1
|
McNaught-Flores DA, Chen YC, Arias-Montaño JA, Panula P, Leurs R. Pharmacological characterization of the zebrafish Hrh2a histamine H 2 receptor. Eur J Pharmacol 2024; 981:176870. [PMID: 39117262 DOI: 10.1016/j.ejphar.2024.176870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/08/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
The zebrafish, Danio rerio, is a widely adopted in vivo model that conserves organs such as the liver, kidney, stomach, and brain, being, therefore, suitable for studying human diseases, drug discovery and toxicology. The brain aminergic systems are also conserved and the histamine H1, H2 and H3 receptors were previously cloned and identified in the zebrafish brain. Genome studies identified another putative H2 receptor (Hrh2) with ∼50% sequence identity with H2 receptor orthologs. In this study, we recombinantly expressed both zebrafish H2 receptor paralogs (hrh2a and hrh2b) and compared their pharmacology with the human H2 receptor ortholog. Our results showed that both zebrafish receptors conserve all the class A GPCR motifs. However, in contrast with the Hrh2a paralog, the Hrh2b does not possess all the amino acid residues shown to participate in histamine binding. The zebrafish Hrh2a receptor displays high affinity for [3H]-tiotidine with a binding profile for H2 receptor ligands similar to that of the human H2 receptor. The zebrafish Hrh2a receptor couples to GαS and Gαq/11 proteins, resulting in cAMP accumulation and activation of several reporter genes linked to the Gαq/11 pathway. Additionally, this receptor shows high constitutive activity, with histamine potency in the low nanomolar range for cAMP accumulation and the micromolar range for the activation of the NFAT response element. Moreover, dimaprit and amthamine seem to preferentially activate GαS over Gαq/11 proteins via the zebrafish Hrh2a receptor. These results can contribute to clarifying the functional roles of the H2 receptor in zebrafish.
Collapse
Affiliation(s)
- Daniel A McNaught-Flores
- Amsterdam Institute for Molecules, Medicines, and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, the Netherlands
| | - Yu-Chia Chen
- Department of Anatomy, University of Helsinki, Helsinki, Finland
| | - Jose-Antonio Arias-Montaño
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional 2508, Zacatenco, 07360, Ciudad de México, Mexico
| | - Pertti Panula
- Department of Anatomy, University of Helsinki, Helsinki, Finland
| | - Rob Leurs
- Amsterdam Institute for Molecules, Medicines, and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, the Netherlands.
| |
Collapse
|
2
|
Abdel-Hakeem SS, Fadladdin YAJ, Khormi MA, Abd-El-Hafeez HH. Modulation of the intestinal mucosal and cell-mediated response against natural helminth infection in the African catfish Clarias gariepinus. BMC Vet Res 2024; 20:335. [PMID: 39068442 PMCID: PMC11282724 DOI: 10.1186/s12917-024-04153-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 06/20/2024] [Indexed: 07/30/2024] Open
Abstract
Fish gut is a versatile organ serving as the primary pathway for invasion by pathogens, particularly parasites, playing a crucial role in modulating the intestinal adaptive immune response. This study aimed to investigate the cellular-mediated reaction, mucosal acidity, and the expression of proliferating cell nuclear antigen (PCNA), vascular endothelial growth factor (VEGF), and CD68 in the intestines of catfish, Clarias gariepinus, naturally infected with helminths. Forty catfish were collected from the Nile River and examined for intestinal parasites. The intestinal tissues of the control and infected fish were fixed for histochemical and immunohistochemical studies. Two groups of helminths were found: cestodes Tetracampos ciliotheca and Polyonchobothrium clarias, and nematodes Paracamallanus cyathopharynx, with a prevalence rate of 63.63%, 18.0%, and 18.0%, respectively. Our results showed that the infected fish had a statistically significant rise in the activity of immune cells, including mast cells, eosinophil granular cells, and dendritic cells. This correlated with upregulation in the expressions of PCNA, VEGF, and CD68. Histochemical analyses demonstrated a marked increase in acidic mucus production, Sudan black B, and bromophenol mercury blue. This study enriches our understanding of the evolution of vertebrate immunity in combating intestinal parasitic infections and the host's adaptive responses.
Collapse
Affiliation(s)
- Sara Salah Abdel-Hakeem
- Parasitology Laboratory, Zoology and Entomology Department, Faculty of Science, Assiut University, Assiut, 71526, Egypt.
| | | | - Mohsen A Khormi
- Department of Biology, College of Science, Jazan University, Saudi Arabia, P.O. Box. 114, Jazan, 45142, Kingdom of Saudi Arabia
| | - Hanan H Abd-El-Hafeez
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt.
| |
Collapse
|
3
|
Vicentini M, Simmons D, Silva de Assis HC. How does temperature rise affect a freshwater catfish Rhamdia quelen? A proteomic approach. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 50:101219. [PMID: 38377663 DOI: 10.1016/j.cbd.2024.101219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 02/22/2024]
Abstract
Outside of scientific circles, climate change is a hotly debated topic due to all its consequences. Changes in the temperature can affect aquatic organisms and it is important to understand and to detect earlier signals. This study aimed to analyze how a Neotropical fish species responds to temperature increases, using proteomic analysis as a tool. For this, fish of the species Rhamdia quelen, male and female, were exposed to two temperatures: 25 °C and 30 °C. After 96 h, the animals were anesthetized, euthanized and the liver was collected for proteomic analysis. Using freely available online software and databases (e.g. MetaboAnalyst, Gene Ontology and UniProt), we define the altered proteins in both sexes: 42 in females and 62 in males. Data are available via ProteomeXchange with identifier PXD046475. Differences between the two temperatures were observed mainly in the amino acid metabolic pathways. The cellular process and the immune response was altered, indicating that effects at lower levels of biological organization could serve as a predictor of higher-level effects when temperature rise affects wildlife populations. Thus, we conclude that the increase in temperature is capable of altering important cellular and physiological processes in R. quelen fish, with this response being different for males and females.
Collapse
Affiliation(s)
- Maiara Vicentini
- Ecology and Conservation Post-Graduation Program, Biological Sciences Sector, Federal University of Paraná, Box 19031, 81531-980 Curitiba, PR, Brazil; Pharmacology Department, Federal University of Paraná, Brazil, Box 19031, 81531-980 Curitiba, PR, Brazil. https://twitter.com/maiaravicentini
| | - Denina Simmons
- Faculty of Science, OntarioTech University, 2000 Simcoe St. North, Oshawa, Ontario L1G 0C5, Canada. https://twitter.com/DeninaSimmons
| | | |
Collapse
|
4
|
Stosik M, Tokarz-Deptuła B, Deptuła W. Innate lymphoid cells (ILCs) in teleosts against data on ILCs in humans. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109415. [PMID: 38296004 DOI: 10.1016/j.fsi.2024.109415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/13/2024]
Abstract
It is assumed that cells corresponding to innate lymphoid cells (ILCs) in humans, in addition to lymphoid tissue inducer cells (LTi), are also found in teleosts. In this systematic group of organisms, however, they are a poorly understood cell population. In contrast to the data on ILCs in humans, which also remain incomplete despite advanced research, in teleosts, these cells require much more attention. ILCs in teleosts have been presented as cells that may be evolutionary precursors of NK cells or ILCs identified in mammals, including humans. It is a highly heterogeneous group of cells in both humans and fish and their properties, as revealed by studies in humans, are most likely to remain strictly dependent on the location of these cells and the physiological state of the individual from which they originate. They form a bridge between innate and adaptive immunity. The premise of this paper is to review the current knowledge of ILCs in teleosts, taking into account data on similar cells in humans. A review of the knowledge concerning these particular cells, elements of innate immunity mechanisms as equivalent to, or perhaps dominant over, adaptive immunity mechanisms in teleosts, as presented, may inspire the need for further research.
Collapse
Affiliation(s)
- Michał Stosik
- Institute of Biological Sciences, University of Zielona Góra, Poland
| | | | - Wiesław Deptuła
- Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Poland
| |
Collapse
|
5
|
Sayyaf Dezfuli B, Franchella E, Bernacchia G, De Bastiani M, Lorenzoni F, Carosi A, Lorenzoni M, Bosi G. Infection of endemic chub Squalius tenellus with the intestinal tapeworm Caryophyllaeus brachycollis (Cestoda): histopathology and ultrastructural surveys. Parasitology 2024; 151:157-167. [PMID: 38193283 PMCID: PMC10941047 DOI: 10.1017/s0031182023001233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/22/2023] [Accepted: 11/25/2023] [Indexed: 01/10/2024]
Abstract
The endemic chub Squalius tenellus (Heckel, 1843) was introduced more than 100 years ago to Lake Blidinje (Bosnia-Herzegovina). Only 1 species of enteric helminth was found in a sample of 35 chubs, the tapeworm Caryophyllaeus brachycollis (Janiszewska, 1953). The paper includes histopathological investigation with identification of innate immune cells involved in host reaction and molecular data allowed correct designation of the cestode species. Of 35 specimens of chub examined, 21 (60%) harboured individuals of C. brachycollis and a total of 1619 tapeworms were counted, the intensity of infection ranged from 1 to 390 worms per fish (46.2 ± 15.3, mean ± s.e.). Histopathological and ultrastructural investigations showed strict contact between the worm's body and the epithelia and increase in the number of mucous cells, rodlet cells among the epithelial cells. Within the tunica propria-submucosa, beneath the site of scolex attachment, numerous neutrophils and mast cells were noticed. This is the first study of the occurrence of C. brachycollis in chub from Lake Blidinje and on the response of the innate immune cells of S. tenellus to this tapeworm. Interestingly, in 3 very heavily infected chubs, perforation of the intestinal wall was documented; this is uncommon among cestodes which use fish as a definitive host.
Collapse
Affiliation(s)
- Bahram Sayyaf Dezfuli
- Department of Life Sciences and Biotechnology, University of Ferrara, St. Borsari 46, 44121 Ferrara, Italy
| | - Emanuela Franchella
- Department of Life Sciences and Biotechnology, University of Ferrara, St. Borsari 46, 44121 Ferrara, Italy
| | - Giovanni Bernacchia
- Department of Life Sciences and Biotechnology, University of Ferrara, St. Borsari 46, 44121 Ferrara, Italy
| | - Morena De Bastiani
- Department of Life Sciences and Biotechnology, University of Ferrara, St. Borsari 46, 44121 Ferrara, Italy
| | - Francesca Lorenzoni
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, St. Elce di sotto 5, 06123 Perugia, Italy
| | - Antonella Carosi
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, St. Elce di sotto 5, 06123 Perugia, Italy
| | - Massimo Lorenzoni
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, St. Elce di sotto 5, 06123 Perugia, Italy
| | - Giampaolo Bosi
- Department of Veterinary Medicine and Animal Science, University of Milan, St. of University 6, 26900, Lodi, Italy
| |
Collapse
|
6
|
Liu H, Ma L, Fu J, Ma X, Gao Y, Xie Y, Yuan X, Wang Y, Yang W, Jiang S. Effect of zearalenone on the jejunum of weaned gilts through the Epac1/Rap1/JNK pathway. J Anim Sci 2024; 102:skae208. [PMID: 39051732 PMCID: PMC11367561 DOI: 10.1093/jas/skae208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/23/2024] [Indexed: 07/27/2024] Open
Abstract
Zearalenone (ZEN) is a nonsteroidal estrogenic mycotoxin produced by Fusarium strains that is harmful to the intestinal health of animals and is widely present in contaminated crops. The objective of this study was to investigate the potential therapeutic target of ZEN-induced jejunal damage in weaned gilts. Sixteen weaned gilts either received a basal diet or a basal diet supplemented with 3.0 mg/kg ZEN in a 32-d experiment. The results showed that ZEN at the concentration of 3.0 mg/kg diet activated the inflammatory response and caused oxidative stress of gilts (P < 0.05). ZEN exposure resulted in the upregulation (P < 0.05) of the Exchange protein directly activated by the cAMP 1/Ras-related protein1/c-Jun N-terminal kinase (Epac1/Rap1/JNK) signaling pathway in the jejunum of gilts in vivo and in the intestinal porcine epithelial cells in vitro. The cell viability, EdU-positive cells, and the mRNA expression of B-cell lymphoma-2 (Bcl-2) were decreased, whereas the reactive oxygen species production and the mRNA expressions of Bcl-2-associated X (Bax) and Cysteine-aspartic acid protease 3 (Caspase3) were increased (P < 0.05) by ZEN. However, ZEN increased the mRNA expression of Bcl-2 and decreased the mRNA expressions of Bax and caspase3 (P < 0.05) after the Epac1 was blocked. These results collectively indicated that a 3.0 mg ZEN /kg diet induced jejunal damage via the Epac1/Rap1/JNK signaling pathway.
Collapse
Affiliation(s)
- Heng Liu
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), College of Animal Science and Technology, Shandong Agricultural University, Tai’an 271018, China
| | - Lulu Ma
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), College of Animal Science and Technology, Shandong Agricultural University, Tai’an 271018, China
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jiawei Fu
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), College of Animal Science and Technology, Shandong Agricultural University, Tai’an 271018, China
| | - Xiangyu Ma
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), College of Animal Science and Technology, Shandong Agricultural University, Tai’an 271018, China
| | - Yufei Gao
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), College of Animal Science and Technology, Shandong Agricultural University, Tai’an 271018, China
| | - Yiping Xie
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), College of Animal Science and Technology, Shandong Agricultural University, Tai’an 271018, China
| | - Xuejun Yuan
- College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China
| | - Yuxi Wang
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB, Canada
| | - Weiren Yang
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), College of Animal Science and Technology, Shandong Agricultural University, Tai’an 271018, China
| | - Shuzhen Jiang
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), College of Animal Science and Technology, Shandong Agricultural University, Tai’an 271018, China
| |
Collapse
|
7
|
Sayyaf Dezfuli B, Lorenzoni M, Carosi A, Giari L, Bosi G. Teleost innate immunity, an intricate game between immune cells and parasites of fish organs: who wins, who loses. Front Immunol 2023; 14:1250835. [PMID: 37908358 PMCID: PMC10613888 DOI: 10.3389/fimmu.2023.1250835] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/06/2023] [Indexed: 11/02/2023] Open
Abstract
Fish, comprising over 27,000 species, represent the oldest vertebrate group and possess both innate and adaptive immune systems. The susceptibility of most wild fish to parasitic infections and related diseases is well-established. Among all vertebrates, the digestive tract creates a remarkably favorable and nutrient-rich environment, which, in turn, renders it susceptible to microparasites and macroparasites. Consequently, metazoan parasites emerge as important disease agents, impacting both wild and farmed fish and resulting in substantial economic losses. Given their status as pathogenic organisms, these parasites warrant considerable attention. Helminths, a general term encompassing worms, constitute one of the most important groups of metazoan parasites in fish. This group includes various species of platyhelminthes (digeneans, cestodes), nematodes, and acanthocephalans. In addition, myxozoans, microscopic metazoan endoparasites, are found in water-dwelling invertebrates and vertebrate hosts. It is worth noting that several innate immune cells within the fish alimentary canal and certain visceral organs (e.g., liver, spleen, and gonads) play active roles in the immune response against parasites. These immune cells include macrophages, neutrophils, rodlet cells, and mast cells also known as eosinophilic granular cells. At the site of intestinal infection, helminths often impact mucous cells number and alter mucus composition. This paper presents an overview of the state of the art on the occurrence and characteristics of innate immune cells in the digestive tract and other visceral organs in different fish-parasite systems. The data, coming especially from studies employed immunohistochemical, histopathological, and ultrastructural analyses, provide evidence supporting the involvement of teleost innate immune cells in modulating inflammatory responses to metazoan and protozoan parasitic infections.
Collapse
Affiliation(s)
- Bahram Sayyaf Dezfuli
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Massimo Lorenzoni
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Perugia, Italy
| | - Antonella Carosi
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Perugia, Italy
| | - Luisa Giari
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Giampaolo Bosi
- Department of Veterinary Medicine and Animal Science, University of Milan, Lodi, Italy
| |
Collapse
|
8
|
Lu W, Yu H, Liang Y, Zhai S. Effects of White Fish Meal Replaced by Low-Quality Brown Fish Meal with Compound Additives on Growth Performance and Intestinal Health of Juvenile American Eel ( Anguilla rostrata). Animals (Basel) 2023; 13:2873. [PMID: 37760273 PMCID: PMC10526026 DOI: 10.3390/ani13182873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
With a reduced supply and increased price of white fish meal (WFM), the exploration of a practical strategy to replace WFM is urgent for sustainable eel culture. A 70-day feeding trial was conducted to evaluate the effects of replacing WFM with low-quality brown fish meal (LQBFM) with compound additives (CAs) on the growth performance and intestinal health of juvenile American eels (Anguilla rostrata). The 300 fish (11.02 ± 0.02 g/fish) were randomly distributed in triplicate to four groups (control group, LQBFM20+CAs group, LQBFM30+CAs group and LQBFM40+CAs group). They were fed the diets with LQBFM replacing WFM at 0, 20%, 30% and 40%, respectively. The CAs were a mixture of Macleaya cordata extract, grape seed proanthocyanidins and compound acidifiers; its level in the diets of the trial groups was 0.50%. No significant differences were found in the growth performance between the control and LQBFM20+CAs groups (p > 0.05), whereas those values were significantly decreased in LQBFM30+CAs and LQBFM40+CAs groups (p < 0.05). Compared to the control group, the activity of glutamic-pyruvic transaminase was significantly increased in LQBFM30+CAs and LQBFM40+CAs groups, while lysozyme activity and complement 3 level were significantly decreased in those two groups (p < 0.05). There were decreased antioxidant potential and intestinal morphological indexes in the LQBFM30+CAs and LQBFM40+CAs groups, and no significant differences in those parameters were observed between the control group and LQBFM20+CAs group (p > 0.05). The intestinal microbiota at the phylum level or genus level was beneficially regulated in the LQBFM20+CAs group; similar results were not shown in the LQBFM40+CAs group. In conclusion, with 0.50% CA supplementation in the diet, LQBFM could replace 20% of WFM without detrimental effects on the growth and intestinal health of juvenile American eels and replacing 30% and 40%WFM with LQBFM might exert negative effects on this fish species.
Collapse
Affiliation(s)
| | | | | | - Shaowei Zhai
- Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education, Fisheries College of Jimei University, Xiamen 361021, China; (W.L.); (H.Y.); (Y.L.)
| |
Collapse
|
9
|
Liu Y, Fu X, Huang H, Fan J, Zhou H, Deng J, Tan B. High Dietary Histamine Induces Digestive Tract Oxidative Damage in Juvenile Striped Catfish ( Pangasianodon hypophthalmus). Antioxidants (Basel) 2022; 11:2276. [PMID: 36421462 PMCID: PMC9686954 DOI: 10.3390/antiox11112276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 09/08/2024] Open
Abstract
A 56-day feeding trial investigated the effects of dietary histamine on the antioxidant capacity, gastric and intestinal barrier functions, and growth performance of striped catfish (Pangasianodon hypophthalmus). Seven isonitrogenous (34.0% crude protein) and isolipidic (10.5% crude lipid) diets were formulated with supplemental 0, 15, 30, 60, 120, 240, and 480 mg/kg of histamine, named H0, H15, H30, H60, H120, H240, and H480 group, respectively. Results showed that the weight gain rate, specific growth rate, relative intestinal length in the H240 and H480 groups, and the condition factors in the H480 group were significantly lower than those in the H0 group. Intestinal total antioxidant capacity, peroxidase, catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase activities in the H480 group were significantly lower than those in the H0 group, whereas intestinal malondialdehyde content exhibited the opposite trend. Intestinal complement 3, complement 4, immunoglobulin M, and Recombinant Mucin 2 in the H480 group were significantly lower than those in the H0 group, in contrast to intestinal lipopolysaccharide content. Intestinal IL-10 gene expression in the H480 group was significantly lower than that in the H0 group, whereas the TNF-α, IL-1, IL-6, and IL-8 gene expression exhibited opposite results. Scanning and transmission electron microscopic observation of the gastrointestinal tract revealed severe damage to the gastric mucosa and intestinal epithelium in the H480 group. The abundance of Treponema in the histamine groups was significantly higher than that in the H0 group. These results indicated that high dietary histamine decreases intestinal immunity and antioxidant capacity, inducing digestive tract oxidative damage and ultimately decreasing the growth of striped catfish.
Collapse
Affiliation(s)
- Yu Liu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, China
| | - Xinlangji Fu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, China
| | - Huajing Huang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, China
| | - Jiongting Fan
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, China
| | - Hang Zhou
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, China
| | - Junming Deng
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, China
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Beiping Tan
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, China
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
10
|
Charlie-Silva I, Feitosa NM, Pontes LG, Fernandes BH, Nóbrega RH, Gomes JMM, Prata MNL, Ferraris FK, Melo DC, Conde G, Rodrigues LF, Aracati MF, Corrêa-Junior JD, Manrique WG, Superio J, Garcez AS, Conceição K, Yoshimura TM, Núñez SC, Eto SF, Fernandes DC, Freitas AZ, Ribeiro MS, Nedoluzhko A, Lopes-Ferreira M, Borra RC, Barcellos LJG, Perez AC, Malafaia G, Cunha TM, Belo MAA, Galindo-Villegas J. Plasma proteome responses in zebrafish following λ-carrageenan-Induced inflammation are mediated by PMN leukocytes and correlate highly with their human counterparts. Front Immunol 2022; 13:1019201. [PMID: 36248846 PMCID: PMC9559376 DOI: 10.3389/fimmu.2022.1019201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/09/2022] [Indexed: 11/23/2022] Open
Abstract
Regulation of inflammation is a critical process for maintaining physiological homeostasis. The λ-carrageenan (λ-CGN) is a mucopolysaccharide extracted from the cell wall of red algae (Chondrus crispus) capable of inducing acute intestinal inflammation, which is translated into the production of acute phase reactants secreted into the blood circulation. However, the associated mechanisms in vertebrates are not well understood. Here, we investigated the crucial factors behind the inflammatory milieu of λ-CGN-mediated inflammation administered at 0, 1.75, and 3.5% (v/w) by i.p. injection into the peritoneal cavity of adult zebrafish (ZF) (Danio rerio). We found that polymorphonuclear leukocytes (neutrophils) and lymphocytes infiltrating the ZF peritoneal cavity had short-term persistence. Nevertheless, they generate a strong pattern of inflammation that affects systemically and is enough to produce edema in the cavity. Consistent with these findings, cell infiltration, which causes notable tissue changes, resulted in the overexpression of several acute inflammatory markers at the protein level. Using reversed-phase high-performance liquid chromatography followed by a hybrid linear ion-trap mass spectrometry shotgun proteomic approach, we identified 2938 plasma proteins among the animals injected with PBS and 3.5% λ-CGN. First, the bioinformatic analysis revealed the composition of the plasma proteome. Interestingly, 72 commonly expressed proteins were recorded among the treated and control groups, but, surprisingly, 2830 novel proteins were differentially expressed exclusively in the λ-CGN-induced group. Furthermore, from the commonly expressed proteins, compared to the control group 62 proteins got a significant (p < 0.05) upregulation in the λ-CGN-treated group, while the remaining ten proteins were downregulated. Next, we obtained the major protein-protein interaction networks between hub protein clusters in the blood plasma of the λ-CGN induced group. Moreover, to understand the molecular underpinnings of these effects based on the unveiled protein sets, we performed a bioinformatic structural similarity analysis and generated overlapping 3D reconstructions between ZF and humans during acute inflammation. Biological pathway analysis pointed to the activation and abundance of diverse classical immune and acute phase reactants, several catalytic enzymes, and varied proteins supporting the immune response. Together, this information can be used for testing and finding novel pharmacological targets to treat human intestinal inflammatory diseases.
Collapse
Affiliation(s)
| | - Natália M. Feitosa
- Integrated Laboratory of Translational Bioscience, Institute of Biodiversity and Sustainability, Federal University of Rio de Janeiro, Macaé, Brazil
| | | | - Bianca H. Fernandes
- Laboratório de Controle Genético e Sanitário, Faculdade de Medicina Universidade de São Paulo, São Paulo, Brazil
| | - Rafael H. Nóbrega
- Reproductive and Molecular Biology Group, Department of Morphology, Institute of Biosciences, São Paulo State University, São Paulo, Brazil
| | - Juliana M. M. Gomes
- Transplantation Immunobiology Lab, Department of Immunology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil
| | - Mariana N. L. Prata
- Department of Pharmacology, Instituto de CiênciasBiomédicas-Universidade Federal de Minas Gerais (ICB-UFMG), Belo Horizonte, Brazil
| | - Fausto K. Ferraris
- Department of Pharmacology and Toxicology, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Daniela C. Melo
- Laboratory of Zebrafish from Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Gabriel Conde
- Department of Preventive Veterinary Medicine, São Paulo State University, São Paulo, Brazil
| | - Letícia F. Rodrigues
- Department of Preventive Veterinary Medicine, São Paulo State University, São Paulo, Brazil
| | - Mayumi F. Aracati
- Department of Preventive Veterinary Medicine, São Paulo State University, São Paulo, Brazil
| | - José D. Corrêa-Junior
- Department of Morphology, Instituto de CiênciasBiomédicas-Universidade Federal de Minas Gerais (ICB-UFMG), Belo Horizonte, Brazil
| | - Wilson G. Manrique
- Veterinary College, Federal University of Rondonia, Rolim de Moura, Brazil
| | - Joshua Superio
- Department of Aquaculture, Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | | | - Katia Conceição
- Peptide Biochemistry Laboratory, Universidade Federal de São Paulo (UNIFESP), Sao Jose Dos Campos, Brazil
| | - Tania M. Yoshimura
- Center for Lasers and Applications, Instituto de PesquisasEnergéticas e Nucleares (IPEN-CNEN), Sao Paulo, Brazil
| | - Silvia C. Núñez
- University Brazil, São Paulo, Brazil
- University Brazil, Descalvado, Brazil
| | - Silas F. Eto
- Development and Innovation Laboratory, Center of Innovation and Development, Butantan Institute, São Paulo, Brazil
| | - Dayanne C. Fernandes
- Department of Preventive Veterinary Medicine, São Paulo State University, São Paulo, Brazil
| | - Anderson Z. Freitas
- Center for Lasers and Applications, Instituto de PesquisasEnergéticas e Nucleares (IPEN-CNEN), Sao Paulo, Brazil
| | - Martha S. Ribeiro
- Center for Lasers and Applications, Instituto de PesquisasEnergéticas e Nucleares (IPEN-CNEN), Sao Paulo, Brazil
| | - Artem Nedoluzhko
- Paleogenomics Laboratory, European University at Saint Petersburg, Saint Petersburg, Russia
| | | | - Ricardo C. Borra
- Department of Genetics and Evolution, Federal University of São Carlos, São Paulo, Brazil
| | - Leonardo J. G. Barcellos
- Postgraduate Program in Pharmacology, Federal University of Santa Maria, Rio Grande do Sul, Brazil
- Postgraduate Program in Bioexperimentation. University of Passo Fundo, Rio Grande do Sul, Brazil
| | - Andrea C. Perez
- Department of Pharmacology and Toxicology, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Guilheme Malafaia
- Biological Research Laboratory, Goiano Federal Institute, Urutaí, Brazil
| | - Thiago M. Cunha
- Center of Research in Inflammatory Diseases, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Marco A. A. Belo
- Department of Preventive Veterinary Medicine, São Paulo State University, São Paulo, Brazil
- University Brazil, São Paulo, Brazil
- University Brazil, Descalvado, Brazil
| | - Jorge Galindo-Villegas
- Department of Genomics, Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| |
Collapse
|
11
|
Gashkina NA, Moiseenko TI, Shuman LA, Koroleva IM. Biological responses of whitefish (Coregonus lavaretus L.) to reduced toxic impact: Metal accumulation, haematological, immunological, and histopathological alterations. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113659. [PMID: 35605328 DOI: 10.1016/j.ecoenv.2022.113659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/07/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Bioaccumulation of the main pollutants in the organs of whitefish, as well as their haematological parameters, were examined dynamically over a 40-year period in historically contaminated Lake Imandra. A quantitative histological analysis was performed to assess the physiological state of whitefish and histopathologies of organs, as well as their physiological and biochemical functions in the current period of toxic load decline. Biological reactions of whitefish from the historically contaminated area have been greatly modified in contrast to those of whitefish from the never contaminated area of the lake, and this shift persisted even after approximately 20 years of toxic load decline. First, high antioxidant status supports the body's systems, smoothing over the negative consequences of metal toxicity, phagocytosis and inflammatory reactions. Moreover, the defence mechanism of whitefish from the historically contaminated area actively uses the oxidative systems of nonspecific immunity. Second, the adaptive strategy is aimed at improving gas exchange without compensatory proliferation of gill structure, which increases their functional surface and reduces the distance to the bloodstream, as well as increasing haemoglobin in maturing erythrocytes. Third, the higher efficiency of endo- and phagocytosis was confirmed by detecting increased monocytes and macrophages in the peripheral blood and decreased melano-macrophage centres in the fish kidney. Elevated accumulation of Fe, Cu, and Se may serve a sign of liver pathology, while elevated accumulation of Zn and Co already indicates kidney pathology, which is confirmed by histopathological alterations.
Collapse
Affiliation(s)
- Natalia A Gashkina
- Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, 19 Kosygin St., Moscow 119991, Russia.
| | - Tatyana I Moiseenko
- Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, 19 Kosygin St., Moscow 119991, Russia.
| | - Leonid A Shuman
- Tyumen State University, Lenina Street 25, 625003 Tumen, Russia.
| | - Irina M Koroleva
- Institute of the Industrial Ecology Problems of North, Kola Science Center, Russian Academy of Sciences, Fersmana St. 14a, 184200 Apatity, Russia.
| |
Collapse
|
12
|
Dezfuli BS, Maestri C, Lorenzoni M, Carosi A, Maynard BJ, Bosi G. The impact of Anguillicoloides crassus (Nematoda) on European eel swimbladder: histopathology and relationship between neuroendocrine and immune cells. Parasitology 2021; 148:612-622. [PMID: 33557973 PMCID: PMC10950382 DOI: 10.1017/s0031182021000032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022]
Abstract
The swimbladder functions as a hydrostatic organ in most bony fishes, including the European eel, Anguilla anguilla. Infection by the nematode Anguillicoloides crassus impairs swimbladder function, significantly compromising the success of the eel spawning migration. Swimbladders from 32 yellow eels taken from Lake Trasimeno (Central Italy) were analysed by histopathology- and electron microscopy-based techniques. Sixteen eels (50%) harboured A. crassus in their swimbladders and intensity of infection ranged from 2 to 17 adult nematodes per organ (6.9 ± 1.6, mean ± s.e.). Gross observations of heavily infected swimbladders showed opacity and histological analysis found a papillose aspect to the mucosa and hyperplasia of the lamina propria, muscularis mucosae and submucosa. Inflammation, haemorrhages, dilation of blood vessels and epithelial erosion were common in infected swimbladders. In the epithelium of parasitized swimbladders, many empty spaces and lack of apical junctional complexes were frequent among the gas gland cells. In heavily infected swimbladders, we observed hyperplasia, cellular swelling and abundant vacuolization in the apical portion of the gas gland cells. Numerous mast cells and several macrophage aggregates were noticed in the mucosal layer of infected swimbladders. We found more nervous and endocrine elements immunoreactive to a panel of six rabbit polyclonal antibodies in infected swimbladders compared to uninfected.
Collapse
Affiliation(s)
- Bahram Sayyaf Dezfuli
- Department of Life Sciences and Biotechnology, University of Ferrara, St. Borsari 46, 44121Ferrara, Italy
| | - Chiara Maestri
- Department of Life Sciences and Biotechnology, University of Ferrara, St. Borsari 46, 44121Ferrara, Italy
| | - Massimo Lorenzoni
- Department of Cellular and Environmental Biology, University of Perugia, St. Elce di sotto 5, 06123Perugia, Italy
| | - Antonella Carosi
- Department of Cellular and Environmental Biology, University of Perugia, St. Elce di sotto 5, 06123Perugia, Italy
| | - Barbara J Maynard
- The Institute for Learning and Teaching, Colorado State University, Fort Collins, CO80523, USA
| | - Giampaolo Bosi
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, St. Trentacoste 2, 20134Milan, Italy
| |
Collapse
|
13
|
Arulkumar A, Paramithiotis S, Paramasivam S. Biogenic amines in fresh fish and fishery products and emerging control. AQUACULTURE AND FISHERIES 2021. [DOI: 10.1016/j.aaf.2021.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
14
|
Serna-Duque JA, Esteban MÁ. Effects of inflammation and/or infection on the neuroendocrine control of fish intestinal motility: A review. FISH & SHELLFISH IMMUNOLOGY 2020; 103:342-356. [PMID: 32454211 DOI: 10.1016/j.fsi.2020.05.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/30/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
Food is the largest expense in fish farms. On the other hand, the fish health and wellbeing are determining factors in aquaculture production where nutrition is a vital process for growing animals. In fact, it is important to remember that digestion and nutrition are crucial for animals' physiology. However, digestion is a very complex process in which food is processed to obtain necessary nutrients and central mechanisms of this process require both endocrine and neuronal regulation. In this context, intestinal motility is essential for the absorption of the nutrients (digestive process determining nutrition). An imbalance in the intestinal motility due to an inadequate diet or an infectious process could result in a lower use of the food and inefficiency in obtaining nutrients from food. Very frequently, farmed fish are infected with different pathogenic microorganism and this situation could alter gastrointestinal physiology and, indirectly reduce fish growth. For these reasons, the present review focuses on analysing how different inflammatory molecules or infections can alter conventional modulators of fish intestinal motility.
Collapse
Affiliation(s)
- Jhon A Serna-Duque
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus of International Excellence, Campus Mare Nostrum, University of Murcia, Murcia, Spain
| | - M Ángeles Esteban
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus of International Excellence, Campus Mare Nostrum, University of Murcia, Murcia, Spain.
| |
Collapse
|
15
|
Dezfuli BS, Castaldelli G, Tomaini R, Manera M, DePasquale JA, Bosi G. Challenge for macrophages and mast cells of Chelon ramada to counter an intestinal microparasite, Myxobolus mugchelo (Myxozoa). DISEASES OF AQUATIC ORGANISMS 2020; 138:171-183. [PMID: 32213665 DOI: 10.3354/dao03459] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Thinlip mullet Chelon ramada is the most abundant mullet species found in the Comacchio lagoons (northern Adriatic Sea, Italy). Histological and ultrastructural sections of the intestine of C. ramada showed that over 83% of 48 mullets were infected with the intestinal parasite Myxobolus mugchelo (Myxozoa). In histological sections, plasmodia of M. mugchelo containing mature spores were situated closer to mucosal folds and were surrounded by numerous mast cells (MCs). Mature spores, generally oval in shape, were observed in the paracellular space among the enterocytes or within them. Near the infected epithelial cells, several MCs, rodlet cells and few neutrophils occurred. In intestinal epithelium, large cells resembling macrophages, some with spores of M. mugchelo inside, were observed. These macrophage-like cells were foamy and possessed elongate striated granules. The number of MCs and macrophages in the intestinal epithelium was significantly higher in parasitized fish. In some parasitized intestines, portions of epithelium were displaced by spores, or the spores were observed inside the damaged enterocytes. Immunohistochemical analysis of C. ramada infected or uninfected intestinal tissue revealed the presence of histamine, serotonin (5-HT), leu-enkephalin and inducible-nitric oxide synthase in epithelial macrophages. Several epithelial cells positive to proliferating cell-nuclear antigen were also observed in the proximity of the macrophages. The current study is the first to record the occurrence of intraepithelial macrophages which engulf myxozoan spores. A hypothesis on migration of spores from pancreas via intestinal wall to gut lumen is presented.
Collapse
Affiliation(s)
- B Sayyaf Dezfuli
- Department of Life Sciences & Biotechnology, University of Ferrara, St Borsari 46, 44121 Ferrara, Italy
| | | | | | | | | | | |
Collapse
|
16
|
Sayyaf Dezfuli B, Manera M, Bosi G, Merella P, DePasquale JA, Giari L. Description of epithelial granular cell in catshark spiral intestine: Immunohistochemistry and ultrastructure. J Morphol 2018; 280:205-213. [PMID: 30589112 DOI: 10.1002/jmor.20932] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/22/2018] [Accepted: 11/26/2018] [Indexed: 12/20/2022]
Abstract
We evaluated the histology of the spiral intestine of the blackmouth catshark (Galeus melastomus), a small shark distributed in the eastern Atlantic and Mediterranean Sea basin. Entire digestive tracts of 10 G. melastomus were studied using histochemical, immunohistochemical, and ultrastructural methods. Our studies identified a unique, large granular cell type in the intestinal epithelium. Transmission electron microscopy showed that the epithelial granular cell type made intimate contact, by means of junctional complexes, with adjacent epithelial and mucous cells. Several histochemical staining methods showed that the cytoplasmic granules were strongly eosinophilic. Immunostaining of intestinal sections revealed immunoreactivity of the granular cell to tumor necrosis factor-α (TNF-α) antibody. However, no reactivity to inducible-nitric oxide synthase (i-NOS), interleukin-6 (IL-6), interleukin IL-1β, lysozyme, serotonin 5-HT antibodies was detected.
Collapse
Affiliation(s)
- Bahram Sayyaf Dezfuli
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Maurizio Manera
- Faculty of Biosciences, Food and Environmental Technologies, University of Teramo, Teramo, Italy
| | - Giampaolo Bosi
- Department of Veterinary Sciences and Technologies for Food Safety, Università degli Studi di Milano, Milan, Italy
| | - Paolo Merella
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | | | - Luisa Giari
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
17
|
Sayyaf Dezfuli B, Giari L, Lorenzoni M, Carosi A, Manera M, Bosi G. Pike intestinal reaction to Acanthocephalus lucii (Acanthocephala): immunohistochemical and ultrastructural surveys. Parasit Vectors 2018; 11:424. [PMID: 30012189 PMCID: PMC6048848 DOI: 10.1186/s13071-018-3002-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/06/2018] [Indexed: 12/28/2022] Open
Abstract
Background The Northern pike, Esox lucius, is a large, long-lived, top-predator fish species and occupies a broad range of aquatic environments. This species is on its way to becoming an important model organism and has the potential to contribute new knowledge and a better understanding of ecology and evolutionary biology. Very few studies have been done on the intestinal pathology of pike infected with helminths. The present study details the first Italian record of adult Acanthocephalus lucii reported in the intestine of E. lucius. Results A total of 22 pike from Lake Piediluco (Central Italy) were examined, of which 16 (72.7%) were infected with A. lucii. The most affected areas of gastrointestinal tract were the medium and distal intestine. The intensity of infection ranged from 1 to 18 parasites per host. Acanthocephalus lucii penetrated mucosal and submucosal layers which had a high number of mast cells (MCs) with an intense degranulation. The cellular elements involved in the immune response within the intestine of pike were assessed by ultrastructural techniques and immunohistochemistry using antibodies against met-enkephalin, immunoglobulin E (IgE)-like receptor (FCεRIγ), histamine, interleukin-6, interleukin-1β, substance P, lysozyme, serotonin, inducible-nitric oxide synthase (i-NOS), tumor necrosis factor-α (TNF-α) and the antimicrobial peptide piscidin 3 (P3). In intestines of the pike, several MCs were immunopositive to 9 out of the 11 aforementioned antibodies and infected fish had a higher number of positive MCs when compared to uninfected fish. Conclusions Pike intestinal tissue response to A. lucii was documented. Numerous MCs were seen throughout the mucosa and submucosal layers. In infected and uninfected intestines of pike, MCs were the dominant immune cell type encountered; they are the most common granulocyte type involved in several fish-helminth systems. Immunopositivity of MCs to 9 out of 11 antibodies is of great interest and these cells could play an important key role in the host response to an enteric helminth. This is the first report of A. lucii in an Italian population of E. lucius and the first account on positivity of MCs to piscidin 3 and histamine in a non-perciform fish.
Collapse
Affiliation(s)
- Bahram Sayyaf Dezfuli
- Department of Life Sciences and Biotechnology, University of Ferrara, St. Borsari 46, 44121, Ferrara, Italy.
| | - Luisa Giari
- Department of Life Sciences and Biotechnology, University of Ferrara, St. Borsari 46, 44121, Ferrara, Italy
| | - Massimo Lorenzoni
- Department of Cellular and Environmental Biology, University of Perugia, St. Elce di sotto 5, 06123, Perugia, Italy
| | - Antonella Carosi
- Department of Cellular and Environmental Biology, University of Perugia, St. Elce di sotto 5, 06123, Perugia, Italy
| | - Maurizio Manera
- Faculty of Biosciences, Agro-Alimentary and Environmental Technologies, University of Teramo, St. Crispi 212, I-64100, Teramo, Italy
| | - Giampaolo Bosi
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
18
|
Sayyaf Dezfuli B, Manera M, Bosi G, Merella P, DePasquale JA, Giari L. Intestinal granular cells of a cartilaginous fish, thornback ray Raja clavata: Morphological characterization and expression of different molecules. FISH & SHELLFISH IMMUNOLOGY 2018; 75:172-180. [PMID: 29432864 DOI: 10.1016/j.fsi.2018.02.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/29/2018] [Accepted: 02/08/2018] [Indexed: 06/08/2023]
Abstract
This investigation aims to fill gaps in our understanding of the intestinal immune cells of elasmobranchs. Whole digestive tracts of fifteen thornback ray Raja clavata were provided by a trawl fleet from the Gulf of Asinara (Sardinia, western Mediterranean Sea). Histochemical, immunohistochemical and ultrastructural observations were conducted on the spiral intestine. Three types of granular cells were identified; type I in epithelium, types II and III in lamina propria-submucosa, with each of them containing cytoplasmic granules with different ultrastructural characteristics. Data on size and density of each granular cell type are provided. Immunostaining of intestinal sections showed the reactivity of the granular cells: type I cells were positive for lysozyme, mast cell tryptase and tumor necrosis factor-ɑ based on antibody staining; type III cells were immune-reactive to anti-interleukin 6 antibody, whilst type II cells were negative to all the antibodies used. Comparison of each granular cell type with immune cells of teleosts or mammals and an hypothesis on their nature and function are reported. A potential role for granular cells in intestinal cellular immunity is also discussed with respect to type I and type III cells having similarities to Paneth cells and neutrophils, respectively.
Collapse
Affiliation(s)
- B Sayyaf Dezfuli
- Department of Life Sciences and Biotechnology, University of Ferrara, Borsari St. 46, 44121, Ferrara, Italy.
| | - M Manera
- Faculty of Biosciences, Food and Environmental Technologies, University of Teramo, Balzarini St. 1, 64100, Teramo, Italy
| | - G Bosi
- Department of Veterinary Sciences and Technologies for Food Safety, Università degli Studi di Milano, Trentacoste St. 2, 20134, Milan, Italy
| | - P Merella
- Department of Veterinary Medicine, University of Sassari, Italy
| | - J A DePasquale
- Morphogenyx Inc, PO Box 717, East Northport, NY, 11731, USA
| | - L Giari
- Department of Life Sciences and Biotechnology, University of Ferrara, Borsari St. 46, 44121, Ferrara, Italy
| |
Collapse
|
19
|
Sayyaf Dezfuli B, Castaldelli G, Giari L. Histopathological and ultrastructural assessment of two mugilid species infected with myxozoans and helminths. JOURNAL OF FISH DISEASES 2018; 41:299-307. [PMID: 29064086 DOI: 10.1111/jfd.12713] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/03/2017] [Accepted: 08/04/2017] [Indexed: 06/07/2023]
Abstract
The histopathology and ultrastructure of the intestine of mullets, Liza ramada and Liza saliens, from Comacchio lagoons (northern Italy) naturally infected with myxozoans and helminths were investigated and described. Sixty-two (80.5%) of 77 mullets harboured one or more of the following parasites species: Myxobolus mugchelo (Myxozoa), Neoechinorhynchus agilis (Acanthocephala), Haplosplanchnus pachysomus and Dicrogaster contractus (Digenea). Co-occurrence of helminths with myxozoans was common. The main damage caused by digeneans was destruction of the mucosal epithelium of the villi, necrosis and degeneration of intestinal epithelial cells. More severe intestinal damage was caused by acanthocephalans which reach the submucosa layer with their proboscis. At the site of helminths infection, several mast cells (MCs), rodlet cells (RCs), mucous cells and few neutrophils and macrophages were observed in the epithelium. RCs and mucous cells exhibited discharge activity in close vicinity to the worm's tegument. M. mugchelo conspicuous plasmodia were encysted mainly in muscle and submucosa layers of the intestine. Indeed, spores of M. mugchelo were documented within the epithelial cells of host intestine and in proximity to MCs. Degranulation of the MCs near the myxozoans was very frequent.
Collapse
Affiliation(s)
- B Sayyaf Dezfuli
- Department of Life Sciences & Biotechnology, University of Ferrara, Ferrara, Italy
| | - G Castaldelli
- Department of Life Sciences & Biotechnology, University of Ferrara, Ferrara, Italy
| | - L Giari
- Department of Life Sciences & Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
20
|
Paiola M, Knigge T, Picchietti S, Duflot A, Guerra L, Pinto PIS, Scapigliati G, Monsinjon T. Oestrogen receptor distribution related to functional thymus anatomy of the European sea bass, Dicentrarchus labrax. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 77:106-120. [PMID: 28756001 DOI: 10.1016/j.dci.2017.07.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/24/2017] [Accepted: 07/24/2017] [Indexed: 06/07/2023]
Abstract
In jawed vertebrates, the crosstalk between immune and endocrine system as well as many fundamental mechanisms of T cell development are evolutionary conserved. Oestrogens affect mammalian thymic function and plasticity, but the mechanisms of action and the oestrogen receptors involved remain unclear. To corroborate the oestrogenic regulation of thymic function in teleosts and to identify the implicated oestrogen receptor subtypes, we examined the distribution of nuclear and membrane oestrogen receptors within the thymus of the European Sea bass, Dicentrarchus labrax, in relation to its morpho-functional organisation. Immunohistological analysis specified thymus histology and organisation in teleosts and described, for the first time, Hassall's corpuscle like structures in the medulla of sea bass. All oestrogen receptors were expressed at the transcript and protein level, both in T cells and in stromal cells belonging to specific functional areas. These observations suggest complex regulatory actions of oestrogen on thymic function, notably through the stromal microenvironment, comprising both, genomic and non-genomic pathways that are likely to affect T cell maturation and trafficking processes. Comparison with birds, rodents and humans supports the thymic localization of oestrogen receptors and suggests that oestrogens modulate T cell maturation in all gnathostomes.
Collapse
Affiliation(s)
- Matthieu Paiola
- Normandy University, FR CNRS 3730 SCALE, UMR-I 02 SEBIO, Université Le Havre Normandie, F-76600 Le Havre, France
| | - Thomas Knigge
- Normandy University, FR CNRS 3730 SCALE, UMR-I 02 SEBIO, Université Le Havre Normandie, F-76600 Le Havre, France
| | - Simona Picchietti
- Department for Innovation in Biological, Agro-food and Forest Systems, Tuscia University, 01100 Viterbo, Italy
| | - Aurélie Duflot
- Normandy University, FR CNRS 3730 SCALE, UMR-I 02 SEBIO, Université Le Havre Normandie, F-76600 Le Havre, France
| | - Laura Guerra
- Department for Innovation in Biological, Agro-food and Forest Systems, Tuscia University, 01100 Viterbo, Italy
| | - Patricia I S Pinto
- Laboratory of Comparative Endocrinology and Integrative Biology, CCMAR - Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal
| | - Giuseppe Scapigliati
- Department for Innovation in Biological, Agro-food and Forest Systems, Tuscia University, 01100 Viterbo, Italy
| | - Tiphaine Monsinjon
- Normandy University, FR CNRS 3730 SCALE, UMR-I 02 SEBIO, Université Le Havre Normandie, F-76600 Le Havre, France.
| |
Collapse
|
21
|
Dezfuli BS, DePasquale JA, Castaldelli G, Giari L, Bosi G. A fish model for the study of the relationship between neuroendocrine and immune cells in the intestinal epithelium: Silurus glanis infected with a tapeworm. FISH & SHELLFISH IMMUNOLOGY 2017; 64:243-250. [PMID: 28330806 DOI: 10.1016/j.fsi.2017.03.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/15/2017] [Accepted: 03/17/2017] [Indexed: 06/06/2023]
Abstract
Immunohistochemical, immunofluorescence and ultrastructural studies were conducted on a sub-population of 20 wels catfish Silurus glanis from a tributary of the River Po (Northern Italy). Fish were examined for the presence of ecto- and endo-parasites; in the intestine of 5 fish, 11 specimens of cestode Glanitaenia osculata were noted and was the only helminth species encountered. The architecture of intestine and its cellular features were nearly identical in either the uninfected S. glanis or in those harboring G. osculata. Near the site of worm's attachment, mucous cells, several mast cells (MCs), few neutrophils and some endocrine cells (ECs) were found to co-occur within the intestinal epithelium. MCs and neutrophils were abundant also in the submucosa. Immunohistochemical staining revealed that enteric ECs were immunoreactive to met-enkephalin, galanin and serotonin anti-bodies. The numbers of ECs, mucous cells and MCs were significantly higher in infected wels catfish (Mann-Whitney U test, p < 0.05). Dual immunofluorescence staining with the biotinylated lectin Sambucus nigra Agglutinin and the rabbit polyclonal anti-met-enkephalin or anti-serotonin, with parallel transmission electron microscopy, showed that ECs often made intimate contact with the mucous cells and epithelial MCs. The presence of numerous MCs in intestinal epithelium shows S. glanis to be an interesting model fish to study processes underlying intestinal inflammation elicited by an enteric worm. Immune cells, ECs and mucous cells of the intestinal epithelium have been described at the ultrastructural level and their possible functions and interactions together will be discussed.
Collapse
Affiliation(s)
- B Sayyaf Dezfuli
- Department of Life Sciences and Biotechnology, University of Ferrara, Borsari St. 46, 44121 Ferrara, Italy
| | - J A DePasquale
- Morphogenyx Inc, PO Box 717, East Northport, NY 11731, USA
| | - G Castaldelli
- Department of Life Sciences and Biotechnology, University of Ferrara, Borsari St. 46, 44121 Ferrara, Italy
| | - L Giari
- Department of Life Sciences and Biotechnology, University of Ferrara, Borsari St. 46, 44121 Ferrara, Italy.
| | - G Bosi
- Department of Veterinary Sciences and Technologies for Food Safety, Università degli Studi di Milano, St. Trentacoste 2, 20134 Milan, Italy
| |
Collapse
|
22
|
Sayyaf Dezfuli B, Fernandes CE, Galindo GM, Castaldelli G, Manera M, DePasquale JA, Lorenzoni M, Bertin S, Giari L. Nematode infection in liver of the fish Gymnotus inaequilabiatus (Gymnotiformes: Gymnotidae) from the Pantanal Region in Brazil: pathobiology and inflammatory response. Parasit Vectors 2016; 9:473. [PMID: 27576434 PMCID: PMC5006381 DOI: 10.1186/s13071-016-1772-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/23/2016] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND A survey on endoparasitic helminths from freshwater fishes in the Pantanal Region (Mato Grosso do Sul, Brazil) revealed the occurrence of third-larval stage of the nematode Brevimulticaecum sp. (Heterocheilidae) in most organs of Gymnotus inaequilabiatus (Gymnotidae) also known by the local name tuvira. The aim of the present study was to examine Brevimulticaecum sp.-infected tuvira liver at the ultrastructural level and clarify the nature of granulomas and the cellular elements involved in the immune response to nematode larvae. METHODS Thirty-eight adult specimens of tuvira from Porto Morrinho, were acquired in January and March 2016. Infected and uninfected liver tissues were fixed and prepared for histological and ultrastructure investigations. RESULTS The prevalence of infection of tuvira liver by the nematode larvae was 95 %, with an intensity of infection ranging from 4 to 343 larvae (mean ± SD: 55.31 ± 73.94 larvae per liver). In livers with high numbers of nematode larvae, almost entire hepatic tissue was occupied by the parasites. Hepatocytes showed slight to mild degenerative changes and accumulation of pigments. Parasite larvae were surrounded by round to oval granulomas, the result of focal host tissue response to the infection. Each granuloma was typically formed by three concentric layers: an outer layer of fibrous connective tissue with thin elongated fibroblasts; a middle layer of mast cells entrapped in a thin fibroblast-connective mesh; and an inner layer of densely packed epithelioid cells, displaying numerous desmosomes between each other. Numerous macrophage aggregates occurred in the granulomas and in the parenchyma. CONCLUSIONS Our results in tuvira showed that the larvae were efficiently sequestered within the granulomas, most of the inflammatory components were confined within the thickness of the granuloma, and the parenchyma was relatively free of immune cells and without fibrosis. Presumably this focal encapsulation of the parasites permits uninfected portions of liver to maintain its functions and allows the survival of the host.
Collapse
Affiliation(s)
- Bahram Sayyaf Dezfuli
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Carlos E. Fernandes
- Laboratory of Pathology, CCBS, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Gizela M. Galindo
- Laboratory of Pathology, CCBS, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Giuseppe Castaldelli
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Maurizio Manera
- Department of Food Science, University of Teramo, St. Crispi 212, 64100 Teramo, Italy
| | | | - Massimo Lorenzoni
- Department of Cellular and Environmental Biology, University of Perugia, St. Elce di Sotto 5, 06123 Perugia, Italy
| | - Sara Bertin
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Luisa Giari
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|