1
|
Schaffer AM, Fiala GJ, Hils M, Natali E, Babrak L, Herr LA, Romero-Mulero MC, Cabezas-Wallscheid N, Rizzi M, Miho E, Schamel WWA, Minguet S. Kidins220 regulates the development of B cells bearing the λ light chain. eLife 2024; 13:e83943. [PMID: 38271217 PMCID: PMC10810608 DOI: 10.7554/elife.83943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/27/2023] [Indexed: 01/27/2024] Open
Abstract
The ratio between κ and λ light chain (LC)-expressing B cells varies considerably between species. We recently identified Kinase D-interacting substrate of 220 kDa (Kidins220) as an interaction partner of the BCR. In vivo ablation of Kidins220 in B cells resulted in a marked reduction of λLC-expressing B cells. Kidins220 knockout B cells fail to open and recombine the genes of the Igl locus, even in genetic scenarios where the Igk genes cannot be rearranged or where the κLC confers autoreactivity. Igk gene recombination and expression in Kidins220-deficient B cells is normal. Kidins220 regulates the development of λLC B cells by enhancing the survival of developing B cells and thereby extending the time-window in which the Igl locus opens and the genes are rearranged and transcribed. Further, our data suggest that Kidins220 guarantees optimal pre-BCR and BCR signaling to induce Igl locus opening and gene recombination during B cell development and receptor editing.
Collapse
Affiliation(s)
- Anna-Maria Schaffer
- Faculty of Biology, Albert-Ludwigs-University of FreiburgFreiburgGermany
- Signalling Research Centers BIOSS and CIBSS, University of FreiburgFreiburgGermany
- Center of Chronic Immunodeficiency CCI, University Clinics and Medical FacultyFreiburgGermany
| | - Gina Jasmin Fiala
- Faculty of Biology, Albert-Ludwigs-University of FreiburgFreiburgGermany
- Signalling Research Centers BIOSS and CIBSS, University of FreiburgFreiburgGermany
- Center of Chronic Immunodeficiency CCI, University Clinics and Medical FacultyFreiburgGermany
| | - Miriam Hils
- Faculty of Biology, Albert-Ludwigs-University of FreiburgFreiburgGermany
- Center of Chronic Immunodeficiency CCI, University Clinics and Medical FacultyFreiburgGermany
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University of MunichMunichGermany
| | - Eriberto Natali
- Institute of Medical Engineering and Medical Informatics, School of Life Sciences, FHNW 15 University of Applied Sciences and Arts Northwestern SwitzerlandMuttenzSwitzerland
| | - Lmar Babrak
- Institute of Medical Engineering and Medical Informatics, School of Life Sciences, FHNW 15 University of Applied Sciences and Arts Northwestern SwitzerlandMuttenzSwitzerland
| | - Laurenz Alexander Herr
- Faculty of Biology, Albert-Ludwigs-University of FreiburgFreiburgGermany
- Signalling Research Centers BIOSS and CIBSS, University of FreiburgFreiburgGermany
- Center of Chronic Immunodeficiency CCI, University Clinics and Medical FacultyFreiburgGermany
| | - Mari Carmen Romero-Mulero
- Faculty of Biology, Albert-Ludwigs-University of FreiburgFreiburgGermany
- Max Planck Institute of Immunobiology and EpigeneticsFreiburgGermany
| | - Nina Cabezas-Wallscheid
- Max Planck Institute of Immunobiology and EpigeneticsFreiburgGermany
- CIBSS – Centre for Integrative Biological Signalling Studies, University of FreiburgFreiburgGermany
| | - Marta Rizzi
- Center of Chronic Immunodeficiency CCI, University Clinics and Medical FacultyFreiburgGermany
- CIBSS – Centre for Integrative Biological Signalling Studies, University of FreiburgFreiburgGermany
- Division of Clinical and Experimental Immunology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of ViennaViennaAustria
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of FreiburgFreiburgGermany
| | - Enkelejda Miho
- Institute of Medical Engineering and Medical Informatics, School of Life Sciences, FHNW 15 University of Applied Sciences and Arts Northwestern SwitzerlandMuttenzSwitzerland
- aiNET GmbHBaselSwitzerland
- SIB Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Wolfgang WA Schamel
- Faculty of Biology, Albert-Ludwigs-University of FreiburgFreiburgGermany
- Signalling Research Centers BIOSS and CIBSS, University of FreiburgFreiburgGermany
- Center of Chronic Immunodeficiency CCI, University Clinics and Medical FacultyFreiburgGermany
| | - Susana Minguet
- Faculty of Biology, Albert-Ludwigs-University of FreiburgFreiburgGermany
- Signalling Research Centers BIOSS and CIBSS, University of FreiburgFreiburgGermany
- Center of Chronic Immunodeficiency CCI, University Clinics and Medical FacultyFreiburgGermany
| |
Collapse
|
2
|
Fernandes AP, OhAinle M, Esteves PJ. Patterns of Evolution of TRIM Genes Highlight the Evolutionary Plasticity of Antiviral Effectors in Mammals. Genome Biol Evol 2023; 15:evad209. [PMID: 37988574 PMCID: PMC10709114 DOI: 10.1093/gbe/evad209] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023] Open
Abstract
The innate immune system of mammals is formed by a complex web of interacting proteins, which together constitute the first barrier of entry for infectious pathogens. Genes from the E3-ubiquitin ligase tripartite motif (TRIM) family have been shown to play an important role in the innate immune system by restricting the activity of different retrovirus species. For example, TRIM5 and TRIM22 have both been associated with HIV restriction and are regarded as crucial parts of the antiretroviral machinery of mammals. Our analyses of positive selection corroborate the great significance of these genes for some groups of mammals. However, we also show that many species lack TRIM5 and TRIM22 altogether. By analyzing a large number of mammalian genomes, here we provide the first comprehensive view of the evolution of these genes in eutherians, showcasing that the pattern of accumulation of TRIM genes has been dissimilar across mammalian orders. Our data suggest that these differences are caused by the evolutionary plasticity of the immune system of eutherians, which have adapted to use different strategies to combat retrovirus infections. Altogether, our results provide insights into the dissimilar evolution of a representative family of restriction factors, highlighting an example of adaptive and idiosyncratic evolution in the innate immune system.
Collapse
Affiliation(s)
- Alexandre P Fernandes
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Molly OhAinle
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, USA
| | - Pedro J Esteves
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| |
Collapse
|
3
|
Vinkler M, Fiddaman SR, Těšický M, O'Connor EA, Savage AE, Lenz TL, Smith AL, Kaufman J, Bolnick DI, Davies CS, Dedić N, Flies AS, Samblás MMG, Henschen AE, Novák K, Palomar G, Raven N, Samaké K, Slade J, Veetil NK, Voukali E, Höglund J, Richardson DS, Westerdahl H. Understanding the evolution of immune genes in jawed vertebrates. J Evol Biol 2023; 36:847-873. [PMID: 37255207 PMCID: PMC10247546 DOI: 10.1111/jeb.14181] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 06/01/2023]
Abstract
Driven by co-evolution with pathogens, host immunity continuously adapts to optimize defence against pathogens within a given environment. Recent advances in genetics, genomics and transcriptomics have enabled a more detailed investigation into how immunogenetic variation shapes the diversity of immune responses seen across domestic and wild animal species. However, a deeper understanding of the diverse molecular mechanisms that shape immunity within and among species is still needed to gain insight into-and generate evolutionary hypotheses on-the ultimate drivers of immunological differences. Here, we discuss current advances in our understanding of molecular evolution underpinning jawed vertebrate immunity. First, we introduce the immunome concept, a framework for characterizing genes involved in immune defence from a comparative perspective, then we outline how immune genes of interest can be identified. Second, we focus on how different selection modes are observed acting across groups of immune genes and propose hypotheses to explain these differences. We then provide an overview of the approaches used so far to study the evolutionary heterogeneity of immune genes on macro and microevolutionary scales. Finally, we discuss some of the current evidence as to how specific pathogens affect the evolution of different groups of immune genes. This review results from the collective discussion on the current key challenges in evolutionary immunology conducted at the ESEB 2021 Online Satellite Symposium: Molecular evolution of the vertebrate immune system, from the lab to natural populations.
Collapse
Affiliation(s)
- Michal Vinkler
- Department of ZoologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | | | - Martin Těšický
- Department of ZoologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | | | - Anna E. Savage
- Department of BiologyUniversity of Central FloridaFloridaOrlandoUSA
| | - Tobias L. Lenz
- Research Unit for Evolutionary ImmunogenomicsDepartment of BiologyUniversity of HamburgHamburgGermany
| | | | - Jim Kaufman
- Institute for Immunology and Infection ResearchUniversity of EdinburghEdinburghUK
- Department of Veterinary MedicineUniversity of CambridgeCambridgeUK
| | - Daniel I. Bolnick
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticutUSA
| | | | - Neira Dedić
- Department of Botany and ZoologyMasaryk UniversityBrnoCzech Republic
| | - Andrew S. Flies
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmaniaAustralia
| | - M. Mercedes Gómez Samblás
- Department of ZoologyFaculty of ScienceCharles UniversityPragueCzech Republic
- Department of ParasitologyUniversity of GranadaGranadaSpain
| | | | - Karel Novák
- Department of Genetics and BreedingInstitute of Animal SciencePragueUhříněvesCzech Republic
| | - Gemma Palomar
- Faculty of BiologyInstitute of Environmental SciencesJagiellonian UniversityKrakówPoland
| | - Nynke Raven
- Department of ScienceEngineering and Build EnvironmentDeakin UniversityVictoriaWaurn PondsAustralia
| | - Kalifa Samaké
- Department of Genetics and MicrobiologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | - Joel Slade
- Department of BiologyCalifornia State UniversityFresnoCaliforniaUSA
| | | | - Eleni Voukali
- Department of ZoologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | - Jacob Höglund
- Department of Ecology and GeneticsUppsala UniversitetUppsalaSweden
| | | | | |
Collapse
|
4
|
Martinez-Barnetche J, Godoy-Lozano EE, Saint Remy-Hernández S, Pacheco-Olvera DL, Téllez-Sosa J, Valdovinos-Torres H, Pastelin-Palacios R, Mena H, Zambrano L, López-Macías C. Characterization of immunoglobulin loci in the gigantic genome of Ambystoma mexicanum. Front Immunol 2023; 14:1039274. [PMID: 36776846 PMCID: PMC9911811 DOI: 10.3389/fimmu.2023.1039274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/06/2023] [Indexed: 01/28/2023] Open
Abstract
Background The axolotl, Ambystoma mexicanum is a unique biological model for complete tissue regeneration. Is a neotenic endangered species and is highly susceptible to environmental stress, including infectious disease. In contrast to other amphibians, the axolotl is particularly vulnerable to certain viral infections. Like other salamanders, the axolotl genome is one of the largest (32 Gb) and the impact of genome size on Ig loci architecture is unknown. To better understand the immune response in axolotl, we aimed to characterize the immunoglobulin loci of A. mexicanum and compare it with other model vertebrates. Methods The most recently published genome sequence of A. mexicanum (V6) was used for alignment-based annotation and manual curation using previously described axolotl Ig sequences or reference sequences from other vertebrates. Gene models were further curated using A. mexicanum spleen RNA-seq data. Human, Xenopus tropicalis, Danio rerio (zebrafish), and eight tetrapod reference genomes were used for comparison. Results Canonical A. mexicanum heavy chain (IGH), lambda (IGL), sigma (IGS), and the putative surrogate light chain (SLC) loci were identified. No kappa locus was found. More than half of the IGHV genes and the IGHF gene are pseudogenes and there is no clan I IGHV genes. Although the IGH locus size is proportional to genome size, we found local size restriction in the IGHM gene and the V gene intergenic distances. In addition, there were V genes with abnormally large V-intron sizes, which correlated with loss of gene functionality. Conclusion The A. mexicanum immunoglobulin loci share the same general genome architecture as most studied tetrapods. Consistent with its large genome, Ig loci are larger; however, local size restrictions indicate evolutionary constraints likely to be imposed by high transcriptional demand of certain Ig genes, as well as the V(D)J recombination over very long genomic distance ranges. The A. mexicanum has undergone an extensive process of Ig gene loss which partially explains a reduced potential repertoire diversity that may contribute to its impaired antibody response.
Collapse
Affiliation(s)
- Jesús Martinez-Barnetche
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico,*Correspondence: Jesús Martinez-Barnetche, ; Constantino López-Macías,
| | | | - Stephanie Saint Remy-Hernández
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, Mexico,Unidad de Investigación Médica en Inmunoquímica, UMAE Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, México City, Mexico
| | - Diana Laura Pacheco-Olvera
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, Mexico,Unidad de Investigación Médica en Inmunoquímica, UMAE Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, México City, Mexico
| | - Juan Téllez-Sosa
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | - Humberto Valdovinos-Torres
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | | | - Horacio Mena
- Laboratorio de Restauración Ecológica, Instituto de Biología. Universidad Nacional Autónoma de México, México City, Mexico
| | - Luis Zambrano
- Laboratorio de Restauración Ecológica, Instituto de Biología. Universidad Nacional Autónoma de México, México City, Mexico
| | - Constantino López-Macías
- Unidad de Investigación Médica en Inmunoquímica, UMAE Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, México City, Mexico,*Correspondence: Jesús Martinez-Barnetche, ; Constantino López-Macías,
| |
Collapse
|
5
|
Peel E, Silver L, Brandies P, Zhu Y, Cheng Y, Hogg CJ, Belov K. Best genome sequencing strategies for annotation of complex immune gene families in wildlife. Gigascience 2022; 11:giac100. [PMID: 36310247 PMCID: PMC9618407 DOI: 10.1093/gigascience/giac100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/10/2022] [Accepted: 09/29/2022] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND The biodiversity crisis and increasing impact of wildlife disease on animal and human health provides impetus for studying immune genes in wildlife. Despite the recent boom in genomes for wildlife species, immune genes are poorly annotated in nonmodel species owing to their high level of polymorphism and complex genomic organisation. Our research over the past decade and a half on Tasmanian devils and koalas highlights the importance of genomics and accurate immune annotations to investigate disease in wildlife. Given this, we have increasingly been asked the minimum levels of genome quality required to effectively annotate immune genes in order to study immunogenetic diversity. Here we set out to answer this question by manually annotating immune genes in 5 marsupial genomes and 1 monotreme genome to determine the impact of sequencing data type, assembly quality, and automated annotation on accurate immune annotation. RESULTS Genome quality is directly linked to our ability to annotate complex immune gene families, with long reads and scaffolding technologies required to reassemble immune gene clusters and elucidate evolution, organisation, and true gene content of the immune repertoire. Draft-quality genomes generated from short reads with HiC or 10× Chromium linked reads were unable to achieve this. Despite mammalian BUSCOv5 scores of up to 94.1% amongst the 6 genomes, automated annotation pipelines incorrectly annotated up to 59% of manually annotated immune genes regardless of assembly quality or method of automated annotation. CONCLUSIONS Our results demonstrate that long reads and scaffolding technologies, alongside manual annotation, are required to accurately study the immune gene repertoire of wildlife species.
Collapse
Affiliation(s)
- Emma Peel
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, University of Sydney, Sydney NSW 2006, Australia
| | - Luke Silver
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Parice Brandies
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Ying Zhu
- Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, Sichuan 610000, China
| | - Yuanyuan Cheng
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Carolyn J Hogg
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, University of Sydney, Sydney NSW 2006, Australia
| | - Katherine Belov
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, University of Sydney, Sydney NSW 2006, Australia
| |
Collapse
|
6
|
Dornburg A, Yoder JA. On the relationship between extant innate immune receptors and the evolutionary origins of jawed vertebrate adaptive immunity. Immunogenetics 2022; 74:111-128. [PMID: 34981186 DOI: 10.1007/s00251-021-01232-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/01/2021] [Indexed: 01/17/2023]
Abstract
For over half a century, deciphering the origins of the genomic loci that form the jawed vertebrate adaptive immune response has been a major topic in comparative immunogenetics. Vertebrate adaptive immunity relies on an extensive and highly diverse repertoire of tandem arrays of variable (V), diversity (D), and joining (J) gene segments that recombine to produce different immunoglobulin (Ig) and T cell receptor (TCR) genes. The current consensus is that a recombination-activating gene (RAG)-like transposon invaded an exon of an ancient innate immune VJ-bearing receptor, giving rise to the extant diversity of Ig and TCR loci across jawed vertebrates. However, a model for the evolutionary relationships between extant non-recombining innate immune receptors and the V(D)J receptors of the jawed vertebrate adaptive immune system has only recently begun to come into focus. In this review, we provide an overview of non-recombining VJ genes, including CD8β, CD79b, natural cytotoxicity receptor 3 (NCR3/NKp30), putative remnants of an antigen receptor precursor (PRARPs), and the multigene family of signal-regulatory proteins (SIRPs), that play a wide range of roles in immune function. We then focus in detail on the VJ-containing novel immune-type receptors (NITRs) from ray-finned fishes, as recent work has indicated that these genes are at least 50 million years older than originally thought. We conclude by providing a conceptual model of the evolutionary origins and phylogenetic distribution of known VJ-containing innate immune receptors, highlighting opportunities for future comparative research that are empowered by this emerging evolutionary perspective.
Collapse
Affiliation(s)
- Alex Dornburg
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA.
| | - Jeffrey A Yoder
- Department of Molecular Biomedical Sciences, North Carolina State University, 1060 William Moore Drive, Raleigh, NC, USA.
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA.
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
7
|
Karachaliou CE, Vassilakopoulou V, Livaniou E. IgY technology: Methods for developing and evaluating avian immunoglobulins for the in vitro detection of biomolecules. World J Methodol 2021; 11:243-262. [PMID: 34631482 PMCID: PMC8472547 DOI: 10.5662/wjm.v11.i5.243] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/10/2021] [Accepted: 07/13/2021] [Indexed: 02/06/2023] Open
Abstract
The term “IgY technology” was introduced in the literature in the mid 1990s to describe a procedure involving immunization of avian species, mainly laying hens and consequent isolation of the polyclonal IgYs from the “immune” egg yolk (thus avoiding bleeding and animal stress). IgYs have been applied to various fields of medicine and biotechnology. The present article will deal with specific aspects of IgY technology, focusing on the currently reported methods for developing, isolating, evaluating and storing polyclonal IgYs. Other topics such as current information on isolation protocols or evaluation of IgYs from different avian species are also discussed. Specific advantages of IgY technology (e.g., novel antibody specificities that may emerge via the avian immune system) will also be discussed. Recent in vitro applications of polyclonal egg yolk-derived IgYs to the field of disease diagnosis in human and veterinary medicine through in vitro immunodetection of target biomolecules will be presented. Moreover, ethical aspects associated with animal well-being as well as new promising approaches that are relevant to the original IgY technology (e.g., development of monoclonal IgYs and IgY-like antibodies through the phage display technique or in transgenic chickens) and future prospects in the area will also be mentioned.
Collapse
Affiliation(s)
- Chrysoula-Evangelia Karachaliou
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research “Demokritos”, Athens 15310, Greece
| | - Vyronia Vassilakopoulou
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research “Demokritos”, Athens 15310, Greece
| | - Evangelia Livaniou
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research “Demokritos”, Athens 15310, Greece
| |
Collapse
|
8
|
Yoshinaga K, Oshio H, Prasetio B, Hayashida H, Maeda E, Matsumoto M. Four immunoglobulin isotypes and IgD splice variants in urodele amphibians. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 116:103963. [PMID: 33301796 DOI: 10.1016/j.dci.2020.103963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/21/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
Until recently, different families of urodele amphibians were thought to express distinct subsets of immunoglobulin (Ig) isotypes. In this study, we explored cDNAs encoding Ig heavy-chains (H-chains) in three species of urodele amphibians. We found that Cynops pyrrhogaster, Pleurodeles waltl, and Ambystoma mexicanum each carry genes encoding four Ig H-chain isotypes, including IgM, IgY, IgD, and IgX, similar to those found in anuran amphibians. We also found that urodele IgDs have a long constant region similar to those found in anuran, reptiles, and bony fishes. We also found several putative IgD splice variants. Our findings indicated that P. waltl IgP is not a novel isotype but an IgD splice variant. Altogether, our findings indicate that IgD splice variants may be universally expressed among amphibian species.
Collapse
Affiliation(s)
- Keisuke Yoshinaga
- Department of Biological and Chemical Systems Engineering, National Institute of Technology, Kumamoto College, Hirayama Shin-Machi 2627, Yatsushiro, Kumamoto, 866-8501, Japan.
| | - Hiroto Oshio
- Department of Biological and Chemical Systems Engineering, National Institute of Technology, Kumamoto College, Hirayama Shin-Machi 2627, Yatsushiro, Kumamoto, 866-8501, Japan
| | - Billy Prasetio
- Department of Biological and Chemical Systems Engineering, National Institute of Technology, Kumamoto College, Hirayama Shin-Machi 2627, Yatsushiro, Kumamoto, 866-8501, Japan
| | - Haruka Hayashida
- Department of Biological and Chemical Systems Engineering, National Institute of Technology, Kumamoto College, Hirayama Shin-Machi 2627, Yatsushiro, Kumamoto, 866-8501, Japan
| | - Eriko Maeda
- Department of Biological and Chemical Systems Engineering, National Institute of Technology, Kumamoto College, Hirayama Shin-Machi 2627, Yatsushiro, Kumamoto, 866-8501, Japan
| | - Mizuki Matsumoto
- Department of Biological and Chemical Systems Engineering, National Institute of Technology, Kumamoto College, Hirayama Shin-Machi 2627, Yatsushiro, Kumamoto, 866-8501, Japan
| |
Collapse
|
9
|
Raposo AC, Lebrilla CB, Portela RW, Goonatilleke E, Neto FAD, Oriá AP. The proteomics of roadside hawk (Rupornis magnirostris), broad-snouted caiman (Caiman latirostris) and loggerhead sea turtle (Caretta caretta) tears. BMC Vet Res 2020; 16:276. [PMID: 32767984 PMCID: PMC7412644 DOI: 10.1186/s12917-020-02495-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/27/2020] [Indexed: 12/26/2022] Open
Abstract
Background Tears play an important role in ocular surface protection, and help wild animals maintain visual acuity in the face of air and water friction. The proteomics of tears has only been described for mammals. The knowledge of the proteomics of wild animal tears can aid not only in the setting of normal standards for ocular disease studies in these animals, but also to base the search for new molecules to be used in ophthalmology therapeutics. We therefore set out to describe the proteomic profile of roadside hawk (Rupornis magnirostris), broad-snouted caiman (Caiman latirostris) and loggerhead sea turtle (Caretta caretta) tears. Tears were collected from healthy animals, their spectral profiles were obtained with an LTQ Orbitrap XL mass spectrometer, and the dataset was analyzed against reference taxa. Results For roadside hawk, 446 proteins were identified, the most abundant being albumin, transferrin, globulin and actin. For broad-snouted caiman and loggerhead sea turtle, 1358 and 163 proteins were identified, respectively. Uncharacterized proteins and transferrin were highly abundant in both species. The roadside hawk tear components and their properties were similar to those described for humans, but with a higher albumin concentration. Broad-snouted caiman tears presented a wide diversity of ontological functions, with an abundant presence of enzymatic compounds. In loggerhead sea turtle tears, the predominance of proteins with ion-transport functions was consistent with possible osmolality-maintenance mechanisms. Conclusion These data enhance our understanding of birds and reptiles’ tears microcomposition and may be used to base the discovery of new molecules with high biotechnological potential.
Collapse
Affiliation(s)
- A C Raposo
- School of Veterinary Medicine, Federal University of Bahia, Salvador, 40110-060, Brazil
| | - C B Lebrilla
- Chemistry Department, Mass Spectrometry Facilities Campus, University of California, Davis, CA, 95616-8585, USA
| | - R W Portela
- Institute of Health Sciences, Federal University of Bahia, Salvador, 40110-100, Brazil
| | - E Goonatilleke
- Chemistry Department, Mass Spectrometry Facilities Campus, University of California, Davis, CA, 95616-8585, USA
| | - F A Dórea Neto
- School of Veterinary Medicine, Federal University of Bahia, Salvador, 40110-060, Brazil
| | - A P Oriá
- School of Veterinary Medicine, Federal University of Bahia, Salvador, 40110-060, Brazil.
| |
Collapse
|
10
|
Rego K, Bengtén E, Wilson M, Hansen JD, Bromage ES. Characterization of immunoglobulin light chain utilization and variable family diversity in rainbow trout. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 104:103566. [PMID: 31837380 DOI: 10.1016/j.dci.2019.103566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/22/2019] [Accepted: 12/05/2019] [Indexed: 06/10/2023]
Abstract
This study characterizes immunoglobulin light chain (IgL) expression and variable family usage in rainbow trout. IgL transcripts were generated by 5' RACE from both immune and TNP-KLH immunized fish. Phylogenetic analysis revealed that the IgL variable regions clustered into seven different families: three kappa families (two newly described in this study), three sigma families, and a single lambda family. IgL1 and IgL3 transcripts expressing identical variable regions were identified and genomic analysis revealed that the two isotypes are co-localized on chromosomes 7, 15, 18, and 21 allowing for potential rearrangement between clusters. Fish were immunized with TNP-KLH (n = 5) and percent expression of IgL1, IgL2, IgL3, and IgL4 measured by qRT-PCR from immune tissues and magnetically sorted TNP-specific lymphocyte populations. In all samples IgL1 constituted 80-95% of the transcripts. The percentage of anti-TNP specific IgL1 transcripts was measured in naïve, unsorted, and TNP-specific cell populations of TNP-KLH fish (n = 3) and found to be significantly higher in the TNP positive cell population (21%) compared to the naïve population (1%; p = 0.02) suggesting that there is a selection of TNP specific IgL sequences.
Collapse
Affiliation(s)
- Katherine Rego
- Department of Biology University of Massachusetts Dartmouth, North Dartmouth, MA, USA
| | - Eva Bengtén
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Melanie Wilson
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS, USA
| | - John D Hansen
- US Geological Survey, Western Fisheries Research Center, Seattle, WA, USA; Interdisciplinary Program in Pathobiology, University of Washington, Seattle, WA, USA
| | - Erin S Bromage
- Department of Biology University of Massachusetts Dartmouth, North Dartmouth, MA, USA.
| |
Collapse
|
11
|
Ashford MA, Palackdharry SM, Sadd BM, Bowden RM, Vogel LA. Intestinal B cells in the red-eared slider turtle, Trachemys scripta: Anatomical distribution and implications for ecological interactions with pathogenic microbes. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2019; 331:407-415. [PMID: 31328906 DOI: 10.1002/jez.2307] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/05/2019] [Accepted: 06/13/2019] [Indexed: 12/17/2022]
Abstract
Disease is a significant threat in the global decline of reptile species. Many aquatic reptiles live in habitats with high levels of opportunistic microbial pathogens, yet little is known about their immune system. Gut-associated lymphoid tissue is vital for protection against ingested pathogens and maintenance of normal gut microbiota. In mammals, gut mucosal immunity is well-characterized and mucosal surfaces are coated in protective antibodies. However, reptiles lack lymph nodes and Peyer's patches, which are the major sites of mammalian B cell responses. The presence or distribution of mucosal B cells in reptiles is unknown. In this study, we first set out to determine if B cells could be detected in intestinal tissues of red-eared slider turtles, Trachemys scripta. Using whole-mount immunochemistry and a primary antibody to turtle antibody light chains, we identified widely distributed B cell aggregates within the small intestine of hatchling turtles. These aggregates appeared similar to isolated lymphoid follicles (ILFs) in mammals and the frequency was much higher in distal intestinal sections than in proximal sections. To determine if these structures were inducible in the presence of microbes, we introduced an enteric Salmonella species through oral gavage. Analysis of intestinal tissues revealed that hatchlings exposed to Salmonella exhibited significantly more of these aggregates when compared with those that did not receive bacteria. These studies provide the first evidence for B cell-containing ILF-like structures in reptiles and provide novel information about gut immunity in nonmammalian vertebrates that could have important implications for ecological interactions with pathogens.
Collapse
Affiliation(s)
- Marc A Ashford
- School of Biological Sciences, Illinois State University, Normal, IIlinois
| | | | - Ben M Sadd
- School of Biological Sciences, Illinois State University, Normal, IIlinois
| | - Rachel M Bowden
- School of Biological Sciences, Illinois State University, Normal, IIlinois
| | - Laura A Vogel
- School of Biological Sciences, Illinois State University, Normal, IIlinois
| |
Collapse
|
12
|
Development and validation of a bullfrog-immunoaffinity column clean-up for citrinin determination in red yeast rice. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.01.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
13
|
Huang T, Sheng Z, Guan X, Guo L, Cao G. A comprehensive analysis of the genomic organization, expression and phylogeny of immunoglobulin light chain genes in pigeon (Columba livia). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 89:66-72. [PMID: 30096338 DOI: 10.1016/j.dci.2018.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 08/06/2018] [Indexed: 06/08/2023]
Abstract
Previous studies on immunoglobulin light chain (IgL) genes in avian species are limited to Galloanseres, and few studies have investigated IgL genes in Neoaves, which includes most living birds. Based on published genome data, we demonstrate that the pigeon (Columba livia) IgL locus spans approximately 24 kb of DNA and contains twenty Vλ segments located upstream of a single pair of Jλ-Cλ. Among the identified Vλ gene segments, four segments are structurally intact and all four segments are able to recombine with Jλ. Moreover, the four functional Vλ segments are preferentially utilized in VλJλ recombination. Phylogenetic analysis suggests that the presence of the four functional Vλ segments in pigeon was likely generated by gene duplication that occurred after the divergence of pigeon and other birds. Our study provides insight into IgL gene evolution and evolutionary diversity of Ig genes in birds.
Collapse
Affiliation(s)
- Tian Huang
- Henan Engineering Laboratory for Mammary Bioreactor, School of Life Science, Henan University, Kaifeng, 475004, PR China
| | - Zheya Sheng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Xiaoxing Guan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100193, PR China
| | - Linyun Guo
- Henan Engineering Laboratory for Mammary Bioreactor, School of Life Science, Henan University, Kaifeng, 475004, PR China
| | - Gengsheng Cao
- Henan Engineering Laboratory for Mammary Bioreactor, School of Life Science, Henan University, Kaifeng, 475004, PR China.
| |
Collapse
|
14
|
Kalenik BM, Góra-Sochacka A, Stachyra A, Pietrzak M, Kopera E, Fogtman A, Sirko A. Transcriptional response to a prime/boost vaccination of chickens with three vaccine variants based on HA DNA and Pichia-produced HA protein. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 88:8-18. [PMID: 29986836 DOI: 10.1016/j.dci.2018.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 07/01/2018] [Accepted: 07/01/2018] [Indexed: 06/08/2023]
Abstract
Highly pathogenic avian influenza causes severe economic losses and is a potential threat to public health. Better knowledge of the mechanisms of chicken response to the novel types of vaccines against avian influenza might be helpful in their successful implementation into poultry vaccination programs in different countries. This work presents a comprehensive analysis of gene expression response elicited in chicken spleens by a combined DNA/recombinant protein prime/boost vaccination compared to DNA/DNA and protein/protein regimens. All groups of vaccinated chickens displayed changes in spleen transcriptomes in comparison to the control group with 423, 375 and 212 identified differentially expressed genes in protein/protein, DNA/DNA and DNA/protein group, respectively. Genes with most significantly changed expression belong to immune-related categories. Depending on a group, a fraction of 15-34% of up-regulated and a fraction of 15-42% of down-regulated immune-related genes are shared by all groups. Interestingly, the most upregulated genes encode β-defensins, short peptides with antimicrobial activity and immunomodulatory functions. Microarray results were validated with RT-qPCR method, which confirmed differential regulation of the selected immune-related genes. Immune-related differentially expressed genes and metabolic pathways identified in this work are compared to the available literature data on gene expression changes in vaccinated and non-vaccinated chickens after influenza infection.
Collapse
MESH Headings
- Animals
- Chickens
- DNA, Viral/immunology
- Gene Expression Profiling
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/isolation & purification
- Immunization, Secondary/methods
- Immunogenicity, Vaccine/genetics
- Influenza A Virus, H5N1 Subtype/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Influenza in Birds/immunology
- Influenza in Birds/prevention & control
- Influenza in Birds/virology
- Metabolic Networks and Pathways/immunology
- Pichia
- Poultry Diseases/immunology
- Poultry Diseases/prevention & control
- Poultry Diseases/virology
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Recombinant Proteins/isolation & purification
- Spleen/immunology
- Vaccination/methods
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Barbara Małgorzata Kalenik
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Anna Góra-Sochacka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Anna Stachyra
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Maria Pietrzak
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Edyta Kopera
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Anna Fogtman
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Agnieszka Sirko
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland.
| |
Collapse
|
15
|
Collins AM, Watson CT. Immunoglobulin Light Chain Gene Rearrangements, Receptor Editing and the Development of a Self-Tolerant Antibody Repertoire. Front Immunol 2018; 9:2249. [PMID: 30349529 PMCID: PMC6186787 DOI: 10.3389/fimmu.2018.02249] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/10/2018] [Indexed: 11/13/2022] Open
Abstract
Discussion of the antibody repertoire usually emphasizes diversity, but a conspicuous feature of the light chain repertoire is its lack of diversity. The diversity of reported allelic variants of germline light chain genes is also limited, even in well-studied species. In this review, the implications of this lack of diversity are considered. We explore germline and rearranged light chain genes in a variety of species, with a particular focus on human and mouse genes. The importance of the number, organization and orientation of the genes for the control of repertoire development is discussed, and we consider how primary rearrangements and receptor editing together shape the expressed light chain repertoire. The resulting repertoire is dominated by just a handful of IGKV and IGLV genes. It has been hypothesized that an important function of the light chain is to guard against self-reactivity, and the role of secondary rearrangements in this process could explain the genomic organization of the light chain genes. It could also explain why the light chain repertoire is so limited. Heavy and light chain genes may have co-evolved to ensure that suitable light chain partners are usually available for each heavy chain that forms early in B cell development. We suggest that the co-evolved loci of the house mouse often became separated during the inbreeding of laboratory mice, resulting in new pairings of loci that are derived from different sub-species of the house mouse. A resulting vulnerability to self-reactivity could explain at least some mouse models of autoimmune disease.
Collapse
Affiliation(s)
- Andrew M. Collins
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Corey T. Watson
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, United States
| |
Collapse
|
16
|
Papareddy P, Kasetty G, Alyafei S, Smeds E, Salo-Ahen OMH, Hansson SR, Egesten A, Herwald H. An ecoimmunological approach to study evolutionary and ancient links between coagulation, complement and Innate immunity. Virulence 2018; 9:724-737. [PMID: 29473457 PMCID: PMC5955456 DOI: 10.1080/21505594.2018.1441589] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Coagulation, complement, and innate immunity are tightly interwoven and form an alliance that can be traced back to early eukaryotic evolution. Here we employed an ecoimmunological approach using Tissue Factor Pathway Inhibitor (TFPI)-1-derived peptides from the different classes of vertebrates (i.e. fish, reptile, bird, and mammals) and tested whether they can boost killing of various human bacterial pathogens in plasma. We found signs of species-specific conservation and diversification during evolution in these peptides that significantly impact their antibacterial activity. Though all peptides tested executed bactericidal activity in mammalian plasma (with the exception of rodents), no killing was observed in plasma from birds, reptiles, and fish, pointing to a crucial role for the classical pathway of the complement system. We also observed an interference of these peptides with the human intrinsic pathway of coagulation though, unlike complement activation, this mechanism appears not to be evolutionary conserved.
Collapse
Affiliation(s)
- Praveen Papareddy
- a Division of Infection Medicine, Department of Clinical Sciences , Lund University, Biomedical Center , Tornavägen 10, SE Lund , Sweden
| | - Gopinath Kasetty
- b Division of Respiratory Medicine and Allergology, Department of Clinical Sciences , Lund University, Biomedical Center , Tornavägen 10, SE Lund , Sweden
| | - Saud Alyafei
- a Division of Infection Medicine, Department of Clinical Sciences , Lund University, Biomedical Center , Tornavägen 10, SE Lund , Sweden
| | - Emanuel Smeds
- a Division of Infection Medicine, Department of Clinical Sciences , Lund University, Biomedical Center , Tornavägen 10, SE Lund , Sweden
| | - Outi M H Salo-Ahen
- c Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Pharmacy, Åbo Akademi University , Tykistökatu 6A, FIN Turku , Finland.,d Structural Bioinformatics Laboratory, Faculty of Science and Engineering, Biochemistry, Åbo Akademi University , Tykistökatu 6A, FIN Turku , Finland
| | - Stefan R Hansson
- e Division of Obstetrics and Gynecology, Department of Clinical Sciences , Lund University, Biomedical Center , Tornavägen 10, SE Lund , Sweden
| | - Arne Egesten
- b Division of Respiratory Medicine and Allergology, Department of Clinical Sciences , Lund University, Biomedical Center , Tornavägen 10, SE Lund , Sweden
| | - Heiko Herwald
- a Division of Infection Medicine, Department of Clinical Sciences , Lund University, Biomedical Center , Tornavägen 10, SE Lund , Sweden
| |
Collapse
|
17
|
Huang T, Wang X, Si R, Chi H, Han B, Han H, Cao G, Zhao Y. Identification of a Transcriptionally Forward α Gene and Two υ Genes within the Pigeon ( Columba livia) IgH Gene Locus. THE JOURNAL OF IMMUNOLOGY 2018; 200:3720-3728. [PMID: 29686053 DOI: 10.4049/jimmunol.1701768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/27/2018] [Indexed: 11/19/2022]
Abstract
Compared with mammals, the bird Ig genetic system relies on gene conversion to create an Ab repertoire, with inversion of the IgA-encoding gene and very few cases of Ig subclass diversification. Although gene conversion has been studied intensively, class-switch recombination, a mechanism by which the IgH C region is exchanged, has rarely been investigated in birds. In this study, based on the published genome of pigeon (Columba livia) and high-throughput transcriptome sequencing of immune-related tissues, we identified a transcriptionally forward α gene and found that the pigeon IgH gene locus is arranged as μ-α-υ1-υ2. In this article, we show that both DNA deletion and inversion may result from IgA and IgY class switching, and similar junction patterns were observed for both types of class-switch recombination. We also identified two subclasses of υ genes in pigeon, which share low sequence identity. Phylogenetic analysis suggests that divergence of the two pigeon υ genes occurred during the early stage of bird evolution. The data obtained in this study provide new insight into class-switch recombination and Ig gene evolution in birds.
Collapse
Affiliation(s)
- Tian Huang
- Henan Engineering Laboratory for Mammary Bioreactor, School of Life Science, Henan University, Kaifeng 475004, People's Republic of China
| | - Xifeng Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100193, People's Republic of China; and
| | - Run Si
- Henan Engineering Laboratory for Mammary Bioreactor, School of Life Science, Henan University, Kaifeng 475004, People's Republic of China
| | - Hao Chi
- Henan Engineering Laboratory for Mammary Bioreactor, School of Life Science, Henan University, Kaifeng 475004, People's Republic of China
| | - Binyue Han
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, People's Republic of China
| | - Haitang Han
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, People's Republic of China
| | - Gengsheng Cao
- Henan Engineering Laboratory for Mammary Bioreactor, School of Life Science, Henan University, Kaifeng 475004, People's Republic of China;
| | - Yaofeng Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, People's Republic of China
| |
Collapse
|
18
|
Martin J, Ponstingl H, Lefranc MP, Archer J, Sargan D, Bradley A. Comprehensive annotation and evolutionary insights into the canine (Canis lupus familiaris) antigen receptor loci. Immunogenetics 2017; 70:223-236. [PMID: 28924718 PMCID: PMC5871656 DOI: 10.1007/s00251-017-1028-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/12/2017] [Indexed: 12/11/2022]
Abstract
Dogs are an excellent model for human disease. For example, the treatment of canine lymphoma has been predictive of the human response to that treatment. However, an incomplete picture of canine (Canis lupus familiaris) immunoglobulin (IG) and T cell receptor (TR)-or antigen receptor (AR)-gene loci has restricted their utility. This work advances the annotation of the canine AR loci and looks into breed-specific features of the loci. Bioinformatic analysis of unbiased RNA sequence data was used to complete the annotation of the canine AR genes. This annotation was used to query 107 whole genome sequences from 19 breeds and identified over 5500 alleles across the 550 genes of the seven AR loci: the IG heavy, kappa, and lambda loci; and the TR alpha, beta, gamma, and delta loci. Of note was the discovery that half of the IGK variable (V) genes were located downstream of, and inverted with respect to, the rest of the locus. Analysis of the germline sequences of all the AR V genes identified greater conservation between dog and human than mouse with either. This work brings our understanding of the genetic diversity and expression of AR in dogs to the same completeness as that of mice and men, making it the third species to have all AR loci comprehensively and accurately annotated. The large number of germline sequences serves as a reference for future studies, and has allowed statistically powerful conclusions to be drawn on the pressures that have shaped these loci.
Collapse
Affiliation(s)
- Jolyon Martin
- Wellcome Trust Sanger Institute, Hinxton, UK.
- University of Cambridge, Cambridge, UK.
| | | | | | | | | | | |
Collapse
|
19
|
|
20
|
Flies AS, Blackburn NB, Lyons AB, Hayball JD, Woods GM. Comparative Analysis of Immune Checkpoint Molecules and Their Potential Role in the Transmissible Tasmanian Devil Facial Tumor Disease. Front Immunol 2017; 8:513. [PMID: 28515726 PMCID: PMC5413580 DOI: 10.3389/fimmu.2017.00513] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 04/18/2017] [Indexed: 12/13/2022] Open
Abstract
Immune checkpoint molecules function as a system of checks and balances that enhance or inhibit immune responses to infectious agents, foreign tissues, and cancerous cells. Immunotherapies that target immune checkpoint molecules, particularly the inhibitory molecules programmed cell death 1 and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), have revolutionized human oncology in recent years, yet little is known about these key immune signaling molecules in species other than primates and rodents. The Tasmanian devil facial tumor disease is caused by transmissible cancers that have resulted in a massive decline in the wild Tasmanian devil population. We have recently demonstrated that the inhibitory checkpoint molecule PD-L1 is upregulated on Tasmanian devil (Sarcophilus harrisii) facial tumor cells in response to the interferon-gamma cytokine. As this could play a role in immune evasion by tumor cells, we performed a thorough comparative analysis of checkpoint molecule protein sequences among Tasmanian devils and eight other species. We report that many of the key signaling motifs and ligand-binding sites in the checkpoint molecules are highly conserved across the estimated 162 million years of evolution since the last common ancestor of placental and non-placental mammals. Specifically, we discovered that the CTLA-4 (MYPPPY) ligand-binding motif and the CTLA-4 (GVYVKM) inhibitory domain are completely conserved across all nine species used in our comparative analysis, suggesting that the function of CTLA-4 is likely conserved in these species. We also found that cysteine residues for intra- and intermolecular disulfide bonds were also highly conserved. For instance, all 20 cysteine residues involved in disulfide bonds in the human 4-1BB molecule were also present in devil 4-1BB. Although many key sequences were conserved, we have also identified immunoreceptor tyrosine-based inhibitory motifs (ITIMs) and immunoreceptor tyrosine-based switch motifs (ITSMs) in genes and protein domains that have not been previously reported in any species. This checkpoint molecule analysis and review of salient features for each of the molecules presented here can serve as road map for the development of a Tasmanian devil facial tumor disease immunotherapy. Finally, the strategies can be used as a guide for veterinarians, ecologists, and other researchers willing to venture into the nascent field of wild immunology.
Collapse
Affiliation(s)
- Andrew S. Flies
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
- Department of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Nicholas B. Blackburn
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
- School of Medicine, South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Alan Bruce Lyons
- School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - John D. Hayball
- Department of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Gregory M. Woods
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
21
|
Zhang N, Zhang XJ, Chen DD, Oriol Sunyer J, Zhang YA. Molecular characterization and expression analysis of three subclasses of IgT in rainbow trout (Oncorhynchus mykiss). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 70:94-105. [PMID: 28062226 PMCID: PMC5701746 DOI: 10.1016/j.dci.2017.01.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/02/2017] [Accepted: 01/02/2017] [Indexed: 05/21/2023]
Abstract
As the teleost specific immunoglobulin, IgT plays important roles in systemic and mucosal immunity. In the current study, in rainbow trout, we have cloned the heavy chain (Igτ) genes of a secretory form of IgT2 as well as the membrane and secretory forms of a third IgT subclass, termed IgT3. Conserved cysteine and tryptophan residues that are crucial for the folding of the immunoglobulin domain as well as hydrophobic and hydrophilic residues within CART motif were identified in all IgT subclasses. Through analysis of the rainbow trout genome assembly, Igτ3 gene was found localized upstream of Igτ1 gene, while Igτ2 gene situated on another scaffold. At the transcriptional level, Igτ1 was mainly expressed in both systemic and mucosal lymphoid tissues, while Igτ2 was largely expressed in systemic lymphoid organs. After LPS and poly (I:C) treatment, Igτ1 and Igτ2 genes exhibited different expression profiles. Interestingly the transcriptional level of Igτ3 was negligible, although its protein product could be identified in trout serum. Importantly, a previously reported monoclonal antibody directed against trout IgT1 was able to recognize IgT2 and IgT3. These data demonstrate that there exist three subclasses of IgT in rainbow trout, and that their heavy chain genes display different expression patterns during stimulation. Overall, our data reflect the diversity and complexity of immunoglobulin in trout, thus provide a better understanding of the IgT system in the immune response of teleost fish.
Collapse
Affiliation(s)
- Nu Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xu-Jie Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Dan-Dan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - J Oriol Sunyer
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Yong-An Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
22
|
Akula S, Hellman L. The Appearance and Diversification of Receptors for IgM During Vertebrate Evolution. Curr Top Microbiol Immunol 2017; 408:1-23. [PMID: 28884191 DOI: 10.1007/82_2017_22] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Three different receptors that interact with the constant domains of IgM have been identified: the polymeric immunoglobulin (Ig) receptor (PIGR), the dual receptor for IgA/IgM (FcαµR) and the IgM receptor (FcµR). All of them are related in structure and located in the same chromosomal region in mammals. The functions of the PIGRs are to transport IgM and IgA into the intestinal lumen and to saliva and tears, whereas the FcαµRs enhance uptake of immune complexes and antibody coated bacteria and viruses by B220+ B cells and phagocytes, as well as dampening the Ig response to thymus-independent antigens. The FcµRs have broad-spectrum effects on B-cell development including effects on IgM homeostasis, B-cell survival, humoral immune responses and also in autoantibody formation. The PIGR is the first of these receptors to appear during vertebrate evolution and is found in bony fish and all tetrapods but not in cartilaginous fish. The FcµR is present in all extant mammalian lineages and also in the Chinese and American alligators, suggesting its appearance with early reptiles. Currently the FcαµR has only been found in mammals and is most likely the evolutionary youngest of the three receptors. In bony fish, the PIGR has either 2, 3, 4, 5 or 6 extracellular Ig-like domains, whereas in amphibians, reptiles and birds it has 4 domains, and 5 in all mammals. The increase in domain number from 4 to 5 in mammals has been proposed to enhance the interaction with IgA. Both the FcαµRs and the FcµRs contain only one Ig domain; the domain that confers Ig binding. In both of these receptors this domain shows the highest degree of sequence similarity to domain 1 of the PIGR. All Ig domains of these three receptors are V type domains, indicating they all have the same origin although they have diversified extensively in function during vertebrate evolution by changing expression patterns and cytoplasmic signaling motifs.
Collapse
Affiliation(s)
- Srinivas Akula
- Department of Cell and Molecular Biology, Uppsala University, The Biomedical Center, Box 596, 751 24, Uppsala, Sweden
| | - Lars Hellman
- Department of Cell and Molecular Biology, Uppsala University, The Biomedical Center, Box 596, 751 24, Uppsala, Sweden.
| |
Collapse
|
23
|
Abstract
For effective adaptive immunity to foreign antigens (Ag), secondary lymphoid organs (SLO) provide the confined environment in which Ag-restricted lymphocytes, with very low precursor frequencies, interact with Ag on Ag-presenting cells (APC). The spleen is the primordial SLO, arising in conjunction with adaptive immunity in early jawed vertebrates. The spleen, especially the spleen's lymphoid compartment, the white pulp (WP), has undergone numerous modifications over evolutionary time. We describe the progressive advancement of splenic WP complexity, which evolved in parallel with the increasing functionality of adaptive immunity. The Ag-presenting function of follicular dendritic cells (FDC) also likely emerged at the inception of adaptive immunity, and we propose that a single type of hematopoietically derived APC displayed Ag to both T and B cells. A dedicated FDC, derived from a vascular precursor, is a recent evolutionary innovation that likely permitted the robust affinity maturation found in mammals.
Collapse
Affiliation(s)
- Harold R Neely
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Martin F Flajnik
- Department of Microbiology and Immunology, University of Maryland, Baltimore, Maryland 21201;
| |
Collapse
|
24
|
Sinkora M, Butler JE. Progress in the use of swine in developmental immunology of B and T lymphocytes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 58:1-17. [PMID: 26708608 DOI: 10.1016/j.dci.2015.12.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/03/2015] [Accepted: 12/03/2015] [Indexed: 06/05/2023]
Abstract
The adaptive immune system of higher vertebrates is believed to have evolved to counter the ability of pathogens to avoid expulsion because their high rate of germline mutations. Vertebrates developed this adaptive immune response through the evolution of lymphocytes capable of somatic generation of a diverse repertoire of their antigenic receptors without the need to increase the frequency of germline mutation. The focus of our research and this article is on the ontogenetic development of the lymphocytes, and the repertoires they generate in swine. Several features are discussed including (a) the "closed" porcine placenta means that de novo fetal development can be studied for 114 days without passive influence from the mother, (b) newborn piglets are precocial permitting them to be reared without their mothers in germ-free isolators, (c) swine are members of the γδ-high group of mammals and thus provides a greater opportunity to characterize the role of γδ T cells and (d) because swine have a simplified variable heavy and light chain genome they offer a convenient system to study antibody repertoire development.
Collapse
Affiliation(s)
- Marek Sinkora
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Novy Hradek, Czech Republic.
| | - John E Butler
- Department of Microbiology, The University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
25
|
Estevez O, Garet E, Olivieri D, Gambón-Deza F. Amphibians have immunoglobulins similar to ancestral IgD and IgA from Amniotes. Mol Immunol 2016; 69:52-61. [DOI: 10.1016/j.molimm.2015.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 11/06/2015] [Accepted: 11/11/2015] [Indexed: 01/03/2023]
|
26
|
Characterization of antibody V segment diversity in the Tasmanian devil (Sarcophilus harrisii). Vet Immunol Immunopathol 2015; 167:156-65. [DOI: 10.1016/j.vetimm.2015.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/25/2015] [Accepted: 08/06/2015] [Indexed: 10/23/2022]
|
27
|
Hausmann JC, Cray C, Hartup BK. Comparison of Serum Protein Electrophoresis Values in Wild and Captive Whooping Cranes (Grus americana). J Avian Med Surg 2015; 29:192-9. [DOI: 10.1647/2014-046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
28
|
Slack E, Balmer ML, Macpherson AJ. B cells as a critical node in the microbiota-host immune system network. Immunol Rev 2015; 260:50-66. [PMID: 24942681 DOI: 10.1111/imr.12179] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mutualism with our intestinal microbiota is a prerequisite for healthy existence. This requires physical separation of the majority of the microbiota from the host (by secreted antimicrobials, mucus, and the intestinal epithelium) and active immune control of the low numbers of microbes that overcome these physical and chemical barriers, even in healthy individuals. In this review, we address how B-cell responses to members of the intestinal microbiota form a robust network with mucus, epithelial integrity, follicular helper T cells, innate immunity, and gut-associated lymphoid tissues to maintain host-microbiota mutualism.
Collapse
Affiliation(s)
- Emma Slack
- Institute for Microbiology, ETH Zürich, Zurich, Switzerland
| | | | | |
Collapse
|
29
|
|
30
|
Nowland MH, Brammer DW, Garcia A, Rush HG. Biology and Diseases of Rabbits. LABORATORY ANIMAL MEDICINE 2015. [PMCID: PMC7150064 DOI: 10.1016/b978-0-12-409527-4.00010-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Beginning in 1931, an inbred rabbit colony was developed at the Phipps Institute for the Study, Treatment and Prevention of Tuberculosis at the University of Pennsylvania. This colony was used to study natural resistance to infection with tuberculosis (Robertson et al., 1966). Other inbred colonies or well-defined breeding colonies were also developed at the University of Illinois College of Medicine Center for Genetics, the Laboratories of the International Health Division of The Rockefeller Foundation, the University of Utrecht in the Netherlands, and Jackson Laboratories. These colonies were moved or closed in the years to follow. Since 1973, the U.S. Department of Agriculture has reported the total number of certain species of animals used by registered research facilities (1997). In 1973, 447,570 rabbits were used in research. There has been an overall decrease in numbers of rabbits used. This decreasing trend started in the mid-1990s. In 2010, 210,172 rabbits were used in research. Despite the overall drop in the number used in research, the rabbit is still a valuable model and tool for many disciplines.
Collapse
|
31
|
Olivieri DN, von Haeften B, Sánchez-Espinel C, Faro J, Gambón-Deza F. Genomic V exons from whole genome shotgun data in reptiles. Immunogenetics 2014; 66:479-92. [DOI: 10.1007/s00251-014-0784-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/23/2014] [Indexed: 10/25/2022]
|
32
|
Coevolution of Mucosal Immunoglobulins and the Polymeric Immunoglobulin Receptor: Evidence That the Commensal Microbiota Provided the Driving Force. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/541537] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Immunoglobulins (Igs) in mucosal secretions contribute to immune homeostasis by limiting access of microbial and environmental antigens to the body proper, maintaining the integrity of the epithelial barrier and shaping the composition of the commensal microbiota. The emergence of IgM in cartilaginous fish represented the primordial mucosal Ig, which is expressed in all higher vertebrates. Expansion and diversification of the mucosal Ig repertoire led to the emergence of IgT in bony fishes, IgX in amphibians, and IgA in reptiles, birds, and mammals. Parallel evolution of cellular receptors for the constant (Fc) regions of Igs provided mechanisms for their transport and immune effector functions. The most ancient of these Fc receptors is the polymeric Ig receptor (pIgR), which first appeared in an ancestor of bony fishes. The pIgR transports polymeric IgM, IgT, IgX, and IgA across epithelial cells into external secretions. Diversification and refinement of the structure of mucosal Igs during tetrapod evolution were paralleled by structural changes in pIgR, culminating in the multifunctional secretory IgA complex in mammals. In this paper, evidence is presented that the mutualistic relationship between the commensal microbiota and the vertebrate host provided the driving force for coevolution of mucosal Igs and pIgR.
Collapse
|
33
|
Zhu L, Yan Z, Feng M, Peng D, Guo Y, Hu X, Ren L, Sun Y. Identification of sturgeon IgD bridges the evolutionary gap between elasmobranchs and teleosts. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 42:138-147. [PMID: 24001581 DOI: 10.1016/j.dci.2013.08.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 08/22/2013] [Accepted: 08/24/2013] [Indexed: 06/02/2023]
Abstract
IgD has been found in almost all jawed vertebrates, including cartilaginous and teleost fish. However, IgD is missing in acipenseriformes, a branch that is evolutionarily positioned between elasmobranchs and teleost fish. Here, by analyzing transcriptome data, we identified a transcriptionally active IgD-encoding gene in the Siberian sturgeon (Acipenser baerii). Phylogenetic analysis indicated that it is orthologous to mammalian IgD and closely related to the IgD of other fish. The lengths of sturgeon membrane-bound IgD transcripts ranged from 1.2kb to 6.2kb, encoding 3-19 CH domains. As in teleosts, the first CH domain of the sturgeon IgD transcript is also derived from μCH1 by RNA splicing. However, the variable region of the expressed sturgeon IgD shows limited V(D)J usage. In addition to IgD, three IgM variants were also identified in this species, whereas no IgT/Z-encoding genes were observed. This study bridges the gap in Ig evolution between elasmobranchs and teleosts and provides significant insight into the early evolution of immunoglobulins.
Collapse
Affiliation(s)
- Lin Zhu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, PR China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Morris K, Prentis PJ, O'Meally D, Pavasovic A, Brown AT, Timms P, Belov K, Polkinghorne A. The koala immunological toolkit: sequence identification and comparison of key markers of the koala (Phascolarctos cinereus) immune response. AUST J ZOOL 2014. [DOI: 10.1071/zo13105] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The koala (Phascolarctos cinereus) is an Australian marsupial that continues to experience significant population declines. Infectious diseases caused by pathogens such as Chlamydia are proposed to have a major role. Very few species-specific immunological reagents are available, severely hindering our ability to respond to the threat of infectious diseases in the koala. In this study, we utilise data from the sequencing of the koala transcriptome to identify key immunological markers of the koala adaptive immune response and cytokines known to be important in the host response to chlamydial infection in other species. This report describes the identification and preliminary sequence analysis of (1) T lymphocyte glycoprotein markers (CD4, CD8); (2) IL-4, a marker for the Th2 response; (3) cytokines such as IL-6, IL-12 and IL-1β, that have been shown to have a role in chlamydial clearance and pathology in other hosts; and (4) the sequences for the koala immunoglobulins, IgA, IgG, IgE and IgM. These sequences will enable the development of a range of immunological reagents for understanding the koala’s innate and adaptive immune responses, while also providing a resource that will enable continued investigations into the origin and evolution of the marsupial immune system.
Collapse
|
35
|
Common Concepts of Immune Defense. Comp Med 2014. [DOI: 10.1007/978-3-7091-1559-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
36
|
Mashoof S, Goodroe A, Du CC, Eubanks JO, Jacobs N, Steiner JM, Tizard I, Suchodolski JS, Criscitiello MF. Ancient T-independence of mucosal IgX/A: gut microbiota unaffected by larval thymectomy in Xenopus laevis. Mucosal Immunol 2013; 6:358-68. [PMID: 22929561 PMCID: PMC3514589 DOI: 10.1038/mi.2012.78] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Many studies address the influence of the gut microbiome on the immune system, but few dissect the effect of T cells on gut microbiota and mucosal responses. We have employed larval thymectomy in Xenopus to study the gut microbiota with and without the influence of T lymphocytes. Pyrosequencing of 16S ribosomal RNA genes was used to assess the relative abundance of bacterial groups present in the stomach, small and large intestine. Clostridiaceae was the most abundant family throughout the gut, while Bacteroidaceae, Enterobacteriaceae, and Flavobacteriaceae also were well represented. Unifrac analysis revealed no differences in microbiota distribution between thymectomized and unoperated frogs. This is consistent with immunization data showing that levels of the mucosal immunoglobulin IgX are not altered significantly by thymectomy. This study in Xenopus represents the oldest organisms that exhibit class switch to a mucosal isotype and is relevant to mammalian immunology, as IgA appears to have evolved from IgX based upon phylogeny, genomic synteny, and function.
Collapse
Affiliation(s)
- Sara Mashoof
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843 USA
| | - Anna Goodroe
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843 USA
| | - Christina C. Du
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843 USA
| | - Jeannine O. Eubanks
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843 USA
| | - Natalie Jacobs
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843 USA
| | - Jörg M. Steiner
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843 USA
| | - Ian Tizard
- Schubot Exotic Bird Health Center, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843 USA
| | - Jan S. Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843 USA
| | - Michael F. Criscitiello
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843 USA
| |
Collapse
|