1
|
Edwards NA, Rankin SA, Kashyap A, Warren A, Agricola ZN, Kenny AP, Kofron M, Shen Y, Chung WK, Zorn AM. Disrupted endosomal trafficking of the Vangl-Celsr polarity complex underlies congenital anomalies in Xenopus trachea-esophageal morphogenesis. Dev Cell 2025:S1534-5807(25)00286-2. [PMID: 40412385 DOI: 10.1016/j.devcel.2025.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/18/2024] [Accepted: 04/29/2025] [Indexed: 05/27/2025]
Abstract
Disruptions in foregut morphogenesis can result in life-threatening conditions where the trachea and esophagus fail to separate, such as esophageal atresia (EA) and tracheoesophageal fistulas (TEFs). The developmental basis of these congenital anomalies is poorly understood, but recent genome sequencing reveals that de novo variants in intracellular trafficking genes are enriched in EA/TEF patients. Here, we confirm that mutation of orthologous genes in Xenopus disrupts trachea-esophageal separation similar to EA/TEF patients. The Rab11a recycling endosome pathway is required to localize Vangl-Celsr polarity complexes at the luminal cell surface where opposite sides of the foregut tube fuse. Partial loss of endosomal trafficking or Vangl-Celsr complexes disrupts epithelial polarity and cell division orientation. Mutant cells accumulate at the fusion point, fail to relocalize cadherin, and do not separate into distinct trachea and esophagus. These data provide insights into the mechanisms of congenital anomalies and general paradigms of tissue fusion during organogenesis.
Collapse
Affiliation(s)
- Nicole A Edwards
- Center for Stem Cell and Organoid Medicine (CuSTOM), Perinatal Institute, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| | - Scott A Rankin
- Center for Stem Cell and Organoid Medicine (CuSTOM), Perinatal Institute, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Adhish Kashyap
- Center for Stem Cell and Organoid Medicine (CuSTOM), Perinatal Institute, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Alissa Warren
- Center for Stem Cell and Organoid Medicine (CuSTOM), Perinatal Institute, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Zachary N Agricola
- Center for Stem Cell and Organoid Medicine (CuSTOM), Perinatal Institute, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Perinatal Institute, Division of Neonatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Alan P Kenny
- Perinatal Institute, Division of Neonatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Matthew Kofron
- Center for Stem Cell and Organoid Medicine (CuSTOM), Perinatal Institute, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Yufeng Shen
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Wendy K Chung
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Departments of Pediatrics and Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Aaron M Zorn
- Center for Stem Cell and Organoid Medicine (CuSTOM), Perinatal Institute, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
2
|
Wen H, Chandrasekaran P, Jin A, Pankin J, Lu M, Liberti DC, Zepp JA, Jain R, Morrisey EE, Michki SN, Frank DB. A spatiotemporal cell atlas of cardiopulmonary progenitor cell allocation during development. Cell Rep 2025; 44:115513. [PMID: 40178979 PMCID: PMC12103214 DOI: 10.1016/j.celrep.2025.115513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 01/10/2025] [Accepted: 03/12/2025] [Indexed: 04/05/2025] Open
Abstract
The heart and lung co-orchestrate their development during organogenesis. The mesoderm surrounding both the developing heart and anterior foregut endoderm provides instructive cues guiding cardiopulmonary development. Additionally, it serves as a source of cardiopulmonary progenitor cells (CPPs) expressing Wnt2 that give rise to both cardiac and lung mesodermal cell lineages. Despite the mesoderm's critical importance to both heart and lung development, mechanisms guiding CPP specification are unclear. To address this, we lineage traced Wnt2+ CPPs at E8.5 and performed single-cell RNA sequencing on collected progeny across the developmental lifespan. Using computational analyses, we created a CPP-derived cell atlas that revealed a previously underappreciated spectrum of CPP-derived cell lineages, including all lung mesodermal lineages, ventricular cardiomyocytes, and epicardial and pericardial cells. By integrating spatial mapping with computational cell trajectory analysis and transcriptional profiling, we have provided a potential molecular and cellular roadmap for cardiopulmonary development.
Collapse
Affiliation(s)
- Hongbo Wen
- Department of Pediatrics, Division of Cardiology, University of Pennsylvania, Children's Hospital of Philadelphia (CHOP), Penn-CHOP Lung Biology Institute, Penn Cardiovascular Institute, CHOP Cardiovascular Institute, Philadelphia, PA 19104, USA
| | - Prashant Chandrasekaran
- Department of Pediatrics, Division of Cardiology, University of Pennsylvania, Children's Hospital of Philadelphia (CHOP), Penn-CHOP Lung Biology Institute, Penn Cardiovascular Institute, CHOP Cardiovascular Institute, Philadelphia, PA 19104, USA
| | - Annabelle Jin
- Department of Pediatrics, Division of Cardiology, University of Pennsylvania, Children's Hospital of Philadelphia (CHOP), Penn-CHOP Lung Biology Institute, Penn Cardiovascular Institute, CHOP Cardiovascular Institute, Philadelphia, PA 19104, USA
| | - Josh Pankin
- Department of Pediatrics, Division of Cardiology, University of Pennsylvania, Children's Hospital of Philadelphia (CHOP), Penn-CHOP Lung Biology Institute, Penn Cardiovascular Institute, CHOP Cardiovascular Institute, Philadelphia, PA 19104, USA
| | - MinQi Lu
- Department of Pediatrics, Division of Cardiology, University of Pennsylvania, Children's Hospital of Philadelphia (CHOP), Penn-CHOP Lung Biology Institute, Penn Cardiovascular Institute, CHOP Cardiovascular Institute, Philadelphia, PA 19104, USA
| | - Derek C Liberti
- Department of Pediatrics, Division of Cardiology, University of Pennsylvania, Children's Hospital of Philadelphia (CHOP), Penn-CHOP Lung Biology Institute, Penn Cardiovascular Institute, CHOP Cardiovascular Institute, Philadelphia, PA 19104, USA
| | - Jarod A Zepp
- Department of Pediatrics, Division of Pulmonary and Sleep Medicine, University of Pennsylvania, CHOP, Penn-CHOP Lung Biology Institute, Philadelphia, PA 19104, USA
| | - Rajan Jain
- Department of Medicine, Department of Cell and Developmental Biology, Penn Cardiovascular Institute, Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward E Morrisey
- Department of Medicine, Department of Cell and Developmental Biology, Penn-CHOP Lung Biology Institute, Penn Cardiovascular Institute, Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sylvia N Michki
- Department of Pediatrics, Division of Cardiology, University of Pennsylvania, Children's Hospital of Philadelphia (CHOP), Penn-CHOP Lung Biology Institute, Penn Cardiovascular Institute, CHOP Cardiovascular Institute, Philadelphia, PA 19104, USA; Department of Pediatrics, Division of Pulmonary and Sleep Medicine, University of Pennsylvania, CHOP, Penn-CHOP Lung Biology Institute, Philadelphia, PA 19104, USA.
| | - David B Frank
- Department of Pediatrics, Division of Cardiology, University of Pennsylvania, Children's Hospital of Philadelphia (CHOP), Penn-CHOP Lung Biology Institute, Penn Cardiovascular Institute, CHOP Cardiovascular Institute, Philadelphia, PA 19104, USA.
| |
Collapse
|
3
|
Jasmine, Baraiya DH, Kavya TT, Mandal A, Chakraborty S, Sathish N, Francis CMR, Binoy Joseph D. Epithelial and mesenchymal compartments of the developing bladder and urethra display spatially distinct gene expression patterns. Dev Biol 2025; 520:155-170. [PMID: 39798644 PMCID: PMC7617630 DOI: 10.1016/j.ydbio.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 01/02/2025] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
The lower urinary tract is comprised of the bladder and urethra and develops from the cloaca, a transient endoderm-derived structure formed from the caudal hindgut. After cloacal septation to form the urogenital sinus and anorectal tract, the bladder gradually develops from the anterior portion of the urogenital sinus while the urethra elongates distally into the genital tubercle. The bladder is a target for regenerative and reconstructive therapies but engineering an impermeable bladder epithelial lining has proven challenging. Urethral epithelial function, including its role as an active immune barrier, is poorly studied and neglected in regenerative therapy. A deeper understanding of epithelial patterning of the urogenital sinus by the surrounding mesenchyme, also accounting for sex-specific differences, can inform regenerative therapies. In this study, we identified spatially distinct genes in the epithelial and mesenchymal compartments of the developing mouse bladder and urethra that could be potential drivers of patterning in the lower urinary tract. Our data revealed spatially restricted domains of transcription factor expression in the epithelium that corresponded with bladder or urethra-specific differentiation. Additionally, we identified the genes Wnt2, Klf4 and Pitx2 that localize to the mesenchyme of the developing bladder and could be potential drivers of bladder differentiation. Our data revealed an increase in the expression of several chemokine genes including Cx3cl1 and Cxcl14 in the developing urethral epithelium that correlated with an increase in epithelial-associated macrophages in the urethra. A survey of sex-specific differences in epithelial and mesenchymal compartments revealed several differentially expressed genes between the male and female urethra but few sex-specific differences in bladder. By comparing spatially distinct gene expression in the developing lower urinary tract, our study provides insights into the divergent differentiation trajectories of the fetal bladder and urethra that establish their adult functions.
Collapse
Affiliation(s)
- Jasmine
- Institute for Stem Cell Science and Regenerative Medicine (iBRIC-inStem), GKVK-Post, Bellary Road, Bengaluru, Karnataka, 560065, India
| | - Divyeksha H Baraiya
- Institute for Stem Cell Science and Regenerative Medicine (iBRIC-inStem), GKVK-Post, Bellary Road, Bengaluru, Karnataka, 560065, India
| | - T T Kavya
- Institute for Stem Cell Science and Regenerative Medicine (iBRIC-inStem), GKVK-Post, Bellary Road, Bengaluru, Karnataka, 560065, India
| | - Aparna Mandal
- Institute for Stem Cell Science and Regenerative Medicine (iBRIC-inStem), GKVK-Post, Bellary Road, Bengaluru, Karnataka, 560065, India
| | - Shreya Chakraborty
- Institute for Stem Cell Science and Regenerative Medicine (iBRIC-inStem), GKVK-Post, Bellary Road, Bengaluru, Karnataka, 560065, India
| | - Neha Sathish
- Institute for Stem Cell Science and Regenerative Medicine (iBRIC-inStem), GKVK-Post, Bellary Road, Bengaluru, Karnataka, 560065, India
| | - Cynthia Marian Rebecca Francis
- Institute for Stem Cell Science and Regenerative Medicine (iBRIC-inStem), GKVK-Post, Bellary Road, Bengaluru, Karnataka, 560065, India
| | - Diya Binoy Joseph
- Institute for Stem Cell Science and Regenerative Medicine (iBRIC-inStem), GKVK-Post, Bellary Road, Bengaluru, Karnataka, 560065, India.
| |
Collapse
|
4
|
Ishii Y, Orr JC, El Mdawar MB, de Pilger DRB, Pearce DR, Lazarus KA, Graham RE, Nikolić MZ, Ketteler R, Carragher NO, Janes SM, Hynds RE. Compound screening in human airway basal cells identifies Wnt pathway activators as potential pro-regenerative therapies. J Cell Sci 2025; 138:jcs263487. [PMID: 40065746 PMCID: PMC12045047 DOI: 10.1242/jcs.263487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 03/04/2025] [Indexed: 04/15/2025] Open
Abstract
Regeneration of the airway epithelium restores barrier function and mucociliary clearance following lung injury and infection. The mechanisms regulating the proliferation and differentiation of tissue-resident airway basal stem cells remain incompletely understood. To identify compounds that promote human airway basal cell proliferation, we performed phenotype-based compound screening of 1429 compounds (from the ENZO and Prestwick Chemical libraries) in 384-well format using primary cells transduced with lentiviral luciferase. A total of 17 pro-proliferative compounds were validated in independent donor cell cultures, including the antiretroviral therapy agent abacavir and several Wnt signalling pathway-activating compounds. The effects of compounds on proliferation were further explored in colony formation and 3D organoid assays. Structurally and functionally related compounds that more potently induced Wnt pathway activation were investigated. One such compound, 1-azakenpaullone, induced Wnt target gene activation and basal cell proliferation in mice. Our results demonstrate the pro-proliferative effect of small-molecule Wnt pathway activators on airway basal cells. These findings contribute to the rationale to develop novel approaches to modulate Wnt signalling during airway epithelial repair.
Collapse
Affiliation(s)
- Yuki Ishii
- Lungs for Living Research Centre, UCL Respiratory, University College London, London WC1E 6JF, UK
| | - Jessica C. Orr
- Lungs for Living Research Centre, UCL Respiratory, University College London, London WC1E 6JF, UK
- Epithelial Cell Biology in ENT Research Group, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1DZ, UK
| | - Marie-Belle El Mdawar
- Lungs for Living Research Centre, UCL Respiratory, University College London, London WC1E 6JF, UK
| | | | - David R. Pearce
- UCL Cancer Institute, University College London, London WC1N 6DD, UK
| | - Kyren A. Lazarus
- Lungs for Living Research Centre, UCL Respiratory, University College London, London WC1E 6JF, UK
| | - Rebecca E. Graham
- Edinburgh Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
- Cancer Research UK Scotland Centre, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Marko Z. Nikolić
- Lungs for Living Research Centre, UCL Respiratory, University College London, London WC1E 6JF, UK
| | - Robin Ketteler
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Neil O. Carragher
- Edinburgh Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
- Cancer Research UK Scotland Centre, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Sam M. Janes
- Lungs for Living Research Centre, UCL Respiratory, University College London, London WC1E 6JF, UK
| | - Robert E. Hynds
- Epithelial Cell Biology in ENT Research Group, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1DZ, UK
- UCL Cancer Institute, University College London, London WC1N 6DD, UK
| |
Collapse
|
5
|
Tito C, Masciarelli S, Colotti G, Fazi F. EGF receptor in organ development, tissue homeostasis and regeneration. J Biomed Sci 2025; 32:24. [PMID: 39966897 PMCID: PMC11837477 DOI: 10.1186/s12929-025-01119-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 01/16/2025] [Indexed: 02/20/2025] Open
Abstract
The epidermal growth factor receptor (EGFR) is a protein embedded in the outer membrane of epithelial and mesenchymal cells, bone cells, blood and immune cells, heart cells, glia and stem neural cells. It belongs to the ErbB family, which includes three other related proteins: HER2/ErbB2/c-neu, HER3/ErbB3, and HER4/ErbB4. EGFR binds to seven known signaling molecules, including epidermal growth factor (EGF) and transforming growth factor-alpha (TGF-α). This binding triggers the formation of receptor pairs (dimers), self-phosphorylation of EGFR, and the activation of several signaling pathways within the cell. These pathways influence various cellular processes like proliferation, differentiation, migration, and survival. EGFR plays a critical role in both development and tissue homeostasis, including tissue repair and adult organ regeneration. Altered expression of EGFR is linked to disruption of tissue homeostasis and various diseases, among which cancer. This review focuses on how EGFR contributes to the development of different organs like the placenta, gut, liver, bone, skin, brain, T cell regulation, pancreas, kidneys, mammary glands and lungs along with their associated pathologies. The involvement of EGFR in organ-specific branching morphogenesis process is also discussed. The level of EGFR activity and its impact vary across different organs. Factors as the affinity of its ligands, recycling or degradation processes, and transactivation by other proteins or environmental factors (such as heat stress and smoking) play a role in regulating EGFR activity. Understanding EGFR's role and regulatory mechanisms holds promise for developing targeted therapeutic strategies.
Collapse
Affiliation(s)
- Claudia Tito
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161, Rome, Italy
| | - Silvia Masciarelli
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161, Rome, Italy
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, Italian National Research Council, IBPM-CNR, C/O Dept. Biochemical Sciences Sapienza University of Rome, Ed. CU027, P.Le A. Moro 5, 00185, Rome, Italy.
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161, Rome, Italy.
| |
Collapse
|
6
|
Bigliardi E, Shetty AV, Low WC, Steer CJ. Interspecies Blastocyst Complementation and the Genesis of Chimeric Solid Human Organs. Genes (Basel) 2025; 16:215. [PMID: 40004544 PMCID: PMC11854981 DOI: 10.3390/genes16020215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/06/2025] [Accepted: 02/09/2025] [Indexed: 02/27/2025] Open
Abstract
Solid organ transplantation remains a life-saving treatment for patients worldwide. Unfortunately, the supply of donor organs cannot meet the current need, making the search for alternative sources even more essential. Xenotransplantation using sophisticated genetic engineering techniques to delete and overexpress specific genes in the donor animal has been investigated as a possible option. However, the use of exogenous tissue presents another host of obstacles, particularly regarding organ rejection. Given these limitations, interspecies blastocyst complementation in combination with precise gene knockouts presents a unique, promising pathway for the transplant organ shortage. In recent years, great advancements have been made in the field, with encouraging results in producing a donor-derived organ in a chimeric host. That said, one of the major barriers to successful interspecies chimerism is the mismatch in the developmental stages of the donor and the host cells in the chimeric embryo. Another major barrier to successful chimerism is the mismatch in the developmental speeds between the donor and host cells in the chimeric embryos. This review outlines 19 studies in which blastocyst complementation was used to generate solid organs. In particular, the genesis of the liver, lung, kidney, pancreas, heart, thyroid, thymus and parathyroids was investigated. Of the 19 studies, 7 included an interspecies model. Of the 7, one was completed using human donor cells in a pig host, and all others were rat-mouse chimeras. While very promising results have been demonstrated, with great advancements in the field, several challenges continue to persist. In particular, successful chimerism, organ generation and donor contribution, synchronized donor-host development, as well as ethical concerns regarding human-animal chimeras remain important aspects that will need to be addressed in future research.
Collapse
Affiliation(s)
- Elena Bigliardi
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Anala V. Shetty
- Molecular, Cellular, Developmental Biology, and Genetics Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA;
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Walter C. Low
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA;
- Molecular, Cellular, Developmental Biology, and Genetics Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA;
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Clifford J. Steer
- Molecular, Cellular, Developmental Biology, and Genetics Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA;
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
7
|
Reeves J, Tournier P, Becquart P, Carton R, Tang Y, Vigilante A, Fang D, Habib SJ. Rejuvenating aged osteoprogenitors for bone repair. eLife 2024; 13:RP104068. [PMID: 39692737 DOI: 10.7554/elife.104068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024] Open
Abstract
Aging is marked by a decline in tissue regeneration, posing significant challenges to an increasingly older population. Here, we investigate age-related impairments in calvarial bone healing and introduce a novel two-part rejuvenation strategy to restore youthful repair. We demonstrate that aging negatively impacts the calvarial bone structure and its osteogenic tissues, diminishing osteoprogenitor number and function and severely impairing bone formation. Notably, increasing osteogenic cell numbers locally fails to rescue repair in aged mice, identifying the presence of intrinsic cellular deficits. Our strategy combines Wnt-mediated osteoprogenitor expansion with intermittent fasting, which leads to a striking restoration of youthful levels of bone healing. We find that intermittent fasting improves osteoprogenitor function, benefits that can be recapitulated by modulating NAD+-dependent pathways or the gut microbiota, underscoring the multifaceted nature of this intervention. Mechanistically, we identify mitochondrial dysfunction as a key component in age-related decline in osteoprogenitor function and show that both cyclical nutrient deprivation and Nicotinamide mononucleotide rejuvenate mitochondrial health, enhancing osteogenesis. These findings offer a promising therapeutic avenue for restoring youthful bone repair in aged individuals, with potential implications for rejuvenating other tissues.
Collapse
Affiliation(s)
- Joshua Reeves
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
- Centre for Gene Therapy and Regenerative Medicine King's College London, London, United Kingdom
| | - Pierre Tournier
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Pierre Becquart
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Robert Carton
- Centre for Gene Therapy and Regenerative Medicine King's College London, London, United Kingdom
| | - Yin Tang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute Zhejiang University, Zhejiang, China
- Department of Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Alessandra Vigilante
- Centre for Gene Therapy and Regenerative Medicine King's College London, London, United Kingdom
| | - Dong Fang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute Zhejiang University, Zhejiang, China
- Department of Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Shukry J Habib
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
8
|
Takahashi M, Isagawa T, Sato T, Takeda N, Kawakami K. Lineage tracing using Wnt2b-2A-CreERT2 knock-in mice reveals the contributions of Wnt2b-expressing cells to novel subpopulations of mesothelial/epicardial cell lineages during mouse development. Genes Cells 2024; 29:854-875. [PMID: 39109760 DOI: 10.1111/gtc.13147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 10/04/2024]
Abstract
Mesothelial and epicardial cells give rise to various types of mesenchymal cells via epithelial (mesothelial)-to-mesenchymal transition during development. However, the genes controlling the differentiation and diversification of mesothelial/epicardial cells remain unclear. Here, we examined Wnt2b expression in the embryonic mesothelium and epicardium and performed lineage tracing of Wnt2b-expressing cells by using novel Wnt2b-2A-CreERT2 knock-in and LacZ-reporter mice. Wnt2b was expressed in mesothelial cells covering visceral organs, but the expression was restricted in their subpopulations. Wnt2b-expressing cells labeled at embryonic day (E) 10.5 were distributed to the mesothelium and mesenchyme in the lungs, abdominal wall, stomach, and spleen in Wnt2b2A-CreERT2/+;R26RLacZ/+ mice at E13.0. Wnt2b was initially expressed in the proepicardial organ (PEO) at E9.5 and then in the epicardium after E10.0. Wnt2b-expressing PEO cells labeled at E9.5 differentiated into a small fraction of cardiac fibroblasts and preferentially localized at the left side of the postnatal heart. LacZ+ epicardium-derived cells labeled at E10.5 differentiated into a small fraction of fibroblasts and smooth muscle cells in the postnatal heart. Taken together, our results reveal novel subpopulations of PEO and mesothelial/epicardial cells that are distinguishable by Wnt2b expression and elucidate the unique contribution of Wnt2b-expressing PEO and epicardial cells to the postnatal heart.
Collapse
Affiliation(s)
- Masanori Takahashi
- Department of Anatomy, Division of Bioimaging and Neuro-cell Science, Jichi Medical University, Shimotsuke, Japan
- Division of Cardiology and Metabolism, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Takayuki Isagawa
- Division of Cardiology and Metabolism, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Japan
- Data Science Center, Jichi Medical University, Shimotsuke, Japan
| | - Tatsuyuki Sato
- Division of Cardiology and Metabolism, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Norihiko Takeda
- Division of Cardiology and Metabolism, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Japan
| | | |
Collapse
|
9
|
Takigawa-Imamura H, Fumoto K, Takesue H, Miura T. Exploiting mechanisms for hierarchical branching structure of lung airway. PLoS One 2024; 19:e0309464. [PMID: 39213428 PMCID: PMC11364422 DOI: 10.1371/journal.pone.0309464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
The lung airways exhibit distinct features with long, wide proximal branches and short, thin distal branches, crucial for optimal respiratory function. In this study, we investigated the mechanism behind this hierarchical structure through experiments and modeling, focusing on the regulation of branch length and width during the pseudoglandular stage. To evaluate the response of mouse lung epithelium to fibroblast growth factor 10 (FGF10), we monitored the activity of extracellular signal-regulated kinase (ERK). ERK activity exhibited an increase dependent on the curvature of the epithelial tissue, which gradually decreased with the progression of development. We then constructed a computational model that incorporates curvature-dependent growth to predict its impact on branch formation. It was demonstrated that branch length is determined by the curvature dependence of growth. Next, in exploring branch width regulation, we considered the effect of apical constriction, a mechanism we had previously proposed to be regulated by Wnt signaling. Analysis of a mathematical model representing apical constriction showed that branch width is determined by cell shape. Finally, we constructed an integrated computational model that includes curvature-dependent growth and cell shape controls, confirming their coordination in regulating branch formation. This study proposed that changes in the autonomous property of the epithelium may be responsible for the progressive branch morphology.
Collapse
Affiliation(s)
- Hisako Takigawa-Imamura
- Anatomy and Cell Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Katsumi Fumoto
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Hiroaki Takesue
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Takashi Miura
- Anatomy and Cell Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
10
|
Borges KS, Little DW, Magalhães TDA, Ribeiro C, Dumontet T, Lapensee C, Basham KJ, Seth A, Azova S, Guagliardo NA, Barrett PQ, Berber M, O'Connell AE, Turcu AF, Lerario AM, Mohan DR, Rainey W, Carlone DL, Hirschhorn JN, Salic A, Breault DT, Hammer GD. Non-canonical Wnt signaling triggered by WNT2B drives adrenal aldosterone production. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.23.609423. [PMID: 39229119 PMCID: PMC11370552 DOI: 10.1101/2024.08.23.609423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The steroid hormone aldosterone, produced by the zona glomerulosa (zG) of the adrenal gland, is a master regulator of plasma electrolytes and blood pressure. While aldosterone control by the renin-angiotensin system is well understood, other key regulatory factors have remained elusive. Here, we replicated a prior association between a non-coding variant in WNT2B and an increased risk of primary aldosteronism, a prevalent and debilitating disease caused by excessive aldosterone production. We further show that in both mice and humans, WNT2B is expressed in the mesenchymal capsule surrounding the adrenal cortex, in close proximity to the zG. Global loss of Wnt2b in the mouse results in a dysmorphic and hypocellular zG, with impaired aldosterone production. Similarly, humans harboring WNT2B loss-of-function mutations develop a novel form of Familial Hyperreninemic Hypoaldosteronism, designated here as Type 4. Additionally, we demonstrate that WNT2B signals by activating the non-canonical Wnt/planar cell polarity pathway. Our findings identify WNT2B as a key regulator of zG function and aldosterone production with important clinical implications.
Collapse
Affiliation(s)
- Kleiton S Borges
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Donald W Little
- Doctoral Program in Cancer Biology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - Claudio Ribeiro
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Typhanie Dumontet
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Chris Lapensee
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kaitlin J Basham
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA
| | - Aishwarya Seth
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge MA, 02142
| | - Svetlana Azova
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Nick A Guagliardo
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908-0735, USA
| | - Paula Q Barrett
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908-0735, USA
| | - Mesut Berber
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Amy E O'Connell
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Adina F Turcu
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Antonio Marcondes Lerario
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Dipika R Mohan
- Doctoral Program in Cancer Biology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, 48109, USA
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - William Rainey
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Diana L Carlone
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
| | - Joel N Hirschhorn
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge MA, 02142
| | - Adrian Salic
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - David T Breault
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge MA, 02142
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
| | - Gary D Hammer
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, 48109, USA
- Endocrine Oncology Program, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
11
|
Funa NS, Mjoseng HK, de Lichtenberg KH, Raineri S, Esen D, Egeskov-Madsen ALR, Quaranta R, Jørgensen MC, Hansen MS, van Cuyl Kuylenstierna J, Jensen KB, Miao Y, Garcia KC, Seymour PA, Serup P. TGF-β modulates cell fate in human ES cell-derived foregut endoderm by inhibiting Wnt and BMP signaling. Stem Cell Reports 2024; 19:973-992. [PMID: 38942030 PMCID: PMC11252478 DOI: 10.1016/j.stemcr.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/30/2024] Open
Abstract
Genetic differences between pluripotent stem cell lines cause variable activity of extracellular signaling pathways, limiting reproducibility of directed differentiation protocols. Here we used human embryonic stem cells (hESCs) to interrogate how exogenous factors modulate endogenous signaling events during specification of foregut endoderm lineages. We find that transforming growth factor β1 (TGF-β1) activates a putative human OTX2/LHX1 gene regulatory network which promotes anterior fate by antagonizing endogenous Wnt signaling. In contrast to Porcupine inhibition, TGF-β1 effects cannot be reversed by exogenous Wnt ligands, suggesting that induction of SHISA proteins and intracellular accumulation of Fzd receptors render TGF-β1-treated cells refractory to Wnt signaling. Subsequently, TGF-β1-mediated inhibition of BMP and Wnt signaling suppresses liver fate and promotes pancreas fate. Furthermore, combined TGF-β1 treatment and Wnt inhibition during pancreatic specification reproducibly and robustly enhance INSULIN+ cell yield across hESC lines. This modification of widely used differentiation protocols will enhance pancreatic β cell yield for cell-based therapeutic applications.
Collapse
Affiliation(s)
- Nina Sofi Funa
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Heidi Katharina Mjoseng
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kristian Honnens de Lichtenberg
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Silvia Raineri
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Deniz Esen
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Anuska la Rosa Egeskov-Madsen
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Roberto Quaranta
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Mette Christine Jørgensen
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Maria Skjøtt Hansen
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jonas van Cuyl Kuylenstierna
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kim Bak Jensen
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; BRIC - Biotech Research and Innovation Centre, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Yi Miao
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - K Christopher Garcia
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Philip A Seymour
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Palle Serup
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
12
|
Yang X, Chen Y, Yang Y, Li S, Mi P, Jing N. The molecular and cellular choreography of early mammalian lung development. MEDICAL REVIEW (2021) 2024; 4:192-206. [PMID: 38919401 PMCID: PMC11195428 DOI: 10.1515/mr-2023-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/08/2024] [Indexed: 06/27/2024]
Abstract
Mammalian lung development starts from a specific cluster of endodermal cells situated within the ventral foregut region. With the orchestrating of delicate choreography of transcription factors, signaling pathways, and cell-cell communications, the endodermal diverticulum extends into the surrounding mesenchyme, and builds the cellular and structural basis of the complex respiratory system. This review provides a comprehensive overview of the current molecular insights of mammalian lung development, with a particular focus on the early stage of lung cell fate differentiation and spatial patterning. Furthermore, we explore the implications of several congenital respiratory diseases and the relevance to early organogenesis. Finally, we summarize the unprecedented knowledge concerning lung cell compositions, regulatory networks as well as the promising prospect for gaining an unbiased understanding of lung development and lung malformations through state-of-the-art single-cell omics.
Collapse
Affiliation(s)
- Xianfa Yang
- Guangzhou National Laboratory, Guangzhou, Guangdong Province, China
| | - Yingying Chen
- Guangzhou National Laboratory, Guangzhou, Guangdong Province, China
| | - Yun Yang
- Guangzhou National Laboratory, Guangzhou, Guangdong Province, China
- Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Shiting Li
- Guangzhou National Laboratory, Guangzhou, Guangdong Province, China
- Institute of Biomedical Research, Yunnan University, Kunming, Yunnan Province, China
| | - Panpan Mi
- Guangzhou National Laboratory, Guangzhou, Guangdong Province, China
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Naihe Jing
- Guangzhou National Laboratory, Guangzhou, Guangdong Province, China
| |
Collapse
|
13
|
Prusinkiewicz MA, Park C, Cheung C, Li YJ, Poon B, Skarsgard ED, Lavoie PM, Lee AF, Mudri M. Decreased β-catenin Protein in Lungs From Human Congenital Diaphragmatic Hernia Archival Pathology Specimens: A Case-control Study. J Pediatr Surg 2024; 59:832-838. [PMID: 38418278 DOI: 10.1016/j.jpedsurg.2024.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 01/22/2024] [Indexed: 03/01/2024]
Abstract
BACKGROUND Lung hypoplasia contributes to congenital diaphragmatic hernia (CDH) associated morbidity and mortality. Changes in lung wingless-type MMTV integration site family member (Wnt)-signalling and its downstream effector beta-catenin (CTNNB1), which acts as a transcription coactivator, exist in animal CDH models but are not well characterized in humans. We aim to identify changes to Wnt-signalling gene expression in human CDH lungs and hypothesize that pathway expression will be lower than controls. METHODS We identified 51 CDH cases and 10 non-CDH controls with archival formalin-fixed paraffin-embedded (FFPE) autopsy lung tissue from 2012 to 2022. 11 liveborn CDH cases and an additional two anterior diaphragmatic hernias were excluded from the study, leaving 38 CDH cases. Messenger ribonucleic acid (mRNA) expression of Wnt-signalling effectors WNT2B and CTNNB1 was determined for 19 CDH cases and 9 controls. A subset of CDH cases and controls lung sections were immunostained for β-catenin. Clinical variables were obtained from autopsy reports. RESULTS Median gestational age was 21 weeks. 81% (n = 31) of hernias were left-sided. 47% (n = 18) were posterolateral. Liver position was up in 81% (n = 31) of cases. Defect size was Type C or D in 58% (n = 22) of cases based on autopsy photos, and indeterminable in 42% (n = 16) of cases. WNT2B and CTNNB1 mRNA expression did not differ between CDH and non-CDH lungs. CDH lungs had fewer interstitial cells expressing β-catenin protein than non-CDH lungs (13.2% vs 42.4%; p = 0.006). CONCLUSION There appear to be differences in the abundance and/or localization of β-catenin proteins between CDH and non-CDH lungs. LEVEL OF EVIDENCE Level III. TYPE OF STUDY Case-Control Study.
Collapse
Affiliation(s)
- Martin A Prusinkiewicz
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Chanhyeok Park
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Claire Cheung
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ying Jie Li
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Bethany Poon
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Erik D Skarsgard
- Division of Pediatric Surgery, Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Pascal M Lavoie
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Anna F Lee
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Department of Pathology and Laboratory Medicine, BC Children's Hospital, Vancouver, British Columbia, Canada.
| | - Martina Mudri
- Division of Pediatric Surgery, Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada; Division of Pediatric Surgery, Vancouver Island Health Authority, Victoria, British Columbia, Canada.
| |
Collapse
|
14
|
Werder RB, Zhou X, Cho MH, Wilson AA. Breathing new life into the study of COPD with genes identified from genome-wide association studies. Eur Respir Rev 2024; 33:240019. [PMID: 38811034 PMCID: PMC11134200 DOI: 10.1183/16000617.0019-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/23/2024] [Indexed: 05/31/2024] Open
Abstract
COPD is a major cause of morbidity and mortality globally. While the significance of environmental exposures in disease pathogenesis is well established, the functional contribution of genetic factors has only in recent years drawn attention. Notably, many genes associated with COPD risk are also linked with lung function. Because reduced lung function precedes COPD onset, this association is consistent with the possibility that derangements leading to COPD could arise during lung development. In this review, we summarise the role of leading genes (HHIP, FAM13A, DSP, AGER and TGFB2) identified by genome-wide association studies in lung development and COPD. Because many COPD genome-wide association study genes are enriched in lung epithelial cells, we focus on the role of these genes in the lung epithelium in development, homeostasis and injury.
Collapse
Affiliation(s)
- Rhiannon B Werder
- Murdoch Children's Research Institute, Melbourne, Australia
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael H Cho
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrew A Wilson
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
15
|
Pfeifer M, Rehder H, Gerykova Bujalkova M, Bartsch C, Fritz B, Knopp C, Beckers B, Dohle F, Meyer-Wittkopf M, Axt-Fliedner R, Beribisky AV, Hofer M, Laccone F, Schoner K. Tracheal agenesis versus tracheal atresia: anatomical conditions, pathomechanisms and causes with a possible link to a novel MAPK11 variant in one case. Orphanet J Rare Dis 2024; 19:114. [PMID: 38475835 DOI: 10.1186/s13023-024-03106-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND In this study we aimed to describe the morphological and pathogenetic differences between tracheal agenesis and tracheal atresia, which are not clearly distinguished from each other in the literature, and to contribute thereby to the understanding and management of these conditions. Both tracheal agenesis and tracheal atresia represent rare disorders of still unknown aetiology that cannot be detected by prenatal ultrasound. If the affected foetuses survive until birth these conditions result in respiratory failure and in futile attempts to rescue the infant's life. RESULTS Autopsies and genetic analyses, including singleton or trio exome sequencing, were performed on five neonates/foetuses with tracheal agenesis and three foetuses with tracheal atresia. Tracheal agenesis was characterized by absence of the sublaryngeal trachea and presence of a bronchooesophageal fistula and by pulmonary isomerism and occurred as an isolated malformation complex or as part of a VACTERL association. Special findings were an additional so-called 'pig bronchus' and a first case of tracheal agenesis with sirenomelia. Tracheal atresia presenting with partial obliteration of its lumen and persistence of a fibromuscular streak resulted in CHAOS. This condition was associated with normal lung lobulation and single, non-VACTERL type malformations. Trio ES revealed a novel variant of MAPK11 in one tracheal agenesis case. Its involvement in tracheooesophageal malformation is herein discussed, but remains hypothetical. CONCLUSION Tracheal agenesis and tracheal atresia represent different disease entities in terms of morphology, pathogenesis and accompanying anomalies due to a primary developmental and secondary disruptive possibly vascular disturbance, respectively.
Collapse
Affiliation(s)
- Mateja Pfeifer
- Institute of Medical Genetics, Medical University of Vienna, Waehringer Strasse 10, 1090, Vienna, Austria
| | - Helga Rehder
- Institute of Medical Genetics, Medical University of Vienna, Waehringer Strasse 10, 1090, Vienna, Austria.
- Institute of Pathology, Fetal Pathology, Philipps-University of Marburg, Marburg, Germany.
| | - Maria Gerykova Bujalkova
- Institute of Medical Genetics, Medical University of Vienna, Waehringer Strasse 10, 1090, Vienna, Austria
| | - Christine Bartsch
- Institute of Forensic Medicine, University of Zürich, Zurich, Switzerland
- Berlin School of Economics and Law (HWR), Berlin, Germany
| | - Barbara Fritz
- Institute of Human Genetics, Philipps-University of Marburg, Marburg, Germany
| | | | | | - Frank Dohle
- Department of Pediatrics, Children's Center Bethel, University Bielefeld, Bielefeld, Germany
| | | | - Roland Axt-Fliedner
- Division of Prenatal Medicine and Fetal Therapy, University Hospital Giessen, Giessen, Germany
| | - Alexander V Beribisky
- Institute of Medical Genetics, Medical University of Vienna, Waehringer Strasse 10, 1090, Vienna, Austria
| | - Manuel Hofer
- Institute of Medical Genetics, Medical University of Vienna, Waehringer Strasse 10, 1090, Vienna, Austria
| | - Franco Laccone
- Institute of Medical Genetics, Medical University of Vienna, Waehringer Strasse 10, 1090, Vienna, Austria
| | - Katharina Schoner
- Institute of Pathology, Fetal Pathology, Philipps-University of Marburg, Marburg, Germany
| |
Collapse
|
16
|
Liu T, Li X, Li H, Qin J, Xu H, Wen J, He Y, Zhang C. Intestinal organoid modeling: bridging the gap from experimental model to clinical translation. Front Oncol 2024; 14:1334631. [PMID: 38496762 PMCID: PMC10941338 DOI: 10.3389/fonc.2024.1334631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/02/2024] [Indexed: 03/19/2024] Open
Abstract
The 3D culture of intestinal organoids entails embedding isolated intestinal crypts and bone marrow mesenchymal stem cells within a growth factor-enriched matrix gel. This process leads to the formation of hollow microspheres with structures resembling intestinal epithelial cells, which are referred to as intestinal organoids. These structures encompass various functional epithelial cell types found in the small intestine and closely mimic the organizational patterns of the small intestine, earning them the name "mini-intestines". Intestinal tumors are prevalent within the digestive system and represent a significant menace to human health. Through the application of 3D culture technology, miniature colorectal organs can be cultivated to retain the genetic characteristics of the primary tumor. This innovation offers novel prospects for individualized treatments among patients with intestinal tumors. Presently established libraries of patient-derived organoids serve as potent tools for conducting comprehensive investigations into tissue functionality, developmental processes, tumorigenesis, and the pathobiology of cancer. This review explores the origins of intestinal organoids, their culturing environments, and their advancements in the realm of precision medicine. It also addresses the current challenges and outlines future prospects for development.
Collapse
Affiliation(s)
- Taotao Liu
- School of Clinical Medicine, Ningxia Medical University, Yin Chuan, Ningxia, China
- Department of Gastrointestinal Surgery, Affiliated Hospital of Ningxia Medical University, Yin Chuan, Ningxia, China
| | - Xiaoqi Li
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Hao Li
- School of Clinical Medicine, Ningxia Medical University, Yin Chuan, Ningxia, China
- Department of Gastrointestinal Surgery, Affiliated Hospital of Ningxia Medical University, Yin Chuan, Ningxia, China
| | - Jingjing Qin
- School of Clinical Medicine, Ningxia Medical University, Yin Chuan, Ningxia, China
- Department of Gastrointestinal Surgery, Affiliated Hospital of Ningxia Medical University, Yin Chuan, Ningxia, China
| | - Hui Xu
- Department of Anesthesiology and Surgery, Gansu Provincial People's Hospital, Lan Zhou, Gansu, China
| | - Jun Wen
- School of Clinical Medicine, Ningxia Medical University, Yin Chuan, Ningxia, China
- Department of Gastrointestinal Surgery, Affiliated Hospital of Ningxia Medical University, Yin Chuan, Ningxia, China
| | - Yaqin He
- School of Clinical Medicine, Ningxia Medical University, Yin Chuan, Ningxia, China
| | - Cao Zhang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Ningxia Medical University, Yin Chuan, Ningxia, China
| |
Collapse
|
17
|
Fitzsimons LA, Tasouri E, Willaredt MA, Stetson D, Gojak C, Kirsch J, Gardner HAR, Gorgas K, Tucker KL. Primary cilia are critical for tracheoesophageal septation. Dev Dyn 2024; 253:312-332. [PMID: 37776236 PMCID: PMC10922539 DOI: 10.1002/dvdy.660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/14/2023] [Accepted: 09/09/2023] [Indexed: 10/02/2023] Open
Abstract
INTRODUCTION Primary cilia play pivotal roles in the patterning and morphogenesis of a wide variety of organs during mammalian development. Here we examined murine foregut septation in the cobblestone mutant, a hypomorphic allele of the gene encoding the intraflagellar transport protein IFT88, a protein essential for normal cilia function. RESULTS We reveal a crucial role for primary cilia in foregut division, since their dramatic decrease in cilia in both the foregut endoderm and mesenchyme of mutant embryos resulted in a proximal tracheoesophageal septation defects and in the formation of distal tracheo(broncho)esophageal fistulae similar to the most common congenital tracheoesophageal malformations in humans. Interestingly, the dorsoventral patterning determining the dorsal digestive and the ventral respiratory endoderm remained intact, whereas Hedgehog signaling was aberrantly activated. CONCLUSIONS Our results demonstrate the cobblestone mutant to represent one of the very few mouse models that display both correct endodermal dorsoventral specification but defective compartmentalization of the proximal foregut. It stands exemplary for a tracheoesophageal ciliopathy, offering the possibility to elucidate the molecular mechanisms how primary cilia orchestrate the septation process. The plethora of malformations observed in the cobblestone embryo allow for a deeper insight into a putative link between primary cilia and human VATER/VACTERL syndromes.
Collapse
Affiliation(s)
- Lindsey Avery Fitzsimons
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, U.S.A
- Dept. of Biomedical Sciences, Center for Excellence in the Neurosciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine 04005, U.S.A
| | - Evangelia Tasouri
- Interdisciplinary Center for Neurosciences, University of Heidelberg, 69120 Heidelberg, Germany
- Institute of Anatomy and Cell Biology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Marc August Willaredt
- Interdisciplinary Center for Neurosciences, University of Heidelberg, 69120 Heidelberg, Germany
- Institute of Anatomy and Cell Biology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Daniel Stetson
- AstraZeneca Pharmaceuticals LP, 35 Gatehouse Drive, Waltham, Massachusetts 02451, U.S.A
| | - Christian Gojak
- Interdisciplinary Center for Neurosciences, University of Heidelberg, 69120 Heidelberg, Germany
- Institute of Anatomy and Cell Biology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Joachim Kirsch
- Institute of Anatomy and Cell Biology, University of Heidelberg, 69120 Heidelberg, Germany
| | | | - Karin Gorgas
- Institute of Anatomy and Cell Biology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Kerry L. Tucker
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, U.S.A
- Dept. of Biomedical Sciences, Center for Excellence in the Neurosciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine 04005, U.S.A
| |
Collapse
|
18
|
Miao Y, Tan C, Pek NM, Yu Z, Iwasawa K, Kechele DO, Sundaram N, Pastrana-Gomez V, Kishimoto K, Yang MC, Jiang C, Tchieu J, Whitsett JA, McCracken KW, Rottier RJ, Kotton DN, Helmrath MA, Wells JM, Takebe T, Zorn AM, Chen YW, Guo M, Gu M. Deciphering Endothelial and Mesenchymal Organ Specification in Vascularized Lung and Intestinal Organoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.577460. [PMID: 38370768 PMCID: PMC10871227 DOI: 10.1101/2024.02.06.577460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
To investigate the co-development of vasculature, mesenchyme, and epithelium crucial for organogenesis and the acquisition of organ-specific characteristics, we constructed a human pluripotent stem cell-derived organoid system comprising lung or intestinal epithelium surrounded by organotypic mesenchyme and vasculature. We demonstrated the pivotal role of co-differentiating mesoderm and endoderm via precise BMP regulation in generating multilineage organoids and gut tube patterning. Single-cell RNA-seq analysis revealed organ specificity in endothelium and mesenchyme, and uncovered key ligands driving endothelial specification in the lung (e.g., WNT2B and Semaphorins) or intestine (e.g., GDF15). Upon transplantation under the kidney capsule in mice, these organoids further matured and developed perfusable human-specific sub-epithelial capillaries. Additionally, our model recapitulated the abnormal endothelial-epithelial crosstalk in patients with FOXF1 deletion or mutations. Multilineage organoids provide a unique platform to study developmental cues guiding endothelial and mesenchymal cell fate determination, and investigate intricate cell-cell communications in human organogenesis and disease. Highlights BMP signaling fine-tunes the co-differentiation of mesoderm and endoderm.The cellular composition in multilineage organoids resembles that of human fetal organs.Mesenchyme and endothelium co-developed within the organoids adopt organ-specific characteristics.Multilineage organoids recapitulate abnormal endothelial-epithelial crosstalk in FOXF1-associated disorders.
Collapse
|
19
|
Shiraishi K, Morley MP, Jones DL, Zhao G, Weiner AI, Basil MC, Cantu E, Ferguson LT, Oyster M, Babu A, Ying Y, Zhou S, Li S, Vaughan AE, Morrisey EE. Airway epithelial cell identity and plasticity are constrained by Sox2 during lung homeostasis, tissue regeneration, and in human disease. NPJ Regen Med 2024; 9:2. [PMID: 38182591 PMCID: PMC10770358 DOI: 10.1038/s41536-023-00344-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 12/14/2023] [Indexed: 01/07/2024] Open
Abstract
Maintenance of the cellular boundary between airway and alveolar compartments during homeostasis and after injury is essential to prohibit pathological plasticity which can reduce respiratory function. Lung injury and disease can induce either functional alveolar epithelial regeneration or dysplastic formation of keratinized epithelium which does not efficiently contribute to gas exchange. Here we show that Sox2 preserves airway cell identity and prevents fate changes into either functional alveolar tissue or pathological keratinization following lung injury. Loss of Sox2 in airway epithelium leads to a loss of airway epithelial identity with a commensurate gain in alveolar and basal cell identity, in part due to activation of Wnt signaling in secretory cells and increased Trp63 expression in intrapulmonary basal-like progenitors. In idiopathic pulmonary fibrosis, loss of SOX2 expression correlates with increased WNT signaling activity in dysplastic keratinized epithelium. SOX2-deficient dysplastic epithelial cells are also observed in COVID-19 damaged lungs. Thus, Sox2 provides a molecular barrier that suppresses airway epithelial plasticity to prevent acquisition of alveolar or basal cell identity after injury and help guide proper epithelial fate and regeneration.
Collapse
Affiliation(s)
- Kazushige Shiraishi
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michael P Morley
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Dakota L Jones
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Gan Zhao
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Aaron I Weiner
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Maria C Basil
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Edward Cantu
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Division of Cardiovascular Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Laura T Ferguson
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michele Oyster
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Apoorva Babu
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yun Ying
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Su Zhou
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Shanru Li
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Andrew E Vaughan
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Edward E Morrisey
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
20
|
Anciuc-Crauciuc M, Cucerea MC, Tripon F, Crauciuc GA, Bănescu CV. Descriptive and Functional Genomics in Neonatal Respiratory Distress Syndrome: From Lung Development to Targeted Therapies. Int J Mol Sci 2024; 25:649. [PMID: 38203821 PMCID: PMC10780183 DOI: 10.3390/ijms25010649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
In this up-to-date study, we first aimed to highlight the genetic and non-genetic factors associated with respiratory distress syndrome (RDS) while also focusing on the genomic aspect of this condition. Secondly, we discuss the treatment options and the progressing therapies based on RNAs or gene therapy. To fulfill this, our study commences with lung organogenesis, a highly orchestrated procedure guided by an intricate network of conserved signaling pathways that ultimately oversee the processes of patterning, growth, and differentiation. Then, our review focuses on the molecular mechanisms contributing to both normal and abnormal lung growth and development and underscores the connections between genetic and non-genetic factors linked to neonatal RDS, with a particular emphasis on the genomic aspects of this condition and their implications for treatment choices and the advancing therapeutic approaches centered around RNAs or gene therapy.
Collapse
Affiliation(s)
- Mădălina Anciuc-Crauciuc
- Genetics Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology, 540142 Târgu Mureș, Romania; (M.A.-C.); (C.V.B.)
- Neonatology Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology, 540142 Târgu Mureș, Romania;
| | - Manuela Camelia Cucerea
- Neonatology Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology, 540142 Târgu Mureș, Romania;
| | - Florin Tripon
- Genetics Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology, 540142 Târgu Mureș, Romania; (M.A.-C.); (C.V.B.)
| | - George-Andrei Crauciuc
- Genetics Laboratory, Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science, and Technology, 540139 Târgu Mureș, Romania;
| | - Claudia Violeta Bănescu
- Genetics Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology, 540142 Târgu Mureș, Romania; (M.A.-C.); (C.V.B.)
- Genetics Laboratory, Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science, and Technology, 540139 Târgu Mureș, Romania;
| |
Collapse
|
21
|
Ori C, Ansari M, Angelidis I, Olmer R, Martin U, Theis FJ, Schiller HB, Drukker M. Human pluripotent stem cell fate trajectories toward lung and hepatocyte progenitors. iScience 2023; 26:108205. [PMID: 38026193 PMCID: PMC10663741 DOI: 10.1016/j.isci.2023.108205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 07/13/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
In this study, we interrogate molecular mechanisms underlying the specification of lung progenitors from human pluripotent stem cells (hPSCs). We employ single-cell RNA-sequencing with high temporal precision, alongside an optimized differentiation protocol, to elucidate the transcriptional hierarchy of lung specification to chart the associated single-cell trajectories. Our findings indicate that Sonic hedgehog, TGF-β, and Notch activation are essential within an ISL1/NKX2-1 trajectory, leading to the emergence of lung progenitors during the foregut endoderm phase. Additionally, the induction of HHEX delineates an alternate trajectory at the early definitive endoderm stage, preceding the lung pathway and giving rise to a significant hepatoblast population. Intriguingly, neither KDR+ nor mesendoderm progenitors manifest as intermediate stages in the lung and hepatic lineage development. Our multistep model offers insights into lung organogenesis and provides a foundation for in-depth study of early human lung development and modeling using hPSCs.
Collapse
Affiliation(s)
- Chaido Ori
- Institute of Stem Cell Research, Helmholtz Munich, Neuherberg, Munich, Germany
| | - Meshal Ansari
- Comprehensive Pneumology Center Munich (CPC-M), Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
- Department of Computational Health, Institute of Computational Biology, Helmholtz Munich, Munich, Germany
| | - Ilias Angelidis
- Comprehensive Pneumology Center Munich (CPC-M), Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Ruth Olmer
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, 30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, 30625 Hannover, Germany
- REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, 30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, 30625 Hannover, Germany
- REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Fabian J. Theis
- Department of Computational Health, Institute of Computational Biology, Helmholtz Munich, Munich, Germany
- TUM School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Herbert B. Schiller
- Comprehensive Pneumology Center Munich (CPC-M), Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
- Institute of Experimental Pneumology, LMU University Hospital, Ludwig-Maximilians University, Munich, Germany
| | - Micha Drukker
- Institute of Stem Cell Research, Helmholtz Munich, Neuherberg, Munich, Germany
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, the Netherlands
| |
Collapse
|
22
|
Tan XY, Li YT, Li HH, Ma LX, Zeng CM, Zhang TT, Huang TX, Zhao XD, Fu L. WNT2-SOX4 positive feedback loop promotes chemoresistance and tumorigenesis by inducing stem-cell like properties in gastric cancer. Oncogene 2023; 42:3062-3074. [PMID: 37634009 DOI: 10.1038/s41388-023-02816-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 08/28/2023]
Abstract
Gastric cancer (GC) is characterized by its vigorous chemoresistance to current therapies, which is attributed to the highly heterogeneous and immature phenotype of cancer stem cells (CSCs) during tumor initiation and progression. The secretory WNT2 ligand regulates multiple cancer pathways and has been demonstrated to be a potential therapeutic target for gastrointestinal tumors; however, its role involved in gastric CSCs (GCSCs) remains unclear. Here, we found that overexpression of WNT2 enhanced stemness properties to promote chemoresistance and tumorigenicity in GCSCs. Mechanistically, WNT2 was positively regulated by its transcription factor SOX4, and in turn, SOX4 was upregulated by the canonical WNT2/FZD8/β-catenin signaling pathway to form an auto-regulatory positive feedback loop, resulting in the maintenance of GCSCs self-renewal and tumorigenicity. Furthermore, simultaneous overexpression of both WNT2 and SOX4 was correlated with poor survival and reduced responsiveness to chemotherapy in clinical GC specimens. Blocking WNT2 using a specific monoclonal antibody significantly disrupted the WNT2-SOX4 positive feedback loop in GCSCs and enhanced the chemotherapeutic efficacy when synergized with the chemo-drugs 5-fluorouracil and oxaliplatin in a GCSC-derived mouse xenograft model. Overall, this study identified a novel WNT2-SOX4 positive feedback loop as a mechanism for GCSCs-induced chemo-drugs resistance and suggested that the WNT2-SOX4 axis may be a potential therapeutic target for gastric cancer treatment.
Collapse
Affiliation(s)
- Xiang-Yu Tan
- Guangdong Province Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Yu-Ting Li
- Guangdong Province Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
- Shenzhen University-Friedrich Schiller Universität Jena Joint PhD Program in Biomedical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Hua-Hui Li
- Guangdong Province Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
- Shenzhen University-Friedrich Schiller Universität Jena Joint PhD Program in Biomedical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Li-Xiang Ma
- Guangdong Province Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Chui-Mian Zeng
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Tian-Tian Zhang
- Guangdong Province Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Tu-Xiong Huang
- Guangdong Province Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Xiao-Di Zhao
- Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Li Fu
- Guangdong Province Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
23
|
Chen SY, Liu FC. The Fgf9-Nolz1-Wnt2 axis regulates morphogenesis of the lung. Development 2023; 150:dev201827. [PMID: 37497597 DOI: 10.1242/dev.201827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023]
Abstract
Morphological development of the lung requires complex signal crosstalk between the mesenchymal and epithelial progenitors. Elucidating the genetic cascades underlying signal crosstalk is essential to understanding lung morphogenesis. Here, we identified Nolz1 as a mesenchymal lineage-specific transcriptional regulator that plays a key role in lung morphogenesis. Nolz1 null mutation resulted in a severe hypoplasia phenotype, including a decreased proliferation of mesenchymal cells, aberrant differentiation of epithelial cells and defective growth of epithelial branches. Nolz1 deletion also downregulated Wnt2, Lef1, Fgf10, Gli3 and Bmp4 mRNAs. Mechanistically, Nolz1 regulates lung morphogenesis primarily through Wnt2 signaling. Loss-of-function and overexpression studies demonstrated that Nolz1 transcriptionally activated Wnt2 and downstream β-catenin signaling to control mesenchymal cell proliferation and epithelial branching. Exogenous Wnt2 could rescue defective proliferation and epithelial branching in Nolz1 knockout lungs. Finally, we identified Fgf9 as an upstream regulator of Nolz1. Collectively, Fgf9-Nolz1-Wnt2 signaling represents a novel axis in the control of lung morphogenesis. These findings are relevant to lung tumorigenesis, in which a pathological function of Nolz1 is implicated.
Collapse
Affiliation(s)
- Shih-Yun Chen
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Fu-Chin Liu
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| |
Collapse
|
24
|
Matkovic Leko I, Schneider RT, Thimraj TA, Schrode N, Beitler D, Liu HY, Beaumont K, Chen YW, Snoeck HW. A distal lung organoid model to study interstitial lung disease, viral infection and human lung development. Nat Protoc 2023; 18:2283-2312. [PMID: 37165073 PMCID: PMC11486529 DOI: 10.1038/s41596-023-00827-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/24/2023] [Indexed: 05/12/2023]
Abstract
Organoids have been an exciting advancement in stem cell research. Here we describe a strategy for directed differentiation of human pluripotent stem cells into distal lung organoids. This protocol recapitulates lung development by sequentially specifying human pluripotent stem cells to definitive endoderm, anterior foregut endoderm, ventral anterior foregut endoderm, lung bud organoids and finally lung organoids. The organoids take ~40 d to generate and can be maintained more than 180 d, while progressively maturing up to a stage consistent with the second trimester of human gestation. They are unique because of their branching morphology, the near absence of non-lung endodermal lineages, presence of mesenchyme and capacity to recapitulate interstitial lung diseases. This protocol can be performed by anyone familiar with cell culture techniques, is conducted in serum-free conditions and does not require lineage-specific reporters or enrichment steps. We also provide a protocol for the generation of single-cell suspensions for single-cell RNA sequencing.
Collapse
Affiliation(s)
- Ivana Matkovic Leko
- Columbia Center for Human Development/Center for Stem Cell Therapies, Columbia University Irving Medical Center, New York, NY, USA
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Remy T Schneider
- Columbia Center for Human Development/Center for Stem Cell Therapies, Columbia University Irving Medical Center, New York, NY, USA
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Tania A Thimraj
- Columbia Center for Human Development/Center for Stem Cell Therapies, Columbia University Irving Medical Center, New York, NY, USA
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Nadine Schrode
- Department of Genetic and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Center for Advanced Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel Beitler
- Columbia Center for Human Development/Center for Stem Cell Therapies, Columbia University Irving Medical Center, New York, NY, USA
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Hsiao-Yun Liu
- Columbia Center for Human Development/Center for Stem Cell Therapies, Columbia University Irving Medical Center, New York, NY, USA
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Kristin Beaumont
- Department of Genetic and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Center for Advanced Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ya-Wen Chen
- Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Institute for Airway Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Hans-Willem Snoeck
- Columbia Center for Human Development/Center for Stem Cell Therapies, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
25
|
Zhao X, Zhang Z, Zhu Q, Luo Y, Ye Q, Shi S, He X, Zhu J, Zhang D, Xia W, Zhang Y, Jiang L, Cui L, Ye Y, Xiang Y, Hu J, Zhang J, Lin CP. Modeling human ectopic pregnancies with trophoblast and vascular organoids. Cell Rep 2023; 42:112546. [PMID: 37224015 DOI: 10.1016/j.celrep.2023.112546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/15/2023] [Accepted: 05/04/2023] [Indexed: 05/26/2023] Open
Abstract
Ruptured ectopic pregnancy (REP), a pregnancy complication caused by aberrant implantation, deep invasion, and overgrowth of embryos in fallopian tubes, could lead to rupture of fallopian tubes and accounts for 4%-10% of pregnancy-related deaths. The lack of ectopic pregnancy phenotypes in rodents hampers our understanding of its pathological mechanisms. Here, we employed cell culture and organoid models to investigate the crosstalk between human trophoblast development and intravillous vascularization in the REP condition. Compared with abortive ectopic pregnancy (AEP), the size of REP placental villi and the depth of trophoblast invasion are correlated with the extent of intravillous vascularization. We identified a key pro-angiogenic factor secreted by trophoblasts, WNT2B, that promotes villous vasculogenesis, angiogenesis, and vascular network expansion in the REP condition. Our results reveal the important role of WNT-mediated angiogenesis and an organoid co-culture model for investigating intricate communications between trophoblasts and endothelial/endothelial progenitor cells.
Collapse
Affiliation(s)
- Xiaoya Zhao
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, No. 910, Hengshan Road, Shanghai 200030, China; Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Zhenwu Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qian Zhu
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, No. 910, Hengshan Road, Shanghai 200030, China; Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Yurui Luo
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qinying Ye
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Shuxiang Shi
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xueyang He
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Jing Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Duo Zhang
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, No. 910, Hengshan Road, Shanghai 200030, China; Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Wei Xia
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, No. 910, Hengshan Road, Shanghai 200030, China; Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Yiqin Zhang
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, No. 910, Hengshan Road, Shanghai 200030, China; Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Linlin Jiang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Long Cui
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Yinghui Ye
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Yangfei Xiang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Junhao Hu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Jian Zhang
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, No. 910, Hengshan Road, Shanghai 200030, China; Shanghai Municipal Key Clinical Specialty, Shanghai, China.
| | - Chao-Po Lin
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
26
|
Alber AB, Marquez HA, Ma L, Kwong G, Thapa BR, Villacorta-Martin C, Lindstrom-Vautrin J, Bawa P, Wang F, Luo Y, Ikonomou L, Shi W, Kotton DN. Directed differentiation of mouse pluripotent stem cells into functional lung-specific mesenchyme. Nat Commun 2023; 14:3488. [PMID: 37311756 PMCID: PMC10264380 DOI: 10.1038/s41467-023-39099-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 05/30/2023] [Indexed: 06/15/2023] Open
Abstract
While the generation of many lineages from pluripotent stem cells has resulted in basic discoveries and clinical trials, the derivation of tissue-specific mesenchyme via directed differentiation has markedly lagged. The derivation of lung-specific mesenchyme is particularly important since this tissue plays crucial roles in lung development and disease. Here we generate a mouse induced pluripotent stem cell (iPSC) line carrying a lung-specific mesenchymal reporter/lineage tracer. We identify the pathways (RA and Shh) necessary to specify lung mesenchyme and find that mouse iPSC-derived lung mesenchyme (iLM) expresses key molecular and functional features of primary developing lung mesenchyme. iLM recombined with engineered lung epithelial progenitors self-organizes into 3D organoids with juxtaposed layers of epithelium and mesenchyme. Co-culture increases yield of lung epithelial progenitors and impacts epithelial and mesenchymal differentiation programs, suggesting functional crosstalk. Our iPSC-derived population thus provides an inexhaustible source of cells for studying lung development, modeling diseases, and developing therapeutics.
Collapse
Affiliation(s)
- Andrea B Alber
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Hector A Marquez
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Liang Ma
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - George Kwong
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Bibek R Thapa
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Carlos Villacorta-Martin
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, 02118, USA
| | | | - Pushpinder Bawa
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, 02118, USA
| | - Feiya Wang
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, 02118, USA
| | - Yongfeng Luo
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90027, USA
| | - Laertis Ikonomou
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY, 14260, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14215, USA
| | - Wei Shi
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Darrell N Kotton
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, 02118, USA.
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA.
| |
Collapse
|
27
|
Cao S, Feng H, Yi H, Pan M, Lin L, Zhang YS, Feng Z, Liang W, Cai B, Li Q, Xiong Z, Shen Q, Ke M, Zhao X, Chen H, He Q, Min M, Cai Q, Liu H, Wang J, Pei D, Chen J, Ma Y. Single-cell RNA sequencing reveals the developmental program underlying proximal-distal patterning of the human lung at the embryonic stage. Cell Res 2023:10.1038/s41422-023-00802-6. [PMID: 37085732 PMCID: PMC10119843 DOI: 10.1038/s41422-023-00802-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 03/21/2023] [Indexed: 04/23/2023] Open
Abstract
The lung is the primary respiratory organ in human, in which the proximal airway and the distal alveoli are responsible for air conduction and gas exchange, respectively. However, the regulation of proximal-distal patterning at the embryonic stage of human lung development is largely unknown. Here we investigated the early lung development of human embryos at weeks 4-8 post fertilization (Carnegie stages 12-21) using single-cell RNA sequencing, and obtained a transcriptomic atlas of 169,686 cells. We observed discernible gene expression patterns of proximal and distal epithelia at week 4, upon the initiation of lung organogenesis. Moreover, we identified novel transcriptional regulators of the patterning of proximal (e.g., THRB and EGR3) and distal (e.g., ETV1 and SOX6) epithelia. Further dissection revealed various stromal cell populations, including an early-embryonic BDNF+ population, providing a proximal-distal patterning niche with spatial specificity. In addition, we elucidated the cell fate bifurcation and maturation of airway and vascular smooth muscle progenitor cells at the early stage of lung development. Together, our study expands the scope of human lung developmental biology at early embryonic stages. The discovery of intrinsic transcriptional regulators and novel niche providers deepens the understanding of epithelial proximal-distal patterning in human lung development, opening up new avenues for regenerative medicine.
Collapse
Affiliation(s)
- Shangtao Cao
- Guangzhou Laboratory, Guangzhou, Guangdong, China.
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Reproductive Medical Center, International Technology Cooperation Base "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease" By the Ministry of Science and Technology of China, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China.
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China.
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Huijian Feng
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Hongyan Yi
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Reproductive Medical Center, International Technology Cooperation Base "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease" By the Ministry of Science and Technology of China, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Mengjie Pan
- Guangzhou Laboratory, Guangzhou, Guangdong, China
| | - Lihui Lin
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Yao Santo Zhang
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China
| | - Ziyu Feng
- Guangzhou Laboratory, Guangzhou, Guangdong, China
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Weifang Liang
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China
| | - Baomei Cai
- Guangzhou Laboratory, Guangzhou, Guangdong, China
| | - Qi Li
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Reproductive Medical Center, International Technology Cooperation Base "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease" By the Ministry of Science and Technology of China, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China
- Key Laboratory of the Ministry of Education for Reproductive Health Diseases Research and Translation, Hainan Medical University, Haikou, Hainan, China
| | - Zhi Xiong
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Qingmei Shen
- Guangzhou Laboratory, Guangzhou, Guangdong, China
| | - Minjing Ke
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Xing Zhao
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Reproductive Medical Center, International Technology Cooperation Base "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease" By the Ministry of Science and Technology of China, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China
- Key Laboratory of the Ministry of Education for Reproductive Health Diseases Research and Translation, Hainan Medical University, Haikou, Hainan, China
| | - Huilin Chen
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Qina He
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Reproductive Medical Center, International Technology Cooperation Base "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease" By the Ministry of Science and Technology of China, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China
- Key Laboratory of the Ministry of Education for Reproductive Health Diseases Research and Translation, Hainan Medical University, Haikou, Hainan, China
| | - Mingwei Min
- Guangzhou Laboratory, Guangzhou, Guangdong, China
| | - Quanyou Cai
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - He Liu
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jie Wang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Duanqing Pei
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, China.
| | - Jiekai Chen
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China.
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China.
- University of the Chinese Academy of Sciences, Beijing, China.
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China.
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, China.
| | - Yanlin Ma
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Reproductive Medical Center, International Technology Cooperation Base "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease" By the Ministry of Science and Technology of China, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China.
- Key Laboratory of the Ministry of Education for Reproductive Health Diseases Research and Translation, Hainan Medical University, Haikou, Hainan, China.
| |
Collapse
|
28
|
Zhou T, Zhang H, Chen M, Zhang Y, Chen G, Zou G, Liang H. Identification and Expression Analysis of Wnt2 Gene in the Sex Differentiation of the Chinese Soft-Shelled Turtle ( Pelodiscus sinensis). LIFE (BASEL, SWITZERLAND) 2023; 13:life13010188. [PMID: 36676139 PMCID: PMC9864750 DOI: 10.3390/life13010188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/28/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023]
Abstract
The Chinese soft-shelled turtle (Pelodiscus sinensis) is an important freshwater aquaculture animal in China. The Wnt gene family plays important regulatory roles in the development and growth of mammals. However, the precise function of these family genes has not been well understood in the sex differentiation of Chinese soft-shelled turtles. Here, we cloned a member of the Wnt family, Wnt2, which obtained a 1077 bp open reading frame that encoded a 358-aa protein. The putative amino acid sequences of proteins are exceeded 80% identical to other turtles. The expression level of Wnt2 peaked at the 14th stage both in female and male embryos during the early gonadal differentiation period of Chinese soft-shelled turtles, which occurred before gonadal differentiation. Wnt2 mRNA was expressed at higher levels in the brains and gonads of mature P. sinensis females compared with those in mature males. Wnt agonists significantly affected the expression level of Wnt2 during the gonadal differentiation period. After Wnt agonists (1.0 μg/μL, 2.5 μg/μL, 5.0 μg/μL) treatment, the expression level of the Wnt2 generally appeared to have an inverted-V trend over time in female embryonic gonads. The results suggested that Wnt2 may participate in the regulation of gonad development in P. sinensis during the early embryonic stages. These results could provide a theoretical basis for the reproduction process of the Chinese soft-shelled turtle.
Collapse
Affiliation(s)
- Tong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Haiqi Zhang
- Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
| | - Meng Chen
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Yingping Zhang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Guobin Chen
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Guiwei Zou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
- Correspondence: (G.Z.); (H.L.)
| | - Hongwei Liang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
- Correspondence: (G.Z.); (H.L.)
| |
Collapse
|
29
|
Ikonomou L, Yampolskaya M, Mehta P. Multipotent Embryonic Lung Progenitors: Foundational Units of In Vitro and In Vivo Lung Organogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1413:49-70. [PMID: 37195526 PMCID: PMC10351616 DOI: 10.1007/978-3-031-26625-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Transient, tissue-specific, embryonic progenitors are important cell populations in vertebrate development. In the course of respiratory system development, multipotent mesenchymal and epithelial progenitors drive the diversification of fates that results to the plethora of cell types that compose the airways and alveolar space of the adult lungs. Use of mouse genetic models, including lineage tracing and loss-of-function studies, has elucidated signaling pathways that guide proliferation and differentiation of embryonic lung progenitors as well as transcription factors that underlie lung progenitor identity. Furthermore, pluripotent stem cell-derived and ex vivo expanded respiratory progenitors offer novel, tractable, high-fidelity systems that allow for mechanistic studies of cell fate decisions and developmental processes. As our understanding of embryonic progenitor biology deepens, we move closer to the goal of in vitro lung organogenesis and resulting applications in developmental biology and medicine.
Collapse
Affiliation(s)
- Laertis Ikonomou
- Department of Oral Biology, University at Buffalo, The State University of New York, Buffalo, NY, USA.
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University at Buffalo, The State University of New York, Buffalo, NY, USA.
- Cell, Gene and Tissue Engineering Center, University at Buffalo, The State University of New York, Buffalo, NY, USA.
| | | | - Pankaj Mehta
- Department of Physics, Boston University, Boston, MA, USA
- Faculty of Computing and Data Science, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
| |
Collapse
|
30
|
Prapa M, Lago-Docampo M, Swietlik EM, Montani D, Eyries M, Humbert M, Welch CL, Chung WK, Berger RMF, Bogaard HJ, Danhaive O, Escribano-Subías P, Gall H, Girerd B, Hernandez-Gonzalez I, Holden S, Hunt D, Jansen SMA, Kerstjens-Frederikse W, Kiely DG, Lapunzina P, McDermott J, Moledina S, Pepke-Zaba J, Polwarth GJ, Schotte G, Tenorio-Castaño J, Thompson AAR, Wharton J, Wort SJ, Megy K, Mapeta R, Treacy CM, Martin JM, Li W, Swift AJ, Upton PD, Morrell NW, Gräf S, Valverde D, NIHR BioResource for Translational Research–Rare Diseases, National Cohort Study of Idiopathic and Heritable PAH, PAH Biobank Enrolling Centers’ Investigators. First Genotype-Phenotype Study in TBX4 Syndrome: Gain-of-Function Mutations Causative for Lung Disease. Am J Respir Crit Care Med 2022; 206:1522-1533. [PMID: 35852389 PMCID: PMC9757087 DOI: 10.1164/rccm.202203-0485oc] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/18/2022] [Indexed: 02/02/2023] Open
Abstract
Rationale: Despite the increased recognition of TBX4 (T-BOX transcription factor 4)-associated pulmonary arterial hypertension (PAH), genotype-phenotype associations are lacking and may provide important insights. Objectives: To compile and functionally characterize all TBX4 variants reported to date and undertake a comprehensive genotype-phenotype analysis. Methods: We assembled a multicenter cohort of 137 patients harboring monoallelic TBX4 variants and assessed the pathogenicity of missense variation (n = 42) using a novel luciferase reporter assay containing T-BOX binding motifs. We sought genotype-phenotype correlations and undertook a comparative analysis with patients with PAH with BMPR2 (Bone Morphogenetic Protein Receptor type 2) causal variants (n = 162) or no identified variants in PAH-associated genes (n = 741) genotyped via the National Institute for Health Research BioResource-Rare Diseases. Measurements and Main Results: Functional assessment of TBX4 missense variants led to the novel finding of gain-of-function effects associated with older age at diagnosis of lung disease compared with loss-of-function effects (P = 0.038). Variants located in the T-BOX and nuclear localization domains were associated with earlier presentation (P = 0.005) and increased incidence of interstitial lung disease (P = 0.003). Event-free survival (death or transplantation) was shorter in the T-BOX group (P = 0.022), although age had a significant effect in the hazard model (P = 0.0461). Carriers of TBX4 variants were diagnosed at a younger age (P < 0.001) and had worse baseline lung function (FEV1, FVC) (P = 0.009) than the BMPR2 and no identified causal variant groups. Conclusions: We demonstrated that TBX4 syndrome is not strictly the result of haploinsufficiency but can also be caused by gain of function. The pleiotropic effects of TBX4 in lung disease may be in part explained by the differential effect of pathogenic mutations located in critical protein domains.
Collapse
Affiliation(s)
- Matina Prapa
- Department of Medicine and
- St. George’s University Hospitals National Health Service (NHS) Foundation Trust, London, United Kingdom
| | - Mauro Lago-Docampo
- CINBIO, Universidade de Vigo, Vigo, Spain
- Rare Diseases and Pediatric Medicine, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Emilia M. Swietlik
- Department of Medicine and
- Addenbrooke’s Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Royal Papworth Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - David Montani
- Université Paris-Saclay, AP-HP, Service de Pneumologie, Centre de référence de l’hypertension pulmonaire, INSERM UMR_S 999, Hôpital Bicêtre, Le Kremlin-Bicêtre, Paris, France
| | - Mélanie Eyries
- Département de génétique, hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, and UMR_S 1166-ICAN, INSERM, UPMC Sorbonne Universités, Paris, France
| | - Marc Humbert
- Université Paris-Saclay, AP-HP, Service de Pneumologie, Centre de référence de l’hypertension pulmonaire, INSERM UMR_S 999, Hôpital Bicêtre, Le Kremlin-Bicêtre, Paris, France
| | | | - Wendy K. Chung
- Department of Pediatrics and
- Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Rolf M. F. Berger
- Centre for Congenital Heart Diseases, Pediatric Cardiology, Beatrix Children’s Hospital, and
| | - Harm Jan Bogaard
- Department of Pulmonary Medicine, Amsterdam University Medical Centre, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands
| | - Olivier Danhaive
- Division of Neonatology, St.-Luc University Hospital, Catholic University of Louvain, Brussels, Belgium
- Department of Pediatrics, University of California San Francisco, San Francisco, California
| | - Pilar Escribano-Subías
- Unidad Multidisciplinar de Hipertensión Pulmonar, Servicio de Cardiología, Hospital Universitario 12 de Octubre, Madrid, Spain
- CIBERCV, Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, ISCIII, Madrid, Spain
| | - Henning Gall
- Centre for Congenital Heart Diseases, Pediatric Cardiology, Beatrix Children’s Hospital, and
| | - Barbara Girerd
- Université Paris-Saclay, AP-HP, Service de Pneumologie, Centre de référence de l’hypertension pulmonaire, INSERM UMR_S 999, Hôpital Bicêtre, Le Kremlin-Bicêtre, Paris, France
| | | | - Simon Holden
- Department of Clinical Genetics, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - David Hunt
- Wessex Clinical Genetics Service, Princess Anne Hospital, Southampton, United Kingdom
| | - Samara M. A. Jansen
- Department of Pulmonary Medicine, Amsterdam University Medical Centre, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands
| | | | - David G. Kiely
- Department of Infection, Immunity, and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield, United Kingdom
| | - Pablo Lapunzina
- Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz-UAM, Madrid, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
- ITHACA, European Reference Network on Rare Congenital Malformations and Rare Intellectual Disability, Brussels, Belgium
| | - John McDermott
- Manchester Centre for Genomic Medicine, St. Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | | | - Joanna Pepke-Zaba
- Royal Papworth Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Gary J. Polwarth
- Royal Papworth Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Gwen Schotte
- Department of Pulmonary Medicine, Amsterdam University Medical Centre, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands
| | - Jair Tenorio-Castaño
- Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz-UAM, Madrid, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
- ITHACA, European Reference Network on Rare Congenital Malformations and Rare Intellectual Disability, Brussels, Belgium
| | - A. A. Roger Thompson
- Department of Infection, Immunity, and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield, United Kingdom
| | - John Wharton
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Stephen J. Wort
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Karyn Megy
- Department of Medicine and
- Addenbrooke’s Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Rutendo Mapeta
- Department of Medicine and
- Addenbrooke’s Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | | | | | - Wei Li
- Department of Medicine and
| | - Andrew J. Swift
- Department of Infection, Immunity, and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | | | - Nicholas W. Morrell
- Department of Medicine and
- Addenbrooke’s Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Royal Papworth Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, United Kingdom
- National Institute of Health Research (NIHR) BioResource for Translational Research, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Stefan Gräf
- Department of Medicine and
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- National Institute of Health Research (NIHR) BioResource for Translational Research, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Diana Valverde
- CINBIO, Universidade de Vigo, Vigo, Spain
- Rare Diseases and Pediatric Medicine, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | | | | | | |
Collapse
|
31
|
De Leon N, Tse WH, Ameis D, Keijzer R. Embryology and anatomy of congenital diaphragmatic hernia. Semin Pediatr Surg 2022; 31:151229. [PMID: 36446305 DOI: 10.1016/j.sempedsurg.2022.151229] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Prenatal and postnatal treatment modalities for congenital diaphragmatic hernia (CDH) continue to improve, however patients still face high rates of morbidity and mortality caused by severe underlying persistent pulmonary hypertension and pulmonary hypoplasia. Though the majority of CDH cases are idiopathic, it is believed that CDH is a polygenic developmental defect caused by interactions between candidate genes, as well as environmental and epigenetic factors. However, the origin and pathogenesis of these developmental insults are poorly understood. Further, connections between disrupted lung development and the failure of diaphragmatic closure during embryogenesis have not been fully elucidated. Though several animal models have been useful in identifying candidate genes and disrupted signalling pathways, more studies are required to understand the pathogenesis and to develop effective preventative care. In this article, we summarize the most recent litterature on disrupted embryological lung and diaphragmatic development associated with CDH.
Collapse
Affiliation(s)
- Nolan De Leon
- Departments of Surgery, Division of Pediatric Surgery, Pediatrics & Child Health and Physiology and Pathophysiology, University of Manitoba and Biology of Breathing Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Wai Hei Tse
- Departments of Surgery, Division of Pediatric Surgery, Pediatrics & Child Health and Physiology and Pathophysiology, University of Manitoba and Biology of Breathing Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Dustin Ameis
- Departments of Surgery, Division of Pediatric Surgery, Pediatrics & Child Health and Physiology and Pathophysiology, University of Manitoba and Biology of Breathing Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Richard Keijzer
- Departments of Surgery, Division of Pediatric Surgery, Pediatrics & Child Health and Physiology and Pathophysiology, University of Manitoba and Biology of Breathing Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
32
|
Demchenko A, Lavrov A, Smirnikhina S. Lung organoids: current strategies for generation and transplantation. Cell Tissue Res 2022; 390:317-333. [PMID: 36178558 PMCID: PMC9522545 DOI: 10.1007/s00441-022-03686-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 09/08/2022] [Indexed: 01/19/2023]
Abstract
Lung diseases occupy a leading position in human morbidity and are the third leading cause of death. Often the chronic forms of these diseases do not respond to therapy, so that lung transplantation is the only treatment option. The development of cellular and biotechnologies offers a new solution-the use of lung organoids for transplantation in such patients. Here, we review types of lung organoids, methods of their production and characterization, and experimental works on transplantation in vivo. These results show the promise of work in this direction. Despite the current problems associated with a low degree of cell engraftment, immune response, and insufficient differentiation, we are confident that organoid transplantation will find it is clinical application.
Collapse
Affiliation(s)
- Anna Demchenko
- Research Centre for Medical Genetics, Laboratory of Genome Editing, Moscow, 115522 Russia
| | - Alexander Lavrov
- Research Centre for Medical Genetics, Laboratory of Genome Editing, Moscow, 115522 Russia
| | - Svetlana Smirnikhina
- Research Centre for Medical Genetics, Laboratory of Genome Editing, Moscow, 115522 Russia
| |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW To provide an update on the current understanding of the role of wingless/integrase-1 (Wnt) signaling in pediatric allergic asthma and other pediatric lung diseases. RECENT FINDINGS The Wnt signaling pathway is critical for normal lung development. Genetic and epigenetic human studies indicate a link between Wnt signaling and the development and severity of asthma in children. Mechanistic studies using animal models of allergic asthma demonstrate a key role for Wnt signaling in allergic airway inflammation and remodeling. More recently, data on bronchopulmonary dysplasia (BPD) pathogenesis points to the Wnt signaling pathway as an important regulator. SUMMARY Current data indicates that the Wnt signaling pathway is an important mediator in allergic asthma and BPD pathogenesis. Further studies are needed to characterize the roles of individual Wnt signals in childhood disease, and to identify potential novel therapeutic targets to slow or prevent disease processes.
Collapse
Affiliation(s)
- Nooralam Rai
- Department of Pediatrics, Columbia University Medical Center, New York, NY, USA
| | - Jeanine D’Armiento
- Department of Anesthesiology, Medicine, and Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
34
|
Congenital lung malformations: Dysregulated lung developmental processes and altered signaling pathways. Semin Pediatr Surg 2022; 31:151228. [PMID: 36442455 DOI: 10.1016/j.sempedsurg.2022.151228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Congenital lung malformations comprise a diverse group of anomalies including congenital pulmonary airway malformation (CPAM, previously known as congenital cystic adenomatoid malformation or CCAM), bronchopulmonary sequestration (BPS), congenital lobar emphysema (CLE), bronchogenic cysts, and hybrid lesions. Little is known about the signaling pathways that underlie the pathophysiology of these lesions and the processes that may promote their malignant transformation. In the last decade, the use of transgenic/knockout animal models and the implementation of next generation sequencing on surgical lung specimens have increased our knowledge on the pathophysiology of these lesions. Herein, we provide an overview of normal lung development in humans and rodents, and we discuss the current state of knowledge on the pathophysiology and molecular pathways that are altered in each congenital lung malformation.
Collapse
|
35
|
Drummond BE, Chambers BE, Wesselman HM, Gibson S, Arceri L, Ulrich MN, Gerlach GF, Kroeger PT, Leshchiner I, Goessling W, Wingert RA. osr1 Maintains Renal Progenitors and Regulates Podocyte Development by Promoting wnt2ba via the Antagonism of hand2. Biomedicines 2022; 10:biomedicines10112868. [PMID: 36359386 PMCID: PMC9687957 DOI: 10.3390/biomedicines10112868] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/01/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022] Open
Abstract
Knowledge about the genetic pathways that control nephron development is essential for better understanding the basis of congenital malformations of the kidney. The transcription factors Osr1 and Hand2 are known to exert antagonistic influences to balance kidney specification. Here, we performed a forward genetic screen to identify nephrogenesis regulators, where whole genome sequencing identified an osr1 lesion in the novel oceanside (ocn) mutant. The characterization of the mutant revealed that osr1 is needed to specify not renal progenitors but rather their maintenance. Additionally, osr1 promotes the expression of wnt2ba in the intermediate mesoderm (IM) and later the podocyte lineage. wnt2ba deficiency reduced podocytes, where overexpression of wnt2ba was sufficient to rescue podocytes and osr1 deficiency. Antagonism between osr1 and hand2 mediates podocyte development specifically by controlling wnt2ba expression. These studies reveal new insights about the roles of Osr1 in promoting renal progenitor survival and lineage choice.
Collapse
Affiliation(s)
- Bridgette E. Drummond
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Brooke E. Chambers
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Hannah M. Wesselman
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Shannon Gibson
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Liana Arceri
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Marisa N. Ulrich
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Gary F. Gerlach
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Paul T. Kroeger
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Ignaty Leshchiner
- Brigham and Women’s Hospital, Genetics and Gastroenterology Division, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02215, USA
| | - Wolfram Goessling
- Brigham and Women’s Hospital, Genetics and Gastroenterology Division, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02215, USA
| | - Rebecca A. Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
- Brigham and Women’s Hospital, Genetics and Gastroenterology Division, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02215, USA
- Correspondence: ; Tel.: +1-574-631-0907
| |
Collapse
|
36
|
Tamai K, Sakai K, Yamaki H, Moriguchi K, Igura K, Maehana S, Suezawa T, Takehara K, Hagiwara M, Hirai T, Gotoh S. iPSC-derived mesenchymal cells that support alveolar organoid development. CELL REPORTS METHODS 2022; 2:100314. [PMID: 36313800 PMCID: PMC9606132 DOI: 10.1016/j.crmeth.2022.100314] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/14/2022] [Accepted: 09/13/2022] [Indexed: 12/01/2022]
Abstract
Mesenchymal cells are necessary for organ development. In the lung, distal tip fibroblasts contribute to alveolar and airway epithelial cell differentiation and homeostasis. Here, we report a method for generating human induced pluripotent stem cell (iPSC)-derived mesenchymal cells (iMESs) that can induce human iPSC-derived alveolar and airway epithelial lineages in organoids via epithelial-mesenchymal interaction, without the use of allogenic fetal lung fibroblasts. Through a transcriptome comparison of dermal and lung fibroblasts with their corresponding reprogrammed iPSC-derived iMESs, we found that iMESs had features of lung mesenchyme with the potential to induce alveolar type 2 (AT2) cells. Particularly, RSPO2 and RSPO3 expressed in iMESs directly contributed to AT2 cell induction during organoid formation. We demonstrated that the total iPSC-derived alveolar organoids were useful for characterizing responses to the influenza A (H1N1) virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, demonstrating their utility for disease modeling.
Collapse
Affiliation(s)
- Koji Tamai
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kouji Sakai
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Virology 3, National Institute of Infectious Diseases, Tokyo, Japan
| | - Haruka Yamaki
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Keita Moriguchi
- Department of Drug Discovery for Lung Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koichi Igura
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shotaro Maehana
- Department of Environmental Microbiology, Graduate School of Medical Sciences, Kitasato University, Kanagawa, Japan
- Department of Microbiology, School of Allied Health Sciences, Kitasato University, Kanagawa, Japan
- Regenerative Medicine and Cell Design Research Facility, Kanagawa, Japan
| | - Takahiro Suezawa
- Department of Drug Discovery for Lung Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazuaki Takehara
- Laboratory of Animal Health, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Laboratory of Animal Health, Cooperative Division of Veterinary Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Masatoshi Hagiwara
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shimpei Gotoh
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Drug Discovery for Lung Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| |
Collapse
|
37
|
Hein RFC, Conchola AS, Fine AS, Xiao Z, Frum T, Brastrom LK, Akinwale MA, Childs CJ, Tsai YH, Holloway EM, Huang S, Mahoney J, Heemskerk I, Spence JR. Stable iPSC-derived NKX2-1+ lung bud tip progenitor organoids give rise to airway and alveolar cell types. Development 2022; 149:dev200693. [PMID: 36039869 PMCID: PMC9534489 DOI: 10.1242/dev.200693] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/28/2022] [Indexed: 12/13/2022]
Abstract
Bud tip progenitors (BTPs) in the developing lung give rise to all epithelial cell types found in the airways and alveoli. This work aimed to develop an iPSC organoid model enriched with NKX2-1+ BTP-like cells. Building on previous studies, we optimized a directed differentiation paradigm to generate spheroids with more robust NKX2-1 expression. Spheroids were expanded into organoids that possessed NKX2-1+/CPM+ BTP-like cells, which increased in number over time. Single cell RNA-sequencing analysis revealed a high degree of transcriptional similarity between induced BTPs (iBTPs) and in vivo BTPs. Using FACS, iBTPs were purified and expanded as induced bud tip progenitor organoids (iBTOs), which maintained an enriched population of bud tip progenitors. When iBTOs were directed to differentiate into airway or alveolar cell types using well-established methods, they gave rise to organoids composed of organized airway or alveolar epithelium, respectively. Collectively, iBTOs are transcriptionally and functionally similar to in vivo BTPs, providing an important model for studying human lung development and differentiation.
Collapse
Affiliation(s)
- Renee F. C. Hein
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Ansley S. Conchola
- Program in Cell and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Alexis S. Fine
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Zhiwei Xiao
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Tristan Frum
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Lindy K. Brastrom
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Mayowa A. Akinwale
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Charlie J. Childs
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Yu-Hwai Tsai
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Emily M. Holloway
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Sha Huang
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - John Mahoney
- Therapeutics Lab, Cystic Fibrosis Foundation, Lexington, MA 02421, USA
| | - Idse Heemskerk
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jason R. Spence
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Program in Cell and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
38
|
Eenjes E, Tibboel D, Wijnen RM, Rottier RJ. Lung epithelium development and airway regeneration. Front Cell Dev Biol 2022; 10:1022457. [PMID: 36299482 PMCID: PMC9589436 DOI: 10.3389/fcell.2022.1022457] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/20/2022] [Indexed: 11/21/2022] Open
Abstract
The lung is composed of a highly branched airway structure, which humidifies and warms the inhaled air before entering the alveolar compartment. In the alveoli, a thin layer of epithelium is in close proximity with the capillary endothelium, allowing for an efficient exchange of oxygen and carbon dioxide. During development proliferation and differentiation of progenitor cells generates the lung architecture, and in the adult lung a proper function of progenitor cells is needed to regenerate after injury. Malfunctioning of progenitors during development results in various congenital lung disorders, such as Congenital Diaphragmatic Hernia (CDH) and Congenital Pulmonary Adenomatoid Malformation (CPAM). In addition, many premature neonates experience continuous insults on the lung caused by artificial ventilation and supplemental oxygen, which requires a highly controlled mechanism of airway repair. Malfunctioning of airway progenitors during regeneration can result in reduction of respiratory function or (chronic) airway diseases. Pathways that are active during development are frequently re-activated upon damage. Understanding the basic mechanisms of lung development and the behavior of progenitor cell in the ontogeny and regeneration of the lung may help to better understand the underlying cause of lung diseases, especially those occurring in prenatal development or in the immediate postnatal period of life. This review provides an overview of lung development and the cell types involved in repair of lung damage with a focus on the airway.
Collapse
Affiliation(s)
- Evelien Eenjes
- Department of Pediatric Surgery, Erasmus MC-Sophia Children’s Hospital, Rotterdam, Netherlands
| | - Dick Tibboel
- Department of Pediatric Surgery, Erasmus MC-Sophia Children’s Hospital, Rotterdam, Netherlands
| | - Rene M.H. Wijnen
- Department of Pediatric Surgery, Erasmus MC-Sophia Children’s Hospital, Rotterdam, Netherlands
| | - Robbert J. Rottier
- Department of Pediatric Surgery, Erasmus MC-Sophia Children’s Hospital, Rotterdam, Netherlands
- Department of Cell Biology, Erasmus MC, Rotterdam, Netherlands
- *Correspondence: Robbert J. Rottier,
| |
Collapse
|
39
|
Lewis ZR, Kerney R, Hanken J. Developmental basis of evolutionary lung loss in plethodontid salamanders. SCIENCE ADVANCES 2022; 8:eabo6108. [PMID: 35977024 PMCID: PMC9385146 DOI: 10.1126/sciadv.abo6108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
One or more members of four living amphibian clades have independently dispensed with pulmonary respiration and lack lungs, but little is known of the developmental basis of lung loss in any taxon. We use morphological, molecular, and experimental approaches to examine the Plethodontidae, a dominant family of salamanders, all of which are lungless as adults. We confirm an early anecdotal report that plethodontids complete early stages of lung morphogenesis: Transient embryonic lung primordia form but regress by apoptosis before hatching. Initiation of pulmonary development coincides with expression of the lung-specification gene Wnt2b in adjacent mesoderm, and the lung rudiment expresses pulmonary markers Nkx2.1 and Sox9. Lung developmental-genetic pathways are at least partially conserved despite the absence of functional adult lungs for at least 25 and possibly exceeding 60 million years. Adult lung loss appears associated with altered expression of signaling molecules that mediate later stages of tracheal and pulmonary development.
Collapse
Affiliation(s)
- Zachary R. Lewis
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Ryan Kerney
- Department of Biology, Gettysburg College, Gettysburg, PA, USA
| | - James Hanken
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
40
|
Murphy P, Armit C, Hill B, Venkataraman S, Frankel P, Baldock RA, Davidson DR. Integrated analysis of Wnt signalling system component gene expression. Development 2022; 149:276001. [PMID: 35831952 PMCID: PMC9481969 DOI: 10.1242/dev.200312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/06/2022] [Indexed: 11/20/2022]
Abstract
Wnt signalling controls patterning and differentiation across many tissues and organs of the developing embryo through temporally and spatially restricted expression of multi-gene families encoding ligands, receptors, pathway modulators and intracellular components. Here, we report an integrated analysis of key genes in the 3D space of the mouse embryo across multiple stages of development. We applied a method for 3D/3D image transformation to map all gene expression patterns to a single reference embryo for each stage, providing both visual analysis and volumetric mapping allowing computational methods to interrogate the combined expression patterns. We identify territories where multiple Wnt and Fzd genes are co-expressed and cross-compare all patterns, including all seven Wnt paralogous gene pairs. The comprehensive analysis revealed regions in the embryo where no Wnt or Fzd gene expression is detected, and where single Wnt genes are uniquely expressed. This work provides insight into a previously unappreciated level of organisation of expression patterns, as well as presenting a resource that can be utilised further by the research community for whole-system analysis. Summary: A systematic analysis of integrated expression patterns of Wnt signalling pathway component-encoding genes and canonical pathway read-out, spatially mapped in 3D to mouse embryo models identifies co-expression territories.
Collapse
Affiliation(s)
- Paula Murphy
- School of Natural Sciences, Department of Zoology, Trinity College Dublin, The University of Dublin 1 , Dublin 2 , Ireland
| | - Chris Armit
- Institute of Cancer and Genetics, University of Edinburgh 2 MRC Human Genetics Unit , , Crewe Road, Edinburgh EH4 2XU , UK
| | - Bill Hill
- Institute of Cancer and Genetics, University of Edinburgh 2 MRC Human Genetics Unit , , Crewe Road, Edinburgh EH4 2XU , UK
| | - Shanmugasundaram Venkataraman
- Institute of Cancer and Genetics, University of Edinburgh 2 MRC Human Genetics Unit , , Crewe Road, Edinburgh EH4 2XU , UK
| | - Patrick Frankel
- School of Natural Sciences, Department of Zoology, Trinity College Dublin, The University of Dublin 1 , Dublin 2 , Ireland
| | - Richard A. Baldock
- Institute of Cancer and Genetics, University of Edinburgh 2 MRC Human Genetics Unit , , Crewe Road, Edinburgh EH4 2XU , UK
| | - Duncan R. Davidson
- Institute of Cancer and Genetics, University of Edinburgh 2 MRC Human Genetics Unit , , Crewe Road, Edinburgh EH4 2XU , UK
| |
Collapse
|
41
|
Goto N, Goto S, Imada S, Hosseini S, Deshpande V, Yilmaz ÖH. Lymphatics and fibroblasts support intestinal stem cells in homeostasis and injury. Cell Stem Cell 2022; 29:1246-1261.e6. [PMID: 35931033 PMCID: PMC9720889 DOI: 10.1016/j.stem.2022.06.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/20/2022] [Accepted: 06/22/2022] [Indexed: 01/19/2023]
Abstract
Lgr5+ intestinal stem cells (ISCs) depend on niche factors for their proper function. However, the source of these ISC niche factors and how they support ISCs in vivo remain controversial. Here, we report that ISCs depend on lymphatic endothelial cells (LECs) and RSPO3+GREM1+ fibroblasts (RGFs). In the intestine and colon, LECs are surrounded by RGFs and are located near ISCs at the crypt base. Both LECs and RGFs provide the critical ISC niche factor RSPO3 to support ISCs, where RSPO3 loss in both cell types drastically compromises ISC numbers, villi length, and repair after injury. In response to injury, LEC and RGF numbers expand and produce greater amounts of RSPO3 and other growth/angiocrine factors to foster intestinal repair. We propose that LECs represent a novel niche component for ISCs, which together with RGFs serve as the major in vivo RSPO3 source for ISCs in homeostasis and injury-mediated regeneration.
Collapse
Affiliation(s)
- Norihiro Goto
- Department of Biology, The David H. Koch Institute for
Integrative Cancer Research at MIT, Massachusetts Institute of Technology,
Cambridge, MA 02139, USA,Correspondence:
(N.G.), (Ö.H.Y.)
| | - Saori Goto
- Department of Biology, The David H. Koch Institute for
Integrative Cancer Research at MIT, Massachusetts Institute of Technology,
Cambridge, MA 02139, USA
| | - Shinya Imada
- Department of Biology, The David H. Koch Institute for
Integrative Cancer Research at MIT, Massachusetts Institute of Technology,
Cambridge, MA 02139, USA
| | - Sahar Hosseini
- Department of Pathology, Massachusetts General Hospital and
Harvard Medical School, Boston, MA 02114, USA
| | - Vikram Deshpande
- Department of Pathology, Massachusetts General Hospital and
Harvard Medical School, Boston, MA 02114, USA
| | - Ömer H. Yilmaz
- Department of Biology, The David H. Koch Institute for
Integrative Cancer Research at MIT, Massachusetts Institute of Technology,
Cambridge, MA 02139, USA,Broad Institute of MIT and Harvard, Cambridge, MA 02142,
USA,Department of Pathology, Massachusetts General Hospital and
Harvard Medical School, Boston, MA 02114, USA,Lead contact,Correspondence:
(N.G.), (Ö.H.Y.)
| |
Collapse
|
42
|
Liberti DC, Liberti Iii WA, Kremp MM, Penkala IJ, Cardenas-Diaz FL, Morley MP, Babu A, Zhou S, Fernandez Iii RJ, Morrisey EE. Klf5 defines alveolar epithelial type 1 cell lineage commitment during lung development and regeneration. Dev Cell 2022; 57:1742-1757.e5. [PMID: 35803279 DOI: 10.1016/j.devcel.2022.06.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/26/2022] [Accepted: 06/13/2022] [Indexed: 12/11/2022]
Abstract
Alveolar epithelial cell fate decisions drive lung development and regeneration. Using transcriptomic and epigenetic profiling coupled with genetic mouse and organoid models, we identified the transcription factor Klf5 as an essential determinant of alveolar epithelial cell fate across the lifespan. We show that although dispensable for both adult alveolar epithelial type 1 (AT1) and alveolar epithelial type 2 (AT2) cell homeostasis, Klf5 enforces AT1 cell lineage fidelity during development. Using infectious and non-infectious models of acute respiratory distress syndrome, we demonstrate that Klf5 represses AT2 cell proliferation and enhances AT2-AT1 cell differentiation in a spatially restricted manner during lung regeneration. Moreover, ex vivo organoid assays identify that Klf5 reduces AT2 cell sensitivity to inflammatory signaling to drive AT2-AT1 cell differentiation. These data define the roll of a major transcriptional regulator of AT1 cell lineage commitment and of the AT2 cell response to inflammatory crosstalk during lung regeneration.
Collapse
Affiliation(s)
- Derek C Liberti
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Perelman School of Medicine Philadelphia, PA 19104, USA
| | - William A Liberti Iii
- Department of Electrical Engineering and Computer Sciences, UC Berkeley, Berkeley, CA 94720, USA
| | - Madison M Kremp
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ian J Penkala
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Perelman School of Medicine Philadelphia, PA 19104, USA
| | - Fabian L Cardenas-Diaz
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael P Morley
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Apoorva Babu
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Su Zhou
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rafael J Fernandez Iii
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward E Morrisey
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Perelman School of Medicine Philadelphia, PA 19104, USA; Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
43
|
Hein RFC, Wu JH, Holloway EM, Frum T, Conchola AS, Tsai YH, Wu A, Fine AS, Miller AJ, Szenker-Ravi E, Yan KS, Kuo CJ, Glass I, Reversade B, Spence JR. R-SPONDIN2 + mesenchymal cells form the bud tip progenitor niche during human lung development. Dev Cell 2022; 57:1598-1614.e8. [PMID: 35679862 PMCID: PMC9283295 DOI: 10.1016/j.devcel.2022.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/18/2022] [Accepted: 05/16/2022] [Indexed: 01/23/2023]
Abstract
The human respiratory epithelium is derived from a progenitor cell in the distal buds of the developing lung. These "bud tip progenitors" are regulated by reciprocal signaling with surrounding mesenchyme; however, mesenchymal heterogeneity and function in the developing human lung are poorly understood. We interrogated single-cell RNA sequencing data from multiple human lung specimens and identified a mesenchymal cell population present during development that is highly enriched for expression of the WNT agonist RSPO2, and we found that the adjacent bud tip progenitors are enriched for the RSPO2 receptor LGR5. Functional experiments using organoid models, explant cultures, and FACS-isolated RSPO2+ mesenchyme show that RSPO2 is a critical niche cue that potentiates WNT signaling in bud tip progenitors to support their maintenance and multipotency.
Collapse
Affiliation(s)
- Renee F C Hein
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Joshua H Wu
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Emily M Holloway
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Tristan Frum
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Ansley S Conchola
- Program in Cell and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Yu-Hwai Tsai
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Angeline Wu
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Alexis S Fine
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Alyssa J Miller
- Program in Cell and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Emmanuelle Szenker-Ravi
- Laboratory of Human Genetics & Therapeutics, Genome Institute of Singapore, A(∗)STAR, Singapore 138648, Singapore
| | - Kelley S Yan
- Columbia Center for Human Development, Columbia Stem Cell Initiative, Departments of Medicine and Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Calvin J Kuo
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ian Glass
- Department of Pediatrics, Genetic Medicine, University of Washington, Seattle, WA 98195, USA
| | - Bruno Reversade
- Laboratory of Human Genetics & Therapeutics, Genome Institute of Singapore, A(∗)STAR, Singapore 138648, Singapore; Laboratory of Human Genetics & Therapeutics, Institute of Molecular and Cell Biology (IMCB), A∗STAR, Singapore; Medical Genetics Department, Koç University School of Medicine (KUSOM), Istanbul, Turkey
| | - Jason R Spence
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Program in Cell and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI 48109, USA.
| |
Collapse
|
44
|
Wu M, Zhang X, Lin Y, Zeng Y. Roles of airway basal stem cells in lung homeostasis and regenerative medicine. Respir Res 2022; 23:122. [PMID: 35562719 PMCID: PMC9102684 DOI: 10.1186/s12931-022-02042-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/01/2022] [Indexed: 11/10/2022] Open
Abstract
Airway basal stem cells (BSCs) in the proximal airways are recognized as resident stem cells capable of self-renewing and differentiating to virtually every pseudostratified epithelium cell type under steady-state and after acute injury. In homeostasis, BSCs typically maintain a quiescent state. However, when exposed to acute injuries by either physical insults, chemical damage, or pathogen infection, the remaining BSCs increase their proliferation rate apace within the first 24 h and differentiate to restore lung homeostasis. Given the progenitor property of airway BSCs, it is attractive to research their biological characteristics and how they maintain homeostatic airway structure and respond to injury. In this review, we focus on the roles of BSCs in lung homeostasis and regeneration, detail the research progress in the characteristics of airway BSCs, the cellular and molecular signaling communications involved in BSCs-related airway repair and regeneration, and further discuss the in vitro models for airway BSC propagation and their applications in lung regenerative medicine therapy.
Collapse
Affiliation(s)
- Meirong Wu
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China.,Stem Cell Laboratory, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China.,Respiratory Medicine Center of Fujian Province, Quanzhou, Fujian Province, People's Republic of China
| | - Xiaojing Zhang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China.,Stem Cell Laboratory, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China.,Respiratory Medicine Center of Fujian Province, Quanzhou, Fujian Province, People's Republic of China
| | - Yijian Lin
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China.,Stem Cell Laboratory, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China.,Respiratory Medicine Center of Fujian Province, Quanzhou, Fujian Province, People's Republic of China
| | - Yiming Zeng
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China. .,Stem Cell Laboratory, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China. .,Respiratory Medicine Center of Fujian Province, Quanzhou, Fujian Province, People's Republic of China.
| |
Collapse
|
45
|
Fernandez RJ, Gardner ZJG, Slovik KJ, Liberti DC, Estep KN, Yang W, Chen Q, Santini GT, Perez JV, Root S, Bhatia R, Tobias JW, Babu A, Morley MP, Frank DB, Morrisey EE, Lengner CJ, Johnson FB. GSK3 inhibition rescues growth and telomere dysfunction in dyskeratosis congenita iPSC-derived type II alveolar epithelial cells. eLife 2022; 11:64430. [PMID: 35559731 PMCID: PMC9200405 DOI: 10.7554/elife.64430] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 05/11/2022] [Indexed: 11/27/2022] Open
Abstract
Dyskeratosis congenita (DC) is a rare genetic disorder characterized by deficiencies in telomere maintenance leading to very short telomeres and the premature onset of certain age-related diseases, including pulmonary fibrosis (PF). PF is thought to derive from epithelial failure, particularly that of type II alveolar epithelial (AT2) cells, which are highly dependent on Wnt signaling during development and adult regeneration. We use human induced pluripotent stem cell-derived AT2 (iAT2) cells to model how short telomeres affect AT2 cells. Cultured DC mutant iAT2 cells accumulate shortened, uncapped telomeres and manifest defects in the growth of alveolospheres, hallmarks of senescence, and apparent defects in Wnt signaling. The GSK3 inhibitor, CHIR99021, which mimics the output of canonical Wnt signaling, enhances telomerase activity and rescues the defects. These findings support further investigation of Wnt agonists as potential therapies for DC-related pathologies.
Collapse
Affiliation(s)
- Rafael Jesus Fernandez
- Medical Scientist Training Program, University of Pennsylvania, Philadelphia, United States
| | - Zachary J G Gardner
- Medical Scientist Training Program, University of Pennsylvania, Philadelphia, United States
| | - Katherine J Slovik
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, United States
| | - Derek C Liberti
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, United States
| | - Katrina N Estep
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, United States
| | - Wenli Yang
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, United States
| | - Qijun Chen
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, United States
| | - Garrett T Santini
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Javier V Perez
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, United States
| | - Sarah Root
- College of Arts and Sciences and Vagelos Scholars Program, University of Pennsylvania, Philadelphia, United States
| | - Ranvir Bhatia
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - John W Tobias
- Penn Genomic Analysis Core, University of Pennsylvania, Philadelphia, United States
| | - Apoorva Babu
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, United States
| | - Michael P Morley
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, United States
| | - David B Frank
- Penn-CHOP Lung Biology Institute, Children's Hospital of Philadelphia, Philadelphia, United States
| | - Edward E Morrisey
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, United States
| | - Christopher J Lengner
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, United States
| | - F Brad Johnson
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
46
|
IFNγ-Treated Macrophages Induce EMT through the WNT Pathway: Relevance in Crohn’s Disease. Biomedicines 2022; 10:biomedicines10051093. [PMID: 35625832 PMCID: PMC9139093 DOI: 10.3390/biomedicines10051093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 01/25/2023] Open
Abstract
Background: Fibrosis is a common complication of Crohn’s disease (CD) in which macrophages play a central role. Epithelial-mesenchymal transition (EMT) and the WNT pathway have been associated with fibrosis. We aim to analyse the relevance of the tissue microenvironment in macrophage phenotype and the EMT process. Methods: Intestinal surgical resections are obtained from control and CD patients with stenotic or penetrating behaviour. Cytokine’s expression, macrophage phenotype, EMT markers and WNT signalling pathway are determined by WB, RT-PCR, ELISA or Cytometry. U937 cells are treated with IFNγ, TNFα, IL1β, IL4 or IL10 and co-cultured with HT29 cells and, in some cases, are treated with XAV939 or miFZD4. The expression of macrophage, EMT and WNT pathway markers in U937 or HT29 cells is analysed by WB or RT-PCR. Results: IFNγ, WNT6, CD16 and CD86 are increased in the intestinal tissue of CD patients. IFNγ-treated U937 activated the EMT process and WNT pathway in HT29 cells, and the EMT process is mediated by FZD4. Conclusions: An IFNγ-rich microenvironment polarises macrophages, which induces EMT through the WNT pathway.
Collapse
|
47
|
Varghese B, Ling Z, Ren X. Reconstructing the pulmonary niche with stem cells: a lung story. Stem Cell Res Ther 2022; 13:161. [PMID: 35410254 PMCID: PMC8996210 DOI: 10.1186/s13287-022-02830-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 03/23/2022] [Indexed: 12/25/2022] Open
Abstract
The global burden of pulmonary disease highlights an overwhelming need in improving our understanding of lung development, disease, and treatment. It also calls for further advances in our ability to engineer the pulmonary system at cellular and tissue levels. The discovery of human pluripotent stem cells (hPSCs) offsets the relative inaccessibility of human lungs for studying developmental programs and disease mechanisms, all the while offering a potential source of cells and tissue for regenerative interventions. This review offers a perspective on where the lung stem cell field stands in terms of accomplishing these ambitious goals. We will trace the known stages and pathways involved in in vivo lung development and how they inspire the directed differentiation of stem and progenitor cells in vitro. We will also recap the efforts made to date to recapitulate the lung stem cell niche in vitro via engineered cell-cell and cell-extracellular matrix (ECM) interactions.
Collapse
Affiliation(s)
- Barbie Varghese
- Department of Biomedical Engineering, Carnegie Mellon University, Scott Hall 4N111, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | - Zihan Ling
- Department of Biomedical Engineering, Carnegie Mellon University, Scott Hall 4N111, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | - Xi Ren
- Department of Biomedical Engineering, Carnegie Mellon University, Scott Hall 4N111, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
48
|
Xu Y, Yu X, Sun Z, He Y, Guo W. Roles of lncRNAs Mediating Wnt/β-Catenin Signaling in HCC. Front Oncol 2022; 12:831366. [PMID: 35356220 PMCID: PMC8959654 DOI: 10.3389/fonc.2022.831366] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/14/2022] [Indexed: 11/18/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is considered the second most deadly cancer worldwide. Due to the absence of early diagnostic markers and effective therapeutic approaches, distant metastasis and increasing recurrence rates are major difficulties in the clinical treatment of HCC. Further understanding of its pathogenesis has become an urgent goal in HCC research. Recently, abnormal expression of long noncoding RNAs (lncRNAs) was identified as a vital regulator involved in the initiation and development of HCC. Activation of the Wnt/β-catenin pathway has been reported to obviously impact cell proliferation, invasion, and migration of HCC. This article reviews specific interactions, significant mechanisms and molecules related to HCC initiation and progression to provide promising strategies for treatment.
Collapse
Affiliation(s)
- Yating Xu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation Medicine, Zhengzhou, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation Medicine, Zhengzhou, China
| | - Zongzong Sun
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation Medicine, Zhengzhou, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation Medicine, Zhengzhou, China
| |
Collapse
|
49
|
Lewis AE, Kuwahara A, Franzosi J, Bush JO. Tracheal separation is driven by NKX2-1-mediated repression of Efnb2 and regulation of endodermal cell sorting. Cell Rep 2022; 38:110510. [PMID: 35294885 PMCID: PMC9033272 DOI: 10.1016/j.celrep.2022.110510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 12/29/2021] [Accepted: 02/16/2022] [Indexed: 11/05/2022] Open
Abstract
The mechanisms coupling fate specification of distinct tissues to their physical separation remain to be understood. The trachea and esophagus differentiate from a single tube of definitive endoderm, requiring the transcription factors SOX2 and NKX2-1, but how the dorsoventral site of tissue separation is defined to allocate tracheal and esophageal cell types is unknown. Here, we show that the EPH/EPHRIN signaling gene Efnb2 regulates tracheoesophageal separation by controlling the dorsoventral allocation of tracheal-fated cells. Ventral loss of NKX2-1 results in disruption of separation and expansion of Efnb2 expression in the trachea independent of SOX2. Through chromatin immunoprecipitation and reporter assays, we find that NKX2-1 likely represses Efnb2 directly. Lineage tracing shows that loss of NKX2-1 results in misallocation of ventral foregut cells into the esophagus, while mosaicism for NKX2-1 generates ectopic NKX2-1/EPHRIN-B2 boundaries that organize ectopic tracheal separation. Together, these data demonstrate that NKX2-1 coordinates tracheal specification with tissue separation through the regulation of EPHRIN-B2 and tracheoesophageal cell sorting. Lewis et al. show that, in the development of the mammalian trachea and esophagus, cell fate specification is coupled with morphogenesis by NKX2-1-mediated repression of Efnb2. This establishes an EPH/EPHRIN boundary that drives cell allocation and physical separation of the trachea and esophagus.
Collapse
Affiliation(s)
- Ace E Lewis
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA; Program in Craniofacial Biology, University of California, San Francisco, 513 Parnassus Avenue, Box 0512, San Francisco, CA 94143, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Akela Kuwahara
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA; Program in Craniofacial Biology, University of California, San Francisco, 513 Parnassus Avenue, Box 0512, San Francisco, CA 94143, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jacqueline Franzosi
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA; Program in Craniofacial Biology, University of California, San Francisco, 513 Parnassus Avenue, Box 0512, San Francisco, CA 94143, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jeffrey O Bush
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA; Program in Craniofacial Biology, University of California, San Francisco, 513 Parnassus Avenue, Box 0512, San Francisco, CA 94143, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
50
|
Liu Y, Chen Q, Jeong HW, Koh BI, Watson EC, Xu C, Stehling M, Zhou B, Adams RH. A specialized bone marrow microenvironment for fetal haematopoiesis. Nat Commun 2022; 13:1327. [PMID: 35288551 PMCID: PMC8921288 DOI: 10.1038/s41467-022-28775-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 02/09/2022] [Indexed: 12/19/2022] Open
Abstract
In adult mammalian bone marrow (BM), vascular endothelial cells and perivascular reticular cells control the function of haematopoietic stem and progenitor cells (HSPCs). During fetal development, the mechanisms regulating the de novo haematopoietic cell colonization of BM remain largely unknown. Here, we show that fetal and adult BM exhibit fundamental differences in cellular composition and molecular interactions by single cell RNA sequencing. While fetal femur is largely devoid of leptin receptor-expressing cells, arterial endothelial cells (AECs) provide Wnt ligand to control the initial HSPC expansion. Haematopoietic stem cells and c-Kit+ HSPCs are reduced when Wnt secretion by AECs is genetically blocked. We identify Wnt2 as AEC-derived signal that activates β-catenin-dependent proliferation of fetal HSPCs. Treatment of HSPCs with Wnt2 promotes their proliferation and improves engraftment after transplantation. Our work reveals a fundamental switch in the cellular organization and molecular regulation of BM niches in the embryonic and adult organism. The colonization of bone marrow by haematopoietic stem and progenitor cells is critical for lifelong blood cell formation. Here the authors report distinct features of fetal bone marrow and show that artery-derived signals promote haematopoietic colonization.
Collapse
|