1
|
Yoshizawa S, Konishi K, Koiwai K, Hirono I, Kondo H. Organ-specific repertoires of IgNAR gene in a cartilaginous fish. FISH & SHELLFISH IMMUNOLOGY 2025; 161:110299. [PMID: 40139289 DOI: 10.1016/j.fsi.2025.110299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/03/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
Cartilaginous fish possess one of the most ancient adaptive immune systems, and they uniquely produce the heavy chain-only antibody, immunoglobulin novel antigen receptor (IgNAR). In this study, we explored the mRNA transcription of genes related to antibody production and IgNAR diversity in various organs in banded houndsharks. IgNAR and antibody production-related genes exhibited similar relative transcription levels, with the highest expression detected in the spleen. Subsequently, we examined the diversity of IgNAR using next-generation sequencing. The most frequent clones were dominant (25 %-40 %) in the epigonal organ and liver but less common in the spleen. Large individual variation was noted in the kidney and pancreas. The length of complementarity-determining region 3 ranged 2-39 amino acids. The region tended to have a narrow length distribution of approximately 13 amino acids in the epigonal organ and liver, whereas wider length variation was noted in the kidney, pancreas, and spleen. Type II IgNAR variable regions (VNARs) were predominant (60 %-96 %) in all organs, whereas Type IV and "other" not conventionally defined VNARs were present at low frequencies and in different proportion between organs. Type I VNARs were present in multiple organs. The VNAR sequences were commonly shared among the epigonal organ, liver, and/or pancreas, but few were shared in the kidney or spleen.
Collapse
Affiliation(s)
- Soichiro Yoshizawa
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo, 108-8477, Japan
| | - Kayo Konishi
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo, 108-8477, Japan
| | - Keiichiro Koiwai
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo, 108-8477, Japan
| | - Ikuo Hirono
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo, 108-8477, Japan
| | - Hidehiro Kondo
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo, 108-8477, Japan.
| |
Collapse
|
2
|
Barac F, Castro PL, Hansen TJ, Fjelldal PG, Kerboeuf M, Boysen P, Hordvik I, Bjørgen H, Koppang EO. B-cell distribution and composition in the gills and the interbranchial lymphoid tissue (ILT) of the Atlantic salmon (Salmo salar L.). JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkaf081. [PMID: 40420415 DOI: 10.1093/jimmun/vkaf081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 03/24/2025] [Indexed: 05/28/2025]
Abstract
Fish lack organized mucosa-associated lymphoid tissues as found in birds and mammals. However, a distinct aggregation of lymphoid cells, the interbranchial lymphoid tissue (ILT), was identified in the gills of the Atlantic salmon (Salmo salar) in 2008. Since then, additional structures of similar character have been discovered. The function of the ILT remains elusive, and research has focused primarily on its T cell content. Here, we address the B cell composition of the ILT. Gills of Atlantic salmon from two developmental stages (avg 153 g and avg 1,717 g) were examined from both vaccinated and unvaccinated fish for immunoglobulins IgM, IgT, and IgD, as well as for Activation-Induced Cytidine Deaminase (AID) and Paired Box 5 (Pax5) mRNA by morphological methods. There was an abundance of Ig-transcript+ cells throughout the gill epithelium, with IgD mRNA+ cells being the most numerous. Larger fish had a significantly higher number of IgM mRNA+ cells than the smaller fish, whereas vaccination had no significant impact on any of the isotypes. The immunofluorescence results of Igs paired with Pax5 ISH showed B cells in different stages of maturation within the ILT. Additionally, scattered AID+ cells were present within the pILT. In contrast to what was previously assumed, we show that B cells are abundant in the ILT.
Collapse
Affiliation(s)
- Fran Barac
- Unit of Anatomy, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Pedro L Castro
- GIA-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Telde, Spain
| | - Tom J Hansen
- Matre Research Station, Institute of Marine Research, Matre, Norway
| | - Per G Fjelldal
- Matre Research Station, Institute of Marine Research, Matre, Norway
| | - Mikael Kerboeuf
- Unit of Immunology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Preben Boysen
- Unit of Immunology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Ivar Hordvik
- Institute of Biology, University of Bergen, Bergen, Norway
| | - Håvard Bjørgen
- Unit of Anatomy, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Erling O Koppang
- Unit of Anatomy, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
3
|
Ko S, Hong S. Characterization of IgD and IgT with their expressional analysis following subtype II megalocytivirus vaccination and infection in rock bream (Oplegnathus fasciatus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 161:105248. [PMID: 39216776 DOI: 10.1016/j.dci.2024.105248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
In this study, heavy chain genes of IgD and IgT were sequenced and characterized their gene expression in rock bream (Oplegnathus fasciatus). Rock bream (RB)-IgD cDNA is 3319 bp in length and encodes a leader region, variable domains, a μ1 domain, and seven constant domains (CH1-CH7). A membrane-bound (mIgT) and secretory form (sIgT) of RB-IgT cDNAs are 1902 bp and 1689 bp in length, respectively, and encode a leader region, variable domains, four constant domains (CH1-CH4) and C-terminus. Their predicted 3D-structure and phylogenetic relation were similar to those of other teleost. In healthy fish, RB-IgD and mIgT gene expressions were higher in major lymphoid organs and blood, while RB-sIgT gene was more highly expressed in midgut. IgT expressing cells were detected in melano-macrophage centers (MMC) of head kidney in immunohistochemistry analysis. Under immune stimulation in vitro, RB-IgD and IgT gene expressions were upregulated in head kidney and spleen cells by bovine serum albumin or a rock bream iridovirus (RBIV) vaccine. In vivo, their expressions were significantly upregulated in head kidney, blood, and gill upon vaccination. Especially, RB-mIgT gene expression in head kidney and blood was upregulated at day 3 after vaccination while upregulated at earlier time point of day 1 by challenge with RBIV. This may suggest that memory cells might be produced during the primary response by vaccination and rapidly proliferated by secondary immune response by viral infection. RB-sIgT gene expression was highly upregulated in peripheral blood in vaccinated fish after viral infection, indicating that IgT plays an important role in systemic immune response as well as mucosal immune system. Our findings provide information on the role of RB-IgT in adaptive immunity during vaccination and viral infection in the vaccinated fish.
Collapse
Affiliation(s)
- Sungjae Ko
- Department of Aquatic Life Medicine, Gangneung-Wonju National University, Gangneung, South Korea
| | - Suhee Hong
- Department of Aquatic Life Medicine, Gangneung-Wonju National University, Gangneung, South Korea.
| |
Collapse
|
4
|
Jenberie S, van der Wal YA, Jensen I, Jørgensen JB. There and back again? A B cell's tale on responses and spatial distribution in teleosts. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109479. [PMID: 38467322 DOI: 10.1016/j.fsi.2024.109479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/13/2024]
Abstract
Teleost B cells are of special interest due to their evolutionary position and involvement in vaccine-induced adaptive immune responses. While recent progress has revealed uneven distribution of B cell subsets across the various immune sites and that B cells are one of the early responders to infection, substantial knowledge gaps persist regarding their immunophenotypic profile, functional mechanisms, and what factors lead them to occupy different immune niches. This review aims to assess the current understanding of B cell diversity, their spatial distribution in various systemic and peripheral immune sites, how B cell responses initiate, the sites where these responses develop, their trafficking, and the locations where long-term B cell responses take place.
Collapse
Affiliation(s)
- Shiferaw Jenberie
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT - the Arctic University of Norway, Tromsø, Norway.
| | | | - Ingvill Jensen
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT - the Arctic University of Norway, Tromsø, Norway
| | - Jorunn B Jørgensen
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT - the Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
5
|
Zapata AG. The fish spleen. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109280. [PMID: 38086514 DOI: 10.1016/j.fsi.2023.109280] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/31/2023]
Abstract
In the present study, we review the structure and function of fish spleen with special emphasis on its condition in Elasmobranchs, Teleosts and Lungfish. Apart from the amount of splenic lymphoid tissue, the histological organization of the organ ensures the existence of areas involved in antigen trapping, the ellipsoids, and exhibit numerous melano-macrophages which appear isolated or forming the so-called melano-macrophage centres. An extensive discussion on the functional significance of these centres conclude that they are mere accumulations of macrophages consequence of tissue homeostasis rather than primitive germinal centres, as proposed by some authors.
Collapse
Affiliation(s)
- Agustín G Zapata
- Department of Cell Biology, Faculty of Biology, Complutense University, 28040, Madrid, Spain.
| |
Collapse
|
6
|
Boehm T. The chilling origin of germinal centers. Sci Immunol 2023; 8:eadl1470. [PMID: 38039380 DOI: 10.1126/sciimmunol.adl1470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/06/2023] [Indexed: 12/03/2023]
Abstract
Germinal center-like structures have been identified in ectothermic vertebrates, establishing germinal centers as a universal component of humoral immunity (see related Research Article by Shibasaki et al.).
Collapse
Affiliation(s)
- Thomas Boehm
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, D-79108 Freiburg, Germany
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), University Medical Center, Faculty of Medicine, University of Freiburg, D-79110 Freiburg, Germany
| |
Collapse
|
7
|
Matz H, Dooley H. 450 million years in the making: mapping the evolutionary foundations of germinal centers. Front Immunol 2023; 14:1245704. [PMID: 37638014 PMCID: PMC10450919 DOI: 10.3389/fimmu.2023.1245704] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Germinal centers (GCs) are distinct microanatomical structures that form in the secondary lymphoid organs of endothermic vertebrates (i.e., mammals and some birds). Within GCs, B cells undergo a Darwinian selection process to identify clones which can respond to pathogen insult as well as affinity mature the B cell repertoire. The GC response ultimately generates memory B cells and bone marrow plasma cells which facilitate humoral immunological memory, the basis for successful vaccination programs. GCs have not been observed in the secondary lymphoid organs of ectothermic jawed vertebrates (i.e., fishes, reptiles, and amphibians). However, abundant research over the past decades has indicated these organisms can produce antigen specific B cell responses and some degree of affinity maturation. This review examines data demonstrating that the fundamentals of B cell selection may be more conserved across vertebrate phylogeny than previously anticipated. Further, research in both conventional mammalian model systems and comparative models raises the question of what evolutionary benefit GCs provide endotherms if they are seemingly unnecessary for generating the basic functional components of jawed vertebrate humoral adaptive immune responses.
Collapse
|
8
|
Waly D, Muthupandian A, Fan CW, Anzinger H, Magor BG. Immunoglobulin VDJ repertoires reveal hallmarks of germinal centers in unique cell clusters isolated from zebrafish ( Danio rerio) lymphoid tissues. Front Immunol 2022; 13:1058877. [PMID: 36569890 PMCID: PMC9772432 DOI: 10.3389/fimmu.2022.1058877] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/03/2022] [Indexed: 12/13/2022] Open
Abstract
DNA mutagenesis during antibody affinity maturation has potentially oncogenic or autoimmune outcomes if not tightly controlled as it is in mammalian germinal centers. Cold blooded vertebrates lack germinal centers, yet have a functional Ig gene mutator enzyme, Aicda. In fish there are clusters of Aicda+ cells encircled by pigmented 'melano-macrophages' and we test the hypothesis that these clusters are functionally analogous to germinal centers. Sequenced IgH VDJ repertoire libraries from individual isolated clusters showed evidence of B-cell clonal expansion and VDJ somatic hypermutation. Construction of Ig clonal lineage trees revealed that unlike surrounding lymphoid tissue, each cluster is dominated by a few B-cell VDJ clonotypes having hundreds of mutated variants. Recruitment of B-cells to the clusters appears to be ongoing, as there are additional Ig clones having smaller lineages. Finally, we show evidence for positive selection for replacement mutations in regions encoding the antigen contact loops, but not in the framework regions, consistent with functional antibody modification. Melano-macrophages appear to trap the Ag used for post-mutation B-cell selection, performing a role analogous to the follicular dendritic cells of mammalian germinal centers. These findings provide insights into the evolution of the affinity maturation process, the improvement of fish vaccines and possibly also the workings of atypical ectopic germinal centers generated in several human diseases.
Collapse
Affiliation(s)
- Doaa Waly
- *Correspondence: Brad G. Magor, ; Doaa Waly,
| | | | | | | | | |
Collapse
|
9
|
Zapata AG. Lympho-Hematopoietic Microenvironments and Fish Immune System. BIOLOGY 2022; 11:747. [PMID: 35625475 PMCID: PMC9138301 DOI: 10.3390/biology11050747] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/20/2022]
Abstract
In the last 50 years information on the fish immune system has increased importantly, particularly that on species of marked commercial interest (i.e., salmonids, cods, catfish, sea breams), that occupy a key position in the vertebrate phylogenetical tree (i.e., Agnatha, Chondrichtyes, lungfish) or represent consolidated experimental models, such as zebrafish or medaka. However, most obtained information was based on genetic sequence analysis with little or no information on the cellular basis of the immune responses. Although jawed fish contain a thymus and lympho-hematopoietic organs equivalents to mammalian bone marrow, few studies have accounted for the presumptive relationships between the organization of these cell microenvironments and the known immune capabilities of the fish immune system. In the current review, we analyze this topic providing information on: (1) The origins of T and B lymphopoiesis in Agnatha and jawed fish; (2) the remarkable organization of the thymus of teleost fish; (3) the occurrence of numerous, apparently unrelated organs housing lympho-hematopoietic progenitors and, presumably, B lymphopoiesis; (4) the existence of fish immunological memory in the absence of germinal centers.
Collapse
Affiliation(s)
- Agustín G. Zapata
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain; ; Tel.: +34-913-944-979
- Health Research Institute, Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| |
Collapse
|
10
|
Hansen JD, Ray K, Chen PJ, Yun S, Elliott DG, Conway CM, Calcutt MJ, Purcell MK, Welch TJ, Bellah JP, Davis EM, Greer JB, Soto E. Disruption of the Francisella noatunensis subsp. orientalis pdpA Gene Results in Virulence Attenuation and Protection in Zebrafish. Infect Immun 2021; 89:e0022021. [PMID: 34424748 PMCID: PMC8519269 DOI: 10.1128/iai.00220-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/10/2021] [Indexed: 12/20/2022] Open
Abstract
Several Francisella spp., including Francisella noatunensis, are regarded as important emerging pathogens of wild and farmed fish. However, very few studies have investigated the virulence factors that allow these bacterial species to be pathogenic in fish. The Francisella pathogenicity island (FPI) is a well-described, gene-dense region encoding major virulence factors for the genus Francisella. pdpA is a member of the pathogenicity-determining protein genes carried by the FPI that are implicated in the ability of the mammalian pathogen Francisella tularensis to escape and replicate in infected host cells. Using a sacB suicide approach, we generated pdpA knockouts to address the role of PdpA as a virulence factor for F. noatunensis. Because polarity can be an issue in gene-dense regions, we generated two different marker-based mutants in opposing polarity (the F. noatunensis subsp. orientalis ΔpdpA1 and ΔpdpA2 strains). Both mutants were attenuated (P < 0.0001) in zebrafish challenges and displayed impaired intracellular replication (P < 0.05) and cytotoxicity (P < 0.05), all of which could be restored to wild-type (WT) levels by complementation for the ΔpdpA1 mutant. Importantly, differences were found for bacterial burden and induction of acute-phase and proinflammatory genes for the F. noatunensis subsp. orientalis ΔpdpA1 and ΔpdpA2 mutants compared to the WT during acute infection. In addition, neither mutant resulted in significant histopathological changes. Finally, immunization with the F. noatunensis subsp. orientalis ΔpdpA1 mutant led to protection (P < 0.012) against an acute 40% lethal dose (LD40) challenge with WT F. noatunensis in the zebrafish model of infection. Taken together, the results from this study further demonstrate physiological similarities within the genus Francisella relative to their phylogenetic relationships and the utility of zebrafish for addressing virulence factors for the genus.
Collapse
Affiliation(s)
- John D. Hansen
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, Washington, USA
| | - Karina Ray
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, Washington, USA
| | - Po-Jui Chen
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, Washington, USA
| | - Susan Yun
- Department of Medicine and Epidemiology, University of California—Davis, School of Veterinary Medicine, Davis, California, USA
| | - Diane G. Elliott
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, Washington, USA
| | - Carla M. Conway
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, Washington, USA
| | - Michael J. Calcutt
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA
| | - Maureen K. Purcell
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, Washington, USA
| | - Timothy J. Welch
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, Kearneysville, West Virginia, USA
| | - John P. Bellah
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, Washington, USA
| | - Ellie M. Davis
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, Washington, USA
| | - Justin B. Greer
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, Washington, USA
| | - Esteban Soto
- Department of Medicine and Epidemiology, University of California—Davis, School of Veterinary Medicine, Davis, California, USA
| |
Collapse
|
11
|
Hu Y, Alnabulsi A, Alnabulsi A, Scott C, Tafalla C, Secombes CJ, Wang T. Characterisation and analysis of IFN-gamma producing cells in rainbow trout Oncorhynchus mykiss. FISH & SHELLFISH IMMUNOLOGY 2021; 117:328-338. [PMID: 34343543 DOI: 10.1016/j.fsi.2021.07.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
IFN-γ is one of the key cytokines involved in Th1 immune responses. It is produced mainly by T cells and NK cells, which drive both innate and adaptive responses to promote protection against infections. IFN-γ orthologues have been discovered to be functionally conserved in fish, suggesting that type I immunity is present in early vertebrates. However, few studies have looked at IFN-γ protein expression in fish and its role in cell mediated immunity due to a lack of relevant tools. In this study, four monoclonal antibodies (mAbs) V27, N2, VAB3 and V91 raised against short salmonid IFN-γ peptides were developed and characterised to monitor IFN-γ expression. The results show that the IFN-γ mAbs specifically react to their peptide immunogens, recognise E. coli produced recombinant IFN-γ protein and rainbow trout IFN-γ produced in transfected HEK 293 cells. The mAb VAB3 was used further, to detect IFN-γ at the cellular level after in vitro and in vivo stimulation. In flow cytometry, a basal level of 3-5% IFN-γ secreting cells were detected in peripheral blood leucocytes (PBL), which increased significantly when stimulated in vitro with PAMPs (Aeromonas salmonicida bacterin), a mitogen (PHA) and recombinant cytokine (IL-2). Similarly, after injection of live bacteria (Aeromonas salmonicida) or poly I:C the number of IFN-γ+ cells increased in the lymphoid population of PBL, as well as in the myeloid population after infection, with the myeloid cells increasing substantially after both treatments. Immunohistochemistry was used to visualise the IFN-γ+ cells in spleen and head kidney following vaccination, which increased in intensity of staining and number relative to tissue from saline-injected control fish. These results show that several types of cells can produce IFN-γ in trout, and that they increase following infection or vaccination, and likely contribute to immune protection. Hence monitoring IFN-γ producing cells/protein secretion may be an important means to assess the effectiveness of Th1 responses and cell mediated immunity in fish.
Collapse
Affiliation(s)
- Yehfang Hu
- Scottish Fish Immunology Research Centre, University of Aberdeen, Aberdeen, UK
| | | | | | - Callum Scott
- Scottish Fish Immunology Research Centre, University of Aberdeen, Aberdeen, UK
| | | | | | - Tiehui Wang
- Scottish Fish Immunology Research Centre, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
12
|
Kogame T, Kabashima K, Egawa G. Putative Immunological Functions of Inducible Skin-Associated Lymphoid Tissue in the Context of Mucosa-Associated Lymphoid Tissue. Front Immunol 2021; 12:733484. [PMID: 34512668 PMCID: PMC8426509 DOI: 10.3389/fimmu.2021.733484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022] Open
Abstract
Acquired immunity is orchestrated in various lymphoid organs, including bone marrow, thymus, spleen, and lymph nodes in humans. However, mucosa-associated lymphoid tissue (MALT) is evolutionally known to be emerged in the oldest vertebrates as an immunological tissue for acquired immunity, much earlier than the advent of lymph nodes which appeared in endotherms. Furthermore, the lymphocytes which developed in MALT are known to circulate within the limited anatomical areas. Thus, MALT is comprehended as not the structure but the immune network dedicated to local immunity. As for the skin, skin-associated lymphoid tissue (SALT) was previously postulated; however, its existence has not been proven. Our group recently showed that aggregations of dendritic cells, M2 macrophages, and high endothelial venules (HEVs) are essential components to activate effector T cells in the murine contact hypersensitivity model and termed it as inducible SALT (iSALT) since it was a transient entity that serves for acquired immunity of the skin. Furthermore, in various human skin diseases, we reported that the ectopic formation of lymphoid follicles that immunohistochemically analogous to MALT and regarded them as human counterparts of iSALT. These data raised the possibility that SALT can exist as an inducible form, namely iSALT, which shares the biological significance of MALT. In this article, we revisit the evolution of immunological organs and the related components among vertebrates to discuss the conserved functions of MALT. Furthermore, we also discuss the putative characteristics and functions of iSALT in the context of the MALT concept.
Collapse
Affiliation(s)
- Toshiaki Kogame
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Gyohei Egawa
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
13
|
Tang H, Jiang X, Zhang J, Pei C, Zhao X, Li L, Kong X. Teleost CD4 + helper T cells: Molecular characteristics and functions and comparison with mammalian counterparts. Vet Immunol Immunopathol 2021; 240:110316. [PMID: 34474261 DOI: 10.1016/j.vetimm.2021.110316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 06/21/2021] [Accepted: 08/24/2021] [Indexed: 12/24/2022]
Abstract
CD4+ helper T cells play key and diverse roles in inducing adaptive immune responses in vertebrates. The CD4 molecule, which is found on the surfaces of CD4+ helper T cells, can be used to distinguish subsets of helper T cells. Teleosts are the oldest living species with bona-fide CD4 coreceptors. Although some components of immune systems of teleosts and mammals appear to be similar, many physiological differences are represented between them. Previous studies have shown that two CD4 paralogs are present in teleosts, whereas only one is present in mammals. Therefore, in this review, the CD4 molecular structure, expression profiles, subpopulations, and biological functions of teleost CD4+ helper T cells were summarized and compared with those of their mammalian counterparts to understand the differences in CD4 molecules between teleosts and mammals. This review provides suggestions for further studies on the CD4 molecular function and regulatory mechanism of CD4+ helper T cells in teleost fish and will help establish therapeutic strategies to control fish diseases in the future.
Collapse
Affiliation(s)
- Hairong Tang
- College of Life Science, Henan Normal University, Henan Province, PR China; Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Xinyu Jiang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Jie Zhang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Chao Pei
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Xianliang Zhao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Li Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Xianghui Kong
- College of Life Science, Henan Normal University, Henan Province, PR China; Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China.
| |
Collapse
|
14
|
Stosik M, Tokarz-Deptuła B, Deptuła W. Immunological memory in teleost fish. FISH & SHELLFISH IMMUNOLOGY 2021; 115:95-103. [PMID: 34058353 DOI: 10.1016/j.fsi.2021.05.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 05/23/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
Immunological memory can be regarded as the key aspect of adaptive immunity, i.e. a specific response to first contact with an antigen, which in mammals is determined by the properties of T, B and NK cells. Re-exposure to the same antigen results in a more rapid response of the activated specific cells, which have a unique property that is the immunological memory acquired upon first contact with the antigen. Such a state of immune activity is also to be understood as related to "altered behavior of the immune system" due to genetic alterations, presumably maintained independently of the antigen. It also indicates a possible alternative mechanism of maintaining the immune state at a low level of the immune response, "directed" by an antigen or dependent on an antigen, associated with repeated exposure to the same antigen from time to time, as well as the concept of innate immune memory, associated with epigenetic reprogramming of myeloid cells, i.e. macrophages and NK cells. Studies on Teleostei have provided evidence for the presence of immunological memory determined by T and B cells and a secondary response stronger than the primary response. Research has also demonstrated that in these animals macrophages and NK-like cells (similar to mammalian NK cells) are able to respond when re-exposed to the same antigen. Regardless of previous reports on immunological memory in teleost fish, many reactions and mechanisms related to this ability require further investigation. The very nature of immunological memory and the activity of cells involved in this process, in particular macrophages and NK-like cells, need to be explained. This paper presents problems associated with adaptive and innate immune memory in teleost fish and characteristics of cells associated with this ability.
Collapse
Affiliation(s)
- Michał Stosik
- Faculty of Biological Sciences, Institute of Biological Sciences, University of Zielona Gora, Poland
| | | | - Wiesław Deptuła
- Faculty of Biological and Veterinary Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Poland
| |
Collapse
|
15
|
Muthupandian A, Waly D, Magor BG. Do ectothermic vertebrates have a home in which to affinity mature their antibody responses? DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 119:104021. [PMID: 33482240 DOI: 10.1016/j.dci.2021.104021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/04/2021] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
There has been a longstanding question of whether affinity maturation occurs in ectotherms, and if it does, where in tissues this happens. Although cold-blooded vertebrates (ectotherms) lack histologically discernible germinal centers, they have a fully functional Ig gene mutator enzyme (activation-induced cytidine deaminase: AID or Aicda). Protein and Ig cDNA transcript analyses provide evidence that ectotherms can, under certain conditions, demonstrate antibody affinity maturation, and somatic hypermutation of their Ig genes during secondary immune responses. Here, we review the evidence for antibody affinity maturation and somatic hypermutation of Ig V(D)J exons. We argue that past evidence of long-term intact antigen retention, and recent studies of in situ expression of AID transcripts, point to fish melanomacrophage clusters as sites functionally analogous to a germinal center. Recent work in zebrafish provides a way forward to test these predictions through V(D)J repertoire analyses on isolated, intact melanomacrophage clusters. This work has implications not only for vaccine use in aquaculture, but also for antibody affinity maturation processes in all ectothermic vertebrates.
Collapse
Affiliation(s)
- A Muthupandian
- Dept. of Biological Sciences, University of Alberta, Edmonton, AB, T6G-2E5, Canada
| | - D Waly
- Dept. of Biological Sciences, University of Alberta, Edmonton, AB, T6G-2E5, Canada
| | - B G Magor
- Dept. of Biological Sciences, University of Alberta, Edmonton, AB, T6G-2E5, Canada.
| |
Collapse
|
16
|
Ghorbani A, Quinlan EM, Larijani M. Evolutionary Comparative Analyses of DNA-Editing Enzymes of the Immune System: From 5-Dimensional Description of Protein Structures to Immunological Insights and Applications to Protein Engineering. Front Immunol 2021; 12:642343. [PMID: 34135887 PMCID: PMC8201067 DOI: 10.3389/fimmu.2021.642343] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/06/2021] [Indexed: 01/02/2023] Open
Abstract
The immune system is unique among all biological sub-systems in its usage of DNA-editing enzymes to introduce targeted gene mutations and double-strand DNA breaks to diversify antigen receptor genes and combat viral infections. These processes, initiated by specific DNA-editing enzymes, often result in mistargeted induction of genome lesions that initiate and drive cancers. Like other molecules involved in human health and disease, the DNA-editing enzymes of the immune system have been intensively studied in humans and mice, with little attention paid (< 1% of published studies) to the same enzymes in evolutionarily distant species. Here, we present a systematic review of the literature on the characterization of one such DNA-editing enzyme, activation-induced cytidine deaminase (AID), from an evolutionary comparative perspective. The central thesis of this review is that although the evolutionary comparative approach represents a minuscule fraction of published works on this and other DNA-editing enzymes, this approach has made significant impacts across the fields of structural biology, immunology, and cancer research. Using AID as an example, we highlight the value of the evolutionary comparative approach in discoveries already made, and in the context of emerging directions in immunology and protein engineering. We introduce the concept of 5-dimensional (5D) description of protein structures, a more nuanced view of a structure that is made possible by evolutionary comparative studies. In this higher dimensional view of a protein's structure, the classical 3-dimensional (3D) structure is integrated in the context of real-time conformations and evolutionary time shifts (4th dimension) and the relevance of these dynamics to its biological function (5th dimension).
Collapse
Affiliation(s)
- Atefeh Ghorbani
- Program in Immunology and Infectious Diseases, Department of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
- Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
| | - Emma M. Quinlan
- Program in Immunology and Infectious Diseases, Department of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Mani Larijani
- Program in Immunology and Infectious Diseases, Department of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
- Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
17
|
Chen M, Yan F, Liu S, Wang Y, Chen J, Zhou E, Lin L, Ye J. Xbp1-u and Xbp1-s from Nile tilapia (Oreochromis niloticus): Transcriptional profiling upon Streptococcus agalactiae infection and the potential role in B cell activation and differentiation. FISH & SHELLFISH IMMUNOLOGY 2020; 107:202-210. [PMID: 33011436 DOI: 10.1016/j.fsi.2020.09.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/02/2020] [Accepted: 09/26/2020] [Indexed: 06/11/2023]
Abstract
X-box protein 1 (Xbp1), an essential transcription factor including an unstable form (Xbp1-u) and a stable form (Xbp1-s), plays an vital role in B cell activation and differentiation to plasma cells. In this study, we cloned and identified Xbp1-u gene from Nile tilapia (Oreochromis niloticus), containing 783 bp of nucleotide sequence encoding 260 amino acids. The deduced protein possesses a basic region leucine zipper domain (bZIP) and 26 ribonucleotides of OnXbp1-u transcript. Transcription analysis revealed OnXbp1-u and OnXbp1-s were widely distributed in all examined tissues, with a high expression in immune-related tissues. When stimulated with Streptococcus agalactiae in vivo, the expressions of OnXbp1-u and OnXbp1-s were significantly up-regulated in liver, spleen, head kidney, blood, skin and intestine. After in vitro challenge upon S.agalactiae, the similar up-regulations of OnXbp1-u and OnXbp1-s were also demonstrated in head kidney leukocytes. Moreover, the OnXbp1-u and OnXbp1-s could get involved in LPS-inducible B cell activation and (r)OnIL6-inducible B cell differentiation. Taken together, the results indicated that OnXbp1-u and OnXbp1-s might not only involved in the immune response against S. agalactiae challenge, but also in the B cell activation and differentiation in Nile tilapia.
Collapse
Affiliation(s)
- Meng Chen
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China; Guangdong Provincial Key Laboratory for Health and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Fangfang Yan
- Guangdong Provincial Key Laboratory for Health and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Shuo Liu
- Guangdong Provincial Key Laboratory for Health and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Yuhong Wang
- Guangdong Provincial Key Laboratory for Health and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Jianlin Chen
- Guangdong Provincial Key Laboratory for Health and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Enxu Zhou
- Guangdong Provincial Key Laboratory for Health and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Li Lin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
| | - Jianmin Ye
- Guangdong Provincial Key Laboratory for Health and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
18
|
Rozas-Serri M, Lobos C, Correa R, Ildefonso R, Vásquez J, Muñoz A, Maldonado L, Jaramillo V, Coñuecar D, Oyarzún C, Walker R, Navarrete C, Gayosa J, Mancilla P, Peña A, Senn C, Schwerter F. Atlantic Salmon Pre-smolt Survivors of Renibacterium salmoninarum Infection Show Inhibited Cell-Mediated Adaptive Immune Response and a Higher Risk of Death During the Late Stage of Infection at Lower Water Temperatures. Front Immunol 2020; 11:1378. [PMID: 32695119 PMCID: PMC7338658 DOI: 10.3389/fimmu.2020.01378] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/29/2020] [Indexed: 12/20/2022] Open
Abstract
Bacterial kidney disease (BKD) is widespread in many areas of the world and can cause substantial economic losses for the salmon aquaculture industry. The objective of this study was to investigate the pathophysiological response and gene expression profiles related to the immune response at different water temperatures and to identify the best immunopathological biomarkers to define a phenotype of resistance to BKD. The abundance of msa transcripts of R. salmoninarum in the head kidney was significantly higher in infected fish at 11°C. R. salmoninarum induced significantly more severe kidney lesions, anemia and impaired renal function at 11°C. In addition, the expression pattern of the genes related to humoral and cell-mediated immune responses in infected fish at 11 and 15°C was very similar, although R. salmoninarum induced a significantly greater downregulation of the adaptive immune response genes at the lower water temperature. These results could be due to a suppressed host response directly related to the lowest water temperature and/or associated with a delayed host response related to the lowest water temperature. Although no significant differences in survival rate were observed, fish infected at the lowest temperature showed a higher probability of death and delayed the mortality curve during the late stage of infection (35 days after infection). Thirty-three immunopathological biomarkers were identified for potential use in the search for a resistance phenotype for BKD, and eight were genes related specifically to the adaptive cell-mediated immune response.
Collapse
Affiliation(s)
- Marco Rozas-Serri
- Laboratorio Pathovet Ltda., Puerto Montt, Chile.,Newenko Group SpA., Puerto Montt, Chile
| | - Carlos Lobos
- Hendrix Genetics Aquaculture S.A., Puerto Varas, Chile
| | | | | | | | - Ariel Muñoz
- Laboratorio Pathovet Ltda., Puerto Montt, Chile
| | | | | | | | | | | | | | | | | | - Andrea Peña
- Laboratorio Pathovet Ltda., Puerto Montt, Chile
| | | | | |
Collapse
|
19
|
Løken OM, Bjørgen H, Hordvik I, Koppang EO. A teleost structural analogue to the avian bursa of Fabricius. J Anat 2019; 236:798-808. [PMID: 31877586 PMCID: PMC7163591 DOI: 10.1111/joa.13147] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2019] [Indexed: 01/26/2023] Open
Abstract
The bursa of Fabricius is a primary and secondary lymphoid organ considered exclusively present in birds, and studies of this structure have been vital to our current understanding of the adaptive immune system of vertebrates. In this study, we reveal substantial lymphoepithelial tissue in a previously undescribed bursa in Atlantic salmon (Salmo salar), situated caudal to the urogenital papilla of the cloaca and thus analogous to the anatomical placement of the bursa of Fabricius. We investigated three groups of Atlantic salmon at different maturational stages and characterized the structure by applying dissection, radiology, scanning electron microscopy and histological techniques, including immunohistochemistry and in situ hybridization. We found that the epithelial anlage of the salmon cloacal bursa developed into substantial lymphoepithelial tissue and subsequently regressed following sexual maturation. Such a dynamic development is also a key characteristic of the avian bursa. The presence of intraepithelial lymphocytes was concomitant with expression of the leukocyte-attracting chemokine CCL19, indicative of lymphoid organ functions. We did not observe recombination or gene conversion in salmon bursal lymphocytes at any developmental stage, indicating the absence of primary lymphoid organ functions in contrast to the bursa of Fabricius. However, the possibility of the bursa to trap both enteric and environmental antigens, combined with the presence of several antigen-presenting cells residing within the lymphoepithelium, suggest the structure has secondary lymphoid organ functions. We present the discovery of a lymphoid organ in Atlantic salmon with striking topographical similarities to that of the bursa of Fabricius in birds. In addition, the age-dependent dynamics of its lymphoepithelium suggest functions related to the maturation processes of lymphocytes.
Collapse
Affiliation(s)
- Oskar M Løken
- Section of Anatomy, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Håvard Bjørgen
- Section of Anatomy, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Ivar Hordvik
- Institute of Biology, University of Bergen, Bergen, Norway
| | - Erling O Koppang
- Section of Anatomy, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| |
Collapse
|
20
|
Smith NC, Rise ML, Christian SL. A Comparison of the Innate and Adaptive Immune Systems in Cartilaginous Fish, Ray-Finned Fish, and Lobe-Finned Fish. Front Immunol 2019; 10:2292. [PMID: 31649660 PMCID: PMC6795676 DOI: 10.3389/fimmu.2019.02292] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/10/2019] [Indexed: 12/17/2022] Open
Abstract
The immune system is composed of two subsystems-the innate immune system and the adaptive immune system. The innate immune system is the first to respond to pathogens and does not retain memory of previous responses. Innate immune responses are evolutionarily older than adaptive responses and elements of innate immunity can be found in all multicellular organisms. If a pathogen persists, the adaptive immune system will engage the pathogen with specificity and memory. Several components of the adaptive system including immunoglobulins (Igs), T cell receptors (TCR), and major histocompatibility complex (MHC), are assumed to have arisen in the first jawed vertebrates-the Gnathostomata. This review will discuss and compare components of both the innate and adaptive immune systems in Gnathostomes, particularly in Chondrichthyes (cartilaginous fish) and in Osteichthyes [bony fish: the Actinopterygii (ray-finned fish) and the Sarcopterygii (lobe-finned fish)]. While many elements of both the innate and adaptive immune systems are conserved within these species and with higher level vertebrates, some elements have marked differences. Components of the innate immune system covered here include physical barriers, such as the skin and gastrointestinal tract, cellular components, such as pattern recognition receptors and immune cells including macrophages and neutrophils, and humoral components, such as the complement system. Components of the adaptive system covered include the fundamental cells and molecules of adaptive immunity: B lymphocytes (B cells), T lymphocytes (T cells), immunoglobulins (Igs), and major histocompatibility complex (MHC). Comparative studies in fish such as those discussed here are essential for developing a comprehensive understanding of the evolution of the immune system.
Collapse
Affiliation(s)
- Nicole C Smith
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Sherri L Christian
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
21
|
Stosik MP, Tokarz-Deptuła B, Deptuła W. Melanomacrophages and melanomacrophage centres in Osteichthyes. Cent Eur J Immunol 2019; 44:201-205. [PMID: 31530990 PMCID: PMC6745537 DOI: 10.5114/ceji.2019.87072] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 03/13/2018] [Indexed: 11/22/2022] Open
Abstract
Melanomacrophages (MMs) are phagocytizing cells with high amounts of pigments including melanin which can be found in a number of cold-blooded species. In Osteichthyes, these cells cluster to form so-called melanomacrophage centres (MMCs), which are predominantly present in the stroma of hematopoietic and lymphoid tissues, that is, in the kidney and spleen. The functionality of MMs and MMCs results from their involvement and role in the defence reactions, related to both the innate and the adaptive immune mechanisms, and in processes unrelated to defence functions as well. There is evidence that MMCs are structurally and functionally similar to mammals' germinal centres (GCs). It appears that mature IgM+ B cells in Osteichthyes can be the equivalent of mIgM+ centrocytes in mammals, whereas MMs can be, in terms of the function, the equivalent of follicular dendritic cells (FDCs), and MMCs can be, in terms of clustered specific cells, the equivalent of GCs. This paper presents selected facts about the structural and functional similarity between GCs and MMCs and about the involvement and role of MMCs and MMs in the immune response. The facts help get a proper picture of the location of MMs and MMCs within the structure of the fish immune system, also in the context of their evolutionary relationship with GCs and of the possibility of pointing out the evolutionary closeness between MMCs in Osteichthyes and GCs in mammals.
Collapse
Affiliation(s)
- Michał P. Stosik
- Department of Microbiology and Genetics, Faculty of Biological Sciences, University of Zielona Gora, Poland
| | | | - Wiesław Deptuła
- Centre for Veterinary Sciences, Nicolaus Copernicus University in Torun, Poland
| |
Collapse
|
22
|
Micale V, Perdichizzi A, Muglia U, Rinelli P, Cosenza A, Mita DG. Gonadal macrophage aggregates in fish: A preliminary quantitative study in red mullet. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2019; 331:357-361. [PMID: 31132000 DOI: 10.1002/jez.2270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/18/2019] [Accepted: 04/06/2019] [Indexed: 11/07/2022]
Abstract
A histological study was conducted in red mullet, Mullus barbatus, collected from two sites characterized by different anthropogenic impacts. The aim of the study was to assess sex-, size-, season- and site-related variation in gonadal macrophage aggregate (MA) size, number, and relative area. Gonadal MAs were most abundant in males than in females. The number of MA was significantly higher in males from the most impacted site in October, with larger individuals showing more MA than smaller ones. MAs were always found in ripe testes, whereas they occurred only in regressing ovaries. These preliminary findings suggest that the presence of ovarian MA in red mullet is most likely related to ovary regression after spawning, whereas the presence of testicular MA is not necessarily associated to gonad regression, and may vary with season, size, and water quality.
Collapse
Affiliation(s)
- Valeria Micale
- Institute for Marine Biological Resources and Biotechnologies, National Research Council, Messina, Italy
| | - Anna Perdichizzi
- Institute for Marine Biological Resources and Biotechnologies, National Research Council, Messina, Italy
| | - Ugo Muglia
- Department of Veterinary Sciences, University of Messina, Italy
- National Laboratory on Endocrine Disruptors, Interuniversity Consortium Biostructures and Biosystems, Napoli, Italy
| | - Paola Rinelli
- Institute for Marine Biological Resources and Biotechnologies, National Research Council, Messina, Italy
| | - Alessandro Cosenza
- Institute for Marine Biological Resources and Biotechnologies, National Research Council, Messina, Italy
| | - Damiano Gustavo Mita
- National Laboratory on Endocrine Disruptors, Interuniversity Consortium Biostructures and Biosystems, Napoli, Italy
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", National Research Council, Napoli, Italy
| |
Collapse
|
23
|
Park J, Kwon W, Kim WS, Jeong HD, Hong S. Cloning and expressional analysis of secretory and membrane-bound IgM in rock bream (Oplegnathus fasciatus) under megalocytivirus infection and vaccination. FISH & SHELLFISH IMMUNOLOGY 2019; 87:275-285. [PMID: 30668998 DOI: 10.1016/j.fsi.2019.01.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/28/2018] [Accepted: 01/13/2019] [Indexed: 06/09/2023]
Abstract
In this study, for better understanding the humoral immunity of rock bream (Oplegnathus fasciatus), 2 transcripts of immunoglobulin M (IgM) heavy chain gene including membrane bound (m-IgM) and secretory (s-IgM) forms were sequenced and analyzed their tissue distribution and differential expression in rock bream under rock bream iridovirus (RBIV) infection and vaccination since RBIV has caused mass mortality in rock bream aquaculture in Korea. Consequently, s-IgM cDNA was 1902 bp in length encoding a leader region, a variable region, four constant regions (CH1, CH2, CH3, CH4) and a C-terminal region while m-IgM cDNA was 1689 bp in length encoding shorter three constant regions (CH1, CH2, CH3) and two transmembrane regions. The predicted s-IgM and m-IgM represent a high structural similarity to other species including human. In tissue distribution analysis in healthy fish, the highest expression of s-IgM was observed in head kidney followed by body kidney, spleen, and mid gut whereas m-IgM expression was the highest in blood followed by head kidney and spleen. In vitro, s-IgM expression was up-regulated by LPS in head kidney and spleen cells at 24 h with no change of m-IgM expression. In vivo upon vaccination, s-IgM expression was up-regulated in liver and blood but not in head kidney while m-IgM expression was only up-regulated in head kidney. After challenge with RBIV, s-IgM expression level was higher in vaccinated fish than in unvaccinated fish and m-IgM expression was up-regulated in head kidney of vaccinated group. In conclusion, differential expression of m-IgM and s-IgM may indicate their differential functions to produce the most effective IgM during adaptive immune response. Although it is not able to assess specific IgM at protein level due to a lack of antibody against rock bream IgM, the present study on s-IgM and m-IgM gene expressions upon infection and vaccination will be useful in developing efficient vaccines in the future.
Collapse
Affiliation(s)
- Jinhwan Park
- Department of Wellness Bio-Industrial, Gangneung Wonju National University, South Korea
| | - Wooju Kwon
- Department of Aquatic Life Medicine, Pukyung National University, South Korea
| | - Wi-Sik Kim
- Department of Aquatic Life Medicine, Chonnam National University, South Korea
| | - Hyun-Do Jeong
- Department of Aquatic Life Medicine, Pukyung National University, South Korea
| | - Suhee Hong
- Department of Wellness Bio-Industrial, Gangneung Wonju National University, South Korea.
| |
Collapse
|
24
|
Dahle MK, Jørgensen JB. Antiviral defense in salmonids - Mission made possible? FISH & SHELLFISH IMMUNOLOGY 2019; 87:421-437. [PMID: 30708056 DOI: 10.1016/j.fsi.2019.01.043] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/24/2019] [Accepted: 01/27/2019] [Indexed: 06/09/2023]
Abstract
Viral diseases represent one of the major threats for salmonid aquaculture. Survival from viral infections are highly dependent on host innate antiviral immune defense, where interferons are of crucial importance. Neutralizing antibodies and T cell effector mechanisms mediate long-term antiviral protection. Despite an immune cell repertoire comparable to higher vertebrates, farmed fish often fail to mount optimal antiviral protection. In the quest to multiply and spread, viruses utilize a variety of strategies to evade or escape the host immune system. Understanding the specific interplay between viruses and host immunity at depth is crucial for developing successful vaccination and treatment strategies in mammals. However, this knowledge base is still limited for pathogenic fish viruses. Here, we have focused on five RNA viruses with major impact on salmonid aquaculture: Salmonid alphavirus, Infectious salmon anemia virus, Infectious pancreatic necrosis virus, Piscine orthoreovirus and Piscine myocarditis virus. This review explore the protective immune responses that salmonids mount to these viruses and the existing knowledge on how the viruses counteract and/or bypass the immune response, including their IFN antagonizing effects and their mechanisms to establish persisting infections.
Collapse
Affiliation(s)
- Maria K Dahle
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, University of Tromsø, The Arctic University of Norway, Norway; Department of Fish Health, Norwegian Veterinary Institute, Oslo, Norway
| | - Jorunn B Jørgensen
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, University of Tromsø, The Arctic University of Norway, Norway.
| |
Collapse
|
25
|
Yamaguchi T, Quillet E, Boudinot P, Fischer U. What could be the mechanisms of immunological memory in fish? FISH & SHELLFISH IMMUNOLOGY 2019; 85:3-8. [PMID: 29410093 DOI: 10.1016/j.fsi.2018.01.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/18/2018] [Accepted: 01/21/2018] [Indexed: 05/04/2023]
Abstract
Vaccination is the most effective strategy to control infectious diseases in species with adaptive immunity. In human and in mouse, vaccination typically induces specific memory cells, which can mediate a fast anamnestic response upon infection by the targeted pathogen. In these species, successful vaccination induces a long-lasting protection, long after the titres of specific antibodies and the frequency of specific T cells have returned to steady state. Vaccination is also an important challenge in aquaculture, since alternative treatments are either too costly, or, in the case of antibiotics, are harmful for the environment or may result in dangerous resistances. However, the mechanisms of the long-term protection elicited by vaccines in fish remain poorly understood. Although fish possess typical B- and T-cells expressing diverse repertoires of immunoglobulins and T-cell receptors, many features of antigen specific responses are different from what is known in mouse and in human. Memory is one of the most elusive properties of fish adaptive immunity, and its basis is widely unknown. In this opinion article, we discuss the concept of immune memory in the context of the fish immunity. We illustrate the complexity of this question by discussing the results of experiments showing that protection can be passed through adoptive transfer of leukocytes from vaccinated donor fish to naive histocompatible recipients. Combined with tools developed in Targetfish and in previous projects, such as monoclonal antibodies against B- and T-cell markers, we propose that such models of protection transfer provide excellent systems to dissect the mechanisms of B- and T-cell memory in the future.
Collapse
Affiliation(s)
- Takuya Yamaguchi
- Laboratory of Fish Immunology, Institute of Infectology, Friedrich-Loeffler-Institut, Südufer 10, Greifswald-Insel Riems 17493, Germany.
| | - Edwige Quillet
- Génétique animale et biologie intégrative, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Pierre Boudinot
- Virologie et Immunologie Moléculaires, INRA, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Uwe Fischer
- Laboratory of Fish Immunology, Institute of Infectology, Friedrich-Loeffler-Institut, Südufer 10, Greifswald-Insel Riems 17493, Germany.
| |
Collapse
|
26
|
Lange MD, Waldbieser GC, Lobb CJ. The proliferation and clonal migration of B cells in the systemic and mucosal tissues of channel catfish suggests there is an interconnected mucosal immune system. FISH & SHELLFISH IMMUNOLOGY 2019; 84:1134-1144. [PMID: 30414491 PMCID: PMC6335153 DOI: 10.1016/j.fsi.2018.11.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/01/2018] [Accepted: 11/05/2018] [Indexed: 06/08/2023]
Abstract
IgM transcripts from different mucosal and systemic tissues from a single adult channel catfish have been evaluated. Arrayed heavy chain cDNA libraries from each of these different mucosal and systemic tissues were separately constructed, hybridized with VH family specific probes and a variety of approaches were used to define their structural relationships. Baseline hybridization studies indicated that the tissue libraries had different VH expression patterns, and sequencing studies indicated this was not simply due to varying proportions of the same B cell population. In the systemic tissues of PBL, spleen, and anterior kidney >95% of the sequenced clones in the arrayed libraries represented different heavy chain rearrangements. Diversity was also found in the mucosal libraries of skin, gill lamellae, and two non-adjoining regions of the intestine, but additional populations were identified which indicated localized clonal expansion. Various clonal sets were characterized in detail, and their genealogies indicated somatic mutation accompanied localized clonal expansion with some members undergoing additional mutations and expansion after migration to different mucosal sites. PCR analyses indicated these mucosal clonal sets were more abundant within different mucosal tissues rather than in the systemic tissues. These studies indicate that the mucosal immune system in fish can express B cell transcripts differently from those found systemically. These studies further indicate that the mucosal immune system is interconnected with clonal B cells migrating between different mucosal tissues, results which yield new insight into immune diversity in early vertebrate phylogeny.
Collapse
Affiliation(s)
- Miles D Lange
- Department of Microbiology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216-4505, USA.
| | - Geoffrey C Waldbieser
- United States Department of Agriculture, Agricultural Research Service, Warmwater Aquaculture Research Unit, Stoneville, MS, 38776, USA
| | - Craig J Lobb
- Department of Microbiology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216-4505, USA
| |
Collapse
|
27
|
Wu L, Fu S, Yin X, Leng W, Guo Z, Wang A, Ye J. Affinity maturation occurs in channel catfish (Ictalurus punctaus) following immunization with a T-cell dependent antigen. FISH & SHELLFISH IMMUNOLOGY 2019; 84:781-786. [PMID: 30393175 DOI: 10.1016/j.fsi.2018.10.057] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/13/2018] [Accepted: 10/22/2018] [Indexed: 06/08/2023]
Abstract
Affinity maturation of the antibody response, a process of antibody affinity increasing over response, is one of the key features of the mammalian immune system. However, the process is incompletely understood in teleost, including channel catfish (Ictalurus punctaus). In this study, IgM affinity maturation in channel catfish was investigated by estimating the kinetics of antibody affinity using ELISA and ELISPOT assays. Fish were immunized with a T-cell dependent antigen (TNP-KLH), and individual serum IgM antibody titers and affinities, and IgM+ antibody-secreting cells (ASCs) in peripheral blood were analyzed over a period of 14 weeks. A detectable serum anti-TNP response developed by 2-weeks post-immunization, and the maximal antibody production was observed by 6-weeks post-immunization. The average affinity of anti-TNP serum antibody increased consistently and reached the maximum by 10-weeks post-immunization. The increase of antibody affinity beyond the point of optimal antibody titer revealed that the affinity maturation of IgM antibody response occurred in channel catfish. Dissection of dynamics of individual affinity subpopulations indicated that a significant proportion of low affinity subpopulations appeared at early response, and high affinity subpopulations appeared predominantly at later, resulting in a 100-fold increase in affinity over response. Additional, TNP+ IgM+ ASCs was detected by 2-weeks post-immunization and achieved the maximal number by 6-weeks post-immunization. Using an inhibition ELISPOT assay, the findings of a consistent increase in the average affinity of secreted IgM antibody by peripheral blood ASCs, as the immune response progressed, confirmed the occurrence of the affinity maturation. Taken together, the results of this study indicated that affinity maturation occurred in channel catfish following immunization with a TD antigen TNP-KLH.
Collapse
Affiliation(s)
- Liting Wu
- School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China
| | - Shengli Fu
- School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China
| | - Xiaoxue Yin
- School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China
| | - Wenna Leng
- School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China
| | - Zheng Guo
- School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China
| | - Anli Wang
- School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China
| | - Jianmin Ye
- School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China.
| |
Collapse
|
28
|
Stosik MP, Tokarz-Deptuła B, Deptuła W. Specific humoral immunity in Osteichthyes. Cent Eur J Immunol 2018; 43:335-340. [PMID: 30588178 PMCID: PMC6305611 DOI: 10.5114/ceji.2018.80054] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 12/12/2017] [Indexed: 12/12/2022] Open
Abstract
The fish immune system is extremely complex and has considerable adaptive potential. In Osteichthyes, the system is formed by lymphopoietic organs which are important for the differentiation and maturation of the immune system cells. These organs include the anterior kidney (phronephros), the thymus, the spleen, the posterior kidney (mesonephros), and mucosa-associated lymphoid tissues (MALT). Apart from the lymphocytic organs and the MALT system, the immune system components include defensive cells and their products. Those identified in fish include, inter alia, monocytes/macrophages, melanomacrophages, neutrophilic granulocytes, thrombocytes, B cells, plasma cells, and T cells. The roles of the individual components of the organisation of the immune system, the organs, and lymphoid tissue as well as the constituents conditioning the innate and adaptive immunity mechanisms are considered equally important, especially in the context of functional interdependence. The progress in the exploration of the processes of specific humoral immunity in Osteichthyes and the possibilities of their practical application is increasingly promising in view of the expected need for protection of fish against diseases. The paper discusses selected issues concerning recent knowledge about haematopoiesis of B cells, plasmablasts, plasma cells, and immunoglobulins (IgM, IgD, IgT/IgZ).
Collapse
Affiliation(s)
- Michał P. Stosik
- Department of Microbiology and Genetics, Faculty of Biological Sciences, University of Zielona Gora, Zielona Gora, Poland
| | - Beata Tokarz-Deptuła
- Department of Immunology, Faculty of Biology, University of Szczecin, Szczecin, Poland
| | - Wiesław Deptuła
- Department of Microbiology, Faculty of Biology, University of Szczecin, Szczecin, Poland
| |
Collapse
|
29
|
Patel B, Banerjee R, Samanta M, Das S. Diversity of Immunoglobulin (Ig) Isotypes and the Role of Activation-Induced Cytidine Deaminase (AID) in Fish. Mol Biotechnol 2018; 60:435-453. [PMID: 29704159 DOI: 10.1007/s12033-018-0081-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The disparate diversity in immunoglobulin (Ig) repertoire has been a subject of fascination since the emergence of prototypic adaptive immune system in vertebrates. The carboxy terminus region of activation-induced cytidine deaminase (AID) has been well established in tetrapod lineage and is crucial for its function in class switch recombination (CSR) event of Ig diversification. The absence of CSR in the paraphyletic group of fish is probably due to changes in catalytic domain of AID and lack of cis-elements in IgH locus. Therefore, understanding the arrangement of Ig genes in IgH locus and functional facets of fish AID opens up new realms of unravelling the alternative mechanisms of isotype switching and antibody diversity. Further, the teleost AID has been recently reported to have potential of catalyzing CSR in mammalian B cells by complementing AID deficiency in them. In that context, the present review focuses on the recent advances regarding the generation of diversity in Ig repertoire in the absence of AID-regulated class switching in teleosts and the possible role of T cell-independent pathway involving B cell activating factor and a proliferation-inducing ligand in activation of CSR machinery.
Collapse
Affiliation(s)
- Bhakti Patel
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769 008, India
| | - Rajanya Banerjee
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769 008, India
| | - Mrinal Samanta
- Immunology Laboratory, Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, Odisha, 751 002, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769 008, India.
| |
Collapse
|
30
|
Abstract
The adaptive immune system arose 500 million years ago in ectothermic (cold-blooded) vertebrates. Classically, the adaptive immune system has been defined by the presence of lymphocytes expressing recombination-activating gene (RAG)-dependent antigen receptors and the MHC. These features are found in all jawed vertebrates, including cartilaginous and bony fish, amphibians and reptiles and are most likely also found in the oldest class of jawed vertebrates, the extinct placoderms. However, with the discovery of an adaptive immune system in jawless fish based on an entirely different set of antigen receptors - the variable lymphocyte receptors - the divergence of T and B cells, and perhaps innate-like lymphocytes, goes back to the origin of all vertebrates. This Review explores how recent developments in comparative immunology have furthered our understanding of the origins and function of the adaptive immune system.
Collapse
Affiliation(s)
- Martin F Flajnik
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD, USA.
| |
Collapse
|
31
|
Zwollo P. The humoral immune system of anadromous fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 80:24-33. [PMID: 28057508 DOI: 10.1016/j.dci.2016.12.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/28/2016] [Accepted: 12/28/2016] [Indexed: 06/06/2023]
Abstract
The immune system of anadromous fish is extremely complex, a direct consequence of their diadromous nature. Hormone levels fluctuate widely throughout their life cycle, as fish move between fresh and salt water. This poses major challenges to the physiology of anadromous fish, including adaptation to very different saline environments, distinct pathogen fingerprints, and different environmental stressors. Elevated cortisol and sex hormone levels inhibit B lymphopoiesis and IgM+ antibody responses, while catecholamines, growth hormones and thyroid hormones are generally stimulatory and enhance the humoral immune response. Immunological memory in the form of long-lived plasma cells likely plays important roles in health and survival during the life cycle of anadromous fishes. This review discusses some of the complex immune-endocrine pathways in anadromous fish, focusing on essential roles for B lineage cells in the successful completion of their life cycle. A discussion is included on potential differences in immuno-competence between wild and hatchery-raised fish.
Collapse
Affiliation(s)
- Patty Zwollo
- Department of Biology, The College of William and Mary, Williamsburg, VA, 23185, United States.
| |
Collapse
|
32
|
Dickerson HW, Findly RC. Vertebrate Adaptive Immunity-Comparative Insights from a Teleost Model. Front Immunol 2017; 8:1379. [PMID: 29123524 PMCID: PMC5662878 DOI: 10.3389/fimmu.2017.01379] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/06/2017] [Indexed: 11/13/2022] Open
Abstract
The channel catfish (Ictalurus punctatus) and the ciliated protozoan parasite Ichthyophthirius multifiliis are used to study pathogen-specific protective immunity. In this review, we briefly describe this host–parasite system and discuss the comparative insights it provides on the adaptive immune response of vertebrates. We include studies related to cutaneous mucosal immunity, B cell memory responses, and analyses of αβ T cell receptor (TCR) repertoires. This host–parasite model has played an important role in elucidating host protective responses to parasite invasion and for comparative studies of vertebrate immunity. Recent findings from bioinformatics analyses of TCR β repertoires suggest that channel catfish preferentially expand specific clonotypes that are stably integrated in the genome. This finding could have broad implications related to diversity in lymphocyte receptors of early vertebrates.
Collapse
Affiliation(s)
- Harry W Dickerson
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Robert Craig Findly
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| |
Collapse
|
33
|
Biochemical Regulatory Features of Activation-Induced Cytidine Deaminase Remain Conserved from Lampreys to Humans. Mol Cell Biol 2017; 37:MCB.00077-17. [PMID: 28716949 DOI: 10.1128/mcb.00077-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 07/10/2017] [Indexed: 01/17/2023] Open
Abstract
Activation-induced cytidine deaminase (AID) is a genome-mutating enzyme that initiates class switch recombination and somatic hypermutation of antibodies in jawed vertebrates. We previously described the biochemical properties of human AID and found that it is an unusual enzyme in that it exhibits binding affinities for its substrate DNA and catalytic rates several orders of magnitude higher and lower, respectively, than a typical enzyme. Recently, we solved the functional structure of AID and demonstrated that these properties are due to nonspecific DNA binding on its surface, along with a catalytic pocket that predominantly assumes a closed conformation. Here we investigated the biochemical properties of AID from a sea lamprey, nurse shark, tetraodon, and coelacanth: representative species chosen because their lineages diverged at the earliest critical junctures in evolution of adaptive immunity. We found that these earliest-diverged AID orthologs are active cytidine deaminases that exhibit unique substrate specificities and thermosensitivities. Significant amino acid sequence divergence among these AID orthologs is predicted to manifest as notable structural differences. However, despite major differences in sequence specificities, thermosensitivities, and structural features, all orthologs share the unusually high DNA binding affinities and low catalytic rates. This absolute conservation is evidence for biological significance of these unique biochemical properties.
Collapse
|
34
|
Steinel NC, Bolnick DI. Melanomacrophage Centers As a Histological Indicator of Immune Function in Fish and Other Poikilotherms. Front Immunol 2017; 8:827. [PMID: 28769932 PMCID: PMC5512340 DOI: 10.3389/fimmu.2017.00827] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 06/30/2017] [Indexed: 12/14/2022] Open
Abstract
Melanomacrophage centers (MMCs) are aggregates of highly pigmented phagocytes found primarily in the head kidney and spleen, and occasionally the liver of many vertebrates. Preliminary histological analyses suggested that MMCs are structurally similar to the mammalian germinal center (GC), leading to the hypothesis that the MMC plays a role in the humoral adaptive immune response. For this reason, MMCs are frequently described in the literature as “primitive GCs” or the “evolutionary precursors” to the mammalian GC. However, we argue that this designation may be premature, having been pieced together from mainly descriptive studies in numerous distinct species. This review provides a comprehensive overview of the MMC literature, including a phylogenetic analysis of MMC distribution across vertebrate species. Here, we discuss the current understanding of the MMCs function in immunity and lingering questions. We suggest additional experiments needed to confirm that MMCs serve a GC-like role in fish immunity. Finally, we address the utility of the MMC as a broadly applicable histological indicator of the fish (as well as amphibian and reptilian) immune response in both laboratory and wild populations of both model and non-model vertebrates. We highlight the factors (sex, pollution exposure, stress, stocking density, etc.) that should be considered when using MMCs to study immunity in non-model vertebrates in wild populations.
Collapse
Affiliation(s)
- Natalie C Steinel
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, United States.,Department of Medical Education, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| | - Daniel I Bolnick
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
35
|
Xing J, Ma J, Tang X, Sheng X, Zhan W. Characterizations of CD4-1, CD4-2 and CD8β T cell subpopulations in peripheral blood leucocytes, spleen and head kidney of Japanese flounder (Paralichthys olivaceus). Mol Immunol 2017; 85:155-165. [PMID: 28260650 DOI: 10.1016/j.molimm.2017.02.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 02/21/2017] [Accepted: 02/22/2017] [Indexed: 12/15/2022]
Abstract
In the previous study, antibodies against CD3 molecule have been produced and were used in labeling T cells in Japanese flounder (Paralichthys olivaceus). In this paper, CD4+ and CD8+ lymphocytes subpopulations in peripheral blood leucocytes (PBL), spleen and head kidney of flounder were investigated. The flounder CD4-1, CD4-2 and CD8β recombinant proteins and their antibodies (Abs) were produced, then the cross-reactivity of the Abs to CD4-1, CD4-2 and CD8β was detected by Western blotting, respectively, and the reactions of Abs to PBL were analyzed by immunofluorescence staining (IFS) and flow cytometry (FCM). CD4-1+/CD3+, CD4-2+/CD3+, and CD8β+/CD3+ lymphocytes in PBL, spleen and head kidney were observed by double IFS, then their proportions were analyzed using two-color FCM, respectively. Further, CD4-1/CD8β, CD4-2/CD8β, or CD4-1/CD4-2 lymphocytes were analyzed using double-IFS and two-color FCM. Finally, CD4-1+, CD4-2+, and CD8β+ lymphocytes in spleen and head kidney were observed by immunohistochemistry. The results showed that the Abs were specific for CD4-1, CD4-2 and CD8β molecules, respectively. The proportions of CD4-1+/CD3+, CD4-2+/CD3+, and CD8β+/CD3+ lymphocytes were 6.7±2.0%, 8.6±2.8%, 2.1±1.3% in PBL; 13.6±3.6%, 15.6±5.2%, 2.8±1.4% in spleen; 20.0±4.6%, 20.5±4.6%, 3.2±1.5% in head kidney, respectively. Most CD4+ and CD8+ cell subpopulations belonged to CD3+ cells; there were no cross-reactivity between CD4+ and CD8+ cells. CD4-1+/CD4-2-, CD4-1-/CD4-2+, and CD4-1+/CD4-2+ cells presented different proportions in PBL, spleen and head kidney, among them, CD4-1+/CD4-2+ cell is the majority of CD4T cell subpopulation.
Collapse
Affiliation(s)
- Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals,KLMME, Ocean University of China, Qingdao 266003, PR China
| | - Junjie Ma
- Laboratory of Pathology and Immunology of Aquatic Animals,KLMME, Ocean University of China, Qingdao 266003, PR China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals,KLMME, Ocean University of China, Qingdao 266003, PR China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals,KLMME, Ocean University of China, Qingdao 266003, PR China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals,KLMME, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Aoshanwei Town, Qingdao, PR China.
| |
Collapse
|
36
|
Coscelli G, Bermúdez R, Ronza P, Losada AP, Quiroga MI. Immunohistochemical study of inducible nitric oxide synthase and tumour necrosis factor alpha response in turbot (Scophthalmus maximus) experimentally infected with Aeromonas salmonicida subsp. salmonicida. FISH & SHELLFISH IMMUNOLOGY 2016; 56:294-302. [PMID: 27431586 DOI: 10.1016/j.fsi.2016.07.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/12/2016] [Accepted: 07/14/2016] [Indexed: 06/06/2023]
Abstract
Aeromonas salmonicida subsp. salmonicida represents one of the major threats in aquaculture, especially in salmonid fish and turbot farming. In order to fight bacterial infections, fish have an immune system composed by innate and specific cellular and humoral elements analogous to those present in mammals. However, innate immunity plays a primordial role against bacterial infections in teleost fish. Among these non-specific mechanisms, the production of nitric oxide (NO) by inducible nitric oxide synthase (iNOS) pathway and the tumour necrosis factor-alpha (TNFα) produced by mononuclear phagocytes, are two of the main immune effectors to eliminate bacterial pathogens. In this study, the distribution and kinetic of iNOS and TNFα-producing cells of kidney and spleen of turbot experimentally inoculated with A. salmonicida was assessed by immunohistochemistry. In control and challenged fish, individual iNOS(+) and TNFα(+) cells, showing a similar pattern of distribution, were detected. In challenged fish, the number of immunoreactive cells was significantly increased in the evaluated organs, as well as the melanomacrophage centres showed variable positivity for both antigens. These results indicate that A. salmonicida induced an immune response in challenged turbot, which involved the increase of the activity of iNOS and TNFα in the leukocytic population from kidney and spleen.
Collapse
Affiliation(s)
- Germán Coscelli
- Cátedra de Patología General y Especial Veterinaria, Facultad de Ciencias Veterinarias, Universidad Nacional de Rosario, Boulevard Ovidio Lagos y Ruta 33 s/n, 2170, Casilda, Argentina.
| | - Roberto Bermúdez
- Departamento de Anatomía y Producción Animal, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus Universitario s/n, 27002, Lugo, Spain
| | - Paolo Ronza
- Departamento de Ciencias Clínicas Veterinarias, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus Universitario s/n, 27002, Lugo, Spain
| | - Ana Paula Losada
- Departamento de Ciencias Clínicas Veterinarias, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus Universitario s/n, 27002, Lugo, Spain
| | - María Isabel Quiroga
- Departamento de Ciencias Clínicas Veterinarias, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus Universitario s/n, 27002, Lugo, Spain
| |
Collapse
|
37
|
Abstract
For effective adaptive immunity to foreign antigens (Ag), secondary lymphoid organs (SLO) provide the confined environment in which Ag-restricted lymphocytes, with very low precursor frequencies, interact with Ag on Ag-presenting cells (APC). The spleen is the primordial SLO, arising in conjunction with adaptive immunity in early jawed vertebrates. The spleen, especially the spleen's lymphoid compartment, the white pulp (WP), has undergone numerous modifications over evolutionary time. We describe the progressive advancement of splenic WP complexity, which evolved in parallel with the increasing functionality of adaptive immunity. The Ag-presenting function of follicular dendritic cells (FDC) also likely emerged at the inception of adaptive immunity, and we propose that a single type of hematopoietically derived APC displayed Ag to both T and B cells. A dedicated FDC, derived from a vascular precursor, is a recent evolutionary innovation that likely permitted the robust affinity maturation found in mammals.
Collapse
Affiliation(s)
- Harold R Neely
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Martin F Flajnik
- Department of Microbiology and Immunology, University of Maryland, Baltimore, Maryland 21201;
| |
Collapse
|
38
|
Johansson P, Wang T, Collet B, Corripio-Miyar Y, Monte MM, Secombes CJ, Zou J. Identification and expression modulation of a C-type lectin domain family 4 homologue that is highly expressed in monocytes/macrophages in rainbow trout (Oncorhynchus mykiss). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 54:55-65. [PMID: 26279216 DOI: 10.1016/j.dci.2015.08.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 08/08/2015] [Accepted: 08/09/2015] [Indexed: 06/04/2023]
Abstract
The C-type lectin domain containing (CLEC) receptors including CD209 are expressed in vivo by monocytes, monocyte-derived macrophages and dendritic cells and by in vitro generated monocyte-derived cells. This paper reports the cloning and sequencing of a lectin molecule, CLEC4T1, in rainbow trout that is a homologue of the CLEC4 family. The expression pattern of the CLEC4T1 was investigated in vivo after infection with a bacterial pathogen and in cultured macrophages after modulation with microbial mimics. Trout CLEC4T1 was highly expressed in spleen and head kidney following infection with Yersinia ruckeri. Expression could also be induced in macrophage cultures by LPS but not by Poly I:C, and suggests that the regulation of CLEC4T1 expression in trout varies according to the nature of the stimulant. A polyclonal CLEC4T1 antibody was generated and validated by Western blotting for use in evaluation of CLEC4T1(+) cells by flow cytometry analysis. Freshly isolated adherent trout head kidney cultures, potentially containing macrophages and dendritic cell precursors, showed an increase of CLEC4T1(+) cells (assessed by flow cytometry) upon stimulation with recombinant interleukin-4/13A. The results suggest that CLEC4T1 is a useful marker for further characterisation of monocyte derived antigen presenting cells in fish.
Collapse
Affiliation(s)
- Petronella Johansson
- Scottish Fish Immunology Research Centre (SFIRC), School of Biological Sciences, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen, AB24 2TZ, Scotland, UK; Marine Scotland - Science, Marine Laboratory, Victoria Road, Aberdeen, AB11 9DB, Scotland, UK
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre (SFIRC), School of Biological Sciences, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen, AB24 2TZ, Scotland, UK
| | - Bertrand Collet
- Marine Scotland - Science, Marine Laboratory, Victoria Road, Aberdeen, AB11 9DB, Scotland, UK
| | - Yolanda Corripio-Miyar
- Scottish Fish Immunology Research Centre (SFIRC), School of Biological Sciences, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen, AB24 2TZ, Scotland, UK
| | - Milena M Monte
- Scottish Fish Immunology Research Centre (SFIRC), School of Biological Sciences, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen, AB24 2TZ, Scotland, UK
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre (SFIRC), School of Biological Sciences, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen, AB24 2TZ, Scotland, UK.
| | - Jun Zou
- Scottish Fish Immunology Research Centre (SFIRC), School of Biological Sciences, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen, AB24 2TZ, Scotland, UK
| |
Collapse
|
39
|
Nakanishi T, Shibasaki Y, Matsuura Y. T Cells in Fish. BIOLOGY 2015; 4:640-63. [PMID: 26426066 PMCID: PMC4690012 DOI: 10.3390/biology4040640] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 09/11/2015] [Accepted: 09/14/2015] [Indexed: 12/26/2022]
Abstract
Cartilaginous and bony fish are the most primitive vertebrates with a thymus, and possess T cells equivalent to those in mammals. There are a number of studies in fish demonstrating that the thymus is the essential organ for development of T lymphocytes from early thymocyte progenitors to functionally competent T cells. A high number of T cells in the intestine and gills has been reported in several fish species. Involvement of CD4+ and CD8α+ T cells in allograft rejection and graft-versus-host reaction (GVHR) has been demonstrated using monoclonal antibodies. Conservation of CD4+ helper T cell functions among teleost fishes has been suggested in a number studies employing mixed leukocyte culture (MLC) and hapten/carrier effect. Alloantigen- and virus-specific cytotoxicity has also been demonstrated in ginbuna and rainbow trout. Furthermore, the important role of cell-mediated immunity rather than humoral immunity has been reported in the protection against intracellular bacterial infection. Recently, the direct antibacterial activity of CD8α+, CD4+ T-cells and sIgM+ cells in fish has been reported. In this review, we summarize the recent progress in T cell research focusing on the tissue distribution and function of fish T cells.
Collapse
Affiliation(s)
- Teruyuki Nakanishi
- Department of Veterinary Medicine, Nihon University, Fujisawa, Kanagawa 252-0880, Japan.
| | - Yasuhiro Shibasaki
- Department of Veterinary Medicine, Nihon University, Fujisawa, Kanagawa 252-0880, Japan.
| | - Yuta Matsuura
- Department of Veterinary Medicine, Nihon University, Fujisawa, Kanagawa 252-0880, Japan.
| |
Collapse
|
40
|
Antibody Affinity Maturation in Fishes-Our Current Understanding. BIOLOGY 2015; 4:512-24. [PMID: 26264036 PMCID: PMC4588147 DOI: 10.3390/biology4030512] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 07/13/2015] [Accepted: 07/23/2015] [Indexed: 12/15/2022]
Abstract
It has long been believed that fish lack antibody affinity maturation, in part because they were thought to lack germinal centers. Recent research done on sharks and bony fishes indicates that these early vertebrates are able to affinity mature their antibodies. This article reviews the functionality of the fish homologue of the immunoglobulin (Ig) mutator enzyme activation-induced cytidine deaminase (AID). We also consider the protein and molecular evidence for Ig somatic hypermutation and antibody affinity maturation. In the context of recent evidence for a putative proto-germinal center in fishes we propose some possible reasons that observed affinity maturation in fishes often seems lacking and propose future work that might shed further light on this process in fishes.
Collapse
|
41
|
|
42
|
Diaz-Satizabal L, Magor BG. Isolation and cytochemical characterization of melanomacrophages and melanomacrophage clusters from goldfish (Carassius auratus, L.). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 48:221-228. [PMID: 25453581 DOI: 10.1016/j.dci.2014.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 10/08/2014] [Accepted: 10/08/2014] [Indexed: 06/04/2023]
Abstract
Pigmented or "melano-" macrophages are prominent in lymphoid and non-lymphoid tissues of poikilotherms. Though they have been extensively studied in situ only recently has a means to isolate them from other cell types been established. We provide the first in vitro characterization of isolated melanomacrophage cytochemistry and survival in culture. Unlike non-pigmented tissue macrophages melanomacrophages do not adhere to polystyrene surfaces making them easy to separate from tissue macrophages. In vitro goldfish melanomacrophages are distinguishable from tissue macrophages and neutrophils by being Sudan Black B positive (unlike tissue macrophages) and non-specific esterase positive (unlike neutrophils). Like tissue macrophages they also express acid phosphatase and CSF-1R. As sorted cells melanomacrophages only survive a few days in culture. However in coarsely disaggregated spleen and kidney tissues melanomacrophages survive for at least 3 weeks. Furthermore after 5 days culture disaggregating tissue clumps revealed encapsulated melanomacrophage clusters that remained intact for at least another week. The encapsulated clusters were resilient enough to allow for their isolation for further imaging and isolation of RNA. In some cases the clusters had either melanomacrophages or non-fluorescent cells protruding and in the latter case these could initiate outgrowths onto the plates with subsequent collapse of the cluster. These approaches for the isolation of melanomacrophages and melanomacrophage clusters should allow further study into specific cell and cluster functions.
Collapse
Affiliation(s)
- Laura Diaz-Satizabal
- Department of Biological Sciences, CW-405 BioSci Bldg., University of Alberta, Edmonton, AB, Canada T6G-2E5
| | - Brad G Magor
- Department of Biological Sciences, CW-405 BioSci Bldg., University of Alberta, Edmonton, AB, Canada T6G-2E5.
| |
Collapse
|
43
|
Magadan S, Sunyer OJ, Boudinot P. Unique Features of Fish Immune Repertoires: Particularities of Adaptive Immunity Within the Largest Group of Vertebrates. Results Probl Cell Differ 2015; 57:235-64. [PMID: 26537384 PMCID: PMC5124013 DOI: 10.1007/978-3-319-20819-0_10] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Fishes (i.e., teleost fishes) are the largest group of vertebrates. Although their immune system is based on the fundamental receptors, pathways, and cell types found in all groups of vertebrates, fishes show a diversity of particular features that challenge some classical concepts of immunology. In this chapter, we discuss the particularities of fish immune repertoires from a comparative perspective. We examine how allelic exclusion can be achieved when multiple Ig loci are present, how isotypic diversity and functional specificity impact clonal complexity, how loss of the MHC class II molecules affects the cooperation between T and B cells, and how deep sequencing technologies bring new insights about somatic hypermutation in the absence of germinal centers. The unique coexistence of two distinct B-cell lineages respectively specialized in systemic and mucosal responses is also discussed. Finally, we try to show that the diverse adaptations of immune repertoires in teleosts can help in understanding how somatic adaptive mechanisms of immunity evolved in parallel in different lineages across vertebrates.
Collapse
Affiliation(s)
- Susana Magadan
- Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, Jouy-en-Josas, France.
| | - Oriol J Sunyer
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Pierre Boudinot
- Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, Jouy-en-Josas, France.
| |
Collapse
|
44
|
Pettinello R, Dooley H. The immunoglobulins of cold-blooded vertebrates. Biomolecules 2014; 4:1045-69. [PMID: 25427250 PMCID: PMC4279169 DOI: 10.3390/biom4041045] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 11/10/2014] [Accepted: 11/13/2014] [Indexed: 12/27/2022] Open
Abstract
Although lymphocyte-like cells secreting somatically-recombining receptors have been identified in the jawless fishes (hagfish and lamprey), the cartilaginous fishes (sharks, skates, rays and chimaera) are the most phylogenetically distant group relative to mammals in which bona fide immunoglobulins (Igs) have been found. Studies of the antibodies and humoral immune responses of cartilaginous fishes and other cold-blooded vertebrates (bony fishes, amphibians and reptiles) are not only revealing information about the emergence and roles of the different Ig heavy and light chain isotypes, but also the evolution of specialised adaptive features such as isotype switching, somatic hypermutation and affinity maturation. It is becoming increasingly apparent that while the adaptive immune response in these vertebrate lineages arose a long time ago, it is most definitely not primitive and has evolved to become complex and sophisticated. This review will summarise what is currently known about the immunoglobulins of cold-blooded vertebrates and highlight the differences, and commonalities, between these and more “conventional” mammalian species.
Collapse
Affiliation(s)
- Rita Pettinello
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.
| | - Helen Dooley
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.
| |
Collapse
|
45
|
Losada AP, Bermúdez R, Faílde LD, Di Giancamillo A, Domeneghini C, Quiroga MI. Effects of Enteromyxum scophthalmi experimental infection on the neuroendocrine system of turbot, Scophthalmus maximus (L.). FISH & SHELLFISH IMMUNOLOGY 2014; 40:577-583. [PMID: 25134847 DOI: 10.1016/j.fsi.2014.08.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 07/29/2014] [Accepted: 08/07/2014] [Indexed: 06/03/2023]
Abstract
Enteromyxum scophthalmi is an intestinal myxosporean parasite responsible for serious outbreaks in turbot Scophthalmus maximus (L.) culture, in North-western Spain. The disease affects the digestive tract, provokes severe catarrhal enteritis, emaciation and high rates of mortality. The digestive parasitization triggers a response with the coordinate participation of immune and neuroendocrine systems through the action of peptides released by enteroendocrine cells and present in nervous elements, acting as neuro-immune modulators. The present study was designed to assess the response of the turbot neuroendocrine system against E. scophthalmi infection. Immunohistochemical tests were applied to sections of the gastrointestinal tract of uninfected and E. scophthalmi-infected turbot to characterize the presence of bombesin (BOM), glucagon (GLUC), somatostatin (SOM), leu-enkephalin (LEU) and met-enkephalin (MET). The occurrence of E. scophthalmi in the turbot gastrointestinal tract increased the number of enteroendocrine cells immunoreactive to SOM, LEU and MET. On the other hand, BOM and GLUC immunoreactive cells were less numerous in the gastrointestinal tract of the parasitized turbot. Scarce immunoreactivity to BOM, GLUC and SOM was observed in nerve fibres and neurons of the myenteric plexus of control and infected fish. The results indicate that E. scophthalmi infection in turbot induced changes in the neuroendocrine system, with the diminution of the anorexigenic peptides BOM and GLUC; the increase of enkephalins, related to pro-inflammatory processes; and the increase of SOM, which may cause inhibitory effects on the immune response, constituting a compensatory mechanism to the exacerbated response observed in E. scophthalmi-infected turbot.
Collapse
Affiliation(s)
- A P Losada
- Department of Veterinary Clinical Sciences, Faculty of Veterinary Science, University of Santiago de Compostela, 27002 Lugo, Spain.
| | - R Bermúdez
- Department of Anatomy and Animal Production, Faculty of Veterinary Science, University of Santiago de Compostela, 27002 Lugo, Spain
| | - L D Faílde
- Department of Veterinary Clinical Sciences, Faculty of Veterinary Science, University of Santiago de Compostela, 27002 Lugo, Spain
| | - A Di Giancamillo
- Department of Health, Animal Science and Food Safety, University of Milan, Milan, Italy
| | - C Domeneghini
- Department of Health, Animal Science and Food Safety, University of Milan, Milan, Italy
| | - M I Quiroga
- Department of Veterinary Clinical Sciences, Faculty of Veterinary Science, University of Santiago de Compostela, 27002 Lugo, Spain
| |
Collapse
|
46
|
Lewis KL, Del Cid N, Traver D. Perspectives on antigen presenting cells in zebrafish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:63-73. [PMID: 24685511 PMCID: PMC4158852 DOI: 10.1016/j.dci.2014.03.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 03/18/2014] [Accepted: 03/19/2014] [Indexed: 05/29/2023]
Abstract
Antigen presentation is a critical step in the activation of naïve T lymphocytes. In mammals, dendritic cells (DCs), macrophages, and B lymphocytes can all function as antigen presenting cells (APCs). Although APCs have been identified in zebrafish, it is unclear if they fulfill similar roles in the initiation of adaptive immunity. Here we review the characterization of zebrafish macrophages, DCs, and B cells and evidence of their function as true APCs. Finally, we discuss the conservation of APC activity in vertebrates and the use of zebrafish to provide a new perspective on the evolution of these functions.
Collapse
Affiliation(s)
- Kanako L Lewis
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Natasha Del Cid
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - David Traver
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, United States.
| |
Collapse
|
47
|
Dickerson HW, Findly RC. Immunity to Ichthyophthirius infections in fish: a synopsis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 43:290-299. [PMID: 23810781 DOI: 10.1016/j.dci.2013.06.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 06/06/2013] [Accepted: 06/06/2013] [Indexed: 06/02/2023]
Abstract
Ichthyophthirius multifiliis is a ciliated protozoan parasite that infects freshwater fish. It has been the subject of both applied and basic research for over 100years, which can be attributed to its world-wide distribution and its significant economic impact on both food and aquarium fish production. I. multifiliis serves as a model for studies in fish on innate and acquired immunity, as well as on mucosal immunity. Although an obligate parasite, I. multifiliis is relatively easily passaged from infected to naïve fish in laboratory aquaria, and is easily observed and manipulated under laboratory conditions. It parasitizes the epithelia of the skin and gills, which facilitates in vivo experimentation and quantification of challenge. This review provides a description of both mucosal and systemic innate and adaptive immune responses to parasite infection, a synopsis of host-parasite immunobiology, vaccine research, and suggested areas for future research to address critical remaining questions. Studies in carp and rainbow trout have shown that extensive tissue damage occurs when the parasite invades the epithelia of the skin and gills and substantial focal and systemic inflammatory responses are elicited by the innate immune response. The adaptive immune response is initiated when phagocytic cells are activated by antigens released by the parasite. It is not known whether activated T and B cells proliferate locally in the skin and gills following infection or migrate to these sites from the spleen or anterior kidney. I. multifiliis infection elicits both mucosal and systemic antibody production. Fish that survive I. multifiliis infection acquire protective immunity. Memory B cells provide long-term humoral memory. This suggests that protective vaccines are theoretically possible, and substantial efforts have been made toward developing vaccines in various fish species. Exposure of fish to controlled surface infections or by intracoelomic injection of live theronts provides protection. Vaccination with purified immobilization antigens, which are GPI-anchored membrane proteins, also provides protection under laboratory conditions and immobilization antigens are currently the most promising candidates for subunit vaccines against I. multifiliis.
Collapse
Affiliation(s)
- H W Dickerson
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA 30602, United States
| | - R C Findly
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA 30602, United States
| |
Collapse
|
48
|
Villota-Herdoiza D, Pila EA, Quiniou S, Waldbieser GC, Magor BG. Transcriptional regulation of teleost Aicda genes. Part 1 - suppressors of promiscuous promoters. FISH & SHELLFISH IMMUNOLOGY 2013; 35:1981-1987. [PMID: 24161771 DOI: 10.1016/j.fsi.2013.09.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 09/30/2013] [Accepted: 09/30/2013] [Indexed: 06/02/2023]
Abstract
In order to better understand antibody affinity maturation in fishes we sought to identify gene regulatory elements that could drive expression of activated B-cell specific fluorescent reporter transgenes in zebrafish. Specifically the promoter and several non-coding regions of the channel catfish (Ictalurus punctatus) and zebrafish (Danio rerio) were tested for transcriptional activity using a dual luciferase reporter system in transfected fish leukocytes and two mammalian cell lines that constitutively express Aicda (activation-induced cytidine deaminase). The promoters of both fish Aicda genes were as transcriptionally active as an SV40 promoter control in all cell lines tested, regardless of the cells ability to express Aicda. Coupling of a putative intron 1 enhancer or a region 10 kb upstream of the zebrafish promoter effectively silenced transcription from the fish Aicda promoter. Paradoxically these suppressor elements enhanced transcription when they were coupled to the mouse Aicda intron 1 enhancer. The results are considered in context of similar observations for Aicda transcriptional regulation in mice and in light of recent evidence that Aicda is utilized for epigenetic reprogramming of several non-lymphoid cell types.
Collapse
Affiliation(s)
- Daniela Villota-Herdoiza
- Dept. of Biological Sciences, University of Alberta, CW405 BioSci Bldg., Edmonton, AB T6G-2E5, Canada.
| | | | | | | | | |
Collapse
|
49
|
Abstract
Teleost fish are among the most ancient vertebrates possessing an adaptive immune system with B and T lymphocytes that produce memory responses to pathogens. Most bony fish, however, have only 2 types of B lymphocytes, in contrast to the 4 types available to mammals. To better understand the evolution of adaptive immunity, we generated transgenic zebrafish in which the major immunoglobulin M (IgM(+)) B-cell subset expresses green fluorescence protein (GFP) (IgM1:eGFP). We discovered that the earliest IgM(+) B cells appear between the dorsal aorta and posterior cardinal vein and also in the kidney around 20 days postfertilization. We also examined B-cell ontogeny in adult IgM1:eGFP;rag2:DsRed animals, where we defined pro-B, pre-B, and immature/mature B cells in the adult kidney. Sites of B-cell development that shift between the embryo and adult have previously been described in birds and mammals. Our results suggest that this developmental shift occurs in all jawed vertebrates. Finally, we used IgM1:eGFP and cd45DsRed;blimp1:eGFP zebrafish to characterize plasma B cells and investigate B-cell function. The IgM1:eGFP reporter fish are the first nonmammalian B-cell reporter animals to be described. They will be important for further investigation of immune cell evolution and development and host-pathogen interactions in zebrafish.
Collapse
|
50
|
Sunyer JO. Fishing for mammalian paradigms in the teleost immune system. Nat Immunol 2013; 14:320-6. [PMID: 23507645 PMCID: PMC4203445 DOI: 10.1038/ni.2549] [Citation(s) in RCA: 184] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 01/17/2013] [Indexed: 02/06/2023]
Abstract
Recent years have witnessed a renaissance in the study of fish immune systems. Such studies have greatly expanded the knowledge of the evolution and diversification of vertebrate immune systems. Several findings in those studies have overturned old paradigms about the immune system and led to the discovery of novel aspects of mammalian immunity. Here I focus on how findings pertaining to immunity in teleost (bony) fish have led to major new insights about mammalian B cell function in innate and adaptive immunity. Additionally, I illustrate how the discovery of the most ancient mucosal immunoglobulin described thus far will help resolve unsettled paradigms of mammalian mucosal immunity.
Collapse
Affiliation(s)
- J Oriol Sunyer
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|