1
|
Farmer AJ, Katariya R, Islam S, Rayhan MSA, Inlow MH, Ahmad SM, Schwab KR. trithorax is an essential regulator of cardiac Hox gene expression and anterior-posterior patterning of the Drosophila embryonic heart tube. Biol Open 2025; 14:bio061919. [PMID: 40172069 PMCID: PMC11993250 DOI: 10.1242/bio.061919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 02/14/2025] [Indexed: 04/04/2025] Open
Abstract
The precise regulation of transcription required for embryonic development is partially controlled by the actions of the Trithorax group (TrxG) and Polycomb group (PcG) proteins. The genes trithorax (trx), trithorax-related (trr), and SET domain containing 1 (Set1) encode COMPASS-like histone methyltransferases, a subgroup of TrxG proteins that impart H3K4 methylation modifications onto chromatin in order to activate and maintain transcription. In this study, we identify the role of these genes in the development of the embryonic heart of the fruit fly Drosophila melanogaster. trx, trr, and Set1 independently ensure proper cardiac cell divisions. Additionally, trx regulation of collinear Hox expression is necessary for the anterior-posterior cardiac patterning of the linear heart tube. trx inactivation in Drosophila results in a remarkable homeotic transformation of the posterior heart-proper segment into an aorta-like fate due to the loss of posterior abdominal A expression. Furthermore, cardiac expression of Antennapedia, Ultrabithorax, and Abdominal B is also deregulated in trx mutants. Together, these data suggest that the COMPASS-like histone methyltransferases are essential developmental regulators of cardiogenesis, being necessary for both cardiac cell divisions and heart patterning.
Collapse
Affiliation(s)
- Adam J. Farmer
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA
- The Rich and Robin Porter Cancer Research Center, Indiana State University, Terre Haute, IN 47809, USA
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA
| | - Rajnandani Katariya
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA
- The Rich and Robin Porter Cancer Research Center, Indiana State University, Terre Haute, IN 47809, USA
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA
| | - Sumaiya Islam
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA
- The Rich and Robin Porter Cancer Research Center, Indiana State University, Terre Haute, IN 47809, USA
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA
| | - Md. Sayeed Abu Rayhan
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA
- The Rich and Robin Porter Cancer Research Center, Indiana State University, Terre Haute, IN 47809, USA
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA
| | - Mark H. Inlow
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA
- Department of Mathematics and Computer Science, Indiana State University, Terre Haute, IN 47809, USA
| | - Shaad M. Ahmad
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA
- The Rich and Robin Porter Cancer Research Center, Indiana State University, Terre Haute, IN 47809, USA
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA
| | - Kristopher R. Schwab
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA
- The Rich and Robin Porter Cancer Research Center, Indiana State University, Terre Haute, IN 47809, USA
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA
| |
Collapse
|
2
|
Nelson KA, Lenhart KF, Anllo L, DiNardo S. The Drosophila hematopoietic niche assembles through collective cell migration controlled by neighbor tissues and Slit-Robo signaling. eLife 2025; 13:RP100455. [PMID: 39750120 PMCID: PMC11698496 DOI: 10.7554/elife.100455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
Niches are often found in specific positions in tissues relative to the stem cells they support. Consistency of niche position suggests that placement is important for niche function. However, the complexity of most niches has precluded a thorough understanding of how their proper placement is established. To address this, we investigated the formation of a genetically tractable niche, the Drosophila Posterior Signaling Center (PSC), the assembly of which had not been previously explored. This niche controls hematopoietic progenitors of the lymph gland (LG). PSC cells were previously shown to be specified laterally in the embryo, but ultimately reside dorsally, at the LG posterior. Here, using live-imaging, we show that PSC cells migrate as a tight collective and associate with multiple tissues during their trajectory to the LG posterior. We find that Slit emanating from two extrinsic sources, visceral mesoderm and cardioblasts, is required for the PSC to remain a collective, and for its attachment to cardioblasts during migration. Without proper Slit-Robo signaling, PSC cells disperse, form aberrant contacts, and ultimately fail to reach their stereotypical position near progenitors. Our work characterizes a novel example of niche formation and identifies an extrinsic signaling relay that controls precise niche positioning.
Collapse
Affiliation(s)
- Kara A Nelson
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
- Institute for Regenerative Medicine at the University of PennsylvaniaPhiladelphiaUnited States
| | - Kari F Lenhart
- Department of Biology, Drexel UniversityPhiladelphiaUnited States
| | - Lauren Anllo
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
- Institute for Regenerative Medicine at the University of PennsylvaniaPhiladelphiaUnited States
| | - Stephen DiNardo
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
- Institute for Regenerative Medicine at the University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
3
|
Nelson KA, Lenhart KF, Anllo L, DiNardo S. The Drosophila hematopoietic niche assembles through collective cell migration controlled by neighbor tissues and Slit-Robo signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.21.600069. [PMID: 38979182 PMCID: PMC11230208 DOI: 10.1101/2024.06.21.600069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Niches are often found in specific positions in tissues relative to the stem cells they support. Consistency of niche position suggests that placement is important for niche function. However, the complexity of most niches has precluded a thorough understanding of how their proper placement is established. To address this, we investigated the formation of a genetically tractable niche, the Drosophila Posterior Signaling Center (PSC), the assembly of which had not been previously explored. This niche controls hematopoietic progenitors of the lymph gland (LG). PSC cells were previously shown to be specified laterally in the embryo, but ultimately reside dorsally, at the LG posterior. Here, using live-imaging, we show that PSC cells migrate as a tight collective and associate with multiple tissues during their trajectory to the LG posterior. We find that Slit emanating from two extrinsic sources, visceral mesoderm and cardioblasts, is required for the PSC to remain a collective, and for its attachment to cardioblasts during migration. Without proper Slit-Robo signaling, PSC cells disperse, form aberrant contacts, and ultimately fail to reach their stereotypical position near progenitors. Our work characterizes a novel example of niche formation and identifies an extrinsic signaling relay that controls precise niche positioning.
Collapse
Affiliation(s)
- Kara A Nelson
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, 421 Curie Blvd. Philadelphia, PA 19104, United States
- Institute for Regenerative Medicine at the University of Pennsylvania, 3400 Civic Center Blvd. Philadelphia, PA 19104, United States
| | - Kari F Lenhart
- Department of Biology, Drexel University, 3245 Chestnut St. Philadelphia, PA 19104, United States
| | - Lauren Anllo
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, 421 Curie Blvd. Philadelphia, PA 19104, United States
- Institute for Regenerative Medicine at the University of Pennsylvania, 3400 Civic Center Blvd. Philadelphia, PA 19104, United States
- Present address: Department of Biology, East Carolina University, 458 Science & Tech Bldg. Greenville, NC 27858, United States
| | - Stephen DiNardo
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, 421 Curie Blvd. Philadelphia, PA 19104, United States
- Institute for Regenerative Medicine at the University of Pennsylvania, 3400 Civic Center Blvd. Philadelphia, PA 19104, United States
| |
Collapse
|
4
|
Tang L, Liu C, Rosenberger P. Platelet formation and activation are influenced by neuronal guidance proteins. Front Immunol 2023; 14:1206906. [PMID: 37398659 PMCID: PMC10310924 DOI: 10.3389/fimmu.2023.1206906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
Platelets are anucleate blood cells derived from megakaryocytes. They link the fundamental functions of hemostasis, inflammation and host defense. They undergo intracellular calcium flux, negatively charged phospholipid translocation, granule release and shape change to adhere to collagen, fibrin and each other, forming aggregates, which are key to several of their functions. In all these dynamic processes, the cytoskeleton plays a crucial role. Neuronal guidance proteins (NGPs) form attractive and repulsive signals to drive neuronal axon navigation and thus refine neuronal circuits. By binding to their target receptors, NGPs rearrange the cytoskeleton to mediate neuron motility. In recent decades, evidence has indicated that NGPs perform important immunomodulatory functions and influence platelet function. In this review, we highlight the roles of NGPs in platelet formation and activation.
Collapse
|
5
|
Wang X, Singh P, Zhou L, Sharafeldin N, Landier W, Hageman L, Burridge P, Yasui Y, Sapkota Y, Blanco JG, Oeffinger KC, Hudson MM, Chow EJ, Armenian SH, Neglia JP, Ritchey AK, Hawkins DS, Ginsberg JP, Robison LL, Armstrong GT, Bhatia S. Genome-Wide Association Study Identifies ROBO2 as a Novel Susceptibility Gene for Anthracycline-Related Cardiomyopathy in Childhood Cancer Survivors. J Clin Oncol 2023; 41:1758-1769. [PMID: 36508697 PMCID: PMC10043563 DOI: 10.1200/jco.22.01527] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/27/2022] [Accepted: 11/04/2022] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Interindividual variability in the dose-dependent association between anthracyclines and cardiomyopathy suggests a modifying role of genetic susceptibility. Few previous studies have examined gene-anthracycline interactions. We addressed this gap using the Childhood Cancer Survivor Study (discovery) and the Children's Oncology Group (COG) study COG-ALTE03N1 (replication). METHODS A genome-wide association study (Illumina HumanOmni5Exome Array) in 1,866 anthracycline-exposed Childhood Cancer Survivor Study participants (126 with heart failure) was used to identify single-nucleotide polymorphisms (SNPs) with either main or gene-environment interaction effect on anthracycline-related cardiomyopathy that surpassed a prespecified genome-wide threshold for statistical significance. We attempted replication in a matched case-control set of anthracycline-exposed childhood cancer survivors with (n = 105) and without (n = 160) cardiomyopathy from COG-ALTE03N1. RESULTS Two SNPs (rs17736312 [ROBO2]) and rs113230990 (near a CCCTC-binding factor insulator [< 750 base pair]) passed the significance cutoff for gene-anthracycline dose interaction in discovery. SNP rs17736312 was successfully replicated. Compared with the GG/AG genotypes on rs17736312 and anthracyclines ≤ 250 mg/m2, the AA genotype and anthracyclines > 250 mg/m2 conferred a 2.2-fold (95% CI, 1.2 to 4.0) higher risk of heart failure in discovery and an 8.2-fold (95% CI, 2.0 to 34.4) higher risk in replication. ROBO2 encodes transmembrane Robo receptors that bind Slit ligands (SLIT). Slit-Robo signaling pathway promotes cardiac fibrosis by interfering with the transforming growth factor-β1/small mothers against decapentaplegic (Smad) pathway, resulting in disordered remodeling of the extracellular matrix and potentiating heart failure. We found significant gene-level associations with heart failure: main effect (TGF-β1, P = .007); gene*anthracycline interaction (ROBO2*anthracycline, P = .0003); and gene*gene*anthracycline interaction (SLIT2*TGF-β1*anthracycline, P = .009). CONCLUSION These findings suggest that high-dose anthracyclines combined with genetic variants involved in the profibrotic Slit-Robo signaling pathway promote cardiac fibrosis via the transforming growth factor-β1/Smad pathway, providing credence to the biologic plausibility of the association between SNP rs17736312 (ROBO2) and anthracycline-related cardiomyopathy.
Collapse
Affiliation(s)
| | | | - Liting Zhou
- University of Alabama at Birmingham, Birmingham, AL
| | | | | | | | | | - Yutaka Yasui
- St Jude Children's Research Hospital, Memphis, TN
| | | | | | | | | | - Eric J. Chow
- Seattle Children's Hospital, University of Washington, Fred Hutchinson Cancer Center, Seattle, WA
| | | | | | - A. Kim Ritchey
- Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA
| | - Douglas S. Hawkins
- Seattle Children's Hospital, University of Washington, Fred Hutchinson Cancer Center, Seattle, WA
| | | | | | | | - Smita Bhatia
- University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
6
|
Huang Y, Ma M, Mao X, Pehlivan D, Kanca O, Un-Candan F, Shu L, Akay G, Mitani T, Lu S, Candan S, Wang H, Xiao B, Lupski JR, Bellen HJ. Novel dominant and recessive variants in human ROBO1 cause distinct neurodevelopmental defects through different mechanisms. Hum Mol Genet 2022; 31:2751-2765. [PMID: 35348658 PMCID: PMC9402236 DOI: 10.1093/hmg/ddac070] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/17/2022] [Accepted: 03/20/2022] [Indexed: 07/27/2023] Open
Abstract
The Roundabout (Robo) receptors, located on growth cones of neurons, induce axon repulsion in response to the extracellular ligand Slit. The Robo family of proteins controls midline crossing of commissural neurons during development in flies. Mono- and bi-allelic variants in human ROBO1 (HGNC: 10249) have been associated with incomplete penetrance and variable expressivity for a breath of phenotypes, including neurodevelopmental defects such as strabismus, pituitary defects, intellectual impairment, as well as defects in heart and kidney. Here, we report two novel ROBO1 variants associated with very distinct phenotypes. A homozygous missense p.S1522L variant in three affected siblings with nystagmus; and a monoallelic de novo p.D422G variant in a proband who presented with early-onset epileptic encephalopathy. We modeled these variants in Drosophila and first generated a null allele by inserting a CRIMIC T2A-GAL4 in an intron. Flies that lack robo1 exhibit reduced viability but have very severe midline crossing defects in the central nervous system. The fly wild-type cDNA driven by T2A-Gal4 partially rescues both defects. Overexpression of the human reference ROBO1 with T2A-GAL4 is toxic and reduces viability, whereas the recessive p.S1522L variant is less toxic, suggesting that it is a partial loss-of-function allele. In contrast, the dominant variant in fly robo1 (p.D413G) affects protein localization, impairs axonal guidance activity and induces mild phototransduction defects, suggesting that it is a neomorphic allele. In summary, our studies expand the phenotypic spectrum associated with ROBO1 variant alleles.
Collapse
Affiliation(s)
- Yan Huang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mengqi Ma
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiao Mao
- National Health Commission Key Laboratory for Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan 410008, China
- Department of Medical Genetics, Maternal and Child Health Hospital of Hunan Province, Changsha, Hunan 410008, China
| | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Division of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children’s Hospital, Houston, TX 77030, USA
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Feride Un-Candan
- Department of Neuroloy, Balikesir Ataturk Public Hospital, Balikesir 10100, Turkey
| | - Li Shu
- National Health Commission Key Laboratory for Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan 410008, China
- Department of Medical Genetics, Maternal and Child Health Hospital of Hunan Province, Changsha, Hunan 410008, China
| | - Gulsen Akay
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tadahiro Mitani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shenzhao Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sukru Candan
- Department of Medical Genetics, Balikesir Ataturk Public Hospital, Balikesir 10100, Turkey
| | - Hua Wang
- National Health Commission Key Laboratory for Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan 410008, China
- Department of Medical Genetics, Maternal and Child Health Hospital of Hunan Province, Changsha, Hunan 410008, China
| | - Bo Xiao
- Neurology Department, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children’s Hospital, Houston, TX 77030, USA
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
7
|
Liu JW, Liu HT, Chen L. The Therapeutic Role of Slit2 in Anti-fibrosis, Anti-inflammation and Anti-oxidative Stress in Rats with Coronary Heart Disease. Cardiovasc Toxicol 2021; 21:973-983. [PMID: 34410632 DOI: 10.1007/s12012-021-09688-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/05/2021] [Indexed: 11/28/2022]
Abstract
To investigate the efficacy of Slit2 in the rats with coronary heart disease (CHD). CHD model were constructed by feeding high-fat food and injecting with pituitrin in rat, followed by recombinant Slit2 treatment, and then the cardiac function was evaluated by echocardiography, and the indicators concerning the cardiomyocyte injury markers and lipoprotein status and oxidative stress were measured. The Slit2 expression in the heart tissues was identified by immunofluorescence. Enzyme-linked immunosorbent assay (ELISA) was carried out to detect inflammatory cytokines, H2DCFDA staining to determine the ROS generation in heart tissues, Masson trichrome staining to observe myocardial fibrosis, and qRT-PCR and Western blotting to detect gene and protein expressions. Slit2 decreased the levels of LDH, CK-MB, cTnI, TG, TC and LDL-C and increased HDL-C level in CHD rats. In the normal heart tissues, Slit2 expression was significantly lower in cardiomyocytes than cardiac fibroblasts. Furthermore, the expressions of VCAM-1, ICAM-1, fibronectin and TGF-β1 were increased in the heart tissues of CHD rats with the obvious myocardial fibrosis, which were dose-dependently reversed by recombinant Slit2. In addition, recombinant Slit2 also dose-dependently increased the activity of NO, SOD, CAT and GSH-Px, and decreased TNF-α, IL-6, MCP-1, MDA and ROS in CHD rats. Slit2 was downregulated in myocardial tissue and plasma of CHD rats. Recombinant Slit2, by regulating the level of blood lipid, can relieve the myocardial fibrosis, inflammation and oxidative stress in CHD.
Collapse
Affiliation(s)
- Ji-Wei Liu
- Heart Function Examination Room, Jingzhou Central Hospital, Hubei, China
| | - Hai-Tao Liu
- Department of Cardiovascular Medicine, Binzhou People's Hospital, Shandong, China
| | - Lin Chen
- Department of Cardiology, the People's Hospital of Rizhao, No. 126, Tai'an Road, Rizhao, 276826, China.
| |
Collapse
|
8
|
Cho HJ, Kim H, Lee YS, Moon SA, Kim JM, Kim H, Kim MJ, Yu J, Kim K, Baek IJ, Lee SH, Ahn KH, Kim S, Kang JS, Koh JM. SLIT3 promotes myogenic differentiation as a novel therapeutic factor against muscle loss. J Cachexia Sarcopenia Muscle 2021; 12:1724-1740. [PMID: 34423586 PMCID: PMC8718016 DOI: 10.1002/jcsm.12769] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/25/2021] [Accepted: 07/10/2021] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Sarcopenia and osteoporosis frequently co-occur in the elderly and have common pathophysiological determinants. Slit guidance ligand 3 (SLIT3) has been recently discovered as a novel therapeutic factor against osteoporosis, and a SLIT3 fragment containing the second leucine-rich repeat domain (LRRD2) had a therapeutic efficacy against osteoporosis. However, a role of SLIT3 in the skeletal muscle is unknown. METHODS Skeletal muscle mass, strength, and/or physical activity were evaluated in Slit3-/- , ovariectomized, and aged mice, based on the measurements of muscle weight and grip strength, Kondziella's inverted hanging test, and/or wheel-running test. Skeletal muscles were also histologically evaluated by haematoxylin and eosin staining and/or immunofluorescence. The ovariectomized and aged mice were intravenously injected with recombinant SLIT3 LRRD2 for 4 weeks. C2C12 cells were used to know cellular effects of SLIT3, such as in vitro myogenesis, fusion, cell viability, and proliferation, and also used to evaluate its molecular mechanisms by immunocytochemistry, immunoprecipitation, western blotting, real-time PCR, siRNA transfection, and receptor-ligand binding ELISA. RESULTS Slit3-deficient mice exhibited decreased skeletal muscle mass, muscle strength, and physical activity. The relative masses of gastrocnemius and soleus were lower in the Slit3-/- mice (0.580 ± 0.039% and 0.033 ± 0.003%, respectively) than those in the WT littermates (0.622 ± 0.043% and 0.038 ± 0.003%, respectively) (all, P < 0.05). Gastrocnemius of Slit3-/- mice showed the reduced number of Type I and Type IIa fibres (all, P < 0.05), but not of Type IIb and Type IIx fibres. SLIT3 activated β-catenin signalling by promoting its release from M-cadherin, thereby increasing myogenin expression to stimulate myoblast differentiation. In vitro experiments involving ROBO2 expression, knockdown, and interaction with SLIT3 indicated that ROBO2 functions as a SLIT3 receptor to aid myoblast differentiation. SLIT3 LRRD2 dissociated M-cadherin-bound β-catenin and up-regulated myogenin expression to increase myoblast differentiation, in a manner similar to full-length SLIT3. Systemic treatment with SLIT3 LRRD2 increased skeletal muscle mass in both ovariectomized and aged mice (all, P < 0.05). The relative masses of gastrocnemius and soleus were higher in the treated aged mice (0.548 ± 0.045% and 0.033 ± 0.005%, respectively) than in the untreated aged mice (0.508 ± 0.016% and 0.028 ± 0.003%, respectively) (all, P < 0.05). SLIT3 LRRD2 treatment increased the hanging duration of the aged mice by approximately 1.7-fold (P < 0.05). CONCLUSIONS SLIT3 plays a sarcoprotective role by activating β-catenin signalling. SLIT3 LRRD2 can potentially be used as a therapeutic agent against muscle loss.
Collapse
Affiliation(s)
- Han Jin Cho
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea
| | - Hyeonmok Kim
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Young-Sun Lee
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea
| | - Sung Ah Moon
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea
| | - Jin-Man Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea
| | - Hanjun Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea
| | - Min Ji Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea
| | - Jiyoung Yu
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea
| | - Kyunggon Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea.,Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, South Korea
| | - In-Jeoung Baek
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea
| | - Seung Hun Lee
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | | | - Sungsub Kim
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon, South Korea
| | - Jong-Sun Kang
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Jung-Min Koh
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
9
|
Li J, Geraldo LH, Dubrac A, Zarkada G, Eichmann A. Slit2-Robo Signaling Promotes Glomerular Vascularization and Nephron Development. J Am Soc Nephrol 2021; 32:2255-2272. [PMID: 34341180 PMCID: PMC8729857 DOI: 10.1681/asn.2020111640] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/22/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Kidney function requires continuous blood filtration by glomerular capillaries. Disruption of glomerular vascular development or maintenance contributes to the pathogenesis of kidney diseases, but the signaling events regulating renal endothelium development remain incompletely understood. Here, we discovered a novel role of Slit2-Robo signaling in glomerular vascularization. Slit2 is a secreted polypeptide that binds to transmembrane Robo receptors and regulates axon guidance as well as ureteric bud branching and angiogenesis. METHODS We performed Slit2-alkaline phosphatase binding to kidney cryosections from mice with or without tamoxifen-inducible Slit2 or Robo1 and -2 deletions, and we characterized the phenotypes using immunohistochemistry, electron microscopy, and functional intravenous dye perfusion analysis. RESULTS Only the glomerular endothelium, but no other renal endothelial compartment, responded to Slit2 in the developing kidney vasculature. Induced Slit2 gene deletion or Slit2 ligand trap at birth affected nephrogenesis and inhibited vascularization of developing glomeruli by reducing endothelial proliferation and migration, leading to defective cortical glomerular perfusion and abnormal podocyte differentiation. Global and endothelial-specific Robo deletion showed that both endothelial and epithelial Robo receptors contributed to glomerular vascularization. CONCLUSIONS Our study provides new insights into the signaling pathways involved in glomerular vascular development and identifies Slit2 as a potential tool to enhance glomerular angiogenesis.
Collapse
Affiliation(s)
- Jinyu Li
- Department of Cellular and Molecular Physiology, Yale University Medical School, New Haven, Connecticut
- Cardiovascular Research Center, Department of Internal Medicine, Yale University, New Haven, Connecticut
| | - Luiz Henrique Geraldo
- Cardiovascular Research Center, Department of Internal Medicine, Yale University, New Haven, Connecticut
- Université de Paris, Paris Cardiovascular Research Center, Institut National de la Santé et de la Recherche Médicale U907, Paris, France
| | - Alexandre Dubrac
- Cardiovascular Research Center, Department of Internal Medicine, Yale University, New Haven, Connecticut
| | - Georgia Zarkada
- Cardiovascular Research Center, Department of Internal Medicine, Yale University, New Haven, Connecticut
| | - Anne Eichmann
- Department of Cellular and Molecular Physiology, Yale University Medical School, New Haven, Connecticut
- Cardiovascular Research Center, Department of Internal Medicine, Yale University, New Haven, Connecticut
- Université de Paris, Paris Cardiovascular Research Center, Institut National de la Santé et de la Recherche Médicale U907, Paris, France
| |
Collapse
|
10
|
Dondi C, Bertin B, Da Ponte JP, Wojtowicz I, Jagla K, Junion G. A polarized nucleus-cytoskeleton-ECM connection in migrating cardioblasts controls heart tube formation in Drosophila. Development 2021; 148:271094. [PMID: 34323270 DOI: 10.1242/dev.192146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/29/2021] [Indexed: 11/20/2022]
Abstract
The formation of the cardiac tube is a remarkable example of complex morphogenetic processes conserved from invertebrates to humans. It involves coordinated collective migration of contralateral rows of cardiac cells. The molecular processes underlying the specification of cardioblasts (CBs) prior to migration are well established and significant advances have been made in understanding the process of lumen formation. However, the mechanisms of collective cardiac cells migration remain elusive. Here, we have identified CAP and MSP300 as novel actors involved during CB migration. They both exhibit highly similar temporal and spatial expression patterns in Drosophila migrating cardiac cells, and are necessary for the correct number and alignment of CBs, a prerequisite for the coordination of their collective migration. Our data suggest that CAP and MSP300 are part of a protein complex linking focal adhesion sites to nuclei via the actin cytoskeleton that maintains post-mitotic state and correct alignment of CBs.
Collapse
Affiliation(s)
- Cristiana Dondi
- Université Clermont Auvergne, CNRS 6293, Inserm 1103, GReD institute, F-63000 Clermont-Ferrand, France
| | - Benjamin Bertin
- Université Clermont Auvergne, CNRS 6293, Inserm 1103, GReD institute, F-63000 Clermont-Ferrand, France
| | - Jean-Philippe Da Ponte
- Université Clermont Auvergne, CNRS 6293, Inserm 1103, GReD institute, F-63000 Clermont-Ferrand, France
| | - Inga Wojtowicz
- Université Clermont Auvergne, CNRS 6293, Inserm 1103, GReD institute, F-63000 Clermont-Ferrand, France
| | - Krzysztof Jagla
- Université Clermont Auvergne, CNRS 6293, Inserm 1103, GReD institute, F-63000 Clermont-Ferrand, France
| | - Guillaume Junion
- Université Clermont Auvergne, CNRS 6293, Inserm 1103, GReD institute, F-63000 Clermont-Ferrand, France
| |
Collapse
|
11
|
Yin C, Peterman E, Rasmussen JP, Parrish JZ. Transparent Touch: Insights From Model Systems on Epidermal Control of Somatosensory Innervation. Front Cell Neurosci 2021; 15:680345. [PMID: 34135734 PMCID: PMC8200473 DOI: 10.3389/fncel.2021.680345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 04/28/2021] [Indexed: 12/28/2022] Open
Abstract
Somatosensory neurons (SSNs) densely innervate our largest organ, the skin, and shape our experience of the world, mediating responses to sensory stimuli including touch, pressure, and temperature. Historically, epidermal contributions to somatosensation, including roles in shaping innervation patterns and responses to sensory stimuli, have been understudied. However, recent work demonstrates that epidermal signals dictate patterns of SSN skin innervation through a variety of mechanisms including targeting afferents to the epidermis, providing instructive cues for branching morphogenesis, growth control and structural stability of neurites, and facilitating neurite-neurite interactions. Here, we focus onstudies conducted in worms (Caenorhabditis elegans), fruit flies (Drosophila melanogaster), and zebrafish (Danio rerio): prominent model systems in which anatomical and genetic analyses have defined fundamental principles by which epidermal cells govern SSN development.
Collapse
Affiliation(s)
| | | | | | - Jay Z. Parrish
- Department of Biology, University of Washington, Seattle, WA, United States
| |
Collapse
|
12
|
Chaudhari K, Gorla M, Chang C, Kania A, Bashaw GJ. Robo recruitment of the Wave regulatory complex plays an essential and conserved role in midline repulsion. eLife 2021; 10:e64474. [PMID: 33843588 PMCID: PMC8096436 DOI: 10.7554/elife.64474] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 04/06/2021] [Indexed: 12/23/2022] Open
Abstract
The Roundabout (Robo) guidance receptor family induces axon repulsion in response to its ligand Slit by inducing local cytoskeletal changes; however, the link to the cytoskeleton and the nature of these cytoskeletal changes are poorly understood. Here, we show that the heteropentameric Scar/Wave Regulatory Complex (WRC), which drives Arp2/3-induced branched actin polymerization, is a direct effector of Robo signaling. Biochemical evidence shows that Slit triggers WRC recruitment to the Robo receptor's WRC-interacting receptor sequence (WIRS) motif. In Drosophila embryos, mutants of the WRC enhance Robo1-dependent midline crossing defects. Additionally, mutating Robo1's WIRS motif significantly reduces receptor activity in rescue assays in vivo, and CRISPR-Cas9 mutagenesis shows that the WIRS motif is essential for endogenous Robo1 function. Finally, axon guidance assays in mouse dorsal spinal commissural axons and gain-of-function experiments in chick embryos demonstrate that the WIRS motif is also required for Robo1 repulsion in mammals. Together, our data support an essential conserved role for the WIRS-WRC interaction in Robo1-mediated axon repulsion.
Collapse
Affiliation(s)
- Karina Chaudhari
- Department of Neuroscience, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Madhavi Gorla
- Department of Neuroscience, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Chao Chang
- Institut de recherches cliniques de Montréal (IRCM)MontréalCanada
- Department of Anatomy and Cell Biology and Division of Experimental Medicine, McGill UniversityMontréalCanada
| | - Artur Kania
- Institut de recherches cliniques de Montréal (IRCM)MontréalCanada
- Department of Anatomy and Cell Biology and Division of Experimental Medicine, McGill UniversityMontréalCanada
| | - Greg J Bashaw
- Department of Neuroscience, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
13
|
Abstract
The lateral plate mesoderm (LPM) forms the progenitor cells that constitute the heart and cardiovascular system, blood, kidneys, smooth muscle lineage and limb skeleton in the developing vertebrate embryo. Despite this central role in development and evolution, the LPM remains challenging to study and to delineate, owing to its lineage complexity and lack of a concise genetic definition. Here, we outline the processes that govern LPM specification, organization, its cell fates and the inferred evolutionary trajectories of LPM-derived tissues. Finally, we discuss the development of seemingly disparate organ systems that share a common LPM origin. Summary: The lateral plate mesoderm is the origin of several major cell types and organ systems in the vertebrate body plan. How this mesoderm territory emerges and partitions into its downstream fates provides clues about vertebrate development and evolution.
Collapse
Affiliation(s)
- Karin D Prummel
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA.,Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Susan Nieuwenhuize
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA.,Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Christian Mosimann
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA .,Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
14
|
Jammrath J, Reim I, Saumweber H. Cbl-Associated Protein CAP contributes to correct formation and robust function of the Drosophila heart tube. PLoS One 2020; 15:e0233719. [PMID: 32469960 PMCID: PMC7259718 DOI: 10.1371/journal.pone.0233719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 05/11/2020] [Indexed: 01/08/2023] Open
Abstract
The formation of a tube-like structure is a basic step in the making of functional hearts in vertebrates and invertebrates and therefore, its understanding provides important information on heart development and function. In Drosophila, the cardiac tube originates from two bilateral rows of dorsally migrating cells. On meeting at the dorsal midline, coordinated changes in cell shape and adhesive properties transform the two sheets of cells into a linear tube. ECM and transmembrane proteins linked to the cytoskeleton play an important role during these dynamic processes. Here we characterize the requirement of Cbl-Associated Protein (CAP) in Drosophila heart formation. In embryos, CAP is expressed in late migrating cardioblasts and is located preferentially at their luminal and abluminal periphery. CAP mutations result in irregular cardioblast alignment and imprecisely controlled cardioblast numbers. Furthermore, CAP mutant embryos show a strongly reduced heart lumen and an aberrant shape of lumen forming cardioblasts. Analysis of double heterozygous animals reveals a genetic interaction of CAP with Integrin- and Talin-encoding genes. In post-embryonic stages, CAP closely colocalizes with Integrin near Z-bands and at cell-cell contact sites. CAP mutants exhibit a reduced contractility in larval hearts and show a locally disrupted morphology, which correlates with a reduced pumping efficiency. Our observations imply a function of CAP in linking Integrin signaling with the actin cytoskeleton. As a modulator of the cytoskeleton, CAP is involved in the establishment of proper cell shapes during cardioblast alignment and cardiac lumen formation in the Drosophila embryo. Furthermore, CAP is required for correct heart function throughout development.
Collapse
Affiliation(s)
- Jennifer Jammrath
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Division of Cytogenetics, Institute of Biology, Humboldt University Berlin, Berlin, Germany
| | - Ingolf Reim
- Division of Developmental Biology, Department of Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
- Muscle Research Center Erlangen (MURCE), Erlangen, Germany
| | - Harald Saumweber
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Division of Cytogenetics, Institute of Biology, Humboldt University Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
15
|
Zhao J, Mommersteeg MTM. Slit-Robo signalling in heart development. Cardiovasc Res 2018; 114:794-804. [PMID: 29538649 PMCID: PMC5909645 DOI: 10.1093/cvr/cvy061] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 01/16/2018] [Accepted: 03/09/2018] [Indexed: 02/06/2023] Open
Abstract
The Slit ligands and their Robo receptors are well-known for their roles during axon guidance in the central nervous system but are still relatively unknown in the cardiac field. However, data from different animal models suggest a broad involvement of the pathway in many aspects of heart development, from cardiac cell migration and alignment, lumen formation, chamber formation, to the formation of the ventricular septum, semilunar and atrioventricular valves, caval veins, and pericardium. Absence of one or more of the genes in the pathway results in defects ranging from bicuspid aortic valves to ventricular septal defects and abnormal venous connections to the heart. Congenital heart defects are the most common congenital malformations found in life new-born babies and progress in methods for large scale human genetic testing has significantly enhanced the identification of new causative genes involved in human congenital heart disease. Recently, loss of function variants in ROBO1 have also been linked to ventricular septal defects and tetralogy of Fallot in patients. Here, we will give an overview of the role of the Slit-Robo signalling pathway in Drosophila, zebrafish, and mouse heart development. The extent of these data warrant further attention on the SLIT-ROBO signalling pathway as a candidate for an array of human congenital heart defects.
Collapse
Affiliation(s)
- Juanjuan Zhao
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Burdon Sanderson Cardiac Science Centre, University of Oxford, South Parks Road, Oxford OX1 3PT, UK
| | - Mathilda T M Mommersteeg
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Burdon Sanderson Cardiac Science Centre, University of Oxford, South Parks Road, Oxford OX1 3PT, UK
| |
Collapse
|
16
|
Kruszka P, Tanpaiboon P, Neas K, Crosby K, Berger SI, Martinez AF, Addissie YA, Pongprot Y, Sittiwangkul R, Silvilairat S, Makonkawkeyoon K, Yu L, Wynn J, Bennett JT, Mefford HC, Reynolds WT, Liu X, Mommersteeg MTM, Chung WK, Lo CW, Muenke M. Loss of function in ROBO1 is associated with tetralogy of Fallot and septal defects. J Med Genet 2017; 54:825-829. [PMID: 28592524 DOI: 10.1136/jmedgenet-2017-104611] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 04/06/2017] [Accepted: 04/19/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Congenital heart disease (CHD) is a common birth defect affecting approximately 1% of newborns. Great progress has been made in elucidating the genetic aetiology of CHD with advances in genomic technology, which we leveraged in recovering a new pathway affecting heart development in humans previously known to affect heart development in an animal model. METHODS Four hundred and sixteen individuals from Thailand and the USA diagnosed with CHD and/or congenital diaphragmatic hernia were evaluated with chromosomal microarray and whole exome sequencing. The DECIPHER Consortium and medical literature were searched for additional patients. Murine hearts from ENU-induced mouse mutants and transgenic mice were evaluated using both episcopic confocal histopathology and troponin I stained sections. RESULTS Loss of function ROBO1 variants were identified in three families; each proband had a ventricular septal defect, and one proband had tetralogy of Fallot. Additionally, a microdeletion in an individual with CHD was found in the medical literature. Mouse models showed perturbation of the Slit-Robo signalling pathway, causing septation and outflow tract defects and craniofacial anomalies. Two probands had variable facial features consistent with the mouse model. CONCLUSION Our findings identify Slit-Robo as a significant pathway in human heart development and CHD.
Collapse
Affiliation(s)
- Paul Kruszka
- Medical Genetics Branch, National Human Genome Research Institute, The National Institutes of Health, Bethesda, Maryland, USA
| | - Pranoot Tanpaiboon
- Division of Genetics and Metabolism, Children's National Health System, Washington, DC, USA
| | - Katherine Neas
- Genetic Health Service New Zealand (Central Hub), Wellington, New Zealand
| | - Kathleen Crosby
- Division of Genetics and Metabolism, Children's National Health System, Washington, DC, USA
| | - Seth I Berger
- Medical Genetics Branch, National Human Genome Research Institute, The National Institutes of Health, Bethesda, Maryland, USA
| | - Ariel F Martinez
- Medical Genetics Branch, National Human Genome Research Institute, The National Institutes of Health, Bethesda, Maryland, USA
| | - Yonit A Addissie
- Medical Genetics Branch, National Human Genome Research Institute, The National Institutes of Health, Bethesda, Maryland, USA
| | - Yupada Pongprot
- Division of Pediatric Cardiology, Department of Pediatrics, Chiangmai University, Chiang Mai, Thailand
| | - Rekwan Sittiwangkul
- Division of Pediatric Cardiology, Department of Pediatrics, Chiangmai University, Chiang Mai, Thailand
| | - Suchaya Silvilairat
- Division of Pediatric Cardiology, Department of Pediatrics, Chiangmai University, Chiang Mai, Thailand
| | - Krit Makonkawkeyoon
- Division of Pediatric Cardiology, Department of Pediatrics, Chiangmai University, Chiang Mai, Thailand
| | - Lan Yu
- Department of Pediatrics, Columbia University Medical Center, New York, New York, USA
| | - Julia Wynn
- Department of Pediatrics, Columbia University Medical Center, New York, New York, USA
| | - James T Bennett
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Division of Genetic Medicine, Seattle Children's Hospital, Seattle, Washington, USA
| | - Heather C Mefford
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - William T Reynolds
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Xiaoqin Liu
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | - Wendy K Chung
- Department of Pediatrics, Columbia University Medical Center, New York, New York, USA
- Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | - Cecilia W Lo
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Maximilian Muenke
- Medical Genetics Branch, National Human Genome Research Institute, The National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
17
|
Ahmad SM. Conserved signaling mechanisms in Drosophila heart development. Dev Dyn 2017; 246:641-656. [PMID: 28598558 PMCID: PMC11546222 DOI: 10.1002/dvdy.24530] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 04/06/2017] [Accepted: 05/08/2017] [Indexed: 12/24/2022] Open
Abstract
Signal transduction through multiple distinct pathways regulates and orchestrates the numerous biological processes comprising heart development. This review outlines the roles of the FGFR, EGFR, Wnt, BMP, Notch, Hedgehog, Slit/Robo, and other signaling pathways during four sequential phases of Drosophila cardiogenesis-mesoderm migration, cardiac mesoderm establishment, differentiation of the cardiac mesoderm into distinct cardiac cell types, and morphogenesis of the heart and its lumen based on the proper positioning and cell shape changes of these differentiated cardiac cells-and illustrates how these same cardiogenic roles are conserved in vertebrates. Mechanisms bringing about the regulation and combinatorial integration of these diverse signaling pathways in Drosophila are also described. This synopsis of our present state of knowledge of conserved signaling pathways in Drosophila cardiogenesis and the means by which it was acquired should facilitate our understanding of and investigations into related processes in vertebrates. Developmental Dynamics 246:641-656, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Shaad M. Ahmad
- Department of Biology, Indiana State University, Terre Haute, IN, USA
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN, USA
| |
Collapse
|
18
|
Dissecting the Role of the Extracellular Matrix in Heart Disease: Lessons from the Drosophila Genetic Model. Vet Sci 2017; 4:vetsci4020024. [PMID: 29056683 PMCID: PMC5606597 DOI: 10.3390/vetsci4020024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 02/15/2017] [Accepted: 04/20/2017] [Indexed: 12/16/2022] Open
Abstract
The extracellular matrix (ECM) is a dynamic scaffold within organs and tissues that enables cell morphogenesis and provides structural support. Changes in the composition and organisation of the cardiac ECM are required for normal development. Congenital and age-related cardiac diseases can arise from mis-regulation of structural ECM proteins (Collagen, Laminin) or their receptors (Integrin). Key regulators of ECM turnover include matrix metalloproteinases (MMPs) and their inhibitors, tissue inhibitors of matrix metalloproteinases (TIMPs). MMP expression is increased in mice, pigs, and dogs with cardiomyopathy. The complexity and longevity of vertebrate animals makes a short-lived, genetically tractable model organism, such as Drosophila melanogaster, an attractive candidate for study. We survey ECM macromolecules and their role in heart development and growth, which are conserved between Drosophila and vertebrates, with focus upon the consequences of altered expression or distribution. The Drosophila heart resembles that of vertebrates during early development, and is amenable to in vivo analysis. Experimental manipulation of gene function in a tissue- or temporally-regulated manner can reveal the function of adhesion or ECM genes in the heart. Perturbation of the function of ECM proteins, or of the MMPs that facilitate ECM remodelling, induces cardiomyopathies in Drosophila, including cardiodilation, arrhythmia, and cardia bifida, that provide mechanistic insight into cardiac disease in mammals.
Collapse
|
19
|
Carr L, Parkinson DB, Dun XP. Expression patterns of Slit and Robo family members in adult mouse spinal cord and peripheral nervous system. PLoS One 2017; 12:e0172736. [PMID: 28234971 PMCID: PMC5325304 DOI: 10.1371/journal.pone.0172736] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 02/08/2017] [Indexed: 11/19/2022] Open
Abstract
The secreted glycoproteins, Slit1-3, are classic axon guidance molecules that act as repulsive cues through their well characterised receptors Robo1-2 to allow precise axon pathfinding and neuronal migration. The expression patterns of Slit1-3 and Robo1-2 have been most characterized in the rodent developing nervous system and the adult brain, but little is known about their expression patterns in the adult rodent peripheral nervous system. Here, we report a detailed expression analysis of Slit1-3 and Robo1-2 in the adult mouse sciatic nerve as well as their expression in the nerve cell bodies within the ventral spinal cord (motor neurons) and dorsal root ganglion (sensory neurons). Our results show that, in the adult mouse peripheral nervous system, Slit1-3 and Robo1-2 are expressed in the cell bodies and axons of both motor and sensory neurons. While Slit1 and Robo2 are only expressed in peripheral axons and their cell bodies, Slit2, Slit3 and Robo1 are also expressed in satellite cells of the dorsal root ganglion, Schwann cells and fibroblasts of peripheral nerves. In addition to these expression patterns, we also demonstrate the expression of Robo1 in blood vessels of the peripheral nerves. Our work gives important new data on the expression patterns of Slit and Robo family members within the peripheral nervous system that may relate both to nerve homeostasis and the reaction of the peripheral nerves to injury.
Collapse
Affiliation(s)
- Lauren Carr
- Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, Devon, United Kingdom
| | - David B. Parkinson
- Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, Devon, United Kingdom
| | - Xin-peng Dun
- Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, Devon, United Kingdom
- Hubei University of Science and Technology, Xian-Ning City, Hubei, China
| |
Collapse
|
20
|
Raza Q, Jacobs JR. Guidance signalling regulates leading edge behaviour during collective cell migration of cardiac cells in Drosophila. Dev Biol 2016; 419:285-297. [PMID: 27618756 DOI: 10.1016/j.ydbio.2016.09.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 09/04/2016] [Accepted: 09/05/2016] [Indexed: 01/31/2023]
Abstract
Collective cell migration is the coordinated movement of cells, which organize tissues during morphogenesis, repair and some cancers. The motile cell membrane of the advancing front in collective cell migration is termed the Leading Edge. The embryonic development of the vertebrate and Drosophila hearts are both characterized by the coordinated medial migration of a bilateral cluster of mesodermal cells. In Drosophila, the cardioblasts form cohesive bilateral rows that migrate collectively as a unit towards the dorsal midline to form the dorsal vessel. We have characterized the collective cell migration of cardioblasts as an in vivo quantitative model to study the behaviour of the Leading Edge. We investigated whether guidance signalling through Slit and Netrin pathways plays a role in cell migration during heart development. Through time-lapse imaging and quantitative assessment of migratory behaviour of the cardioblasts in loss-of-function mutants, we demonstrate that both Slit and Netrin mediated signals are autonomously and concomitantly required to maximize migration velocity, filopodial and lamellipodial activities. Additionally, we show that another Slit and Netrin receptor, Dscam1, the role of which during heart development was previously unknown, is required for both normal migration of cardioblasts and luminal expansion. Leading edge behaviour analysis revealed a dosage dependent genetic interaction between Slit and Netrin receptors suggesting that downstream signalling through these receptors converge on a common output that increases leading edge activity of the cardioblasts. Finally, we found that guidance signalling maintains the balance between epithelial and mesenchymal characteristics of the migrating cardioblasts.
Collapse
Affiliation(s)
- Qanber Raza
- Department of Biology, McMaster University, 1280 Main St W, Hamilton, ON, Canada L8S 4L8
| | - J Roger Jacobs
- Department of Biology, McMaster University, 1280 Main St W, Hamilton, ON, Canada L8S 4L8.
| |
Collapse
|
21
|
Liu J, Sun L, Shen Q, Wu X, Xu H. New congenital anomalies of the kidney and urinary tract and outcomes in Robo2 mutant mice with the inserted piggyBac transposon. BMC Nephrol 2016; 17:98. [PMID: 27460642 PMCID: PMC4962383 DOI: 10.1186/s12882-016-0308-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 07/19/2016] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Disruption of ROBO2 in humans causes vesicoureteral reflux (VUR)/congenital anomalies of the kidney and urinary tract (CAKUT). PiggyBac (PB) is a DNA transposon, and its insertion often reduces-but does not eliminate-gene expression. The Robo2 insertion mutant exhibited non-dilating VUR, ureteropelvic junction obstruction (UPJO) not found in reported models. We studied the incidence and outcomes of VUR/CAKUT in this mutant and explored the relationship between Robo2 gene expression and the occurrence and severity of VUR/CAKUT. METHODS The urinary systems of newborn mutants were evaluated via Vevo 770 micro-ultrasound. Some of the normal animals-and all of the abnormal animals-were followed to adulthood and tested for VUR. Urinary obstruction experiments were performed on mice with hydronephrosis. The histology of the kidney and ureter was examined by light microscopy and transmission electron microscopy. Robo2 (PB/PB) mice were crossed with Hoxb7/myr-Venus mice to visualize the location of the ureters relative to the bladder. RESULTS In Robo2 (PB/PB) mice, PB insertion led to an approximately 50 % decrease in Robo2 gene expression. The most common (27.07 %, 62/229) abnormality was non-dilating VUR, and no statistically significant differences were found between age groups. Approximately 6.97 % displayed ultrasound-detectable CAKUT, and these mice survived to adulthood without improvement. No severe CAKUT were found in Robo2 (PB/+) mice. The refluxing ureters showed disorganized smooth muscle fibers, reduced muscle cell populations, intercellular edema and intracytoplasmic vacuoles in smooth muscle cells. Both UPJ and UVJ muscle defects were noted in Robo2 (PB/PB) mice. CONCLUSIONS Robo2 (PB/PB) mice is the first Robo2-deficient mouse model to survive to adulthood while displaying non-dilating VUR, UPJO, and multiple ureters with blind endings. The genetic background of these mutants may influence the penetrance and severity of the CAKUT phenotypes. VUR and other CAKUT found in this mutant had little chance of spontaneous resolution, and this requires careful follow-up. We reported for the first time that the non-dilated refluxing ureters showed disorganized smooth muscle fibers and altered smooth muscle cell structure, more accurately mimicking the characteristics of human cases. Future studies are required to test the role of Robo2 in the ureteric smooth muscle.
Collapse
Affiliation(s)
- Jialu Liu
- Department of Nephrology and Rheumatism, Children's Hospital of Fudan University, 399 WanYuan Road, Shanghai, 201102, China
| | - Li Sun
- Department of Nephrology and Rheumatism, Children's Hospital of Fudan University, 399 WanYuan Road, Shanghai, 201102, China
| | - Qian Shen
- Department of Nephrology and Rheumatism, Children's Hospital of Fudan University, 399 WanYuan Road, Shanghai, 201102, China
| | - Xiaohui Wu
- State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Institute of Developmental Biology and Molecular Medicine, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Hong Xu
- Department of Nephrology and Rheumatism, Children's Hospital of Fudan University, 399 WanYuan Road, Shanghai, 201102, China.
| |
Collapse
|
22
|
Morin-Poulard I, Sharma A, Louradour I, Vanzo N, Vincent A, Crozatier M. Vascular control of the Drosophila haematopoietic microenvironment by Slit/Robo signalling. Nat Commun 2016; 7:11634. [PMID: 27193394 PMCID: PMC4874035 DOI: 10.1038/ncomms11634] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 04/15/2016] [Indexed: 12/16/2022] Open
Abstract
Self-renewal and differentiation of mammalian haematopoietic stem cells (HSCs) are controlled by a specialized microenvironment called 'the niche'. In the bone marrow, HSCs receive signals from both the endosteal and vascular niches. The posterior signalling centre (PSC) of the larval Drosophila haematopoietic organ, the lymph gland, regulates blood cell differentiation under normal conditions and also plays a key role in controlling haematopoiesis under immune challenge. Here we report that the Drosophila vascular system also contributes to the lymph gland homoeostasis. Vascular cells produce Slit that activates Robo receptors in the PSC. Robo activation controls proliferation and clustering of PSC cells by regulating Myc, and small GTPase and DE-cadherin activity, respectively. These findings reveal that signals from the vascular system contribute to regulating the rate of blood cell differentiation via the regulation of PSC morphology.
Collapse
Affiliation(s)
- Ismaël Morin-Poulard
- Centre de Biologie du Développement, UMR 5547 CNRS/Université Toulouse III and Fédération de Recherche de Biologie de Toulouse, 118 route de Narbonne 31062 Toulouse cedex 9, France
| | - Anurag Sharma
- Centre de Biologie du Développement, UMR 5547 CNRS/Université Toulouse III and Fédération de Recherche de Biologie de Toulouse, 118 route de Narbonne 31062 Toulouse cedex 9, France
| | - Isabelle Louradour
- Centre de Biologie du Développement, UMR 5547 CNRS/Université Toulouse III and Fédération de Recherche de Biologie de Toulouse, 118 route de Narbonne 31062 Toulouse cedex 9, France
| | - Nathalie Vanzo
- Centre de Biologie du Développement, UMR 5547 CNRS/Université Toulouse III and Fédération de Recherche de Biologie de Toulouse, 118 route de Narbonne 31062 Toulouse cedex 9, France
| | - Alain Vincent
- Centre de Biologie du Développement, UMR 5547 CNRS/Université Toulouse III and Fédération de Recherche de Biologie de Toulouse, 118 route de Narbonne 31062 Toulouse cedex 9, France
| | - Michèle Crozatier
- Centre de Biologie du Développement, UMR 5547 CNRS/Université Toulouse III and Fédération de Recherche de Biologie de Toulouse, 118 route de Narbonne 31062 Toulouse cedex 9, France
| |
Collapse
|
23
|
Asadzadeh J, Neligan N, Kramer SG, Labrador JP. Tinman Regulates NetrinB in the Cardioblasts of the Drosophila Dorsal Vessel. PLoS One 2016; 11:e0148526. [PMID: 26840059 PMCID: PMC4740434 DOI: 10.1371/journal.pone.0148526] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 01/05/2016] [Indexed: 11/18/2022] Open
Abstract
Morphogenesis of the Drosophila dorsal vessel (DV) shares similarities with that of the vertebrate heart. Precursors line up at both sides of the embryo, migrate towards the midline and fuse to form a tubular structure. Guidance receptors and their ligands have been implicated in this process in vertebrates and invertebrates, as have been a series of evolutionarily conserved cardiogenic transcriptional regulators including Tinman, the Drosophila homolog of the transcription factor Nkx-2.5. NetrinB (NetB), a repulsive ligand for the Unc-5 receptor is required to preserve the dorsal vessel hollow. It localizes to the luminal space of the dorsal vessel but its source and its regulation is unknown. Here, using genetics together with in situ hybridization with single cell resolution, we show how tin is required for NetrinB expression in cardioblasts during DV tubulogenesis and sufficient to promote NetB transcription ectopically. We further identify a dorsal vessel-specific NetB enhancer and show that it is also regulated by tin in a similar fashion to NetB.
Collapse
Affiliation(s)
- Jamshid Asadzadeh
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
- Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Niamh Neligan
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Sunita G. Kramer
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Juan-Pablo Labrador
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
- Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
- * E-mail:
| |
Collapse
|
24
|
Asadzadeh J, Neligan N, Canabal-Alvear JJ, Daly AC, Kramer SG, Labrador JP. The Unc-5 Receptor Is Directly Regulated by Tinman in the Developing Drosophila Dorsal Vessel. PLoS One 2015; 10:e0137688. [PMID: 26356221 PMCID: PMC4565662 DOI: 10.1371/journal.pone.0137688] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 08/19/2015] [Indexed: 01/05/2023] Open
Abstract
During early heart morphogenesis cardiac cells migrate in two bilateral opposing rows, meet at the dorsal midline and fuse to form a hollow tube known as the primary heart field in vertebrates or dorsal vessel (DV) in Drosophila. Guidance receptors are thought to mediate this evolutionarily conserved process. A core of transcription factors from the NK2, GATA and T-box families are also believed to orchestrate this process in both vertebrates and invertebrates. Nevertheless, whether they accomplish their function, at least in part, through direct or indirect transcriptional regulation of guidance receptors is currently unknown. In our work, we demonstrate how Tinman (Tin), the Drosophila homolog of the Nkx-2.5 transcription factor, regulates the Unc-5 receptor during DV tube morphogenesis. We use genetics, expression analysis with single cell mRNA resolution and enhancer-reporter assays in vitro or in vivo to demonstrate that Tin is required for Unc-5 receptor expression specifically in cardioblasts. We show that Tin can bind to evolutionary conserved sites within an Unc-5 DV enhancer and that these sites are required for Tin-dependent transactivation both in vitro and in vivo.
Collapse
Affiliation(s)
- Jamshid Asadzadeh
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
- Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Niamh Neligan
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Judith J. Canabal-Alvear
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Amanda C. Daly
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
- Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Sunita Gupta Kramer
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Juan-Pablo Labrador
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
- Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
- * E-mail:
| |
Collapse
|
25
|
Talin is required to position and expand the luminal domain of the Drosophila heart tube. Dev Biol 2015; 405:189-201. [DOI: 10.1016/j.ydbio.2015.04.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 04/25/2015] [Accepted: 04/28/2015] [Indexed: 12/22/2022]
|
26
|
Abstract
The human heart has a limited capacity to regenerate lost or damaged cardiomyocytes after cardiac insult. Instead, myocardial injury is characterized by extensive cardiac remodeling by fibroblasts, resulting in the eventual deterioration of cardiac structure and function. Cardiac function would be improved if these fibroblasts could be converted into cardiomyocytes. MicroRNAs (miRNAs), small noncoding RNAs that promote mRNA degradation and inhibit mRNA translation, have been shown to be important in cardiac development. Using this information, various researchers have used miRNAs to promote the formation of cardiomyocytes through several approaches. Several miRNAs acting in combination promote the direct conversion of cardiac fibroblasts into cardiomyocytes. Moreover, several miRNAs have been identified that aid the formation of inducible pluripotent stem cells and miRNAs also induce these cells to adopt a cardiac fate. MiRNAs have also been implicated in resident cardiac progenitor cell differentiation. In this review, we discuss the current literature as it pertains to these processes, as well as discussing the therapeutic implications of these findings.
Collapse
Affiliation(s)
- Conrad P Hodgkinson
- From the Mandel Center for Hypertension Research and Duke Cardiovascular Research Center, Department of Medicine, Duke University Medical Center, Durham, NC
| | - Martin H Kang
- From the Mandel Center for Hypertension Research and Duke Cardiovascular Research Center, Department of Medicine, Duke University Medical Center, Durham, NC
| | - Sophie Dal-Pra
- From the Mandel Center for Hypertension Research and Duke Cardiovascular Research Center, Department of Medicine, Duke University Medical Center, Durham, NC
| | - Maria Mirotsou
- From the Mandel Center for Hypertension Research and Duke Cardiovascular Research Center, Department of Medicine, Duke University Medical Center, Durham, NC
| | - Victor J Dzau
- From the Mandel Center for Hypertension Research and Duke Cardiovascular Research Center, Department of Medicine, Duke University Medical Center, Durham, NC.
| |
Collapse
|
27
|
Mommersteeg MTM, Yeh ML, Parnavelas JG, Andrews WD. Disrupted Slit-Robo signalling results in membranous ventricular septum defects and bicuspid aortic valves. Cardiovasc Res 2015; 106:55-66. [PMID: 25691540 PMCID: PMC4362403 DOI: 10.1093/cvr/cvv040] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 01/09/2015] [Accepted: 01/29/2015] [Indexed: 12/17/2022] Open
Abstract
AIMS The mesenchymal cushions lining the early embryonic heart undergo complex remodelling to form the membranous ventricular septum as well as the atrioventricular and semilunar valves in later life. Disruption of this process underlies the most common congenital heart defects. Here, we identified a novel role for Slit-Robo signalling in the development of the murine membranous ventricular septum and cardiac valves. METHODS AND RESULTS Expression of Robo1 and Robo2 receptors and their ligands, Slit2 and Slit3, was present in or adjacent to all cardiac cushions/valves. Loss of Robo1 or both Robo1 and Robo2 resulted in membranous ventricular septum defects at birth, a defect also found in Slit3, but not in Slit2 mutants. Additionally, Robo1;Robo2 double mutants showed thickened immature semilunar and atrioventricular valves as well as highly penetrant bicuspid aortic valves. Slit2 mutants recapitulated the semilunar phenotype, whereas Slit3 mutants displayed thickened atrioventricular valves. Bicuspid aortic cushions were already observed at E12.5 in the Robo1;Robo2 double mutants. Expression of Notch- and downstream Hey and Hes genes was down-regulated in Robo1 mutants, suggesting that reduced Notch signalling in mice lacking Robo might underlie the defects. Luciferase assays confirmed regulation of Notch signalling by Robo. CONCLUSION Cardiac defects in mutants for Robo or Slit range from membranous ventricular septum defects to bicuspid aortic valves. These ligands and receptors have unique functions during development of specific cardiac cushion derivatives, and the Slit-Robo signalling pathway likely enforces its role by regulating Notch signalling, making these mutants a valuable new model to study cardiac valve formation.
Collapse
MESH Headings
- Animals
- Aortic Valve/abnormalities
- Aortic Valve/physiopathology
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Basic Helix-Loop-Helix Transcription Factors/physiology
- Bicuspid Aortic Valve Disease
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/physiology
- Disease Models, Animal
- Gene Expression Regulation, Developmental/genetics
- Gene Expression Regulation, Developmental/physiology
- Heart Defects, Congenital/genetics
- Heart Defects, Congenital/physiopathology
- Heart Valve Diseases/genetics
- Heart Valve Diseases/physiopathology
- Homeodomain Proteins/genetics
- Homeodomain Proteins/physiology
- Intercellular Signaling Peptides and Proteins/genetics
- Intercellular Signaling Peptides and Proteins/physiology
- Membrane Proteins/genetics
- Membrane Proteins/physiology
- Mice
- Mice, Transgenic
- Mutation/genetics
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/physiology
- Receptors, Immunologic/genetics
- Receptors, Immunologic/physiology
- Receptors, Notch/genetics
- Receptors, Notch/physiology
- Signal Transduction/genetics
- Signal Transduction/physiology
- Transcription Factor HES-1
- Ventricular Septum/pathology
- Roundabout Proteins
Collapse
Affiliation(s)
- Mathilda T M Mommersteeg
- Department of Cell and Developmental Biology, University College London, 21 University Street, London WC1E 6DE, UK
| | - Mason L Yeh
- Department of Cell and Developmental Biology, University College London, 21 University Street, London WC1E 6DE, UK
| | - John G Parnavelas
- Department of Cell and Developmental Biology, University College London, 21 University Street, London WC1E 6DE, UK
| | - William D Andrews
- Department of Cell and Developmental Biology, University College London, 21 University Street, London WC1E 6DE, UK
| |
Collapse
|
28
|
Chaturvedi S, Robinson LA. Slit2-Robo signaling in inflammation and kidney injury. Pediatr Nephrol 2015; 30:561-6. [PMID: 24777535 DOI: 10.1007/s00467-014-2825-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 04/03/2014] [Accepted: 04/07/2014] [Indexed: 12/31/2022]
Abstract
Acute kidney injury is an increasingly common global health problem and is associated with severe morbidity and mortality. In addition to facing high mortality rates, the survivors of acute kidney injury are at increased risk of developing chronic kidney disease and end-stage renal disease. Renal ischemia-reperfusion injury (IRI) is the most common cause of acute kidney injury, and results from impaired delivery of oxygen and nutrients to the kidney. Massive leukocyte influx into the post-ischemic kidney is one of the hallmarks of IRI. The recruited leukocytes exacerbate tissue damage and, if uncontrolled, initiate the progressive changes that lead to renal fibrosis and chronic kidney disease. Early on, recruitment and activation of platelets promotes microthrombosis in the injured kidney, further exacerbating kidney damage. The diversity, complexity, and multiplicity of pathways involved in leukocyte recruitment and platelet activation make it extremely challenging to control these processes, and past efforts have met with limited success in human trials. A generalized strategy to inhibit infiltration of inflammatory leukocytes and platelets, thereby reducing inflammation and injury, may prove to be more beneficial. In this review, we summarize recent findings demonstrating that the neuronal guidance cues, Slit and Roundabout (Robo), prevent the migration of multiple leukocyte subsets towards diverse inflammatory chemoattractants, and have potent anti-platelet functions in vitro and in vivo. These properties uniquely position Slit2 as a novel therapeutic that could be used to prevent acute kidney injury associated with IRI.
Collapse
Affiliation(s)
- Swasti Chaturvedi
- Division of Nephrology, Department of Paediatrics, Christian Medical College, Vellore, Tamil Nadu, India
| | | |
Collapse
|
29
|
Abstract
Many of the major discoveries in the fields of genetics and developmental biology have been made using the fruit fly, Drosophila melanogaster. With regard to heart development, the conserved network of core cardiac transcription factors that underlies cardiogenesis has been studied in great detail in the fly, and the importance of several signaling pathways that regulate heart morphogenesis, such as Slit/Robo, was first shown in the fly model. Recent technological advances have led to a large increase in the genomic data available from patients with congenital heart disease (CHD). This has highlighted a number of candidate genes and gene networks that are potentially involved in CHD. To validate genes and genetic interactions among candidate CHD-causing alleles and to better understand heart formation in general are major tasks. The specific limitations of the various cardiac model systems currently employed (mammalian and fish models) provide a niche for the fly model, despite its evolutionary distance to vertebrates and humans. Here, we review recent advances made using the Drosophila embryo that identify factors relevant for heart formation. These underline how this model organism still is invaluable for a better understanding of CHD.
Collapse
|
30
|
Meganathan K, Sotiriadou I, Natarajan K, Hescheler J, Sachinidis A. Signaling molecules, transcription growth factors and other regulators revealed from in-vivo and in-vitro models for the regulation of cardiac development. Int J Cardiol 2015; 183:117-28. [PMID: 25662074 DOI: 10.1016/j.ijcard.2015.01.049] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 11/19/2014] [Accepted: 01/25/2015] [Indexed: 02/08/2023]
Abstract
Several in-vivo heart developmental models have been applied to decipher the cardiac developmental patterning encompassing early, dorsal, cardiac and visceral mesoderm as well as various transcription factors such as Gata, Hand, Tin, Dpp, Pnr. The expression of cardiac specific transcription factors, such as Gata4, Tbx5, Tbx20, Tbx2, Tbx3, Mef2c, Hey1 and Hand1 are of fundamental significance for the in-vivo cardiac development. Not only the transcription factors, but also the signaling molecules involved in cardiac development were conserved among various species. Enrichment of the bone morphogenic proteins (BMPs) in the anterior lateral plate mesoderm is essential for the initiation of myocardial differentiation and the cardiac developmental process. Moreover, the expression of a number of cardiac transcription factors and structural genes initiate cardiac differentiation in the medial mesoderm. Other signaling molecules such as TGF-beta, IGF-1/2 and the fibroblast growth factor (FGF) play a significant role in cardiac repair/regeneration, ventricular heart development and specification of early cardiac mesoderm, respectively. The role of the Wnt signaling in cardiac development is still controversial discussed, as in-vitro results differ dramatically in relation to the animal models. Embryonic stem cells (ESC) were utilized as an important in-vitro model for the elucidation of the cardiac developmental processes since they can be easily manipulated by numerous signaling molecules, growth factors, small molecules and genetic manipulation. Finally, in the present review the dynamic role of the long noncoding RNA and miRNAs in the regulation of cardiac development are summarized and discussed.
Collapse
Affiliation(s)
- Kesavan Meganathan
- Center of Physiology and Pathophysiology, Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Germany
| | - Isaia Sotiriadou
- Center of Physiology and Pathophysiology, Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Germany
| | - Karthick Natarajan
- Center of Physiology and Pathophysiology, Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Germany
| | - Jürgen Hescheler
- Center of Physiology and Pathophysiology, Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Germany
| | - Agapios Sachinidis
- Center of Physiology and Pathophysiology, Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Germany.
| |
Collapse
|
31
|
Vogler G, Liu J, Iafe TW, Migh E, Mihály J, Bodmer R. Cdc42 and formin activity control non-muscle myosin dynamics during Drosophila heart morphogenesis. ACTA ACUST UNITED AC 2014; 206:909-22. [PMID: 25267295 PMCID: PMC4178965 DOI: 10.1083/jcb.201405075] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cdc42 and the formins dDAAM and Diaphanous play pivotal roles in heart lumen formation through the spatiotemporal regulation of the actomyosin network. During heart formation, a network of transcription factors and signaling pathways guide cardiac cell fate and differentiation, but the genetic mechanisms orchestrating heart assembly and lumen formation remain unclear. Here, we show that the small GTPase Cdc42 is essential for Drosophila melanogaster heart morphogenesis and lumen formation. Cdc42 genetically interacts with the cardiogenic transcription factor tinman; with dDAAM which belongs to the family of actin organizing formins; and with zipper, which encodes nonmuscle myosin II. Zipper is required for heart lumen formation, and its spatiotemporal activity at the prospective luminal surface is controlled by Cdc42. Heart-specific expression of activated Cdc42, or the regulatory formins dDAAM and Diaphanous caused mislocalization of Zipper and induced ectopic heart lumina, as characterized by luminal markers such as the extracellular matrix protein Slit. Placement of Slit at the lumen surface depends on Cdc42 and formin function. Thus, Cdc42 and formins play pivotal roles in heart lumen formation through the spatiotemporal regulation of the actomyosin network.
Collapse
Affiliation(s)
- Georg Vogler
- Development, Aging and Regeneration Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | - Jiandong Liu
- Development, Aging and Regeneration Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | - Timothy W Iafe
- Development, Aging and Regeneration Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | - Ede Migh
- Biological Research Centre, Hungarian Academy of Sciences, Institute of Genetics, H-6726 Szeged, Hungary
| | - József Mihály
- Biological Research Centre, Hungarian Academy of Sciences, Institute of Genetics, H-6726 Szeged, Hungary
| | - Rolf Bodmer
- Development, Aging and Regeneration Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| |
Collapse
|
32
|
Hollfelder D, Frasch M, Reim I. Distinct functions of the laminin β LN domain and collagen IV during cardiac extracellular matrix formation and stabilization of alary muscle attachments revealed by EMS mutagenesis in Drosophila. BMC DEVELOPMENTAL BIOLOGY 2014; 14:26. [PMID: 24935095 PMCID: PMC4068974 DOI: 10.1186/1471-213x-14-26] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 06/09/2014] [Indexed: 12/27/2022]
Abstract
BACKGROUND The Drosophila heart (dorsal vessel) is a relatively simple tubular organ that serves as a model for several aspects of cardiogenesis. Cardiac morphogenesis, proper heart function and stability require structural components whose identity and ways of assembly are only partially understood. Structural components are also needed to connect the myocardial tube with neighboring cells such as pericardial cells and specialized muscle fibers, the so-called alary muscles. RESULTS Using an EMS mutagenesis screen for cardiac and muscular abnormalities in Drosophila embryos we obtained multiple mutants for two genetically interacting complementation groups that showed similar alary muscle and pericardial cell detachment phenotypes. The molecular lesions underlying these defects were identified as domain-specific point mutations in LamininB1 and Cg25C, encoding the extracellular matrix (ECM) components laminin β and collagen IV α1, respectively. Of particular interest within the LamininB1 group are certain hypomorphic mutants that feature prominent defects in cardiac morphogenesis and cardiac ECM layer formation, but in contrast to amorphic mutants, only mild defects in other tissues. All of these alleles carry clustered missense mutations in the laminin LN domain. The identified Cg25C mutants display weaker and largely temperature-sensitive phenotypes that result from glycine substitutions in different Gly-X-Y repeats of the triple helix-forming domain. While initial basement membrane assembly is not abolished in Cg25C mutants, incorporation of perlecan is impaired and intracellular accumulation of perlecan as well as the collagen IV α2 chain is detected during late embryogenesis. CONCLUSIONS Assembly of the cardiac ECM depends primarily on laminin, whereas collagen IV is needed for stabilization. Our data underscore the importance of a correctly assembled ECM particularly for the development of cardiac tissues and their lateral connections. The mutational analysis suggests that the β6/β3/β8 interface of the laminin β LN domain is highly critical for formation of contiguous cardiac ECM layers. Certain mutations in the collagen IV triple helix-forming domain may exert a semi-dominant effect leading to an overall weakening of ECM structures as well as intracellular accumulation of collagen and other molecules, thus paralleling observations made in other organisms and in connection with collagen-related diseases.
Collapse
Affiliation(s)
- Dominik Hollfelder
- Department of Biology, Division of Developmental Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany
| | - Manfred Frasch
- Department of Biology, Division of Developmental Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany
| | - Ingolf Reim
- Department of Biology, Division of Developmental Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany
| |
Collapse
|
33
|
Volk T, Wang S, Rotstein B, Paululat A. Matricellular proteins in development: perspectives from the Drosophila heart. Matrix Biol 2014; 37:162-6. [PMID: 24726952 DOI: 10.1016/j.matbio.2014.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 03/16/2014] [Accepted: 03/25/2014] [Indexed: 12/29/2022]
Abstract
The Drosophila model represents an attractive system in which to study the functional contribution of specific genes to organ development. Within the embryo, the heart tube serves as an informative developmental paradigm to analyze functional aspects of matricellular proteins. Here, we describe two essential extracellular matricellular proteins, Multiplexin (Mp) and Lonely heart (Loh). Each of these proteins contributes to the development and morphogenesis of the heart tube by regulating the activity/localization of essential extracellular proteins. Mp, which is secreted by heart cardioblasts and is specifically distributed in the lumen of the heart tube, binds to the signaling protein Slit, and facilitates its local signaling at the heart's luminal domain. Loh is an ADAMTS-like protein, which serves as an adapter protein to Pericardin (a collagen-like protein), promoting its specific localization at the abluminal domain of the heart tube. We also introduce the Drosophila orthologues of matricellular proteins present in mammals, including Thrombospondin, and SPARC, and discuss a possible role for Teneurins (Ten-A and Ten-M) in the heart. Understanding the role of these proteins provides a novel developmental perspective into the functional contribution of matricellular proteins to organ development.
Collapse
Affiliation(s)
- T Volk
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - S Wang
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - B Rotstein
- Fachbereich Biologie/Chemie, Universität Osnabrück, Barbarastr. 11, D-49069 Osnabrueck, Germany
| | - A Paululat
- Fachbereich Biologie/Chemie, Universität Osnabrück, Barbarastr. 11, D-49069 Osnabrueck, Germany
| |
Collapse
|
34
|
Methods to assess Drosophila heart development, function and aging. Methods 2014; 68:265-72. [PMID: 24727147 DOI: 10.1016/j.ymeth.2014.03.031] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 03/26/2014] [Indexed: 12/11/2022] Open
Abstract
In recent years the Drosophila heart has become an established model for many different aspects of human cardiac disease. This model has allowed identification of disease-causing mechanisms underlying congenital heart disease and cardiomyopathies and has permitted the study of underlying genetic, metabolic and age-related contributions to heart function. In this review we discuss methods currently employed in the analysis of the Drosophila heart structure and function, such as optical methods to infer heart function and performance, electrophysiological and mechanical approaches to characterize cardiac tissue properties, and conclude with histological techniques used in the study of heart development and adult structure.
Collapse
|
35
|
Harpaz N, Ordan E, Ocorr K, Bodmer R, Volk T. Multiplexin promotes heart but not aorta morphogenesis by polarized enhancement of slit/robo activity at the heart lumen. PLoS Genet 2013; 9:e1003597. [PMID: 23825967 PMCID: PMC3694841 DOI: 10.1371/journal.pgen.1003597] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 05/16/2013] [Indexed: 11/19/2022] Open
Abstract
The Drosophila heart tube represents a structure that similarly to vertebrates' primary heart tube exhibits a large lumen; the mechanisms promoting heart tube morphology in both Drosophila and vertebrates are poorly understood. We identified Multiplexin (Mp), the Drosophila orthologue of mammalian Collagen-XV/XVIII, and the only structural heart-specific protein described so far in Drosophila, as necessary and sufficient for shaping the heart tube lumen, but not that of the aorta. Mp is expressed specifically at the stage of heart tube closure, in a polarized fashion, uniquely along the cardioblasts luminal membrane, and its absence results in an extremely small heart tube lumen. Importantly, Mp forms a protein complex with Slit, and interacts genetically with both slit and robo in the formation of the heart tube. Overexpression of Mp in cardioblasts promotes a large heart lumen in a Slit-dependent manner. Moreover, Mp alters Slit distribution, and promotes the formation of multiple Slit endocytic vesicles, similarly to the effect of overexpression of Robo in these cells. Our data are consistent with Mp-dependent enhancement of Slit/Robo activity and signaling, presumably by affecting Slit protein stabilization, specifically at the lumen side of the heart tube. This activity results with a Slit-dependent, local reduction of F-actin levels at the heart luminal membrane, necessary for forming the large heart tube lumen. Consequently, lack of Mp results in decreased diastolic capacity, leading to reduced heart contractility, as measured in live fly hearts. In summary, these findings show that the polarized localization of Mp controls the direction, timing, and presumably the extent of Slit/Robo activity and signaling at the luminal membrane of the heart cardioblasts. This regulation is essential for the morphogenetic changes that sculpt the heart tube in Drosophila, and possibly in forming the vertebrates primary heart tube.
Collapse
Affiliation(s)
- Nofar Harpaz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Elly Ordan
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Karen Ocorr
- Development and Aging Program, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Rolf Bodmer
- Development and Aging Program, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Talila Volk
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
36
|
Abstract
The vascular system developed early in evolution. It is required in large multicellular organisms for the transport of nutrients, oxygen, and waste products to and from tissues. The vascular system is composed of hollow tubes, which have a high level of complexity in vertebrates. Vasculogenesis describes the de novo formation of blood vessels, e.g., aorta formation in vertebrate embryogenesis. In contrast, angiogenesis is the formation of blood vessels from preexisting ones, e.g., sprouting of intersomitic blood vessels from the aorta. Importantly, the lumen of all blood vessels in vertebrates is lined and formed by endothelial cells. In both vasculogenesis and angiogenesis, lumen formation takes place in a cord of endothelial cells. It involves a complex molecular mechanism composed of endothelial cell repulsion at the cell-cell contacts within the endothelial cell cords, junctional rearrangement, and endothelial cell shape change. As the vascular system also participates in the course of many diseases, such as cancer, stroke, and myocardial infarction, it is important to understand and make use of the molecular mechanisms of blood vessel formation to better understand and manipulate the pathomechanisms involved.
Collapse
Affiliation(s)
- Eckhard Lammert
- Institute of Metabolic Physiology, Heinrich-Heine-University of Düsseldorf, D-40225 Düsseldorf, Germany.
| | | |
Collapse
|
37
|
Mommersteeg MTM, Andrews WD, Ypsilanti AR, Zelina P, Yeh ML, Norden J, Kispert A, Chédotal A, Christoffels VM, Parnavelas JG. Slit-roundabout signaling regulates the development of the cardiac systemic venous return and pericardium. Circ Res 2013; 112:465-75. [PMID: 23255421 DOI: 10.1161/circresaha.112.277426] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE The Slit-Roundabout (Robo) signaling pathway has pleiotropic functions during Drosophila heart development. However, its role in mammalian heart development is largely unknown. OBJECTIVE To analyze the role of Slit-Robo signaling in the formation of the pericardium and the systemic venous return in the murine heart. METHODS AND RESULTS Expression of genes encoding Robo1 and Robo2 receptors and their ligands Slit2 and Slit3 was found in or around the systemic venous return and pericardium during development. Analysis of embryos lacking Robo1 revealed partial absence of the pericardium, whereas Robo1/2 double mutants additionally showed severely reduced sinus horn myocardium, hypoplastic caval veins, and a persistent left inferior caval vein. Mice lacking Slit3 recapitulated the defects in the myocardialization, alignment, and morphology of the caval veins. Ligand binding assays confirmed Slit3 as the preferred ligand for the Robo1 receptor, whereas Slit2 showed preference for Robo2. Sinus node development was mostly unaffected in all mutants. In addition, we show absence of cross-regulation with previously identified regulators Tbx18 and Wt1. We provide evidence that pericardial defects are created by abnormal localization of the caval veins combined with ectopic pericardial cavity formation. Local increase in neural crest cell death and impaired neural crest adhesive and migratory properties underlie the ectopic pericardium formation. CONCLUSIONS A novel Slit-Robo signaling pathway is involved in the development of the pericardium, the sinus horn myocardium, and the alignment of the caval veins. Reduced Slit3 binding in the absence of Robo1, causing impaired cardiac neural crest survival, adhesion, and migration, underlies the pericardial defects.
Collapse
MESH Headings
- Animals
- Apoptosis
- Cell Adhesion
- Cell Movement
- Gene Expression Regulation, Developmental
- Gestational Age
- Heart Defects, Congenital/embryology
- Heart Defects, Congenital/genetics
- Heart Defects, Congenital/metabolism
- Intercellular Signaling Peptides and Proteins/deficiency
- Intercellular Signaling Peptides and Proteins/genetics
- Intercellular Signaling Peptides and Proteins/metabolism
- Membrane Proteins/deficiency
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Knockout
- Morphogenesis
- Nerve Tissue Proteins/deficiency
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Neural Crest/abnormalities
- Neural Crest/metabolism
- Pericardium/abnormalities
- Pericardium/metabolism
- Receptors, Immunologic/deficiency
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Signal Transduction
- Sinoatrial Node/abnormalities
- Sinoatrial Node/metabolism
- T-Box Domain Proteins/metabolism
- Tissue Culture Techniques
- Venae Cavae/abnormalities
- Venae Cavae/metabolism
- WT1 Proteins/metabolism
- Roundabout Proteins
Collapse
|
38
|
Abstract
In trying to understand the causes for congenital heart disease and cardiomyopathies, it is difficult to study polygenic interactions that contribute to the severity of the disease, which is in part due to genetic complexity and generation time of higher organisms that hinder efficient screening for modifiers of primary causes of heart disease. The adult Drosophila heart has recently been established as a model to probe genetic interactions that lead to cardiac dysfunction in this genetically simple and short-lived organism. This has made it possible to systematically and efficiently screen for polygenic modulators of heart dysfunction inflicted by known heart disease genes. As heart development and fundamental aspects of cardiac physiology show remarkable evolutionary conservation, it has become possible to uncover new heart disease candidates by using Drosophila genetic tools in combination with sensitive heart function assays. Here, we review the discovery of several new genes, genetic pathways, and interactions that will help understand human heart disease. For example, interactions between cardiogenic transcription factors, discovered in Drosophila, are also critical for adult heart function in flies and mammals. These include interactions between tinman/Nkx2-5 and neuromancer/Tbx20, which led to the discovery of possibly disease-causing familial variants in human TBX20. A new genetic pathway from tinman/Nkx2-5 to Cdc42, involving the microRNA miR-1, was recently discovered in flies and subsequently validated to function similarly in mouse heart. Thus, the fly heart has proven to be a useful discovery tool for screening genetic interactions that are otherwise difficult to conduct.
Collapse
Affiliation(s)
- Li Qian
- Development and Aging Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
39
|
Lehmacher C, Abeln B, Paululat A. The ultrastructure of Drosophila heart cells. ARTHROPOD STRUCTURE & DEVELOPMENT 2012; 41:459-474. [PMID: 22426062 DOI: 10.1016/j.asd.2012.02.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 02/21/2012] [Accepted: 02/23/2012] [Indexed: 05/31/2023]
Abstract
The functionality of the Drosophila heart or dorsal vessel is achieved by contributions from several tissues. The heart tube itself is composed of different types of cardiomyocytes that form an anterior aorta and a posterior heart chamber, inflow tracts and intracardiac valves. Herein we present an in-depth ultrastructural analysis of all cell types present in the Drosophila heart at different developmental stages. We demonstrate that the lumen-forming cardiomyocytes reveal a complex subcellular architecture that changes during development. We show that ostial cells, for which it was previously shown that they are specified during embryogenesis, start to differentiate at the end of embryogenesis displaying opening structures that allow inflow of hemolymph. Furthermore we found, that intracardiac valve cells differentiate during larval development and become enlarged during the 3. instar larval stages by the formation of cellular cytoplasmic free cavities. Moreover we were able to demonstrate, that the alary muscles are not directly connected to the heart tube but by extracellular matrix fibers at any stage of development. Our present work will provide a reference for future investigations on normal heart development and for analyses of mutant phenotypes that are caused by defects on the subcellular level.
Collapse
Affiliation(s)
- Christine Lehmacher
- Department of Biology, Zoology/Developmental Biology, University of Osnabrück, Barbarastraße 11, D-49069 Osnabrück, Germany
| | | | | |
Collapse
|
40
|
Vanderploeg J, Vazquez Paz LL, MacMullin A, Jacobs JR. Integrins are required for cardioblast polarisation in Drosophila. BMC DEVELOPMENTAL BIOLOGY 2012; 12:8. [PMID: 22353787 PMCID: PMC3305622 DOI: 10.1186/1471-213x-12-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 02/21/2012] [Indexed: 11/27/2022]
Abstract
BACKGROUND The formation of a tubular organ, such as the heart, requires the communication of positional and polarity signals between migratory cells. Key to this process is the establishment of a new luminal domain on the cell surface, generally from the apical domain of a migratory cell. This domain will also acquire basal properties, as it will produce a luminal extracellular matrix. Integrin receptors are the primary means of cell adhesion and adhesion signaling with the extracellular matrix. Here we characterise the requirement of Integrins in a genetic model of vasculogenesis, the formation of the heart in Drosophila. RESULTS As with vertebrates, the Drosophila heart arises from lateral mesoderm that migrates medially to meet their contralateral partners, to then assemble a midline vessel. During migration, Integrins are among the first proteins restricted to the presumptive luminal domain of cardioblasts. Integrins are required for normal levels of leading edge membrane motility. Apical accumulation of Integrins is enhanced by Robo, and reciprocally, apicalisation of luminal factors like Slit and Robo requires Integrin function. Integrins may provide a template for the formation of a lumen by stabilising lumen factors like Robo. Subsequent to migration, Integrin is required for normal cardioblast alignment and lumen formation. This phenotype is most readily modified by other mutations that affect adhesion, such as Talin and extracellular matrix ligands. CONCLUSION Our findings reveal an instructive role for Integrins in communicating polarising information to cells during migration, and during transition to an epithelial tube structure.
Collapse
Affiliation(s)
- Jessica Vanderploeg
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1, Canada
| | - L Lourdes Vazquez Paz
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1, Canada
| | - Allison MacMullin
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1, Canada
- Life Technologies, Burlington, ON L7L 5Z1, Canada
| | - J Roger Jacobs
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
41
|
Johnson AN, Mokalled MH, Haden TN, Olson EN. JAK/Stat signaling regulates heart precursor diversification in Drosophila. Development 2011; 138:4627-38. [PMID: 21965617 DOI: 10.1242/dev.071464] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Intercellular signal transduction pathways regulate the NK-2 family of transcription factors in a conserved gene regulatory network that directs cardiogenesis in both flies and mammals. The Drosophila NK-2 protein Tinman (Tin) was recently shown to regulate Stat92E, the Janus kinase (JAK) and Signal transducer and activator of transcription (Stat) pathway effector, in the developing mesoderm. To understand whether the JAK/Stat pathway also regulates cardiogenesis, we performed a systematic characterization of JAK/Stat signaling during mesoderm development. Drosophila embryos with mutations in the JAK/Stat ligand upd or in Stat92E have non-functional hearts with luminal defects and inappropriate cell aggregations. Using strong Stat92E loss-of-function alleles, we show that the JAK/Stat pathway regulates tin expression prior to heart precursor cell diversification. tin expression can be subdivided into four phases and, in Stat92E mutant embryos, the broad phase 2 expression pattern in the dorsal mesoderm does not restrict to the constrained phase 3 pattern. These embryos also have an expanded pericardial cell domain. We show the E(spl)-C gene HLHm5 is expressed in a pattern complementary to tin during phase 3 and that this expression is JAK/Stat dependent. In addition, E(spl)-C mutant embryos phenocopy the cardiac defects of Stat92E embryos. Mechanistically, JAK/Stat signals activate E(spl)-C genes to restrict Tin expression and the subsequent expression of the T-box transcription factor H15 to direct heart precursor diversification. This study is the first to characterize a role for the JAK/Stat pathway during cardiogenesis and identifies an autoregulatory circuit in which tin limits its own expression domain.
Collapse
Affiliation(s)
- Aaron N Johnson
- Department of Molecular Biology, UT Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA
| | | | | | | |
Collapse
|
42
|
Drosophila metalloproteases in development and differentiation: The role of ADAM proteins and their relatives. Eur J Cell Biol 2011; 90:770-8. [DOI: 10.1016/j.ejcb.2011.04.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
43
|
Qian L, Wythe JD, Liu J, Cartry J, Vogler G, Mohapatra B, Otway RT, Huang Y, King IN, Maillet M, Zheng Y, Crawley T, Taghli-Lamallem O, Semsarian C, Dunwoodie S, Winlaw D, Harvey RP, Fatkin D, Towbin JA, Molkentin JD, Srivastava D, Ocorr K, Bruneau BG, Bodmer R. Tinman/Nkx2-5 acts via miR-1 and upstream of Cdc42 to regulate heart function across species. ACTA ACUST UNITED AC 2011; 193:1181-96. [PMID: 21690310 PMCID: PMC3216339 DOI: 10.1083/jcb.201006114] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cdc42 regulates cardiac function in mice and flies downstream of a conserved Tinman/Nkx2-5–miR-1 signaling network. Unraveling the gene regulatory networks that govern development and function of the mammalian heart is critical for the rational design of therapeutic interventions in human heart disease. Using the Drosophila heart as a platform for identifying novel gene interactions leading to heart disease, we found that the Rho-GTPase Cdc42 cooperates with the cardiac transcription factor Tinman/Nkx2-5. Compound Cdc42, tinman heterozygous mutant flies exhibited impaired cardiac output and altered myofibrillar architecture, and adult heart–specific interference with Cdc42 function is sufficient to cause these same defects. We also identified K+ channels, encoded by dSUR and slowpoke, as potential effectors of the Cdc42–Tinman interaction. To determine whether a Cdc42–Nkx2-5 interaction is conserved in the mammalian heart, we examined compound heterozygous mutant mice and found conduction system and cardiac output defects. In exploring the mechanism of Nkx2-5 interaction with Cdc42, we demonstrated that mouse Cdc42 was a target of, and negatively regulated by miR-1, which itself was negatively regulated by Nkx2-5 in the mouse heart and by Tinman in the fly heart. We conclude that Cdc42 plays a conserved role in regulating heart function and is an indirect target of Tinman/Nkx2-5 via miR-1.
Collapse
Affiliation(s)
- Li Qian
- Development and Aging Program, NASCR Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
King IN, Qian L, Liang J, Huang Y, Shieh JTC, Kwon C, Srivastava D. A genome-wide screen reveals a role for microRNA-1 in modulating cardiac cell polarity. Dev Cell 2011; 20:497-510. [PMID: 21497762 DOI: 10.1016/j.devcel.2011.03.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 01/21/2011] [Accepted: 03/13/2011] [Indexed: 11/16/2022]
Abstract
Many molecular pathways involved in heart disease have their roots in evolutionarily ancient developmental programs that depend critically on gene dosage and timing. MicroRNAs (miRNAs) modulate gene dosage posttranscriptionally, and among these, the muscle-specific miR-1 is particularly important for developing and maintaining somatic/skeletal and cardiac muscle. To identify pathways regulated by miR-1, we performed a forward genetic screen in Drosophila using wing-vein patterning as a biological assay. We identified several unexpected genes that genetically interacted with dmiR-1, one of which was kayak, encodes a developmentally regulated transcription factor. Additional studies directed at this genetic relationship revealed a previously unappreciated function of dmiR-1 in regulating the polarity of cardiac progenitor cells. The mammalian ortholog of kayak, c-Fos, was dysregulated in hearts of gain- or loss-of-function miR-1 mutant mice in a stress-dependent manner. These findings illustrate the power of Drosophila-based screens to find points of intersection between miRNAs and conserved pathways in mammals.
Collapse
Affiliation(s)
- Isabelle N King
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
Weyers JJ, Milutinovich AB, Takeda Y, Jemc JC, Van Doren M. A genetic screen for mutations affecting gonad formation in Drosophila reveals a role for the slit/robo pathway. Dev Biol 2011; 353:217-28. [PMID: 21377458 PMCID: PMC3635084 DOI: 10.1016/j.ydbio.2011.02.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 02/24/2011] [Accepted: 02/24/2011] [Indexed: 12/19/2022]
Abstract
Organogenesis is a complex process requiring multiple cell types to associate with one another through correct cell contacts and in the correct location to achieve proper organ morphology and function. To better understand the mechanisms underlying gonad formation, we performed a mutagenesis screen in Drosophila and identified twenty-four genes required for gonadogenesis. These genes affect all different aspects of gonad formation and provide a framework for understanding the molecular mechanisms that control these processes. We find that gonad formation is regulated by multiple, independent pathways; some of these regulate the key cell adhesion molecule DE-cadherin, while others act through distinct mechanisms. In addition, we discover that the Slit/Roundabout pathway, best known for its role in regulating axonal guidance, is essential for proper gonad formation. Our findings shed light on the complexities of gonadogenesis and the genetic regulation required for proper organ formation.
Collapse
Affiliation(s)
- Jill J Weyers
- Department of Biology, Johns Hopkins University, 3400 N Charles St., Baltimore, MD, USA.
| | | | | | | | | |
Collapse
|
46
|
Knox J, Moyer K, Yacoub N, Soldaat C, Komosa M, Vassilieva K, Wilk R, Hu J, Vazquez Paz LDL, Syed Q, Krause HM, Georgescu M, Jacobs JR. Syndecan contributes to heart cell specification and lumen formation during Drosophila cardiogenesis. Dev Biol 2011; 356:279-90. [PMID: 21565181 DOI: 10.1016/j.ydbio.2011.04.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 04/08/2011] [Accepted: 04/11/2011] [Indexed: 10/18/2022]
Abstract
The transmembrane proteoglycan Syndecan contributes to cell surface signaling of diverse ligands in mammals, yet in Drosophila, genetic evidence links Syndecan only to the Slit receptor Roundabout and to the receptor tyrosine phosphatase LAR. Here we characterize the requirement for syndecan in the determination and morphogenesis of the Drosophila heart, and reveal two phases of activity, indicating that Syndecan is a co-factor in at least two signaling events in this tissue. There is a stochastic failure to determine heart cell progenitors in a subset of abdominal hemisegments in embryos mutant for syndecan, and subsequent to Syndecan depletion by RNA interference. This phenotype is sensitive to gene dosage in the FGF receptor (Heartless), its ligand, Pyramus, as well as BMP-ligand Decapentaplegic (Dpp) and co-factor Sara. Syndecan is also required for lumen formation during assembly of the heart vessel, a phenotype shared with mutations in the Slit and Integrin signaling pathways. Phenotypic interactions of syndecan with slit and Integrin mutants suggest intersecting function, consistent with Syndecan acting as a co-receptor for Slit in the Drosophila heart.
Collapse
Affiliation(s)
- Jessica Knox
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Fish JE, Wythe JD, Xiao T, Bruneau BG, Stainier DYR, Srivastava D, Woo S. A Slit/miR-218/Robo regulatory loop is required during heart tube formation in zebrafish. Development 2011; 138:1409-19. [PMID: 21385766 PMCID: PMC3050667 DOI: 10.1242/dev.060046] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2011] [Indexed: 01/01/2023]
Abstract
Members of the Slit family of secreted ligands interact with Roundabout (Robo) receptors to provide guidance cues for many cell types. For example, Slit/Robo signaling elicits repulsion of axons during neural development, whereas in endothelial cells this pathway inhibits or promotes angiogenesis depending on the cellular context. Here, we show that miR-218 is intronically encoded in slit2 and slit3 and that it suppresses Robo1 and Robo2 expression. Our data indicate that miR-218 and multiple Slit/Robo signaling components are required for heart tube formation in zebrafish and that this network modulates the previously unappreciated function of Vegf signaling in this process. These findings suggest a new paradigm for microRNA-based control of ligand-receptor interactions and provide evidence for a novel signaling pathway regulating vertebrate heart tube assembly.
Collapse
Affiliation(s)
- Jason E. Fish
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
- Toronto General Research Institute, University Health Network, Toronto, ON M5G 1L8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1L8, Canada
| | - Joshua D. Wythe
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
- Department of Pediatrics, University of California, San Francisco, CA 94143, USA
- Cardiovascular Research Institute, University of California, San Francisco, CA 94143, USA
| | - Tong Xiao
- Department of Physiology, University of California, San Francisco, CA 94143, USA
| | - Benoit G. Bruneau
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
- Department of Pediatrics, University of California, San Francisco, CA 94143, USA
- Cardiovascular Research Institute, University of California, San Francisco, CA 94143, USA
| | - Didier Y. R. Stainier
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
- Cardiovascular Research Institute, University of California, San Francisco, CA 94143, USA
| | - Deepak Srivastava
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
- Department of Pediatrics, University of California, San Francisco, CA 94143, USA
| | - Stephanie Woo
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
- Cardiovascular Research Institute, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
48
|
Zhou WJ, Geng ZH, Chi S, Zhang W, Niu XF, Lan SJ, Ma L, Yang X, Wang LJ, Ding YQ, Geng JG. Slit-Robo signaling induces malignant transformation through Hakai-mediated E-cadherin degradation during colorectal epithelial cell carcinogenesis. Cell Res 2011; 21:609-26. [PMID: 21283129 PMCID: PMC3203654 DOI: 10.1038/cr.2011.17] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 09/19/2010] [Accepted: 09/21/2010] [Indexed: 12/11/2022] Open
Abstract
The Slit family of guidance cues binds to Roundabout (Robo) receptors and modulates cell migration. We report here that ectopic expression of Slit2 and Robo1 or recombinant Slit2 treatment of Robo1-expressing colorectal epithelial carcinoma cells recruited an ubiquitin ligase Hakai for E-cadherin (E-cad) ubiquitination and lysosomal degradation, epithelial-mesenchymal transition (EMT), and tumor growth and liver metastasis, which were rescued by knockdown of Hakai. In contrast, knockdown of endogenous Robo1 or specific blockade of Slit2 binding to Robo1 prevented E-cad degradation and reversed EMT, resulting in diminished tumor growth and liver metastasis. Ectopic expression of Robo1 also triggered a malignant transformation in Slit2-positive human embryonic kidney 293 cells. Importantly, the expression of Slit2 and Robo1 was significantly associated with an increased metastatic risk and poorer overall survival in colorectal carcinoma patients. We conclude that engagement of Robo1 by Slit2 induces malignant transformation through Hakai-mediated E-cad ubiquitination and lysosomal degradation during colorectal epithelial cell carcinogenesis.
Collapse
Affiliation(s)
- Wei-Jie Zhou
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Zhen H Geng
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Shan Chi
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Wenli Zhang
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiao-Feng Niu
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Shu-Jue Lan
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Li Ma
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Xuesong Yang
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou, Guangdong 510632, China
| | - Li-Jing Wang
- Vascular Biology Research Institute, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China
| | - Yan-Qing Ding
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jian-Guo Geng
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
- Vascular Biology Research Institute, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China
| |
Collapse
|
49
|
Piazza N, Wessells RJ. Drosophila models of cardiac disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 100:155-210. [PMID: 21377627 PMCID: PMC3551295 DOI: 10.1016/b978-0-12-384878-9.00005-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The fruit fly Drosophila melanogaster has emerged as a useful model for cardiac diseases, both developmental abnormalities and adult functional impairment. Using the tools of both classical and molecular genetics, the study of the developing fly heart has been instrumental in identifying the major signaling events of cardiac field formation, cardiomyocyte specification, and the formation of the functioning heart tube. The larval stage of fly cardiac development has become an important model system for testing isolated preparations of living hearts for the effects of biological and pharmacological compounds on cardiac activity. Meanwhile, the recent development of effective techniques to study adult cardiac performance in the fly has opened new uses for the Drosophila model system. The fly system is now being used to study long-term alterations in adult performance caused by factors such as diet, exercise, and normal aging. The fly is a unique and valuable system for the study of such complex, long-term interactions, as it is the only invertebrate genetic model system with a working heart developmentally homologous to the vertebrate heart. Thus, the fly model combines the advantages of invertebrate genetics (such as large populations, facile molecular genetic techniques, and short lifespan) with physiological measurement techniques that allow meaningful comparisons with data from vertebrate model systems. As such, the fly model is well situated to make important contributions to the understanding of complicated interactions between environmental factors and genetics in the long-term regulation of cardiac performance.
Collapse
Affiliation(s)
- Nicole Piazza
- University of Michigan Medical School, Ann Arbor, MI, USA
| | | |
Collapse
|
50
|
Medioni C, Bertrand N, Mesbah K, Hudry B, Dupays L, Wolstein O, Washkowitz AJ, Papaioannou VE, Mohun TJ, Harvey RP, Zaffran S. Expression of Slit and Robo genes in the developing mouse heart. Dev Dyn 2010; 239:3303-11. [PMID: 20941780 PMCID: PMC2996720 DOI: 10.1002/dvdy.22449] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Development of the mammalian heart is mediated by complex interactions between myocardial, endocardial, and neural crest-derived cells. Studies in Drosophila have shown that the Slit-Robo signaling pathway controls cardiac cell shape changes and lumen formation of the heart tube. Here, we demonstrate by in situ hybridization that multiple Slit ligands and Robo receptors are expressed in the developing mouse heart. Slit3 is the predominant ligand transcribed in the early mouse heart and is expressed in the ventral wall of the linear heart tube and subsequently in chamber but not in atrioventricular canal myocardium. Furthermore, we identify that the homeobox gene Nkx2-5 is required for early ventral restriction of Slit3 and that the T-box transcription factor Tbx2 mediates repression of Slit3 in nonchamber myocardium. Our results suggest that patterned Slit-Robo signaling may contribute to the control of oriented cell growth during chamber morphogenesis of the mammalian heart.
Collapse
Affiliation(s)
- Caroline Medioni
- Institute of Developmental Biology and Cancer, CNRS UMR 6543, Faculté des Sciences, Parc Valrose Nice, France
| | - Nicolas Bertrand
- Inserm UMR_S910, Université de la Méditerranée, Faculté de Médecine de la Timone, Marseille, France
| | - Karim Mesbah
- Developmental Biology Institute of Marseille-Luminy, CNRS UMR 6216, Université de la Méditerranée, Campus de Luminy Case 907, Marseille, France
| | - Bruno Hudry
- Developmental Biology Institute of Marseille-Luminy, CNRS UMR 6216, Université de la Méditerranée, Campus de Luminy Case 907, Marseille, France
| | - Laurent Dupays
- Division of Developmental Biology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, United Kingdom
| | - Orit Wolstein
- Victor Chang Cardiac Research Institute, Sydney, Australia
| | - Andrew J. Washkowitz
- Department of Genetics and Development, Columbia University Medical Center, New York, New York
| | - Virginia E. Papaioannou
- Department of Genetics and Development, Columbia University Medical Center, New York, New York
| | - Timothy J. Mohun
- Division of Developmental Biology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, United Kingdom
| | - Richard P. Harvey
- Victor Chang Cardiac Research Institute, Sydney, Australia
- Faculties of Life Sciences and Medicine, University of New South Wales, Kensington, Australia
| | - Stéphane Zaffran
- Inserm UMR_S910, Université de la Méditerranée, Faculté de Médecine de la Timone, Marseille, France
| |
Collapse
|