1
|
Monsinjon T, Knigge T. Endocrine disrupters affect the immune system of fish: The example of the European seabass. FISH & SHELLFISH IMMUNOLOGY 2025; 162:110303. [PMID: 40180203 DOI: 10.1016/j.fsi.2025.110303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/19/2025] [Accepted: 03/29/2025] [Indexed: 04/05/2025]
Abstract
An organism's fitness critically relies on its immune system to provide protection against parasites and pathogens. The immune system has reached its highest complexity in vertebrates, combining the highly specific adaptive with the non-specific innate immunity. In vertebrates, a complex system of steroid hormones regulates major physiological functions comprising energy metabolism, growth, reproduction and immune system performance. This allows the organism to allocate available energy according to life-history traits and environmental conditions, thus maintaining homeostasis and survival of the individual and of the population. Immune system activation must take into account the developmental stage and the nutritional state of the organism. It should respond adequately to different pathogens, but should not overperform or consume all resources for other physiological functions. This important trade-off between immunity and reproduction is balanced by oestrogen. Many of the thousands of chemicals released by humans into the environment, so-called xenobiotics, have the ability to disrupt normal endocrine function. Such endocrine-disrupting chemicals have been demonstrated to impair reproductive functions and to be responsible for numerous diseases in humans and wild life. Given that oestrogens are established modulators of immune cell populations, exogenous oestrogens and oestrogen mimics can modulate immune functions in aquatic animals, such as fish, potentially affecting wildlife and aquaculture. This review highlights the interaction of xenoestrogens with fish immunity. It particularly focusses on the thymus, a major primary immune organ, in the European seabass, Dicentrarchus labrax an important species, both for fisheries and aquaculture.
Collapse
Affiliation(s)
- Tiphaine Monsinjon
- University of Le Havre Normandy, University of Reims Champagne-Ardenne, INERIS, Normandie Univ, FR CNRS 3730 SCALE, UMR I-02 SEBIO, F-76600, Le Havre, France.
| | - Thomas Knigge
- University of Le Havre Normandy, University of Reims Champagne-Ardenne, INERIS, Normandie Univ, FR CNRS 3730 SCALE, UMR I-02 SEBIO, F-76600, Le Havre, France
| |
Collapse
|
2
|
Leroux N, Baekelandt S, Robert JB, Burattin L, Keime C, Gérard C, Kestemont P. Assessment of the effects of estetrol and 17α-ethinylestradiol on zebrafish (Danio rerio) metamorphosis: a morphological and transcriptomic approach. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 376:126423. [PMID: 40360079 DOI: 10.1016/j.envpol.2025.126423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 05/05/2025] [Accepted: 05/10/2025] [Indexed: 05/15/2025]
Abstract
17α-ethinylestradiol (EE2) is a synthetic estrogen widely used in combined oral contraceptives (COCs) for years. Estetrol (E4), a natural estrogen synthesized by the fetal liver during pregnancy, is the estrogenic component of a new COC. While E4 is thought to have a limited environmental impact in comparison to EE2, its effects on non-reproductive functions in aquatic species remain underexplored. This study compared the impact of EE2 and E4 on the metamorphosis of zebrafish (Danio rerio), a vital life cycle process. Larvae were exposed to concentrations ranging from 10 to 10,000 times the measured (0.1 ng/L) or predicted (32 ng/L) environmental concentrations of EE2 and E4 respectively. Samples were collected at 14, 22, and 30 days post-fertilization (dpf) to assess morphological traits and perform transcriptomic analysis. EE2 exposure at 1,000 ng/L exhibited developmental delays from the onset of metamorphosis, with most traits affected at 22 dpf. The effects intensified at 30 dpf, with notable impacts at both EE2 100 and 1,000 ng/L. At 100 ng/L, modulations in the expression of genes involved in macronutrient metabolism, crucial to the developmental process, were observed throughout metamorphosis. Additionally, an upregulation of estrogen-specific responses and drug metabolism was noted. In contrast, no notable changes in traits were detected for the concentrations of E4 tested. Although gene expression related to cell structure and adhesion, peptidase activity, and muscle structure and contraction was altered at E4 32,000 ng/L, no metamorphosis-related pathways were affected. These results suggest that E4 presents a greater safety margin and may therefore be more environmentally friendly than EE2.
Collapse
Affiliation(s)
- Nathalie Leroux
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, 5000, Belgium.
| | - Sébastien Baekelandt
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, 5000, Belgium.
| | - Jean-Baptiste Robert
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, 5000, Belgium.
| | - Laura Burattin
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, 5000, Belgium.
| | - Céline Keime
- GenomEast Platform, Institute of Genetics and Molecular and Cellular Biology (CNRS UMR 7104 - Inserm U1258 - University of Strasbourg), 67404, France.
| | | | - Patrick Kestemont
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, 5000, Belgium.
| |
Collapse
|
3
|
Khachatryan EA, Sahakyan LY, Tovmasyan AS, Melikyan GS, Panosyan HA, Mkrtchyan AF, Shibata N, Malkov AV, Saghyan AS. Sequential Michael addition, cross-coupling and [3 + 2] cycloaddition reactions within the coordination sphere of chiral Ni(ii) Schiff base complexes derived from dehydroamino acids: pathways to the asymmetric synthesis of structurally diverse O-substituted serine and threonine analogs. RSC Adv 2025; 15:10558-10564. [PMID: 40190640 PMCID: PMC11969660 DOI: 10.1039/d5ra00910c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 03/26/2025] [Indexed: 04/09/2025] Open
Abstract
An approach to the synthesis of a series of novel, enantiomerically pure analogs of β-hydroxy-α-amino acids is reported. The method involves the introduction of the acetylene group into their side chain, followed by further elaboration of the terminal alkyne moiety. The asymmetric synthesis of alkyl- and aryl-substituted derivatives of (S)-O-propargylserine and (S)-allo-O-propargylthreonine (de >90%) was achieved through the nucleophilic Michael addition of the deprotonated congeners of propargyl alcohols to the C[double bond, length as m-dash]C bond of the square-planar Ni(ii) Schiff base complexes of dehydroamino acids (dehydroalanine and dehydroaminobutyric acid) with the chiral auxiliary (S)-BPB. Both (S)-O-propargylserine and (S)-allo-O-propargylthreonine were isolated with high enantiomeric purity (81-98% ee). The terminal alkyne group was further modified: Glaser reaction enabled formation of the dienyne products; Sonogashira cross-coupling gave rise to arylacetylene motifs, whereas [3 + 2]-cycloaddition reactions with 2-nirtophenylazide produced analogs of O-substituted (S)-serine and (S)-allo-threonine containing a 1,2,3-triazole group. All target amino acids were isolated with high enantiomeric purity (ee >98%). The developed approach provides an opportunity to synthesize new O-substituted analogs of β-hydroxy-α-amino acids with a diverse set of substituents in the side chain.
Collapse
Affiliation(s)
- Emma A Khachatryan
- Institute of Pharmacy, Yerevan State University 1 Alex Manoogian Str. 0025 Yerevan Armenia +374 60 710 410 +374 60 710 427
| | - Lusine Yu Sahakyan
- Institute of Pharmacy, Yerevan State University 1 Alex Manoogian Str. 0025 Yerevan Armenia +374 60 710 410 +374 60 710 427
| | - Anna S Tovmasyan
- Scientific and Production Center "Armbiotechnology" of NAS RA 14 Gyurjyan Str. 0056 Yerevan Armenia
| | - Gagik S Melikyan
- Institute of Pharmacy, Yerevan State University 1 Alex Manoogian Str. 0025 Yerevan Armenia +374 60 710 410 +374 60 710 427
| | - Henrik A Panosyan
- Scientific and Technological Center of Organic and Pharmaceutical Chemistry of NAS RA 26 Azatutyan Ave. 0014 Yerevan Armenia
| | - Anna F Mkrtchyan
- Institute of Pharmacy, Yerevan State University 1 Alex Manoogian Str. 0025 Yerevan Armenia +374 60 710 410 +374 60 710 427
- Scientific and Production Center "Armbiotechnology" of NAS RA 14 Gyurjyan Str. 0056 Yerevan Armenia
| | - Norio Shibata
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology Showa-ku Nagoya 466-8555 Japan
| | - Andrei V Malkov
- Department of Chemistry, Loughborough University, University Road Loughborough LE11 3TU UK
| | - Ashot S Saghyan
- Institute of Pharmacy, Yerevan State University 1 Alex Manoogian Str. 0025 Yerevan Armenia +374 60 710 410 +374 60 710 427
- Scientific and Production Center "Armbiotechnology" of NAS RA 14 Gyurjyan Str. 0056 Yerevan Armenia
| |
Collapse
|
4
|
Spataro F, Rauseo J, Øverjordet IB, Casoli E, Pescatore T, Franco F, Patrolecco L. Man-made emerging contaminants in the High-Arctic fjord Kongsfjorden (Svalbard Archipelago, Norway): Occurrence, sources and risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 969:178936. [PMID: 40020589 DOI: 10.1016/j.scitotenv.2025.178936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/17/2025] [Accepted: 02/19/2025] [Indexed: 03/03/2025]
Abstract
This study provides the first quantitative data on the presence of 17 pharmaceuticals and personal care products (PPCPs) from various therapeutical classes in surface seawater from Kongsfjorden (KF, Svalbard Archipelago, Norway, 79°00'N, 11°40'E), collected over five summers (2018-2022). The PPCPs (ciprofloxacin-CIP, enrofloxacin-ENR, amoxicillin-AMX, erythromycin-ERY, sulfamethoxazole-SMX, N4-acetylsulfamethoxazole-N4-SMX, carbamazepine-CBZ, diclofenac-DCF, ibuprofen-IBU, acetylsalicylic acid-ASP, paracetamol-PAR, caffeine-CFF, triclosan-TCL, N,N-diethyl-meta-toluamide-DEET, estrone-E1, 17β-estradiol-E2 and 17α-ethinyl estradiol-EE2) were also analysed in sewage from the wastewater treatment plant, serving Ny-Ålesund, located on KF's southern shore. Samples were processed using solid phase extraction and liquid chromatography with high-resolution mass-spectrometry. An environmental risk assessment (ERA) was conducted to evaluate ecological and antimicrobial resistance (AMR) risks and the cumulative risk from the chemical mixture. PPCPs detected in sewage were also found in seawater, with the highest concentrations in sewage for CFF (151.9 ± 8.7 ng/L) and ASP (122.5 ± 9.4 ng/L). In seawater, the main contributors were ASP (39.2 ± 12.9 ng/L) and EE2 (32.5 ± 11.9 ng/L), suggesting influences from local emissions, fjord circulation, and broader oceanic and atmospheric transport. The ERA identified CIP, DCF, IBU, CFF, TCL, E1, E2 and EE2 as potentially harmful to the Arctic marine ecosystem. When evaluated as a mixture, all compounds contributed additively to the overall risk. The AMR risk from the antibiotic ciprofloxacin was found to be low. These findings emphasize the need for enhanced monitoring of PPCPs and comprehensive ERAs of chemical mixtures to guide management strategies and protect sensitive Arctic ecosystems.
Collapse
Affiliation(s)
- Francesca Spataro
- Institute of Polar Sciences, National Research Council (ISP-CNR), Strada Provinciale 35d, km 0.700, 00010, Montelibretti, Rome, Italy; National Biodiversity Future Center (NBFC), Piazza Marina, 61, Palermo, Italy.
| | - Jasmin Rauseo
- Institute of Polar Sciences, National Research Council (ISP-CNR), Strada Provinciale 35d, km 0.700, 00010, Montelibretti, Rome, Italy; National Biodiversity Future Center (NBFC), Piazza Marina, 61, Palermo, Italy.
| | - Ida Beathe Øverjordet
- SINTEF Ocean, Department of Climate and Environment, Brattørkaia 17 C, Trondheim, Norway.
| | - Edoardo Casoli
- Sapienza University of Rome, Department of Environmental Biology, Piazzale Aldo Moro 5, Rome, Italy.
| | - Tanita Pescatore
- Institute of Polar Sciences, National Research Council (ISP-CNR), Strada Provinciale 35d, km 0.700, 00010, Montelibretti, Rome, Italy.
| | - Federica Franco
- Sapienza University of Rome, Department of Environmental Biology, Piazzale Aldo Moro 5, Rome, Italy
| | - Luisa Patrolecco
- Institute of Polar Sciences, National Research Council (ISP-CNR), Strada Provinciale 35d, km 0.700, 00010, Montelibretti, Rome, Italy; National Biodiversity Future Center (NBFC), Piazza Marina, 61, Palermo, Italy.
| |
Collapse
|
5
|
Souza-Leal BD, Martins MDF, Hernandes JC, Costa PG, Bianchini A. Tissue bioaccumulation and distribution of organic contaminants in Brazilian guitarfish Pseudobatos horkelii reveal a concerning impact of contraceptive hormones and fecal sterols. MARINE POLLUTION BULLETIN 2025; 212:117582. [PMID: 39855061 DOI: 10.1016/j.marpolbul.2025.117582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
The critically endangered Brazilian guitarfish faces significant threats from environmental contamination. Assessing the impacts of such stressor is paramount from a conservational perspective. This study investigated the concentrations, distribution and accumulation patterns of organic contaminants in pregnant Brazilian guitarfish Pseudobatos horkelii. Blood, gill, gonad, liver, and muscle concentrations of polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), polybrominated diphenyl ethers, fecal sterols, and synthetic hormones used as human contraceptives were assessed. Synthetic hormones, especially D-norgestrel, showed the highest concentrations, mainly in the liver. Together with the results of fecal sterols, this finding suggests that guitarfish are exposed to sewage discharge. OCPs, especially hexachlorobenzene, mirex, endosulfans, and drins, showed considerably high concentrations, indicating the relevance of agricultural inputs. PCBs presented significant concentrations in the muscle, indicating long-term exposure, in contrast with other analytes that were primarily concentrated in the liver. These results have conservational implications, since contaminants analyzed herein have endocrine disruptive effects.
Collapse
Affiliation(s)
- Brenda de Souza-Leal
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil
| | | | | | - Patrícia Gomes Costa
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil
| | - Adalto Bianchini
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil.
| |
Collapse
|
6
|
Simms A, Robert K, Spencer RJ, Treby S, Williams-Kelly K, Sexton C, Korossy-Horwood R, Terry R, Parker A, Van Dyke J. A systematic review of how endocrine-disrupting contaminants are sampled in environmental compartments: wildlife impacts are overshadowed by environmental surveillance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:8670-8678. [PMID: 40088384 PMCID: PMC11968541 DOI: 10.1007/s11356-025-36211-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/27/2025] [Indexed: 03/17/2025]
Abstract
Endocrine-disrupting contaminants (EDCs) are frequently monitored in environments because of their biological impacts on wildlife and humans. We conducted a systematic review using Web of Science to identify global research trends for EDC environmental sampling. Specifically, we aim to better understand geographic variation in (1) the compartment that EDCs were sampled in the environment; (2) the types of EDC sampled; and (3) the taxa that are sampled. A total of 9140 papers were found, of which 2554 were included in our review. The number of studies sampling EDCs varied between continents, with majority of research occurring in Europe, Asia, and North America. Although economy and access to technology will contribute to the number of articles published, we found the current output of research showed distinct disparities in sampling methods. Across all continents, water was the most frequently sampled compartment to determine EDC concentrations (sampled in 50-75% of studies). Wildlife was sampled far less often in studies across all continents, comprising 30% of studies at most. Pharmaceuticals were the most commonly studied chemical group, and fish were the most commonly sampled taxonomic group. Although far fewer studies sampled for EDCs in wildlife compared with abiotic compartments, these studies provide valuable information on the potential consequences of environmental EDC exposure and link environmental surveillance of EDCs with lab-measured organism-level effects. Studies that sampled only the water matrix for EDCs may be doing so as a proxy despite the large knowledge gaps on how environmental EDCs affect wildlife at varying concentrations.
Collapse
Affiliation(s)
- Angela Simms
- Centre for Freshwater Ecosystems, Department of Environment & Genetics, School of Agriculture, Biomedicine and Environment, La Trobe University, Wodonga Campus, Wodonga, 3690, Australia.
| | - Kylie Robert
- School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, 3086, Australia
| | - Ricky-John Spencer
- School of Sciences, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Sarah Treby
- Applied Chemistry and Environmental Science, RMIT University, Melbourne, Australia
| | - Kelly Williams-Kelly
- School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, 3086, Australia
| | - Candice Sexton
- School of Biosciences, The University of Melbourne, Melbourne, Australia
| | - Rebecca Korossy-Horwood
- School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, 3086, Australia
| | - Regan Terry
- Centre for Freshwater Ecosystems, Department of Environment & Genetics, School of Agriculture, Biomedicine and Environment, La Trobe University, Wodonga Campus, Wodonga, 3690, Australia
| | - Abigail Parker
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - James Van Dyke
- Centre for Freshwater Ecosystems, Department of Environment & Genetics, School of Agriculture, Biomedicine and Environment, La Trobe University, Wodonga Campus, Wodonga, 3690, Australia
| |
Collapse
|
7
|
Hollerova A, Peskova N, Weiserova Z, Hodkovicova N, Marsalek P, Tichy F, Franc A, Svobodova Z, Blahova J. Dietary exposure to 17α-ethinylestradiol negatively affects reproduction and health parameters of zebrafish (Danio rerio). JOURNAL OF FISH BIOLOGY 2025. [PMID: 39935321 DOI: 10.1111/jfb.16065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/13/2025] [Accepted: 01/18/2025] [Indexed: 02/13/2025]
Abstract
Pollution of the aquatic ecosystem by hormone-active substances is a frequently discussed topic these days. Such substances can pass through the sewage treatment plant system and affect aquatic life. This study tested the effect of 17α-ethinylestradiol (EE2) on individual zebrafish (Danio rerio) at an environmentally relevant concentration in fish food (10 μg/kg) and at a concentration 100 times higher (1000 μg/kg). This experiment revealed significant changes in the expression of reproductive genes, an increase in vitellogenin levels and histopathological lesions in the testes after EE2 exposure. Additionally, lipid peroxidation and changes in antioxidant enzyme activities were observed at both tested concentrations, along with morphological changes and increased mortality at the higher concentration. Even the environmentally relevant concentration of EE2 poses a danger to the aquatic organisms as it changes D. rerio's reproductive and health parameters, indicating toxicity at molecular, cell, tissue, and organism levels.
Collapse
Affiliation(s)
- Aneta Hollerova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Nikola Peskova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
- Department of Animal Protection and Welfare and Veterinary Public Health, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Zuzana Weiserova
- Department of Anatomy, Histology and Embryology, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Nikola Hodkovicova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Petr Marsalek
- Department of Animal Protection and Welfare and Veterinary Public Health, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Frantisek Tichy
- Department of Anatomy, Histology and Embryology, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Ales Franc
- Department of Pharmaceutical Technology, Masaryk University, Brno, Czech Republic
| | - Zdenka Svobodova
- Department of Animal Protection and Welfare and Veterinary Public Health, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Jana Blahova
- Department of Animal Protection and Welfare and Veterinary Public Health, University of Veterinary Sciences Brno, Brno, Czech Republic
| |
Collapse
|
8
|
Bellingham M, Evans NP, Lea RG, Padmanabhan V, Sinclair KD. Reproductive and Metabolic Health Following Exposure to Environmental Chemicals: Mechanistic Insights from Mammalian Models. Annu Rev Anim Biosci 2025; 13:411-440. [PMID: 39531389 DOI: 10.1146/annurev-animal-111523-102259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The decline in human reproductive and metabolic health over the past 50 years is associated with exposure to complex mixtures of anthropogenic environmental chemicals (ECs). Real-life EC exposure has varied over time and differs across geographical locations. Health-related issues include declining sperm quality, advanced puberty onset, premature ovarian insufficiency, cancer, obesity, and metabolic syndrome. Prospective animal studies with individual and limited EC mixtures support these observations and provide a means to investigate underlying physiological and molecular mechanisms. The greatest impacts of EC exposure are through programming of the developing embryo and/or fetus, with additional placental effects reported in eutherian mammals. Single-chemical effects and mechanistic studies, including transgenerational epigenetic inheritance, have been undertaken in rodents. Important translational models of human exposure are provided by companion animals, due to a shared environment, and sheep exposed to anthropogenic chemical mixtures present in pastures treated with sewage sludge (biosolids). Future animal research should prioritize EC mixtures that extend beyond a single developmental stage and/or generation. This would provide a more representative platform to investigate genetic and underlying mechanisms that explain sexually dimorphic and individual effects that could facilitate mitigation strategies.
Collapse
Affiliation(s)
- Michelle Bellingham
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom;
| | - Neil P Evans
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom;
| | - Richard G Lea
- University of Nottingham, Loughborough, United Kingdom
| | | | | |
Collapse
|
9
|
Yadetie F, Zhang X, Reboa A, Noally GSC, Eilertsen M, Fleming MS, Helvik JV, Jonassen I, Goksøyr A, Karlsen OA. Transcriptome analysis reveals effects of ethynylestradiol and bisphenol A on multiple endocrine and metabolic pathways in the pituitary and liver of female Atlantic cod ( Gadus morhua). Front Endocrinol (Lausanne) 2025; 15:1491432. [PMID: 39931438 PMCID: PMC11808150 DOI: 10.3389/fendo.2024.1491432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/20/2024] [Indexed: 02/13/2025] Open
Abstract
Introduction The pituitary and liver are among the main sites of action of estrogens in fish. Years of research has shown that xenoestrogens can interfere with functions of estrogens. There is however incomplete understanding of xenoestrogen targets genes, their molecular mechanisms and potential effects in some of the target organs, particularly the pituitary. Methods We performed a comprehensive analysis of pituitary and liver transcriptome 72 h after injection of ethynylestradiol (EE2: 10, 50 or 250 nmol/kg body weight/bw) and bisphenol A (BPA: 8, 40 or 200 μmol/kg bw) in juvenile female Atlantic cod (Gadus morhua). Results A broad range of reproductive and metabolic pathways were affected in both organs by BPA and EE2. In the pituitary, effects on the expression of many genes associated with reproduction-related hormonal pathways including the gonadotropin system, as well as genes in processes such as cell differentiation and metabolic homeostasis were observed. In the liver, in addition to upregulation of well-known estrogen marker genes, effects on metabolic pathways, in particular, a coordinated downregulation of genes in the triglyceride synthesis pathways were observed. Discussion The results suggest that estrogenic compounds affect a broad range of reproductive and metabolic processes in the pituitary. The alterations in the liver unravel the transcriptional changes underlying metabolic remodeling during estrogen induced vitellogenesis. This study provides new insights into mechanisms of endocrine and metabolic interactions that can be potential targets of environmental estrogens in fish. The study also identifies potential gene expression biomarkers for pituitary and liver effects of xenoestrogens.
Collapse
Affiliation(s)
- Fekadu Yadetie
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Xiaokang Zhang
- Department of Informatics, University of Bergen, Bergen, Norway
| | - Anna Reboa
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | | | - Mariann Eilertsen
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | | | - Jon Vidar Helvik
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Inge Jonassen
- Department of Informatics, University of Bergen, Bergen, Norway
| | - Anders Goksøyr
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Odd André Karlsen
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
10
|
Bertram MG, Brand JA, Thoré ESJ, Cerveny D, McCallum ES, Michelangeli M, Martin JM, Fick J, Brodin T. Slow-Release Pharmaceutical Implants in Ecotoxicology: Validating Functionality across Exposure Scenarios. ACS ENVIRONMENTAL AU 2025; 5:69-75. [PMID: 39830719 PMCID: PMC11741056 DOI: 10.1021/acsenvironau.4c00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 01/22/2025]
Abstract
Pharmaceutical contaminants have spread in natural environments across the globe, endangering biodiversity, ecosystem functioning, and public health. Research on the environmental impacts of pharmaceuticals is growing rapidly, although a majority of studies are still conducted under controlled laboratory conditions. As such, there is an urgent need to understand the impacts of pharmaceutical exposures on wildlife in complex, real-world scenarios. Here, we validate the performance of slow-release pharmaceutical implants-a recently developed tool in field-based ecotoxicology that allows for the controlled chemical dosing of free-roaming aquatic species-in terms of the accumulation and distribution of pharmaceuticals of interest in tissues. Across two years, we directly exposed 256 Atlantic salmon (Salmo salar) smolts to one of four pharmaceutical treatments: clobazam (50 μg g-1 of implant), tramadol (50 μg g-1), clobazam and tramadol (50 μg g-1 of each), and control (0 μg g-1). Fish dosed with slow-release implants containing clobazam or tramadol, or their mixture, accumulated these pharmaceuticals in all of the sampled tissues: brain, liver, and muscle. Concentrations of both pharmaceuticals peaked in all tissues at 1 day post-implantation, before reaching relatively stable, slowly declining concentrations for the remainder of the 30-day sampling period. Generally, the highest concentrations of clobazam and tramadol were detected in the liver, followed by the brain and then muscle, with observed concentrations of each pharmaceutical being higher in the single-exposure treatments relative to the mixture exposure. Taken together, our findings underscore the utility of slow-release implants as a tool in field-based ecotoxicology, which is an urgent research priority given the current lack of knowledge on the real-world impacts of pharmaceuticals on wildlife.
Collapse
Affiliation(s)
- Michael G. Bertram
- Department
of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå SE-907 36, Sweden
- Department
of Zoology, Stockholm University, Stockholm 114 18, Sweden
- School
of Biological Sciences, Monash University, Melbourne, 3800, Australia
| | - Jack A. Brand
- Department
of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå SE-907 36, Sweden
- Institute
of Zoology, Zoological Society of London, London NW1 4RY, United Kingdom
| | - Eli S. J. Thoré
- Department
of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå SE-907 36, Sweden
- TRANSfarm
- Science, Engineering, & Technology Group, KU Leuven, Lovenjoel 3360, Belgium
- Laboratory
of Adaptive Biodynamics, Research Unit of Environmental and Evolutionary
Biology, Institute of Life, Earth, and Environment, University of Namur, Namur 5000, Belgium
| | - Daniel Cerveny
- Department
of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå SE-907 36, Sweden
- Faculty
of
Fisheries and Protection of Waters, South Bohemian Research Center
of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Vodnany 389 25, Czech Republic
| | - Erin S. McCallum
- Department
of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå SE-907 36, Sweden
| | - Marcus Michelangeli
- Department
of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå SE-907 36, Sweden
- Australian
Rivers Institute, Griffith University, Nathan 4111, Australia
| | - Jake M. Martin
- Department
of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå SE-907 36, Sweden
- School
of Biological Sciences, Monash University, Melbourne, 3800, Australia
- School of
Life and Environmental Sciences, Deakin
University, Waurn Ponds 3216, Australia
| | - Jerker Fick
- Department
of Chemistry, Umeå University, Umeå 907 36, Sweden
| | - Tomas Brodin
- Department
of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå SE-907 36, Sweden
| |
Collapse
|
11
|
Shoari A, Ashja Ardalan A, Dimesa AM, Coban MA. Targeting Invasion: The Role of MMP-2 and MMP-9 Inhibition in Colorectal Cancer Therapy. Biomolecules 2024; 15:35. [PMID: 39858430 PMCID: PMC11762759 DOI: 10.3390/biom15010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/27/2024] [Accepted: 12/29/2024] [Indexed: 01/27/2025] Open
Abstract
Colorectal cancer (CRC) remains one of the most prevalent and lethal cancers worldwide, prompting ongoing research into innovative therapeutic strategies. This review aims to systematically evaluate the role of gelatinases, specifically MMP-2 and MMP-9, as therapeutic targets in CRC, providing a critical analysis of their potential to improve patient outcomes. Gelatinases, specifically MMP-2 and MMP-9, play critical roles in the processes of tumor growth, invasion, and metastasis. Their expression and activity are significantly elevated in CRC, correlating with poor prognosis and lower survival rates. This review provides a comprehensive overview of the pathophysiological roles of gelatinases in CRC, highlighting their contribution to tumor microenvironment modulation, angiogenesis, and the metastatic cascade. We also critically evaluate recent advancements in the development of gelatinase inhibitors, including small molecule inhibitors, natural compounds, and novel therapeutic approaches like gene silencing techniques. Challenges such as nonspecificity, adverse side effects, and resistance mechanisms are discussed. We explore the potential of gelatinase inhibition in combination therapies, particularly with conventional chemotherapy and emerging targeted treatments, to enhance therapeutic efficacy and overcome resistance. The novelty of this review lies in its integration of recent findings on diverse inhibition strategies with insights into their clinical relevance, offering a roadmap for future research. By addressing the limitations of current approaches and proposing novel strategies, this review underscores the potential of gelatinase inhibitors in CRC prevention and therapy, inspiring further exploration in this promising area of oncological treatment.
Collapse
Affiliation(s)
- Alireza Shoari
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA;
| | - Arghavan Ashja Ardalan
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy;
| | | | - Mathew A. Coban
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA;
| |
Collapse
|
12
|
Inarmal N, Moodley B. Removal efficiencies and environmental risk assessment of selected pharmaceuticals and metabolites at a wastewater treatment plant in Pietermaritzburg, South Africa. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 197:102. [PMID: 39724437 PMCID: PMC11671546 DOI: 10.1007/s10661-024-13515-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024]
Abstract
This research study critically evaluates the concentrations of selected pharmaceuticals found within wastewater and at various stages within a selected wastewater treatment plant. The study further investigates the effects of seasonal variation, between wet and dry months, on the removal of target analytes. To the best of the authors' knowledge, ivermectin in wastewater has not been investigated in South Africa. The methodology used was extraction of the wastewater samples using solid phase extraction with Oasis HLB cartridges followed by analysis on a liquid chromatography-mass spectrometer. As expected, analyte concentrations were observed to decrease as wastewater went through the treatment process with the greatest reduction in concentrations observed between secondary effluent and maturation samples, which could be indicative of photodegradation of compounds. Influent concentrations of analytes ranged from 0.008184 to 1.243 mg L-1 while maturation river concentrations ranged from not detected to 0.9286 mg L-1. Removal efficiencies ranged from 7.70 to > 99.99% of analyte removed. Significant differences in removals were observed between the wet and dry seasons experienced within the province. Environmental risk assessment ratios ranged from 0.0863 to 10.5 × 108. Ratios for metformin and valsartan were well below 1, indicating that they would not be of environmental risk. While ratios for ivermectin were substantially high, ranging from 25.4 × 107 to 10.5 × 108 indicating that it is of severe environmental risk and is of significant concern. Generally, the analyte concentrations quantified within influent samples were higher than effluent samples which is indicative of the treatment process being able to partially remove some of the analytes. Risk assessment ratios suggest high risk of selected pharmaceuticals which are of environmental concern.
Collapse
Affiliation(s)
- Nikitha Inarmal
- School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa
| | - Brenda Moodley
- School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa.
| |
Collapse
|
13
|
Disigant I, de Almeida J, Okamoto DN, Bertazzoli R, de Arruda Rodrigues C. Coupling UiO-66 MOF with a Nanotubular Oxide Layer Grown on Ti-W Alloy Accelerates the Degradation of Hormones in Real Water Matrices. ACS OMEGA 2024; 9:48571-48585. [PMID: 39676922 PMCID: PMC11635509 DOI: 10.1021/acsomega.4c07470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/06/2024] [Accepted: 11/13/2024] [Indexed: 12/17/2024]
Abstract
To enable the photoelectrocatalytic treatment of large volumes of water containing low concentrations of pollutants, this study introduces a hybrid photocatalyst, composed of nanotubular oxides grown on TixW alloy (x = 0.5 and 5.0 wt %) modified with UiO-66 MOF, for degradation of estrone (E1) and 17α-ethinyl estradiol (EE2). The oxide layer (Nt/TixW) was prepared via anodization, while UiO-66 nanoparticles were synthesized by using a solvothermal process. Different techniques for modifying nanotubular oxides were evaluated to maximize the photocatalytic activity and the sorption process. In photo(electro)catalytic experiments using low concentrations of E1 and EE2 synthetic solutions and UV-vis radiation (100 W/cm2), all modified materials exhibited approximately 40% higher degradation compared to the unmodified photocatalyst, keeping the same sequential performance of the photocatalysts (Nt/TiO2 < Nt/Ti-0.5W < Nt/Ti-5.0W) independent of the treatment. This enhancement was attributed to the MOF's increased hormone sorption, with no synergistic interaction observed between the photocatalyst and the adsorbent. In real water supply matrices, the photoelectrocatalytic removal rate of E1 using Nt/Ti-5.0W modified UiO-66 under UV-vis radiation and 1.3 V was 0.168 s-1, while for EE2, it was 0.310 min-1, approximately 1.78 and 18.21 times faster than obtained with the unmodified photocatalyst. The slower degradation rate of EE2 compared to that of E1 is attributed to the formation of denser intermediates that compete with smaller organic molecules in the real matrix. The cooperative effect between NT/TixW and UiO-66 favored the confinement of pollutants and by-products within the UiO-66 cavity, minimizing the diffusion effects and promoting the degradation of these compounds by the OH· radical generated at the oxide/solution interface. Among the tested electrodes, NT/Ti5W modified with UiO-66 demonstrated the highest efficiency and stability during the recycle tests. This highlights its promise for applications in photocatalytic processes for treating water supplies with low pollutant concentrations.
Collapse
Affiliation(s)
- Isabela Disigant
- Department
of Chemical Engineering, Instituto de Ciências Ambientais,
Químicas Farmacêuticas, Universidade
Federal de São Paulo, Rua São Nicolau, 210, Diadema, Sao Paulo 09913-030, Brazil
- Unesp,
National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants
and Radioactives (INCT-DATREM), Institute of Chemistry, P.O. Box 355, Araraquara, Sao Paulo 14800-900, Brazil
| | - Juliana de Almeida
- Department
of Chemical Engineering, Instituto de Ciências Ambientais,
Químicas Farmacêuticas, Universidade
Federal de São Paulo, Rua São Nicolau, 210, Diadema, Sao Paulo 09913-030, Brazil
- Unesp,
National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants
and Radioactives (INCT-DATREM), Institute of Chemistry, P.O. Box 355, Araraquara, Sao Paulo 14800-900, Brazil
| | - Débora Noma Okamoto
- Department
of Pharmaceutical Science, Instituto de Ciências Ambientais,
Químicas Farmacêuticas, Universidade
Federal de São Paulo, Rua São Nicolau, 210, Diadema, Sao Paulo 09913-030, Brazil
| | - Rodnei Bertazzoli
- Unesp,
National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants
and Radioactives (INCT-DATREM), Institute of Chemistry, P.O. Box 355, Araraquara, Sao Paulo 14800-900, Brazil
- School
of Mechanical Engineering, Universidade
Estadual de Campinas, Rua Mendeleyev, 200, Campinas, Sao Paulo 13083-860, Brazil
| | - Christiane de Arruda Rodrigues
- Department
of Chemical Engineering, Instituto de Ciências Ambientais,
Químicas Farmacêuticas, Universidade
Federal de São Paulo, Rua São Nicolau, 210, Diadema, Sao Paulo 09913-030, Brazil
- Unesp,
National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants
and Radioactives (INCT-DATREM), Institute of Chemistry, P.O. Box 355, Araraquara, Sao Paulo 14800-900, Brazil
| |
Collapse
|
14
|
Ye M, Yang J, Cai Z, Wu J, Xiong W, Hou L. The effect of cortisone on female zebrafish (Dania rerio): Reducing reproductive capacity and offspring survival rate. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 277:107132. [PMID: 39515241 DOI: 10.1016/j.aquatox.2024.107132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Cortisone is a naturally occurring corticosteroid hormone known for its wide range of anti-inflammatory and immunosuppressive effects, and it is commonly found in various aquatic environments. Previous reports have shown that cortisone can have significant negative impacts on fish; however, its specific effects on fish reproduction have not been thoroughly investigated. In this study, female adult zebrafish were exposed to 0.0 (control), 3.9, 40.2, and 377.9 ng/L of cortisone for 60 days, and multiple endpoints were evaluated. The results showed that as the concentration of cortisone increased, there was an increase in the percentage of perinuclear oocytes and a decrease in the proportion of late-stage oocytes, indicating a stagnation in oocyte development. Additionally, female zebrafish exposed to cortisone exhibited decreased attraction to males and reduced mating intimacy. Furthermore, exposure to cortisone resulted in changes in the development and behavior of zebrafish embryos. At cortisone concentrations of 3.9 and 40.2 ng/L, fewer eggs were laid and the survival rate of fertilized eggs decreased. These observed effects are associated with abnormal transcription levels of genes (Star, Cyp11a1, Cyp17, Cyp19a, Cyp11b, Hsd11β2, Hsd17β3) related to the HPG axis. These findings provided new insights into understanding potential environmental risks associated with corticosteroids.
Collapse
Affiliation(s)
- MeiXin Ye
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - JinLin Yang
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - ZiPing Cai
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - JunHao Wu
- Guangdong Ocean University, Zhanjiang, 524088, China
| | - Wenting Xiong
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China.
| | - LiPing Hou
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China; Key Laboratory of Conservation and Application in Biodiversity of South China, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong, 510006, China.
| |
Collapse
|
15
|
He C, Pi X, Zhang X, Jiang F. Biocompatible bismuth-based biochar material for degrading environmental endocrine disrupting compounds: Performance study and enhanced electron transfer radical process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122756. [PMID: 39388811 DOI: 10.1016/j.jenvman.2024.122756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/12/2024] [Accepted: 09/29/2024] [Indexed: 10/12/2024]
Abstract
Environmental endocrine disrupting compounds (EDCs) present a significant environmental threat and represent a major challenge in water pollution management. Photocatalysis is a promising method for the treatment of EDCs. Among them, bismuth-based photocatalysts have attracted attention due to their excellent visible light response, narrow band gap, and high efficiency. However, challenges such as easy recombination of photogenerated electrons and holes, low reaction rates, and difficulty in recycling powdered catalysts hinder their practical application. In this investigation, a swift microwave-assisted hydrothermal technique was utilized to fabricate a composite material comprising bismuth-based biochar (BC): BiVO4/AgI/BC. Using 17α-ethynylestradiol (EE2) and estradiol (E2) as model EDCs, the photocatalytic degradation efficiency of BiVO4/AgI/BC was evaluated, alongside an examination of its degradation mechanism and pathways. Remarkably, the incorporation of BiVO4/AgI onto BC significantly augmented the electron transfer rate, fostering the production of •O2-, resulting in a removal efficiency of 99.68% for EE2 and 99.44% for E2, surpassing that of other materials. Furthermore, BiVO4/AgI/BC demonstrated nos3reusability, stability, and low biotoxicity. Thus, BiVO4/AgI/BC exhibits substantial potential for the efficient and environmentally benign elimination of endocrine-disrupting compounds under realistic water conditions.
Collapse
Affiliation(s)
- Changjiang He
- Research Center of Lake Restoration Technology Engineering for Universities of Yunnan Province (Yunnan University), School of Chemical Science and Technology, Yunnan University, Kunming, 650091, PR China
| | - Xiaolin Pi
- Research Center of Lake Restoration Technology Engineering for Universities of Yunnan Province (Yunnan University), School of Chemical Science and Technology, Yunnan University, Kunming, 650091, PR China
| | - Xueni Zhang
- Research Center of Lake Restoration Technology Engineering for Universities of Yunnan Province (Yunnan University), School of Chemical Science and Technology, Yunnan University, Kunming, 650091, PR China
| | - Fengzhi Jiang
- Research Center of Lake Restoration Technology Engineering for Universities of Yunnan Province (Yunnan University), School of Chemical Science and Technology, Yunnan University, Kunming, 650091, PR China.
| |
Collapse
|
16
|
Yang Y, Zhao XM, Lai RWS, Liu Y, Liu S, Jin X, Zhou GJ. Decoding Adverse Effects of Organic Contaminants in the Aquatic Environment: A Meta-analysis of Species Sensitivity, Hazard Prediction, and Ecological Risk Assessment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18122-18132. [PMID: 39365922 DOI: 10.1021/acs.est.4c04862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
Aquatic organisms in the environment are frequently exposed to a variety of organic chemicals, while these biological species may show different sensitivities to different chemical groups present in the environment. This study evaluated species sensitivity, hazards, and risks of six classes of organic chemicals in the aquatic environment. None of the taxonomic groups were the most sensitive or tolerant to all chemicals, as one group sensitive to one class of chemicals might possess adaptations to other chemical groups. Polychlorinated biphenyls were generally the most toxic chemical group, followed by polybrominated diphenyl ethers, polycyclic aromatic hydrocarbons, and pharmaceuticals and personal care products, while per- and polyfluoroalkyl substances and phthalate esters were the less toxic chemical groups. The hazard of organic chemicals was closely related to their physicochemical properties, including hydrophobicity and molecular weight. It was shown that 20% of the evaluated chemicals exhibited medium or high ecological risks with the worst-case scenario in the Pearl River Estuary. This novel work represented a comprehensive comparison of chemical hazards and species sensitivity among different classes of organic chemicals, and the reported results herein have provided scientific evidence for ecological risk assessment and water quality management to protect aquatic ecosystems against organic chemicals.
Collapse
Affiliation(s)
- Yi Yang
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Xue-Min Zhao
- South China Institute of Environmental Science, Ministry of Ecology and Environment, Guangzhou 510535, China
| | - Racliffe Weng Seng Lai
- Department of Ocean Science and Technology, Faculty of Science and Technology, University of Macau, Macau 999078, China
| | - Yuan Liu
- Wadsworth Center, New York State Department of Health, Albany, New York 12201, United States
| | - Shan Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Xiaowei Jin
- China National Environmental Monitoring Centre, Beijing 100012, China
| | - Guang-Jie Zhou
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
17
|
Shah BA, Malhotra H, Papade SE, Dhamale T, Ingale OP, Kasarlawar ST, Phale PS. Microbial degradation of contaminants of emerging concern: metabolic, genetic and omics insights for enhanced bioremediation. Front Bioeng Biotechnol 2024; 12:1470522. [PMID: 39364263 PMCID: PMC11446756 DOI: 10.3389/fbioe.2024.1470522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/05/2024] [Indexed: 10/05/2024] Open
Abstract
The perpetual release of natural/synthetic pollutants into the environment poses major risks to ecological balance and human health. Amongst these, contaminants of emerging concern (CECs) are characterized by their recent introduction/detection in various niches, thereby causing significant hazards and necessitating their removal. Pharmaceuticals, plasticizers, cyanotoxins and emerging pesticides are major groups of CECs that are highly toxic and found to occur in various compartments of the biosphere. The sources of these compounds can be multipartite including industrial discharge, improper disposal, excretion of unmetabolized residues, eutrophication etc., while their fate and persistence are determined by factors such as physico-chemical properties, environmental conditions, biodegradability and hydrological factors. The resultant exposure of these compounds to microbiota has imposed a selection pressure and resulted in evolution of metabolic pathways for their biotransformation and/or utilization as sole source of carbon and energy. Such microbial degradation phenotype can be exploited to clean-up CECs from the environment, offering a cost-effective and eco-friendly alternative to abiotic methods of removal, thereby mitigating their toxicity. However, efficient bioprocess development for bioremediation strategies requires extensive understanding of individual components such as pathway gene clusters, proteins/enzymes, metabolites and associated regulatory mechanisms. "Omics" and "Meta-omics" techniques aid in providing crucial insights into the complex interactions and functions of these components as well as microbial community, enabling more effective and targeted bioremediation. Aside from natural isolates, metabolic engineering approaches employ the application of genetic engineering to enhance metabolic diversity and degradation rates. The integration of omics data will further aid in developing systemic-level bioremediation and metabolic engineering strategies, thereby optimising the clean-up process. This review describes bacterial catabolic pathways, genetics, and application of omics and metabolic engineering for bioremediation of four major groups of CECs: pharmaceuticals, plasticizers, cyanotoxins, and emerging pesticides.
Collapse
Affiliation(s)
- Bhavik A Shah
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Harshit Malhotra
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Sandesh E Papade
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Tushar Dhamale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Omkar P Ingale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Sravanti T Kasarlawar
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Prashant S Phale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| |
Collapse
|
18
|
de Morais TP, Barreto LS, de Souza TL, Pozzan R, Vargas DÁR, Yamamoto FY, Prodocimo MM, Neto FF, Randi MAF, Ribeiro CADO. Assessing the pollution and ecotoxicological status of the Iguaçu River, southern Brazil: A review. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:1280-1305. [PMID: 38037232 DOI: 10.1002/ieam.4865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 12/02/2023]
Abstract
The degradation of water resources available for human consumption is increasing with the continuous release of chemicals into aquatic environments and their inefficient removal in wastewater treatment. Several watersheds in Brazil, such as the Iguaçu River, are affected by multiple sources of pollution and lack information about their pollution status. The Iguaçu River basin (IRB) has great socioeconomic and environmental relevance to both the supply of water resources and its considerable hydroelectric potential, as well as for the high rate of endemism of its ichthyofauna. Also, the IRB is home to large conservation units, such as the Iguaçu National Park, recognized by UNESCO as a natural World Heritage Site. Thus, this article discusses the chemical pollution in the IRB approaching: (i) the main sources of pollution; (ii) the occurrence of inorganic and organic micropollutants; (iii) the available ecotoxicological data; and (iv) the socioeconomic impacts in three regions of the upper, middle, and lower IRB. Different studies have reported relevant levels of emerging contaminants, persistent organic pollutants, toxic metals, and polycyclic aromatic hydrocarbons detected in the water and sediment samples, especially in the upper IRB region, associated with domestic and industrial effluents. Additionally, significant concentrations of pesticides and toxic metals were also detected in the lower IRB, revealing that agricultural practices are also relevant sources of chemicals for this watershed. More recently, studies indicated an association between fish pathologies and the detection of micropollutants in the water and sediments in the IRB. The identification of the main sources of pollutants, associated with the distribution of hazardous chemicals in the IRB, and their potential effects on the biota, as described in this review, represent an important strategy to support water management by public authorities for reducing risks to the local endemic biodiversity and exposed human populations. Integr Environ Assess Manag 2024;20:1280-1305. © 2023 SETAC.
Collapse
Affiliation(s)
| | | | | | - Roberta Pozzan
- Cell Biology Department, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | | - Flávia Yoshie Yamamoto
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, Brazil
- Institute of Biosciences, São Paulo State University (UNESP), São Vicente, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
19
|
Soloperto S, Renaux M, Lecarpentier L, Minier C, Aroua S, Halm-Lemeille MP, Jozet-Alves C. 17α-Ethinylestradiol exposure disrupts anxiety-like behaviours but not social preference in sea bass larvae (Dicentrarchus labrax). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55708-55719. [PMID: 39243328 DOI: 10.1007/s11356-024-34922-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Endocrine-disrupting chemicals (EDCs) are widespread pollutants known to interfere with hormonal pathways and to disrupt behaviours. Standardised behavioural procedures have been developed in common fish model species to assess the impact of various pollutants on behaviours such as locomotor activity and anxiety-like as well as social behaviours. These procedures need now to be adapted to improve our knowledge on the behavioural effects of EDCs on less studied marine species. In this context, the European sea bass (Dicentrarchus labrax) is emerging as a valuable species representative of the European marine environment. Here, we designed and validated a two-step procedure allowing to sequentially assess anxiety-like behaviours (novel tank test) and social preference (visual social preference test) in sea bass. Thereafter, using this procedure, we evaluated whether social behavioural disruption occurs in 2-month-old larvae after an 8-day exposure to a xenoestrogen, the 17α-ethinylestradiol (EE2 at 0.5 and 50 nM). Our results confirmed previous studies showing that exposure to 50 nM of EE2 induces a significant increase in anxiety-like behaviours in sea bass larvae. On the contrary, social preference seemed unaffected whatever the EE2 concentration, suggesting that social behaviour has more complex mechanical regulations than anxiety.
Collapse
Affiliation(s)
- Sofia Soloperto
- Normandie Univ, UNIHAVRE, UMR-I 02 INERIS-URCA-ULH SEBIO, FR CNRS 3730 Scale, 25, Rue Philippe Lebon, 76063, Le Havre Cedex, France.
| | - Maelle Renaux
- Unité Littoral Ifremer, LITTORAL, 14520, Port-en-Bessin, France
| | - Lucas Lecarpentier
- Normandie Univ, Unicaen, CNRS, 14000, Caen, EthoS, France
- Univ Rennes, CNRS, EthoS (Éthologie Animale Et Humaine) - UMR 6552, 35000, Rennes, France
| | - Christophe Minier
- Normandie Univ, UNIHAVRE, UMR-I 02 INERIS-URCA-ULH SEBIO, FR CNRS 3730 Scale, 25, Rue Philippe Lebon, 76063, Le Havre Cedex, France
| | - Salima Aroua
- Normandie Univ, UNIHAVRE, UMR-I 02 INERIS-URCA-ULH SEBIO, FR CNRS 3730 Scale, 25, Rue Philippe Lebon, 76063, Le Havre Cedex, France
| | | | - Christelle Jozet-Alves
- Normandie Univ, Unicaen, CNRS, 14000, Caen, EthoS, France
- Univ Rennes, CNRS, EthoS (Éthologie Animale Et Humaine) - UMR 6552, 35000, Rennes, France
| |
Collapse
|
20
|
Islam R, Yu RMK, O'Connor WA, Lin X, Lai KP, Leusch FDL, MacFarlane GR. Intergenerational toxicity of 17α-ethinylestradiol (EE2): Effects of parental exposure on early larval development and transcriptomic profiles in the Sydney rock oyster, Saccostrea glomerata. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134876. [PMID: 38870858 DOI: 10.1016/j.jhazmat.2024.134876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 06/15/2024]
Abstract
This study exposed adult Sydney rock oysters, of either sex or both, to the synthetic estrogen 17α-ethinylestradiol (EE2) at 50 ng/L for 21 days, followed by an examination of developmental endpoints and transcriptomic responses in unexposed larvae. Reduced survival was observed at 1 day post-fertilisation (dpf) in larvae from bi-parental exposure (FTMT). Motile larvae at 2 dpf were fewer from maternal (FTMC), paternal (FCMT), and FTMT exposures. Additionally, shell length at 7 dpf decreased in larvae from FTMC and FTMT parents. RNA sequencing (RNA-seq) revealed 1064 differentially expressed genes (DEGs) in 1-dpf larvae from FTMT parents, while fewer DEGs were detected in larvae from FTMC and FCMT parents, with 258 and 7, respectively. GO and KEGG analyses showed significant enrichment of DEGs in diverse terms and pathways, with limited overlap among treatment groups. IPA results indicated potential inhibition of pathways regulating energy production, larval development, transcription, and detoxification of reactive oxygen species in FTMT larvae. qRT-PCR validation confirmed significant downregulation of selected DEGs involved in these pathways and relevant biological processes, as identified in the RNA-seq dataset. Overall, our results suggest that the intergenerational toxicity of EE2 is primarily maternally transmitted, with bi-parental exposure amplifying these effects.
Collapse
Affiliation(s)
- Rafiquel Islam
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia; Department of Applied Chemistry and Chemical Engineering, Islamic University, Kushtia 7003, Bangladesh
| | - Richard Man Kit Yu
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Wayne A O'Connor
- New South Wales Department of Primary Industries, Port Stephens Fisheries Institute, Taylors Beach, NSW 2316, Australia
| | - Xiao Lin
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Keng Po Lai
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, China
| | - Frederic D L Leusch
- Australian Rivers Institute, School of Environment and Science, Griffith University, QLD 4222, Australia
| | - Geoff R MacFarlane
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
21
|
Jędras A, Matusik J, Dhanaraman E, Fu YP, Cempura G. Tuning the Structural and Electronic Properties of Zn-Cr LDH/GCN Heterostructure for Enhanced Photodegradation of Estrone in UV and Visible Light. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40. [PMID: 39140300 PMCID: PMC11363147 DOI: 10.1021/acs.langmuir.4c01897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024]
Abstract
Estrone is an emerging contaminant found in waters and soils all over the world. Conventional water treatment methods are not suitable for estrone removal due to its nonpolarity and low bioavailability. Heterogeneous photocatalysis is a promising approach; however, pristine semiconductors need optimization for efficient estrone photodegradation. Herein, we compared Zn-Cr LDH/GCN heterostructures obtained by three different synthesis methods. The influence of the GCN content in the heterostructure on photoactivity was also tested. The morphology, structure, and electronic properties of the materials were analyzed and compared. The photocatalytic kinetic tests were conducted with 1 ppm of estrone in both UV and visible light, separately. The HLDH-G50 material, obtained by the hydrothermal route and containing 50 wt % of GCN exhibited the highest photocatalytic efficiency. After 1 h, 99.5% of the estrone was degraded in visible light. In UV light, the pollutant concentration was below the detection limit after 0.5 h. The superior effectiveness was caused by numerous factors such as high homogeneity of the formed heterostructure, lower band gap energy of hydrothermal LDH, and increased photocurrent. These characteristics led to prolonged lifetimes of charge carriers, a wider light absorption range, and uniformity of the material for predictable performance. This study highlights the importance of a proper heterostructure engineering strategy for acquiring highly effective photocatalysts designed for water purification. In particular, this work provides innovative insight into comparing different synthesis methods and their influence on materials' properties.
Collapse
Affiliation(s)
- Anna Jędras
- Faculty
of Geology, Geophysics and Environmental Protection, Department of
Mineralogy, Petrography and Geochemistry, AGH University of Krakow, al. Mickiewicza 30, 30-059 Krakow, Poland
| | - Jakub Matusik
- Faculty
of Geology, Geophysics and Environmental Protection, Department of
Mineralogy, Petrography and Geochemistry, AGH University of Krakow, al. Mickiewicza 30, 30-059 Krakow, Poland
| | - Esakkinaveen Dhanaraman
- Department
of Materials Science and Engineering, National
Dong Hwa University, Shou-Feng, Hualien 97401, Taiwan
| | - Yen-Pei Fu
- Department
of Materials Science and Engineering, National
Dong Hwa University, Shou-Feng, Hualien 97401, Taiwan
| | - Grzegorz Cempura
- Faculty
of Metal Engineering and Industrial Computer Science, International
Centre of Electron Microscopy for Materials Science, AGH University of Krakow, al. Mickiewicza 30, 30-059 Krakow, Poland
| |
Collapse
|
22
|
Hajji AL, Lucas KN. Anthropogenic stressors and the marine environment: From sources and impacts to solutions and mitigation. MARINE POLLUTION BULLETIN 2024; 205:116557. [PMID: 38875966 DOI: 10.1016/j.marpolbul.2024.116557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/16/2024]
Abstract
Human-released contaminants are often poorly understood wholistically in marine ecosystems. This review examines the sources, pathways, impacts on marine animals, and mitigation strategies of five pollutants (plastics, per- and polyfluoroalkyl substances, bisphenol compounds, ethynylestradiol, and petroleum hydrocarbons). Both abiotic and biotic mechanisms contribute to all five contaminants' movement. These pollutants cause short- and long-term effects on many biological processes genetically, molecularly, neurologically, physiologically, reproductively, and developmentally. We explore the extension of adverse outcome pathways to ecosystem effects by considering known inter-generational and trophic relations resulting in large-scale direct and indirect impacts. In doing so, we develop an understanding of their roles as environmental stressors in marine environments for targeted mitigation and future work. Ecosystems are interconnected and so international collaboration, standards, measures preceding mass production, and citizen involvement are required to protect and conserve marine life.
Collapse
Affiliation(s)
- Angelina L Hajji
- Biological Sciences, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada.
| | - Kelsey N Lucas
- Biological Sciences, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
23
|
Song X, Li Y, Zhang Z, Wen Y, Wang Y. Natural mineral colloids facilitated transport of EE2 in saturated porous media: Effects of humic acid and conjugate form. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 265:104387. [PMID: 38896908 DOI: 10.1016/j.jconhyd.2024.104387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/08/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
Steroid estrogens have posed significant ecological risks to aquatic organisms due to their potent endocrine-disrupting effects. The role of natural mineral colloids in facilitating the transport of hydrophobic organic pollutants in the environment has been confirmed, but the control mechanisms of colloids on 17α-Ethinylestradiol (EE2) migration in the subsurface environment are often still not well understood. This study combined the batch sorption equilibrium experiments and dynamic transport simulations to reveal the interface interactions and co-transport characteristics between illite colloids and EE2 at both macroscopic and microscopic levels. The existing form changes of EE2 and the influence of coexisting humic acid (HA) during transport in porous media were also specifically investigated. The batch experiments demonstrated that the primary mechanisms governing EE2 sorption onto illite colloids involved surface sorption and hydrogen bonding. The coexistence of HA could load onto the surface of illite colloids, thereby enhancing the colloidal sorption capacity for EE2. Transport experiments demonstrated that the migratory ability of EE2 in silty clay was limited, but illite colloids could significantly promote its penetration, with the peak penetration content (Ct/C0) increasing from 0.64 to 0.77. In the absence of HA, EE2 primarily transported in a dissolved form, accounting for 62.86% of the total concentrations. When HA concentrations were increased to 10 mg/L and 20 mg/L, the proportion of colloidal conjugate EE2 in the effluents reached 52.13% and 54.49%, respectively. The enhanced transport of EE2 by HA was primarily attributed to the improved migration ability of illite colloids and the increased proportion of illite-EE2 conjugate, resulting in a maximum Ct/C0 value of 0.94. The validity of these results was further confirmed by employing calculations based on the Derjaguin-Landau-Verwey-Overbeek and Colloidal Filtration Theory. This study provides new insights of understanding the transport of EE2 in subsurface environment.
Collapse
Affiliation(s)
- Xiaoming Song
- Key Lab of Eco-Restoration of Regional Contaminated Environment (Shenyang University), Ministry of Education, Shenyang 11044, China
| | - Yingjun Li
- Qinghai 906 Engineering Survey and Design Institute Co. LTD, Xining 810001, China; Bureau of Qinghai Environmental Geological Prospecting, Xining 810001, China.
| | - Zhipeng Zhang
- Sichuan Geological Environment Survey and Research Center, Chengdu 610031, China
| | - Yujuan Wen
- Key Lab of Eco-Restoration of Regional Contaminated Environment (Shenyang University), Ministry of Education, Shenyang 11044, China; Northeast Geological S&T Innovation Center of China Geological Survey, Shenyang 110000, China; Key Laboratory of Black Soil Evolution and Ecological Effect, Ministry of Natural Resources, Shenyang 110000, China.
| | - Yunlong Wang
- Key Lab of Eco-Restoration of Regional Contaminated Environment (Shenyang University), Ministry of Education, Shenyang 11044, China
| |
Collapse
|
24
|
Li T, Duan L, Shi L, Liu E, Fan J. Novel ferrofluid based on hydrophobic deep eutectic solvents for separation and analysis of trace estrogens in environmental water and urine samples. Anal Bioanal Chem 2024; 416:4057-4070. [PMID: 38842689 DOI: 10.1007/s00216-024-05350-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 06/07/2024]
Abstract
A novel ferrofluid prepared from a hydrophobic deep eutectic solvent (DES) and Fe3O4@graphite composite materials was introduced as a green microextraction medium for the separation and enrichment of trace estrogens in real samples. It was found that the ferrofluid greatly improved the capacity and selectivity of target analytes, benefiting from the enrichment of both DES and Fe3O4@graphite composite materials. Using a combination of high-performance liquid chromatography-fluorescence detection (HPLC-FLD) and vortex-assisted liquid-liquid microextraction (VALLME), a new method was established for simultaneous rapid processing and accurate determination of three estrogens (estradiol [E2], estriol [E3], and ethinyl estradiol [EE2]) in environmental water and urine samples. Key parameters affecting the extraction efficiency were optimized using a single-factor approach and response surface methodology. Under optimal conditions, this method yielded a low limit of detection (1.01 ng L-1, 3.03 ng L-1, and 25.0 ng L-1 for EE2, E2, and E3, respectively), wide linear range (3-200,000 ng L-1), high enrichment factors (9.81-47.2), and satisfactory recovery (73.8-129.0%). Compared with traditional analytical techniques, this method avoids the use of volatile toxic organic extraction solvents and cumbersome phase separation operations.
Collapse
Affiliation(s)
- Tiemei Li
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China
| | - Lichong Duan
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China
| | - Longrui Shi
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China
| | - Enxiu Liu
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China
| | - Jing Fan
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China.
| |
Collapse
|
25
|
Baekelandt S, Leroux N, Lambert J, Bernay B, Robert JB, Burattin L, Gérard C, Delierneux C, Cornet V, Kestemont P. Evaluating the toxicity of estetrol, 17α-ethinylestradiol, and their combination with drospirenone on zebrafish larvae: A behavioural and proteomic study. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 271:106941. [PMID: 38723469 DOI: 10.1016/j.aquatox.2024.106941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/29/2024] [Accepted: 05/04/2024] [Indexed: 05/21/2024]
Abstract
OBJECTIVE To characterise and compare the toxicity of estetrol (E4) and 17α-ethinylestradiol (EE2), and their respective mixture with the progestin drospirenone (DRSP) in zebrafish (Danio rerio) embryos. METHODS Zebrafish embryos were exposed to E4, EE2, DRSP, E4+DRSP, and EE2+DRSP in a fish embryo acute toxicity (FET) test. A second test examined behavioural responses and, using label-free proteomics, identified changes in protein expression in response to hormonal treatments, across a range of concentrations, including those that are considered to be environmentally relevant. RESULTS In the FET test, no effects were found from E4 at concentrations ≤100 mg/L, while EE2 induced mortality and morphological abnormalities at concentrations of 1-2 mg/L. In the behavioural test, exposure to 30 ng/L EE2 (∼200 × predicted environmental concentration - PEC) resulted in hypoactivity in fish larvae and exposure to 0.3 ng/L EE2 (∼2 × PEC) led to quantitative changes in protein abundance, revealing potential impacts on RNA processing and protein synthesis machinery. Exposure to E4 did not alter behaviour, but several groups of proteins were modulated, mainly at 710 ng/L (∼200 × PEC), including proteins involved in oxidative phosphorylation. When combined with DRSP, EE2 induced reduced effects on behaviour and proteomic responses, suggesting an antagonistic effect of DRSP. E4+DRSP induced no significant effects on behaviour or proteomic profiles at tested concentrations. CONCLUSIONS These findings suggest that E4-based combined oral contraceptives present a more favourable environmental profile than EE2-based contraceptives, particularly during the early developmental stages of fish.
Collapse
Affiliation(s)
- Sébastien Baekelandt
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, B-5000, Belgium.
| | - Nathalie Leroux
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, B-5000, Belgium
| | - Jérôme Lambert
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, B-5000, Belgium
| | - Benoît Bernay
- University of Caen Basse-Normandie, Proteogen Platform, SFR ICORE 4206, Esplanade de la Paix, Caen, CEDEX 14032, France
| | - Jean-Baptiste Robert
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, B-5000, Belgium
| | - Laura Burattin
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, B-5000, Belgium
| | - Céline Gérard
- Estetra SRL, an affiliate company of Mithra Pharmaceuticals, Rue Saint-Georges 5, Liège, 4000, Belgium
| | - Céline Delierneux
- Estetra SRL, an affiliate company of Mithra Pharmaceuticals, Rue Saint-Georges 5, Liège, 4000, Belgium
| | - Valérie Cornet
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, B-5000, Belgium
| | - Patrick Kestemont
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, B-5000, Belgium
| |
Collapse
|
26
|
Grzegorzek M, Wartalska K, Kowalik R. Occurrence and sources of hormones in water resources-environmental and health impact. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:37907-37922. [PMID: 38772997 PMCID: PMC11189324 DOI: 10.1007/s11356-024-33713-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/14/2024] [Indexed: 05/23/2024]
Abstract
Within recent years, hormones have become emergent contaminants in the water environment. They easily accumulate in living organisms which in effect leads to numerous health problems (endocrine-disrupting mechanism is one of the most known toxic effects). Microbial resistance to antibiotics also became one of the emergent issues related to hormone presence. It was shown that the most common in the environment occur estrogens (E1, E2, E3, and EE2). It has been proven that large amounts of hormones are released from aquaculture as well as from wastewater treatment plants (due to the relatively low separation efficiency of conventional wastewater treatment processes). Within the article's scope, the literature review was performed. The analysis was regarding the characterization of the hormone substances present in the environment, their influence on living organisms and the environment, as well as its potential sources classification.
Collapse
Affiliation(s)
- Martyna Grzegorzek
- Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Wybrzeze Stanisława Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Katarzyna Wartalska
- Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Wybrzeze Stanisława Wyspianskiego 27, 50-370, Wroclaw, Poland.
| | - Robert Kowalik
- Faculty of Environmental Engineering, Geodesy and Renewable Energy, Kielce University of Technology, Al. Tysiąclecia Państwa Polskiego 7, 25-314, Kielce, Poland
| |
Collapse
|
27
|
Baekelandt S, Bouchat A, Leroux N, Robert JB, Burattin L, Cishibanji E, Lambert J, Gérard C, Delierneux C, Kestemont P. Estetrol/drospirenone versus 17α-ethinylestradiol/drospirenone: An extended one generation test to evaluate the endocrine disruption potential on zebrafish (Danio rerio). ENVIRONMENT INTERNATIONAL 2024; 187:108702. [PMID: 38678935 DOI: 10.1016/j.envint.2024.108702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024]
Abstract
Combined oral contraceptives, comprising of both an oestrogen and a progestin component, are released in aquatic environments and potentially pose a risk to aquatic wildlife by their capacity to disrupt physiological mechanisms. In this study, the endocrine disruptive potential of two mixtures, 17α-ethinylestradiol (EE2), a synthetic oestrogen, or estetrol (E4), a natural oestrogen, with the progestin drospirenone (DRSP) have been characterised in three generations of zebrafish, according to an adapted Medaka Extended One Generation Reproduction Test. Zebrafish (Danio rerio) were exposed to a range of concentrations of EE2/DRSP and E4/DRSP (∼1×, ∼3×, ∼10× and ∼30× predicted environmental concentration, PEC). Survival, growth, hatching success, fecundity, fertilisation success, vitellogenin (VTG), gonad histopathology, sex differentiation, and transcriptional analysis of genes related to gonadal sex steroid hormones synthesis were assessed. In the F0 generation, exposure to EE2/DRSP at ∼10 and ∼30× PEC decreased fecundity and increased male VTG concentrations. The highest concentration of EE2/DRSP also affected VTG concentrations in female zebrafish and the expression of genes implicated in steroid hormones synthesis. In the F1 generation, sex determination was impaired in fish exposed to EE2/DRSP at concentrations as low as ∼3× PEC. Decreased fecundity and fertility, and abnormal gonadal histopathology were also observed. No effects were observed in the F2 generation. In contrast, E4/DRSP induced only minor histopathological changes and an increase in the proportion of males, at the highest concentration tested (∼30× PEC) in the F1 generation and had no effect on hatching success of F2 generation. Overall, this study suggests that the combination E4/DRSP has a more favourable environmental profile than EE2/DRSP.
Collapse
Affiliation(s)
- Sébastien Baekelandt
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, B-5000, Belgium.
| | - Antoine Bouchat
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, B-5000, Belgium
| | - Nathalie Leroux
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, B-5000, Belgium
| | - Jean-Baptiste Robert
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, B-5000, Belgium
| | - Laura Burattin
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, B-5000, Belgium
| | - Emmanuel Cishibanji
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, B-5000, Belgium
| | - Jérôme Lambert
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, B-5000, Belgium
| | - Céline Gérard
- Estetra SRL, An Affiliated Company of Mithra Pharmaceuticals, Rue Saint-Georges 5, 4000 Liège, Belgium
| | - Céline Delierneux
- Estetra SRL, An Affiliated Company of Mithra Pharmaceuticals, Rue Saint-Georges 5, 4000 Liège, Belgium
| | - Patrick Kestemont
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, B-5000, Belgium
| |
Collapse
|
28
|
Yu Y, Wang Z, Yao B, Zhou Y. Occurrence, bioaccumulation, fate, and risk assessment of emerging pollutants in aquatic environments: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171388. [PMID: 38432380 DOI: 10.1016/j.scitotenv.2024.171388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/12/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Significant concerns on a global scale have been raised in response to the potential adverse impacts of emerging pollutants (EPs) on aquatic creatures. We have carefully reviewed relevant research over the past 10 years. The study focuses on five typical EPs: pharmaceuticals and personal care products (PPCPs), per- and polyfluoroalkyl substances (PFASs), drinking water disinfection byproducts (DBPs), brominated flame retardants (BFRs), and microplastics (MPs). The presence of EPs in the global aquatic environment is source-dependent, with wastewater treatment plants being the main source of EPs. Multiple studies have consistently shown that the final destination of most EPs in the water environment is sludge and sediment. Simultaneously, a number of EPs, such as PFASs, MPs, and BFRs, have long-term environmental transport potential. Some EPs exhibit notable tendencies towards bioaccumulation and biomagnification, while others pose challenges in terms of their degradation within both biological and abiotic treatment processes. The results showed that, in most cases, the ecological risk of EPs in aquatic environments was low, possibly due to potential dilution and degradation. Future research topics should include adding EPs detection items for the aquatic environment, combining pollution, and updating prediction models.
Collapse
Affiliation(s)
- Yuange Yu
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Zhu Wang
- Institute of Environmental Research at Greater Bay/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Bin Yao
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Yaoyu Zhou
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
29
|
Pannetier P, Gölz L, Pissarreira Mendes Fagundes MT, Knörr S, Behnstedt L, Coordes S, Matthiessen P, Morthorst JE, Vergauwen L, Knapen D, Holbech H, Braunbeck T, Baumann L. Development of the integrated fish endocrine disruptor test (iFEDT)-Part A: Merging of existing fish test guidelines. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:817-829. [PMID: 37483114 DOI: 10.1002/ieam.4819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/21/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
There has been increasing interest in endocrine-disrupting chemicals (EDCs) among scientists and public authorities over the last 30 years, notably because of their wide use and the increasing evidence of detrimental effects on humans and the environment. However, test systems for the detection of potential EDCs as well as testing strategies still require optimization. Thus, the aim of the present project was the development of an integrated test protocol that merges the existing OECD test guidelines (TGs) 229 (fish short-term reproduction assay) and 234 (fish sexual development test) and implements thyroid-related endpoints for fish. The integrated fish endocrine disruptor test (iFEDT) represents a comprehensive approach for fish testing, which covers reproduction, early development, and sexual differentiation, and will thus allow the identification of multiple endocrine-disruptive effects in fish. Using zebrafish (Danio rerio) as a model organism, two exposure tests were performed with well-studied EDCs: 6-propyl-2-thiouracil (PTU), an inhibitor of thyroid hormone synthesis, and 17α-ethinylestradiol (EE2), an estrogen receptor agonist. In part A of this article, the effects of PTU and EE2 on established endpoints of the two existing TGs are reported, whereas part B focuses on the novel thyroid-related endpoints. Results of part A document that, as expected, both PTU and EE2 had strong effects on various endocrine-related endpoints in zebrafish and their offspring. Merging of TGs 229 and 234 proved feasible, and all established biomarkers and endpoints were responsive as expected, including reproductive and morphometric changes (PTU and EE2), vitellogenin levels, sex ratio, gonad maturation, and histopathology (only for EE2) of different life stages. A validation of the iFEDT with other well-known EDCs will allow verification of the sensitivity and usability and confirm its capacity to improve the existing testing strategy for EDCs in fish. Integr Environ Assess Manag 2024;20:817-829. © 2023 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Pauline Pannetier
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
- Laboratoire de Ploufragan-Plouzané-Niort, Site de Plouzané, Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail, Plouzané, France
| | - Lisa Gölz
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | | | - Susanne Knörr
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Laura Behnstedt
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Sara Coordes
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | | | - Jane E Morthorst
- Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Lucia Vergauwen
- Department of Veterinary Sciences, Veterinary Physiology and Biochemistry, Zebrafishlab, University of Antwerp, Wilrijk, Belgium
| | - Dries Knapen
- Department of Veterinary Sciences, Veterinary Physiology and Biochemistry, Zebrafishlab, University of Antwerp, Wilrijk, Belgium
| | - Henrik Holbech
- Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Lisa Baumann
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
- Amsterdam Institute for Life and Environment (A-LIFE), Section Environmental Health and Toxicology, Vrije Universiteit Amsterdam, HV Amsterdam, The Netherlands
| |
Collapse
|
30
|
Nobre CR, Moreno BB, Alves AV, Fontes MK, Campos BGD, Silva LFD, Maranho LA, Duarte LFDA, Abessa DMDS, Choueri RB, Gusso-Choueri PK, Pereira CDS. Microplastics and 17α Ethinylestradiol: How Do Different Aquatic Invertebrates Respond to This Combination of Contaminants? TOXICS 2024; 12:319. [PMID: 38787099 PMCID: PMC11125900 DOI: 10.3390/toxics12050319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024]
Abstract
The synthetic hormone 17α ethinyl estradiol (EE2) is a molecule widely used in female contraceptives and recognized as a contaminant of attention (Watch List) in the European Union due to its high consumption, endocrine effects and occurrence in aquatic environments. Its main source of introduction is domestic sewage where it can be associated with other contaminants such as microplastics (MPs). Due to their characteristics, they can combine with each other and exacerbate their isolated effects on biota. This study evaluated the combined effects of microplastics (MPs) and 17α ethinylestradiol (EE2) on two tropical estuarine invertebrate species: Crassostrea gasar and Ucides cordatus. Polyethylene particles were spiked with EE2 and organisms were exposed to three treatments, categorized into three groups: control group (C), virgin microplastics (MPs), and spiked microplastics with EE2 (MPEs). All treatments were evaluated after 3 and 7 days of exposure. Oysters exhibited changes in phase 2 enzymes and the antioxidant system, oxidative stress in the gills, and reduced lysosomal membrane stability after exposure to MPs and MPEs. Crabs exposed to MPs and MPEs after seven days showed changes in phase 1 enzymes in the gills and changes in phases 1 and 2 enzymes in the hepatopancreas, such as disturbed cellular health. The combined effects of microplastics and EE2 increased the toxicity experienced by organisms, which may trigger effects at higher levels of biological organization, leading to ecological disturbances in tropical coastal ecosystems.
Collapse
Affiliation(s)
- Caio Rodrigues Nobre
- Department of Marine Sciences, Federal University of São Paulo, Santos Campus (UNIFESP-Santos), Rua Maria Máximo, 168, Santos 11030-100, Brazil
- Biosciences Institute, São Paulo State University (UNESP), Litoral Paulista Campus, Praça Infante Dom Henrique, s/n, Parque Bitaru, São Vicente 11330-900, Brazil
| | - Beatriz Barbosa Moreno
- Department of Marine Sciences, Federal University of São Paulo, Santos Campus (UNIFESP-Santos), Rua Maria Máximo, 168, Santos 11030-100, Brazil
| | - Aline Vecchio Alves
- Department of Marine Sciences, Federal University of São Paulo, Santos Campus (UNIFESP-Santos), Rua Maria Máximo, 168, Santos 11030-100, Brazil
| | - Mayana Karoline Fontes
- Biosciences Institute, São Paulo State University (UNESP), Litoral Paulista Campus, Praça Infante Dom Henrique, s/n, Parque Bitaru, São Vicente 11330-900, Brazil
| | - Bruno Galvão de Campos
- Biosciences Institute, São Paulo State University (UNESP), Litoral Paulista Campus, Praça Infante Dom Henrique, s/n, Parque Bitaru, São Vicente 11330-900, Brazil
| | - Leticia Fernanda da Silva
- Biosciences Institute, São Paulo State University (UNESP), Litoral Paulista Campus, Praça Infante Dom Henrique, s/n, Parque Bitaru, São Vicente 11330-900, Brazil
| | - Luciane Alves Maranho
- Morphofunctional Laboratory, University of Ribeirão Preto (UNAERP), Avenida Dom Pedro I, 3.300, Guarujá 11440-003, Brazil
| | | | - Denis Moledo de Souza Abessa
- Biosciences Institute, São Paulo State University (UNESP), Litoral Paulista Campus, Praça Infante Dom Henrique, s/n, Parque Bitaru, São Vicente 11330-900, Brazil
| | - Rodrigo Brasil Choueri
- Department of Marine Sciences, Federal University of São Paulo, Santos Campus (UNIFESP-Santos), Rua Maria Máximo, 168, Santos 11030-100, Brazil
| | - Paloma Kachel Gusso-Choueri
- Department of Ecotoxicology, Santa Cecília University (UNISANTA), Rua Oswaldo Cruz, 266, Santos 11045-907, Brazil
| | - Camilo Dias Seabra Pereira
- Department of Marine Sciences, Federal University of São Paulo, Santos Campus (UNIFESP-Santos), Rua Maria Máximo, 168, Santos 11030-100, Brazil
- Department of Ecotoxicology, Santa Cecília University (UNISANTA), Rua Oswaldo Cruz, 266, Santos 11045-907, Brazil
| |
Collapse
|
31
|
Cripps SM, Marshall SA, Mattiske DM, Ingham RY, Pask AJ. Estrogenic endocrine disruptor exposure directly impacts erectile function. Commun Biol 2024; 7:403. [PMID: 38565966 PMCID: PMC10987563 DOI: 10.1038/s42003-024-06048-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 03/14/2024] [Indexed: 04/04/2024] Open
Abstract
Erectile dysfunction (ED) is an extremely prevalent condition which significantly impacts quality of life. The rapid increase of ED in recent decades suggests the existence of unidentified environmental risk factors contributing to this condition. Endocrine Disrupting Chemicals (EDCs) are one likely candidate, given that development and function of the erectile tissues are hormonally dependent. We use the estrogenic-EDC diethylstilbestrol (DES) to model how widespread estrogenic-EDC exposure may impact erectile function in humans. Here we show that male mice chronically exposed to DES exhibit abnormal contractility of the erectile tissue, indicative of ED. The treatment did not affect systemic testosterone production yet significantly increased estrogen receptor α (Esr1) expression in the primary erectile tissue, suggesting EDCs directly impact erectile function. In response, we isolated the erectile tissue from mice and briefly incubated them with the estrogenic-EDCs DES or genistein (a phytoestrogen). These acute-direct exposures similarly caused a significant reduction in erectile tissue contractility, again indicative of ED. Overall, these findings demonstrate a direct link between estrogenic EDCs and erectile dysfunction and show that both chronic and acute estrogenic exposures are likely risk factors for this condition.
Collapse
Affiliation(s)
- Samuel M Cripps
- School of BioSciences, The University of Melbourne, Melbourne, Australia
| | - Sarah A Marshall
- The Ritchie Centre, Department of Obstetrics & Gynaecology, Monash University, Melbourne, Australia
| | - Deidre M Mattiske
- School of BioSciences, The University of Melbourne, Melbourne, Australia
| | - Rachel Y Ingham
- School of BioSciences, The University of Melbourne, Melbourne, Australia
| | - Andrew J Pask
- School of BioSciences, The University of Melbourne, Melbourne, Australia.
| |
Collapse
|
32
|
Rodrigues DADS, Starling MCVM, Barros ALCD, Santos MC, da Silva ES, Viana GCC, Ribeiro LFDS, Simcik MF, Amorim CC. Occurrence of antibiotics, hormones and PFAs in surface water from a Nile tilapia aquaculture facility in a Brazilian hydroelectric reservoir. CHEMOSPHERE 2024; 352:141444. [PMID: 38346513 DOI: 10.1016/j.chemosphere.2024.141444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/09/2024] [Accepted: 02/09/2024] [Indexed: 02/29/2024]
Abstract
This study assessed the occurrence of five antibiotics, three hormones, caffeine, and long and short-chain perfluoroalkyl and polyfluoroalkyl substances (PFASs) in surface water and feedstuff samples obtained from aquaculture cages in Três Marias reservoir in Brazil. This is the first work to evaluate the presence of PFAS in surface water used for aquaculture in Brazil. Solid-phase extraction and low temperature partitioning extraction followed by liquid chromatography coupled to mass spectrometry (LC-MS) were performed to process and analyze surface water samples and feedstuff, respectively. The ecotoxicological risk quotient was calculated for target compounds detected in water. Ciprofloxacin and caffeine were detected in all surface water samples. Pharmaceutical drugs ranged from 0.7 ng L-1 (trimethoprim) to 389.2 ng L -1 (β-estradiol). Estrone (10.24 ng g-1) and β-estradiol (66.20 ng g-1) were also found in feedstuff. Four PFASs (PFOA, PFDoA, PFTeDA, and PFBS) were detected (9.40-15.2 μg L-1) at levels higher than reported in studies conducted worldwide. Ecotoxicological risk assessment indicated high risks for caffeine and PFOA, PFDoA, and PFTeDA with RQ values from 10 to 103. These findings reveal risks to biodiversity, ecosystem integrity and human health considering possible intake of these contaminants by fish consumption due to potential bioaccumulation of these substances. Hence, it is critical to conduct more studies in this direction in Brazil and other low and middle-low-income countries.
Collapse
Affiliation(s)
- Daniel Aparecido da S Rodrigues
- GruPOA - Research Group on Environmental Applications of Advanced Oxidation Processes, Department of Sanitary and Environmental Engineering, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; SIMOA - Intelligent Systems for Environmental Monitoring, Department of Sanitary and Environmental Engineering, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Maria Clara V M Starling
- GruPOA - Research Group on Environmental Applications of Advanced Oxidation Processes, Department of Sanitary and Environmental Engineering, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; SIMOA - Intelligent Systems for Environmental Monitoring, Department of Sanitary and Environmental Engineering, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | - André Luiz C de Barros
- ProAmb - Graduate Program in Environmental Engineering, Department of Environmental Engineering, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil, in Memoriam
| | - Mônica C Santos
- GruPOA - Research Group on Environmental Applications of Advanced Oxidation Processes, Department of Sanitary and Environmental Engineering, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; SIMOA - Intelligent Systems for Environmental Monitoring, Department of Sanitary and Environmental Engineering, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Eloísa Stéphanie da Silva
- GruPOA - Research Group on Environmental Applications of Advanced Oxidation Processes, Department of Sanitary and Environmental Engineering, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Guenther Carlos C Viana
- GruPOA - Research Group on Environmental Applications of Advanced Oxidation Processes, Department of Sanitary and Environmental Engineering, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lara Fabian da S Ribeiro
- GruPOA - Research Group on Environmental Applications of Advanced Oxidation Processes, Department of Sanitary and Environmental Engineering, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Matt F Simcik
- University of Minnesota, School of Public Health, 420 Delaware St SE, MMC 807, Minneapolis, MN, 55455, USA
| | - Camila C Amorim
- GruPOA - Research Group on Environmental Applications of Advanced Oxidation Processes, Department of Sanitary and Environmental Engineering, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; SIMOA - Intelligent Systems for Environmental Monitoring, Department of Sanitary and Environmental Engineering, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
33
|
Ankley GT, Berninger JP, Maloney EM, Olker JH, Schaupp CM, Villeneuve DL, LaLone CA. Linking Mechanistic Effects of Pharmaceuticals and Personal Care Products to Ecologically Relevant Outcomes: A Decade of Progress. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:537-548. [PMID: 35735070 PMCID: PMC11036122 DOI: 10.1002/etc.5416] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/02/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
There are insufficient toxicity data to assess the ecological risks of many pharmaceuticals and personal care products (PPCPs). While data limitations are not uncommon for contaminants of environmental concern, PPCPs are somewhat unique in that an a priori understanding of their biological activities in conjunction with measurements of molecular, biochemical, or histological responses could provide a foundation for understanding mode(s) of action and predicting potential adverse apical effects. Over the past decade significant progress has been made in the development of new approach methodologies (NAMs) to efficiently quantify these types of endpoints using computational models and pathway-based in vitro and in vivo assays. The availability of open-access knowledgebases to curate biological response (including NAM) data and sophisticated bioinformatics tools to help interpret the information also has significantly increased. Finally, advances in the development and implementation of the adverse outcome pathway framework provide the critical conceptual underpinnings needed to translate NAM data into predictions of the ecologically relevant outcomes required by risk assessors and managers. The evolution and convergence of these various data streams, tools, and concepts provides the basis for a fundamental change in how ecological risks of PPCPs can be pragmatically assessed. Environ Toxicol Chem 2024;43:537-548. © 2022 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Gerald T Ankley
- US Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, Minnesota, USA
| | - Jason P Berninger
- US Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, Minnesota, USA
| | - Erin M Maloney
- University of Minnesota-Duluth, Integrated Biological Sciences Program, Duluth, Minnesota, USA
| | - Jennifer H Olker
- US Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, Minnesota, USA
| | | | - Daniel L Villeneuve
- US Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, Minnesota, USA
| | - Carlie A LaLone
- US Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, Minnesota, USA
| |
Collapse
|
34
|
Boizet-Bonhoure B, Déjardin S, Girard M, Durix Q, Poulat F, Philibert P. Adenomyotic Lesions Are Induced in the Mouse Uterus after Exposure to NSAID and EE2 Mixtures at Environmental Doses. Int J Mol Sci 2024; 25:2003. [PMID: 38396681 PMCID: PMC10889173 DOI: 10.3390/ijms25042003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
The aim of this study was to assess the long-term effect of exposure to environmentally relevant doses of non-steroidal anti-inflammatory drugs (NSAIDs; ibuprofen, and diclofenac) and 17β-ethinylestradiol (EE2) on the mouse uterus. NSAID-EE2 mixtures were administered in the drinking water from gestational day 8 until 8 weeks post-birth (i.e., during embryo development, lactation, puberty, and sexual maturity). The incidence of adenomyosis lesions (presence of endometrial glands in the inner myometrium) increased up to 60% in the uterus of 8-week-old exposed females (F1) and to 85% in F2 females (exposed father). Histological analysis revealed aberrant proliferation and apoptosis, vacuolization of epithelial cells, and increased incidence of abnormal glands in the luminal and glandular epithelium in F1 and F2 uteri. Moreover, myofibroblast proportion (alpha-smooth muscle actin (α-SMA) expression analysis) and collagen expression (Picrosirius red stain; a fibrosis hallmark) were increased in F1 and F2 endometrium. Connexin-43 was aberrantly distributed in the endometrial stroma and glands of F1 and F2 uteri. Conversely, uterine 17β-estradiol and progesterone levels were not affected in F1 and F2 females. These findings demonstrated that in mice, chronic exposure to NSAID and EE2 mixtures at environmental doses intergenerationally affects uterine physiology, particularly the endometrium. It may serve as a model to study the pathophysiology of human adenomyosis.
Collapse
Affiliation(s)
- Brigitte Boizet-Bonhoure
- Développement et Pathologie de la Gonade, Institut de Génétique Humaine, Centre National de la Recherche Scientifique, Université de Montpellier UMR9002, 34090 Montpellier, France; (S.D.); (M.G.); (F.P.)
| | - Stéphanie Déjardin
- Développement et Pathologie de la Gonade, Institut de Génétique Humaine, Centre National de la Recherche Scientifique, Université de Montpellier UMR9002, 34090 Montpellier, France; (S.D.); (M.G.); (F.P.)
| | - Mélissa Girard
- Développement et Pathologie de la Gonade, Institut de Génétique Humaine, Centre National de la Recherche Scientifique, Université de Montpellier UMR9002, 34090 Montpellier, France; (S.D.); (M.G.); (F.P.)
| | - Quentin Durix
- IExplore-RAM, Institut de Génomique Fonctionnelle, Centre National de la Recherche Scientifique, INSERM, Université de Montpellier, 34090 Montpellier, France;
| | - Francis Poulat
- Développement et Pathologie de la Gonade, Institut de Génétique Humaine, Centre National de la Recherche Scientifique, Université de Montpellier UMR9002, 34090 Montpellier, France; (S.D.); (M.G.); (F.P.)
| | - Pascal Philibert
- Développement et Pathologie de la Gonade, Institut de Génétique Humaine, Centre National de la Recherche Scientifique, Université de Montpellier UMR9002, 34090 Montpellier, France; (S.D.); (M.G.); (F.P.)
- Laboratoire de Biochimie et Biologie Moléculaire, Hôpital Carémeau, CHU de Nîmes, 30029 Nîmes, France
| |
Collapse
|
35
|
Zapater C, Moreira C, Knigge T, Monsinjon T, Gómez A, Pinto PIS. Evolutionary history and functional characterization of duplicated G protein-coupled estrogen receptors in European sea bass. J Steroid Biochem Mol Biol 2024; 236:106423. [PMID: 37939740 DOI: 10.1016/j.jsbmb.2023.106423] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/29/2023] [Accepted: 11/05/2023] [Indexed: 11/10/2023]
Abstract
Across vertebrates, the numerous estrogenic functions are mainly mediated by nuclear and membrane receptors, including the G protein-coupled estrogen receptor (GPER) that has been mostly associated with rapid non-genomic responses. Although Gper-mediated signalling has been characterized in only few fish species, Gpers in fish appear to present more mechanistic functionalities as those of mammals due to additional gene duplicates. In this study, we ran a thorough investigation of the fish Gper evolutionary history in light of available genomes, we carried out the functional characterization of the two gper gene duplicates of European sea bass (Dicentrarchus labrax) using luciferase reporter gene transactivation assays, validated it with natural and synthetic estrogen agonists/antagonists and applied it to other chemicals of aquaculture and ecotoxicological interest. Phylogenetic and synteny analyses of fish gper1 and gper1-like genes suggest their duplication may have not resulted from the teleost-specific whole genome duplication. We confirmed that both sbsGper isoforms activate the cAMP signalling pathway and respond differentially to distinct estrogenic compounds. Therefore, as observed for nuclear estrogen receptors, both sbsGpers duplicates retain estrogenic activity although they differ in their specificity and potency (Gper1 being more potent and more specific than Gper1-like), suggesting a more conserved role for Gper1 than for Gper1-like. In addition, Gpers were able to respond to estrogenic environmental pollutants known to interfere with estrogen signalling, such as the phytoestrogen genistein and the anti-depressant fluoxetine, a point that can be taken into account in aquatic environment pollution screenings and chemical risk assessment, complementing previous assays for sea bass nuclear estrogen receptors.
Collapse
Affiliation(s)
- Cinta Zapater
- Instituto de Acuicultura Torre de la Sal, CSIC, 12595 Torre de la Sal, Castellón, Spain.
| | - Catarina Moreira
- UMR-I 02 Environmental Stress and Aquatic Biomonitoring (SEBIO), University of Le Havre Normandy, F-76600 Le Havre, France.
| | - Thomas Knigge
- UMR-I 02 Environmental Stress and Aquatic Biomonitoring (SEBIO), University of Le Havre Normandy, F-76600 Le Havre, France.
| | - Tiphaine Monsinjon
- UMR-I 02 Environmental Stress and Aquatic Biomonitoring (SEBIO), University of Le Havre Normandy, F-76600 Le Havre, France.
| | - Ana Gómez
- Instituto de Acuicultura Torre de la Sal, CSIC, 12595 Torre de la Sal, Castellón, Spain.
| | - Patrícia I S Pinto
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, 8005-139 Faro, Portugal.
| |
Collapse
|
36
|
Jeon YS, Sangiovanni J, Boulanger E, Crump D, Liu P, Ewald J, Basu N, Xia J, Hecker M, Head J. Hepatic Transcriptomic Responses to Ethinylestradiol in Embryonic Japanese Quail and Double-Crested Cormorant. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023. [PMID: 38116984 DOI: 10.1002/etc.5811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/15/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
Understanding species differences in sensitivity to toxicants is a critical issue in ecotoxicology. We recently established that double-crested cormorant (DCCO) embryos are more sensitive than Japanese quail (JQ) to the developmental effects of ethinylestradiol (EE2). We explored how this difference in sensitivity between species is reflected at a transcriptomic level. The EE2 was dissolved in dimethyl sulfoxide and injected into the air cell of eggs prior to incubation at nominal concentrations of 0, 3.33, and 33.3 µg/g egg weight. At midincubation (JQ 9 days; DCCO 16 days), livers were collected from five embryos/treatment group for RNA sequencing. Data were processed and analyzed using EcoOmicsAnalyst and ExpressAnalyst. The EE2 exposure dysregulated 238 and 1,987 genes in JQ and DCCO, respectively, with 78 genes in common between the two species. These included classic biomarkers of estrogen exposure such as vitellogenin and apovitellenin. We also report DCCO-specific dysregulation of Phase I/II enzyme-coding genes and species-specific transcriptional ontogeny of vitellogenin-2. Twelve Kyoto Encyclopedia of Genes and Genomes pathways and two EcoToxModules were dysregulated in common in both species including the peroxisome proliferator-activated receptor (PPAR) signaling pathway and fatty acid metabolism. Similar to previously reported differences at the organismal level, DCCO were more responsive to EE2 exposure than JQ at the gene expression level. Our description of differences in transcriptional responses to EE2 in early life stage birds may contribute to a better understanding of the molecular basis for species differences. Environ Toxicol Chem 2024;00:1-12. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Yeon-Seon Jeon
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec, Canada
| | - Jonathan Sangiovanni
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec, Canada
| | - Emily Boulanger
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec, Canada
| | - Doug Crump
- Ecotoxicology and Wildlife Health Division, National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, Ontario, Canada
| | - Peng Liu
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec, Canada
| | - Jessica Ewald
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec, Canada
| | - Niladri Basu
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec, Canada
| | - Jianguo Xia
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec, Canada
| | - Markus Hecker
- School of the Environment and Sustainability and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jessica Head
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
37
|
Philibert P, Stévant I, Déjardin S, Girard M, Sellem E, Durix Q, Messager A, Gonzalez AA, Mialhe X, Pruvost A, Poulat F, Boizet-Bonhoure B. Intergenerational effects on fertility in male and female mice after chronic exposure to environmental doses of NSAIDs and 17α-ethinylestradiol mixtures. Food Chem Toxicol 2023; 182:114085. [PMID: 37844793 DOI: 10.1016/j.fct.2023.114085] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/12/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) and 17α-ethinylestradiol (EE2) are extensively used in human and veterinary medicine. Due to their partial removal by wastewater treatment plants, they are frequent environmental contaminants, particularly in drinking water. Here, we investigated the adverse outcomes of chronic exposure to mixtures of NSAIDs (ibuprofen, 2hydroxy-ibuprofen, diclofenac) and EE2 at two environmentally relevant doses in drinking water, on the reproductive organ development and fertility in F1-exposed male and female mice and in their F2 offspring. In male and female F1 mice, which were exposed to these mixtures, reproductive organ maturation, estrous cyclicity, and spermiogenesis were altered. These defects were observed also in F2 animals, in addition to some specific sperm parameter alterations in F2 males. Transcriptomic analysis revealed significant changes in gene expression patterns and associated pathways implicated in testis and ovarian physiology. Chronic exposure of mice to NSAID and EE2 mixtures at environmental doses intergenerationally affected male and female fertility (i.e. total number of pups and time between litters). Our study provides new insights into the adverse effects of these pharmaceuticals on the reproductive health and will facilitate the implementation of a future regulatory environmental risk assessment of NSAIDs and EE2 for human health.
Collapse
Affiliation(s)
- Pascal Philibert
- Développement et Pathologie de La Gonade, Institut de Génétique Humaine, Centre National de La Recherche Scientifique, Université de Montpellier UMR9002, Montpellier, France; Laboratoire de Biochimie et Biologie Moléculaire, Hôpital Carèmeau, CHU de Nîmes, Nîmes, France.
| | - Isabelle Stévant
- Développement et Pathologie de La Gonade, Institut de Génétique Humaine, Centre National de La Recherche Scientifique, Université de Montpellier UMR9002, Montpellier, France; The Mina and Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, 5290002, Israel.
| | - Stéphanie Déjardin
- Développement et Pathologie de La Gonade, Institut de Génétique Humaine, Centre National de La Recherche Scientifique, Université de Montpellier UMR9002, Montpellier, France.
| | - Mélissa Girard
- Développement et Pathologie de La Gonade, Institut de Génétique Humaine, Centre National de La Recherche Scientifique, Université de Montpellier UMR9002, Montpellier, France
| | - Eli Sellem
- Research and Development Department, Allice, Biology of Reproduction, INRA Domaine de Vilvert, Jouy en Josas, France
| | - Quentin Durix
- IExplore-RAM, Institut de Génomique Fonctionnelle, Centre National de La Recherche Scientifique, INSERM, Université de Montpellier UMR9002, Montpellier, France.
| | - Aurélie Messager
- Département Médicaments et Technologies pour La Santé (DMTS), Université Paris Saclay, CEA, INRAE, SPI, Gif-sur-Yvette, France.
| | | | - Xavier Mialhe
- MGX-Montpellier GenomiX, Univ. Montpellier, CNRS, INSERM, Montpellier, France.
| | - Alain Pruvost
- Département Médicaments et Technologies pour La Santé (DMTS), Université Paris Saclay, CEA, INRAE, SPI, Gif-sur-Yvette, France.
| | - Francis Poulat
- Développement et Pathologie de La Gonade, Institut de Génétique Humaine, Centre National de La Recherche Scientifique, Université de Montpellier UMR9002, Montpellier, France.
| | - Brigitte Boizet-Bonhoure
- Développement et Pathologie de La Gonade, Institut de Génétique Humaine, Centre National de La Recherche Scientifique, Université de Montpellier UMR9002, Montpellier, France.
| |
Collapse
|
38
|
Guo Y, Liang X, Li H, Ye M, Zou H, Yu H, Qi T, Hou L, Liang YQ. Effects of norethindrone on the growth, behavior, and thyroid endocrine system of adult female western mosquitofish (Gambusia affinis). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115630. [PMID: 37890255 DOI: 10.1016/j.ecoenv.2023.115630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 10/29/2023]
Abstract
Progestins are mainly used in pharmacotherapy and animal husbandry and have received increasing attention as they are widely detected in various aquatic ecosystems. In this study, adult female western mosquitofish (Gambusia affinis) were exposed to different concentrations of norethindrone (NET) (solvent control, 5.0 (L), 50.0 (M), and 500.0 (H) ng/L) for 42 days. Behaviors, morphological parameters, histology of the thyroid, thyroid hormone levels (TSH, T3, and T4), and transcriptional levels of nine genes in the hypothalamic-pituitary-thyroid (HPT) axis were examined. The results showed that NET decreased sociality but increased the anxiety of G. affinis. Sociality makes fish tend to cluster, and anxiety may cause G. affinis to reduce exploration of new environments. Female fish showed hyperplasia, hypertrophy, and glial depletion in their thyroid follicular epithelial cells after NET treatment. The plasma levels of TSH and T4 were significantly reduced, but T3 concentrations were significantly increased in the fish from the H group. In addition, the transcripts of genes (tshb, tshr, tg, dio1, dio2, thrb) in the brains of fish in the M and H treatments were significantly stimulated, while those of trh and pax2a were suppressed. Our results suggest that NET may impact key social behaviors in G. affinis and interfere with the entire thyroid endocrine system, probably via affecting the transcriptional expression of upstream regulators in the HPT axis.
Collapse
Affiliation(s)
- Yanfang Guo
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Xiaorou Liang
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Haisheng Li
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Meixin Ye
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Hong Zou
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Hongjun Yu
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Tang Qi
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Liping Hou
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China; Key Laboratory of Conservation and Application in Biodiversity of South China, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong 510006, China.
| | - Yan-Qiu Liang
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
39
|
Wang L, Li A. Ammonia monooxygenase-mediated transformation of 17α-ethinylestradiol: Underlying molecular mechanism. ENVIRONMENTAL RESEARCH 2023; 237:116930. [PMID: 37604224 DOI: 10.1016/j.envres.2023.116930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/08/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
17α-ethinylestradiol (EE2) has received increasing attention as an emerging and difficult-to-remove emerging contaminant in recent years. Ammonia-oxidizing bacteria (AOB) have been reported to be effective in EE2 removal, and ammonia monooxygenase (AMO) is considered as the primary enzyme for EE2 removal. However, the molecular mechanism underlying the transformation of EE2 by AOB and AMO is still unclear. This study investigated the molecular mechanism of EE2 degradation using a combination of experimental and computational simulation methods. The results revealed that ammonia nitrogen was essential for the co-metabolism of EE2 by AOB, and that NH3 bound with CuC (one active site of AMO) to induce a conformational change in AMO, allowing EE2 to bind with the other active site (CuB), and then EE2 underwent biological transformation. These results provide a theoretical basis and a novel research perspective on the removal of ammonia nitrogen and emerging contaminants (e.g., EE2) in wastewater treatment.
Collapse
Affiliation(s)
- Lili Wang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China; Laboratory of Environmental Protection in Water Transport Engineering, Tianjin Research Institute of Water Transport Engineering, Tanggu, Tianjin, 300456, China
| | - Anjie Li
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
40
|
Odinga ES, Chen X, Mbao EO, Waigi MG, Gudda FO, Zhou X, Ling W, Czech B, Oleszczuk P, Abdalmegeed D, Gao Y. Estrogens and xenoestrogen residues in manure-based fertilizers and their potential ecological risks. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118609. [PMID: 37473553 DOI: 10.1016/j.jenvman.2023.118609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/21/2023] [Accepted: 07/08/2023] [Indexed: 07/22/2023]
Abstract
Optimal manure treatment aimed at usage as agricultural soil fertilizers is a prerequisite ecological pollution control strategy. In this work, livestock manure-based fertilizers were collected from 71 animal farms across 14 provinces in China. The contamination levels and potential ecotoxicological risks of residual steroid estrogens (SEs): estrone (E1), estriol (E3), 17α-estradiol (17α-E2), 17β-estradiol (17β-E2) and xenoestrogen (XE) bisphenol A (BPA), were investigated. The results showed that the occurrence frequencies for SEs and XE ranged from 66.67% to 100%, and the mean concentration varied considerably across the study locations. The total content of SEs and XE in Hebei province was the highest, and swine manure-based fertilizers concentrations were higher than the levels reported in other animal fertilizers. Compared with farm level manure, manure-based fertilizers are processed by composting, and the micropollutants quantities are significantly reduced (mean: 87.65 - 534.02 μg/kg). The total estradiol equivalent quantity (EEQ) that might migrate to the soil was estimated to be 1.23 μg/kg. Based on the estimated application rate of manure, 38% of the fertilizers risk quotients exceeded 0.1, indicating medium to high risks pressure on terrestrial organisms. Nonetheless, the estrogenic risk was lower in manure-based fertilizers than in manure. This study highlights the significance of proper treatment of livestock manure and designing an optimal manure fertilization strategy to mitigate the risks posed by SEs and XEs to the agroecosystems.
Collapse
Affiliation(s)
- Emmanuel Stephen Odinga
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuwen Chen
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Evance Omondi Mbao
- Department of Geosciences and the Environment, The Technical University of Kenya, PO Box 52428-00200, Nairobi, Kenya
| | - Michael Gatheru Waigi
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fredrick Owino Gudda
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xian Zhou
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bożena Czech
- Department of Radiochemistry and Environmental Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, Pl. M. Curie-Skłodowskiej 3/541 20-031, Lublin, Poland
| | - Patryk Oleszczuk
- Department of Radiochemistry and Environmental Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, Pl. M. Curie-Skłodowskiej 3/541 20-031, Lublin, Poland
| | - Dyaaaldin Abdalmegeed
- Department of Botany and Microbiology, Faculty of Science, Tanta University, Tanta, Egypt
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
41
|
Xiao Y, Han D, Currell M, Song X, Zhang Y. Review of Endocrine Disrupting Compounds (EDCs) in China's water environments: Implications for environmental fate, transport and health risks. WATER RESEARCH 2023; 245:120645. [PMID: 37769420 DOI: 10.1016/j.watres.2023.120645] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 08/25/2023] [Accepted: 09/17/2023] [Indexed: 09/30/2023]
Abstract
Endocrine Disrupting Compounds (EDCs) are ubiquitous in soil and water system and have become a great issue of environmental and public health concern since the 1990s. However, the occurrence and mechanism(s) of EDCs' migration and transformation at the watershed scale are poorly understood. A review of EDCs pollution in China's major watersheds (and comparison to other countries) has been carried out to better assess these issues and associated ecological risks, compiling a large amount of data. Comparing the distribution characteristics of EDCs in water environments around the world and analyzing various measures and systems for managing EDCs internationally, the significant insights of the review are: 1) There are significant spatial differences and concentration variations of EDCs in surface water and groundwater in China, yet all regions present non-negligible ecological risks. 2) The hyporheic zone, as a transitional zone of surface water and groundwater interaction, can effectively adsorb and degrade EDCs and prevent the migration of high concentrations of EDCs from surface water to groundwater. This suggests that more attention needs to be paid to the role played by critical zones in water environments, when considering the removal of EDCs in water environments. 3) In China, there is a lack of comprehensive and effective regulations to limit and reduce EDCs generated during human activities and their discharge into the water environment. 4) To prevent the deterioration of surface water and groundwater quality, the monitoring and management of EDCs in water environments should be strengthened in China. This review provides a thorough survey of scientifically valid data and recommendations for the development of policies for the management of EDCs in China's water environment.
Collapse
Affiliation(s)
- Yi Xiao
- Key Laboratory of Water Cycle & Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongmei Han
- Key Laboratory of Water Cycle & Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Matthew Currell
- School of Engineering, RMIT University, Melbourne, VIC, 3001, SA; Australian Rivers Institute, Griffith University, Nathan, Queensland, 4111, SA
| | - Xianfang Song
- Key Laboratory of Water Cycle & Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yonghong Zhang
- Chinese Academy of Surveying and Mapping, Beijing, 100036, China
| |
Collapse
|
42
|
Pham TH, Lee GH, Jin SW, Lee SY, Han EH, Kim ND, Choi CY, Jeong GS, Ki Lee S, Kim HS, Jeong HG. Sesamin ameliorates lipotoxicity and lipid accumulation through the activation of the estrogen receptor alpha signaling pathway. Biochem Pharmacol 2023; 216:115768. [PMID: 37652106 DOI: 10.1016/j.bcp.2023.115768] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has been linked to fat accumulation in the liver and lipid metabolism imbalance. Sesamin, a lignan commonly found in sesame seed oil, possesses antioxidant, anti-inflammatory, and anticancer properties. However, the precise mechanisms by which sesamin prevents hepatic steatosis are not well understood. This study aimed to explore the molecular mechanisms by which sesamin may improve lipid metabolism dysregulation. A in vitro hepatic steatosis model was established by exposing HepG2 cells to palmitate sodium. The results showed that sesamin effectively mitigated lipotoxicity and reduced reactive oxygen species production. Additionally, sesamin suppressed lipid accumulation by regulating key factors involved in lipogenesis and lipolysis, such as fatty acid synthase (FASN), sterol regulatory element-binding protein 1c (SREBP-1c), forkhead box protein O-1, and adipose triglyceride lipase. Molecular docking results indicated that sesamin could bind to estrogen receptor α (ERα) and reduce FASN and SREBP-1c expression via the Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ)/AMP-activated protein kinase (AMPK) signaling pathway. Sesamin attenuated palmitate-induced lipotoxicity and regulated hepatic lipid metabolism in HepG2 cells by activating the ERα/CaMKKβ/AMPK signaling pathway. These findings suggest that sesamin can improve lipid metabolism disorders and is a promising candidate for treating hepatic steatosis.
Collapse
Affiliation(s)
- Thi Hoa Pham
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea; Molecular Microbiology Lab, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Gi Ho Lee
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Sun Woo Jin
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Seung Yeon Lee
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Eun Hee Han
- Drug & Disease Target Research Team, Division of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Cheongju, Republic of Korea
| | - Nam Doo Kim
- VORONOI BIO Inc., Incheon, Republic of Korea
| | - Chul Yung Choi
- Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju, Republic of Korea
| | - Gil-Saeng Jeong
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Sang Ki Lee
- Department of Sport Science, College of Natural Science, Chungnam National University, Daejeon, Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea.
| | - Hye Gwang Jeong
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
43
|
Enns D, Cunze S, Baker NJ, Oehlmann J, Jourdan J. Flushing away the future: The effects of wastewater treatment plants on aquatic invertebrates. WATER RESEARCH 2023; 243:120388. [PMID: 37517151 DOI: 10.1016/j.watres.2023.120388] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/27/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023]
Abstract
Wastewater treatment plants (WWTP) are essential infrastructure in our developing world. However, with the development and release of novel entities and without modern upgrades, they are ineffective at fully removing micropollutants before treated effluents are released back into aquatic environments. Thus, WWTPs may represent additional point source impacts to freshwater environments, further pressuring aquatic fauna and already vulnerable insect communities. Previous studies - mostly focusing on single WWTPs - have shown general trends of freshwater invertebrate communities becoming dominated by pollution tolerant taxa. To expand on these findings, the current study is the first to comprehensively investigate data on the effects of 170 WWTPs on invertebrate taxonomic composition. We compared data for several diversity and pollution indices, as well as the taxonomic composition both upstream and downstream of the WWTPs (366 sampling sites). In terms of abundance, the three most frequent and negatively impacted orders were the Plecoptera, Trichoptera and Gastropoda, while the Turbellaria, Hirudinea and Crustacea increased in abundance. Although strong changes in community composition were observed between upstream and downstream sites (mean species turnover of 61%), commonly used diversity indices were not sensitive to these changes, highlighting their potential inadequacy in accurately assessing ecological health. Our results indicate that WWTPs change downstream conditions in favour of pollution tolerant taxa to the detriment of sensitive taxa. Order-level taxonomic responses can be informative but should be interpreted with caution, since they can be driven by a few taxa, or opposing responses of species in the same group can result in an overall low order-level response. Upgrading WWTPs via additional treatment steps or merging may be beneficial, provided upstream sections are unimpacted and/or are in a good chemical and structural condition.
Collapse
Affiliation(s)
- Daniel Enns
- Goethe University Frankfurt, Department Aquatic Ecotoxicology, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany; Kompetenzzentrum Wasser Hessen, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany.
| | - Sarah Cunze
- Goethe University Frankfurt, Department of Integrative Parasitology and Zoophysiology, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany
| | - Nathan Jay Baker
- Nature Research Centre, Institute of Ecology, Akademijos Str. 2, LT-08412 Vilnius, Lithuania
| | - Jörg Oehlmann
- Goethe University Frankfurt, Department Aquatic Ecotoxicology, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany; Kompetenzzentrum Wasser Hessen, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany
| | - Jonas Jourdan
- Goethe University Frankfurt, Department Aquatic Ecotoxicology, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany; Kompetenzzentrum Wasser Hessen, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany.
| |
Collapse
|
44
|
Rogers RE, Chai S, Pask AJ, Mattiske DM. Prenatal exposure to diethylstilbestrol has long-lasting, transgenerational impacts on fertility and reproductive development. Toxicol Sci 2023; 195:53-60. [PMID: 37471692 PMCID: PMC10464516 DOI: 10.1093/toxsci/kfad066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023] Open
Abstract
Significant decreases in fertility have been observed over the past 50 years, with female conception rates dropping by 44% and male sperm counts decreasing by over 50%. This dramatic decrease in fertility can be attributed in part to our increasing exposure to endocrine disrupting chemicals (EDCs). Diethylstilbestrol (DES) is an estrogenic EDC that was prescribed to millions of pregnant women between 1940 and 1970 and resulted in detrimental reproductive effects in the offspring that were exposed in utero. Women who were exposed to DES in utero experienced higher rates of infertility, pregnancy complications, and reproductive cancers. Alarmingly, there is evidence to suggest that these effects may persist in the grandchildren and great grandchildren of exposed women. To define the transgenerational reproductive impacts in females following exposure to DES, gestating mice were exposed to DES and the effects monitored in the female descendants across 3 generations. There was a trend for reduced pregnancy rate and fertility index seen across the generations and moreover, the anogenital distance (AGD) was significantly reduced up until the third, unexposed generation. The onset of puberty was also significantly affected, with the timing of vaginal opening occurring significantly earlier in DES descendants. These results indicate a transgenerational effect of DES on multiple reproductive parameters including fertility, timing of puberty, and AGD. These data have significant implications for more than 50 million DES descendants worldwide as well as raising concerns for the ongoing health impacts caused by exposures to other estrogenic EDCs which are pervasive in our environment.
Collapse
Affiliation(s)
- Rachael E Rogers
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Shuyi Chai
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Andrew J Pask
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Deidre M Mattiske
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
45
|
Jiang H, Li QY, Sun JX, Huang YY, Zhang P, Mao YF, Qu YF, Liu XL. Studies on competitive adsorption characteristics of bisphenol A and 17α-ethinylestradiol on thermoplastic polyurethane by site energy distribution theory. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:5181-5194. [PMID: 37093366 DOI: 10.1007/s10653-023-01566-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 04/02/2023] [Indexed: 05/03/2023]
Abstract
Compound pollution of microplastics and estrogens is a growing ecotoxicological problem in aquatic environments. The adsorption isothermal properties of bisphenol A (BPA) and 17α-ethinyl estradiol (EE2) on polyamide (TPU) in monosolute and bisolute systems were studied. Under the same adsorption concentration (1-4 mg L-1), EE2 had a greater adsorption capacity than BPA in the monsolute system. Compared to the energy distribution features of the adsorption sites of EE2 and BPA, the BPA adsorption sites were located in the higher energy area and were more evenly distributed than those of EE2, while the quantity of BPA adsorption sites was less than that of EE2. In the bisolute system, the average site energy, site energy inhomogeneity, and adsorption site numbers of BPA increased by 1.674, -17.166, and 16.793%, respectively. In comparison, the average site energy, site energy inhomogeneity, and adsorption sites numbers of EE2 increased by 2.267, 4.416, and 8.585%, respectively. The results showed that BPA and EE2 had a cooperative effect on the competitive adsorption of TPU. XPS analysis showed that BPA and EE2 had electron transfer on TPU, although the chemisorption effects and hydrogen bonds between BPA and TPU were more significant. Comparing the changes in the relative functional group content of TPU in monosolute and bisolute systems, BPA and EE2 were synergistically absorbed on TPU. This study can provide a theoretical reference for the study of competitive adsorption between coexisting organic pollutants.
Collapse
Affiliation(s)
- Hui Jiang
- National Engineering Research Center for Inland Waterway Regulation, Chongqing Jiaotong University, Chongqing, 400074, China
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
- Chongqing Research Institute, China Coal Research Institute, Chongqing, 400037, China
| | - Qiao-Ying Li
- National Engineering Research Center for Inland Waterway Regulation, Chongqing Jiaotong University, Chongqing, 400074, China
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Jiao-Xia Sun
- National Engineering Research Center for Inland Waterway Regulation, Chongqing Jiaotong University, Chongqing, 400074, China
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Yuan-Yuan Huang
- National Engineering Research Center for Inland Waterway Regulation, Chongqing Jiaotong University, Chongqing, 400074, China
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
- Chongqing Academy of Science and Technology, Chongqing, 401329, China
| | - Peng Zhang
- Chongqing Municipal Sanitation Inspection Center, Chongqing, 401121, China
| | - Yu-Feng Mao
- Chongqing Municipal Sanitation Inspection Center, Chongqing, 401121, China
| | - Ying-Fang Qu
- Chongqing Municipal Sanitation Inspection Center, Chongqing, 401121, China
| | - Xiu-Li Liu
- National Engineering Research Center for Inland Waterway Regulation, Chongqing Jiaotong University, Chongqing, 400074, China.
- Bijie City Real Estate exchange, Guizhou, 551700, China.
| |
Collapse
|
46
|
Durcik M, Grobin A, Roškar R, Trontelj J, Peterlin Mašič L. Estrogenic potency of endocrine disrupting chemicals and their mixtures detected in environmental waters and wastewaters. CHEMOSPHERE 2023; 330:138712. [PMID: 37068617 DOI: 10.1016/j.chemosphere.2023.138712] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/03/2023] [Accepted: 04/14/2023] [Indexed: 05/14/2023]
Abstract
Endocrine disrupting chemicals such as natural and synthetic steroid hormones and bisphenols are among the most important pollutants in the aquatic environment. We performed an environmental chemical analysis of five Slovenian water samples, two rivers, one groundwater, and the influent and effluent of wastewater treatment plants, with a highly sensitive analysis of twenty-five endocrine-disrupting compounds belonging to the groups of natural hormones, synthetic hormones, and bisphenols. Since these compounds are simultaneously present in the environment, it is important to study their individual effects as well as the effects of mixtures. We investigated in vitro the estrogenic potency of selected natural and synthetic steroid hormones and bisphenols detected in surface, ground and waste water in Slovenia using the OECD-validated transactivation assay on the cell line Hela9903. We predicted their mixture effects using the concentration addition model and compared them with experimentally determined values. Two mixing designs were used: a balanced design in which chemicals were combined in proportion to their individual EC50 values, and an unbalanced design with compounds in proportion to their measured concentrations in the environmental samples. The estrogenic effects of the experimental mixtures followed the concentration addition model. Real water samples exhibited weaker estrogenic effects, showing the great heterogeneity of the real water samples.
Collapse
Affiliation(s)
- Martina Durcik
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Andrej Grobin
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Robert Roškar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Jurij Trontelj
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000, Ljubljana, Slovenia.
| | - Lucija Peterlin Mašič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000, Ljubljana, Slovenia.
| |
Collapse
|
47
|
Prakash C, Kumar V, Chaturvedi V. Efficient removal of endocrine disrupting compounds 17 α-ethynyl estradiol and 17 β-estradiol by Enterobacter sp. strain BHUBP7 and elucidation of the degradation pathway by HRAMS analysis. World J Microbiol Biotechnol 2023; 39:218. [PMID: 37269502 DOI: 10.1007/s11274-023-03662-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/23/2023] [Indexed: 06/05/2023]
Abstract
Owing to the increased population and their overuse, estrogens are being detected in the environment at alarming levels. They act as endocrine disrupting compounds (EDC's) posing adverse effects on animals and humans. In this study, a strain belonging to Enterobacter sp. strain BHUBP7 was recovered from a Sewage Treatment Plant (STP) situated in Varanasi city, U.P., India, and was capable of metabolizing both 17 α-Ethynylestradiol (EE2) and 17 β-Estradiol (E2) separately as a sole carbon source. The strain BHUBP7 exhibited high rates of E2 degradation as compared to EE2 degradation. The degradation of E2 (10 mg/L) was 94.3% after four days of incubation, whereas the degradation of EE2 (10 mg/L) under similar conditions was 98% after seven days of incubation. The kinetics of EE2 and E2 degradation fitted well with the first-order reaction rate. FTIR analysis revealed the involvement of functional groups like C = O, C-C, C-OH during the degradation process. The metabolites generated during degradation of EE2 and E2 were identified using HRAMS and a plausible pathway was elucidated. It was observed that metabolism of both E2 and EE2 proceeded with the formation of estrone, which was then hydroxylated to 4-hydroxy estrone, followed by ring opening at the C4-C5 position, and was further metabolized by the 4,5 seco pathway leading to the formation of 3-(7a-methyl-1,5-dioxooctahydro-1H-inden-4-yl) propanoic acid (HIP). It is the first report on the complete pathway of EE2 and E2 degradation in Enterobacter sp. strain BHUBP7. Moreover, the formation of Reactive Oxygen Species (ROS) during the degradation of EE2 and E2 was observed. It was concluded that both hormones elicited the generation of oxidative stress in the bacterium during the degradation process.
Collapse
Affiliation(s)
- Chandra Prakash
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221 005, India
| | - Vivek Kumar
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221 005, India
| | - Venkatesh Chaturvedi
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221 005, India.
| |
Collapse
|
48
|
Korkmaz NE, Caglar NB, Aksu A, Unsal T, Balcıoglu EB, Cavus Arslan H, Demirel N. Occurrence, bioconcentration, and human health risks of pharmaceuticals in biota in the Sea of Marmara, Türkiye. CHEMOSPHERE 2023; 325:138296. [PMID: 36898445 DOI: 10.1016/j.chemosphere.2023.138296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
The presence, bioconcentration, and health risk via seafood consumption of 11 pharmaceutical compounds belonging to different therapeutic groups (anti-inflammatory, antiepileptic, lipid regulators, and hormones) were investigated in the muscle tissues of fish and the meat of shrimp in the Sea of Marmara. Six biota species (Merlangius merlangus, Trachurus meditterraneus, Serranus hepatus, Pomatomus saltatrix, Parapenaeus longirostris, Spratus sprattus) were collected from the five stations in October and April 2019. Ultrasonic extraction method followed by solid phase extraction was used for extraction of pharmaceutical compounds from biota samples and then analyzed using high-performance liquid chromatography. Of the 11 compounds, 10 were detected in biota species. Ibuprofen was the most frequently detected pharmaceutical in the biota tissues at high concentrations (<3.0-1225 ng/g, dw). The other widely detected compounds were fenoprofen (<3.6-323 ng/g, dw), gemfibrozil (<3.2-480 ng/g, dw), 17α-ethynylestradiol (<2.0-462 ng/g, dw), and carbamazepine (<7.6-222 ng/g, dw). The bioconcentration factors of the selected pharmaceuticals calculated in various aquatic organisms ranged from 9 to 2324 L/kg. The estimated daily intakes of anti-inflammatories, antiepileptics, lipid regulators, and hormones via seafood consumption were 0.37-568, 1.1-324, 8.5-197, 3-340 ng/kg bw. Day, respectively. Based on hazard quotients, estrone, 17β-estradiol, and 17α-ethynylestradiol may pose a health risk to humans through the consumption of this seafood.
Collapse
Affiliation(s)
- Nagihan E Korkmaz
- Istanbul University, Institute of Marine Sciences and Management, Department of Chemical Oceanography, Istanbul, Turkey
| | - Nuray Balkis Caglar
- Istanbul University, Institute of Marine Sciences and Management, Department of Chemical Oceanography, Istanbul, Turkey.
| | - Abdullah Aksu
- Istanbul University, Institute of Marine Sciences and Management, Department of Chemical Oceanography, Istanbul, Turkey
| | - Tuba Unsal
- Istanbul University, Institute of Marine Sciences and Management, Department of Chemical Oceanography, Istanbul, Turkey
| | - Esra Billur Balcıoglu
- Istanbul University, Institute of Marine Sciences and Management, Department of Chemical Oceanography, Istanbul, Turkey
| | - Hande Cavus Arslan
- Halic University, Department of Industrial Engineering, Istanbul, Turkey
| | - Nazli Demirel
- Istanbul University, Institute of Marine Sciences and Management, Department of Physical Oceanography and Marine Biology, Istanbul, Turkey
| |
Collapse
|
49
|
Baekelandt S, Leroux N, Burattin L, Gérard C, Delierneux C, Robert JB, Cornet V, Kestemont P. Estetrol has a lower impact than 17α-ethinylestradiol on the reproductive capacity of zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 259:106505. [PMID: 37058791 DOI: 10.1016/j.aquatox.2023.106505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 05/15/2023]
Abstract
Natural and synthetic oestrogens are commonly found in aquatic ecosystems. The synthetic oestrogen 17α-ethinylestradiol (EE2) is widely used in oral contraceptives and its ecotoxicological effects on aquatic organisms have been widely reported. The natural oestrogen estetrol (E4) was recently approved for use in a new combined oral contraceptive and, after therapeutic use, is likely to be found in the aquatic environment. However, its potential effects on non-target species such as fish is unknown. In order to characterize and compare the endocrine disruptive potential of E4 with EE2, zebrafish (Danio rerio) were exposed to E4 or EE2 in a fish short-term reproduction assay conducted according to OECD Test Guideline 229. Sexually mature male and female fish were exposed to a range of concentrations, including environmentally relevant concentrations of E4 and EE2, for 21 days. Endpoints included fecundity, fertilization success, gonad histopathology, head/tail vitellogenin concentrations, as well as transcriptional analysis of genes related to ovarian sex steroid hormones synthesis. Our data confirmed the strong impact of EE2 on several parameters including an inhibition of fecundity, an induction of vitellogenin both in male and female fish, an alteration of gonadal structures and the modulation of genes involved in sex steroid hormone synthesis in female fish. In contrast, only few significant effects were observed with E4 with no impact on fecundity. The results suggest that the natural oestrogen, E4, presents a more favorable environmental profile than EE2 and is less likely to affect fish reproductive capacity.
Collapse
Affiliation(s)
- Sébastien Baekelandt
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, B-5000, Belgium.
| | - Nathalie Leroux
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, B-5000, Belgium
| | - Laura Burattin
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, B-5000, Belgium
| | - Céline Gérard
- Estetra SRL, an affiliated company of Mithra Pharmaceuticals, Rue Saint-Georges 5, Liège 4000, Belgium
| | - Céline Delierneux
- Estetra SRL, an affiliated company of Mithra Pharmaceuticals, Rue Saint-Georges 5, Liège 4000, Belgium
| | - Jean-Baptiste Robert
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, B-5000, Belgium
| | - Valérie Cornet
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, B-5000, Belgium
| | - Patrick Kestemont
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, B-5000, Belgium
| |
Collapse
|
50
|
Razekenari AM, Fereidouni AE, Movahedinia A, Neyshabouri EZ. Impacts of sublethal concentrations of 17 α-ethinylestradiol (EE2) on growth, reproductive performance, and survival in red cherry shrimp Neocaridina davidi (Crustacea, Atyidae) during consecutive spawnings. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 259:106519. [PMID: 37061420 DOI: 10.1016/j.aquatox.2023.106519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 03/18/2023] [Accepted: 04/02/2023] [Indexed: 05/15/2023]
Abstract
This study was conducted for the first time to investigate the long-term impacts of sublethal concentrations of 17 α-ethinylestradiol (EE2) on growth, survival, and reproductive performances in a model shrimp, the red cherry (Neocaridina davidi), females during five successive spawning steps for 7.5 months. Females were distributed in eighteen aquariums and continuously exposed to EE2 at six nominal concentrations of 0 (control), 0.02, 0.2, 2, 20, and 200 μg/L. Growth indices increased up to 0.2 μg/L and then sharply declined up to 200 μg/L. Most reproductive indices significantly decreased at levels > 0.02-0.2 μg/L with increasing EE2 levels. The highest absolute, relative, and actual fecundity values were recorded in the control, with the lowest value at 200 μg/L. With increasing EE2 levels, mean egg volume showed an increasing trend from the third spawning event onwards. Except for the time required to reach the first spawning, inter-spawning intervals considerably decreased with increasing EE2 levels at > 0.2 μg/L, especially from the third spawning stage onwards. Survival of exposed females significantly decreased with increasing EE2 levels. Unlike the body size, the juvenile's survival rates in all exposed treatments were considerably lower than the control. Females at concentrations 0.02-0.2 μg/L gained more body weight and length but produced fewer eggs with lower hatching percentages during five consecutive spawns. The results suggest that EE2 depending on the concentrations can cause unbalanced growth, reduce reproductive performances, especially from the third stage of spawning onwards, and reduce survival rates in brooders and subsequent offspring. In terms of growth, survival, and reproductive indices over successive spawns in ecotoxicology studies, the concentrations of 0.02-0.2 μg/L can be considered as chronic levels, but higher levels may have detrimental effects.
Collapse
Affiliation(s)
- Asiyeh Mohammadian Razekenari
- Faculty of Animal Sciences and Fisheries, Sari Agricultural Sciences and Natural Resources University (SANRU), Sari, Iran
| | - Abolghasem Esmaeili Fereidouni
- Faculty of Animal Sciences and Fisheries, Fisheries Department, Sari Agricultural Sciences and Natural Resources University (SANRU), Sari, Iran.
| | - Abdolali Movahedinia
- Faculty of Marine and Oceanic Sciences, University of Mazandaran, Mazandaran, Iran
| | - Ebrahim Zabihi Neyshabouri
- Faculty of Medical Sciences, Pharmacological and Toxicological Educational Group, Babol University of Medical Sciences, Babol University, Babol, Iran
| |
Collapse
|