odds of achieving a pCR (OR = 4.12, 95% CI = 3.38 to 5.03, P < 0.001) in patients overall. Moreover, it was correlated with improved pCR when single or dual HER2-targeted agent-based therapy was employed (OR = 3.36, 95% CI = 2.25 to 5.02, P < 0.001; OR = 4.66, 95% CI = 3.56 to 6.10, P < 0.001, respectively), but not when HER2-targeted agent-free chemotherapy was used (OR = 2.52, 95% CI = 0.98 to 6.49, P = 0.05). Moreover, an HER2-enriched subtype predicted higher pCR rates irrespective of HER2-targeted agents (trastuzumab, lapatinib, pertuzumab, or T-DM1); chemotherapy agents (taxane-based, or anthracyclines plus taxane-based); endocrine therapy and hormone receptor [all the differences were statistically significant (P all ≤ 0.001)]. Conclusions The HER2-enriched subtype can more effectively and specifically predict pCR for HER2-targeted agent-based neoadjuvant treatment, irrespective of the number (single or dual) or category of HER2-targeted agent, including chemotherapy and endocrine therapy, or hormone receptor in cases of HER2-positive breast cancer.
Collapse
Affiliation(s)
- Guoshuang Shen
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, China
| | - Fuxing Zhao
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, China
| | - Xingfa Huo
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, China
| | - Dengfeng Ren
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, China
| | - Feng Du
- Key Laboratory of Carcinogenesis and Translational Research, The VIPII Gastrointestinal Cancer Division of Medical Department, Peking University Cancer Hospital and Institute, Beijing, China
| | - Fangchao Zheng
- Department of Medical Oncology, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jiuda Zhao
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, China
| |
Collapse
|
48
|
Schmidt M, Edlund K, Hengstler JG, Heimes AS, Almstedt K, Lebrecht A, Krajnak S, Battista MJ, Brenner W, Hasenburg A, Rahnenführer J, Gehrmann M, Kellokumpu-Lehtinen PL, Wirtz RM, Joensuu H. Prognostic Impact of Immunoglobulin Kappa C ( IGKC) in Early Breast Cancer. Cancers (Basel) 2021; 13:3626. [PMID: 34298839 PMCID: PMC8304855 DOI: 10.3390/cancers13143626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/09/2021] [Accepted: 07/16/2021] [Indexed: 01/12/2023] Open
Abstract
We studied the prognostic impact of tumor immunoglobulin kappa C (IGKC) mRNA expression as a marker of the humoral immune system in the FinHer trial patient population, where 1010 patients with early breast cancer were randomly allocated to either docetaxel-containing or vinorelbine-containing adjuvant chemotherapy. HER2-positive patients were additionally allocated to either trastuzumab or no trastuzumab. Hormone receptor-positive patients received tamoxifen. IGKC was evaluated in 909 tumors using quantitative real-time polymerase chain reaction, and the influence on distant disease-free survival (DDFS) was examined using univariable and multivariable Cox regression and Kaplan-Meier estimates. Interactions were analyzed using Cox regression. IGKC expression, included as continuous variable, was independently associated with DDFS in a multivariable analysis also including age, molecular subtype, grade, and pT and pN stage (HR 0.930, 95% CI 0.870-0.995, p = 0.034). An independent association with DDFS was also found in a subset analysis of triple-negative breast cancers (TNBC) (HR 0.843, 95% CI 0.724-0.983, p = 0.029), but not in luminal (HR 0.957, 95% CI 0.867-1.056, p = 0.383) or HER2-positive (HR 0.933, 95% CI 0.826-1.055, p = 0.271) cancers. No significant interaction between IGKC and chemotherapy or trastuzumab administration was detected (Pinteraction = 0.855 and 0.684, respectively). These results show that humoral immunity beneficially influences the DDFS of patients with early TNBC.
Collapse
Affiliation(s)
- Marcus Schmidt
- Department of Obstetrics and Gynecology, University Medical Center Mainz, 55131 Mainz, Germany; (A.-S.H.); (K.A.); (A.L.); (S.K.); (M.J.B.); (W.B.); (A.H.)
| | - Karolina Edlund
- Leibniz Research Centre for Working Environment and Human Factors (IfADo) at Dortmund TU, 44139 Dortmund, Germany; (K.E.); (J.G.H.)
| | - Jan G. Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IfADo) at Dortmund TU, 44139 Dortmund, Germany; (K.E.); (J.G.H.)
| | - Anne-Sophie Heimes
- Department of Obstetrics and Gynecology, University Medical Center Mainz, 55131 Mainz, Germany; (A.-S.H.); (K.A.); (A.L.); (S.K.); (M.J.B.); (W.B.); (A.H.)
| | - Katrin Almstedt
- Department of Obstetrics and Gynecology, University Medical Center Mainz, 55131 Mainz, Germany; (A.-S.H.); (K.A.); (A.L.); (S.K.); (M.J.B.); (W.B.); (A.H.)
| | - Antje Lebrecht
- Department of Obstetrics and Gynecology, University Medical Center Mainz, 55131 Mainz, Germany; (A.-S.H.); (K.A.); (A.L.); (S.K.); (M.J.B.); (W.B.); (A.H.)
| | - Slavomir Krajnak
- Department of Obstetrics and Gynecology, University Medical Center Mainz, 55131 Mainz, Germany; (A.-S.H.); (K.A.); (A.L.); (S.K.); (M.J.B.); (W.B.); (A.H.)
| | - Marco J. Battista
- Department of Obstetrics and Gynecology, University Medical Center Mainz, 55131 Mainz, Germany; (A.-S.H.); (K.A.); (A.L.); (S.K.); (M.J.B.); (W.B.); (A.H.)
| | - Walburgis Brenner
- Department of Obstetrics and Gynecology, University Medical Center Mainz, 55131 Mainz, Germany; (A.-S.H.); (K.A.); (A.L.); (S.K.); (M.J.B.); (W.B.); (A.H.)
| | - Annette Hasenburg
- Department of Obstetrics and Gynecology, University Medical Center Mainz, 55131 Mainz, Germany; (A.-S.H.); (K.A.); (A.L.); (S.K.); (M.J.B.); (W.B.); (A.H.)
| | - Jörg Rahnenführer
- Department of Statistics, TU Dortmund University, 44221 Dortmund, Germany;
| | | | | | | | - Heikki Joensuu
- Department of Oncology, Helsinki University Hospital and University of Helsinki, 00290 Helsinki, Finland;
| |
Collapse
|
49
|
Hartman ZC. How can we create precision immunotherapy as standard in breast cancer? Expert Rev Anticancer Ther 2021; 21:1179-1181. [PMID: 34213990 DOI: 10.1080/14737140.2021.1951241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Zachary C Hartman
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham, NC, USA.,Department of Pathology, Duke University, Durham, NC, USA
| |
Collapse
|
50
|
Eustace AJ, Madden SF, Fay J, Collins DM, Kay EW, Sheehan KM, Furney S, Moran B, Fagan A, Morris PG, Teiserskiene A, Hill AD, Grogan L, Walshe JM, Breathnach O, Power C, Duke D, Egan K, Gallagher WM, O'Donovan N, Crown J, Toomey S, Hennessy BT. The role of infiltrating lymphocytes in the neo-adjuvant treatment of women with HER2-positive breast cancer. Breast Cancer Res Treat 2021; 187:635-645. [PMID: 33983492 PMCID: PMC8197702 DOI: 10.1007/s10549-021-06244-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 04/22/2021] [Indexed: 11/28/2022]
Abstract
Background Pre-treatment tumour-associated lymphocytes (TILs) and stromal lymphocytes (SLs) are independent predictive markers of future pathological complete response (pCR) in HER2-positive breast cancer. Whilst studies have correlated baseline lymphocyte levels with subsequent pCR, few have studied the impact of neoadjuvant therapy on the immune environment. Methods We performed TIL analysis and T-cell analysis by IHC on the pretreatment and ‘On-treatment’ samples from patients recruited on the Phase-II TCHL (NCT01485926) clinical trial. Data were analysed using the Wilcoxon signed-rank test and the Spearman rank correlation. Results In our sample cohort (n = 66), patients who achieved a pCR at surgery, post-chemotherapy, had significantly higher counts of TILs (p = 0.05) but not SLs (p = 0.08) in their pre-treatment tumour samples. Patients who achieved a subsequent pCR after completing neo-adjuvant chemotherapy had significantly higher SLs (p = 9.09 × 10–3) but not TILs (p = 0.1) in their ‘On-treatment’ tumour biopsies. In a small cohort of samples (n = 16), infiltrating lymphocyte counts increased after 1 cycle of neo-adjuvant chemotherapy only in those tumours of patients who did not achieve a subsequent pCR. Finally, reduced CD3 + (p = 0.04, rho = 0.60) and CD4 + (p = 0.01, rho = 0.72) T-cell counts in 'On-treatment' biopsies were associated with decreased residual tumour content post-1 cycle of treatment; the latter being significantly associated with increased likelihood of subsequent pCR (p < 0.01). Conclusions The immune system may be ‘primed’ prior to neoadjuvant treatment in those patients who subsequently achieve a pCR. In those patients who achieve a pCR, their immune response may return to baseline after only 1 cycle of treatment. However, in those who did not achieve a pCR, neo-adjuvant treatment may stimulate lymphocyte influx into the tumour. Supplementary Information The online version contains supplementary material available at 10.1007/s10549-021-06244-1.
Collapse
Affiliation(s)
- A J Eustace
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland.
| | - S F Madden
- Data Science Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - J Fay
- Department of Histopathology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - D M Collins
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - E W Kay
- Department of Histopathology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - K M Sheehan
- Department of Histopathology, Royal College of Surgeons in Ireland, Dublin, Ireland.,Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - S Furney
- Department of Physiology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - B Moran
- Conway Institute, University College Dublin, Dublin, Ireland
| | - A Fagan
- Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - P G Morris
- Department of Medical Oncology, Beaumont Hospital, Dublin, Ireland
| | | | - A D Hill
- Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - L Grogan
- Department of Medical Oncology, Beaumont Hospital, Dublin, Ireland
| | - J M Walshe
- Department of Medical Oncology, St Vincent's University Hospital, Dublin, Ireland
| | - O Breathnach
- Department of Medical Oncology, Beaumont Hospital, Dublin, Ireland
| | - C Power
- Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - D Duke
- Department of Radiology, Beaumont Hospital, Dublin, Ireland
| | - K Egan
- Cancer Clinical Trials and Research Unit, Beaumont Hospital, Dublin, Ireland
| | - W M Gallagher
- Conway Institute, University College Dublin, Dublin, Ireland
| | - N O'Donovan
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - J Crown
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland.,Cancer Trials Ireland, Dublin, Ireland
| | - S Toomey
- Medical Oncology Group, Department of Molecular Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - B T Hennessy
- Cancer Trials Ireland, Dublin, Ireland.,Medical Oncology Group, Department of Molecular Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|