1
|
Hou J, Wang L, Wang J, Chen L, Han B, Yang T, Liu W. Insights on common fungicides: A national survey on farmland soils from Mainland China. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138177. [PMID: 40199079 DOI: 10.1016/j.jhazmat.2025.138177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/15/2025] [Accepted: 04/03/2025] [Indexed: 04/10/2025]
Abstract
Fungicides are a growing concern owing to their ecological and human health threats. In China, which is a large fungicide-consuming country, only a few provincial studies have reported several fungicide residues in agricultural soils. Additionally, terrestrial ecological risk assessments of pesticides are limited to the single species. This study showed that fungicides were commonly found in agricultural soils in mainland China, and the Σ13fungicides concentrations ranged from 0.0548 to 3183 μg/kg, with the major contributing component being difenoconazole. Spatial variation in fungicide concentrations was significant, with the highest concentrations observed in Southern China. The Σ13fungicides concentration was higher in soils covered with plastic films compared to uncovered soils, possibly because microplastics from agro-film sources promote fungicide retention in the soil. Among the crop types, the highest fungicide residues were found in soils planted with fruits. In addition, this study was the first to use the probabilistic species sensitivity distribution (pSSD) approach to deduce the predicted no-effect concentrations of major fungicides as terrestrial safety thresholds. Particularly, soil texture conditions may influence the hazard assessment of fungicides. Finally, from the species taxa perspective, the proportions of ecological risks of carbendazim and tebuconazole in agricultural soils in China were 4.3 % and 5.9 %, respectively.
Collapse
Affiliation(s)
- Jie Hou
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - LiXi Wang
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - JinZe Wang
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - LiYuan Chen
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China; Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, PR China
| | - BingJun Han
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Tong Yang
- Department of Civil Engineering, McGill University, Montreal, Quebec H3A 0C5, Canada
| | - WenXin Liu
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China.
| |
Collapse
|
2
|
Williams-Clayson AM, Vane CH, Jones MD, Thomas R, Kim AW, Taylor C, Beriro DJ. Characterisation of former manufactured gas plant soils using parent and alkylated polycyclic aromatic hydrocarbons and Rock-Eval(6) pyrolysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 339:122658. [PMID: 37778490 DOI: 10.1016/j.envpol.2023.122658] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/11/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
Soils sampled from 10 former manufactured gas plants (MGP) in the UK were investigated using gas chromatography mass spectrometry (GC-MS/MS) and Rock-Eval (6) Pyrolysis (RE). RE is a screening tool used to characterise bulk organic matter in soils via the release of carbon compounds during pyrolysis and oxidation. Both the distributions and concentrations of 30 parent and 21 alkylated polycyclic aromatic hydrocarbons (PAHs) and the parameters of RE were analysed to establish relationships between soils and the MGP processes history. Principal component analysis (PCA) using the PAHs distributions and RE parameters can assist with differentiating between MGP processes. MGP processes utilizing oil provided the clearest results, attributed to petrogenic signatures with high proportions of low molecular weight PAHs. Processes using lower temperature processes were distinguished by higher proportions of high molecular weight PAHs. RE parameters alone were unable to distinguish MGP processes but showed potential in estimating the lability and thus the amount of PAH that could be released from soils. This research provides new insights that may be useful in understanding and characterising the risks posed to human health from PAHs in soils.
Collapse
|
3
|
Feng Z, Yang Z, Yang S, Xiong H, Ning Y, Wang C, Li Y. Current status and future challenges of chlorobenzenes pollution in soil and groundwater (CBsPSG) in the twenty-first century: a bibliometric analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:111748-111765. [PMID: 37843707 DOI: 10.1007/s11356-023-29956-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023]
Abstract
The global industrial structure had undertaken significant changes since the twenty-first century, making a severe problem of chlorobenzene pollution in soil and groundwater (CBsPSG). CBsPSG receives increasing attention due to the high toxicity, persistence, and bioaccumulation of chlorobenzenes. To date, despite the gravity of this issue, no bibliometric analysis (BA) of CBsPSG does exist. This study fills up the gap by conducting a BA of 395 articles related to CBsPSG from the Web of Science Core Collection database using CiteSpace. Based on a comprehensive analysis of various aspects, including time-related, related disciplines, keywords, journal contribution, author productivity, and institute and country distribution, the status, development, and hotspots of research in the field were shown visually and statistically. Moreover, this study has also delved into the environmental behavior and remediation techniques of CBsPSG. In addition, four challenges (unequal research development, insufficient cooperation, deeply mechanism research, and developing new technologies) have been identified, and corresponding suggestions have been proposed for the future development of research in the field. Afterwards, the limitations of BA were discussed. This work provides a powerful insight into CBsPSG, enabling to quickly identify the hotspot and direction of future studies by relevant researchers.
Collapse
Affiliation(s)
- Zhi Feng
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Zhe Yang
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Sen Yang
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Hanxiang Xiong
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Yu Ning
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Changxiang Wang
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Yilian Li
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China.
| |
Collapse
|
4
|
Ukalska-Jaruga A, Bejger R, Smreczak B, Weber J, Mielnik L, Jerzykiewicz M, Ćwieląg-Piasecka I, Jamroz E, Debicka M, Kocowicz A, Bekier J. The Interaction of Pesticides with Humin Fractions and Their Potential Impact on Non-Extractable Residue Formation. Molecules 2023; 28:7146. [PMID: 37894625 PMCID: PMC10609562 DOI: 10.3390/molecules28207146] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/03/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
The constant influx of pesticides into soils is a key environmental issue in terms of their potential retention in the soil, thus reducing their negative impact on the environment. Soil organic matter (SOM) is an important factor influencing the environmental fate of these substances. Therefore, the aim of this research was to assess the chemical behavior of pesticides (flufenacet, pendimethalin, α-cypermethrin, metazachlor, acetamiprid) toward stable soil humin fractions (HNs) as a main factor affecting the formation of non-extractable residues of agrochemicals in soil. This research was conducted as a batch experiment according to OECD Guideline 106. For this purpose, HNs were isolated from eight soils with different physicochemical properties (clay content = 16-47%, pHKCl = 5.6-7.7, TOC = 13.3-49.7 g·kg-1, TN = 1.06-2.90 g·kg-1, TOC/TN = 11.4-13.7) to reflect the various processes of their formation. The extraction was carried out through the sequential separation of humic acids with 0.1 M NaOH, and then the digestion of the remaining mineral fraction with 10% HF/HCl. The pesticide concentrations were detected using GC-MS/MS. The pesticides were characterized based on the different sorption rates to HNs, according to the overall trend: metazachlor (95% of absorbed compound) > acetamiprid (94% of absorbed compound) > cypermethrin (63% of partitioning compound) > flufenacet (39% of partitioning compound) > pendimethalin (28% of partitioning compound). Cypermethrin and metazachlor exhibited the highest saturation dynamic, while the other agrochemicals were much more slowly attracted by the HNs. The obtained sorption kinetic data were congruous to the pseudo-first-order and pseudo-second-order models related to the surface adsorption and interparticle diffusion isotherm. The conducted research showed that the processes of pesticide sorption, apart from physicochemical phenomena, are also affected by the properties of the pollutants themselves (polarity, KOC) and the soil properties (SOM content, clay content, and pHKCl).
Collapse
Affiliation(s)
- Aleksandra Ukalska-Jaruga
- Department of Soil Science Erosion and Land Protection, Institute of Soil Science and Plant Cultivation—State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland;
| | - Romualda Bejger
- Department of Bioengineering, West Pomeranian University of Technology in Szczecin, Papieża Pawła VI/3, 71-459 Szczecin, Poland;
| | - Bożena Smreczak
- Department of Soil Science Erosion and Land Protection, Institute of Soil Science and Plant Cultivation—State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland;
| | - Jerzy Weber
- Institute of Soil Science, Plant Nutrition and Environmental Protection, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland; (J.W.); (I.Ć.-P.); (E.J.); (M.D.); (A.K.); (J.B.)
| | - Lilla Mielnik
- Department of Bioengineering, West Pomeranian University of Technology in Szczecin, Papieża Pawła VI/3, 71-459 Szczecin, Poland;
| | | | - Irmina Ćwieląg-Piasecka
- Institute of Soil Science, Plant Nutrition and Environmental Protection, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland; (J.W.); (I.Ć.-P.); (E.J.); (M.D.); (A.K.); (J.B.)
| | - Elżbieta Jamroz
- Institute of Soil Science, Plant Nutrition and Environmental Protection, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland; (J.W.); (I.Ć.-P.); (E.J.); (M.D.); (A.K.); (J.B.)
| | - Magdalena Debicka
- Institute of Soil Science, Plant Nutrition and Environmental Protection, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland; (J.W.); (I.Ć.-P.); (E.J.); (M.D.); (A.K.); (J.B.)
| | - Andrzej Kocowicz
- Institute of Soil Science, Plant Nutrition and Environmental Protection, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland; (J.W.); (I.Ć.-P.); (E.J.); (M.D.); (A.K.); (J.B.)
| | - Jakub Bekier
- Institute of Soil Science, Plant Nutrition and Environmental Protection, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland; (J.W.); (I.Ć.-P.); (E.J.); (M.D.); (A.K.); (J.B.)
| |
Collapse
|
5
|
Chen HY, Tian YX, Cai YX, Liu QY, Ma J, Wei Y, Yang AF. A 50-year systemic review of bioavailability application in Soil environmental criteria and risk assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122272. [PMID: 37506806 DOI: 10.1016/j.envpol.2023.122272] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/07/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Bioavailability has become a critical factor in improving ecological risk assessment and environmental remediation efficiency in contaminated soil research. However, the soil environmental quality standards and risk assessment procedures used in most countries are still based on the total amount of pollutants for lacking sufficient understanding of the exposure pathways and action mechanisms of pollutants. we collected relevant literature from the Web of Science database, spanning the period from 1950 to 2021 by using Citespace to analyze the scientific development of bioavailability. As of January 09, 2022, the database contained 118,813 publications on bioavailability. The review summarizes the progress in bioavailability research and emerging trends, including exploring advanced analytical techniques, advancing modeling approaches, and integrating interdisciplinary approaches to better understand the fate and behavior of pollutants in complex environmental matrices. In particular, the review emphasizes the need for better integration of bioavailability concepts into soil environmental reference, risk assessment procedures, and environmental remediation strategies. Overall, this review emphasized the necessity of incorporating the concept of bioavailability into soil environmental reference, risk assessment procedures, and environmental remediation strategies.
Collapse
Affiliation(s)
- H Y Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Y X Tian
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Y X Cai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Q Y Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - J Ma
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Y Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - A F Yang
- Hainan Research Academy of Environmental Sciences, Haikou, 570100, China.
| |
Collapse
|
6
|
Lara-Moreno A, Merchán F, Morillo E, Zampolli J, Di Gennaro P, Villaverde J. Genome analysis for the identification of genes involved in phenanthrene biodegradation pathway in Stenotrophomonas indicatrix CPHE1. Phenanthrene mineralization in soils assisted by integrated approaches. Front Bioeng Biotechnol 2023; 11:1158177. [PMID: 37214282 PMCID: PMC10192627 DOI: 10.3389/fbioe.2023.1158177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/14/2023] [Indexed: 05/24/2023] Open
Abstract
Phenanthrene (PHE) is a highly toxic compound, widely present in soils. For this reason, it is essential to remove PHE from the environment. Stenotrophomonas indicatrix CPHE1 was isolated from an industrial soil contaminated by polycyclic aromatic hydrocarbons (PAHs) and was sequenced to identify the PHE degrading genes. Dioxygenase, monooxygenase, and dehydrogenase gene products annotated in S. indicatrix CPHE1 genome were clustered into different trees with reference proteins. Moreover, S. indicatrix CPHE1 whole-genome sequences were compared to genes of PAHs-degrading bacteria retrieved from databases and literature. On these basis, reverse transcriptase-polymerase chain reaction (RT-PCR) analysis pointed out that cysteine dioxygenase (cysDO), biphenyl-2,3-diol 1,2-dioxygenase (bphC), and aldolase hydratase (phdG) were expressed only in the presence of PHE. Therefore, different techniques have been designed to improve the PHE mineralization process in five PHE artificially contaminated soils (50 mg kg-1), including biostimulation, adding a nutrient solution (NS), bioaugmentation, inoculating S. indicatrix CPHE1 which was selected for its PHE-degrading genes, and the use of 2-hydroxypropyl-β-cyclodextrin (HPBCD) as a bioavailability enhancer. High percentages of PHE mineralization were achieved for the studied soils. Depending on the soil, different treatments resulted to be successful; in the case of a clay loam soil, the best strategy was the inoculation of S. indicatrix CPHE1 and NS (59.9% mineralized after 120 days). In sandy soils (CR and R soils) the highest percentage of mineralization was achieved in presence of HPBCD and NS (87.3% and 61.3%, respectively). However, the combination of CPHE1 strain, HPBCD, and NS showed to be the most efficient strategy for sandy and sandy loam soils (LL and ALC soils showed 35% and 74.6%, respectively). The results indicated a high degree of correlation between gene expression and the rates of mineralization.
Collapse
Affiliation(s)
- Alba Lara-Moreno
- Department of Agrochemistry, Environmental Microbiology and Soil Conservation, Institute of Natural Resources and Agrobiology of Seville, Spanish National Research Council (IRNAS-CSIC), Seville, Spain
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Francisco Merchán
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Esmeralda Morillo
- Department of Agrochemistry, Environmental Microbiology and Soil Conservation, Institute of Natural Resources and Agrobiology of Seville, Spanish National Research Council (IRNAS-CSIC), Seville, Spain
| | - Jessica Zampolli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Patrizia Di Gennaro
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Jaime Villaverde
- Department of Agrochemistry, Environmental Microbiology and Soil Conservation, Institute of Natural Resources and Agrobiology of Seville, Spanish National Research Council (IRNAS-CSIC), Seville, Spain
| |
Collapse
|
7
|
Chen X, Gao X, Yu P, Spanu L, Hinojosa J, Zhang S, Long M, Alvarez PJJ, Masiello CA. Rapid Simulation of Decade-Scale Charcoal Aging in Soil: Changes in Physicochemical Properties and Their Environmental Implications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:128-138. [PMID: 36525597 DOI: 10.1021/acs.est.2c04751] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In situ aging can change biochar properties, influencing their ecosystem benefits or risks over time. However, there is a lack of field verification of laboratory methods that attempt simulation of long-term natural aging of biochar. We exploited a decade-scale natural charcoal (a proxy for biochar) aging event to determine which lab-aging methods best mimicked field aging. We oxidized charcoal by ultraviolet A radiation (UVA), H2O2, or monochloramine (NH2Cl), and compared it to 10-year field-aged charcoal. We considered seven selected charcoal properties related to surface chemistry and organic matter release, and found that oxidation with 30% H2O2 most representatively simulated 10-year field aging for six out of seven properties. UVA aging failed to approximate oxidation levels while showing a distinctive dissolved organic carbon (DOC) release pattern. NH2Cl-aged charcoal was the most different, showing an increased persistent free radical (PFR) concentration and lower hydrophilicity. All lab oxidation techniques overpredicted polycyclic aromatic hydrocarbon release. The O/C ratio was well-correlated with DOC release, PFR concentration, surface charge, and charcoal pH, indicating the possibility to accurately predict biochar aging with a reduced suite of physicochemical properties. Overall, our rapid and verified lab-aging methods facilitate research toward derisking and enhancing long-term benefits of biochar application.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Earth, Environmental and Planetary Sciences, Rice University, Houston, Texas 77005, United States
- Carbon Hub, Rice University, Houston, Texas 77005, United States
| | - Xiaodong Gao
- Department of Earth, Environmental and Planetary Sciences, Rice University, Houston, Texas 77005, United States
- Carbon Hub, Rice University, Houston, Texas 77005, United States
| | - Pingfeng Yu
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States
| | - Leonardo Spanu
- Shell International Exploration & Production Inc., Houston, Texas 77082, United States
| | - Jessica Hinojosa
- Shell International Exploration & Production Inc., Houston, Texas 77082, United States
| | - Shuqi Zhang
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingce Long
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States
| | - Caroline A Masiello
- Department of Earth, Environmental and Planetary Sciences, Rice University, Houston, Texas 77005, United States
- Carbon Hub, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
8
|
Sumei Y, Xin L, Shuhong H, Hongchao Z, Maojun J, Yongquan Z, Luqing Z, Yunlong Y. Uptake and translocation of triadimefon by wheat (Triticum aestivum L.) grown in hydroponics and soil conditions. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127011. [PMID: 34461532 DOI: 10.1016/j.jhazmat.2021.127011] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/14/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Residual pesticides in soil may be taken in by plants and thus have a risk for plant growth and food safety. In this study, uptake of triadimefon and its subsequent translocation and accumulation were investigated with wheat as model plants. The results from hydroponics indicated that triadimefon was absorbed by wheat roots mainly through apoplastic pathway and predominantly distributed into the water soluble fractions (66.7-76.0%). After being uptaken by roots, triadimefon was easily translocated upward to wheat shoots and leaves. Interestingly, triadimefon in leaves was mainly distributed in the soluble fraction by 52.5% at the beginning, and gradually transferred into the cell wall by 47.2% at equilibrium. The uptake of triadimefon from soils by wheat plants was similar to that in hydroponics. Its accumulation were mainly governed by adsorption of the fungicide onto soils, and positively correlated with its concentration in in situ pore water (CIPW). Thus, CIPW can be suitable for predicting the uptake of triadimefon by wheat from soils. Accordingly, uptake of triadimefon by wheat was predicted well by using the partition-limited model. Our study provides valuable information for guiding the practical application and safety evaluation of triadimefon.
Collapse
Affiliation(s)
- Yu Sumei
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Li Xin
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - He Shuhong
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zhang Hongchao
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jin Maojun
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zheng Yongquan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road, Beijing 100193, China
| | - Zhang Luqing
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yu Yunlong
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
9
|
Nie E, Wang H, Chen Y, Lu Y, Akhtar K, Riaz M, Zhang S, Yu Z, Ye Q. Distinct uptake and accumulation profiles of triclosan in youdonger (Brassica campestris subsp. Chinensis var. communis) under two planting systems: Evidence from 14C tracing techniques. CHEMOSPHERE 2022; 288:132651. [PMID: 34699880 DOI: 10.1016/j.chemosphere.2021.132651] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/16/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Triclosan is a widely used biocide against microorganisms and is ubiquitously distributed in the environment. Triclosan can be accumulated into plants from soil and hydroponic media. However, little information is currently available on the comparative fate of triclosan in plants under soil and hydroponics cultivation conditions and factors governing uptake. Therefore, this study was designed to comparatively elucidate the uptake mechanism of 14C-triclosan in youdonger (Brassica campestris subsp. Chinensis var. communis) grown under different soils and hydroponics and clarify dominant uptake factors. Results showed that 77.2% of 14C were accumulated in youdonger grown in a hydroponic system, while only 1.24%-2.33% were accumulated in the two soil-planting systems. In addition, the bioconcentration factor (BCF) of 14C-triclosan in soil-plant systems was approximately 400-fold smaller than that in the hydroponics. In the soil-planting system, a strong linear correlation was found between concentrations of triclosan in soil pore water and youdonger plant (R2 > 0.85, p < 0.01) at different incubation times. Therefore, triclosan in pore water might be a good indicator to estimate its accumulation in plants and is significantly affected by soil pH, clay, and organic matter contents. The estimated average dietary intakes of triclosan for youdonger grown in hydroponic and soil-planting systems were estimated to be 1.31 ng day-1 kg-1 and 0.05-0.12 ng day-1 kg-1, respectively, much lower than the acceptable dietary intakes of triclosan (83 μg day-1 kg-1), indicating no significant human health risks from youdonger consumption. This study provided insights into uptake routes of triclosan into youdonger plants from both soil and hydroponic systems, bioavailability of triclosan in different soils, and further assessment of human exposure to triclosan from youdonger.
Collapse
Affiliation(s)
- Enguang Nie
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Haiyan Wang
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou, 310058, China.
| | - Yan Chen
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Yuhui Lu
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Kashif Akhtar
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Riaz
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, Allama Iqbal Road, Faisalabad, 38000, Punjab, Pakistan
| | - Sufen Zhang
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Zhiyang Yu
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Qingfu Ye
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
10
|
Ponting J, Kelly TJ, Verhoef A, Watts MJ, Sizmur T. The impact of increased flooding occurrence on the mobility of potentially toxic elements in floodplain soil - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142040. [PMID: 32916489 DOI: 10.1016/j.scitotenv.2020.142040] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
The frequency and duration of flooding events is increasing due to land-use changes increasing run-off of precipitation, and climate change causing more intense rainfall events. Floodplain soils situated downstream of urban or industrial catchments, which were traditionally considered a sink of potentially toxic elements (PTEs) arriving from the river reach, may now become a source of legacy pollution to the surrounding environment, if PTEs are mobilised by unprecedented flooding events. When a soil floods, the mobility of PTEs can increase or decrease due to the net effect of five key processes; (i) the soil redox potential decreases which can directly alter the speciation, and hence mobility, of redox sensitive PTEs (e.g. Cr, As), (ii) pH increases which usually decreases the mobility of metal cations (e.g. Cd2+, Cu2+, Ni2+, Pb2+, Zn2+), (iii) dissolved organic matter (DOM) increases, which chelates and mobilises PTEs, (iv) Fe and Mn hydroxides undergo reductive dissolution, releasing adsorbed and co-precipitated PTEs, and (v) sulphate is reduced and PTEs are immobilised due to precipitation of metal sulphides. These factors may be independent mechanisms, but they interact with one another to affect the mobility of PTEs, meaning the effect of flooding on PTE mobility is not easy to predict. Many of the processes involved in mobilising PTEs are microbially mediated, temperature dependent and the kinetics are poorly understood. Soil mineralogy and texture are properties that change spatially and will affect how the mobility of PTEs in a specific soil may be impacted by flooding. As a result, knowledge based on one river catchment may not be particularly useful for predicting the impacts of flooding at another site. This review provides a critical discussion of the mechanisms controlling the mobility of PTEs in floodplain soils. It summarises current understanding, identifies limitations to existing knowledge, and highlights requirements for further research.
Collapse
Affiliation(s)
- Jessica Ponting
- Department of Geography and Environmental Science, University of Reading, Reading RG6 6DW, UK; Inorganic Geochemistry, Centre for Environmental Geochemistry, British Geological Survey, Keyworth, Nottingham NG12 5GG, UK
| | - Thomas J Kelly
- Department of Geography and Environmental Science, University of Reading, Reading RG6 6DW, UK; Department of Geography, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Anne Verhoef
- Department of Geography and Environmental Science, University of Reading, Reading RG6 6DW, UK
| | - Michael J Watts
- Inorganic Geochemistry, Centre for Environmental Geochemistry, British Geological Survey, Keyworth, Nottingham NG12 5GG, UK
| | - Tom Sizmur
- Department of Geography and Environmental Science, University of Reading, Reading RG6 6DW, UK.
| |
Collapse
|
11
|
Malheiro C, Cardoso DN, Neves J, Lima DLD, Esteves VI, Soares AMVM, Loureiro S. Biochar in soil mitigates dimethoate hazard to soil pore water exposed biota. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123304. [PMID: 32947708 DOI: 10.1016/j.jhazmat.2020.123304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/06/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Soil contamination is a worldwide problem urging for mitigation. Biochar is a carbonaceous material used as soil amendment that can immobilize chemical compounds, potentially turning them unavailable for soil biota. The aim of our study was to evaluate biochar's capacity to immobilize dimethoate in soil and, therefore, decreasing the toxicity to soil organisms. Two biochar application rates (2.5% and 5% w/w) were chosen to assess dimethoate potential immobilization, looking at changes in its toxicity to the collembolan Folsomia candida and the plant Brassica rapa upon soil amendment. Complementarily, chemical analyses were performed on soil pore water. Results showed that biochar may sorb and decrease dimethoate concentrations in soil pore water, influencing dimethoate bioavailability and consequent toxicity. Contrary to dimethoate solo impact on collembolans (LC50 0.69 mg kg-1, EC50 0.46 mg kg-1), their survival rate and offspring production were not affected by dimethoate when biochar was applied, regardless of application rate (LC50 and EC50 > 1.6 mg kg-1). Shoot length, fresh and dry weights of B. rapa were less affected by dimethoate upon biochar addition (EC50 values increase for all endpoints). Our study shows that biochar may contribute to decrease dimethoate bioavailability and toxicity to soil porewater exposed organisms.
Collapse
Affiliation(s)
- Catarina Malheiro
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Diogo N Cardoso
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Joana Neves
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Diana L D Lima
- CESAM - Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Valdemar Inocêncio Esteves
- CESAM - Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Amadeu M V M Soares
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Susana Loureiro
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
12
|
Bošković N, Brandstätter-Scherr K, Sedláček P, Bílková Z, Bielská L, Hofman J. Adsorption of epoxiconazole and tebuconazole in twenty different agricultural soils in relation to their properties. CHEMOSPHERE 2020; 261:127637. [PMID: 32717508 DOI: 10.1016/j.chemosphere.2020.127637] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/10/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023]
Abstract
Conazole fungicides are currently used pesticides with considerable chronic toxicity and ecotoxicity that are also on EU list for substitution. They enter the soil forming short- or long-term residues. In this study two of their representatives, epoxiconazole (EPC) and tebuconazole (TBC), have been tested with 20 soils from the Czech Republic for their adsorption. Adsorption, by means of Kd coefficients, was compared to "basic" (TOC, pH, clay …) and "advanced" (surface area, minerals ..) soil properties. After doing multivariate analysis of the variables it was apparent that adsorption of both pesticides was highly associated with pH (negatively correlated), and less associated with soil organo-mineral complex (TOC, clay and surface area) and C and N in soil organic matter (OM). Particle sizes or cation exchange capacity (CEC) did not show correlation with adsorption, but showed an association in multidimensional space in factor analysis (FA). Some correlations were revealed between EPC adsorption and soil organic matter parameters. Recalculating Kd to Koc and to Gibb's free energy (ΔG) and its values indicated that the adsorption of EPC and TBC is mainly weak physical adsorption - partitioning. Also, ΔG values gave better correlation with pH(H2O) than Kd. Surface area impacted EPC adsorption. From the several soil minerals, kaolinite showed EPC and TBC adsorption. EPC adsorption was not highly influenced with pH changes compared to TBC. The number and types of H-bonds with molecular geometry govern the sorption, which might crucially affect leachibility in soil, and this may indicate that TBC is more leachable than EPC for the same soil.
Collapse
Affiliation(s)
- Nikola Bošković
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic
| | - Kerstin Brandstätter-Scherr
- Institute for Environmental Biotechnology, Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences (BOKU), Konrad-Lorenz-Strasse 20, A-3430, Tulln, Austria
| | - Petr Sedláček
- Materials Research Centre, Brno University of Technology, Purkyňova 464/118, 612 00, Brno, Czech Republic
| | - Zuzana Bílková
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic
| | - Lucie Bielská
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic; Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of Agronomy, Mendel University in Brno, Zemědělská 1/1665, 613 00, Czech Republic
| | - Jakub Hofman
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic.
| |
Collapse
|
13
|
Ukalska-Jaruga A, Smreczak B. The Impact of Organic Matter on Polycyclic Aromatic Hydrocarbon (PAH) Availability and Persistence in Soils. Molecules 2020; 25:molecules25112470. [PMID: 32466451 PMCID: PMC7321076 DOI: 10.3390/molecules25112470] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 12/15/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) exhibit persistence in soils, and most of them are potentially mutagenic/carcinogenic and teratogenic for human beings but also influence the growth and development of soil organisms. The PAHs emitted into the atmosphere are ultimately deposited (by dry or wet deposition processes) onto the soil surface where they tend to accumulate. Soil organic matter (SOM) plays an important role in the fate and transformation processes of PAHs, affecting their mobility, availability, and persistence. Therefore, the aim of this research was to investigate the influence of SOM fractional diversification (fulvic acids-FA, humic acids-HA, and humins-HN) on PAH availability and persistence in soils. Twenty soil samples (n = 20) were collected from upper horizons (0-30 cm) of agricultural soils exposed to anthropogenic emissions from industrial and domestic sources. The assessment of PAH concentrations included the determination of medium-molecular-weight compounds from the US EPA list: fluoranthene-FLA, pyrene-PYR, benz(a)anthracene-BaA, and chrysene-CHR. The assessment was conducted using the GC-MS/MS technique. Three operationally defined fractions were investigated: total extractable PAHs (TE-PAHs) fraction, available/bioavailable PAHs (PB-PAHs) fraction, and nonavailable/residual PAHs (RE-PAHs) fraction, which was calculated as the difference between total and available PAHs. TE-PAHs were analyzed by dichloromethane extraction, while PB-PAHs were analyzed with a hydrophobic β-cyclodextrin solution. SOM was characterized by total organic carbon content (Turin method) and organic carbon of humic substances including FA, HA, HN (IHSS method). Concentrations of PAHs differed between soils from 193.5 to 3169.5 µg kg-1, 4.3 to 226.4 µg kg-1, and 148.6 to 3164.7 µg kg-1 for ∑4 TE-PAHs, ∑4 PB-PAHs, and ∑4 RE-PAHs, respectively. The ∑4 PB-PAHs fraction did not exceed 30% of ∑4 TE-PAHs. FLA was the most strongly bound in soil (highest content of RE-FLA), whereas PYR was the most available (highest content of PB-PYR). The soils were characterized by diversified total organic carbon (TOC) concentration (8.0-130.0 g kg-1) and individual SOM fractions (FA = 0.4-7.5 g kg-1, HA = 0.6-13.0 g kg-1, HN = 0.9-122.9 g kg-1). FA and HA as the labile fraction of SOM with short turnover time strongly positively influenced the potential ∑4 PAH availability (r = 0.56 and r = 0.52 for FA and HA, respectively). HN, which constitutes a stable fraction of organic matter with high hydrophobicity and poor degradability, was strongly correlated with ∑4 RE-PAHs (r = 0.75), affecting their persistence in soil.
Collapse
|
14
|
Ukalska-Jaruga A, Lewińska K, Mammadov E, Karczewska A, Smreczak B, Medyńska-Juraszek A. Residues of Persistent Organic Pollutants (POPs) in Agricultural Soils Adjacent to Historical Sources of Their Storage and Distribution-The Case Study of Azerbaijan. Molecules 2020; 25:molecules25081815. [PMID: 32326493 PMCID: PMC7221879 DOI: 10.3390/molecules25081815] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/06/2020] [Accepted: 04/13/2020] [Indexed: 01/13/2023] Open
Abstract
The aim of this study was to identify and examine the levels of organochlorine pesticides (OCPs), polycyclic aromatic hydrocarbons (PAHs), and polychlorinated biphenyls (PCBs) in soil collected from the surroundings of historical pesticide storage facilities on former agricultural aerodromes, warehouses, and pesticide distribution sites located in the most important agricultural regions in Azerbaijan. The conducted research included determination of three groups of POPs (occurring together), in the natural soil environment influenced for many years by abiotic and biotic factors that could have caused their transformations or decomposition. In this study, soil samples were collected in 21 georeferenced points located in the administrative area of Bilasuvar, Saatly, Sabirabad, Salyan and Jalilabad districts of Azerbaijan. Soil chemical analysis involved determination of organochlorine compounds (OCP): hexachlorocyclohexanes (HCHs) (three isomers α-HCH, β-HCH and γ-HCH) and dichlorodiphenyltrichloroethanes (DDTs) (six congeners 2,4'DDT; 4,4'DDT; 2,4'DDE; 4,4'DDE; 2,4'DDE; and 4,4'DDE); polycyclic aromatic hydrocarbons (PAHs): 16 compounds from the United States Environmental Protection Agency US EPA list and, PCBs (seven congeners identified with the following IUPAC numbers: 28, 52, 101, 118, 138, 153, and 180). Our research showed that OCPs reached the highest concentration in the studied areas. The total concentrations of OCPs ranged from 0.01 to 21,888 mg∙kg-1 with significantly higher concentrations of Σ6DDTs (0.01 μg kg-1 to 21880 mg kg-1) compared to ΣHCH (0.14 ng kg-1 to 166.72 µg kg-1). The total concentrations of PCBs in the studied soils was varied from 0.02 to 147.30 μg·kg-1 but only PCB138 and PCB180 were detected in all analyzed samples. The concentrations of Σ16 PAHs were also strongly diversified throughout the sampling areas and ranged from 0.15 to 16,026 mg kg-1. The obtained results confirmed that the agricultural soils of Azerbaijan contained much lower (up to by three orders of magnitude) concentrations of PCBs and PAHs than DDT. It is supported by the fact that PCBs and PAHs were not directly used by agriculture sector and their content results from secondary sources, such as combustion and various industrial processes. Moreover, the high concentrations of PAHs in studied soils were associated with their location in direct neighborhood of the airport, as well as with accumulation of contaminants from dispersed sources and long range transport. The high concentrations of pesticides confirm that deposition of parent OCPs have occurred from obsolete pesticide landfills.
Collapse
Affiliation(s)
- Aleksandra Ukalska-Jaruga
- Department of Soil Science Erosion and Land Protection, Institute of Soil Science and Plant Cultivation–State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland;
- Correspondence:
| | - Karolina Lewińska
- Department of Soil Science and Remote Sensing of Soils, Adam Mickiewicz University in Poznan, Krygowskiego 10, 61-680 Poznan, Poland;
| | - Elton Mammadov
- Institute of Soil Science and Agrochemistry of Azerbaijan National Academy of Sciences, 5 M. Rahim, Baku AZ1073, Azerbaijan;
| | - Anna Karczewska
- Institute of Soil Science and Environmental Protection, Wroclaw University of Environmental and Life Sciences, ul. Grunwaldzka 53, 50-357 Wrocław, Poland; (A.K.); (A.M.-J.)
| | - Bożena Smreczak
- Department of Soil Science Erosion and Land Protection, Institute of Soil Science and Plant Cultivation–State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland;
| | - Agnieszka Medyńska-Juraszek
- Institute of Soil Science and Environmental Protection, Wroclaw University of Environmental and Life Sciences, ul. Grunwaldzka 53, 50-357 Wrocław, Poland; (A.K.); (A.M.-J.)
| |
Collapse
|
15
|
Ukalska-Jaruga A, Smreczak B, Siebielec G. Assessment of Pesticide Residue Content in Polish Agricultural Soils. Molecules 2020; 25:molecules25030587. [PMID: 32013185 PMCID: PMC7038080 DOI: 10.3390/molecules25030587] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/20/2020] [Accepted: 01/28/2020] [Indexed: 01/10/2023] Open
Abstract
Pesticides belong to a group of xenobiotics harmful to humans and wildlife, whose fate and activity depends on their susceptibility to degradation. Therefore, the monitoring of their residue level in agricultural soils is very important because it provides very valuable information on the actual level of soil contamination and environmental risk resulting from their application. The aim of this study was to evaluate contemporary concentrations of organochlorine (OCPs) and non-chlorinated pesticides (NCPs) in arable soils of Poland as an example of Central and Eastern European countries. The results were assessed in relation to Polish regulations, which are more restrictive compared to those of other European countries. The sampling area covered the territory of arable lands in Poland (216 sampling points). The distribution of sampling points aimed to reflect different geographical districts, conditions of agricultural production, and various soil properties. The collected soil samples were extracted with organic solvents in an accelerated solvent extractor (ASE 2000). The OCPs, including α-HCH, β-HCH, γ-HCH, and p,p’DDT, p,p’DDE, and p,p’DDD, were extracted with a hexane/acetone mixture (70:30 v/v) and determined by gas chromatography with an electron capture detector (GC-μECD). NCPs included atrazine, carbaryl, and carbofuran were extracted with a dichloromethane/acetone mixture (50:50 v/v), while maneb was extracted by intensive shaking the sample with acetone (1:1 v/v) and ethylenediamine-tertraacetic acid. The NCPs were identified by a dual mass- spectrometry (GC-MS/MS). The total content of individual OCPs ranged from 0.61 to 1031.64 µg kg−1, while the NCP concentrations were significantly lower, from 0.01 to 43.92 µg kg−1. DDTs were detected in all soils samples (p,p’DDD (23.60 µg kg−1) > p,p’DDT (18.23 µg kg−1) > p,p’DDE (4.06 µg kg−1), while HCHs were only in 4% of the analyzed samples (β-HCH (339.55 µg kg−1) > α-HCH (96.96 µg kg−1) > γ-HCH (3.04 µg kg−1)), but in higher values than DDTs. Among NCPs, higher concentration was observed for carbaryl (<0.01–28.07 µg kg−1) and atrazine (<0.01–15.85 µg kg−1), while the lower for carbofuran (<0.01–0.54 µg kg−1). Maneb was not detected in analyzed soils. Assessment of the level of soil pollution based on Polish regulations indicated that several percentages of the samples exceeded the criterion for OCPs, such as ∑3DDTs (14 samples; 6.5% of soils) and HCH congeners (α-HCH in one sample; 0.5% of soils), while NCP concentration, such as for atrazine, carbaryl and carbofuran were below the permissible levels or were not detected in the analyzed soils, e.g., maneb. The obtained results indicated that residues of the analyzed pesticides originate from historical agricultural deposition and potentially do not pose a direct threat to human and animal health. The behavior and persistence of pesticides in the soils depend on their properties. Significantly lower NCP concentration in the soils resulted from their lower hydrophobicity and higher susceptibility to leaching into the soil profile. OCPs are characterized by a high half-life time, which affect their significantly higher persistence in soils resulting from affinity to the soil organic phase.
Collapse
|
16
|
Silvani L, Cornelissen G, Hale SE. Sorption of α-, β-, γ- and δ-hexachlorocyclohexane isomers to three widely different biochars: Sorption mechanisms and application. CHEMOSPHERE 2019; 219:1044-1051. [PMID: 30595396 DOI: 10.1016/j.chemosphere.2018.12.070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/27/2018] [Accepted: 12/09/2018] [Indexed: 06/09/2023]
Abstract
Within this study different biochars (BC) with widely varying characteristics have been tested as materials for the adsorption of hexachlorocyclohexane's (HCH) isomers (α, β, γ and δ) from water. Three BCs produced from digestate (700 °C), greenhouse tomato waste (550 °C) and durian shell (400 °C) were tested. The BCs demonstrated variable physico-chemical characteristics, especially with respect to surface area, with CO2-surface area ranging from 5.4 to 328.6 m2 g-1 and iron content ranging from 0.0733 to 11.17 g kg-1. Isotherm tests were carried out to understand which mechanisms drive HCH uptake to BC, to assess whether stereochemistry affects adsorption and to assess whether competitive sorption occurs. Log KF values ranged from 3.7 to 5.8 (μg kg-1) (μg L-1)-n for the various isomers on the three biochars. No competition (t-test, P < 0.0001) was observed between α-, β-, γ- and δ-HCH. Freundlich adsorption constants of α-, γ- and δ-HCH followed the order: BC digestate > BC greenhouse tomato waste > BC durian shell, in contrast to β-HCH which followed the order: BC durian shell > BC greenhouse tomato waste > BC digestate. In addition to stereochemistry, sorption coefficients were affected most strongly by BC surface area and iron content, in addition to specific HCH/BC matrix interactions. In this study the iron content of a carbonaceous material has been investigated, for the first time, as a factor that can affect the sorption of HCHs.
Collapse
Affiliation(s)
- Ludovica Silvani
- Norwegian Geotechnical Institute (NGI), P.O. Box 3930 Ullevaal, NO-0806, Oslo, Norway.
| | - Gerard Cornelissen
- Norwegian Geotechnical Institute (NGI), P.O. Box 3930 Ullevaal, NO-0806, Oslo, Norway; Department of Environmental Sciences (IMV), Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Ås, Norway
| | - Sarah E Hale
- Norwegian Geotechnical Institute (NGI), P.O. Box 3930 Ullevaal, NO-0806, Oslo, Norway
| |
Collapse
|
17
|
Hazaimeh M, Almansoory AF, Mutalib SA, Kanaan B. Effects of plant density on the bioremediation of soils contaminated with polyaromatic hydrocarbons. EMERGING CONTAMINANTS 2019; 5:123-127. [DOI: 10.1016/j.emcon.2019.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
18
|
Vieira M, Bernardi JVE, Dórea JG, Rocha BCP, Ribeiro R, Zara LF. Distribution and availability of mercury and methylmercury in different waters from the Rio Madeira Basin, Amazon. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 235:771-779. [PMID: 29351888 DOI: 10.1016/j.envpol.2018.01.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 11/17/2017] [Accepted: 01/08/2018] [Indexed: 06/07/2023]
Abstract
Waters from the Amazon Basin have distinct physicochemical characteristics that can be optically classified as "black", "clear" and "white". We studied the distribution of total-Hg (THg) and methyl-Hg (MeHg) in these waters and respective suspended solids, sediment, phytoplankton, zooplankton, and benthic macroinvertebrates (BM) in the Madeira River Basin. Compared with the other types of water, the more acidic "black" kind had the highest THg and MeHg concentrations. The trend (black > clear > white) occurred for the concentrations of THg and MeHg in sediments and in the biotic compartment (plankton, macroinvertebrates). Organic Hg accounted for a small percentage (0.6-0.4%) of the THg in sediments but was highest in water (17-15%). For plankton and BM, the biota sediment accumulation factor (BSAFs) of MeHg (53-125) were greater than those of THg (4.5-15); however, the BSAF trend according to water type (black > clear > white) was only significant for MeHg. Sediment THg is correlated with all forms of Hg in biotic and abiotic matrices. The results indicate that water acidity in the Amazon is an important chemical characteristic in assessing Hg contamination of sediments and bioaccumulation in the aquatic food web. The differences in the BSAFs between THg and MeHg support the use of this factor for evaluating the bioaccumulation potential of sediment-bound Hg. The results add information critical to assessing environmental and health risks related to Hg methylation and potential fish-MeHg contamination, especially in tropical aquatic environments.
Collapse
Affiliation(s)
- Miguel Vieira
- Laboratorio of Ciências da Vida e da Terra, Universidade de Brasília - (Campus Planaltina), Brazil.
| | - José V E Bernardi
- Laboratorio of Ciências da Vida e da Terra, Universidade de Brasília - (Campus Planaltina), Brazil.
| | - José G Dórea
- Laboratorio of Ciências da Vida e da Terra, Universidade de Brasília - (Campus Planaltina), Brazil.
| | - Bruno C P Rocha
- Departamento de Química-UNESP - (Campus Araraquara), Brazil.
| | - Romulo Ribeiro
- Laboratorio of Ciências da Vida e da Terra, Universidade de Brasília - (Campus Planaltina), Brazil.
| | - Luis F Zara
- Laboratorio of Ciências da Vida e da Terra, Universidade de Brasília - (Campus Planaltina), Brazil.
| |
Collapse
|
19
|
Yu L, Duan L, Naidu R, Semple KT. Abiotic factors controlling bioavailability and bioaccessibility of polycyclic aromatic hydrocarbons in soil: Putting together a bigger picture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 613-614:1140-1153. [PMID: 28954375 DOI: 10.1016/j.scitotenv.2017.09.025] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 09/02/2017] [Accepted: 09/03/2017] [Indexed: 06/07/2023]
Abstract
The bioavailability and bioaccessibility of polycyclic aromatic hydrocarbons (PAHs) in soil underpin the risk assessment of contaminated land with these contaminants. Despite a significant volume of research conducted in the past few decades, comprehensive understanding of the factors controlling the behaviour of soil PAHs and a set of descriptive soil parameters to explain variations in PAH bioavailability and bioaccessibility are still lacking. This review focuses on the role of source materials on bioavailability and bioaccessibility of soil PAHs, which is often overlooked, along with other abiotic factors including contaminant concentration and mixture, soil composition and properties, as well as environmental factors. It also takes into consideration the implications of different types of risk assessment (ecological and human health) on bioavailability and bioaccessibility of PAHs in soil. We recommend that future research should (1) account for the effects of source materials on bioavailability and bioaccessibility of soil PAHs; (2) adopt non-disruptive methods to analyse soil components controlling PAH sequestration; (3) integrate both natural organic matter (NOM) and xenobiotic organic matter (XOM) while evaluating the influences of soil organic matter (SOM) on the behaviour of PAHs; and (4) consider the dissimilar desorption scenarios in ecological risk assessment and human health risk assessment while assessing PAH bioavailability and bioaccessibility.
Collapse
Affiliation(s)
- Linbo Yu
- Global Centre for Environmental Remediation (GCER), ATC Building, University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE Pty Ltd), ATC Building, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Luchun Duan
- Global Centre for Environmental Remediation (GCER), ATC Building, University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE Pty Ltd), ATC Building, University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), ATC Building, University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE Pty Ltd), ATC Building, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Kirk T Semple
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| |
Collapse
|
20
|
Spasojević J, Maletić S, Rončević S, Grgić M, Krčmar D, Varga N, Dalmacija B. The role of organic matter and clay content in sediments for bioavailability of pyrene. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2018; 77:439-447. [PMID: 29377828 DOI: 10.2166/wst.2017.551] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Evaluation of the bioavailable fractions of organic contaminants such as polycyclic aromatic hydrocarbons (PAHs) is extremely important for assessing their risk to the environment. This available fraction, which can be solubilised and/or easily extracted, is believed to be the most accessible for bioaccumulation, biosorption and/or transformation. Sediment organic matter (OM) and clay play an important role in the biodegradation and bioavailability of PAHs. The strong association of PAHs with OM and clay in sediments has a great influence not only on their distribution but also on their long-term environmental impact. This paper investigates correlations between bioavailability and the clay and OM contents in sediments. The results show that OM is a better sorbent for pyrene (chosen as a model PAH) and that increasing the OM content reduces the bioavailable fraction. A mathematical model was used to predict the kinetic desorption, and these results showed that the sediment with the lowest content of OM had an Ffast value of 24%, whereas sediment with 20% OM gave a value of 9%. In the experiments with sediments with different clay contents, no clear dependence between clay and rate constants of the fast desorbing fractions was observed, which can be explained by the numerous possible interactions at the molecular level.
Collapse
Affiliation(s)
- Jelena Spasojević
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovica 3, 21000 Novi Sad, Serbia E-mail:
| | - Snežana Maletić
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovica 3, 21000 Novi Sad, Serbia E-mail:
| | - Srđan Rončević
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovica 3, 21000 Novi Sad, Serbia E-mail:
| | - Marko Grgić
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovica 3, 21000 Novi Sad, Serbia E-mail:
| | - Dejan Krčmar
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovica 3, 21000 Novi Sad, Serbia E-mail:
| | - Nataša Varga
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovica 3, 21000 Novi Sad, Serbia E-mail:
| | - Božo Dalmacija
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovica 3, 21000 Novi Sad, Serbia E-mail:
| |
Collapse
|
21
|
Jachero L, Leiva C, Ahumada I, Richter P. Released fraction of polychlorinated biphenyls from soil-biosolid system using a leaching procedure and its comparison with bioavailable fraction determined by wheat plant uptake. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:25092-25102. [PMID: 28921373 DOI: 10.1007/s11356-017-0176-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/11/2017] [Indexed: 06/07/2023]
Abstract
The bioavailability of polychlorinated biphenyls (PCBs) in soils amended with biosolids was estimated using an aqueous leaching process of the compounds combined with rotating disk sorptive extraction (RDSE), and compared with bioavailability determined through of PCB absorption in wheat plants growing in the same soil-biosolid matrix. The matrices consisted of soil amended with biosolids at doses of 30, 90, and 200 Mg/ha, which increase concomitantly the organic matter content of the matrix. Considering that PCBs were natively absent in both the biosolids and soil used, the compounds were spiked in the biosolids and aged for 10 days. For each biosolid dose, the aqueous leaching profile was studied and equilibrium time was calculated to be 33 h. The leaching fractions determined by RDSE, considering total PCBs studied, were 12, 7, and 6% and the bioavailable fractions absorbed by the wheat root were found to be 0.5, 0.3, and 0.2% for 30, 90, and 200 Mg/ha doses, respectively. Both fractions leachable and bioavailable decrease with both increasing hydrophobicity of the compound (Kow) and increasing in the biosolid dose. It was found that both fractions (leaching and bioavailable) correlated according to the bivariate least squares regression, represented by a coefficient of correlation of 0.86. Therefore, the application of the chemical method involving a leaching procedure is an alternative to estimate the bioavailable fraction of PCBs in wheat plants in a simpler and in a shorter time.
Collapse
Affiliation(s)
- Lourdes Jachero
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical Sciences and Pharmacy, University of Chile, P.O. Box 233, Santiago, Chile.
| | - Claudio Leiva
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical Sciences and Pharmacy, University of Chile, P.O. Box 233, Santiago, Chile
| | - Inés Ahumada
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical Sciences and Pharmacy, University of Chile, P.O. Box 233, Santiago, Chile
| | - Pablo Richter
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical Sciences and Pharmacy, University of Chile, P.O. Box 233, Santiago, Chile
| |
Collapse
|
22
|
Humel S, Schmidt SN, Sumetzberger-Hasinger M, Mayer P, Loibner AP. Enhanced Accessibility of Polycyclic Aromatic Hydrocarbons (PAHs) and Heterocyclic PAHs in Industrially Contaminated Soil after Passive Dosing of a Competitive Sorbate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:8017-8026. [PMID: 28578566 DOI: 10.1021/acs.est.7b01198] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
To assess the exposure to polycyclic aromatic hydrocarbons (PAHs) it is important to understand the binding mechanisms between specific soil constituents and the organic pollutant. In this study, sorptive bioaccessibility extraction (SBE) was applied to quantify the accessible PAH fraction in industrially contaminated soil with and without passive dosing of a competitive sorbate. SBE experiments revealed an accessible PAH fraction of 41 ± 1% (∑16 US EPA PAHs + 5 further PAHs). The passive dosing of toluene below its saturation level revealed competitive binding and resulted in an average increase of the accessible fraction to 49 ± 2%, whereby primarily the accessibility of higher molecular weight PAHs (log Kow > 6) was affected. Competitive binding was verified using the same soil with only desorption-resistant PAHs present. In this experiment, passive dosing of toluene resulted in desorption of 13 ± 0.4% PAH. We explain increased PAH desorption after addition of toluene by competitive adsorption to high-affinity sorption sites while acknowledging that toluene could additionally have increased PAH mobility within the soil matrix. Findings suggest that the presence of copollutants at contaminated sites deserves specific considerations as these may increase accessibility and thereby exposure and mobility of PAHs.
Collapse
Affiliation(s)
- Stefan Humel
- IFA-Tulln, BOKU-University of Natural Resources and Life Sciences , Vienna, 3430 Tulln, Austria
| | - Stine N Schmidt
- Department of Environmental Engineering, Technical University of Denmark , 2800 Kongens Lyngby, Denmark
| | | | - Philipp Mayer
- Department of Environmental Engineering, Technical University of Denmark , 2800 Kongens Lyngby, Denmark
| | - Andreas P Loibner
- IFA-Tulln, BOKU-University of Natural Resources and Life Sciences , Vienna, 3430 Tulln, Austria
| |
Collapse
|
23
|
Lindgren JF, Hassellöv IM, Nyholm JR, Östin A, Dahllöf I. Induced tolerance in situ to chronically PAH exposed ammonium oxidizers. MARINE POLLUTION BULLETIN 2017; 120:333-339. [PMID: 28545865 DOI: 10.1016/j.marpolbul.2017.05.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 05/12/2017] [Accepted: 05/17/2017] [Indexed: 06/07/2023]
Abstract
Sediment was sampled in the vicinity of a long-term source of Polycyclic Aromatic Hydrocarbons (PAHs) to evaluate whether tolerance can be induced in situ. Total PAH concentrations as well as the bioavailable PAHs were measured, and for nine PAHs the pore water concentration could be calculated. An induced tolerance in the ammonium oxidizing community was detected at the site with highest PAH concentration and tolerance was strongest, although not significantly, correlated to bioavailable alkylated PAHs. In addition, the tolerant microbial community showed a significant lower baseline capability for nitrification with an on average 35% reduction compared to the other sites. Meiofaunal community structure differed between all sites, and the difference was significantly correlated to bioavailable alkylated PAHs and PAH31 concentrations. The results suggest that in order to judge magnitude of long-term effects, the bioavailable fraction is to be preferred, and when possible as estimation of the freely dissolved concentration.
Collapse
Affiliation(s)
- J Fredrik Lindgren
- Department of Mechanics and Maritime Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Ida-Maja Hassellöv
- Department of Mechanics and Maritime Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | | | - Anders Östin
- Swedish Defence Research Agency, 164 90 Stockholm, Sweden
| | - Ingela Dahllöf
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 405 30 Gothenburg, Sweden.
| |
Collapse
|
24
|
Klimkowicz-Pawlas A, Smreczak B, Ukalska-Jaruga A. The impact of selected soil organic matter fractions on the PAH accumulation in the agricultural soils from areas of different anthropopressure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:10955-10965. [PMID: 27068894 DOI: 10.1007/s11356-016-6610-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 03/31/2016] [Indexed: 05/21/2023]
Abstract
The level of 16PAH accumulation was determined in 75 soil samples collected from two agricultural regions of Poland corresponding to the smallest Polish administrative unit at the LAU 2 level. Both regions are characterised by similar territory and soil cover but different history of pollution and different pressure of anthropogenic factors. Overall accumulation of Σ16PAHs in the upper soil layer was within a wide range with the median value of 291 and 1253 μg kg-1 for a non-contaminated and high anthropopressure region, respectively. Nearly 75 % of the total polycyclic aromatic hydrocarbon (PAH) pool was represented by high molecular four-to-six-ring compounds, deriving mainly from combustion sources. The total organic carbon (Corg) and black carbon (BC) contents were the main parameters associated with the PAH accumulation in soils, and the level of the regional anthropopressure was considered a significant factor. The strongest links of PAHs/BC (r = 0.70, p ≤ 0.05) were found in the region of high anthropopressure, characterized by a relatively high content of BC (up to 45.3 g kg-1), which tends to heavily adsorb hydrocarbons. In a region of low influence exerted by anthropopressure, the PAH/Corg or PAH/BC relationships were not observed, which may suggest different diffuse sources of PAH origin and a dominant role of other organic matter fractions in retention of PAHs in soils.
Collapse
Affiliation(s)
- Agnieszka Klimkowicz-Pawlas
- Department of Soil Science Erosion and Land Protection, Institute of Soil Science and Plant Cultivation-State Research Institute, 8 Czartoryskich Str., 24-100, Puławy, Poland.
| | - Bozena Smreczak
- Department of Soil Science Erosion and Land Protection, Institute of Soil Science and Plant Cultivation-State Research Institute, 8 Czartoryskich Str., 24-100, Puławy, Poland
| | - Aleksandra Ukalska-Jaruga
- Department of Soil Science Erosion and Land Protection, Institute of Soil Science and Plant Cultivation-State Research Institute, 8 Czartoryskich Str., 24-100, Puławy, Poland
| |
Collapse
|
25
|
Umeh AC, Duan L, Naidu R, Semple KT. Residual hydrophobic organic contaminants in soil: Are they a barrier to risk-based approaches for managing contaminated land? ENVIRONMENT INTERNATIONAL 2017; 98:18-34. [PMID: 27745947 DOI: 10.1016/j.envint.2016.09.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 06/06/2023]
Abstract
Risk-based approaches to managing contaminated land, rather than approaches based on complete contaminant removal, have gained acceptance as they are likely to be more feasible and cost effective. Risk-based approaches aim to minimise risks of exposure of a specified contaminant to humans. However, adopting a risk-based approach over alternative overly-conservative approaches requires that associated uncertainties in decision making are understood and minimised. Irrespective of the nature of contaminants, a critical uncertainty is whether there are potential risks associated with exposure to the residual contaminant fractions in soil to humans and other ecological receptors, and how they should be considered in the risk assessment process. This review focusing on hydrophobic organic contaminants (HOCs), especially polycyclic aromatic hydrocarbons (PAHs), suggests that there is significant uncertainty on the residual fractions of contaminants from risk perspectives. This is because very few studies have focused on understanding the desorption behaviour of HOCs, with few or no studies considering the influence of exposure-specific factors. In particular, it is not clear whether the exposure of soil-associated HOCs to gastrointestinal fluids and enzyme processes release bound residues. Although, in vitro models have been used to predict PAH bioaccessibility, and chemical extractions have been used to determine residual fractions in various soils, there are still doubts about what is actually being measured. Therefore it is not certain which bioaccessibility method currently represents the best choice, or provides the best estimate, of in vivo PAH bioavailability. It is suggested that the fate and behaviour of HOCs in a wide range of soils, and that consider exposure-specific scenarios, be investigated. Exposure-specific scenarios are important for validation purposes, which may be useful for the development of standardised methods and procedures for HOC bioaccessibility determinations. Research is needed to propose the most appropriate testing methods and for assessing potential risks posed by residual fractions of HOCs. Such investigations may be useful for minimising uncertainties associated with a risk-based approach, so that consideration may then be given to its adoption on a global scale. This review critically appraises existing information on the bioavailability of HOC residues in soil to establish whether there may be risks from highly sequestered contaminant residues.
Collapse
Affiliation(s)
- Anthony C Umeh
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; Co-operative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Luchun Duan
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; Co-operative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; Co-operative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Kirk T Semple
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| |
Collapse
|
26
|
Ranc B, Faure P, Croze V, Simonnot MO. Selection of oxidant doses for in situ chemical oxidation of soils contaminated by polycyclic aromatic hydrocarbons (PAHs): A review. JOURNAL OF HAZARDOUS MATERIALS 2016; 312:280-297. [PMID: 27043880 DOI: 10.1016/j.jhazmat.2016.03.068] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 03/23/2016] [Accepted: 03/25/2016] [Indexed: 06/05/2023]
Abstract
In situ chemical oxidation (ISCO) is a promising alternative to thermal desorption for the remediation of soils contaminated with organic compounds such as polycyclic aromatic hydrocarbons (PAHs). For field application, one major issue is the selection of the optimal doses of the oxidizing solution, i.e. the oxidant and appropriate catalysts and/or additives. Despite an extensive scientific literature on ISCO, this choice is very difficult because many parameters differ from one study to another. The present review identifies the critical factors that must be taken into account to enable comparison of these various contributions. For example, spiked soils and aged, polluted soils cannot be compared; PAHs freshly spiked into a soil are fully available for degradation unlike a complex mixture of pollutants trapped in a soil for many years. Another notable example is the high diversity of oxidation conditions employed during batch experiments, although these affect the representativeness of the system. Finally, in this review a methodology is also proposed based on a combination of the stoichiometric oxidant demand of the organic pollutants and the design of experiments (DOE) in order to allow a better comparison of the various studies so far reported.
Collapse
Affiliation(s)
- B Ranc
- Université de Lorraine, Laboratoire Interdisciplinaire des Environnements Continentaux, UMR 7360, Site Aiguillette, 54506 Vandœuvre-lès-Nancy cedex, France; CNRS, Laboratoire Interdisciplinaire des Environnements Continentaux, UMR 7360, Site Aiguillettes, 54506 Vandœuvre-lès-Nancy cedex, France; ICF Environnement, 14 à 30 rue Alexandre, 92635 Gennevilliers, France; Université de Lorraine, Laboratoire Réactions et Génie des Procédés, UMR 7274, 1 rue Grandville, 54001 Nancy cedex, France; CNRS, Laboratoire Réactions et Génie des Procédés, UMR 7274, 1 rue Grandville, 54001 Nancy cedex, France
| | - P Faure
- Université de Lorraine, Laboratoire Interdisciplinaire des Environnements Continentaux, UMR 7360, Site Aiguillette, 54506 Vandœuvre-lès-Nancy cedex, France; CNRS, Laboratoire Interdisciplinaire des Environnements Continentaux, UMR 7360, Site Aiguillettes, 54506 Vandœuvre-lès-Nancy cedex, France
| | - V Croze
- ICF Environnement, 14 à 30 rue Alexandre, 92635 Gennevilliers, France
| | - M O Simonnot
- Université de Lorraine, Laboratoire Réactions et Génie des Procédés, UMR 7274, 1 rue Grandville, 54001 Nancy cedex, France; CNRS, Laboratoire Réactions et Génie des Procédés, UMR 7274, 1 rue Grandville, 54001 Nancy cedex, France.
| |
Collapse
|
27
|
Pisanello F, Marziali L, Rosignoli F, Poma G, Roscioli C, Pozzoni F, Guzzella L. In situ bioavailability of DDT and Hg in sediments of the Toce River (Lake Maggiore basin, Northern Italy): accumulation in benthic invertebrates and passive samplers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:10542-10555. [PMID: 26662101 DOI: 10.1007/s11356-015-5900-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 11/30/2015] [Indexed: 06/05/2023]
Abstract
DDT and mercury (Hg) contamination in the Toce River (Northern Italy) was caused by a factory producing technical DDT and using a mercury-cell chlor-alkali plant. In this study, DDT and Hg contamination and bioavailability were assessed by using different approaches: (1) direct evaluation of sediment contamination, (2) assessment of bioaccumulation in native benthic invertebrates belonging to different taxonomic/functional groups, and (3) evaluation of the in situ bioavailability of DDT and Hg using passive samplers. Sampling sites were selected upstream and downstream the industrial plant along the river axis. Benthic invertebrates (Gammaridae, Heptageniidae, and Diptera) and sediments were collected in three seasons and analyzed for DDT and Hg content and the results were used to calculate the biota sediment accumulation factor (BSAF). Polyethylene passive samplers (PEs) for DDT and diffusive gradients in thin films (DGTs) for Hg were deployed in sediments to estimate the concentration of the toxicants in pore water. Analysis for (DDx) were performed using GC-MS. Accuracy was within ±30 % of the certified values and precision was >20 % relative standard deviation (RSD). Total mercury concentrations were determined using an automated Hg mercury analyzer. Precision was >5 % and accuracy was within ±10 % of certified values. The results of all the approaches (analysis of sediment, biota, and passive samplers) showed an increasing contamination from upstream to downstream sites. BSAF values revealed the bioavailability of both contaminants in the study sites, with values up to 49 for DDx and up to 3.1 for Hg. No correlation was found between values in sediments and the organisms. Concentrations calculated using passive samplers were correlated with values in benthic invertebrates, while no correlation was found with concentrations in sediments. Thus, direct analysis of toxicant in sediments does not provide a measurement of bioavailability. On the contrary, analysis of bioaccumulation in benthic organisms provides the most realistic picture of the site-specific bioavailability of DDx and Hg, but this approach is time-consuming and not always feasible. On the other hand, the in situ deployment of passive samplers proved to be a powerful tool, providing a good surrogate measure of bioaccumulation.
Collapse
Affiliation(s)
- Francesca Pisanello
- Water Research Institute, National Research Council, Via del Mulino 19, 20861, Brugherio, MB, Italy.
| | - Laura Marziali
- Water Research Institute, National Research Council, Via del Mulino 19, 20861, Brugherio, MB, Italy.
| | - Federica Rosignoli
- Water Research Institute, National Research Council, Via del Mulino 19, 20861, Brugherio, MB, Italy
| | - Giulia Poma
- Toxicological Center, University of Antwerp, Wilrijk, Antwerp, Belgium
- Water Research Institute, National Research Council, Via del Mulino 19, 20861, Brugherio, MB, Italy
| | - Claudio Roscioli
- Water Research Institute, National Research Council, Via del Mulino 19, 20861, Brugherio, MB, Italy
| | - Fiorenzo Pozzoni
- Water Research Institute, National Research Council, Via del Mulino 19, 20861, Brugherio, MB, Italy
| | - Licia Guzzella
- Water Research Institute, National Research Council, Via del Mulino 19, 20861, Brugherio, MB, Italy
| |
Collapse
|
28
|
Vazquez-Roig P, Picó Y. Pressurized liquid extraction of organic contaminants in environmental and food samples. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2015.04.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
29
|
Ren B, Gao H, Cao Y, Jia L. In silico understanding of the cyclodextrin-phenanthrene hybrid assemblies in both aqueous medium and bacterial membranes. JOURNAL OF HAZARDOUS MATERIALS 2015; 285:148-156. [PMID: 25497028 DOI: 10.1016/j.jhazmat.2014.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 11/13/2014] [Accepted: 12/01/2014] [Indexed: 06/04/2023]
Abstract
The explicit-solvent molecular dynamic (MD) simulation and adaptive biased forces (ABF) methods were employed to systemically study the structural and thermodynamic nature of the β-cyclodextrin (βCD) monomer, phenanthrene (Phe) monomer, and their inclusion complexes in both the aqueous and membrane environments, aiming at clarifying the atomic-level mechanisms underlying in the CD-enhanced degradation of polycyclic aromatic hydrocarbons (PAHs) by bacteria. Simulations showed that βCD and Phe monomers could associate together to construct two distinctive assemblies, i.e, βCD1-Phe1 and βCD2-Phe1, respectively. The membrane-involved equilibrium simulations and the data of potential of mean forces (PMFs) further confirmed that Phe monomer was capable of penetrating through the membranes without confronting any large energy barrier, whereas, the single βCD and βCD-involved assemblies were unable to pass across the membranes. These observations clearly suggested that βCD only served as the carrier to enhance the bioavailability of Phe rather than the co-substrate in the Phe biodegradation process. The Phe-separation PMF profiles indicated that the maximum of the Phe uptake by bacteria would be achieved by the "optimal" βCD:Phe molar ratio, which facilitated the maximal formation of βCD1-Phe1 inclusion and the minimal construction of βCD2-Phe1 complex.
Collapse
Affiliation(s)
- Baiping Ren
- College of Life Science and Biotechnology, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China; State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Huipeng Gao
- College of Life Science and Biotechnology, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China
| | - Yafeng Cao
- College of Life Science and Biotechnology, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China
| | - Lingyun Jia
- College of Life Science and Biotechnology, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China.
| |
Collapse
|
30
|
Leovac A, Vasyukova E, Ivančev-Tumbas I, Uhl W, Kragulj M, Tričković J, Kerkez Đ, Dalmacija B. Sorption of atrazine, alachlor and trifluralin from water onto different geosorbents. RSC Adv 2015. [DOI: 10.1039/c4ra03886j] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The sorption behavior of the herbicides atrazine, alachlor and trifluralin on two modified organoclays, one model sediment, and one natural sediment in three water matrices (synthetic water, natural groundwater and surface water) was investigated.
Collapse
Affiliation(s)
- Anita Leovac
- University of Novi Sad
- Faculty of Sciences
- Department of Chemistry
- Biochemistry and Environmental Protection
- 21000 Novi Sad
| | - Ekaterina Vasyukova
- Technische Universität Dresden
- Faculty of Environmental Sciences
- Institute of Urban Water Management
- Chair of Water Supply Engineering
- Dresden
| | - Ivana Ivančev-Tumbas
- University of Novi Sad
- Faculty of Sciences
- Department of Chemistry
- Biochemistry and Environmental Protection
- 21000 Novi Sad
| | - Wolfgang Uhl
- Technische Universität Dresden
- Faculty of Environmental Sciences
- Institute of Urban Water Management
- Chair of Water Supply Engineering
- Dresden
| | - Marijana Kragulj
- University of Novi Sad
- Faculty of Sciences
- Department of Chemistry
- Biochemistry and Environmental Protection
- 21000 Novi Sad
| | - Jelena Tričković
- University of Novi Sad
- Faculty of Sciences
- Department of Chemistry
- Biochemistry and Environmental Protection
- 21000 Novi Sad
| | - Đurđa Kerkez
- University of Novi Sad
- Faculty of Sciences
- Department of Chemistry
- Biochemistry and Environmental Protection
- 21000 Novi Sad
| | - Božo Dalmacija
- University of Novi Sad
- Faculty of Sciences
- Department of Chemistry
- Biochemistry and Environmental Protection
- 21000 Novi Sad
| |
Collapse
|
31
|
Gao H, Ma J, Xu L, Jia L. Hydroxypropyl-β-cyclodextrin extractability and bioavailability of phenanthrene in humin and humic acid fractions from different soils and sediments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:8620-8630. [PMID: 24705921 DOI: 10.1007/s11356-014-2701-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 02/24/2014] [Indexed: 06/03/2023]
Abstract
Organic matter (OM) plays a vital role in controlling polycyclic aromatic hydrocarbon (PAH) bioavailability in soils and sediments. In this study, both a hydroxypropyl-β-cyclodextrin (HPCD) extraction test and a biodegradation test were performed to evaluate the bioavailability of phenanthrene in seven different bulk soil/sediment samples and two OM components (humin fractions and humic acid (HA) fractions) separated from these soils/sediments. Results showed that both the extent of HPCD-extractable phenanthrene and the extent of biodegradable phenanthrene in humin fraction were lower than those in the respective HA fraction and source soil/sediment, demonstrating the limited bioavailability of phenanthrene in the humin fraction. For the source soils/sediments and the humin fractions, significant inverse relationships were observed between the sorption capacities for phenanthrene and the amounts of HPCD-extractable or biodegradable phenanthrene (p < 0.05), suggesting the importance of the sorption capacity in affecting desorption and biodegradation of phenanthrene. Strong linear relationships were observed between the amount of HPCD-extractable phenanthrene and the amount degraded in both the bulk soils/sediments and the humin fractions, with both slopes close to 1. On the other hand, in the case of phenanthrene contained in HA, a poor relationship was observed between the amount of phenanthrene extracted by HPCD and the amount degraded, with the former being much less than the latter. The results revealed the importance of humin fraction in affecting the bioavailability of phenanthrene in the bulk soils/sediments, which would deepen our understanding of the organic matter fractions in affecting desorption and biodegradation of organic pollutants and provide theoretical support for remediation and risk assessment of contaminated soils and sediments.
Collapse
Affiliation(s)
- Huipeng Gao
- School of Life Science and Biotechnology, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, People's Republic of China
| | | | | | | |
Collapse
|
32
|
Šmídová K, Hofman J. Uptake kinetics of five hydrophobic organic pollutants in the earthworm Eisenia fetida in six different soils. JOURNAL OF HAZARDOUS MATERIALS 2014; 267:175-182. [PMID: 24447858 DOI: 10.1016/j.jhazmat.2013.12.063] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 12/20/2013] [Accepted: 12/27/2013] [Indexed: 06/03/2023]
Abstract
Hydrophobic organic contaminants in soils may pose toxicity or transfer to food chains after their uptake to soil biota. However, uptake data for earthworms are usually limited, as: (a) only fixed exposure times are studied instead of whole uptake kinetics and (b) studies including compounds with different environmental properties and more than two soils of different properties are quite rare. In our study, five persistent organic pollutants (phenanthrene, pyrene, lindane, p,p'-dichlorodiphenyltrichloroethane (p,p'-DDT), and polychlorinated biphenyl congener No. 153 (PCB 153)) were added to six soils of a wide range of soil properties. Detailed kinetics of uptake to earthworms Eisenia fetida were measured. Results indicated that an equilibrium of concentrations for p,p'-DDT and PCB 153 was reached after 11 days of exposure in all soils. Uptake of phenanthrene, pyrene, and lindane was strongly influenced by the decrease in concentrations in the soils, resulting in peak-shaped accumulation curves. Only in soils with the highest total organic carbon content (7.9 and 20.2%), the equilibrium of lindane concentrations was achieved (after 17 and 5 days of exposure, respectively). We recommend calculating bioaccumulation factors as a ratio of the uptake and elimination rate constants to precise the risk assessment.
Collapse
Affiliation(s)
- Klára Šmídová
- Faculty of Science, Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 753/5, Brno CZ-62500, Czech Republic
| | - Jakub Hofman
- Faculty of Science, Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 753/5, Brno CZ-62500, Czech Republic.
| |
Collapse
|
33
|
Cachada A, Pereira R, da Silva EF, Duarte AC. The prediction of PAHs bioavailability in soils using chemical methods: state of the art and future challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 472:463-480. [PMID: 24300458 DOI: 10.1016/j.scitotenv.2013.11.038] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 11/06/2013] [Accepted: 11/07/2013] [Indexed: 06/02/2023]
Abstract
The evaluation of the available fraction of hydrophobic organic contaminants (HOCs) is extremely important for assessing their risk to the environment and human health. This available fraction, which can be solubilized and/or easily extracted, is believed to be the most accessible for bioaccumulation, biosorption and/or transformation by organisms. Based on this, two main types of chemical methods have been developed, closely related to the concepts of bioaccessibility and freely available concentrations: non-exhaustive extractions and biomimetic methods. Since bioavailability is species and compound specific, this work focused only in one of the most widespread group of HOCs in soils: polycyclic aromatic hydrocarbons (PAHs). This study aims at producing a state of the art knowledge base on bioavailability and chemical availability of PAHs in soils, clarifying which chemical methods can provide a better prediction of an organism exposure, and which are the most promising ones. Therefore, a review of the processes involved on PAHs availability to microorganisms, earthworms and plants was performed and the outputs given by the different chemical methods were evaluated. The suitability of chemical methods to predict bioavailability of the 16 US EPA PAHs in dissimilar naturally contaminated soils was not yet demonstrated, being especially difficult for high molecular weight compounds. Even though the potential to predict microbial mineralization using non-exhaustive extractions is promising, it will be very difficult to achieve for earthworms and plants, due to the complexity of accumulation mechanisms which are not taken into account by chemical methods. Yet, the existing models could be improved by determining compound, species and site specific parameters. Moreover, chemical availability can be very useful to understand the bioavailability processes and the behavior of PAHs in soils. The inclusion of chemical methods on risk assessment has been suggested and it is promising, despite some methods overpredict risks.
Collapse
Affiliation(s)
- A Cachada
- University of Aveiro, Department of Chemistry & CESAM, Campus de Santiago, 3810-193 Aveiro, Portugal.
| | - R Pereira
- Department of Biology, Faculty of Sciences, University of Oporto, Rua do Campo Alegre, 4169-007 Porto, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Rua dos Bragas 289, P 4050-123 Porto, Portugal
| | - E Ferreira da Silva
- University of Aveiro, Department of Geosciences, GeoBioTec-GeoBioSciences, Geotechnologies and Geoengineering Research Center, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - A C Duarte
- University of Aveiro, Department of Chemistry & CESAM, Campus de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
34
|
Liu K, Wang S, Luo K, Liu X, Yu Y. Amelioration of acidic soil increases the toxicity of the weak base carbendazim to the earthworm Eisenia fetida. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2013; 32:2870-2873. [PMID: 24038552 DOI: 10.1002/etc.2386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 08/24/2013] [Accepted: 08/27/2013] [Indexed: 06/02/2023]
Abstract
Ameliorating acidic soils is a common practice and may affect the bioavailability of an ionizable organic pollutant to organisms. The toxicity of the weak base carbendazim to the earthworm (Eisenia fetida) was studied in an acidic soil (pH-H₂O, 4.6) and in the ameliorated soil (pH-H₂O, 7.5). The results indicated that the median lethal concentration of carbendazim for E. fetida decreased from 21.8 mg/kg in acidic soil to 7.35 mg/kg in the ameliorated soil. To understand why the amelioration increased carbendazim toxicity to the earthworm, the authors measured the carbendazim concentrations in the soil porewater. The authors found increased carbendazim concentrations in porewater, resulting in increased toxicity of carbendazim to earthworms. The increased pore concentrations result from decreased adsorption because of the effects of pH and calcium ions.
Collapse
|
35
|
Parrella A, Lavorgna M, Criscuolo E, Isidori M. Mutagenicity, genotoxicity, and estrogenic activity of river porewaters. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2013; 65:407-420. [PMID: 23797980 DOI: 10.1007/s00244-013-9928-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 06/10/2013] [Indexed: 06/02/2023]
Abstract
We investigated mutagenicity, genotoxicity, and estrogenic activity in the porewaters of two river basins in southern Italy that had different features. Three samples from each site were collected in different seasons from 7 sites for a total of 21 samples. Mutagenicity was measured with the Ames test with and without metabolic activation (S9) using Salmonella typhimurium TA98 and TA100 strains. Genotoxicity was measured with two tests: one involved a chromophore that detected DNA damage in Escherichia coli PQ37 (SOS chromotest), and the other measured micronuclei formation in the root cells of Vicia faba. Estrogenic activity was measured with a yeast-based estrogen receptor assay and an MCF-7 cell-based, estrogen-sensitive proliferation assay. We also applied chemical analyses to detect alkylphenols, pesticides, natural and synthetic hormones, and heavy metals. The porewaters of both river sediments showed mutagenic/genotoxic activity on V. faba test and Ames test, the latter both with and without S9 liver fraction. The SOS chromotest without metabolic activation was not sufficiently sensitive to detect genotoxicity of the porewaters, but the SOS DNA repair system in E. coli PQ37 was activated in the presence of S9 mix. Good correlations were found between mutagenicity/genotoxicity and the concentration of cadmium and between estrogenic activity and the presence of copper. This study assessed the chemical concentrations of some bioavailable pollutants in porewater and detected the overall effects of multiple pollutants that contributed to mutagenicity, genotoxicity, and estrogenic activity of these two basin porewaters, thus increasing our understanding of the environmental consequences of polluted aquatic ecosystems.
Collapse
Affiliation(s)
- Alfredo Parrella
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli, Via Vivaldi, 43, 81100 Caserta, Italy
| | | | | | | |
Collapse
|
36
|
Zhang X, Brar SK, Yan S, Tyagi RD, Surampalli RY. Fate and transport of fragrance materials in principal environmental sinks. CHEMOSPHERE 2013; 93:857-869. [PMID: 23786813 DOI: 10.1016/j.chemosphere.2013.05.055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 05/22/2013] [Accepted: 05/23/2013] [Indexed: 06/02/2023]
Abstract
Fragrance materials are widely present in the environment, such as air, water, and soil. Concerns have been raised due to the increasing utilization and suspected impact on human health. The bioaccumulating property is considered as one of the causes of the toxicity to human beings. The removal of fragrance materials from environmental sinks has not been paid enough attention due to the lack of regulation and research on their toxicity. This paper provides systematic information on how fragrance materials are transferred to the environment, how do they affect human lives, and what is their fate in water, wastewater, wastewater sludge, and soil.
Collapse
Affiliation(s)
- Xiaolei Zhang
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| | | | | | | | | |
Collapse
|
37
|
Li S, Anderson TA, Maul JD, Shrestha B, Green MJ, Cañas-Carrell JE. Comparative studies of multi-walled carbon nanotubes (MWNTs) and octadecyl (C18) as sorbents in passive sampling devices for biomimetic uptake of polycyclic aromatic hydrocarbons (PAHs) from soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 461-462:560-567. [PMID: 23756215 DOI: 10.1016/j.scitotenv.2013.05.048] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 05/16/2013] [Accepted: 05/17/2013] [Indexed: 06/02/2023]
Abstract
To avoid overestimating the risk of polycyclic aromatic hydrocarbons (PAHs), research is needed to evaluate the bioavailable portion of PAHs in the environment. However, limited PSDs were developed for a terrestrial soil system. In this study, two sorbents, octadecyl (C18) and multi-walled carbon nanotubes (MWNTs), were individually evaluated as sorbents in passive sampling devices (PSDs) as biomimetic samplers to assess the uptake of PAHs from soil. C18-PSDs were an excellent biomimetic tool for PAHs with a low molecular weight in complex exposure conditions with different soil types, types of PAHs, aging periods, and initial PAH concentrations in soil. The utility of MWNT-PSDs was limited by extraction efficiencies of PAHs from MWNTs. However, when compared to C18-PSDs, they had higher adsorption capacities and were less expensive. This study provides data regarding useful techniques that can be used in risk assessment to assess the bioavailability of PAHs in soil.
Collapse
Affiliation(s)
- Shibin Li
- Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH), Texas Tech University, Box 41163, Lubbock, TX 79409-1163, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Li S, Anderson TA, Green MJ, Maul JD, Cañas-Carrell JE. Polyaromatic hydrocarbons (PAHs) sorption behavior unaffected by the presence of multi-walled carbon nanotubes (MWNTs) in a natural soil system. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2013; 15:1130-1136. [PMID: 23591941 DOI: 10.1039/c3em00099k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The batch equilibrium approach was used to examine the influence of multi-walled carbon nanotubes (MWNTs) on the sorption behaviors of polyaromatic hydrocarbons (PAHs) in soil. To the knowledge of the authors, this is the first study of PAH sorption to MWNTs in real natural soil systems. The sorption behavior of three PAHs (naphthalene, fluorene, and phenanthrene) in the presence of commercially available MWNTs in two natural soils (a sandy loam and a silt loam) and Ottawa sand was evaluated. Adsorption of PAHs by MWNTs in this study was three orders of magnitude higher than that of natural soils. Sorption coefficients of PAHs (Kd and Koc) were unchanged in the presence of 2 mg g(-1) MWNTs in soil (p > 0.05). A micro-mechanics approach, termed 'the rule of mixtures' was used for predicting PAH sorption behaviors in mixtures based on sorption coefficients derived from single sorbents. The equation, KT = KMα + KN(1 - α) (K, sorption coefficients, Kd or Koc), predicted sorption coefficients in a mixture based on mixture component sorption coefficients and mass fractions. Data presented in this study could be used to fill data gaps related to the environmental fate of carbon nanotubes in soil.
Collapse
Affiliation(s)
- Shibin Li
- Department of Environmental Toxicology, The Institute of Environmental and Human Health TIEHH, Texas Tech University, Box 41163, Lubbock TX 79409-1163, USA.
| | | | | | | | | |
Collapse
|
39
|
Bielská L, Šmídová K, Hofman J. Supercritical fluid extraction of persistent organic pollutants from natural and artificial soils and comparison with bioaccumulation in earthworms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 176:48-54. [PMID: 23416268 DOI: 10.1016/j.envpol.2013.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 12/04/2012] [Accepted: 01/05/2013] [Indexed: 06/01/2023]
Abstract
Selective supercritical fluid extraction (SSFE) was used as a measurement of compound chemical accessibility and as a predictor of compound bioavailability from three natural soils and artificial analogues prepared to have comparable total organic carbon content. Soils spiked with phenanthrene, pyrene, PCB 153, lindane, and p,p'-DDT were aged for 0, 14, 28, or 56 days and then selectively extracted by supercritical fluid extraction. Compounds exhibited decreasing extractability with increasing pollutant-soil contact time and increasing total organic carbon content in tested soils. However, the different extractability of compounds from artificial and natural pairs having comparable TOC indicates the limitations of using TOC as an extrapolation basis between various soils. The comparison of extractability with bioaccumulation by earthworms (Eisenia fetida) previously published by Vlčková and Hofman (2012) showed that only for PAHs it was possible to predict their bioaccumulation by means of selective SFE.
Collapse
Affiliation(s)
- Lucie Bielská
- Research Centre for Toxic Compounds in Environment, Faculty of Science, Masaryk University, Kamenice 126/3, Brno CZ-62500, Czech Republic
| | | | | |
Collapse
|
40
|
Impact of Biochar on Organic Contaminants in Soil: A Tool for Mitigating Risk? AGRONOMY-BASEL 2013. [DOI: 10.3390/agronomy3020349] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
41
|
Ding Y, Landrum PF, You J, Lydy MJ. Assessing bioavailability and toxicity of permethrin and DDT in sediment using matrix solid phase microextraction. ECOTOXICOLOGY (LONDON, ENGLAND) 2013; 22:109-117. [PMID: 23086182 DOI: 10.1007/s10646-012-1007-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/06/2012] [Indexed: 06/01/2023]
Abstract
Matrix solid phase microextraction (matrix-SPME) was evaluated as a surrogate for the absorbed dose in organisms to estimate bioavailability and toxicity of permethrin and dichlorodiphenyltrichloroethane (DDT) in laboratory-spiked sediment. Sediments were incubated for 7, 28, and 90 days at room temperature to characterize the effect of aging on bioavailability and toxicity. Sediment toxicity was assessed using two freshwater invertebrates, the midge Chironomus dilutus and amphipod Hyalella azteca. Disposable polydimethylsiloxane fibers were used to estimate the absorbed dose in organisms and to examine bioavailability and toxicity. The equilibrium fiber concentrations substantially decreased with an increase in sediment aging time, indicating a reduction in bioavailability. Based on median lethal fiber concentrations (fiber LC50), toxicity of permethrin was not significantly different among the different aging times. Due to the substantial degradation of DDT to dichlorodiphenyldichloroethane (DDD) in sediment, sediment toxicity to C. dilutus increased, while it decreased for H. azteca with extended aging times. A toxic unit-based fiber LC50 value represented the DDT mixture (DDT and DDD) toxicity for both species. Significant linear relationships were found between organism body residues and the equilibrium fiber concentrations for each compound, across aging times. The study suggested that the matrix-SPME fibers mimicked bioaccumulation in the organisms, and enabled estimation of body residues, and could potentially be used in environmental risk assessment across matrices (e.g. sediment and water) to measure bioavailability and toxicity of hydrophobic pesticides.
Collapse
Affiliation(s)
- Yuping Ding
- Fisheries and Illinois Aquaculture Center, Department of Zoology, Southern Illinois University, Carbondale, IL 62901, USA
| | | | | | | |
Collapse
|
42
|
Liu K, Pan X, Han Y, Tang F, Yu Y. Estimating the toxicity of the weak base carbendazim to the earthworm (Eisenia fetida) using in situ pore water concentrations in different soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 438:26-32. [PMID: 22960505 DOI: 10.1016/j.scitotenv.2012.08.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 07/31/2012] [Accepted: 08/02/2012] [Indexed: 05/21/2023]
Abstract
Both sorption by soil and uptake by organisms of ionizable organic pollutants depend on their speciation (i.e., neutral and ionized forms); thus, the bioavailability of ionizable organic pollutants is more complicated than that of neutral organic pollutants in soil. The toxicity of the weak base carbendazim to earthworms (Eisenia fetida) was estimated using Soxhlet extracted concentrations (C(SE)), an excess of water extracted concentrations (C(EEW)), ex situ pore water concentrations (C(EPW)) and in situ pore water concentrations (C(IPW)) in different soils. The results indicated that the median lethal concentrations (LC50) calculated from C(SE) ranged from 2.32 to 34.0 mg kg(-1) in the five tested soils and the coefficient of variation (CV) of LC50s was 69.8%. When the LC50 was calculated from the C(EEW), C(EPW) and C(IPW), the variability of the LC50 gradually became smaller in these soils, with the CVs of LC50s being 58.1%, 50.6% and 38.6% (for C(EEW), C(EPW) and C(IPW), respectively). However, the LC50 based on C(IPW) in strongly acidic soil (where carbendazim partially exists as ionized form) was significantly lower than in other soils, and the values of the LC50 calculated from the in situ pore water concentrations were approximately equal. The results indicated that the in situ pore water concentration could be used to estimate the toxicity of carbendazim in different soils especially in those soils where carbendazim exists in the neutral form.
Collapse
Affiliation(s)
- Kailin Liu
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, PR China
| | | | | | | | | |
Collapse
|
43
|
Bayen S. Occurrence, bioavailability and toxic effects of trace metals and organic contaminants in mangrove ecosystems: a review. ENVIRONMENT INTERNATIONAL 2012; 48:84-101. [PMID: 22885665 DOI: 10.1016/j.envint.2012.07.008] [Citation(s) in RCA: 225] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 07/05/2012] [Accepted: 07/22/2012] [Indexed: 05/21/2023]
Abstract
Although their ecological and socioeconomic importance has received recent attention, mangrove ecosystems are one of the most threatened tropical environments. Besides direct clearance, hydrological alterations, climatic changes or insect infestations, chemical pollution could be a significant contributor of mangrove degradation. The present paper reviews the current knowledge on the occurrence, bioavailability and toxic effects of trace contaminants in mangrove ecosystems. The literature confirmed that trace metals, Polycyclic Aromatic Hydrocarbons (PAHs), Persistent Organic Pollutants (POPs), Pharmaceuticals and Personal Care Products (PPCPs) and Endocrine Disrupters Compounds (EDCs) have been detected in various mangrove compartments (water, sediments and biota). In some cases, these chemicals have associated toxic effects on mangrove ecosystem species, with potential impact on populations and biodiversity in the field. However, nearly all studies about the bioavailability and toxic effects of contaminants in mangrove ecosystems focus on selected trace metals, PAHs or some "conventional" POPs, and virtually no data exist for other contaminant groups. The specificities of mangrove ecosystems (e.g. biology, physico-chemistry and hydrology) support the need for specific ecotoxicological tools. This review highlights the major data and methodological gaps which should be addressed to refine the risk assessment of trace pollutants in mangrove ecosystems.
Collapse
Affiliation(s)
- Stéphane Bayen
- Singapore-Delft Water Alliance, National University of Singapore, Engineering Workshop 1, #02-05, No. 2 Engineering Drive 2, Singapore 117577, Singapore.
| |
Collapse
|
44
|
Sánchez-Jiménez N, Sevilla MT, Cuevas J, Rodríguez M, Procopio JR. Interaction of organic contaminants with natural clay type geosorbents: potential use as geologic barrier in urban landfill. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2012; 95 Suppl:S182-S187. [PMID: 21376446 DOI: 10.1016/j.jenvman.2011.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 01/04/2011] [Accepted: 02/07/2011] [Indexed: 05/30/2023]
Abstract
The aim of this work is to characterize the capability of several clay materials as preservative of organic pollution for use as landfill barrier. Interaction of representative organic pollutants with different polarity and water solubility (atrazine, benzamide, methomyl, paraquat and toluene) with several clay materials coming from several locations of Spain were studied. Batch suspension method was used to study the pesticide adsorption onto the clay sorbents in solution conditions that simulate the composition of a young leachate in its aerobic acetogenic stage (pH=5 and I=0.15) The obtained data of the analytes sorption were modelized by several sorption isotherm models, and the best fitted data were got with a generalized Langmuir adsorption isotherm. The higher maxima adsorptions were observed for paraquat (50-62 mmol kg(-1)) and toluene (19-34 mmol kg(-1)) whereas more hydrophobic compounds present lower adsorption (0.7-2.5 mmol kg(-1)). Paraquat is the compound that presents the higher bonding coefficients. Therefore these clays could be used as components of the multibarriers in controlled urban landfill.
Collapse
Affiliation(s)
- N Sánchez-Jiménez
- Departamento de Química Analítica y Análisis Instrumental, Facultad de Ciencias, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente, 7, 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
45
|
El-Temsah YS, Joner EJ. Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. ENVIRONMENTAL TOXICOLOGY 2012; 27:42-9. [PMID: 20549639 DOI: 10.1002/tox.20610] [Citation(s) in RCA: 199] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 03/09/2010] [Accepted: 03/13/2010] [Indexed: 05/20/2023]
Abstract
The potential environmental toxicity of zero-valent iron nanoparticles (nZVI) and three types of nanosilver differing in average particle size from 1 to 20 nm was evaluated using seed germination tests with ryegrass, barley, and flax exposed to 0-5000 mg L(-1) nZVI or 0-100 mg L(-1) Ag. For nZVI, germination tests were conducted both in water and in two contrasting soils to test the impact of assumed differences in bioavailability of nanoparticles. Inhibitory effects were observed in aqueous suspensions at 250 mg L(-1) for nZVI and 10 mg L(-1) for Ag. Reduction in shoot growth was a more sensitive endpoint than germination percentage. Complete inhibition of germination was observed at 1000-2000 mg L(-1) for nZVI. For Ag, complete inhibition was not achieved. The presence of soil had a modest influence on toxicity, and inhibitory effects were observed at 300 mg nZVI L(-1) water in soil (equivalent to 1000 mg nZVI kg(-1) soil). Complete inhibition was observed at 750 and 1500 mg L(-1) in sandy soil for flax and ryegrass, respectively, while for barley 13% germination still occurred at 1500 mg L(-1) . In clay soil, inhibition was less pronounced. Our results indicate that nZVI at low concentrations can be used without detrimental effects on plants and thus be suitable for combined remediation where plants are involved. Silver nanoparticles inhibited seed germination at lower concentrations, but showed no clear size-dependent effects, and never completely impeded germination. Thus, seed germination tests seem less suited for estimation of environmental impact of
Collapse
|
46
|
Xia X, Zhang J, Sha Y, Li J. Impact of irreversible sorption of phthalate acid esters on their sediment quality criteria. ACTA ACUST UNITED AC 2012; 14:258-65. [DOI: 10.1039/c1em10649j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Vlčková K, Hofman J. A comparison of POPs bioaccumulation in Eisenia fetida in natural and artificial soils and the effects of aging. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2012; 160:49-56. [PMID: 22035925 DOI: 10.1016/j.envpol.2011.08.049] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 08/24/2011] [Accepted: 08/26/2011] [Indexed: 05/31/2023]
Abstract
The close relationship between soil organic matter and the bioavailability of POPs in soils suggests the possibility of using it for the extrapolation between different soils. The aim of this study was to prove that TOC content is not a single factor affecting the bioavailability of POPs and that TOC based extrapolation might be incorrect, especially when comparing natural and artificial soils. Three natural soils with increasing TOC and three artificial soils with TOC comparable to these natural soils were spiked with phenanthrene, pyrene, lindane, p,p'-DDT, and PCB 153 and studied after 0, 14, 28, and 56 days. At each sampling point, total soil concentration and bioaccumulation in earthworms Eisenia fetida were measured. The results showed different behavior and bioavailability of POPs in natural and artificial soils and apparent effects of aging on these differences. Hence, direct TOC based extrapolation between various soils seems to be limited.
Collapse
Affiliation(s)
- Klára Vlčková
- Research Centre for Toxic Compounds in Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 126/3, Brno, CZ-62500, Czech Republic
| | | |
Collapse
|
48
|
Design and calibration of an organic diffusive probe to extend the diffusion gradient technique to organic pollutants. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2011; 8:3318-32. [PMID: 21909309 PMCID: PMC3166745 DOI: 10.3390/ijerph8083318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 08/11/2011] [Indexed: 12/04/2022]
Abstract
The objective of this study was to develop a method for measuring the mobility of persistent organic pollutants in the solid phase of soils within the context of environmental pollution risk assessment. A new diffusive probe, purposely designed by adapting the diffusive gradient technique method, measures labile organic species by immobilizing them after diffusion through a thin deionized water layer. The measure of the mass accumulated is used to calculate the flow of pollutant from solid phase to pore water. Naphthalene was chosen as a model persistent organic pollutant. The probe was calibrated at different temperatures and was then tested in several microcosms at different porosity and reactivities with naphthalene (one clay soil, two sandy soils and one natural soil). The probe response showed good agreement with the expected different abilities of the solid phases in restoring the solution phase. The concentration of naphthalene in the pore water was well buffered by rapid equilibria with the solid phase in the investigated natural soil. In contrast, pore water concentration in the sandy soils decreased rapidly and the flow was slackened, especially for the sandy soil with finer particles. In clay, only a fraction of the total naphthalene content was present in the labile fraction, while the remaining was tightly bound and was not released to the pore water. Therefore, this first stage of testing points out that the diffusive gradient technique, if optimized, can properly quantify the mobility of organic pollutants in soil.
Collapse
|
49
|
Lambert MK, Friedman C, Luey P, Lohmann R. Role of black carbon in the sorption of polychlorinated dibenzo-p-dioxins and dibenzofurans at the Diamond Alkali superfund site, Newark Bay, New Jersey. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:4331-4338. [PMID: 21504211 DOI: 10.1021/es103953t] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The sorption of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) to organic carbon (OC) and black carbon (BC) was measured in two sediment cores taken near the Diamond Alkali superfund site (DA) in the Passaic River and Newark Bay, New Jersey (U.S.A.). An OC partitioning model and a BC-inclusive, Freundlich distribution model were used to interpret measurements of freely dissolved PCDD/Fs using passive samplers in sediment incubations, together with measured sedimentary concentrations of OC, BC, and PCDD/Fs. Samples were also analyzed for polycyclic aromatic hydrocarbons (PAHs) as controls on the two distribution models. The OC partitioning model underpredicted the distribution of PAHs and PCDD/Fs by 10-100-fold. The Freundlich model predicted the distribution of PAHs at the DA to within a factor of 2-3 of observations. Black carbon-water partition coefficients (K(iBC)) for PCDD/Fs, derived from literature results of both field and laboratory studies differed up to 1000-fold from values derived from this study. Contrary to expectations, PCDDs displayed stronger sorption than either PCDFs or PAHs relative to their subcooled liquid aqueous solubilities. Even though the presence of BC in the sediments reduced the overall bioavailability of PCDD/Fs by >90%, the sediments at 2 m depth continue to display the highest pore water activities of PCDD/Fs.
Collapse
Affiliation(s)
- Matthew K Lambert
- Graduate School of Oceanography, University of Rhode Island, 215 South Ferry Road, Narragansett, Rhode Island 02882, USA
| | | | | | | |
Collapse
|
50
|
Achten C, Cheng S, Straub KL, Hofmann T. The lack of microbial degradation of polycyclic aromatic hydrocarbons from coal-rich soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2011; 159:623-629. [PMID: 21050626 DOI: 10.1016/j.envpol.2010.09.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 09/23/2010] [Accepted: 09/25/2010] [Indexed: 05/30/2023]
Abstract
Analytical techniques used to assess the environmental risk of contamination from polycyclic aromatic hydrocarbons (PAHs) typically consider only abiotic sample parameters. Supercritical fluid extraction and sorption enthalpy experiments previously suggested slow desorption rates for PAH compounds in two coal-contaminated floodplain soils. In this study, the actual PAH availability for aerobic soil microorganisms was tested in two series of soil-slurry experiments. The experimental conditions supported microbial degradation of phenanthrene if it was weakly sorbed onto silica gel. Native coals and coal-derived particles in two soils effectively acted as very strong sorbents and prevented microbial PAH degradation. The long history of PAH exposure and degree of coal contamination apparently had no influence on the capability of the microbial soil community to overcome constraints of PAH availability. Within the context of the experimental conditions and the compounds chosen, our results confirm that coal-bound PAHs are not bioavailable and hence of low environmental concern.
Collapse
Affiliation(s)
- Christine Achten
- University of Vienna, Department of Environmental Geosciences, Althanstr. 14, 1090 Vienna, Austria
| | | | | | | |
Collapse
|