1
|
Abdullahi IN, Trabelsi I. Comparative meta-analysis of prevalence and molecular features of high-priority Enterococcus faecium and E. faecalis from the guts of food-producing and wild birds. Avian Pathol 2025:1-15. [PMID: 40135331 DOI: 10.1080/03079457.2025.2485106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/13/2025] [Accepted: 03/19/2025] [Indexed: 03/27/2025]
Abstract
RESEARCH HIGHLIGHTS Vancomycin, ampicillin, and linezolid resistance in E. faecium and E. faecalis are considered high-priority public health concerns.This is a meta-analysis of high-priority E. faecium and E. faecalis from gut samples of birds.Food-producing birds had significantly higher frequency of priority E. faecium and E. faecalis than wild birds.Vancomycin resistance in E. faecium and E. faecalis exists more frequently than linezolid resistance.E. faecium has a higher capacity to acquire ampicillin and vancomycin resistance than E. faecalis.Genetically related human-adapted vancomycin- and linezolid-resistant strains were identified in food-producing and wild birds.
Collapse
Affiliation(s)
- Idris Nasir Abdullahi
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, College of Medical Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Islem Trabelsi
- Laboratoire Bioressources, Environnement et Biotechnologie (LR22ES04), Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El Manar, Tunis, Tunisie
| |
Collapse
|
2
|
Rauschenberger V, Claus H, Polzin C, Blaschke V, Kampmeier S. Duration of hospitalization increases the risk for long-term carriage of linezolid-resistant enterococci in critically ill patients. Antimicrob Resist Infect Control 2025; 14:39. [PMID: 40301965 PMCID: PMC12042563 DOI: 10.1186/s13756-025-01551-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 04/04/2025] [Indexed: 05/01/2025] Open
Abstract
BACKGROUND Enterococci are gut commensal microorganisms, which can however cause life-threatening infections especially in patients suffering from intestinal barrier disorders. Treatment of these enterococcal infections is challenging due to a variety of intrinsic and acquired antibiotic resistances. In this context, linezolid is applied as last-resort antibiotic. Our study aimed at determining linezolid-resistant enterococci (LRE) long-term carriage (≥ 10 weeks), since this is a risk factor for the development of LRE infection. METHODS In a one-year cohort study, all patients on hemato-oncology, intensive and intermediate care units were screened for LRE. To determine the molecular epidemiology, all detected LRE isolates were subjected to whole genome sequencing-based typing to investigate whether in-host selection or pathogen transmission was causative for LRE occurrence. Clinical and demographic data were recorded to identify risk factors for LRE clearance and persistence. RESULTS Long-term LRE carriage was identified in 7 of 46 (15%) patients. Duration of hospitalization differed significantly between LRE persistence (mean: 110 days; range 28-225 days) and clearance group (mean: 53 days; range 5-213 days). LRE strains mostly exhibited a high genetic core genome diversity, indicating that transmission events played a minor role. CONCLUSIONS Our study shows that the duration of hospitalization increases the risk for long-term carriage of LRE. In contrast to other multi drug resistant bacteria, LRE carriage was rarely caused by transmission events. Thus, future infection prevention measures should focus on antimicrobial stewardship approaches next to classical hygiene strategies.
Collapse
Affiliation(s)
- Vera Rauschenberger
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, 97080, Germany.
| | - Heike Claus
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, 97080, Germany
| | - Charlotte Polzin
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, 97080, Germany
| | - Vera Blaschke
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, 97080, Germany
| | - Stefanie Kampmeier
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, 97080, Germany
- Infection Control and Antimicrobial Stewardship Unit, University Hospital Würzburg, Würzburg, 97080, Germany
| |
Collapse
|
3
|
Wasselin V, Budin-Verneuil A, Rincé I, Desriac F, Plouhinec J, Boukerb AM, Hartke A, Benachour A, Riboulet-Bisson E. Tetracyclines at subinhibitory concentrations are lethal for NADH peroxidase-deficient mutants of Enterococcus faecium. J Antimicrob Chemother 2025:dkaf105. [PMID: 40208209 DOI: 10.1093/jac/dkaf105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 03/18/2025] [Indexed: 04/11/2025] Open
Abstract
OBJECTIVES Tigecycline is a bacteriostatic antibiotic member of the glycylcycline family that inhibits protein synthesis. Tigecycline is a last-line treatment for infections caused by MDR pathogens like vancomycin-resistant Enterococcus faecium (VR-Efm). We recently explored oxidative stress defences in E. faecium and we here aimed to assess their role in antibiotic resistance. METHODS Antibiotic susceptibility was evaluated in mutants deficient in primary oxidative stress defences by monitoring bacterial survival after a 24 h treatment. Hydrogen peroxide (H2O2) levels were quantified to link bacterial survival to oxidative stress. RESULTS Unexpectedly, tigecycline and other tetracyclines were lethal for VR-Efm AUS0004 mutants deficient in NADH peroxidase (Npr) at concentrations below their MICs. Lethality seemed to correlate with increased H2O2 accumulation in the Δnpr mutant. H2O2 production in Efm AUS0004 was mainly mediated by lactate oxidase Lox1, whereas Lox2 and pyruvate oxidase (Pox) had minor or no roles. Tigecycline was not lethal for a ΔnprΔlox1 double mutant, suggesting lethality results from both antibiotic effect and peroxide accumulation. CONCLUSIONS This study might pave the way to develop strategies aimed at potentiating tigecycline action by increasing endogenous H2O2 production and/or impairing H2O2 detoxification, potentially improving treatment efficiencies for VR-Efm infections with this last-line antibiotic.
Collapse
Affiliation(s)
- Valentin Wasselin
- CBSA UR 4312, Université de Caen Normandie, Univ Rouen Normandie, Normandie Univ, Caen F-14 000, France
| | - Aurélie Budin-Verneuil
- CBSA UR 4312, Université de Caen Normandie, Univ Rouen Normandie, Normandie Univ, Caen F-14 000, France
| | - Isabelle Rincé
- CBSA UR 4312, Université de Caen Normandie, Univ Rouen Normandie, Normandie Univ, Caen F-14 000, France
| | - Florie Desriac
- CBSA UR 4312, Université de Caen Normandie, Univ Rouen Normandie, Normandie Univ, Caen F-14 000, France
| | - Julie Plouhinec
- CBSA UR 4312, Université de Caen Normandie, Univ Rouen Normandie, Normandie Univ, Caen F-14 000, France
| | - Amine M Boukerb
- CBSA UR 4312, Plateforme de Génomique, Univ Rouen Normandie, Université de Caen Normandie, Normandie Univ, Evreux F-27 000, France
| | - Axel Hartke
- CBSA UR 4312, Université de Caen Normandie, Univ Rouen Normandie, Normandie Univ, Caen F-14 000, France
| | - Abdellah Benachour
- CBSA UR 4312, Université de Caen Normandie, Univ Rouen Normandie, Normandie Univ, Caen F-14 000, France
| | - Eliette Riboulet-Bisson
- CBSA UR 4312, Université de Caen Normandie, Univ Rouen Normandie, Normandie Univ, Caen F-14 000, France
| |
Collapse
|
4
|
Rapti V, Giannitsioti E, Spernovasilis N, Magiorakos AP, Poulakou G. The Evolving Landscape of Infective Endocarditis: Difficult-to-Treat Resistance Bacteria and Novel Diagnostics at the Foreground. J Clin Med 2025; 14:2087. [PMID: 40142895 PMCID: PMC11942801 DOI: 10.3390/jcm14062087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 03/10/2025] [Accepted: 03/15/2025] [Indexed: 03/28/2025] Open
Abstract
Infective endocarditis (IE) is a relatively rare but potentially life-threatening disease characterized by substantial mortality and long-term sequelae among the survivors. In recent decades, a dramatic change in the profile of patients diagnosed with IE has been observed primarily in developed countries, most likely due to an aging population and a recent increase in invasive medical procedures. Nowadays, the typical IE patient is usually older, with complex comorbidities, and a history significant for cardiac disease, including degenerative heart valve disease, prosthetic valves, or cardiovascular implantable electronic devices (CIEDs). Moreover, as patient risk factors change, predisposing them to more healthcare-associated IE, the microbiology of IE is also shifting; there are growing concerns regarding the rise in the incidence of IE caused by difficult-to-treat resistance (DTR) bacteria in at-risk patients with frequent healthcare contact. The present review aims to explore the evolving landscape of IE and summarize the current knowledge on novel diagnostics to ensure timely diagnosis and outline optimal therapy for DTR bacterial IE.
Collapse
Affiliation(s)
- Vasiliki Rapti
- Third Department of Internal Medicine, School of Medicine, National & Kapodistrian University of Athens, Sotiria General Hospital, 115 27 Athens, Greece;
| | - Efthymia Giannitsioti
- First Department of Propaedeutic and Internal Medicine, Medical School, National & Kapodistrian University of Athens, Laiko General Hospital, 115 27 Athens, Greece;
| | | | | | - Garyfallia Poulakou
- Third Department of Internal Medicine, School of Medicine, National & Kapodistrian University of Athens, Sotiria General Hospital, 115 27 Athens, Greece;
| |
Collapse
|
5
|
Roy S, Aung MS, Paul SK, Khan MNA, Nasreen SA, Hasan MS, Haque N, Barman TK, Khanam J, Sathi FA, Paul S, Ali MI, Kobayashi N. Isolation of vanA-Mediated Vancomycin-Resistant Enterococcus faecalis (ST1912/CC116) and Enterococcus faecium (ST80/CC17), optrA-Positive Linezolid-Resistant E. faecalis (ST32, ST1902) from Human Clinical Specimens in Bangladesh. Antibiotics (Basel) 2025; 14:261. [PMID: 40149072 PMCID: PMC11939402 DOI: 10.3390/antibiotics14030261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 02/23/2025] [Accepted: 02/28/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES Enterococcus is one of the major nosocomial pathogens. The present status of antimicrobial resistance determinants and virulence factors was analyzed for current Enterococcus causing infectious diseases in Bangladesh. METHODS Clinical isolates of Enterococcus recovered from various specimens in a tertiary care hospital were analyzed. Antimicrobial susceptibility was measured by a broth microdilution test, and resistance genes/virulence factors were detected by uniplex/multiplex PCR, along with sequencing analysis as required. The sequence type (ST) of E. faecalis and E. faecium was identified based on a multilocus sequence typing (MLST) scheme. RESULTS For a one-year period, a total of 143 isolates (135 E. faecalis, 7 E. faecium, and 1 E. hirae) were collected. Although all E. faecalis isolates were susceptible to penicillin, high resistance rates were noted against erythromycin (87%) and levofloxacin (62%). High-level resistance to gentamicin was detected in 30% of E. faecalis and 86% of E. faecium. Vancomycin resistance due to vanA was identified in one isolate each of E. faecalis (ST1912, CC116) and E. faecium (ST80, CC17). Three E. faecalis isolates (2.2%) with ST32 or ST1902 were resistant to linezolid, harboring optrA-fexA. CONCLUSIONS The present study identifies the vancomycin-resistant Enterococcus harboring vanA from humans in Bangladesh and shows the potential spread of optrA in multiple lineages of E. faecalis.
Collapse
Affiliation(s)
- Sangjukta Roy
- Department of Microbiology, Mymensingh Medical College, Mymensingh 2200, Bangladesh; (S.R.); (S.A.N.); (M.S.H.); (N.H.); (J.K.); (F.A.S.); (S.P.)
| | - Meiji Soe Aung
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan;
| | | | - Md. Nazmul Alam Khan
- Department of Radiology and Imaging, Mymensingh Medical College, Mymensingh 2200, Bangladesh;
| | - Syeda Anjuman Nasreen
- Department of Microbiology, Mymensingh Medical College, Mymensingh 2200, Bangladesh; (S.R.); (S.A.N.); (M.S.H.); (N.H.); (J.K.); (F.A.S.); (S.P.)
| | - Muhammad Saiful Hasan
- Department of Microbiology, Mymensingh Medical College, Mymensingh 2200, Bangladesh; (S.R.); (S.A.N.); (M.S.H.); (N.H.); (J.K.); (F.A.S.); (S.P.)
| | - Nazia Haque
- Department of Microbiology, Mymensingh Medical College, Mymensingh 2200, Bangladesh; (S.R.); (S.A.N.); (M.S.H.); (N.H.); (J.K.); (F.A.S.); (S.P.)
| | - Tridip Kanti Barman
- Department of Medicine, Mymensingh Medical College, Mymensingh 2200, Bangladesh;
| | - Jobyda Khanam
- Department of Microbiology, Mymensingh Medical College, Mymensingh 2200, Bangladesh; (S.R.); (S.A.N.); (M.S.H.); (N.H.); (J.K.); (F.A.S.); (S.P.)
| | - Fardousi Akter Sathi
- Department of Microbiology, Mymensingh Medical College, Mymensingh 2200, Bangladesh; (S.R.); (S.A.N.); (M.S.H.); (N.H.); (J.K.); (F.A.S.); (S.P.)
| | - Shashwata Paul
- Department of Microbiology, Mymensingh Medical College, Mymensingh 2200, Bangladesh; (S.R.); (S.A.N.); (M.S.H.); (N.H.); (J.K.); (F.A.S.); (S.P.)
| | | | - Nobumichi Kobayashi
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan;
| |
Collapse
|
6
|
Almeida-Santos AC, Novais C, Peixe L, Freitas AR. Vancomycin-resistant Enterococcus faecium: A current perspective on resilience, adaptation, and the urgent need for novel strategies. J Glob Antimicrob Resist 2025; 41:233-252. [PMID: 39880121 DOI: 10.1016/j.jgar.2025.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/31/2025] Open
Abstract
Vancomycin-resistant Enterococcus faecium (VREfm) has become a critical opportunistic pathogen, urgently requiring new antimicrobial strategies due to its rising prevalence and significant impact on patient safety and healthcare costs. VREfm continues to evolve through mutations and the acquisition of new genes via horizontal gene transfer, contributing to resistance against several last-resort antibiotics. Although primarily hospital-associated, VREfm are also detected in the community, food chain, livestock, and environmental sources like wastewater, indicating diverse transmission pathways and the need for a One Health approach. Advances in genomics have shed light on VREfm's persistence in hospital settings, particularly its adaptation to the gastrointestinal tract of hospitalized patients, recent clonal shifts, and the dominance of specific clonal lineages. Despite extensive research, significant gaps remain in understanding the molecular mechanisms behind VREfm's unique adaptation to clinical environments. In this review, we aim to present an overview of VREfm current prevalence, mechanisms of resistance, and unveil the adaptive traits that have facilitated VREfm's rise and global success. A particular focus is given to key plasmids, namely linear plasmids, virulence factors, and bacteriocins as potential drivers in the global emergence of the ST78 clonal lineage. We also address diagnostic challenges and the limited treatment options available for VREfm, as well as emerging antibiotic alternatives aimed at restoring gut microbiota balance and curbing VREfm proliferation. A multifaceted approach combining research, clinical practices, and public health policies is crucial to mitigate the impact of this superbug and preserve antimicrobial effectiveness for future generations.
Collapse
Affiliation(s)
- Ana C Almeida-Santos
- UCIBIO, Unidade de Ciências Biomoleculares Aplicadas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal; Laboratório Associado i4HB, Instituto para a Saúde e a Bioeconomia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Carla Novais
- UCIBIO, Unidade de Ciências Biomoleculares Aplicadas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal; Laboratório Associado i4HB, Instituto para a Saúde e a Bioeconomia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Luísa Peixe
- UCIBIO, Unidade de Ciências Biomoleculares Aplicadas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal; Laboratório Associado i4HB, Instituto para a Saúde e a Bioeconomia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Ana R Freitas
- UCIBIO, Unidade de Ciências Biomoleculares Aplicadas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal; Laboratório Associado i4HB, Instituto para a Saúde e a Bioeconomia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal; UCIBIO, Unidade de Ciências Biomoleculares Aplicadas, Instituto Universitário de Ciências da Saúde (1H-TOXRUN, IUCS-CESPU), Gandra, Portugal.
| |
Collapse
|
7
|
Chopjitt P, Kansaen R, Chaisaeng S, Phongchaiwasin S, Boueroy P, Jenjaroenpun P, Wongsurawat T, Kerdsin A, Sunthamala N. High-Risk VREfm Clones and Resistance Determinants in a Thai Hospital. Antibiotics (Basel) 2025; 14:229. [PMID: 40149041 PMCID: PMC11939153 DOI: 10.3390/antibiotics14030229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objective: Vancomycin-resistant enterococci (VRE), particularly Enterococcus faecium (VREfm), are significant healthcare-associated infections, especially bloodstream infections (BSIs). Method: This study explored the genotypic and phenotypic characteristics of 29 VREfm isolates causing BSIs in Thailand. Bacterial species, sequence types (STs), virulence genes, and vancomycin antimicrobial-resistance genes were identified by multiplex PCR, multilocus sequence typing, and whole-genome sequencing (WGS). Antibiotic susceptibility was determined by disk diffusion, while an E-test or broth microdilution were used for daptomycin, teicoplanin, linezolid, and tigecycline. Biofilm formation was assessed using a microtiter plate assay. Results: All isolates harbored the vanA gene and exhibited resistance to ampicillin, erythromycin, norfloxacin, vancomycin, and rifampin. Resistance to ciprofloxacin, tigecycline, and nitrofurantoin was widespread as well. All isolates remained susceptible to chloramphenicol and linezolid. The majority of isolates belonged to clonal complex 17, with ST17 being predominant (21/29, 72.4%), followed by ST80 (6/29, 20.7%), ST761 (1/29, 3.4%), and ST117 (1/29, 3.4%). WGS analysis confirmed the presence of various antimicrobial resistance genes, including aac(6')-Ii, ant-Ia, erm(B), and vanA. Additionally, virulence genes such as acm (collagen adhesin) and esp (enterococcal surface protein), which are involved in biofilm formation, were detected. Conclusion: This study provides insights into the genomic characteristics and clonal dissemination of invasive VREfm in Thailand, which is crucial for infection control and public health surveillance.
Collapse
Affiliation(s)
- Peechanika Chopjitt
- Faculty of Public Health, Kasetsart University Chalermphrakiat, Sakon Nakhon Campus, Sakon Nakhon 47000, Thailand; (P.C.); (R.K.); (S.C.); (P.B.); (A.K.)
| | - Rada Kansaen
- Faculty of Public Health, Kasetsart University Chalermphrakiat, Sakon Nakhon Campus, Sakon Nakhon 47000, Thailand; (P.C.); (R.K.); (S.C.); (P.B.); (A.K.)
| | - Sumontha Chaisaeng
- Faculty of Public Health, Kasetsart University Chalermphrakiat, Sakon Nakhon Campus, Sakon Nakhon 47000, Thailand; (P.C.); (R.K.); (S.C.); (P.B.); (A.K.)
| | - Sawarod Phongchaiwasin
- Department of Biology, Faculty of Science, Mahasarakham University, Maha Sarakham 44150, Thailand;
| | - Parichart Boueroy
- Faculty of Public Health, Kasetsart University Chalermphrakiat, Sakon Nakhon Campus, Sakon Nakhon 47000, Thailand; (P.C.); (R.K.); (S.C.); (P.B.); (A.K.)
| | - Piroon Jenjaroenpun
- Division of Medical Bioinformatics, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (P.J.); (T.W.)
| | - Thidathip Wongsurawat
- Division of Medical Bioinformatics, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (P.J.); (T.W.)
| | - Anusak Kerdsin
- Faculty of Public Health, Kasetsart University Chalermphrakiat, Sakon Nakhon Campus, Sakon Nakhon 47000, Thailand; (P.C.); (R.K.); (S.C.); (P.B.); (A.K.)
| | - Nuchsupha Sunthamala
- Department of Biology, Faculty of Science, Mahasarakham University, Maha Sarakham 44150, Thailand;
| |
Collapse
|
8
|
Wang T, Zhang H, Feng R, Ren J, Xu X, Sun S. The in vitro antimicrobial activity of linezolid against unconventional pathogens. PeerJ 2025; 13:e18825. [PMID: 39959821 PMCID: PMC11829633 DOI: 10.7717/peerj.18825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 12/17/2024] [Indexed: 02/18/2025] Open
Abstract
Linezolid is an oxazolidinone antibiotic that is mainly permitted to treat Gram-positive bacterial infections. Recent studies have shown that linezolid also has antibacterial effects on several other bacteria outside the package insert, including Mycobacterium tuberculosis, non-tuberculous mycobacteria (NTM), Nocardia, Corynebacterium, and anaerobes, etc. Interestingly, linezolid also has an in vitro inhibitory effect on fungi. This review focuses on the in vitro antibacterial activity of linezolid against microorganisms outside its antibacterial spectrum. We mainly listed the number of the tested strains, the minimum inhibitory concentration (MIC) range, MIC50, and MIC90 of linezolid against those pathogens outside the package insert. The results showed that among these tested pathogens, linezolid displayed strong inhibitory effects against M. tuberculosis, Nocardia, and Corynebacterium, with an MIC range of ≤2 μg/mL. As for NTM, linezolid exhibited moderate to potent inhibitory effects against the strains of different species with an MIC range of 0.06-128 μg/mL. Moreover, linezolid was reported to have a species-dependent inhibitory effect on anaerobes at a concentration range of 0.003-16 μg/mL. Furthermore, linezolid could enhance azoles and amphotericin B's antifungal activity on Candida synergistically. It is hoped that this analysis can provide data for expanding the application of linezolid, make the off-label drug use have more compelling evidence, and provide clues for the development of new drugs.
Collapse
Affiliation(s)
- Ting Wang
- Shandong Second Provincial General Hospital, Jinan, China
| | - Huiyue Zhang
- Shandong Second Provincial General Hospital, Jinan, China
| | - Rui Feng
- Shandong Second Provincial General Hospital, Jinan, China
| | - Jieru Ren
- Shandong Second Provincial General Hospital, Jinan, China
| | - Xinping Xu
- Shandong Second Provincial General Hospital, Jinan, China
| | - Shujuan Sun
- Shandong Second Provincial General Hospital, Jinan, China
| |
Collapse
|
9
|
Lin C, Zhang H, Wu Q, Qiu X, Li Q, Wu G. New Option for Antibiotic Susceptibility Testing in Clinical Practice: Performance Evaluation of AutoMic-i600 Automatic System Based on Broth Microdilution Method. Infect Drug Resist 2025; 18:543-556. [PMID: 39902272 PMCID: PMC11789307 DOI: 10.2147/idr.s499486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 01/18/2025] [Indexed: 02/05/2025] Open
Abstract
Background The emergence of multidrug-resistant bacteria limits antibiotic efficacy, making accurate antimicrobial susceptibility testing (AST) essential for clinical decisions. Broth microdilution (BMD) is the gold standard but is impractical for routine application. Current automated AST systems improve efficiency but face accuracy or operational challenges, highlighting the need for reliable and user-friendly solutions. Objective This study aims to evaluate the performance of a novel automated AST system (AutoMic-i600) based on the BMD method for AST of common clinical bacteria. Methods A total of 229 clinical isolates (150 Gram-negative and 79 Gram-positive) were prospectively collected from microbiology laboratory between June 2023 and August 2023. We reported the comparison of the AutoMic-i600 and Vitek 2 systems for routine antibiotics, and also validated the detection performance of AutoMic-i600 for novel antibiotics, based on the BMD method. Results The overall essential agreement (EA) and categorical agreement (CA) between AutoMic-i600 and BMD were 93.2% and 93.5% for Gram-negative bacteria and 98.5% and 97.8% for Gram-positive bacteria, respectively. The overall EA and CA between Vitek 2 and BMD were 92.6% and 93.5% for Gram-negative bacteria and 97.9% and 97.4% for Gram-positive bacteria. Importantly, for drug-resistant bacteria, AutoMic-i600 demonstrated a higher overall agreement than Vitek 2 (EA: 98.1% vs 94.8%, CA: 97.5% vs 92.0%), especially in Gram-negative bacteria (EA: 97.7% vs 93.5%, CA: 97.7% vs 89.3%). The VME rate for Gram-negative bacteria using AutoMic-i600 was significantly lower than that of Vitek 2 (1.0% vs 2.9%). Novel antibiotics detected by AutoMic-i600 exhibited EA and CA rates exceeding 90.0%. Conclusion Based on these findings, we recommend that the AutoMic-i600 system could be a new option for routine AST testing in a clinical setting. Particularly for drug-resistant bacteria and novel antibiotics, detection with AutoMic-i600 may be more reliable, which could further contribute to the prevention and treatment of drug-resistant bacteria.
Collapse
Affiliation(s)
- Chenyao Lin
- Department of Clinical Laboratory, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, People’s Republic of China
| | - Hui Zhang
- Department of Clinical Laboratory, Ninghai County Chengguan Hospital, Ningbo, People’s Republic of China
| | - Qiaoping Wu
- Department of Clinical Laboratory, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, People’s Republic of China
| | - Xuedan Qiu
- Department of Clinical Laboratory, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, People’s Republic of China
| | - Qingcao Li
- Department of Clinical Laboratory, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, People’s Republic of China
| | - Guangliang Wu
- Department of Clinical Pharmacy, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, People’s Republic of China
| |
Collapse
|
10
|
Strateva TV, Hristova P, Stoeva TJ, Hitkova H, Peykov S. First Detection and Genomic Characterization of Linezolid-Resistant Enterococcus faecalis Clinical Isolates in Bulgaria. Microorganisms 2025; 13:195. [PMID: 39858963 PMCID: PMC11767806 DOI: 10.3390/microorganisms13010195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/11/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Linezolid is an oxazolidinone antibiotic and is considered a last-resort treatment option for serious infections caused by problematic Gram-positive pathogens, including vancomycin-resistant enterococci. The present study aimed to explore the linezolid resistance mechanisms and genomic characteristics of two vancomycin-susceptible Enterococcus faecalis isolates from Bulgaria. The strains designated Efs2503-bg (inpatient from Pleven) and Efs966-bg (outpatient from Varna) were recovered from wounds in 2018 and 2023, respectively. Antimicrobial susceptibility testing, whole-genome sequencing, multilocus sequence typing, and phylogenomic analysis based on 332 linezolid-resistant E. faecalis genomes were performed. Efs2503-bg was high-level resistant to linezolid (MIC > 256 mg/L) and displayed the G2576T mutation affecting three of the four 23S rDNA loci. Efs966-bg (MIC = 8 mg/L) carried a plasmid-located optrA determinant surrounded by fexA and ermA. No mutations in the genes encoding for ribosomal proteins L3, L4, and L22 were detected. The isolates belonged to the sequence types ST6 (Efs2503-bg) and ST1102 (Efs966-bg). Phylogenomic analysis revealed that Efs2503-bg and Efs966-bg are genetically distinct, with a difference of 12,051 single-nucleotide polymorphisms. To our knowledge, this is the first report of linezolid-resistant enterococci in Bulgaria. Although the global incidence of linezolid-resistant enterococci is still low, their emergence is alarming and poses a growing clinical threat to public health.
Collapse
Affiliation(s)
- Tanya V. Strateva
- Department of Medical Microbiology “Corr. Mem. Prof. Ivan Mitov, MD, DMSc”, Faculty of Medicine, Medical University of Sofia, 2 Zdrave Str., 1431 Sofia, Bulgaria
| | - Preslava Hristova
- Department of Microbiology and Virology, Faculty of Pharmacy, Medical University of Pleven, 1 St. Kliment Ohridski Str., 5800 Pleven, Bulgaria; (P.H.); (H.H.)
| | - Temenuga J. Stoeva
- Department of Microbiology and Virology, Faculty of Medicine, Medical University of Varna, 55 Marin Drinov Str., 9002 Varna, Bulgaria;
| | - Hristina Hitkova
- Department of Microbiology and Virology, Faculty of Pharmacy, Medical University of Pleven, 1 St. Kliment Ohridski Str., 5800 Pleven, Bulgaria; (P.H.); (H.H.)
| | - Slavil Peykov
- Department of Medical Microbiology “Corr. Mem. Prof. Ivan Mitov, MD, DMSc”, Faculty of Medicine, Medical University of Sofia, 2 Zdrave Str., 1431 Sofia, Bulgaria
- Department of Genetics, Faculty of Biology, University of Sofia ‘St. Kliment Ohridski’, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
- BioInfoTech Laboratory, Sofia Tech Park, 111 Tsarigradsko Shose Blvd., 1784 Sofia, Bulgaria
| |
Collapse
|
11
|
Lu CJ, Hung WC, Lan ZH, Lu PL, Lin CY, Chen YH, Chen TC, Huang CH, Chang YT, Lee CY, Tsai YT, Lin SY. Characteristics and Prevalence of Vancomycin-variable Enterococcus faecium bacteremia in southern Taiwan. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2024; 57:926-936. [PMID: 39232888 DOI: 10.1016/j.jmii.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Vancomycin-variable enterococci (VVE) are vanA-carrying Enterococcus faecium that are phenotypically susceptible to vancomycin and can only be detected using molecular methods, leading to the possibility of treatment failure and posing threats to infection control. This study aimed to determine the prevalence of VVE and its associated clinical risk factors. METHODS This retrospective study was conducted in two hospitals in southern Taiwan. Patients with phenotypically vancomycin-susceptible E. faecium bacteremia were enrolled between 2017 and 2021. VVEs were defined as isolates harboring the vanA gene that were phenotypically susceptible to vancomycin. Vancomycin-susceptible E. faecium (VSE) isolates were phenotypically susceptible to vancomycin and lacked vanA or vanB genes. RESULTS Of the 142 enrolled patients, 121 (85.2%) had VSE and 21 (14.8%) had VVE. Resistance rates to penicillin, tetracycline, and fosfomycin were higher in VVE isolates. Malignancy (adjusted odds ratio [aOR] = 4.87; 95% confidence interval [CI] 1.54-15.41, p = 0.007) and central venous catheter usage (aOR = 4.69; 95% CI 1.49-14.78, p = 0.008) were the independent risk factors associated with VVE bacteremia. Being male (aOR = 0.12, CI 0.03-0.44, p = 0.002) was less likely to be associated with VVE bacteremia. Although VVE was not associated with 30-day mortality (38.1% [VVE] vs. 35.5% [VSE], p = 0.822), one case of subsequent vancomycin-resistant enterococci infection in the VVE group with vancomycin treatment (4.8%, 1/21) was identified, which led to subsequent mortality. CONCLUSIONS The prevalence of VVE was high among E. faecium isolates with vancomycin-susceptible phenotypes in southern Taiwan. Although the current study revealed that VVE bacteremia was not associated with poor clinical outcome, further multicenter surveillance survey is recommended to evaluate the possible impact of VVE on public health in Taiwan.
Collapse
Affiliation(s)
- Chi-Jung Lu
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Wei-Chun Hung
- Department of Microbiology and Immunology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Zi-Han Lan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Po-Liang Lu
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan; School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chun-Yu Lin
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yen-Hsu Chen
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Tun-Chieh Chen
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chung-Hao Huang
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ya-Ting Chang
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chun-Yuan Lee
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yu-Te Tsai
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Shang-Yi Lin
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
12
|
Mareković I, Markanović M, Lešin J, Ćorić M. Vancomycin-Resistant Enterococci: Current Understandings of Resistance in Relation to Transmission and Preventive Strategies. Pathogens 2024; 13:966. [PMID: 39599519 PMCID: PMC11597547 DOI: 10.3390/pathogens13110966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Due to the limited treatment options and increased mortality rates, infection prevention and control strategies have been implemented for many years to mitigate dissemination of vancomycin-resistant enterococci (VRE) within healthcare settings. The overview provides an insight into the most recent research, particularly the pathogen's resilience in the healthcare environment, and the critical need for infection control strategies, which are currently being scrutinized by some researchers. The notable resilience of enterococci to various environmental conditions highlights the necessity for investigations into innovative technologies capable of effectively targeting the biofilm produced by enterococci on hospital surfaces. A critical approach to traditional infection control strategies is becoming more accepted worldwide, taking into account the epidemiological situation in the given healthcare setting as well as specific characteristics of a patient. For certain high-risk patient populations, traditional infection control strategies including CP and screening should not be omitted. Additionally, further investigation into the resistance mechanisms of available antimicrobial agents is essential, as is research into their potential association with specific successful clones through WGS genotyping, to pre-emptively mitigate their spread before it escalates.
Collapse
Affiliation(s)
- Ivana Mareković
- Clinical Department of Clinical Microbiology, Infection Prevention and Control, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Manda Markanović
- Clinical Department of Clinical Microbiology, Infection Prevention and Control, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Joško Lešin
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Department of Obstetrics and Gynaecology, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Mario Ćorić
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Department of Obstetrics and Gynaecology, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
13
|
Turner AM, Li L, Monk IR, Lee JYH, Ingle DJ, Portelli S, Sherry NL, Isles N, Seemann T, Sharkey LK, Walsh CJ, Reid GE, Nie S, Eijkelkamp BA, Holmes NE, Collis B, Vogrin S, Hiergeist A, Weber D, Gessner A, Holler E, Ascher DB, Duchene S, Scott NE, Stinear TP, Kwong JC, Gorrie CL, Howden BP, Carter GP. Rifaximin prophylaxis causes resistance to the last-resort antibiotic daptomycin. Nature 2024; 635:969-977. [PMID: 39443798 PMCID: PMC11602712 DOI: 10.1038/s41586-024-08095-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/20/2024] [Indexed: 10/25/2024]
Abstract
Multidrug-resistant bacterial pathogens like vancomycin-resistant Enterococcus faecium (VREfm) are a critical threat to human health1. Daptomycin is a last-resort antibiotic for VREfm infections with a novel mode of action2, but for which resistance has been widely reported but is unexplained. Here we show that rifaximin, an unrelated antibiotic used prophylactically to prevent hepatic encephalopathy in patients with liver disease3, causes cross-resistance to daptomycin in VREfm. Amino acid changes arising within the bacterial RNA polymerase in response to rifaximin exposure cause upregulation of a previously uncharacterized operon (prdRAB) that leads to cell membrane remodelling and cross-resistance to daptomycin through reduced binding of the antibiotic. VREfm with these mutations are spread globally, making this a major mechanism of resistance. Rifaximin has been considered 'low risk' for the development of antibiotic resistance. Our study shows that this assumption is flawed and that widespread rifaximin use, particularly in patients with liver cirrhosis, may be compromising the clinical use of daptomycin, a major last-resort intervention for multidrug-resistant pathogens. These findings demonstrate how unanticipated antibiotic cross-resistance can undermine global strategies designed to preserve the clinical use of critical antibiotics.
Collapse
Affiliation(s)
- Adrianna M Turner
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Lucy Li
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Ian R Monk
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Jean Y H Lee
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Infectious Diseases, Monash Health, Clayton, Victoria, Australia
| | - Danielle J Ingle
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Stephanie Portelli
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Saint Lucia Campus, Saint Lucia, Queensland, Australia
| | - Norelle L Sherry
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Infectious Diseases & Immunology, Austin Health, Melbourne, Victoria, Australia
| | - Nicole Isles
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Torsten Seemann
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Centre for Pathogen Genomics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Liam K Sharkey
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Calum J Walsh
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Centre for Pathogen Genomics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Gavin E Reid
- School of Chemistry, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, Victoria, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Shuai Nie
- Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Bart A Eijkelkamp
- Molecular Sciences and Technology, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | - Natasha E Holmes
- Department of Infectious Diseases & Immunology, Austin Health, Melbourne, Victoria, Australia
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Brennan Collis
- Department of Infectious Diseases & Immunology, Austin Health, Melbourne, Victoria, Australia
| | - Sara Vogrin
- Department of Infectious Diseases & Immunology, Austin Health, Melbourne, Victoria, Australia
- Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia
| | - Andreas Hiergeist
- Institute of Clinical Microbiology and Hygiene, University Medical Center, Regensburg, Germany
| | - Daniela Weber
- Department of Internal Medicine III, Hematology and Medical Oncology, University Medical Center, Regensburg, Germany
| | - Andre Gessner
- Institute of Clinical Microbiology and Hygiene, University Medical Center, Regensburg, Germany
| | - Ernst Holler
- Department of Internal Medicine III, Hematology and Medical Oncology, University Medical Center, Regensburg, Germany
| | - David B Ascher
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Saint Lucia Campus, Saint Lucia, Queensland, Australia
| | - Sebastian Duchene
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- DEMI Unit, Department of Computational Biology, Institut Pasteur, Paris, France
| | - Nichollas E Scott
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Timothy P Stinear
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Centre for Pathogen Genomics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jason C Kwong
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Infectious Diseases & Immunology, Austin Health, Melbourne, Victoria, Australia
| | - Claire L Gorrie
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Centre for Pathogen Genomics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Benjamin P Howden
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.
- Department of Infectious Diseases & Immunology, Austin Health, Melbourne, Victoria, Australia.
- Centre for Pathogen Genomics, The University of Melbourne, Melbourne, Victoria, Australia.
| | - Glen P Carter
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.
- Centre for Pathogen Genomics, The University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
14
|
Singh A, Tanwar M, Singh TP, Sharma S, Sharma P. An escape from ESKAPE pathogens: A comprehensive review on current and emerging therapeutics against antibiotic resistance. Int J Biol Macromol 2024; 279:135253. [PMID: 39244118 DOI: 10.1016/j.ijbiomac.2024.135253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
The rise of antimicrobial resistance has positioned ESKAPE pathogens as a serious global health threat, primarily due to the limitations and frequent failures of current treatment options. This growing risk has spurred the scientific community to seek innovative antibiotic therapies and improved oversight strategies. This review aims to provide a comprehensive overview of the origins and resistance mechanisms of ESKAPE pathogens, while also exploring next-generation treatment strategies for these infections. In addition, it will address both traditional and novel approaches to combating antibiotic resistance, offering insights into potential new therapeutic avenues. Emerging research underscores the urgency of developing new antimicrobial agents and strategies to overcome resistance, highlighting the need for novel drug classes and combination therapies. Advances in genomic technologies and a deeper understanding of microbial pathogenesis are crucial in identifying effective treatments. Integrating precision medicine and personalized approaches could enhance therapeutic efficacy. The review also emphasizes the importance of global collaboration in surveillance and stewardship, as well as policy reforms, enhanced diagnostic tools, and public awareness initiatives, to address resistance on a worldwide scale.
Collapse
Affiliation(s)
- Anamika Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Mansi Tanwar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - T P Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Sujata Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India.
| | - Pradeep Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India.
| |
Collapse
|
15
|
Niu C, Huang J, Wei L, Wang J, Ran S. Proinflammatory Effect of Membrane Vesicles Derived from Enterococcus faecalis at Neutral and Alkaline pH. J Endod 2024; 50:1602-1611.e10. [PMID: 39218147 DOI: 10.1016/j.joen.2024.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION The present study explored the proinflammatory impact of Enterococcus faecalis membrane vesicles (MVs) derived from culture medium at pH levels of 7.4 and 9.0. METHODS E. faecalis MVs were obtained by centrifugation and purified by size-exclusion chromatography. Proteomic analyses were performed on E. faecalis MVs to investigate their components. THP-1 macrophages were exposed to E. faecalis MVs, and the inflammatory cytokines and proteins were evaluated using enzyme-linked immunosorbent assay and immunoblotting. The inflammatory cytokines in the serum of mice with intraperitoneal injection of E. faecalis MVs were evaluated by enzyme-linked immunosorbent assay, and immunophenotyping of spleen cells was investigated with flow cytometry. RESULTS Proteomic analysis revealed 196 proteins in E. faecalis MVs obtained under neutral and alkali conditions; 110 proteins were up-regulated, and 79 proteins were down-regulated by alkaline pH. E. faecalis MVs induced secretion of inflammatory factors interleukin (IL)-1β, IL-6, and tumor necrosis factor alpha in a concentration-dependent manner. Immunoblotting revealed that E. faecalis MVs increased expression of pro-IL-1β, nuclear factor kappa Bp65, and Toll-like receptor 2. In vivo studies demonstrated that E. faecalis MVs significantly promoted secretion of IL-1β in mouse serum, whereas inflammatory cells were activated in the spleen. E. faecalis MVs obtained at a pH of 9.0 showed stronger proinflammatory effects than those obtained under neutral pH. CONCLUSIONS E. faecalis produces MVs that carry specific proteins associated with virulence factors, and these MVs can promote inflammation in vitro and in vivo. E. faecalis MVs obtained under alkaline conditions have a stronger proinflammatory effect.
Collapse
Affiliation(s)
- Chenguang Niu
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jing Huang
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Lifan Wei
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China; Nucleic Acid Drug Research and Development Institute, CSPC, Shanghai, China
| | - Jia Wang
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Shujun Ran
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China.
| |
Collapse
|
16
|
Wang C, Zhao J, Lin Y, Lwin SZC, El-Telbany M, Masuda Y, Honjoh KI, Miyamoto T. Characterization of Two Novel Endolysins from Bacteriophage PEF1 and Evaluation of Their Combined Effects on the Control of Enterococcus faecalis Planktonic and Biofilm Cells. Antibiotics (Basel) 2024; 13:884. [PMID: 39335057 PMCID: PMC11428236 DOI: 10.3390/antibiotics13090884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/27/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Endolysin, a bacteriophage-derived lytic enzyme, has emerged as a promising alternative antimicrobial agent against rising multidrug-resistant bacterial infections. Two novel endolysins LysPEF1-1 and LysPEF1-2 derived from Enterococcus phage PEF1 were cloned and overexpressed in Escherichia coli to test their antimicrobial efficacy against multidrug-resistant E. faecalis strains and their biofilms. LysPEF1-1 comprises an enzymatically active domain and a cell-wall-binding domain originating from the NLPC-P60 and SH3 superfamilies, while LysPEF1-2 contains a putative peptidoglycan recognition domain that belongs to the PGRP superfamily. LysPEF1-1 was active against 89.86% (62/69) of Enterococcus spp. tested, displaying a wider antibacterial spectrum than phage PEF1. Moreover, two endolysins demonstrated lytic activity against additional gram-positive and gram-negative species pretreated with chloroform. LysPEF1-1 showed higher activity against multidrug-resistant E. faecalis strain E5 than LysPEF1-2. The combination of two endolysins effectively reduced planktonic cells of E5 in broth and was more efficient at inhibiting biofilm formation and removing biofilm cells of E. faecalis JCM 7783T than used individually. Especially at 4 °C, they reduced viable biofilm cells by 4.5 log after 2 h of treatment on glass slide surfaces. The results suggest that two novel endolysins could be alternative antimicrobial agents for controlling E. faecalis infections.
Collapse
Affiliation(s)
- Chen Wang
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (C.W.); (J.Z.); (Y.L.); (S.Z.C.L.); (M.E.-T.)
| | - Junxin Zhao
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (C.W.); (J.Z.); (Y.L.); (S.Z.C.L.); (M.E.-T.)
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Yunzhi Lin
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (C.W.); (J.Z.); (Y.L.); (S.Z.C.L.); (M.E.-T.)
| | - Su Zar Chi Lwin
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (C.W.); (J.Z.); (Y.L.); (S.Z.C.L.); (M.E.-T.)
| | - Mohamed El-Telbany
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (C.W.); (J.Z.); (Y.L.); (S.Z.C.L.); (M.E.-T.)
| | - Yoshimitsu Masuda
- Department of Bioscience and Biotechnology, Facultuy of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (Y.M.); (K.-i.H.)
| | - Ken-ichi Honjoh
- Department of Bioscience and Biotechnology, Facultuy of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (Y.M.); (K.-i.H.)
| | - Takahisa Miyamoto
- Department of Bioscience and Biotechnology, Facultuy of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (Y.M.); (K.-i.H.)
| |
Collapse
|
17
|
Zhu J, Chen T, Ju Y, Dai J, Zhuge X. Transmission Dynamics and Novel Treatments of High Risk Carbapenem-Resistant Klebsiella pneumoniae: The Lens of One Health. Pharmaceuticals (Basel) 2024; 17:1206. [PMID: 39338368 PMCID: PMC11434721 DOI: 10.3390/ph17091206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/26/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
The rise of antibiotic resistance and the dwindling antimicrobial pipeline have emerged as significant threats to public health. The emergence of carbapenem-resistant Klebsiella pneumoniae (CRKP) poses a global threat, with limited options available for targeted therapy. The CRKP has experienced various changes and discoveries in recent years regarding its frequency, transmission traits, and mechanisms of resistance. In this comprehensive review, we present an in-depth analysis of the global epidemiology of K. pneumoniae, elucidate resistance mechanisms underlying its spread, explore evolutionary dynamics concerning carbapenem-resistant hypervirulent strains as well as KL64 strains of K. pneumoniae, and discuss recent therapeutic advancements and effective control strategies while providing insights into future directions. By going through up-to-date reports, we found that the ST11 KL64 CRKP subclone with high risk demonstrated significant potential for expansion and survival benefits, likely due to genetic influences. In addition, it should be noted that phage and nanoparticle treatments still pose significant risks for resistance development; hence, innovative infection prevention and control initiatives rooted in One Health principles are advocated as effective measures against K. pneumoniae transmission. In the future, further imperative research is warranted to comprehend bacterial resistance mechanisms by focusing particularly on microbiome studies' application and implementation of the One Health strategy.
Collapse
Affiliation(s)
- Jiaying Zhu
- College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong 226019, China
| | - Taoyu Chen
- Department of Orthopaedics, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Yanmin Ju
- College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jianjun Dai
- College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiangkai Zhuge
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong 226019, China
| |
Collapse
|
18
|
Lopes J, de Lencastre H, Conceição T. Genomic analysis of Enterococcus faecium from non-clinical settings: antimicrobial resistance, virulence, and clonal population in livestock and the urban environment. Front Microbiol 2024; 15:1466990. [PMID: 39323892 PMCID: PMC11422121 DOI: 10.3389/fmicb.2024.1466990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/20/2024] [Indexed: 09/27/2024] Open
Abstract
Introduction Enterococci are commensals of the gastrointestinal tract of humans and animals that evolved into opportunistic pathogens with high antimicrobial resistance and virulence. Multidrug-resistant Enterococcus is a major cause of hospital-acquired infections worldwide. For this reason, the characterization of non-clinical reservoirs of Enterococci and their epidemiological link to resistant hospital isolates is crucial for controlling their spread. Methods A total of 295 samples collected from livestock (pigs and cows, n = 135) and environment (public buses, passengers hands, and urban environments, n = 160) were screened for Enterococcus spp. E. faecium antimicrobial resistance profiles, virulence potential, and clonal population were further characterized. Results Enterococci were detected in 90.5% (n = 267) of the samples, with a higher prevalence in livestock (100%) than the environment (82.5%, p < 0.0001), but none of the isolates exhibited vancomycin resistance. E. faecalis was the most prevalent species (51.7%), predominantly found in livestock (62.2%), while E. faecium was more common in the environment. Of the 59 E. faecium isolates, 78% showed resistance to ≥3 antibiotic classes and contained associated resistance genes, namely tetracyclines (tetM and tetL), beta-lactams (mutations in pbp5), and high-level resistance to aminoglycosides (ant(6)-Ia and aac(6')-aph(2″)). A wide array of virulence factors was detected among E. faecium, associated with adherence, biofilm formation, and adaptation to host response, while hospital-associated virulence markers, such as IS16, were less frequent, probably due to the non-clinical nature of the isolates. Clonal population analysis revealed a diverse E. faecium population. Although no direct epidemiological link could be traced between our isolates and specific clinical isolates, infection-associated genetic backgrounds were identified in non-clinical isolates: one isolate from pigs belonged to CC17 (ST32), while four isolates belonged to CC94, including one recovered from pigs (ST296), one from cows (ST2206), one from the urban environment (ST1205), and other from buses (ST800). Discussion This study underscores a high prevalence of clinically relevant Enterococcus species among healthy livestock and the environment. Despite the absence of vancomycin resistance and limited hospital infection-associated clonal lineages, the presence of E. faecium with significant virulence potential and resistance to critical antibiotics in human and veterinary medicine highlights the need for continuing surveillance of non-clinical reservoirs.
Collapse
Affiliation(s)
- Jéssica Lopes
- Laboratory of Molecular Genetics, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Hermínia de Lencastre
- Laboratory of Molecular Genetics, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
- Laboratory of Microbiology and Infectious Diseases, The Rockefeller University, New York, NY, United States
| | - Teresa Conceição
- Laboratory of Molecular Genetics, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| |
Collapse
|
19
|
Geraldes C, Tavares L, Gil S, Oliveira M. Antibiotic heteroresistance and persistence: an additional aid in hospital acquired infections by Enterococcus spp.? Future Microbiol 2024; 19:1407-1418. [PMID: 39229839 PMCID: PMC11552482 DOI: 10.1080/17460913.2024.2393003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/13/2024] [Indexed: 09/05/2024] Open
Abstract
Enterococcus, particularly E. faecium and E. faecalis, are responsible for many hospital-acquired infections. With their intrinsic antibiotic resistance and ability to form biofilms, enterococcal infections are already challenging to manage. However, when heterogenous populations are present, such as those exhibiting heteroresistance and persistence, the complexity of these infections increases exponentially not only due to their treatment but also due to their difficult diagnosis. In this study, we provide a summary of the current understanding of both heteroresistance and persistence in terms of mechanisms, diagnosis and treatment and subsequently review recent literature pertaining to these susceptibility types specifically in enterococci.
Collapse
Affiliation(s)
- Catarina Geraldes
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- AL4AnimalS - Associate Laboratory for Animal & Veterinary Sciences, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Luís Tavares
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- AL4AnimalS - Associate Laboratory for Animal & Veterinary Sciences, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Solange Gil
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- AL4AnimalS - Associate Laboratory for Animal & Veterinary Sciences, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- BICU - Biological Isolation & Containment Unit, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Manuela Oliveira
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- AL4AnimalS - Associate Laboratory for Animal & Veterinary Sciences, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- cE3c - Centre for Ecology, Evolution & Environmental Changes & CHANGE—Global Change & Sustainability Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
20
|
Su W, Wang W, Li L, Zhang M, Xu H, Fu C, Pang X, Wang M. Mechanisms of tigecycline resistance in Gram-negative bacteria: A narrative review. ENGINEERING MICROBIOLOGY 2024; 4:100165. [PMID: 39629109 PMCID: PMC11610970 DOI: 10.1016/j.engmic.2024.100165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/04/2024] [Accepted: 08/06/2024] [Indexed: 12/06/2024]
Abstract
Tigecycline serves as a critical "final-resort" antibiotic for treating bacterial infections caused by multidrug-resistant bacteria for which treatment options are severely limited. The increasing prevalence of tigecycline resistance, particularly among Gram-negative bacteria, is a major concern. Various mechanisms have been identified as contributors to tigecycline resistance, including upregulation of nonspecific Resistance Nodulation Division (RND) efflux pumps due to mutations in transcriptional regulators, enzymatic modification of tigecycline by monooxygenase enzymes, and mutations affecting tigecycline binding sites. This review aims to consolidate our understanding of tigecycline resistance mechanisms in Gram-negative bacteria and offer insights and perspectives for further drug development.
Collapse
Affiliation(s)
- Wenya Su
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao 266237, PR China
| | - Wenjia Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao 266237, PR China
| | - Ling Li
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao 266237, PR China
| | - Mengge Zhang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao 266237, PR China
| | - Hai Xu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao 266237, PR China
| | - Chengzhang Fu
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University, Saarbrücken 66123, Germany
| | - Xiuhua Pang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao 266237, PR China
| | - Mingyu Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
21
|
Cao X, Li W, Xu Z, Li G, Wen Z, Meng Q, Li P, Yu Z, Chen Z, Zheng J. Loratadine Derivative Lo-7: A Weapon against Drug-Resistant Enterococcus and Streptococcal Infections. ACS Infect Dis 2024; 10:2961-2977. [PMID: 39066703 DOI: 10.1021/acsinfecdis.4c00293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The primary obstacles in the management of Enterococcus and Streptococcal infections are drug resistance and biofilm formation. Our study revealed that loratadine at a concentration of ≥25 μM exhibited significant inhibitory effects on biofilm formation in 167 clinical strains of Enterococcus faecalis and 15 clinical isolates of Streptococcus agalactiae, Streptococcus pyogenes, and Streptococcus pneumoniae. Additionally, the antibiofilm activity against E. faecalis and Streptococcal was demonstrated by several loratadine derivatives with altered side-chain carbamate moieties. This study investigated the antibacterial activity of the loratadine derivative Lo-7 against clinical strains of S. agalactiae and S. pyogenes, with minimum inhibitory concentrations ranging from 12.5 to 25 μM. The findings revealed that a low concentration of loratadine derivative Lo-7 (3.125 μM) significantly augmented the bactericidal efficacy of vancomycin against multidrug-resistant (MDR) S. agalactiae, both in vitro and in vivo. The loratadine derivative Lo-7, even at low concentrations, demonstrated significant efficacy in eliminating intracellular MDR S. agalactiae within macrophages, potentially indicating a unique advantage over vancomycin, linezolid, and loratadine. Mechanistically, exposure to the loratadine derivative Lo-7 resulted in membrane depolarization without affecting membrane permeability in S. agalactiae. The potential targeting of the SecG subunit of the SecYEG membrane-embedded channel by the loratadine derivative Lo-7 in S. agalactiae was identified through quantitative proteomics, a drug affinity responsive target stability assay, and molecular docking.
Collapse
Affiliation(s)
- Xinyi Cao
- Department of Infectious Diseases, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen University Medical School, Shenzhen 518052, China
- Department of Microbiology, The First Affiliated Hospital of Jiamusi University, Jiamusi 154003, China
| | - Wei Li
- Department of Infectious Diseases, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen University Medical School, Shenzhen 518052, China
| | - Zhichao Xu
- Department of Infectious Diseases, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen University Medical School, Shenzhen 518052, China
| | - Guiqiu Li
- Department of Infectious Diseases, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen University Medical School, Shenzhen 518052, China
| | - Zewen Wen
- Department of Infectious Diseases, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen University Medical School, Shenzhen 518052, China
| | - Qingyin Meng
- Department of Infectious Diseases, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen University Medical School, Shenzhen 518052, China
| | - Peiyu Li
- Department of Infectious Diseases, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen University Medical School, Shenzhen 518052, China
| | - Zhijian Yu
- Department of Infectious Diseases, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen University Medical School, Shenzhen 518052, China
| | - Zhong Chen
- Department of Infectious Diseases, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen University Medical School, Shenzhen 518052, China
| | - Jinxin Zheng
- Department of Infectious Diseases, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen University Medical School, Shenzhen 518052, China
| |
Collapse
|
22
|
Pan P, Sun L, Shi X, Huang X, Yin Y, Pan B, Hu L, Shen Q. Analysis of molecular epidemiological characteristics and antimicrobial susceptibility of vancomycin-resistant and linezolid-resistant Enterococcus in China. BMC Med Genomics 2024; 17:174. [PMID: 38951840 PMCID: PMC11218351 DOI: 10.1186/s12920-024-01948-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/21/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND This study investigates the distribution and characteristics of linezolid and vancomycin susceptibilities among Enterococcus faecalis (E. faecalis) and Enterococcus faecium (E. faecium) and explores the underlying resistance mechanisms. METHODS A total of 2842 Enterococcus clinical isolates from patients were retrospectively collected, and their clinical data were further analyzed. The minimum inhibitory concentrations (MICs) of vancomycin and linezolid were validated by broth dilution method. The resistance genes optrA, cfr, vanA, vanB and vanM were investigated using polymerase chain reaction (PCR). Housekeeping genes and resistance genes were obtianed through whole-genome sequencing (WGS). RESULTS Of the 2842 Enterococcus isolates, 88.5% (2516) originated from urine, with E. faecium accounted for 60.1% of these. The vanA gene was identified in 27/28 vancomycin resistant Enterococcus (VRE) isolates, 4 of which carried both vanA and vanM genes. The remaining strain was vanM positive. The optrA gene was identified in all E. faecalis isolates among linezolid resistant Enterococcus (LRE). E. faecium showed a higher multiple antibiotic resistance index (MAR index) compared to E. faecalis. The multi-locus sequence typing (MLST) showed the sequence type of E. faecium mainly belongs to clonal complex (CC) 17, nearly E. faecalis isolates analyzed were differentiated into 7 characteristics of sequence types (STs), among which ST16 of CC16 were the major lineage. CONCLUSION Urine was the primary source of VRE and LRE isolates in this study. E. faecium showed higher levels of resistance compared to E. faecalis. OptrA gene was detected in 91.6% of LRE, which could explain linezolid resistance, and van genes were detected in all vancomycin resistant Enterococcus strains, while vanA was a key resistance mechanism in VRE identified in this study.
Collapse
Affiliation(s)
- Ping Pan
- Department of Clinical Laboratory, Hangzhou Women's Hospital (Hangzhou Matenal and Child Health Care Hospital), Hangzhou, Zhejiang, 310000, China
| | - Long Sun
- Department of Clinical Laboratory, Hangzhou Women's Hospital (Hangzhou Matenal and Child Health Care Hospital), Hangzhou, Zhejiang, 310000, China
| | - Xinyan Shi
- Department of Clinical Laboratory, Hangzhou Women's Hospital (Hangzhou Matenal and Child Health Care Hospital), Hangzhou, Zhejiang, 310000, China
| | - Xian Huang
- Respiratory department, Zhejiang Provincial General Hospital of Chinese People's Armed Police CN, Hangzhou, Zhejiang, 310051, China
| | - Yiping Yin
- Department of Hospital-acquired infection control, Zhejiang Provincial General Hospital of Chinese People's Armed Police CN, Hangzhou, Zhejiang, 310051, China
| | - Beilei Pan
- Department of Clinical Laboratory, Hangzhou Women's Hospital (Hangzhou Matenal and Child Health Care Hospital), Hangzhou, Zhejiang, 310000, China
| | - Lihua Hu
- Department of Critical Care Medicine, Zhejiang Provincial General Hospital of Chinese People's Armed Police CN, Hangzhou, Zhejiang, 310051, China.
| | - Qiang Shen
- Hangzhou xixi Hospital, Hangzhou, Zhejiang, 310023, China.
| |
Collapse
|
23
|
Hou J, Xu Q, Zhou L, Chai J, Lin L, Ma C, Zhu Y, Zhang W. Identification of an Enterococcus faecium strain isolated from raw bovine milk co-harbouring the oxazolidinone resistance genes optrA and poxtA in China. Vet Microbiol 2024; 293:110103. [PMID: 38718528 DOI: 10.1016/j.vetmic.2024.110103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/23/2024] [Accepted: 05/01/2024] [Indexed: 05/15/2024]
Abstract
Oxazolidinones are potent antimicrobial agents used to treat human infections caused by multidrug-resistant Gram-positive bacteria. The growing resistance to oxazolidinones poses a significant threat to public health. In August 2021, a linezolid-resistant Enterococcus faecium BN83 was isolated from a raw milk sample of cow in Inner Mongolia, China. This isolate exhibited a multidrug resistance phenotype and was resistant to most of drugs tested including linezolid and tedizolid. PCR detection showed that two mobile oxazolidinones resistance genes, optrA and poxtA, were present in this isolate. Whole genome sequencing analysis revealed that the genes optrA and poxtA were located on two different plasmids, designated as pBN83-1 and pBN83-2, belonging to RepA_N and Inc18 families respectively. Genetic context analysis suggested that optrA gene on plasmid pBN83-1 was located in transposon Tn6261 initially found in E. faecalis. Comprehensive analysis revealed that Tn6261 act as an important horizontal transmission vector for the spread of optrA in E. faecium. Additionally, poxtA-bearing pBN83-2 displayed high similarity to numerous plasmids from Enterococcus of different origin and pBN83-2-like plasmid represented a key mobile genetic element involved in movement of poxtA in enterococcal species. The presence of optrA- and poxtA-carrying E. faecium in raw bovine milk represents a public health concern and active surveillance is urgently warranted to investigate the prevalence of oxazolidinone resistance genes in animal-derived food products.
Collapse
Affiliation(s)
- Jie Hou
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Qiu Xu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Longyu Zhou
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Jiyun Chai
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Longhua Lin
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Caiping Ma
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Yao Zhu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| | - Wanjiang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| |
Collapse
|
24
|
Gattinger D, Schlenz V, Weil T, Sattler B. From remote to urbanized: Dispersal of antibiotic-resistant bacteria under the aspect of anthropogenic influence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171532. [PMID: 38458439 DOI: 10.1016/j.scitotenv.2024.171532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
Antibiotic resistance is a growing global concern, but our understanding of the spread of resistant bacteria in remote regions remains limited. While some level of intrinsic resistance likely contributes to reduced susceptibility to antimicrobials in the environment, it is evident that human actions, particularly the (mis)use of antibiotics, play a significant role in shaping the environmental resistome, even in seemingly distant habitats like glacier ice sheets. Our research aims to bridge this knowledge gap by investigating the direct influence of human activities on the presence of antibiotic-resistant bacteria in various habitats. To achieve a comprehensive assessment of anthropogenic impact across diverse and seemingly isolated sampling sites, we developed an innovative approach utilizing Corine Land Cover data and heatmaps generated from sports activity trackers. This method allowed us to make meaningful comparisons across relatively pristine environments. Our findings indicate a noteworthy increase in culturable antibiotic-resistant bacteria with heightened human influence, as evidenced by our analysis of glacier, snow, and lake water samples. Notably, the most significant concentrations of antibiotic-resistant and multidrug-resistant microorganisms were discovered in two highly impacted sampling locations, namely the Tux Glacier and Gas Station Ellmau.
Collapse
Affiliation(s)
- Daniel Gattinger
- Institute of Ecology, University of Innsbruck, Innsbruck, Austria.
| | - Valentin Schlenz
- Institute of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Tobias Weil
- Research and Innovation Centre, Fondazione Edmund Mach, All'adige, Italy
| | - Birgit Sattler
- Institute of Ecology, University of Innsbruck, Innsbruck, Austria; Austrian Polar Research Institute, Vienna, Austria
| |
Collapse
|
25
|
Singh KV, Galloway-Peña J, Montealegre MC, Dong X, Murray BE. Genomic context as well as sequence of both psr and penicillin-binding protein 5 contributes to β-lactam resistance in Enterococcus faecium. mBio 2024; 15:e0017024. [PMID: 38564699 PMCID: PMC11077988 DOI: 10.1128/mbio.00170-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Penicillin-binding protein 5 (PBP5) of Enterococcus faecium (Efm) is vital for ampicillin resistance (AMP-R). We previously designated three forms of PBP5, namely, PBP5-S in Efm clade B strains [ampicillin susceptible (AMP-S)], PBP5-S/R (AMP-S or R), and PBP5-R (AMP-R) in clade A strains. Here, pbp5 deletion resulted in a marked reduction in AMP minimum inhibitory concentrations (MICs) to 0.01-0.09 µg/mL for clade B and 0.12-0.19 µg/mL for clade A strains; in situ complementation restored parental AMP MICs. Using D344SRF (lacking ftsW/psr/pbp5), constructs with ftsWA/psrA (from a clade A1 strain) cloned upstream of pbp5-S and pbp5-S/R alleles resulted in modest increases in MICs to 3-8 µg/mL, while high MICs (>64 µg/mL) were seen using pbp5 from A1 strains. Next, using ftsW ± psr from clade B and clade A/B and B/A hybrid constructs, the presence of psrB, even alone or in trans, resulted in much lower AMP MICs (3-8 µg/mL) than when psrA was present (MICs >64 µg/mL). qRT PCR showed relatively greater pbp5 expression (P = 0.007) with pbp5 cloned downstream of clade A1 ftsW/psr (MIC >128 µg/mL) vs when cloned downstream of clade B ftsW/psr (MIC 4-16 µg/mL), consistent with results in western blots. In conclusion, we report the effect of clade A vs B psr on AMP MICs as well as the impact of pbp5 alleles from different clades. While previously, Psr was not thought to contribute to AMP MICs in Efm, our results showed that the presence of psrB resulted in a major decrease in Efm AMP MICs. IMPORTANCE The findings of this study shed light on ampicillin resistance in Enterococcus faecium clade A strains. They underscore the significance of alterations in the amino acid sequence of penicillin-binding protein 5 (PBP5) and the pivotal role of the psr region in PBP5 expression and ampicillin resistance. Notably, the presence of a full-length psrB leads to reduced PBP5 expression and lower minimum inhibitory concentrations (MICs) of ampicillin compared to the presence of a shorter psrA, regardless of the pbp5 allele involved. Additionally, clade B E. faecium strains exhibit lower AMP MICs when both psr alleles from clades A and B are present, although it is important to consider other distinctions between clade A and B strains that may contribute to this effect. It is intriguing to note that the divergence between clade A and clade B E. faecium and the subsequent evolution of heightened AMP MICs in hospital-associated strains appear to coincide with changes in Pbp5 and psr. These changes in psr may have resulted in an inactive Psr, facilitating increased PBP5 expression and greater ampicillin resistance. These results raise the possibility that a mimicker of PsrB, if one could be designed, might be able to lower MICs of ampicillin-resistant E. faecium, thus potentially resorting ampicillin to our therapeutic armamentarium for this species.
Collapse
Affiliation(s)
- Kavindra V. Singh
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center, Houston, Texas, USA
| | - Jessica Galloway-Peña
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center, Houston, Texas, USA
| | - Maria Camila Montealegre
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center, Houston, Texas, USA
- Department of Microbiology and Infectious Diseases, University of Texas Health Science Center, Houston, Texas, USA
| | - Xingxing Dong
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center, Houston, Texas, USA
| | - Barbara E. Murray
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center, Houston, Texas, USA
- Department of Microbiology and Infectious Diseases, University of Texas Health Science Center, Houston, Texas, USA
| |
Collapse
|
26
|
Wang Z, Liu D, Zhang J, Liu L, Zhang Z, Liu C, Hu S, Wu L, He Z, Sun H. Genomic epidemiology reveals multiple mechanisms of linezolid resistance in clinical enterococci in China. Ann Clin Microbiol Antimicrob 2024; 23:41. [PMID: 38704577 PMCID: PMC11070108 DOI: 10.1186/s12941-024-00689-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/21/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Infections caused by linezolid-resistant enterococci (LRE) are clinically difficult to treat and threaten patient health. However, there is a lack of studies on long time-span LRE strains in China. For this reason, our study comprehensively revealed the resistance mechanisms of LRE strains collected in a Chinese tertiary care hospital from 2011 to 2022. METHODS Enterococcal strains were screened and verified after retrospective analysis of microbial data. Subsequently, 65 LRE strains (61 Enterococcus faecalis and 4 Enterococcus faecium, MIC ≥ 8 µg/ml), 1 linezolid-intermediate Enterococcus faecium (MIC = 4 µg/ml) and 1 linezolid-susceptible Enterococcus faecium (MIC = 1.5 µg/ml) were submitted for whole-genome sequencing (WGS) analysis and bioinformatics analysis. RESULTS The optrA gene was found to be the most common linezolid resistance mechanism in our study. We identified the wild-type OptrA and various OptrA variants in 98.5% of LRE strains (61 Enterococcus faecalis and 3 Enterococcus faecium). We also found one linezolid-resistant Enterococcus faecium strain carried both optrA and cfr(D) gene, while one linezolid-resistant Enterococcus faecium only harbored the poxtA gene. Most optrA genes (55/64) were located on plasmids, with impB-fexA-optrA, impB-fexA-optrA-erm(A), fexA-optrA-erm(A), and fexA-optrA segments. A minority of optrA genes (9/64) were found on chromosomes with the Tn6674-like platform. Besides, other possible linezolid resistance-associated mechanisms (mutations in the rplC and rplD genes) were also found in 26 enterococcal strains. CONCLUSIONS Our study suggested that multiple mechanisms of linezolid resistance exist among clinical LRE strains in China.
Collapse
Affiliation(s)
- Ziran Wang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No.1 Shuaifuyuan Wangfujing, Dongcheng, Beijing, 100730, P.R. China
| | - Danping Liu
- School of Engineering Medicine, Beihang University, Rd37, xueyuan, Haidian, Beijing, 100191, P.R. China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology of the People's Republic of China, Beijing, China
- Key Laboratory of Biomechanics and Mechanobiology, Beihang University, Ministry of Education, Beijing, China
| | - Jingjia Zhang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No.1 Shuaifuyuan Wangfujing, Dongcheng, Beijing, 100730, P.R. China
| | - Lingli Liu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No.1 Shuaifuyuan Wangfujing, Dongcheng, Beijing, 100730, P.R. China
| | - Zeming Zhang
- School of Engineering Medicine, Beihang University, Rd37, xueyuan, Haidian, Beijing, 100191, P.R. China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology of the People's Republic of China, Beijing, China
- Key Laboratory of Biomechanics and Mechanobiology, Beihang University, Ministry of Education, Beijing, China
| | - Chang Liu
- Department of Clinical Laboratory, Beijing Huaxin Hospital, The First Hospital of Tsinghua University, Beijing, China
| | - Songnian Hu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Linhuan Wu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Microbial Resource and Big Data Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zilong He
- School of Engineering Medicine, Beihang University, Rd37, xueyuan, Haidian, Beijing, 100191, P.R. China.
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology of the People's Republic of China, Beijing, China.
- Key Laboratory of Biomechanics and Mechanobiology, Beihang University, Ministry of Education, Beijing, China.
| | - Hongli Sun
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No.1 Shuaifuyuan Wangfujing, Dongcheng, Beijing, 100730, P.R. China.
| |
Collapse
|
27
|
Philip A, Oueslati S, Villa F, Pannetier C, Cattoir V, Duranteau J, Figueiredo S, Naas T. Development of an ultrafast PCR to detect clinically relevant acquired vancomycin-resistance genes from cultured enterococci. J Antimicrob Chemother 2024; 79:997-1005. [PMID: 38501366 DOI: 10.1093/jac/dkae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/15/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND VRE are increasingly described worldwide. Screening of hospitalized patients at risk for VRE carriage is mandatory to control their dissemination. Here, we have developed the Bfast [VRE Panel] PCR kit, a rapid and reliable quantitative PCR assay for detection of vanA, vanB, vanD and vanM genes, from solid and liquid cultures adaptable to classical and ultrafast real-time PCR platforms. METHODS Validation was carried out on 133 well characterized bacterial strains, including 108 enterococci of which 64 were VRE. Analytical performances were determined on the CFX96 Touch (Bio-Rad) and Chronos Dx (BforCure), an ultrafast qPCR machine. Widely used culture plates and broths for enterococci selection/growth were tested. RESULTS All targeted van alleles (A, B, D and M) were correctly detected without cross-reactivity with other van genes (C, E, G, L and N) and no interference with the different routinely used culture media. A specificity and sensitivity of 100% and 99.7%, respectively, were determined, with limits of detection ranging from 21 to 238 cfu/reaction depending on the targets. The Bfast [VRE Panel] PCR kit worked equally well on the CFX and Chronos Dx platforms, with differences in multiplexing capacities (five and four optical channels, respectively) and in turnaround time (45 and 16 minutes, respectively). CONCLUSIONS The Bfast [VRE Panel] PCR kit is robust, easy to use, rapid and easily implementable in clinical microbiology laboratories for ultra-rapid confirmation of the four main acquired van genes. Its features, especially on Chronos Dx, seem to be unmatched compared to other tools for screening of VRE.
Collapse
Affiliation(s)
- Axel Philip
- Team ReSIST, INSERM U1184, Faculty of Medicine Université Paris-Saclay, LabEx LERMIT, 78 rue du Général Leclerc, 94270 Le Kremlin-Bicêtre, France
- R&D, BforCure, 14 rue de la Beaune, 93100 Montreuil, France
| | - Saoussen Oueslati
- Team ReSIST, INSERM U1184, Faculty of Medicine Université Paris-Saclay, LabEx LERMIT, 78 rue du Général Leclerc, 94270 Le Kremlin-Bicêtre, France
- Bacteriology-Hygiene Department, Bicêtre Hospital, Assistance Publique/Hôpitaux de Paris, 94270 Le Kremlin-Bicêtre, France
| | | | | | - Vincent Cattoir
- Department of Clinical Microbiology and French National Reference Centre for Antibiotic Resistance (Lab Enterococci), Rennes University Hospital, 35033 Rennes, France
| | - Jacques Duranteau
- Surgical Intensive Care Department, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, 94270 Le Kremlin-Bicêtre, France
| | - Samy Figueiredo
- Team ReSIST, INSERM U1184, Faculty of Medicine Université Paris-Saclay, LabEx LERMIT, 78 rue du Général Leclerc, 94270 Le Kremlin-Bicêtre, France
- Surgical Intensive Care Department, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, 94270 Le Kremlin-Bicêtre, France
| | - Thierry Naas
- Team ReSIST, INSERM U1184, Faculty of Medicine Université Paris-Saclay, LabEx LERMIT, 78 rue du Général Leclerc, 94270 Le Kremlin-Bicêtre, France
- Bacteriology-Hygiene Department, Bicêtre Hospital, Assistance Publique/Hôpitaux de Paris, 94270 Le Kremlin-Bicêtre, France
| |
Collapse
|
28
|
Hourigan D, Stefanovic E, Hill C, Ross RP. Promiscuous, persistent and problematic: insights into current enterococcal genomics to guide therapeutic strategy. BMC Microbiol 2024; 24:103. [PMID: 38539119 PMCID: PMC10976773 DOI: 10.1186/s12866-024-03243-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 02/28/2024] [Indexed: 04/19/2024] Open
Abstract
Vancomycin-resistant enterococci (VRE) are major opportunistic pathogens and the causative agents of serious diseases, such as urinary tract infections and endocarditis. VRE strains mainly include species of Enterococcus faecium and E. faecalis which can colonise the gastrointestinal tract (GIT) of patients and, following growth and persistence in the gut, can transfer to blood resulting in systemic dissemination in the body. Advancements in genomics have revealed that hospital-associated VRE strains are characterised by increased numbers of mobile genetic elements, higher numbers of antibiotic resistance genes and often lack active CRISPR-Cas systems. Additionally, comparative genomics have increased our understanding of dissemination routes among patients and healthcare workers. Since the efficiency of currently available antibiotics is rapidly declining, new measures to control infection and dissemination of these persistent pathogens are urgently needed. These approaches include combinatory administration of antibiotics, strengthening colonisation resistance of the gut microbiota to reduce VRE proliferation through commensals or probiotic bacteria, or switching to non-antibiotic bacterial killers, such as bacteriophages or bacteriocins. In this review, we discuss the current knowledge of the genomics of VRE isolates and state-of-the-art therapeutic advances against VRE infections.
Collapse
Affiliation(s)
- David Hourigan
- APC Microbiome Ireland, Biosciences Institute, Biosciences Research Institute, College Rd, University College, Cork, Ireland
- School of Microbiology, University College Cork, College Rd, University College, Cork, Ireland
| | - Ewelina Stefanovic
- APC Microbiome Ireland, Biosciences Institute, Biosciences Research Institute, College Rd, University College, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Moorepark West, Fermoy, Co. Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, Biosciences Institute, Biosciences Research Institute, College Rd, University College, Cork, Ireland
- School of Microbiology, University College Cork, College Rd, University College, Cork, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, Biosciences Institute, Biosciences Research Institute, College Rd, University College, Cork, Ireland.
- School of Microbiology, University College Cork, College Rd, University College, Cork, Ireland.
- Teagasc Food Research Centre, Moorepark, Moorepark West, Fermoy, Co. Cork, Ireland.
| |
Collapse
|
29
|
Velazquez-Meza ME, Galarde-López M, Cornejo-Juárez P, Carrillo-Quiroz BA, Velázquez-Acosta C, Bobadilla-del-Valle M, Ponce-de-León A, Alpuche-Aranda CM. Multidrug-Resistant Staphylococcus sp. and Enterococcus sp. in Municipal and Hospital Wastewater: A Longitudinal Study. Microorganisms 2024; 12:645. [PMID: 38674590 PMCID: PMC11051902 DOI: 10.3390/microorganisms12040645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/12/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
The objective of the study was to detect multidrug-resistant Staphylococcus sp. and Enterococcus sp. isolates in municipal and hospital wastewater and to determine their elimination or persistence after wastewater treatment. Between August 2021 and September 2022, raw and treated wastewater samples were collected at two hospital and two community wastewater treatment plants (WWTPs). In each season of the year, two treated and two raw wastewater samples were collected in duplicate at each of the WWTPs studied. Screening and presumptive identification of staphylococci and enterococci was performed using chromoagars, and identification was performed with the Matrix Assisted Laser Desorption Ionization Time of Flight mass spectrometry (MALDI-TOF MS®). Antimicrobial susceptibility was performed using VITEK 2® automated system. There were 56 wastewater samples obtained during the study period. A total of 182 Staphylococcus sp. and 248 Enterococcus sp. were identified. The highest frequency of Staphylococcus sp. isolation was in spring and summer (n = 129, 70.8%), and for Enterococcus sp. it was in autumn and winter (n = 143, 57.7%). Sixteen isolates of Staphylococcus sp. and sixty-three of Enterococcus sp. persisted during WWTP treatments. Thirteen species of staphylococci and seven species of enterococci were identified. Thirty-one isolates of Staphylococcus sp. and ninety-four of Enterococcus sp. were multidrug-resistant. Resistance to vancomycin (1.1%), linezolid (2.7%), and daptomycin (8.2%/10.9%%), and a lower susceptibility to tigecycline (2.7%), was observed. This study evidences the presence of Staphylococcus sp. and Enterococcus sp. resistant to antibiotics of last choice of clinical treatment, in community and hospital wastewater and their ability to survive WWTP treatment systems.
Collapse
Affiliation(s)
- Maria Elena Velazquez-Meza
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca City 62100, Mexico; (M.E.V.-M.); (M.G.-L.); (B.A.C.-Q.)
| | - Miguel Galarde-López
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca City 62100, Mexico; (M.E.V.-M.); (M.G.-L.); (B.A.C.-Q.)
| | - Patricia Cornejo-Juárez
- Departamento de Infectología, Instituto Nacional de Cancerología, Mexico City 14080, Mexico; (P.C.-J.); (C.V.-A.)
| | - Berta Alicia Carrillo-Quiroz
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca City 62100, Mexico; (M.E.V.-M.); (M.G.-L.); (B.A.C.-Q.)
| | - Consuelo Velázquez-Acosta
- Departamento de Infectología, Instituto Nacional de Cancerología, Mexico City 14080, Mexico; (P.C.-J.); (C.V.-A.)
| | - Miriam Bobadilla-del-Valle
- Laboratorio Nacional de Máxima Seguridad para el Estudio de Tuberculosis y Enfermedades Emergentes, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City 14080, Mexico; (M.B.-d.-V.); (A.P.-d.-L.)
| | - Alfredo Ponce-de-León
- Laboratorio Nacional de Máxima Seguridad para el Estudio de Tuberculosis y Enfermedades Emergentes, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City 14080, Mexico; (M.B.-d.-V.); (A.P.-d.-L.)
| | - Celia Mercedes Alpuche-Aranda
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca City 62100, Mexico; (M.E.V.-M.); (M.G.-L.); (B.A.C.-Q.)
| |
Collapse
|
30
|
Hegstad K, Pöntinen AK, Bjørnholt JV, Quist-Paulsen E, Sundsfjord A. The first tigecycline resistant Enterococcus faecium in Norway was related to tigecycline exposure. J Glob Antimicrob Resist 2024; 36:112-115. [PMID: 38122982 DOI: 10.1016/j.jgar.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/30/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
OBJECTIVES We describe the first tigecycline resistant enterococcal isolate in Norway and the mechanisms involved. MATERIAL AND METHODS The Norwegian National Advisory Unit on Detection of Antimicrobial Resistance (K-res). received in 2022 an Enterococcus faecium blood culture isolate with decreased susceptibility to tigecycline from a hospitalized patient in the South-Eastern Norway Health region for confirmatory testing. K-res verified a tigecycline-resistant E. faecium (TigR) with broth microdilution MIC of 0.5 mg/L. The patient had received treatment with tigecycline because of an infection with a linezolid- and vancomycin-resistant but tigecycline susceptible E. faecium (TigS) 47 days prior to the detection of the corresponding tigecycline-resistant isolate. Whole-genome comparisons, cgMLST and SNP analyses revealed that the two ST117 strains were closely related. RESULTS The TigR isolate showed a novel deletion of 2 amino acids (K57Y58) in a polymorphic region of ribosomal protein S10 previously associated with tigecycline resistance and a deletion of the tet(M) leader peptide previously related to increased expression of tet(M) and tigecycline resistance in enterococci. CONCLUSIONS Genomic and epidemiological analyses confirm that the two E. faecium (TigR and TigS) are closely related isolates of the same strain and that the two deletions (in rpsJ and of tet(M) leader peptide) account for the tigecycline resistance in TigR.
Collapse
Affiliation(s)
- Kristin Hegstad
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway; Research group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway.
| | - Anna K Pöntinen
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway; Department of Biostatistics, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Jørgen V Bjørnholt
- Department of Clinical Microbiology, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Else Quist-Paulsen
- Department of Clinical Microbiology, Oslo University Hospital, Oslo, Norway
| | - Arnfinn Sundsfjord
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway; Research group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
31
|
Fukuda A, Nakajima C, Suzuki Y, Usui M. Transferable linezolid resistance genes (optrA and poxtA) in enterococci derived from livestock compost at Japanese farms. J Glob Antimicrob Resist 2024; 36:336-344. [PMID: 38336229 DOI: 10.1016/j.jgar.2024.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
OBJECTIVES Linezolid is a last-resort antimicrobial in human clinical settings to treat multidrug-resistant Gram-positive bacterial infections. Mobile linezolid resistance genes (optrA, poxtA, and cfr) have been detected in various sources worldwide. However, the presence of linezolid-not-susceptible bacteria and mobile linezolid resistance genes in Japan remains uncertain. Therefore, we clarified the existence of linezolid-not-susceptible bacteria and mobile linezolid resistance genes in farm environments in Japan. METHODS Enterococci isolates from faeces compost collected from 10 pig and 11 cattle farms in Japan in 2021 were tested for antimicrobial susceptibility and possession of mobile linezolid resistance genes. Whole-genome sequencing of optrA and/or poxtA genes positive-enterococci was performed. RESULTS Of 103 enterococci isolates, 12 from pig farm compost were not-susceptible (2 resistant and 10 intermediate) to linezolid. These 12 isolates carried mobile linezolid resistance genes on plasmids or chromosomes (5 optrA-positive Enterococcus faecalis, 6 poxtA-positive E. hirae or E. thailandicus, and 1 optrA- and poxtA-positive E. faecium). The genetic structures of optrA- and poxA-carrying plasmids were almost identical to those reported in other countries. These plasmids were capable of transferring among E. faecium and E. faecalis strains. The optrA- and poxtA-positive E. faecium belonged to ST324 (clade A2), a high-risk multidrug-resistant clone. The E. faecalis carrying optrA gene on its chromosome was identified as ST593. CONCLUSIONS Although linezolid is not used in livestock, linezolid-not-susceptible enterococci could be indirectly selected by frequently used antimicrobials, such as phenicols. Moreover, various enterococci species derived from livestock compost may serve as reservoirs of linezolid resistance genes carried on globally disseminated plasmids and multidrug-resistant high-risk clones.
Collapse
Affiliation(s)
- Akira Fukuda
- Department of Health and Environmental Sciences, Laboratory of Food Microbiology and Food Safety, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Chie Nakajima
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan; International Collaboration Unit, Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan; Division of Research Support, Hokkaido University Institute for Vaccine Research and Development, Sapporo, Japan
| | - Yasuhiko Suzuki
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan; International Collaboration Unit, Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan; Division of Research Support, Hokkaido University Institute for Vaccine Research and Development, Sapporo, Japan
| | - Masaru Usui
- Department of Health and Environmental Sciences, Laboratory of Food Microbiology and Food Safety, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan.
| |
Collapse
|
32
|
Kumar A, Taneja A, Pal Singh Y, Pratap Singh G, Jain S, Jain S. Relationship Between COVID-19 and Linezolid-Resistant Enterococci: A Retrospective Single-Center Study. Cureus 2024; 16:e57227. [PMID: 38686228 PMCID: PMC11056609 DOI: 10.7759/cureus.57227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 03/28/2024] [Indexed: 05/02/2024] Open
Abstract
AIM AND OBJECTIVES To evaluate the correlation between whether the COVID-19 pandemic turned out to be a great premise for increasing the incidence of linezolid resistance infections. MATERIALS AND METHOD The current retrospective study included data from March 2018 to March 2023 from a single center. The clinical records of the patients were reviewed to extract clinical data. Data gathered from medical records included demographic information, the type of specimen taken, the organism identified, and its sensitivity. Antibiotic susceptibility testing and bacterial identification are both done using the fully automated VITEK system. RESULTS The total number of samples collected in all the groups, i.e., Group 1 (PRE-COVID), Group 2 (COVID), and Group 3 (POST-COVID), were 201, 127, and 1315, respectively. Out of a total of 201 samples in Group 1, i.e., from March 2018 to February 2020, 47 (23.38%) samples were collected from blood, 104 (51.74%) samples were collected from urine, and the rest of the samples were collected from other sources (pus, sputum, wound, stool, pleural fluid, etc.). In Group 2, i.e., from March 2020 to February 2021, the total number of samples collected was 127, of which 21 were collected from blood, 86 were from urine, and the remaining 20 samples were from other sources. A total of 1315 samples were collected between March 2021 and February 2023, i.e., in Group 3, 598 samples were collected from blood and 548 samples from urine. The most common isolates in the study were Enterococcus faecalis (35.7%) and Enterococcus faecium (61.0%). CONCLUSION A new threat seems to be emerging in the era of COVID-19, the Enterococcus genus. Though the mechanism remains unidentified, the viral infection seems to cause changes in the bacterial flora, favoring Enterococcus and increasing gut permeability, which provides the perfect environment for Enterococcus bacteria to develop invasive infections. In our study, the prevalence of linezolid resistance was 18.2% for five years.
Collapse
Affiliation(s)
- Amber Kumar
- Critical Care Medicine, Max Super Specialty Hospital, Delhi, IND
| | - Akhil Taneja
- Critical Care Medicine, Max Super Specialty Hospital, Delhi, IND
| | | | | | - Saurabh Jain
- Critical Care Medicine, Max Super Specialty Hospital, Delhi, IND
| | - Suchitra Jain
- Microbiology, Max Super Specialty Hospital, Delhi, IND
| |
Collapse
|
33
|
Lin C, Feng Y, Xie X, Zhang H, Wu J, Zhu Y, Yu J, Feng J, Su W, Lai S, Zhang A. Antimicrobial resistance characteristics and phylogenetic relationships of pleuromutilin-resistant Enterococcus isolates from different environmental samples along a laying hen production chain. J Environ Sci (China) 2024; 137:195-205. [PMID: 37980008 DOI: 10.1016/j.jes.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 11/20/2023]
Abstract
Antimicrobial resistance in the laying hen production industry has become a serious public health problem. The antimicrobial resistance and phylogenetic relationships of the common conditional pathogen Enterococcus along the laying hen production chain have not been systematically clarified. 105 Enterococcus isolates were obtained from 115 environmental samples (air, dust, feces, flies, sewage, and soil) collected along the laying hen production chain (breeding chicken, chick, young chicken, and commercial laying hen). These Enterococcus isolates exhibited resistance to some clinically relevant antibiotics, such as tetracycline (92.4%), streptomycin (92.4%), and erythromycin (91.4%), and all strains had multidrug resistance phenotypes. Whole genome sequencing characterized 29 acquired antibiotic resistance genes (ARGs) that conferred resistance to 11 classes of antibiotics in 51 pleuromutilin-resistant Enterococcus isolates, and lsa(E), which mediates resistance to pleuromutilins, always co-occurred with lnu(B). Alignments with the Mobile Genetic Elements database identified four transposons (Tn554, Tn558, Tn6261, and Tn6674) with several ARGs (erm(A), ant(9)-la, fex(A), and optrA) that mediated resistance to many clinically important antibiotics. Moreover, we identified two new transposons that carried ARGs in the Tn554 family designated as Tn7508 and Tn7492. A complementary approach based on conventional multi-locus sequence typing and whole genome single nucleotide polymorphism analysis showed that phylogenetically related pleuromutilin-resistant Enterococcus isolates were widely distributed in various environments on different production farms. Our results indicate that environmental contamination by antimicrobial-resistant Enterococcus requires greater attention, and they highlight the risk of pleuromutilin-resistant Enterococcus and ARGs disseminating along the laying hen production chain, thereby warranting effective disinfection.
Collapse
Affiliation(s)
- Cong Lin
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yuxuan Feng
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xianjun Xie
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Haoyu Zhang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jie Wu
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yixiao Zhu
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jing Yu
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jingyi Feng
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Wen Su
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Shanming Lai
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Anyun Zhang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
34
|
Chen W, Wang Q, Wu H, Xia P, Tian R, Li R, Xia L. Molecular epidemiology, phenotypic and genomic characterization of antibiotic-resistant enterococcal isolates from diverse farm animals in Xinjiang, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168683. [PMID: 37996027 DOI: 10.1016/j.scitotenv.2023.168683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Multidrug-resistant (MDR) bacteria in farm environments can be transferred to humans through the food chain and occupational exposure. Enterococcus infections caused by linezolid resistant enterococci (LRE) are becoming more challenging to treat as their resistance to antibiotics intensifies. Therefore, this study investigated the molecular epidemiology, phenotypic and genomic characterization of enterococci in seven species of farm animals (sheep, chicken, swine, camel, cattle, equine, pigeon) anal swab from Xinjiang, China by agar dilution method, polymerase chain reaction (PCR), whole-genome sequencing (WGS) and bioinformatics analysis. A total of 771 samples were collected, 599 (78 %) were contaminated with Enterococcus spp., among which Enterococcus faecalis (350/599) was dominant. Antimicrobial susceptibility testing showed that high resistance was observed in rifampicin (80 %), tetracycline (71 %), doxycycline (71 %), and erythromycin (69 %). The results of PCR showed the highest prevalent antibiotic resistance genes (ARGs) were aac(6')-aph(2″) (85 %), followed by tet(M) (73 %), erm(B) (62 %), and aph(3')-IIIa (61 %). Besides, 29 optrA-carrying E. faecalis isolates belonging to 13 STs (including 3 new alleles) were detected, with ST714 (31 %, 9/29) being the dominant ST type. The phylogenetic tree showed that optrA-carrying E. faecalis prevalent in the intensive swine farm is mainly caused by clonal transmission. Notably, optrA gene in Enterococcus spp. isolate from camel was first characterized here. WGS of E. faecalis F109 isolate from camel confirmed the colocalization of optrA with other five ARGs in the same plasmid (pAFL-109F). The optrA-harboring genetic context is IS1216E-fexA-optrA-erm(A)-IS1216E. This study highlights the prevalence of MDR Enterococcus (≥88 %) and four ARGs (≥75 %) in swine (intensive farming), cattle (commercial farming), and chickens (backyard farming) are high and also highlights that optrA-carrying E. faecalis of farm animals incur a transmission risk to humans through environment, food consumption and others. Therefore, antibiotic-resistant bacteria (ARB) monitoring and effective control measures should be strengthened and implemented in diverse animals.
Collapse
Affiliation(s)
- Wanzhao Chen
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; Xinjiang Key Laboratory of Herbivore Drug Research and Creation, Xinjiang Agricultural University, Urumqi 830052, China
| | - Qiaojun Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Huimin Wu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China
| | - Panpan Xia
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China
| | - Rui Tian
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China
| | - Ruichao Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.
| | - Lining Xia
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; Xinjiang Key Laboratory of Herbivore Drug Research and Creation, Xinjiang Agricultural University, Urumqi 830052, China.
| |
Collapse
|
35
|
Liu P, Zeng B, Wu X, Zheng F, Zhang Y, Liao X. Risk exploration and prediction model construction for linezolid-resistant Enterococcus faecalis based on big data in a province in southern China. Eur J Clin Microbiol Infect Dis 2024; 43:259-268. [PMID: 38032514 PMCID: PMC10821975 DOI: 10.1007/s10096-023-04717-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/15/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Enterococcus faecalis is a common cause of healthcare-associated infections. Its resistance to linezolid, the antibiotic of last resort for vancomycin-resistant enterococci, has become a growing threat in healthcare settings. METHODS We analyzed the data of E. faecalis isolates from 26 medical institutions between 2018 and 2020 and performed univariate and multivariate logistic regression analyses to determine the independent predictors for linezolid-resistant E. faecalis (LREFs). Then, we used the artificial neural network (ANN) and logistic regression (LR) to build a prediction model for linezolid resistance and performed a performance evaluation and comparison. RESULTS Of 12,089 E. faecalis strains, 755 (6.25%) were resistant to linezolid. Among vancomycin-resistant E. faecalis, the linezolid-resistant rate was 24.44%, higher than that of vancomycin-susceptible E. faecalis (p < 0.0001). Univariate and multivariate regression analyses showed that gender, age, specimen type, length of stay before culture, season, region, GDP (gross domestic product), number of beds, and hospital level were predictors of linezolid resistance. Both the ANN and LR models constructed in the study performed well in predicting linezolid resistance in E. faecalis, with AUCs of 0.754 and 0.741 in the validation set, respectively. However, synthetic minority oversampling technique (SMOTE) did not improve the prediction ability of the models. CONCLUSION E. faecalis linezolid-resistant rates varied by specimen site, geographic region, GDP level, facility level, and the number of beds. At the same time, community-acquired E. faecalis with linezolid resistance should be monitored closely. We can use the prediction model to guide clinical medication and take timely prevention and control measures.
Collapse
Affiliation(s)
- Peijun Liu
- Administration Department of Nosocomial Infection, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China
| | - Bangwei Zeng
- Administration Department of Nosocomial Infection, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China.
| | - Xiaoyan Wu
- Administration Department of Nosocomial Infection, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China
| | - Feng Zheng
- Information Department, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China
| | - Yangmei Zhang
- Administration Department of Nosocomial Infection, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China
| | - Xiaohua Liao
- Administration Department of Nosocomial Infection, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China
| |
Collapse
|
36
|
Bender JK, Fleige C, Funk F, Moretó-Castellsagué C, Fischer MA, Werner G. Linezolid Resistance Genes and Mutations among Linezolid-Susceptible Enterococcus spp.-A Loose Cannon? Antibiotics (Basel) 2024; 13:101. [PMID: 38275330 PMCID: PMC10812394 DOI: 10.3390/antibiotics13010101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
The National Reference Centre for Enterococci receives an increasing number of linezolid-resistant Enterococcus isolates. Linezolid (LIN) resistance is mediated by G2576T 23S rDNA gene mutations and/or acquisition of resistance genes (cfr, optrA, poxtA). There are anecdotal reports that those resistance traits may be present in phenotypically linezolid-susceptible isolates. We aimed to determine the prevalence of LIN resistance genes and mutations in enterococci with a LIN MIC of 4 mg/L in broth microdilution (EUCAST = susceptible) isolated from German hospital patients 2019-2021. LIN MICs were additionally determined by ETEST® and VITEK2. Selected strains were subjected to LIN selective pressure and growth was monitored with increasing antibiotic concentrations. We received 195 isolates (LIN MIC = 4 mg/L). In total, 78/195 (40%) isolates contained either a putative resistance gene, the G2576T mutation, or a combination thereof. Very major error was high for broth microdilution. The ability to predict phenotypic resistance from genotypic profile was highest for G2576T-mediated resistance. Selection experiments revealed that, in particular, E. faecium isolates with resistance gene mutations or poxtA rapidly adapt to MICs above the clinical breakpoint. In conclusion, LIN resistance genes and mutations can be observed in phenotypically linezolid-susceptible enterococci. Those isolates may rapidly develop resistance under LIN selective pressure potentially leading to treatment failure.
Collapse
Affiliation(s)
- Jennifer K. Bender
- Nosocomial Pathogens and Antibiotic Resistances Unit, Department of Infectious Diseases, Robert Koch Institute, 38855 Wernigerode, Germany (F.F.); (C.M.-C.); (M.A.F.); (G.W.)
| | - Carola Fleige
- Nosocomial Pathogens and Antibiotic Resistances Unit, Department of Infectious Diseases, Robert Koch Institute, 38855 Wernigerode, Germany (F.F.); (C.M.-C.); (M.A.F.); (G.W.)
| | - Finn Funk
- Nosocomial Pathogens and Antibiotic Resistances Unit, Department of Infectious Diseases, Robert Koch Institute, 38855 Wernigerode, Germany (F.F.); (C.M.-C.); (M.A.F.); (G.W.)
| | - Clara Moretó-Castellsagué
- Nosocomial Pathogens and Antibiotic Resistances Unit, Department of Infectious Diseases, Robert Koch Institute, 38855 Wernigerode, Germany (F.F.); (C.M.-C.); (M.A.F.); (G.W.)
- Department of Microbiology and Parasitology, University Hospital of Bellvitge, 08907 Barcelona, Spain
| | - Martin A. Fischer
- Nosocomial Pathogens and Antibiotic Resistances Unit, Department of Infectious Diseases, Robert Koch Institute, 38855 Wernigerode, Germany (F.F.); (C.M.-C.); (M.A.F.); (G.W.)
| | - Guido Werner
- Nosocomial Pathogens and Antibiotic Resistances Unit, Department of Infectious Diseases, Robert Koch Institute, 38855 Wernigerode, Germany (F.F.); (C.M.-C.); (M.A.F.); (G.W.)
| |
Collapse
|
37
|
Bakhtiyari N, Farajnia S, Ghasemali S, Farajnia S, Pormohammad A, Saeidvafa S. Strategies to Overcome Antimicrobial Resistance in Nosocomial Infections, A Review and Update. Infect Disord Drug Targets 2024; 24:e260124226226. [PMID: 38284691 DOI: 10.2174/0118715265276529231214105423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/12/2023] [Accepted: 11/17/2023] [Indexed: 01/30/2024]
Abstract
Nosocomial infections, also known as healthcare-associated infections, are a significant global concern due to their strong association with high mortality and morbidity in both developed and developing countries. These infections are caused by a variety of pathogens, particularly the ESKAPE group of bacteria, which includes the six pathogens Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. These bacteria have demonstrated noteworthy resistance to different antibiotics. Antimicrobial resistance mechanisms can manifest in various forms, including restricting drug uptake, modifying drug targets, inactivating drugs, active drug efflux, and biofilm formation. Accordingly, various strategies have been developed to combat antibiotic-resistant bacteria. These strategies encompass the development of new antibiotics, the utilization of bacteriophages that specifically target these bacteria, antimicrobial combination therapy and the use of peptides or enzymes that target the genomes or essential proteins of resistant bacteria. Among promising approaches to overcome antibiotic resistance, the CRISPR/Cas system stands out and offers many advantages. This system enables precise and efficient editing of genetic material at specific locations in the genome. Functioning as a bacterial "adaptive immune system," the CRISPR/Cas system recognizes, degrades, and remembers foreign DNA sequences through the use of spacer DNA segments that are transcribed into CRISPR RNAs (crRNA). This paper has focused on nosocomial infections, specifically the pathogens involved in hospital infections, the mechanisms underlying bacterial resistance, and the strategies currently employed to address this issue. Special emphasis has been placed on the application of CRISPR/Cas technology for overcoming antimicrobial resistance.
Collapse
Affiliation(s)
- Nasim Bakhtiyari
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Safar Farajnia
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samaneh Ghasemali
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sahar Farajnia
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Pormohammad
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | | |
Collapse
|
38
|
Antonello RM, Riccardi N, Saderi L, Sotgiu G. Synergistic properties of linezolid against Enterococcus spp. isolates: a systematic review from in vitro studies. Eur J Clin Microbiol Infect Dis 2024; 43:17-31. [PMID: 37975976 DOI: 10.1007/s10096-023-04704-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
PURPOSE Vancomycin-resistant enterococci (VRE) are a leading cause of hospital-acquired infections with limited therapeutic options. Combination of at least two antimicrobials is a possible strategy to obtain rapid and sustained bactericidal effects and overcome the emergence of resistance. We revised the literature on linezolid synergistic properties from in vitro studies to assess its activity in combination with molecules belonging to other antibiotic classes against Enterococcus spp. METHODS We performed a systematic review of the literature from three peer-reviewed databases including papers evaluating linezolid synergistic properties in vitro against Enterococcus spp. isolates. RESULTS We included 206 Enterococcus spp. isolates (92 E. faecalis, 90 E. faecium, 2 E. gallinarum, 3 E. casseliflavus, 19 Enterococcus spp.) from 24 studies. When an isolate was tested with different combinations, each combination was considered independently for further analysis. The most frequent interaction was indifferent effect (247/343, 72% of total interactions). The highest synergism rates were observed when linezolid was tested in combination with rifampin (10/49, 20.4% of interactions) and fosfomycin (16/84, 19.0%, of interactions). Antagonistic effect accounted for 7/343 (2.0%) of total interactions. CONCLUSION Our study reported overall limited synergistic in vitro properties of linezolid with other antibiotics when tested against Enterococcus spp. The clinical choice of linezolid in combination with other antibiotics should be guided by reasoned empiric therapy in the suspicion of a polymicrobial infection or targeted therapy on microbiological results, rather than on an intended synergistic effect of the linezolid-based combination.
Collapse
Affiliation(s)
| | - Niccolò Riccardi
- StopTB Italia ODV, Milan, Italy
- Infectious Diseases Unit, Department of Clinical and Experimental Medicine, Azienda Ospedaliero Universitaria Pisana, University of Pisa, Pisa, Italy
| | - Laura Saderi
- StopTB Italia ODV, Milan, Italy
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Giovanni Sotgiu
- StopTB Italia ODV, Milan, Italy
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
39
|
Gagetti P, Faccone D, Ceriana P, Lucero C, Menocal A, Argentina GL, Corso A. Emergence of optrA-mediated linezolid resistance in clinical isolates of Enterococcus faecalis from Argentina. J Glob Antimicrob Resist 2023; 35:335-341. [PMID: 37923130 DOI: 10.1016/j.jgar.2023.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023] Open
Abstract
OBJECTIVES The aim of this study was to characterize the first 14 optrA-carrying linezolid resistant E. faecalis clinical isolates recovered in seven Argentinian hospitals between 2016 and 2021. The epidemiology of optrA-carrying isolates and the optrA genetic context were determined. METHODS The isolates were phenotypically and genotypically characterized. Susceptibility to 13 antimicrobial agents was performed; clonal relationship was assessed by pulsed field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). Data provided by the whole-genome sequencing were used for identification of sequence types, antimicrobial resistance genes, optrA variants, phylogenetic tree, and mobile genetic elements responsible to the dissemination of these strains. RESULTS All the optrA-carrying E. faecalis isolates were multidrug-resistant and harboured several antimicrobial resistance genes. They carried three optrA variants and belonged to different lineages; however, three of them belonged to the hyperepidemic CC16. Mobile genetic elements were detected in all the isolates. The analysis of the optrA flanking region suggests the plasmidic localization in most of the isolates. CONCLUSIONS To the best of our knowledge, this is the first report of optrA-mediated linezolid resistance in Argentina. The emergence and dissemination of the optrA genes in clinical E. faecalis isolates are of concern and highlights the importance of initiating the antimicrobial surveillance of Enterococcus spp. under a One Health strategy.
Collapse
Affiliation(s)
- Paula Gagetti
- Antimicrobial Agents Division, National and Regional Reference Laboratory in Antimicrobial Resistance, National Institute of Infectious Diseases - ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Diego Faccone
- Antimicrobial Agents Division, National and Regional Reference Laboratory in Antimicrobial Resistance, National Institute of Infectious Diseases - ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Paola Ceriana
- Antimicrobial Agents Division, National and Regional Reference Laboratory in Antimicrobial Resistance, National Institute of Infectious Diseases - ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Celeste Lucero
- Antimicrobial Agents Division, National and Regional Reference Laboratory in Antimicrobial Resistance, National Institute of Infectious Diseases - ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Alejandra Menocal
- Antimicrobial Agents Division, National and Regional Reference Laboratory in Antimicrobial Resistance, National Institute of Infectious Diseases - ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Grupo Lre Argentina
- Antimicrobial Agents Division, National and Regional Reference Laboratory in Antimicrobial Resistance, National Institute of Infectious Diseases - ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Alejandra Corso
- Antimicrobial Agents Division, National and Regional Reference Laboratory in Antimicrobial Resistance, National Institute of Infectious Diseases - ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina.
| |
Collapse
|
40
|
Tenderenda A, Łysakowska ME, Gawron-Skarbek A. The Prevalence of Alert Pathogens and Microbial Resistance Mechanisms: A Three-Year Retrospective Study in a General Hospital in Poland. Pathogens 2023; 12:1401. [PMID: 38133286 PMCID: PMC10746124 DOI: 10.3390/pathogens12121401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
The development of antibiotic resistance mechanisms hinders the treatment process. So far, there is limited data on the problem of bacterial resistance in hospitals in Central and Eastern Europe. Therefore, this study aimed to assess the prevalence of resistance mechanisms and alert pathogens based on reports regarding cultures of samples collected from general hospital patients in Poland in the period 2019-2021. This study examined the prevalence of resistance mechanisms and alert pathogens and the structure of microorganisms, including the type of diagnostic material in the hospital department. The frequency of occurrence and the trends were analysed based on Cochran's Q-test, relative change and the average annual rate of change (AARC). Of all 14,471 cultures, 3875 were positive for bacteria, and 737 were characterised by resistance mechanisms (19.0%). Alert pathogens were identified in 983 cases (24.6%), including pathogens isolated from blood samples. The most commonlyisolated bacteria were Escherichia coli (>20% of positive cultures), Enterococcus faecalis (7%), and Klebsiella pneumoniae (6%) increasing over time; Staphylococcus aureus (13%) was also found, but its proportion was decreasing over time. Extended-spectrum β-lactamase (ESBL) was the most frequent resistance mechanism in Internal Medicine (IM) (p < 0.001) and the Intensive Care Unit (ICU) (p < 0.01), as well as in ICU-COVID; this increased over the study period (AARC ↑34.9%). Methicillin-resistant Staphylococcus aureus (MRSA) (AARC ↓50.82%) and AmpC beta-lactamase (AARC ↓24.77%) prevalence fell over time. Also, the number of alert pathogens was dominant in the IM (p < 0.01) and ICU (p < 0.001). The most common alert pathogen was ESBL-positive E. coli. Gram-negative rods constitute a significant epidemiological problem in hospitals, especially the growing trend of ESBL in IM and ICU, which calls for increased control of sanitary procedures.
Collapse
Affiliation(s)
- Anna Tenderenda
- Department of Geriatrics, Medical University of Lodz, 90-647 Lodz, Poland;
| | - Monika Eliza Łysakowska
- Department of Microbiology and Medical Laboratory Immunology, Medical University of Lodz, 90-213 Lodz, Poland
| | | |
Collapse
|
41
|
Wagner TM, Romero-Saavedra F, Laverde D, Johannessen M, Hübner J, Hegstad K. Enterococcal Membrane Vesicles as Vaccine Candidates. Int J Mol Sci 2023; 24:16051. [PMID: 38003243 PMCID: PMC10671723 DOI: 10.3390/ijms242216051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Enterococcus faecium is a leading cause of nosocomial infections, particularly in immunocompromised patients. The rise of multidrug-resistant E. faecium, including Vancomycin-Resistant Enterococci (VRE), is a major concern. Vaccines are promising alternatives to antibiotics, but there is currently no vaccine available against enterococci. In a previous study, we identified six protein vaccine candidates associated with extracellular membrane vesicles (MVs) produced by nosocomial E. faecium. In this study, we immunized rabbits with two different VRE-derived MV preparations and characterized the resulting immune sera. Both anti-MV sera exhibited high immunoreactivity towards the homologous strain, three additional VRE strains, and eight different unrelated E. faecium strains representing different sequence types (STs). Additionally, we demonstrated that the two anti-MV sera were able to mediate opsonophagocytic killing of not only the homologous strain but also three unrelated heterologous VRE strains. Altogether, our results indicate that E. faecium MVs, regardless of the purification method for obtaining them, are promising vaccine candidates against multidrug-resistant E. faecium and suggest that these naturally occurring MVs can be used as a multi-antigen platform to elicit protective immune responses against enterococcal infections.
Collapse
Affiliation(s)
- Theresa Maria Wagner
- Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, N-9037 Tromsø, Norway; (T.M.W.); (M.J.)
| | - Felipe Romero-Saavedra
- Division of Pediatric Infectious Diseases, Dr. von Hauner Children’s Hospital, Ludwig Maximilians University, 80337 Munich, Germany; (F.R.-S.); (D.L.); (J.H.)
| | - Diana Laverde
- Division of Pediatric Infectious Diseases, Dr. von Hauner Children’s Hospital, Ludwig Maximilians University, 80337 Munich, Germany; (F.R.-S.); (D.L.); (J.H.)
| | - Mona Johannessen
- Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, N-9037 Tromsø, Norway; (T.M.W.); (M.J.)
| | - Johannes Hübner
- Division of Pediatric Infectious Diseases, Dr. von Hauner Children’s Hospital, Ludwig Maximilians University, 80337 Munich, Germany; (F.R.-S.); (D.L.); (J.H.)
| | - Kristin Hegstad
- Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, N-9037 Tromsø, Norway; (T.M.W.); (M.J.)
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, N-9038 Tromsø, Norway
| |
Collapse
|
42
|
Conceição S, Queiroga MC, Laranjo M. Antimicrobial Resistance in Bacteria from Meat and Meat Products: A One Health Perspective. Microorganisms 2023; 11:2581. [PMID: 37894239 PMCID: PMC10609446 DOI: 10.3390/microorganisms11102581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023] Open
Abstract
According to the 2030 Agenda of the United Nations, one of the sustainable development goals is to ensure sustainable consumption and production patterns. The need to ensure food safety includes, other than microbiological hazards, concerns with antimicrobial-resistant (AMR) bacteria. The emergence of resistant bacteria in the food industry is essentially due to the abusive, and sometimes incorrect, administration of antimicrobials. Although not allowed in Europe, antimicrobials are often administered to promote animal growth. Each time antimicrobials are used, a selective pressure is applied to AMR bacteria. Moreover, AMR genes can be transmitted to humans through the consumption of meat-harbouring-resistant bacteria, which highlights the One Health dimension of antimicrobial resistance. Furthermore, the appropriate use of antimicrobials to ensure efficacy and the best possible outcome for the treatment of infections is regulated through the recommendations of antimicrobial stewardship. The present manuscript aims to give the current state of the art about the transmission of AMR bacteria, particularly methicillin-resistant S. aureus, ESBL-producing Enterobacteriaceae, and vancomycin-resistant Enterococcus spp., along with other ESKAPE bacteria, from animals to humans through the consumption of meat and meat products, with emphasis on pork meat and pork meat products, which are considered the most consumed worldwide.
Collapse
Affiliation(s)
- Sara Conceição
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (S.C.); (M.C.Q.)
| | - Maria Cristina Queiroga
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (S.C.); (M.C.Q.)
- Departamento de Medicina Veterinária, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Marta Laranjo
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (S.C.); (M.C.Q.)
- Departamento de Medicina Veterinária, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| |
Collapse
|
43
|
Huang Y, Chen L, Su H, Huang Z, Li X, Huang S. Tigecycline treatment causes a decrease in peripheral blood platelet. J Chemother 2023; 35:491-495. [PMID: 36472515 DOI: 10.1080/1120009x.2022.2153315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/30/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022]
Abstract
Tigecycline with broad-spectrum activity against pathogens has advantages in the treatment of severe infections in clinical. Accompany with the huge increase of tigecycline usage, more side effects began to arouse people's attention. The aim of this study was to assess the impact of tigecycline treatment on peripheral blood platelet in patients with severe infections. We retrospectively retrieved demographic and laboratory data in 24 cases of tigecycline-treated patients with severe infections. 18 patients (75%) who were administered tigecycline experienced a decrease in platelet count. The ages of platelet decrease group are significant older than normal group. In the platelet decreased group, the platelet count was significant decreased after 3 days tigecycline treatment. 9 patients' platelet count recovered in 5 days after tigecycline treatment withdraw. Platelet decrease in patient after tigecycline treatment, which can be reversed after tigecycline discontinuation. Tigecycline-induced platelet decrease is associated with age.
Collapse
Affiliation(s)
- Yu Huang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Libin Chen
- Department of Laboratory Medicine, Zhangpu County Hospita, Zhangzhou, China
| | - Handuo Su
- Department of Critical Care Medicine, Zhangpu County Hospital, Zhangzhou, China
| | - Zhenwei Huang
- Department of Critical Care Medicine, Zhangpu County Hospital, Zhangzhou, China
| | - Xiaoyi Li
- Department of Critical Care Medicine, Zhangpu County Hospital, Zhangzhou, China
| | - Shubao Huang
- Department of Critical Care Medicine, Zhangpu County Hospital, Zhangzhou, China
| |
Collapse
|
44
|
Bender JK, Baufeld E, Becker K, Claus H, Dudakova A, Dörre A, Fila N, Fleige C, Hamprecht A, Hoffmann A, Hogardt M, Kaasch AJ, Kola A, Kriebel N, Layer-Nicolaou F, Marschal M, Molitor E, Mutters NT, Liese J, Nelkenbrecher C, Neumann B, Rohde H, Steinmann J, Sörensen M, Thelen P, Weig M, Zautner AE, Werner G. CHROMAgar™ LIN-R as an efficient screening tool to assess the prevalence of linezolid-resistant enterococci in German hospital patients-a multicentre study approach, 2021-2022. J Antimicrob Chemother 2023; 78:2185-2191. [PMID: 37473450 PMCID: PMC10477123 DOI: 10.1093/jac/dkad218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/29/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND In recent years, an increasing number of linezolid-resistant enterococci (LRE) was recognized at the German National Reference Centre (NRC) for Enterococci. National guidelines on infection prevention recommend screening for LRE in epidemiologically linked hospital settings without referring to a reliable and rapid diagnostic method. Since 2020, CHROMAgar™ provide a chromogenic linezolid screening agar, LIN-R, suitable to simultaneously screen for linezolid-resistant staphylococci and enterococci. OBJECTIVES To assess the applicability of CHROMAgar™ LIN-R in clinical settings for detecting LRE directly from patient material and to infer prevalence rates of LRE amongst German hospital patients. METHODS During the 3-month trial period, clinical samples were plated on CHROMAgar™ LIN-R. Antimicrobial susceptibility testing was performed using VITEK2 or disc diffusion. At the NRC, linezolid resistance was determined by broth microdilution, multiplex-PCR for cfr/optrA/poxtA and by a restriction-based assay for 23S rDNA mutations. RESULTS The 12 participating study sites used 13 963 CHROMAgar™ LIN-R plates during the study period. Of 442 presumptive LRE, 192 were confirmed by phenotypic methods. Of these, 161 were received by the NRC and 121 (75%) were verified as LRE. Most of LR-E. faecium 53/81 (65%) exhibited a 23S rRNA gene mutation as the sole resistance-mediating mechanism, whereas optrA constituted the dominant resistance trait in LR-E. faecalis [39/40 (98%)]. Prevalence of LRE across sites was estimated as 1% (ranging 0.18%-3.7% between sites). CONCLUSIONS CHROMAgar™ LIN-R represents a simple and efficient LRE screening tool in hospital settings. A high proportion of false-positive results demands validation of linezolid resistance by a reference method.
Collapse
Affiliation(s)
- Jennifer K Bender
- Nosocomial Pathogens and Antibiotic Resistances Unit, Department of Infectious Diseases, National Reference Centre for Staphylococci and Enterococci, Robert Koch Institute, Wernigerode, Germany
| | - Elsa Baufeld
- Friedrich Loeffler Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| | - Karsten Becker
- Friedrich Loeffler Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| | - Heike Claus
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Anna Dudakova
- Institute for Medical Microbiology and Virology, University Medical Center Göttingen, Göttingen, Germany
| | - Achim Dörre
- Department of Infectious Disease Epidemiology, Robert Koch Institute, Berlin, Germany
| | - Nikoletta Fila
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
| | - Carola Fleige
- Nosocomial Pathogens and Antibiotic Resistances Unit, Department of Infectious Diseases, National Reference Centre for Staphylococci and Enterococci, Robert Koch Institute, Wernigerode, Germany
| | - Axel Hamprecht
- Institute for Medical Microbiology and Virology, Carl von Ossietzky University Oldenburg and Klinikum Oldenburg, Oldenburg, Germany
| | - Armin Hoffmann
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Hogardt
- Institute of Medical Microbiology and Infection Control, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Achim J Kaasch
- Faculty of Medicine, Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke-University, Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Axel Kola
- Institute of Hygiene and Environmental Medicine, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nancy Kriebel
- Nosocomial Pathogens and Antibiotic Resistances Unit, Department of Infectious Diseases, National Reference Centre for Staphylococci and Enterococci, Robert Koch Institute, Wernigerode, Germany
| | - Franziska Layer-Nicolaou
- Nosocomial Pathogens and Antibiotic Resistances Unit, Department of Infectious Diseases, National Reference Centre for Staphylococci and Enterococci, Robert Koch Institute, Wernigerode, Germany
| | - Matthias Marschal
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
| | - Ernst Molitor
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Nico T Mutters
- Institute for Hygiene and Public Health, University Hospital Bonn, Bonn, Germany
| | - Jan Liese
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
| | - Claudia Nelkenbrecher
- Institute of Hospital Hygiene, Medical Microbiology and Infectious Diseases, Nuremberg General Hospital, Paracelsus Medical University, Nuremberg, Germany
| | - Bernd Neumann
- Institute of Hospital Hygiene, Medical Microbiology and Infectious Diseases, Nuremberg General Hospital, Paracelsus Medical University, Nuremberg, Germany
| | - Holger Rohde
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jörg Steinmann
- Institute of Hospital Hygiene, Medical Microbiology and Infectious Diseases, Nuremberg General Hospital, Paracelsus Medical University, Nuremberg, Germany
| | - Michael Sörensen
- Laboratory Prof. Gisela Enders and Colleagues, Stuttgart, Germany
| | - Philipp Thelen
- Institute for Medical Microbiology and Virology, Carl von Ossietzky University Oldenburg and Klinikum Oldenburg, Oldenburg, Germany
| | - Michael Weig
- Institute for Medical Microbiology and Virology, University Medical Center Göttingen, Göttingen, Germany
| | - Andreas E Zautner
- Faculty of Medicine, Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke-University, Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Guido Werner
- Nosocomial Pathogens and Antibiotic Resistances Unit, Department of Infectious Diseases, National Reference Centre for Staphylococci and Enterococci, Robert Koch Institute, Wernigerode, Germany
| |
Collapse
|
45
|
Cinthi M, Coccitto SN, Simoni S, Vignaroli C, Brenciani A, Giovanetti E. An Enterococcus faecium Isolated from Bovine Feces in Italy Shares optrA- and poxtA-Carrying Plasmids with Enterococci from Switzerland. Microb Drug Resist 2023; 29:438-442. [PMID: 37523292 DOI: 10.1089/mdr.2023.0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023] Open
Abstract
To investigate the occurrence of oxazolidinone resistance genes, 18 florfenicol-resistant enterococci were isolated from 66 fecal samples collected from several cattle farms in central Italy. The PCR screening indicated that only a bovine florfenicol-resistant isolate, Enterococcus faecium 249031-C, was positive for the presence of optrA and poxtA genes. The strain was tested for its susceptibility to florfenicol, chloramphenicol, linezolid, tedizolid, tetracycline, erythromycin, and vancomycin. Whole Genome Sequencing analysis showed that E. faecium 249031-C, belonging to the ST22 lineage, harbored two plasmids: the optrA-carrying p249031-S (179 kb) and the poxtA-carrying p1818-c (23 kb). p249031-S, containing a new optrA-carrying Tn7695 transposon, was closely related to the plasmid pF88_1 of E. faecium F88, whereas p1818-c had already been detected in a human E. faecium, both enterococci were from Switzerland. The linezolid resistance genes were cotransferred to the E. faecium 64/3 recipient. Circular forms from both optrA- and poxtA-carrying genetic contexts were obtained. The occurrence of oxazolidinone resistance genes in a bovine E. faecium isolate and their localization on conjugative and mobilizable plasmids pose a risk for public health.
Collapse
Affiliation(s)
- Marzia Cinthi
- Department of Life and Environmental Sciences and Polytechnic University of Marche, Ancona, Italy
| | - Sonia Nina Coccitto
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Serena Simoni
- Department of Life and Environmental Sciences and Polytechnic University of Marche, Ancona, Italy
| | - Carla Vignaroli
- Department of Life and Environmental Sciences and Polytechnic University of Marche, Ancona, Italy
| | - Andrea Brenciani
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Eleonora Giovanetti
- Department of Life and Environmental Sciences and Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
46
|
Almansour AM, Alhadlaq MA, Alzahrani KO, Mukhtar LE, Alharbi AL, Alajel SM. The Silent Threat: Antimicrobial-Resistant Pathogens in Food-Producing Animals and Their Impact on Public Health. Microorganisms 2023; 11:2127. [PMID: 37763971 PMCID: PMC10537193 DOI: 10.3390/microorganisms11092127] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023] Open
Abstract
The emergence of antimicrobial resistance (AMR) is a global health problem without geographic boundaries. This increases the risk of complications and, thus, makes it harder to treat infections, which can result in higher healthcare costs and a greater number of deaths. Antimicrobials are often used to treat infections from pathogens in food-producing animals, making them a potential source of AMR. Overuse and misuse of these drugs in animal agriculture can lead to the development of AMR bacteria, which can then be transmitted to humans through contaminated food or direct contact. It is therefore essential to take multifaceted, comprehensive, and integrated measures, following the One Health approach. To address this issue, many countries have implemented regulations to limit antimicrobial use. To our knowledge, there are previous studies based on AMR in food-producing animals; however, this paper adds novelty related to the AMR pathogens in livestock, as we include the recent publications of this field worldwide. In this work, we aim to describe the most critical and high-risk AMR pathogens among food-producing animals, as a worldwide health problem. We also focus on the dissemination of AMR genes in livestock, as well as its consequences in animals and humans, and future strategies to tackle this threat.
Collapse
Affiliation(s)
- Ayidh M. Almansour
- Molecular Biology Division, Reference Laboratory for Microbiology, Executive Department of Reference Laboratories, Research and Laboratories Sector, Saudi Food and Drug Authority (SFDA), Riyadh 11671, Saudi Arabia; (M.A.A.); (K.O.A.); (A.L.A.)
| | - Meshari A. Alhadlaq
- Molecular Biology Division, Reference Laboratory for Microbiology, Executive Department of Reference Laboratories, Research and Laboratories Sector, Saudi Food and Drug Authority (SFDA), Riyadh 11671, Saudi Arabia; (M.A.A.); (K.O.A.); (A.L.A.)
| | - Khaloud O. Alzahrani
- Molecular Biology Division, Reference Laboratory for Microbiology, Executive Department of Reference Laboratories, Research and Laboratories Sector, Saudi Food and Drug Authority (SFDA), Riyadh 11671, Saudi Arabia; (M.A.A.); (K.O.A.); (A.L.A.)
| | - Lenah E. Mukhtar
- Antimicrobial Resistance Division, Reference Laboratory for Microbiology, Executive Department of Reference Laboratories, Research and Laboratories Sector, Saudi Food and Drug Authority (SFDA), Riyadh 11671, Saudi Arabia;
| | - Abdulmohsen L. Alharbi
- Molecular Biology Division, Reference Laboratory for Microbiology, Executive Department of Reference Laboratories, Research and Laboratories Sector, Saudi Food and Drug Authority (SFDA), Riyadh 11671, Saudi Arabia; (M.A.A.); (K.O.A.); (A.L.A.)
| | - Sulaiman M. Alajel
- Reference Laboratory for Microbiology, Executive Department of Reference Laboratories, Research and Laboratories Sector, Saudi Food and Drug Authority (SFDA), Riyadh 11671, Saudi Arabia;
| |
Collapse
|
47
|
Paredes-Amaya CC, Ulloa MT, García-Angulo VA. Fierce poison to others: the phenomenon of bacterial dependence on antibiotics. J Biomed Sci 2023; 30:67. [PMID: 37574554 PMCID: PMC10424368 DOI: 10.1186/s12929-023-00963-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023] Open
Abstract
Beyond the development of resistance, the effects of antibiotics on bacteria and microbial communities are complex and far from exhaustively studied. In the context of the current global antimicrobial resistance crisis, understanding the adaptive and physiological responses of bacteria to antimicrobials is of paramount importance along with the development of new therapies. Bacterial dependence on antibiotics is a phenomenon in which antimicrobials instead of eliminating the pathogens actually provide a boost for their growth. This trait comprises an extreme example of the complexities of responses elicited by microorganisms to these drugs. This compelling evolutionary trait was readily described along with the first wave of antibiotics use and dependence to various antimicrobials has been reported. Nevertheless, current molecular characterizations have been focused on dependence on vancomycin, linezolid and colistin, three critically important antibiotics frequently used as last resource therapy for multi resistant pathogens. Outstanding advances have been made in understanding the molecular basis for the dependence to vancomycin, including specific mutations involved. Regarding linezolid and colistin, the general physiological components affected by the dependence, namely ribosomes and membrane function respectively, have been established. Nonetheless the implications of antibiotic dependence in clinically relevant features, such as virulence, epidemics, relationship with development of resistance, diagnostics and therapy effectiveness require clarification. This review presents a brief introduction of the phenomenon of bacterial dependence to antibiotics and a summary on early and current research concerning the basis for this trait. Furthermore, the available information on the effect of dependence in key clinical aspects is discussed. The studies performed so far underline the need to fully disclose the biological and clinical significance of this trait in pathogens to successfully assess its role in resistance and to design adjusted therapies.
Collapse
Affiliation(s)
- Claudia C Paredes-Amaya
- Microbiology Department, Escuela de Ciencias Básicas, Facultad de Salud, Universidad del Valle, Cali, Colombia
| | - María Teresa Ulloa
- Microbiology and Micology Program, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Independencia 1027, Independencia, RM, Santiago, Chile
- Vertebral I+D+i - Corporation for Assistance for Burned Children (Coaniquem), Santiago, Chile
| | - Víctor Antonio García-Angulo
- Microbiology and Micology Program, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Independencia 1027, Independencia, RM, Santiago, Chile.
| |
Collapse
|
48
|
Cimen C, Berends MS, Bathoorn E, Lokate M, Voss A, Friedrich AW, Glasner C, Hamprecht A. Vancomycin-resistant enterococci (VRE) in hospital settings across European borders: a scoping review comparing the epidemiology in the Netherlands and Germany. Antimicrob Resist Infect Control 2023; 12:78. [PMID: 37568229 PMCID: PMC10422769 DOI: 10.1186/s13756-023-01278-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023] Open
Abstract
The rising prevalence of vancomycin-resistant enterococci (VRE) is a matter of concern in hospital settings across Europe without a distinct geographical pattern. In this scoping review, we compared the epidemiology of vancomycin-resistant Enterococcus spp. in hospitals in the Netherlands and Germany, between 1991 and 2022. We searched PubMed and summarized the national antibiotic resistance surveillance data of the two countries. We included 46 studies and summarized national surveillance data from the NethMap in the Netherlands, the National Antimicrobial Resistance Surveillance database in Germany, and the EARS-Net data. In total, 12 studies were conducted in hospitals in the Netherlands, 32 were conducted in German hospitals, and an additional two studies were conducted in a cross-border setting. The most significant difference between the two countries was that studies in Germany showed an increasing trend in the prevalence of VRE in hospitals, and no such trend was observed in studies in the Netherlands. Furthermore, in both Dutch and German hospitals, it has been revealed that the molecular epidemiology of VREfm has shifted from a predominance of vanA towards vanB over the years. According to national surveillance reports, vancomycin resistance in Enterococcus faecium clinical isolates fluctuates below 1% in Dutch hospitals, whereas it follows an increasing trend in German hospitals (above 20%), as supported by individual studies. This review demonstrates that VRE is more frequently encountered in German than in Dutch hospitals and discusses the underlying factors for the difference in VRE occurrence in these two neighboring countries by comparing differences in healthcare systems, infection prevention control (IPC) guidelines, and antibiotic use in the Netherlands and Germany.
Collapse
Affiliation(s)
- Cansu Cimen
- Institute for Medical Microbiology and Virology, University of Oldenburg, Oldenburg, Germany
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Matthijs S Berends
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Medical Epidemiology, Certe Medical Diagnostics and Advice Foundation, Groningen, The Netherlands
| | - Erik Bathoorn
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Mariëtte Lokate
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Andreas Voss
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Alex W Friedrich
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- University Hospital Muenster, University of Muenster, Muenster, Germany
| | - Corinna Glasner
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Axel Hamprecht
- Institute for Medical Microbiology and Virology, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
49
|
Kiszkiel-Taudul I, Stankiewicz P. Microextraction of Tigecycline Using Deep Eutectic Solvents and Its Determination in Milk by LC-MS/MS Method. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37487114 PMCID: PMC10401706 DOI: 10.1021/acs.jafc.3c03023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The occurrence of tigecycline (TGC), a new first glycylcycline antibiotic residues in food products harmfully influences potential human consumers health. Therefore, analysts are forced to develop new microextraction methods connected with modern extractants for effective isolation of this compound. For this purpose, deep eutectic solvents (DES) as the extraction media were used. Liquid-liquid microextraction (LLME) of tigecycline from milk samples with application of the hydrophobic deep eutectic solvents: decanoic acid:thymol (1:1), thymol:camphor (2:1), dodecanoic acid:menthol (2:1), and dodecanoic acid:dodecanol (1:1) was developed. The studied samples were subjected to a deproteinization process using trichloroacetic acid solution and acetonitrile. The optimal microextraction parameters, molar ratio of DES components, amount of extraction solvents, pH of milk sample, shaking, and centrifugation time, were chosen. Tigecycline in the obtained microextracts of deep eutectic solvents was analyzed using a liquid chromatographic technique connected with a tandem mass spectrometry (LC-MS/MS) system. The limits of detection and quantification values for TGC determination followed by DES-LLME-LC-MS/MS method were in the 1.8 × 10-11 mol L-1 (0.01 μg kg-1) to 4.0 × 10-9 mol L-1 (2.28 μg kg-1) and 5.5 × 10-11 mol L-1 (0.03 μg kg-1) to 1.2 × 10-8 mol L-1 (6.84 μg kg-1) ranges, respectively. The RSD values of precision were in the range 1.4-7.8% (intraday) and 5.4-11.7% (interday). The developed procedures were used for the determination of tigecycline in different bovine milk samples.
Collapse
|
50
|
Monteiro Marques J, Coelho M, Santana AR, Pinto D, Semedo-Lemsaddek T. Dissemination of Enterococcal Genetic Lineages: A One Health Perspective. Antibiotics (Basel) 2023; 12:1140. [PMID: 37508236 PMCID: PMC10376465 DOI: 10.3390/antibiotics12071140] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/22/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Enterococcus spp. are commensals of the gastrointestinal tracts of humans and animals and colonize a variety of niches such as water, soil, and food. Over the last three decades, enterococci have evolved as opportunistic pathogens, being considered ESKAPE pathogens responsible for hospital-associated infections. Enterococci's ubiquitous nature, excellent adaptative capacity, and ability to acquire virulence and resistance genes make them excellent sentinel proxies for assessing the presence/spread of pathogenic and virulent clones and hazardous determinants across settings of the human-animal-environment triad, allowing for a more comprehensive analysis of the One Health continuum. This review provides an overview of enterococcal fitness and pathogenic traits; the most common clonal complexes identified in clinical, veterinary, food, and environmental sources; as well as the dissemination of pathogenic genomic traits (virulome, resistome, and mobilome) found in high-risk clones worldwide, across the One Health continuum.
Collapse
Affiliation(s)
- Joana Monteiro Marques
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica de Lisboa, 1300-477 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Mariana Coelho
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica de Lisboa, 1300-477 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Andressa Rodrigues Santana
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica de Lisboa, 1300-477 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Daniel Pinto
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica de Lisboa, 1300-477 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Teresa Semedo-Lemsaddek
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica de Lisboa, 1300-477 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| |
Collapse
|