1
|
El Khattabi O, Lamwati Y, Henkrar F, Collin B, Levard C, Colin F, Smouni A, Fahr M. Lead-induced changes in plant cell ultrastructure: an overview. Biometals 2025; 38:1-19. [PMID: 39325137 DOI: 10.1007/s10534-024-00639-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
Lead (Pb) is one of the most harmful toxic metals and causes severe damage to plants even at low concentrations. Pb inhibits plant development, reduces photosynthesis rates, and causes metabolic disfunctions. Plant cells display these alterations in the form of abnormal morphological modifications resulting from ultrastructural changes in the cell wall, plasma membrane, chloroplast, endoplasmic reticulum, mitochondria, and nuclei. Depending on plant tolerance capacity, the ultrastructural changes could be either a sign of toxicity that limits plant development or an adaptive strategy to cope with Pb stress. This paper gathers data on Pb-induced changes in cell ultrastructure observed in many tolerant and hyperaccumulator plants and describes the ultrastructural changes that appear to be mechanisms to alleviate Pb toxicity. The different modifications caused by Pb in cell organelles are summarized and reinforced with hypotheses that provide an overview of plant responses to Pb stress and explain the physiological and morphological changes that occur in tolerant plants. These ultrastructural modifications could help assess the potential of plants for use in phytoremediation.
Collapse
Affiliation(s)
- Oumaima El Khattabi
- Laboratoire de Biotechnologie et Physiologie Végétales, Faculté des Sciences, Université Mohammed V de Rabat, 4 Avenue Ibn Batouta BP 1014 RP, 10000, Rabat, Morocco
- Laboratoire Mixte International Activité Minière Responsable "LMI-AMIR", IRD/UM5/INAU, 10000, Rabat, Morocco
- CEREGE - IRD, Aix Marseille University, 13100, Aix-en-Provence, France
| | - Youssef Lamwati
- Laboratoire de Biotechnologie et Physiologie Végétales, Faculté des Sciences, Université Mohammed V de Rabat, 4 Avenue Ibn Batouta BP 1014 RP, 10000, Rabat, Morocco
- Laboratoire Mixte International Activité Minière Responsable "LMI-AMIR", IRD/UM5/INAU, 10000, Rabat, Morocco
- CEREGE - IRD, Aix Marseille University, 13100, Aix-en-Provence, France
- Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale - Aix Marseille University, 13397, Marseille, France
| | - Fatima Henkrar
- Laboratoire de Biotechnologie et Physiologie Végétales, Faculté des Sciences, Université Mohammed V de Rabat, 4 Avenue Ibn Batouta BP 1014 RP, 10000, Rabat, Morocco
- Laboratoire Mixte International Activité Minière Responsable "LMI-AMIR", IRD/UM5/INAU, 10000, Rabat, Morocco
| | - Blanche Collin
- Laboratoire Mixte International Activité Minière Responsable "LMI-AMIR", IRD/UM5/INAU, 10000, Rabat, Morocco
- CEREGE - IRD, Aix Marseille University, 13100, Aix-en-Provence, France
| | - Clement Levard
- Laboratoire Mixte International Activité Minière Responsable "LMI-AMIR", IRD/UM5/INAU, 10000, Rabat, Morocco
- CEREGE - IRD, Aix Marseille University, 13100, Aix-en-Provence, France
| | - Fabrice Colin
- Laboratoire Mixte International Activité Minière Responsable "LMI-AMIR", IRD/UM5/INAU, 10000, Rabat, Morocco
- CEREGE - IRD, Aix Marseille University, 13100, Aix-en-Provence, France
| | - Abdelaziz Smouni
- Laboratoire de Biotechnologie et Physiologie Végétales, Faculté des Sciences, Université Mohammed V de Rabat, 4 Avenue Ibn Batouta BP 1014 RP, 10000, Rabat, Morocco
- Laboratoire Mixte International Activité Minière Responsable "LMI-AMIR", IRD/UM5/INAU, 10000, Rabat, Morocco
| | - Mouna Fahr
- Laboratoire de Biotechnologie et Physiologie Végétales, Faculté des Sciences, Université Mohammed V de Rabat, 4 Avenue Ibn Batouta BP 1014 RP, 10000, Rabat, Morocco.
- Laboratoire Mixte International Activité Minière Responsable "LMI-AMIR", IRD/UM5/INAU, 10000, Rabat, Morocco.
| |
Collapse
|
2
|
Jishnu VM, Sreelekshmi R, Vishnu B, Siril EA. An assessment of in vitro lead (Pb) bioaccumulation of Dianthus chinensis L. (Chinese pink). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:61426-61436. [PMID: 39417938 DOI: 10.1007/s11356-024-35317-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
Heavy metals (HM) also known as potentially toxic elements (PTEs), are well-known environmental pollutants, among which lead (Pb) is a widespread and hazardous soil contaminant. Its removal from soil sediments is often difficult to achieve. In this study, in vitro experiments were conducted to investigate the bioaccumulation capability of Dianthus chinensis L. in solid and liquid Murashige and Skoog (MS) medium supplemented with varying concentrations (0, 10, 100, and 200 µM) of Pb as lead nitrate [Pb(NO3)2] for 30 days. The objectives of the study were to assess the efficiency of the selected plant as a bio-accumulator in the in vitro system and to obtain data on morphological, biochemical, and molecular changes during Pb salt-induced stress. Significant growth patterns of initial growth promotion up to 100 µM lead nitrate supplemented medium were observed, with maximum shoot length and biomass production along with remarkable lead bioaccumulation. Molecular studies on in vitro raised plantlets confirm the high degree of genetic uniformity (98.3%) of the selected plants after a considerable duration (30 days) of Pb exposure. Biochemical parameters revealed significant stress effects, including a 284% reduction in total chlorophyll content, altered carotenoid, and proline level during the study. The experiment revealed the high tolerance capacity of D. chinensis to Pb salt and its bioaccumulation potential (397.33 mg/kg). This increases the possible use of such an ornamental and floriculture plant as a prospective candidate for the efficient removal of soil Pb pollutants, as they can remediate soils, coupled with aesthetic and profitable outcomes for the growers.
Collapse
Affiliation(s)
- Vijayakumari M Jishnu
- Department of Botany, University of Kerala, Kariavattom, Thiruvananthapuram, 695581, Kerala, India
| | - Radhamani Sreelekshmi
- Department of Botany, University of Kerala, Kariavattom, Thiruvananthapuram, 695581, Kerala, India
| | - Babu Vishnu
- Department of Botany, University of Kerala, Kariavattom, Thiruvananthapuram, 695581, Kerala, India
| | - Elenjikkal A Siril
- Department of Botany, University of Kerala, Kariavattom, Thiruvananthapuram, 695581, Kerala, India.
| |
Collapse
|
3
|
Krzesłowska M, Mleczek M, Luboński A, Weręża K, Woźny A, Goliński P, Samardakiewicz S. Alterations in the Anatomy and Ultrastructure of Leaf Blade in Norway Maple ( Acer platanoides L.) Growing on Mining Sludge: Prospects of Using This Tree Species for Phytoremediation. PLANTS (BASEL, SWITZERLAND) 2024; 13:1295. [PMID: 38794365 PMCID: PMC11125827 DOI: 10.3390/plants13101295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024]
Abstract
Alterations in leaf architecture can be used as an indicator of the substrate toxicity level as well as the potential of a given plant species in the phytoremediation of polluted areas, e.g., mining sludge. In this work, we demonstrated, for the first time, the nature and scale of alterations in leaf architecture at the tissue and cellular levels occurring in Norway maple growing on mining sludge originating from a copper mine in Lubin (Poland). The substrate differs from other mine wastes, e.g., calamine or serpentine soils, due to an extremely high level of arsenic (As). Alterations in leaf anatomy predominantly included the following: (1) a significant increase in upper epidermis thickness; (2) a significant decrease in palisade parenchyma width; (3) more compact leaf tissue organization; (4) the occurrence of two to three cell layers in palisade parenchyma in contrast to one in the control; (5) a significantly smaller size of cells building palisade parenchyma. At the cellular level, the alterations included mainly the occurrence of local cell wall thickenings-predominantly in the upper and lower epidermis-and the symptoms of accelerated leaf senescence. Nevertheless, many chloroplasts showed almost intact chloroplast ultrastructure. Modifications in leaf anatomy could be a symptom of alterations in morphogenesis but may also be related to plant adaptation to water deficit stress. The occurrence of local cell wall thickenings can be considered as a symptom of a defence strategy involved in the enlargement of apoplast volume for toxic elements (TE) sequestration and the alleviation of oxidative stress. Importantly, the ultrastructure of leaf cells was not markedly disturbed. The results suggested that Norway maple may have good phytoremediation potential. However, the general shape of the plant, the significantly smaller size of leaves, and accelerated senescence indicated the high toxicity of the mining sludge used in this experiment. Hence, the phytoremediation of such a substrate, specifically including use of Norway maple, should be preceded by some amendments-which are highly recommended.
Collapse
Affiliation(s)
- Magdalena Krzesłowska
- Department of General Botany, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznan, Poland (A.W.)
| | - Mirosław Mleczek
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625 Poznan, Poland; (M.M.); (P.G.)
| | - Aleksander Luboński
- Laboratory of Electron and Confocal Microscopy, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznan, Poland; (A.L.); (S.S.)
| | - Karolina Weręża
- Department of General Botany, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznan, Poland (A.W.)
| | - Adam Woźny
- Department of General Botany, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznan, Poland (A.W.)
| | - Piotr Goliński
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625 Poznan, Poland; (M.M.); (P.G.)
| | - Sławomir Samardakiewicz
- Laboratory of Electron and Confocal Microscopy, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznan, Poland; (A.L.); (S.S.)
| |
Collapse
|
4
|
Renzaglia K, Duran E, Sagwan-Barkdoll L, Henry J. Callose in leptoid cell walls of the moss Polytrichum and the evolution of callose synthase across bryophytes. FRONTIERS IN PLANT SCIENCE 2024; 15:1357324. [PMID: 38384754 PMCID: PMC10879339 DOI: 10.3389/fpls.2024.1357324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 01/18/2024] [Indexed: 02/23/2024]
Abstract
Introduction Leptoids, the food-conducting cells of polytrichaceous mosses, share key structural features with sieve elements in tracheophytes, including an elongated shape with oblique end walls containing modified plasmodesmata or pores. In tracheophytes, callose is instrumental in developing the pores in sieve elements that enable efficient photoassimilate transport. Aside from a few studies using aniline blue fluorescence that yielded confusing results, little is known about callose in moss leptoids. Methods Callose location and abundance during the development of leptoid cell walls was investigated in the moss Polytrichum commune using aniline blue fluorescence and quantitative immunogold labeling (label density) in the transmission electron microscope. To evaluate changes during abiotic stress, callose abundance in leptoids of hydrated plants was compared to plants dried for 14 days under field conditions. A bioinformatic study to assess the evolution of callose within and across bryophytes was conducted using callose synthase (CalS) genes from 46 bryophytes (24 mosses, 15 liverworts, and 7 hornworts) and one representative each of five tracheophyte groups. Results Callose abundance increases around plasmodesmata from meristematic cells to end walls in mature leptoids. Controlled drying resulted in a significant increase in label density around plasmodesmata and pores over counts in hydrated plants. Phylogenetic analysis of the CalS protein family recovered main clades (A, B, and C). Different from tracheophytes, where the greatest diversity of homologs is found in clade A, the majority of gene duplication in bryophytes is in clade B. Discussion This work identifies callose as a crucial cell wall polymer around plasmodesmata from their inception to functioning in leptoids, and during water stress similar to sieve elements of tracheophytes. Among bryophytes, mosses exhibit the greatest number of multiple duplication events, while only two duplications are revealed in hornwort and none in liverworts. The absence in bryophytes of the CalS 7 gene that is essential for sieve pore development in angiosperms, reveals that a different gene is responsible for synthesizing the callose associated with leptoids in mosses.
Collapse
Affiliation(s)
- Karen Renzaglia
- Southern Illinois University Carbondale, Department of Plant Biology, Carbondale, IL, United States
| | - Emily Duran
- Southern Illinois University Carbondale, Department of Plant Biology, Carbondale, IL, United States
| | - Laxmi Sagwan-Barkdoll
- Southern Illinois University Carbondale, Department of Plant Biology, Carbondale, IL, United States
| | - Jason Henry
- Southeast Missouri University, Department of Biology, Cape Girardeau, MO, United States
| |
Collapse
|
5
|
Mansoor S, Ali A, Kour N, Bornhorst J, AlHarbi K, Rinklebe J, Abd El Moneim D, Ahmad P, Chung YS. Heavy Metal Induced Oxidative Stress Mitigation and ROS Scavenging in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:3003. [PMID: 37631213 PMCID: PMC10459657 DOI: 10.3390/plants12163003] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023]
Abstract
Although trace elements are essential for life, environmental contamination due to metal accumulation and overuse in various sectors, such as healthcare, agriculture, industry, and cosmetics, poses significant health concerns. Exposure of plants to heavy metals leads to the overproduction of reactive oxygen species (ROS) due to their ability to change mitochondrial membrane permeability and restrict the action of ROS clearance enzymes in the cellular antioxidant system. The interaction of ROS with cellular membranes, heavy-metal-induced interactions directly or indirectly with different macromolecules, and signaling pathways leads to the accumulation of environmental pollutants and oxidative stress in exposed organisms. The heavy metal-ROS-cell signaling axis affects various pathological processes such as ATP depletion, excess ROS production, mitochondrial respiratory chain damage, decoupling of oxidative phosphorylation, and mitochondrial death. This review focuses on discussing the toxic effects of different heavy metals on plants, with particular emphasis on oxidative stress, its consequences, and mitigation strategies.
Collapse
Affiliation(s)
- Sheikh Mansoor
- Department of Plant Resources and Environment, Jeju National University, Jeju 63243, Republic of Korea;
| | - Asif Ali
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, Northern Ireland, UK;
| | - Navneet Kour
- Division of Biochemistry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu 180009, India
| | - Julia Bornhorst
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, 20, 42119 Wuppertal, Germany;
- Trace Age-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, 14558 Nuthetal, Germany
| | - Khadiga AlHarbi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Jörg Rinklebe
- Laboratory of Soil and Groundwater Management, Institute of Foundation Engineering, Water and Waste Management, School of Architecture and Civil Engineering, University of Wuppertal, Pauluskirchstraße 7, 42285 Wuppertal, Germany;
| | - Diaa Abd El Moneim
- Department of Plant Production (Genetic Branch), Faculty of Environmental Agricultural Sciences, Arish University, El-Arish 45511, Egypt;
| | - Parvaiz Ahmad
- Department of Botany, Government Degree College, Pulwama 192301, Jammu and Kashmir, India
| | - Yong Suk Chung
- Department of Plant Resources and Environment, Jeju National University, Jeju 63243, Republic of Korea;
| |
Collapse
|
6
|
Jessat J, John WA, Moll H, Vogel M, Steudtner R, Drobot B, Hübner R, Stumpf T, Sachs S. Localization and chemical speciation of europium(III) in Brassica napus plants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 254:114741. [PMID: 36950990 DOI: 10.1016/j.ecoenv.2023.114741] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 10/18/2022] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
For the reliable safety assessment of repositories of highly radioactive waste, further development of the modelling of radionuclide migration and transfer in the environment is necessary, which requires a deeper process understanding at the molecular level. Eu(III) is a non-radioactive analogue for trivalent actinides, which contribute heavily to radiotoxicity in a repository. For in-depth study of the interaction of plants with trivalent f elements, we investigated the uptake, speciation, and localization of Eu(III) in Brassica napus plants at two concentrations, 30 and 200 µM, as a function of the incubation time up to 72 h. Eu(III) was used as luminescence probe for combined microscopy and chemical speciation analyses of it in Brassica napus plants. The localization of bioassociated Eu(III) in plant parts was explored by spatially resolved chemical microscopy. Three Eu(III) species were identified in the root tissue. Moreover, different luminescence spectroscopic techniques were applied for an improved Eu(III) species determination in solution. In addition, transmission electron microscopy combined with energy-dispersive X-ray spectroscopy was used to localize Eu(III) in the plant tissue, showing Eu-containing aggregates. By using this multi-method setup, a profound knowledge on the behavior of Eu(III) within plants and changes in its speciation could be obtained, showing that different Eu(III) species occur simultaneously within the root tissue and in solution.
Collapse
Affiliation(s)
- Jenny Jessat
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Warren A John
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Henry Moll
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Manja Vogel
- HZDR Innovation GmbH, Bautzner Landstraße 400, 01328 Dresden, Germany; VKTA - Strahlenschutz, Analytik & Entsorgung Rossendorf e.V., Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Robin Steudtner
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Björn Drobot
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - René Hübner
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Thorsten Stumpf
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Susanne Sachs
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany.
| |
Collapse
|
7
|
Salbitani G, Maresca V, Cianciullo P, Bossa R, Carfagna S, Basile A. Non-Protein Thiol Compounds and Antioxidant Responses Involved in Bryophyte Heavy-Metal Tolerance. Int J Mol Sci 2023; 24:5302. [PMID: 36982378 PMCID: PMC10049163 DOI: 10.3390/ijms24065302] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/23/2023] [Accepted: 03/04/2023] [Indexed: 03/12/2023] Open
Abstract
Heavy-metal pollution represents a problem which has been widely discussed in recent years. The biological effects of heavy metals have been studied in both animals and plants, ranging from oxidative stress to genotoxicity. Plants, above all metal-tolerant species, have evolved a wide spectrum of strategies to counteract exposure to toxic metal concentrations. Among these strategies, the chelation and vacuolar sequestration of heavy metals are, after cell-wall immobilization, the first line of defence that prevent heavy metals from interacting with cell components. Furthermore, bryophytes activate a series of antioxidant non-enzymatic and enzymatic responses to counteract the effects of heavy metal in the cellular compartments. In this review, the role of non-protein thiol compounds and antioxidant molecules in bryophytes will be discussed.
Collapse
Affiliation(s)
| | | | | | | | | | - Adriana Basile
- Department of Biology, University of Naples Federico II, 80138 Naples, Italy
| |
Collapse
|
8
|
Morales-Silva T, Silva BC, Faria LDB. Soil contamination with permissible levels of lead negatively affects the community of plant-associated insects: A case of study with kale. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119143. [PMID: 35301032 DOI: 10.1016/j.envpol.2022.119143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/09/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
This study investigated whether lead (Pb), at concentrations allowed for soil, affects the community of insects that live in the aerial part of plants. We evaluated the effect of Pb concentrations on accumulated species richness, composition, and abundance of different functional groups of insects. Kale plants were grown in soil experimentally contaminated with four concentrations of lead nitrate: 0 (control), 144 (T1), 360 (T2), and 600 (T3) mg/kg of soil. The experiment was conducted in an open greenhouse for the natural colonization of insects. Insects were collected twice using trap bags attached to the plant leaf and by direct removal. The concentration of Pb in the stem and leaf samples increased with the increased soil contamination, even showing values above the limit allowed by the legislation for this plant species. Control plants showed a higher richness of accumulated insect species. In addition, the treatments had an effect on the community composition, in which Diaeretiella rapae (primary parasitoid) was found as an indicator of the control + T1 treatments and the top species Pachyneuron sp. (parasitoid of predators) was associated with the control. The abundance of chewing and sucking herbivores, their respective parasitoids, predators, and parasitoids of predators were negatively affected. Hyperparasitoid abundance was not affected, but their accumulated species richness was. This study was innovative in demonstrating that soil contamination by different concentrations of a heavy metal (Pb) can negatively affect the community of plant-associated insects, even at concentrations allowed for soil, reflecting possible damage to the ecosystem.
Collapse
Affiliation(s)
- Tiago Morales-Silva
- Programa de Pós-Graduação em Entomologia, Universidade Federal de Lavras, Mailbox 3037, Lavras, MG, 37200-900, Brazil.
| | - Bruna C Silva
- Programa de Pós-Graduação em Entomologia, Universidade Federal de Lavras, Mailbox 3037, Lavras, MG, 37200-900, Brazil
| | - Lucas D B Faria
- Departamento de Ecologia e Conservação, Instituto de Ciências Naturais, Universidade Federal de Lavras, Mailbox 3037, Lavras, MG, 37200-900, Brazil
| |
Collapse
|
9
|
John WA, Lückel B, Matschiavelli N, Hübner R, Matschi S, Hoehenwarter W, Sachs S. Endocytosis is a significant contributor to uranium(VI) uptake in tobacco (Nicotiana tabacum) BY-2 cells in phosphate-deficient culture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153700. [PMID: 35168012 DOI: 10.1016/j.scitotenv.2022.153700] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/20/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Endocytosis of metals in plants is a growing field of study involving metal uptake from the rhizosphere. Uranium, which is naturally and artificially released into the rhizosphere, is known to be taken up by certain species of plant, such as Nicotiana tabacum, and we hypothesize that endocytosis contributes to the uptake of uranium in tobacco. The endocytic uptake of uranium was investigated in tobacco BY-2 cells using an optimized setup of culture in phosphate-deficient medium. A combination of methods in biochemistry, microscopy and spectroscopy, supplemented by proteomics, were used to study the interaction of uranium and the plant cell. We found that under environmentally relevant uranium concentrations, endocytosis remained active and contributed to 14% of the total uranium bioassociation. Proteomics analyses revealed that uranium induced a change in expression of the clathrin heavy chain variant, signifying a shift in the type of endocytosis taking place. However, the rate of endocytosis remained largely unaltered. Electron microscopy and energy-dispersive X-ray spectroscopy showed an adsorption of uranium to cell surfaces and deposition in vacuoles. Our results demonstrate that endocytosis constitutes a considerable proportion of uranium uptake in BY-2 cells, and that endocytosed uranium is likely targeted to the vacuole for sequestration, providing a physiologically safer route for the plant than uranium transported through the cytosol.
Collapse
Affiliation(s)
- Warren A John
- Helmholtz - Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Benita Lückel
- Helmholtz - Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Nicole Matschiavelli
- Helmholtz - Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - René Hübner
- Helmholtz - Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Susanne Matschi
- Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | | | - Susanne Sachs
- Helmholtz - Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany.
| |
Collapse
|
10
|
Akay A. Lead tolerance and accumulation characteristics of Cubana Kordes rose in lead-contaminated soil. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:307. [PMID: 35353252 DOI: 10.1007/s10661-022-09944-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
This study was conducted to determine lead tolerance and accumulation characteristics of Cubana Kordes rose, which is used in landscaping studies in areas with heavy traffic. In the study, 0%, 3%, and 6% leonardite was added to the sand growing medium, and Pb was applied at different doses (0, 200, 400, 800, and 1600 mg Pb kg-1). At the end of the experiment, the effect of Pb application on plant physiological properties was not statistically significant. The Pb concentration of flower and stem was between 4.50 and 8.92 mg kg-1 and 8.47 and 543.25 mg kg-1, respectively. The Pb concentration in the stem increased with an increase in the dose of Pb. The Pb concentration in the root was between 4.00 and 50.35 mg kg-1 and increased with an increase in the dose of Pb (p < 0.05). The available Pb concentration in the soil varied between 0.05 and 448.79 mg kg-1. The transfer factor value varied between 1.84 and 18.73 and the bioaccumulation factor value ranged between 0.00 and 10.46. The amount of Pb removed from the soil by the stem was between 124.7 and 8346.6 µg kg-1. From the results, we determined that Pb accumulated at a higher rate in the stem than in the root and the flower of Cubana Kordes roses. We found that these roses could tolerate the accumulation of Pb, and hence, they have a great potential to be used in the remediation of soil contaminated by Pb.
Collapse
Affiliation(s)
- Ayşen Akay
- Faculty of Agriculture, Department of Soil Science and Plant Nutrition, Selcuk University, Konya, Turkey.
| |
Collapse
|
11
|
Jiang Y, Wei X, He H, She J, Liu J, Fang F, Zhang W, Liu Y, Wang J, Xiao T, Tsang DCW. Transformation and fate of thallium and accompanying metal(loid)s in paddy soils and rice: A case study from a large-scale industrial area in China. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:126997. [PMID: 34474370 DOI: 10.1016/j.jhazmat.2021.126997] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/14/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Thallium (Tl) is an extremely toxic metal, while its occurrence and fate in paddy soil environment remain understudied. Herein, the enrichment and migration mechanisms and potential health risks of Tl and metal(loid)s were evaluated in paddy soils surrounding an industrial park utilizing Tl-bearing minerals. The results showed that Tl contamination was evident (0.63-3.16 mg/kg) in the paddy soils and Tl was generally enriched in root of rice (Oryza sativa L.) with a mean content of 1.27 mg/kg. A remarkably high level of Tl(III) (30-50%) was observed in the paddy soils. Further analyses by STEM-EDS and XPS indicated that Tl(I) in the paddy soils was jointly controlled by adsorption, oxidation, and precipitation of Fe/Mn(hydr)oxide (e.g. hematite and birnessite), which might act as important stabilization mechanisms for inhibiting potential Tl uptake by rice grains. The health quotient (HQ) values indicated a potentially high Tl risk for inhabitants via consumption of the rice grains. Therefore, it is critical to establish effective measures for controlling the discharge of Tl-containing waste and wastewater from different industrial activities to ensure food safety in the rice paddy soils.
Collapse
Affiliation(s)
- Yanjun Jiang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Xudong Wei
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Hongping He
- Key Laboratory of Mineralogy and Metallogeny, Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Guangzhou 510640, China
| | - Jingye She
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Juan Liu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Fa Fang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Wenhui Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yanyi Liu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jin Wang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Tangfu Xiao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
12
|
Liao J, Cai X, Yang Y, Chen Q, Gao S, Liu G, Sun L, Luo Z, Lei T, Jiang M. Dynamic study of the lead (Pb) tolerance and accumulation characteristics of new dwarf bamboo in Pb-contaminated soil. CHEMOSPHERE 2021; 282:131089. [PMID: 34119730 DOI: 10.1016/j.chemosphere.2021.131089] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
Dwarf bamboo is a woody plant with potential for use in the remediation of Pb-contaminated soil. Due to its clonal growth habit, there are two keys to its application for continuous soil Pb remediation: 1) its ability to form shoots and grow into new bamboo normally under Pb stress and 2) the Pb tolerance and accumulation characteristics of this new bamboo. Here, 5 species of dwarf bamboo were treated with 2 levels of soil Pb stress (0 and 1500 mg kg-1). In the roots of 3 of the species (Sasa argenteostriata, Sasaella glabra, and Indocalamus decorus), Pb tended to be distributed along the cell wall and transported to vacuoles. In the other 2 species (Sasa auricoma and Sasa fortunei), Pb was arranged linearly along the cell wall. Under Pb treatment, the new bamboo of all species showed gradual physiological adaptation to Pb stress. Correlations of the net photosynthetic rate, superoxide dismutase activity, and free proline levels with Pb content in new leaves in November were all higher than those in July, though that of malondialdehyde content decreased, suggesting that new dwarf bamboo exhibits good soil Pb stress tolerance. Sasa argenteostriata and Indocalamus decorus consistently maintained higher antioxidant enzyme activities and free proline levels than the other species under Pb treatment, and the total biomass per pot of the new bamboo decreased the least compared to that in the Pb-free treatment for these two species. Therefore, these bamboo species may be used in the long-term continuous remediation of Pb-contaminated soil.
Collapse
Affiliation(s)
- Jiarong Liao
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Xinyi Cai
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Yixiong Yang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Qibing Chen
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Suping Gao
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Guangli Liu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Lingxia Sun
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Zhenghua Luo
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Ting Lei
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Mingyan Jiang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
13
|
Busoms S, Pérez-Martín L, Llimós M, Poschenrieder C, Martos S. Genome-Wide Association Study Reveals Key Genes for Differential Lead Accumulation and Tolerance in Natural Arabidopsis thaliana Accessions. FRONTIERS IN PLANT SCIENCE 2021; 12:689316. [PMID: 34421943 PMCID: PMC8377763 DOI: 10.3389/fpls.2021.689316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Soil contamination by lead (Pb) has become one of the major ecological threats to the environment. Understanding the mechanisms of Pb transport and deposition in plants is of great importance to achieve a global Pb reduction. We exposed a collection of 360 Arabidopsis thaliana natural accessions to a Pb-polluted soil. Germination rates, growth, and leaf Pb concentrations showed extensive variation among accessions. These phenotypic data were subjected to genome wide association studies (GWAs) and we found a significant association on chromosome 1 for low leaf Pb accumulation. Genes associated with significant SNP markers were evaluated and we selected EXTENSIN18 (EXT18) and TLC (TRAM-LAG1-CLN8) as candidates for having a role in Pb homeostasis. Six Pb-tolerant accessions, three of them exhibiting low leaf Pb content, and three of them with high leaf Pb content; two Pb-sensitive accessions; two knockout T-DNA lines of GWAs candidate genes (ext18, tlc); and Col-0 were screened under control and high-Pb conditions. The relative expression of EXT18, TLC, and other genes described for being involved in Pb tolerance was also evaluated. Analysis of Darwinian fitness, root and leaf ionome, and TEM images revealed that Pb-tolerant accessions employ two opposing strategies: (1) low translocation of Pb and its accumulation into root cell walls and vacuoles, or (2) high translocation of Pb and its efflux to inactive organelles or intracellular spaces. Plants using the first strategy exhibited higher expression of EXT18 and HMA3, thicker root cell walls and Pb vacuolar sequestration, suggesting that these genes may contribute to the deposition of Pb in the roots. On the other hand, plants translocating high amounts of Pb showed upregulation of TLC and ABC transporters, indicating that these plants were able to properly efflux Pb in the aerial tissues. We conclude that EXT18 and TLC upregulation enhances Pb tolerance promoting its sequestration: EXT18 favors the thickening of the cell walls improving Pb accumulation in roots and decreasing its toxicity, while TLC facilitates the formation of dictyosome vesicles and the Pb encapsulation in leaves. These findings are relevant for the design of phytoremediation strategies and environment restoration.
Collapse
Affiliation(s)
- Sílvia Busoms
- Plant Physiology Laboratory, Faculty of Bioscience, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laura Pérez-Martín
- Plant Physiology Laboratory, Faculty of Bioscience, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Miquel Llimós
- Plant Physiology Laboratory, Faculty of Bioscience, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain
| | - Charlotte Poschenrieder
- Plant Physiology Laboratory, Faculty of Bioscience, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Soledad Martos
- Plant Physiology Laboratory, Faculty of Bioscience, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
14
|
Gold Nanoparticles-Induced Modifications in Cell Wall Composition in Barley Roots. Cells 2021; 10:cells10081965. [PMID: 34440734 PMCID: PMC8393560 DOI: 10.3390/cells10081965] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 12/28/2022] Open
Abstract
The increased use of nanoparticles (NP) in different industries inevitably results in their release into the environment. In such conditions, plants come into direct contact with NP. Knowledge about the uptake of NP by plants and their effect on different developmental processes is still insufficient. Our studies concerned analyses of the changes in the chemical components of the cell walls of Hordeum vulgare L. roots that were grown in the presence of gold nanoparticles (AuNP). The analyses were performed using the immunohistological method and fluorescence microscopy. The obtained results indicate that AuNP with different surface charges affects the presence and distribution of selected pectic and arabinogalactan protein (AGP) epitopes in the walls of root cells.
Collapse
|
15
|
Pb Stress and Ectomycorrhizas: Strong Protective Proteomic Responses in Poplar Roots Inoculated with Paxillus involutus Isolate and Characterized by Low Root Colonization Intensity. Int J Mol Sci 2021; 22:ijms22094300. [PMID: 33919023 PMCID: PMC8122328 DOI: 10.3390/ijms22094300] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 01/11/2023] Open
Abstract
The commonly observed increased heavy metal tolerance of ectomycorrhized plants is usually linked with the protective role of the fungal hyphae covering colonized plant root tips. However, the molecular tolerance mechanisms in heavy metal stressed low-colonized ectormyocrrhizal plants characterized by an ectomycorrhiza-triggered increases in growth are unknown. Here, we examined Populus × canescens microcuttings inoculated with the Paxillus involutus isolate, which triggered an increase in poplar growth despite successful colonization of only 1.9% ± 0.8 of root tips. The analyzed plants, lacking a mantle—a protective fungal biofilter—were grown for 6 weeks in agar medium enriched with 0.75 mM Pb(NO3)2. In minimally colonized ‘bare’ roots, the proteome response to Pb was similar to that in noninoculated plants (e.g., higher abundances of PM- and V-type H+ ATPases and lower abundance of ribosomal proteins). However, the more intensive activation of molecular processes leading to Pb sequestration or redirection of the root metabolic flux into amino acid and Pb chelate (phenolics and citrate) biosynthesis coexisted with lower Pb uptake compared to that in controls. The molecular Pb response of inoculated roots was more intense and effective than that of noninoculated roots in poplars.
Collapse
|
16
|
Gómez-Arroyo S, Zavala-Sánchez MÁ, Alonso-Murillo CD, Cortés-Eslava J, Amador-Muñoz O, Jiménez-García LF, Morton-Bermea O. Moss (Hypnum amabile) as biomonitor of genotoxic damage and as bioaccumulator of atmospheric pollutants at five different sites of Mexico City and metropolitan area. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:9849-9863. [PMID: 33155117 DOI: 10.1007/s11356-020-11441-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
Mexico City has been classified as one megacity, its altitude, thermal inversions, and high seasonal radiation are factors that prevent dispersion of pollutants, which effects are detrimental to health. Therefore, it is important to have an organism that allows evaluate the damage caused by such exposure, as is the case of mosses that obtain nutrients from the atmosphere; this property makes them excellent biomonitors to evaluate genotoxic damage caused by exposure to pollutants, in addition to its large accumulation capacity. For these reasons and to relate the effects of atmospheric pollution with a biological response, we propose to use the moss Hypnum amabile as a bioaccumulator of atmospheric pollutants and biomonitor of the genotoxic effect that the air pollution can induce it through the comet assay. Mosses were placed in five localities of Mexico City and the metropolitan area on the first days of each month of the dry (cold and warm) and rainy seasons, with a 30-day exposure, after which they were changed for a new sample (for 8 months). Each month, the moss exposed was collected and nuclei were isolated to perform comet assay. To demonstrate heavy metal bioaccumulation capacity, samples were observed in a transmission electron microscope and qualitative microanalysis by scanning electron microscopy was carried out parallel. The chemical analysis detected 14 heavy metals by mass spectrometry method with inductively coupled plasma source. Additionally, 22 polycyclic aromatic hydrocarbons were also determined by gas chromatography-mass spectrometry. Analysis of variance and Kruskal-Wallis test were performed to compare DNA damage of each station against control, which was maintained in the laboratory in a chamber with filtered air. This is the first study on the genotoxicity of mosses exposed to the atmosphere of Mexico City and metropolitan area that in addition to proving their accumulation capacity shows their ability to respond to atmospheric pollutants.
Collapse
Affiliation(s)
- Sandra Gómez-Arroyo
- Laboratorio de Genotoxicología y Mutagénesis Ambientales. Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico.
| | - Miguel Ángel Zavala-Sánchez
- Laboratorio de Genotoxicología y Mutagénesis Ambientales. Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico
| | - César Damián Alonso-Murillo
- Laboratorio de Genotoxicología y Mutagénesis Ambientales. Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico
| | - Josefina Cortés-Eslava
- Laboratorio de Genotoxicología y Mutagénesis Ambientales. Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico
| | - Omar Amador-Muñoz
- Laboratorio de Genotoxicología y Mutagénesis Ambientales. Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico
| | - Luis Felipe Jiménez-García
- Laboratorio de Microscopía Electrónica, Edificio Tlahuizcalpan, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico
| | - Ofelia Morton-Bermea
- Laboratorio de Geomagnetismo y Exploración Geofísica, Instituto de Geofísica, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico
| |
Collapse
|
17
|
Castro-Bedriñana J, Chirinos-Peinado D, Garcia-Olarte E, Quispe-Ramos R. Lead transfer in the soil-root-plant system in a highly contaminated Andean area. PeerJ 2021; 9:e10624. [PMID: 33505801 PMCID: PMC7792523 DOI: 10.7717/peerj.10624] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022] Open
Abstract
Lead (Pb) is highly toxic heavy metal that is detrimental to the food system. There are large mining and metallurgical companies in the central highlands of Peru that have been active for almost a century and contribute to air, water, and soil pollution, affecting food quality and causing damage to the environment and human health. Our study, conducted in 2018, assessed the content and transfer of lead in the soil-root-plant system in the high Andean grasslands in a geographical area near the metallurgical complex of La Oroya. Lead levels were measured in 120 samples of top soil (0–20 cm), roots, and grass shoots by flame atomic absorption spectroscopy. No significant differences were found between the soil pH, organic matter content, and lead among the samples evaluated (P > 0.05). Mean Pb concentrations decreased in the order of soil > root > shoot (P < 0.01) (212.36 ± 38.40, 154.65 ± 52.85 and 19.71 ± 2.81 mg/kg, respectively). The soil-to-root Pb bioconcentration factor, root-to-shoot translocation factor, and soil-to-shoot bioaccumulation factor values were 0.74 ± 0.26, 0.14 ± 0.06 and 0.10 ± 0.03, respectively. Lead in the soil was 3.03 times higher than the maximum limit for agricultural soil, and was 1.97 times higher than the value limit for fodder. Our findings are important and show that soils and pasture in this geographical area have high Pb levels due to metallurgical emissions that have been occurring since 1922. Such pollution negatively impacts health and the socio-economic status of the exposed populations.
Collapse
Affiliation(s)
- Jorge Castro-Bedriñana
- Specialized Research Institute of the Faculty of Zootechnics, Universidad Nacional del Centro del Perú, Huancayo, Junín, Perú
| | - Doris Chirinos-Peinado
- Nutritional Food Safety Research Center, Universidad Nacional del Centro del Perú, Huancayo, Junín, Perú
| | - Edgar Garcia-Olarte
- Faculty of Zootechnics, Universidad Nacional del Centro del Perú, Huancayo, Junín, Perú
| | - Rolando Quispe-Ramos
- Faculty of Zootechnics, Universidad Nacional del Centro del Perú, Huancayo, Junín, Perú
| |
Collapse
|
18
|
Rehman AU, Nazir S, Irshad R, Tahir K, ur Rehman K, Islam RU, Wahab Z. Toxicity of heavy metals in plants and animals and their uptake by magnetic iron oxide nanoparticles. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114455] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Gąsecka M, Drzewiecka K, Magdziak Z, Piechalak A, Budka A, Waliszewska B, Szentner K, Goliński P, Niedzielski P, Budzyńska S, Mleczek M. Arsenic uptake, speciation and physiological response of tree species (Acer pseudoplatanus, Betula pendula and Quercus robur) treated with dimethylarsinic acid. CHEMOSPHERE 2021; 263:127859. [PMID: 32841871 DOI: 10.1016/j.chemosphere.2020.127859] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/14/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
The aim of the study was to evaluate the effect of dimethylarsinic acid (DMA) on growth parameters and levels of stress-related metabolites in Acer pseudoplatanus, Betula pendula and Quercus robur. The increase of DMA concentration in the solution led to a notable growth retardation of trees. An intense As accumulation (mainly As(III) and As(V)) expressed as BCF and TF > 1 was recorded only for Q. robur. Generally a decrease in contents of cellulose, hemicellulose and holocellulose with a simultaneous increase in lignin content were recorded. Phenolic composition of leaf extracts was modified by DMA, while root and rhizosphere extracts were poor in phenolics. Toxicity of DMA leads to a significant drop in salicylic acid content in leaves observed at lower doses. Higher DMA levels caused a second, probably ROS-derived depletion of the metabolite accompanied with a severe growth retardation, most pronounced in the case of B. pendula. DMA caused the inhibition of LMWOA biosynthesis in roots of A. pseudoplatanus, B. pendula and their exudation into the rhizosphere, while in Q. robur roots and leaves a stimulation of their accumulation was observed. Disturbances in the activity of enzymatic antioxidants were observed for all the species following the increasing level of DMA.
Collapse
Affiliation(s)
- Monika Gąsecka
- Poznań University of Life Sciences, Department of Chemistry, Wojska Polskiego 75, 60-625, Poznań, Poland
| | - Kinga Drzewiecka
- Poznań University of Life Sciences, Department of Chemistry, Wojska Polskiego 75, 60-625, Poznań, Poland
| | - Zuzanna Magdziak
- Poznań University of Life Sciences, Department of Chemistry, Wojska Polskiego 75, 60-625, Poznań, Poland
| | - Aneta Piechalak
- Adam Mickiewicz University in Poznań, Department of Genome Biology, Institute of Molecular Biology and Biotechnology, Umultowska 89, 61-614, Poznań, Poland
| | - Anna Budka
- Poznań University of Life Sciences, Department of Mathematical and Statistical Methods, Wojska Polskiego 28, 60-637, Poznań, Poland
| | - Bogusława Waliszewska
- Institute of Chemical Wood Technology, Wojska Polskiego 38/42, 60-637, Poznań, Poland
| | - Kinga Szentner
- Poznań University of Life Sciences, Department of Chemistry, Wojska Polskiego 75, 60-625, Poznań, Poland
| | - Piotr Goliński
- Poznań University of Life Sciences, Department of Chemistry, Wojska Polskiego 75, 60-625, Poznań, Poland
| | - Przemysław Niedzielski
- Adam Mickiewicz University in Poznań, Department of Analytical Chemistry, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Sylwia Budzyńska
- Poznań University of Life Sciences, Department of Chemistry, Wojska Polskiego 75, 60-625, Poznań, Poland
| | - Mirosław Mleczek
- Poznań University of Life Sciences, Department of Chemistry, Wojska Polskiego 75, 60-625, Poznań, Poland.
| |
Collapse
|
20
|
Keyster M, Niekerk LA, Basson G, Carelse M, Bakare O, Ludidi N, Klein A, Mekuto L, Gokul A. Decoding Heavy Metal Stress Signalling in Plants: Towards Improved Food Security and Safety. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1781. [PMID: 33339160 PMCID: PMC7765602 DOI: 10.3390/plants9121781] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/20/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022]
Abstract
The mining of heavy metals from the environment leads to an increase in soil pollution, leading to the uptake of heavy metals into plant tissue. The build-up of toxic metals in plant cells often leads to cellular damage and senescence. Therefore, it is of utmost importance to produce plants with improved tolerance to heavy metals for food security, as well as to limit heavy metal uptake for improved food safety purposes. To achieve this goal, our understanding of the signaling mechanisms which regulate toxic heavy metal uptake and tolerance in plants requires extensive improvement. In this review, we summarize recent literature and data on heavy metal toxicity (oral reference doses) and the impact of the metals on food safety and food security. Furthermore, we discuss some of the key events (reception, transduction, and response) in the heavy metal signaling cascades in the cell wall, plasma membrane, and cytoplasm. Our future perspectives provide an outlook of the exciting advances that will shape the plant heavy metal signaling field in the near future.
Collapse
Affiliation(s)
- Marshall Keyster
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (L.-A.N.); (M.C.); (O.B.)
- DST-NRF Centre of Excellence in Food Security, University of the Western Cape, Bellville 7530, South Africa;
| | - Lee-Ann Niekerk
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (L.-A.N.); (M.C.); (O.B.)
| | - Gerhard Basson
- Plant Biotechnology Research Group, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa;
| | - Mogamat Carelse
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (L.-A.N.); (M.C.); (O.B.)
| | - Olalekan Bakare
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (L.-A.N.); (M.C.); (O.B.)
| | - Ndiko Ludidi
- DST-NRF Centre of Excellence in Food Security, University of the Western Cape, Bellville 7530, South Africa;
- Plant Biotechnology Research Group, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa;
| | - Ashwil Klein
- Plant Omics Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa;
| | - Lukhanyo Mekuto
- Department of Chemical Engineering, University of Johannesburg, Johannesburg 2028, South Africa;
| | - Arun Gokul
- Department of Chemical Engineering, University of Johannesburg, Johannesburg 2028, South Africa;
| |
Collapse
|
21
|
Growth and antioxidant responses of Trigonella foenum-graecum L. seedlings to lead and simulated acid rain exposure. Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-020-00478-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
22
|
Ashraf U, Mahmood MHUR, Hussain S, Abbas F, Anjum SA, Tang X. Lead (Pb) distribution and accumulation in different plant parts and its associations with grain Pb contents in fragrant rice. CHEMOSPHERE 2020; 248:126003. [PMID: 32006835 DOI: 10.1016/j.chemosphere.2020.126003] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
Lead (Pb) affects the growth and productivity of rice negatively through soil-Pb-plant interactions. A pot experiment was conducted to assess the Pb uptake and its distributive pattern in different fragrant rice cultivars i.e., Meixiangzhan-2 (MXZ-2), Xiangyaxiangzhan (XYXZ), Guixiangzhan (GXZ), Basmati-385 (B-385), and Nongxiang-18 (NX-18) and relationship of Pb uptake with grain Pb-contents and rice yield and related traits i.e., productive tillers hill-1, spikelets panicle-1, filled grain percentage, and 1000-grain weight. Lead as Pb(NO3)2 was applied at 0 (control), 400 (Pb1), 800 (Pb2) and 1200 mg kg-1 (Pb3) of soil in solution form. Results showed that all rice cultivars accumulated different concentration of Pb, with the highest in roots and the lowest in grains. The translocation factors (TF) from stems to leaves were higher than root to stems and leaves to ears/grains. The grain Pb contents have significant positive associations with ear Pb contents and TF of Pb from leaves to ear at reproductive stage. Moreover, relative changes (RC) in grain yields have significant correlations with the RC in some yield attributes i.e., productive tillers per hill, spikelets per panicle, and filled grain percentage under Pb toxicity. Overall, grain Pb contents are affected mainly by the transference of leaves Pb contents to ears/grains (an index to determine final grain Pb contents) whereas RC in rice yields suggested its relationships with some agronomic attributes of fragrant rice under Pb stress.
Collapse
Affiliation(s)
- Umair Ashraf
- Department of Botany, Division of Science and Technology, University of Education, Lahore, 54770, Punjab, Pakistan; Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou, 510642, PR China.
| | - Mian Habib-Ur-Rahman Mahmood
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore, 54770, Punjab, Pakistan
| | - Saddam Hussain
- Department of Agronomy, University of Agriculture, Faisalabad, 38000, Punjab, Pakistan
| | - Farhat Abbas
- The Research Centre for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, PR China
| | - Shakeel Ahmad Anjum
- Department of Agronomy, University of Agriculture, Faisalabad, 38000, Punjab, Pakistan
| | - Xiangru Tang
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou, 510642, PR China.
| |
Collapse
|
23
|
Cheema AI, Liu G, Yousaf B, Abbas Q, Zhou H. A comprehensive review of biogeochemical distribution and fractionation of lead isotopes for source tracing in distinct interactive environmental compartments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 719:135658. [PMID: 31874752 DOI: 10.1016/j.scitotenv.2019.135658] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/13/2019] [Accepted: 11/19/2019] [Indexed: 05/06/2023]
Abstract
Lead (Pb) is a non-essential and extremely noxious metallic-element whose biogeochemical cycle has been influenced predominantly by increasing human activities to a great extent. The introduction and enrichment of this ubiquitous contaminant in the terrestrial-environment has a long history and getting more attention due to its adverse health effects to living organisms even at very low exposure levels. Its lethal-effects can vary widely depending on the atmospheric-depositions, fates and distribution of Pb isotopes (i.e., 204Pb, 206Pb, 207Pb &208Pb) in the terrestrial-environment. Thus, it is essential to understand the depositional behavior and transformation mechanism of Pb and the factors affecting Pb isotopes composition in the terrestrial-compartments. Owing to the persistence nature of Pb-isotopic fractions, regardless of ongoing biogeochemical-processes taking place in soils and in other interlinked terrestrial-compartments of the biosphere makes Pb isotope ratios (Pb-IRs) more recognizable as a powerful and an efficient-tool for tracing the source(s) and helped uncover pertinent migration and transformation processes. This review discusses the ongoing developments in tracing migration pathway and distribution of lead in various terrestrial-compartments and investigates the processes regulating the Pb isotope geochemistry taking into account the source identification of lead, its transformation among miscellaneous terrestrial-compartments and detoxification mechanism in soil-plant system. Additionally, this compendium reveals that Pb-pools in various terrestrial-compartments differ in Pb isotopic fractionations. In order to improve understanding of partition behaviors and biogeochemical pathways of Pb isotope in the terrestrial environment, future works should involve investigation of changes in Pb isotopic compositions during weathering processes and atmospheric-biological sub-cycles.
Collapse
Affiliation(s)
- Ayesha Imtiyaz Cheema
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, PR China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, Shaanxi 710075, PR China.
| | - Guijian Liu
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, PR China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, Shaanxi 710075, PR China.
| | - Balal Yousaf
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, PR China.
| | - Qumber Abbas
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, PR China.
| | - Huihui Zhou
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, PR China.
| |
Collapse
|
24
|
Lead Toxicity: Health Hazards, Influence on Food Chain, and Sustainable Remediation Approaches. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17072179. [PMID: 32218253 PMCID: PMC7177270 DOI: 10.3390/ijerph17072179] [Citation(s) in RCA: 298] [Impact Index Per Article: 59.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/21/2020] [Accepted: 03/22/2020] [Indexed: 12/21/2022]
Abstract
Lead (Pb) toxicity has been a subject of interest for environmental scientists due to its toxic effect on plants, animals, and humans. An increase in several Pb related industrial activities and use of Pb containing products such as agrochemicals, oil and paint, mining, etc. can lead to Pb contamination in the environment and thereby, can enter the food chain. Being one of the most toxic heavy metals, Pb ingestion via the food chain has proven to be a potential health hazard for plants and humans. The current review aims to summarize the research updates on Pb toxicity and its effects on plants, soil, and human health. Relevant literature from the past 20 years encompassing comprehensive details on Pb toxicity has been considered with key issues such as i) Pb bioavailability in soil, ii) Pb biomagnification, and iii) Pb- remediation, which has been addressed in detail through physical, chemical, and biological lenses. In the review, among different Pb-remediation approaches, we have highlighted certain advanced approaches such as microbial assisted phytoremediation which could possibly minimize the Pb load from the resources in a sustainable manner and would be a viable option to ensure a safe food production system.
Collapse
|
25
|
Can Ceylon Leadwort ( Plumbago zeylanica L.) Acclimate to Lead Toxicity?-Studies of Photosynthetic Apparatus Efficiency. Int J Mol Sci 2020; 21:ijms21051866. [PMID: 32182862 PMCID: PMC7084747 DOI: 10.3390/ijms21051866] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 12/25/2022] Open
Abstract
Ceylon leadwort (Plumbago zeylanica) is ornamental plant known for its pharmacological properties arising from the abundant production of various secondary metabolites. It often grows in lead polluted areas. The aim of presented study was to evaluate the survival strategy of P. zeylanica to lead toxicity via photosynthetic apparatus acclimatization. Shoots of P. zeylanica were cultivated on media with different Pb concentrations (0.0, 0.05, and 0.1 g Pb∙l−1). After a four-week culture, the efficiency of the photosynthetic apparatus of plants was evaluated by Chl a fluorescence measurement, photosynthetic pigment, and Lhcb1, PsbA, PsbO, and RuBisCo protein accumulation, antioxidant enzymes activity, and chloroplast ultrastructure observation. Plants from lower Pb concentration revealed no changes in photosynthetic pigments content and light-harvesting complex (LHCII) size, as well as no limitation on the donor side of Photosystem II Reaction Centre (PSII RC). However, the activity and content of antioxidant enzymes indicated a high risk of limitation on the acceptor side of Photosystem I. In turn, plants from 0.1 g Pb∙l−1 showed a significant decrease in pigments content, LHCII size, the amount of active PSII RC, oxygen-evolving complex activity, and significant remodeling of chloroplast ultrastructure indicated limitation of PSII RC donor side. Obtained results indicate that P. zeylanica plants acclimate to lead toxicity by Pb accumulation in roots and, depending on Pb concentration, by adjusting their photosynthetic apparatus via the activation of alternative (cyclic and pseudocyclic) electron transport pathways.
Collapse
|
26
|
Tao Q, Liu Y, Li M, Li J, Luo J, Lux A, Kováč J, Yuan S, Li B, Li Q, Li H, Li T, Wang C. Cd-induced difference in root characteristics along root apex contributes to variation in Cd uptake and accumulation between two contrasting ecotypes of Sedum alfredii. CHEMOSPHERE 2020; 243:125290. [PMID: 31759213 DOI: 10.1016/j.chemosphere.2019.125290] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/19/2019] [Accepted: 11/01/2019] [Indexed: 06/10/2023]
Abstract
The root apex is the most active part for water and ions uptake, however, longitudinal alterations in root characteristics along root apex and consequences for metal uptake in hyperaccumulator are poorly understood. Here, we compared cadmium (Cd)-induced longitudinal alterations in root apex of two ecotypes of Sedum alfredii and assess their effects on Cd uptake. Under Cd treatment, cell death began from epidermis to the stele in non-hyperaccumulating ecotype (NHE) over time, and the number of dead cells was significantly higher than that in hyperaccumulating ecotype (HE). Cd-induced the presence of border-like cells (BLCs) surrounding the root tip of NHE prevented Cd from entering roots, however, almost no BLCs were observed in the root tip of in HE. Besides, Cd-treated NHE exhibited 76% and 52% decrease in the proportions of meristematic and elongation zone, respectively, resulting in lower Cd influx and less intensive Cd-fluorescence in these zones, as compared with HE. In the differentiation zone, Cd induced earlier initiation of root hairs (RHs), lower RHs-density, shorter RHs-length, thicker RHs-radius and less trichoblasts in NHE than those in HE. These remarkable variations led to less Cd influx and lower intensity of Cd-fluorescence in RHs of NHE than those of HE. Furthermore, decline in cell wall thickness under Cd exposure resulted in less cell-wall-bond Cd in the cell wall of HE. Therefore, Cd-induced alterations in root characteristics alongside root apex contributed to the difference in Cd uptake and accumulation between two ecotypes of S. alfredii.
Collapse
Affiliation(s)
- Qi Tao
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuankun Liu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Meng Li
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jinxing Li
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jipeng Luo
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Alexander Lux
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska dolina B2, 842 15, Bratislava, Slovakia
| | - Ján Kováč
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska dolina B2, 842 15, Bratislava, Slovakia
| | - Shu Yuan
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bing Li
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiquan Li
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huanxiu Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Tingqiang Li
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Changquan Wang
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
27
|
Raj D, Maiti SK. Sources, bioaccumulation, health risks and remediation of potentially toxic metal(loid)s (As, Cd, Cr, Pb and Hg): an epitomised review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:108. [PMID: 31927632 DOI: 10.1007/s10661-019-8060-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/25/2019] [Indexed: 06/10/2023]
Abstract
The release of potentially toxic metal(loid)s (PTMs) such as As, Cd, Cr, Pb and Hg has become a serious threat to the environment. The anthropogenic contribution of these PTMs, especially Hg, is increasing continuously, and coal combustion in thermal power plants (TPPs) is considered to be the highest contributor of PTMs. Once entered into the environment, PTMs get deposited on the soil, which is the most important sink of these PTMs. This review centred on the sources of PTMs from coal and flyash and their enrichment in soil, chemical behaviour in soil and plant, bioaccumulation in trees and vegetables, health risk and remediation. Several remediation techniques (physical and chemical) have been used to minimise the PTMs level in soil and water, but the phytoremediation technique is the most commonly used technique for the effective removal of PTMs from contaminated soil and water. Several plant species like Brassica juncea, Pteris vittata and Helianthus annuus are proved to be the most potential candidate for the PTMs removal. Among all the PTMs, the occurrence of Hg in coal is a global concern due to the significant release of Hg into the atmosphere from coal-fired thermal power plants. Therefore, the Hg removal from pre-combustion (coal washing and demercuration techniques) coal is very essential to reduce the possibility of Hg release to the atmosphere.
Collapse
Affiliation(s)
- Deep Raj
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826 004, India
| | - Subodh Kumar Maiti
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826 004, India.
| |
Collapse
|
28
|
Khanam R, Kumar A, Nayak AK, Shahid M, Tripathi R, Vijayakumar S, Bhaduri D, Kumar U, Mohanty S, Panneerselvam P, Chatterjee D, Satapathy BS, Pathak H. Metal(loid)s (As, Hg, Se, Pb and Cd) in paddy soil: Bioavailability and potential risk to human health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 699:134330. [PMID: 31522043 DOI: 10.1016/j.scitotenv.2019.134330] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/03/2019] [Accepted: 09/05/2019] [Indexed: 05/04/2023]
Abstract
Rice is one of the principal staple foods, essential for safeguarding the global food and nutritional security, but due to different natural and anthropogenic sources, it also acts as one of the biggest reservoirs of potentially toxic metal(loids) like As, Hg, Se, Pb and Cd. This review summarizes mobilization, translocation and speciation mechanism of these metal(loids) in soil-plant continuum as well as available cost-effective remediation measures and future research needs to eliminate the long-term risk to human health. High concentrations of these elements not only cause toxicity problems in plants, but also in animals that consume them and gradual deposition of these elements leads to the risk of bioaccumulation. The extensive occurrence of contaminated rice grains globally poses substantial public health risk and merits immediate action. People living in hotspots of contamination are exposed to higher health risks, however, rice import/export among different countries make the problem of global concern. Accumulation of As, Hg, Se, Pb and Cd in rice grains can be reduced by reducing their bioavailability, and controlling their uptake by rice plants. The contaminated soils can be reclaimed by phytoremediation, bioremediation, chemical amendments and mechanical measures; however these methods are either too expensive and/or too slow. Integration of innovative agronomic practices like crop establishment methods and improved irrigation and nutrient management practices are important steps to help mitigate the accumulation in soil as well as plant parts. Adoption of transgenic techniques for development of rice cultivars with low accumulation in edible plant parts could be a realistic option that would permit rice cultivation in soils with high bioavailability of these metal(loid)s.
Collapse
Affiliation(s)
- Rubina Khanam
- ICAR - National Rice Research Institute, Cuttack, Odisha, India
| | - Anjani Kumar
- ICAR - National Rice Research Institute, Cuttack, Odisha, India
| | - A K Nayak
- ICAR - National Rice Research Institute, Cuttack, Odisha, India.
| | - Md Shahid
- ICAR - National Rice Research Institute, Cuttack, Odisha, India
| | - Rahul Tripathi
- ICAR - National Rice Research Institute, Cuttack, Odisha, India
| | - S Vijayakumar
- ICAR - National Rice Research Institute, Cuttack, Odisha, India
| | | | - Upendra Kumar
- ICAR - National Rice Research Institute, Cuttack, Odisha, India
| | - Sangita Mohanty
- ICAR - National Rice Research Institute, Cuttack, Odisha, India
| | - P Panneerselvam
- ICAR - National Rice Research Institute, Cuttack, Odisha, India
| | | | - B S Satapathy
- ICAR - National Rice Research Institute, Cuttack, Odisha, India
| | - H Pathak
- ICAR - National Rice Research Institute, Cuttack, Odisha, India
| |
Collapse
|
29
|
Kohli SK, Handa N, Bali S, Khanna K, Arora S, Sharma A, Bhardwaj R. Current Scenario of Pb Toxicity in Plants: Unraveling Plethora of Physiological Responses. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 249:153-197. [PMID: 30900073 DOI: 10.1007/398_2019_25] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Lead (Pb) is an extremely toxic metal for all living forms including plants. It enters plants through roots from soil or soil solution. It is considered as one of the most eminent examples of anthropogenic environmental pollutant added in environment through mining and smelting of lead ores, coal burning, waste from battery industries, leaded paints, metal plating, and automobile exhaust. Uptake of Pb in plants is a nonselective process and is driven by H+/ATPases. Translocation of Pb metal ions occurs by apoplastic movement resulting in deposition of metal ions in the endodermis and is further transported by symplastic movement. Plants exposed to high concentration of Pb show toxic symptoms due to the overproduction of reactive oxygen species (ROS) through Fenton-Haber-Weiss reaction. ROS include superoxide anion, hydroxyl radical, and hydrogen peroxide, which reach to macro- and micro-cellular levels in the plant cells and cause oxidative damage. Plant growth and plethora of biochemical and physiological attributes including plant growth, water status, photosynthetic efficiency, antioxidative defense system, phenolic compounds, metal chelators, osmolytes, and redox status are adversely influenced by Pb toxicity. Plants respond to toxic levels of Pb in varied ways such as restricted uptake of metal, chelation of metal ions to the root endodermis, enhancement in activity of antioxidative defense, alteration in metal transporters expression, and involvement of plant growth regulators.
Collapse
Affiliation(s)
- Sukhmeen Kaur Kohli
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India.
| | - Neha Handa
- Department of Botany, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Shagun Bali
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Kanika Khanna
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Saroj Arora
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India.
| |
Collapse
|
30
|
Liu S, Ali S, Yang R, Tao J, Ren B. A newly discovered Cd-hyperaccumulator Lantana camara L. JOURNAL OF HAZARDOUS MATERIALS 2019; 371:233-242. [PMID: 30852275 DOI: 10.1016/j.jhazmat.2019.03.016] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/28/2019] [Accepted: 03/04/2019] [Indexed: 05/22/2023]
Abstract
The identification of hyperaccumulators is a key step for the phytoextraction of contaminated soils. However, few cadmium (Cd) hyperaccumulators have been identified in the plant kingdom. In our previous field investigations, Lantana camara L. plants exhibited some traits of hyperaccumulators. To confirm whether this species is a Cd hyperaccumulator, laboratory dose-gradient experiments and field sample analysis experiments were first designed and implemented in an integrated manner. The results showed that lantana plants did not exhibit any visible damage or marked reduction in shoot biomass when grown in Cd-contaminated soil with less than 100 mg kg-1 Cd. Moreover, the lantana plants exhibited high Cd tolerance with effective coordination of photosynthesis and rapid reactive oxygen species scavenging. Most importantly, the bioaccumulation factors (BFs) and translocation factors (TFs) were greater than 1.0 in all the Cd treatments, while the Cd concentrations in the shoots were all greater than those in the roots and were also greater than 100 mg kg-1, the threshold value for a Cd hyperaccumulator. Our data provide comprehensive evidence that lantana plants have the typical characteristics of a Cd hyperaccumulator and thus can be regarded as potential Cd-hyperaccumulating plants for the restoration of Cd-polluted soils.
Collapse
Affiliation(s)
- Shiliang Liu
- College of Landscape Architecture, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China.
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, 38000, Pakistan
| | - Rongjie Yang
- College of Landscape Architecture, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
| | - Jianjun Tao
- College of Architecture and Urban & Rural Planning, Sichuan Agricultural University, Dujiangyan, Chengdu, Sichuan, 611830, China
| | - Bo Ren
- Institute of Biotechnology and Fine Variety Research, Sichuan Academy of Forestry, Chengdu, Sichuan, 610081, China
| |
Collapse
|
31
|
Krzesłowska M, Timmers ACJ, Mleczek M, Niedzielski P, Rabęda I, Woźny A, Goliński P. Alterations of root architecture and cell wall modifications in Tilia cordata Miller (Linden) growing on mining sludge. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 248:247-259. [PMID: 30798026 DOI: 10.1016/j.envpol.2019.02.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 02/04/2019] [Accepted: 02/05/2019] [Indexed: 06/09/2023]
Abstract
Trees are considered good candidates for phytoremediation of soils contaminated with trace elements (TE), e.g. mine tailings. Using two year-old Tilia cordata plants, we demonstrated the nature and the scale of root architecture, especially root apices, as an indicator of mining sludge toxicity and plant capability to cope with these stress conditions. The novelty of our research is the analysis of the root response to substrate with extremely high concentrations of numerous toxic TE, and the 3D illustration of the disorders in root apex architecture using a clarity technique for confocal microscopy. The analysis demonstrates (1) a marked reduction in the size of the root apex zones (2) the occurrence of vascular tissues abnormally close to the root apex (3) collapse of the internal tissues in many root apices. Simultaneously, at the cellular level we observed some signs of a defensive response - such as a common increase of cell wall (CW) thickness and the formation of local CW thickenings - that enlarge the CW capacity for TE sequestration. However, we also detected harmful effects. Among others, a massive deposition of TE in the middle lamella which caused major damage - probably one of the reasons why the inner tissues of the root apex often collapsed - and the formation of incomplete CWs resulting in the occurrence of extremely large cells. Moreover, many cells of the root apex exhibited degenerated protoplasts. All these alterations indicate the harsh conditions for lime growth and survival and simultaneously, the manifestation of a defensive response. The obtained results allowed us to conclude that analysis of the nature and scale of structural alterations in roots can be useful indicators of plant ability to cope with stress conditions, e.g. in prospect of using the examined plants for reclamation of soils contaminated with TE.
Collapse
Affiliation(s)
- Magdalena Krzesłowska
- Laboratory of General Botany, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznań, Poland.
| | - Antonius C J Timmers
- Central Microscopy, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Mirosław Mleczek
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625, Poznań, Poland
| | - Przemysław Niedzielski
- Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89B, 61-614, Poznań, Poland
| | - Irena Rabęda
- Laboratory of General Botany, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznań, Poland
| | - Adam Woźny
- Laboratory of General Botany, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznań, Poland
| | - Piotr Goliński
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625, Poznań, Poland
| |
Collapse
|
32
|
Rai PK, Lee SS, Zhang M, Tsang YF, Kim KH. Heavy metals in food crops: Health risks, fate, mechanisms, and management. ENVIRONMENT INTERNATIONAL 2019; 125:365-385. [PMID: 30743144 DOI: 10.1016/j.envint.2019.01.067] [Citation(s) in RCA: 767] [Impact Index Per Article: 127.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/25/2019] [Accepted: 01/26/2019] [Indexed: 05/20/2023]
Abstract
Food security is a high-priority issue for sustainable global development both quantitatively and qualitatively. In recent decades, adverse effects of unexpected contaminants on crop quality have threatened both food security and human health. Heavy metals and metalloids (e.g., Hg, As, Pb, Cd, and Cr) can disturb human metabolomics, contributing to morbidity and even mortality. Therefore, this review focuses on and describes heavy metal contamination in soil-food crop subsystems with respect to human health risks. It also explores the possible geographical pathways of heavy metals in such subsystems. In-depth discussion is further offered on physiological/molecular translocation mechanisms involved in the uptake of metallic contaminants inside food crops. Finally, management strategies are proposed to regain sustainability in soil-food subsystems.
Collapse
Affiliation(s)
- Prabhat Kumar Rai
- Department of Environmental Science, Mizoram University, Aizawl 796004, India
| | - Sang Soo Lee
- Department of Environmental Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Ming Zhang
- Department of Environmental Engineering, China Jiliang University, Hangzhou 310018, China
| | - Yiu Fai Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories, Hong Kong
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|
33
|
Accumulation of Arsenic and Heavy Metals in Native and Cultivated Plant Species in a Lead Recycling Area in Vietnam. MINERALS 2019. [DOI: 10.3390/min9020132] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This study was conducted to determine the soil contamination and the accumulation of arsenic (As) and heavy metals including chromium (Cr), copper (Cu), zinc (Zn), cadmium (Cd), and lead (Pb) in 15 native and cultivated plant species in a Pb recycling area of Dong Mai village, Hung Yen Province, Vietnam. The analysis of 32 soil samples collected from seven different sites in the study area revealed that the contents of Al, Fe, As, Cr, Cu, Zn, Cd, and Pb in the soils ranged from 6200–32,600, 11,300–55,500, 5.4–26.8, 24.9–290, 66.0–252, 143–455, 0.71–1.67, and 370–47,400 mg/kg, respectively. The contents of As, Cr, Cu, Zn, Cd, and Pb in rice grains and the shoots of 15 plant species ranged from 0.14–10.2, 1.00–10.2, 5.19–23.8, 34.7–165, 0.06–0.99, and 2.83–1160 mg/kg-dry weight (DW), respectively. Hymenachne acutigluma (Steud.) Gilliland, a potential hyperaccumulator of Pb (1160 mg/kg–DW), is considered the best candidate for phytoremediation of Pb-contaminated soil. The cultivation of rice and vegetables, and the use of some native plants for food for humans, pigs, and cattle should be managed with consideration of the accumulation of Pb in their aboveground biomass.
Collapse
|
34
|
Dubey S, Shri M, Gupta A, Rani V, Chakrabarty D. Toxicity and detoxification of heavy metals during plant growth and metabolism. ENVIRONMENTAL CHEMISTRY LETTERS 2018; 16:1169-1192. [DOI: 10.1007/s10311-018-0741-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 04/19/2018] [Indexed: 06/27/2023]
|
35
|
Sychta K, Słomka A, Suski S, Fiedor E, Gregoraszczuk E, Kuta E. Suspended cells of metallicolous and nonmetallicolous Viola species tolerate, accumulate and detoxify zinc and lead. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 132:666-674. [PMID: 30368166 DOI: 10.1016/j.plaphy.2018.10.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/08/2018] [Accepted: 10/10/2018] [Indexed: 06/08/2023]
Abstract
We studied the zinc and lead accumulation and tolerance level of suspended cells of four Viola species with different metallophyte statuses: Viola lutea ssp. westfalica (obligate metallophyte), V. tricolor (facultative metallophyte), V. arvensis (accidental metallophyte) and V. uliginosa (nonmetallophyte), in order to determine the correlation between cell and plant tolerance. Cells of all studied species/genotypes were tolerant to metal concentrations applied to the medium for 24, 48 and 72 h, more for zinc than for lead, as estimated by cell viability using the alamarBlue assay. Viable cells of each analyzed species/genotype accumulated zinc and particularly lead in very high amounts after treatment with 2000 μM for 72 h (1500-4500 mg kg-1, 24 000-32 000 mg kg-1, respectively), determined by atomic absorption spectrometry. The bioaccumulation factor values confirmed the cells' hyperaccumulation strategy. The cell-activated detoxification mechanism, consisting in deposition of metals in the cell wall and vacuoles, as shown by transmission electron microscopy with X-ray microanalysis, allows the cells to survive despite the high level of metal accumulation. These results indicate innate high tolerance to zinc and lead in violets with different metallophyte statuses and also in the nonmetallophyte, suggesting that evolutionarily developed hypertolerance may occurs in this group as a whole.
Collapse
Affiliation(s)
- Klaudia Sychta
- Department of Plant Cytology and Embryology, Jagiellonian University, 9 Gronostajowa Str., 30-387, Cracow, Poland.
| | - Aneta Słomka
- Department of Plant Cytology and Embryology, Jagiellonian University, 9 Gronostajowa Str., 30-387, Cracow, Poland
| | - Szymon Suski
- Laboratory of Electron Microscopy, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str., 02-093, Warsaw, Poland
| | - Elżbieta Fiedor
- Department of Physiology and Toxicology of Reproduction, Jagiellonian University, 9 Gronostajowa Str., 30-387, Cracow, Poland
| | - Ewa Gregoraszczuk
- Department of Physiology and Toxicology of Reproduction, Jagiellonian University, 9 Gronostajowa Str., 30-387, Cracow, Poland
| | - Elżbieta Kuta
- Department of Plant Cytology and Embryology, Jagiellonian University, 9 Gronostajowa Str., 30-387, Cracow, Poland
| |
Collapse
|
36
|
Drzeżdżon J, Jacewicz D, Chmurzyński L. The impact of environmental contamination on the generation of reactive oxygen and nitrogen species - Consequences for plants and humans. ENVIRONMENT INTERNATIONAL 2018; 119:133-151. [PMID: 29957355 DOI: 10.1016/j.envint.2018.06.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/15/2018] [Accepted: 06/16/2018] [Indexed: 05/23/2023]
Abstract
Environmental contaminants, such as heavy metals, nanomaterials, and pesticides, induce the formation of reactive oxygen and nitrogen species (RONS). Plants interact closely with the atmosphere, water, and soil, and consequently RONS intensely affect their biochemistry. For the past 30 years researchers have thoroughly examined the role of RONS in plant organisms and oxidative modifications to cellular components. Hydrogen peroxide, superoxide anion, nitrogen(II) oxide, and hydroxyl radicals have been found to take part in many metabolic pathways. In this review the various aspects of the oxidative stress induced by environmental contamination are described based on an analysis of literature. The review reinforces the contention that RONS play a dual role, that is, both a deleterious and a beneficial one, in plants. Environmental contamination affects human health, also, and so we have additionally described the impact of RONS on the coupled human - environment system.
Collapse
Affiliation(s)
- Joanna Drzeżdżon
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Dagmara Jacewicz
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland.
| | - Lech Chmurzyński
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
37
|
Morkunas I, Woźniak A, Mai VC, Rucińska-Sobkowiak R, Jeandet P. The Role of Heavy Metals in Plant Response to Biotic Stress. Molecules 2018; 23:E2320. [PMID: 30208652 PMCID: PMC6225295 DOI: 10.3390/molecules23092320] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 09/06/2018] [Accepted: 09/08/2018] [Indexed: 11/16/2022] Open
Abstract
The present review discusses the impact of heavy metals on the growth of plants at different concentrations, paying particular attention to the hormesis effect. Within the past decade, study of the hormesis phenomenon has generated considerable interest because it was considered not only in the framework of plant growth stimulation but also as an adaptive response of plants to a low level of stress which in turn can play an important role in their responses to other stress factors. In this review, we focused on the defence mechanisms of plants as a response to different metal ion doses and during the crosstalk between metal ions and biotic stressors such as insects and pathogenic fungi. Issues relating to metal ion acquisition and ion homeostasis that may be essential for the survival of plants, pathogens and herbivores competing in the same environment were highlighted. Besides, the influence of heavy metals on insects, especially aphids and pathogenic fungi, was shown. Our intention was also to shed light on the relationship between heavy metals deposition in the environment and ecological communities formed under a strong selective pressure.
Collapse
Affiliation(s)
- Iwona Morkunas
- Department of Plant Physiology, Poznań University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland.
| | - Agnieszka Woźniak
- Department of Plant Physiology, Poznań University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland.
| | - Van Chung Mai
- Department of Plant Physiology, Poznań University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland.
- Department of Plant Physiology, Vinh University, Le Duan 182, Vinh City, Vietnam.
| | - Renata Rucińska-Sobkowiak
- Department of Plant Ecophysiology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland.
| | - Philippe Jeandet
- Research Unit "Induced Resistance and Plant Bioprotection", UPRES EA 4707, Department of Biology and Biochemistry, Faculty of Sciences, University of Reims, P.O. Box 1039, 02 51687 Reims CEDEX, France.
| |
Collapse
|
38
|
Chaturvedi R, Favas PJC, Pratas J, Varun M, Paul MS. Effect of Glomus mossae on accumulation efficiency, hazard index and antioxidant defense mechanisms in tomato under metal(loid) Stress. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2018; 20:885-894. [PMID: 29873534 DOI: 10.1080/15226514.2018.1438360] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In the present study, the phytoremedation potential along with growth, physiological and biochemical response of tomato (Solanum lycopersicum) was assessed under heavy metal(loid) (HM) and arbuscular mycorrhizal fungus (AMF) amendment. Effect of AMF on uptake and accumulation of metal(loid)s was assessed and accumulation characteristics were expressed in terms of bioabsorption coefficient (BAC), bioconcentration factor (BCF), translocation factor (TLF) and transfer factor (TF). Results showed that AMF-inoculated plants showed not only a better growth, chlorophyll content, strengthened non-enzymatic and enzymatic defense mechanism, but also accumulated higher concentration of metal(loid)s. The correlation between biochemical and physiological parameters was significant at 0.01 level. A significant difference (p ≤ 0.001) in antioxidant enzyme activity was found on increasing metal(loid) dose and application of AMF. The accumulation of Cd and Pb in edible part exceeded the chronic reference dose stated by USEPA. The target hazard quotient (THQ) was >1 for Cd and Pb, whereas <1 for As. The study shows that tomato has good potential as Cd and Pb phytoremediator, hence must not be consumed when grown on Cd or Pb contaminated sites.
Collapse
Affiliation(s)
- Ritu Chaturvedi
- a Department of Botany , St. John's College , Agra , UP , India
| | - Paulo J C Favas
- b School of Life Sciences and the Environment, University of Trás-os-Montes e Alto Douro , Vila Real , Portugal ; MARE - Marine and Environmental Sciences Centre, Faculty of Sciences and Technology, University of Coimbra , Coimbra , Portugal
| | - João Pratas
- c Department of Earth Sciences , Faculty of Sciences and Technology, University of Coimbra , Coimbra , Portugal ; MARE - Marine and Environmental Sciences Centre, Faculty of Sciences and Technology, University of Coimbra , Coimbra , Portugal ; Instituto do Petróleo e Geologia (Institute of Petroleum and Geology) , Dili , Timor-Leste
| | - Mayank Varun
- a Department of Botany , St. John's College , Agra , UP , India
| | - Manoj S Paul
- a Department of Botany , St. John's College , Agra , UP , India
| |
Collapse
|
39
|
Ashraf U, Hussain S, Akbar N, Anjum SA, Hassan W, Tang X. Water management regimes alter Pb uptake and translocation in fragrant rice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 149:128-134. [PMID: 29156304 DOI: 10.1016/j.ecoenv.2017.11.033] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 11/05/2017] [Accepted: 11/10/2017] [Indexed: 06/07/2023]
Abstract
Rice cultivation in lead (Pb) polluted soils often leads to high Pb contents in rice grains. The present study investigated the dynamics of Pb uptake under different water regimes in two fragrant rice cultivars i.e., Guixiangzhan and Nongxiang-18. Results revealed that water dynamics regulated the antioxidant activities in both rice cultivars under Pb toxicity. Compared to continuous ponding (CP), taken as control, alternate wetting and drying (AWD) reduced the Pb contents in roots, stems, leaves, and grains up to 17%, 41%, 22%, and 52% in Guixiangzhan and 23%, 19%, 17%, and 37% in Nongxiang-18, respectively. Furthermore, AWD-treatments reduced paddy yield from 11% to 21% in Guixiangzhan and 11-33% in Nongxiang-18 under Pb toxicity. In conclusion, Pb loadings in fragrant rice can be regulated by effective water management and/or by controlling irrigation water at different growth stages. Special control measures or management is required to cultivate the rice in metal(loid)s polluted soils.
Collapse
Affiliation(s)
- Umair Ashraf
- Department of Crop science and Technology, College of Agriculture, South China Agricultural University, Guangzhou 510642, PR China; Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan
| | - Saddam Hussain
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan
| | - Nadeem Akbar
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan
| | - Shakeel Ahmad Anjum
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan
| | | | - Xiangru Tang
- Department of Crop science and Technology, College of Agriculture, South China Agricultural University, Guangzhou 510642, PR China.
| |
Collapse
|
40
|
Kushwaha A, Hans N, Kumar S, Rani R. A critical review on speciation, mobilization and toxicity of lead in soil-microbe-plant system and bioremediation strategies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 147:1035-1045. [PMID: 29976006 DOI: 10.1016/j.ecoenv.2017.09.049] [Citation(s) in RCA: 222] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 09/15/2017] [Accepted: 09/17/2017] [Indexed: 05/18/2023]
Abstract
Lead accumulation in soils is of serious concern in agricultural production due to the harmful effects on soil microflora, crop growth and food safety. In soil, speciation of lead greatly affects its bioavailability and thus its toxicity on plants and microbes. Many plants and bacteria have evolved to develop detoxification mechanisms to counter the toxic effect of lead. Factors influencing the lead speciation include soil pH, organic matter, presence of various amendments, clay minerals and presence of organic colloids and iron oxides. Unlike, other metals little is known about the speciation and mobility of lead in soil. This review focuses on the speciation of lead in soil, its mobility, toxicity, uptake and detoxification mechanisms in plants and bacteria and bioremediation strategies for remediation of lead contaminated repositories.
Collapse
Affiliation(s)
- Anamika Kushwaha
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Teliyarganj, Allahabad, Uttar Pradesh, India
| | - Nidhi Hans
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Teliyarganj, Allahabad, Uttar Pradesh, India
| | - Sanjay Kumar
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Teliyarganj, Allahabad, Uttar Pradesh, India
| | - Radha Rani
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Teliyarganj, Allahabad, Uttar Pradesh, India.
| |
Collapse
|
41
|
Shahid M, Dumat C, Khalid S, Niazi NK, Antunes PMC. Cadmium Bioavailability, Uptake, Toxicity and Detoxification in Soil-Plant System. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 241:73-137. [PMID: 27300014 DOI: 10.1007/398_2016_8] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
This review summarizes the findings of the most recent studies, published from 2000 to 2016, which focus on the biogeochemical behavior of Cd in soil-plant systems and its impact on the ecosystem. For animals and people not subjected to a Cd-contaminated environment, consumption of Cd contaminated food (vegetables, cereals, pulses and legumes) is the main source of Cd exposure. As Cd does not have any known biological function, and can further cause serious deleterious effects both in plants and mammalian consumers, cycling of Cd within the soil-plant system is of high global relevance.The main source of Cd in soil is that which originates as emissions from various industrial processes. Within soil, Cd occurs in various chemical forms which differ greatly with respect to their lability and phytoavailability. Cadmium has a high phytoaccumulation index because of its low adsorption coefficient and high soil-plant mobility and thereby may enter the food chain. Plant uptake of Cd is believed to occur mainly via roots by specific and non-specific transporters of essential nutrients, as no Cd-specific transporter has yet been identified. Within plants, Cd causes phytotoxicity by decreasing nutrient uptake, inhibiting photosynthesis, plant growth and respiration, inducing lipid peroxidation and altering the antioxidant system and functioning of membranes. Plants tackle Cd toxicity via different defense strategies such as decreased Cd uptake or sequestration into vacuoles. In addition, various antioxidants combat Cd-induced overproduction of ROS. Other mechanisms involve the induction of phytochelatins, glutathione and salicylic acid.
Collapse
Affiliation(s)
- Muhammad Shahid
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari, 61100, Pakistan.
| | - Camille Dumat
- Centre d'Etude et de Recherche Travail Organisation Pouvoir (CERTOP), UMR5044, Université J. Jaurès-Toulouse II, 5 Allée Antonio Machado, 31058, Toulouse Cedex 9, France
| | - Sana Khalid
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari, 61100, Pakistan
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
- Southern Cross GeoScience, Southern Cross University, Lismore, 2480, NSW, Australia
| | | |
Collapse
|
42
|
Krzesłowska M, Rabęda I, Basińska A, Lewandowski M, Mellerowicz EJ, Napieralska A, Samardakiewicz S, Woźny A. Pectinous cell wall thickenings formation - A common defense strategy of plants to cope with Pb. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 214:354-361. [PMID: 27107260 DOI: 10.1016/j.envpol.2016.04.019] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 02/27/2016] [Accepted: 04/06/2016] [Indexed: 05/04/2023]
Abstract
Lead, one of the most abundant and hazardous trace metals affecting living organisms, has been commonly detected in plant cell walls including some tolerant plants, mining ecotypes and hyperaccumulators. We have previously shown that in tip growing Funaria sp. protonemata cell wall is remodeled in response to lead by formation of thickenings rich in low-methylesterified pectins (pectin epitope JIM5 - JIM5-P) able to bind metal ions, which accumulate large amounts of Pb. Hence, it leads to the increase of cell wall capacity for Pb compartmentalization. Here we show that diverse plant species belonging to different phyla (Arabidopsis, hybrid aspen, star duckweed), form similar cell wall thickenings in response to Pb. These thickenings are formed in tip growing cells such as the root hairs, and in diffuse growing cells such as meristematic and root cap columella cells of root apices in hybrid aspen and Arabidopsis and in mesophyll cells in star duckweed fronds. Notably, all analyzed cell wall thickenings were abundant in JIM5-P and accumulated high amounts of Pb. In addition, the co-localization of JIM5-P and Pb commonly occurred in these cells. Hence, cell wall thickenings formed the extra compartment for Pb accumulation. In this way plant cells increased cell wall capacity for compartmentalization of this toxic metal, protecting protoplast from its toxicity. As cell wall thickenings occurred in diverse plant species and cell types differing in the type of growth we may conclude that pectinous cell wall thickenings formation is a widespread defense strategy of plants to cope with Pb. Moreover, detection of natural defense strategy, increasing plant cell walls capacity for metal accumulation, reveals a promising direction for enhancing plant efficiency in phytoremediation.
Collapse
Affiliation(s)
- Magdalena Krzesłowska
- Laboratory of General Botany, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland.
| | - Irena Rabęda
- Laboratory of General Botany, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| | - Aneta Basińska
- Laboratory of General Botany, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| | - Michał Lewandowski
- Laboratory of General Botany, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| | - Ewa J Mellerowicz
- Umeå Plant Science Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-90183 Umea, Sweden
| | - Anna Napieralska
- Laboratory of General Botany, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| | - Sławomir Samardakiewicz
- Laboratory of Electron and Confocal Microscopy, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| | - Adam Woźny
- Laboratory of General Botany, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| |
Collapse
|
43
|
Kushwaha A, Rani R, Kumar S, Gautam A. Heavy metal detoxification and tolerance mechanisms in plants: Implications for phytoremediation. ENVIRONMENTAL REVIEWS 2016. [PMID: 0 DOI: 10.1139/er-2015-0010] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Heavy metals, such as cobalt, copper, manganese, molybdenum, and zinc, are essential in trace amounts for growth by plants and other living organisms. However, in excessive amounts these heavy metals have deleterious effects. Like other organisms, plants possess a variety of detoxification mechanisms to counter the harmful effects of heavy metals. These include the restriction of heavy metals by mycorrhizal association, binding with plant cell wall and root excretions, metal efflux from the plasma membrane, metal chelation by phytochelatins and metallothioneins, and compartmentalization within the vacuole. Phytoremediation is an emerging technology that uses plants and their associated rhizospheric microorganisms to remove pollutants from contaminated sites. This technology is inexpensive, efficient, and ecofriendly. This review focuses on potential cellular and molecular adaptations by plants that are necessary to tolerate heavy metal stress.
Collapse
Affiliation(s)
- Anamika Kushwaha
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Teliyar Ganj, Allahabad
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Teliyar Ganj, Allahabad
| | - Radha Rani
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Teliyar Ganj, Allahabad
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Teliyar Ganj, Allahabad
| | - Sanjay Kumar
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Teliyar Ganj, Allahabad
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Teliyar Ganj, Allahabad
| | - Aishvarya Gautam
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Teliyar Ganj, Allahabad
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Teliyar Ganj, Allahabad
| |
Collapse
|
44
|
Ashraf U, Kanu AS, Mo Z, Hussain S, Anjum SA, Khan I, Abbas RN, Tang X. Lead toxicity in rice: effects, mechanisms, and mitigation strategies--a mini review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:18318-32. [PMID: 26432270 DOI: 10.1007/s11356-015-5463-x] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 09/21/2015] [Indexed: 05/04/2023]
Abstract
Lead (Pb) is a major environmental pollutant that affects plant morpho-physiological and biochemical attributes. Its higher levels in the environment are not only toxic to human beings but also harmful for plants and soil microbes. We have reviewed the uptake, translocation, and accumulation mechanisms of Pb and its toxic effects on germination, growth, yield, nutrient relation, photosynthesis, respiration, oxidative damage, and antioxidant defense system of rice. Lead toxicity hampers rice germination, root/shoot length, growth, and final yield. It reduces nutrient uptake through roots, disrupts chloroplastic ultrastructure and cell membrane permeability, induces alterations in leaves respiratory activities, produces reactive oxygen species (ROS), and triggers some enzyme and non-enzymatic antioxidants (as defense to oxidative damage). In the end, biochar amendments and phytoremediation technologies have been proposed as soil remediation approaches for Pb tainted soils.
Collapse
Affiliation(s)
- Umair Ashraf
- Department of Crop science and Technology, College of Agriculture, South China Agricultural University, Guangzhou, 510642, People's Republic of China
- Scientific Observing and Experimental Station of Crop cultivation in South China, Ministry of Agriculture, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Adam Sheka Kanu
- Department of Crop science and Technology, College of Agriculture, South China Agricultural University, Guangzhou, 510642, People's Republic of China
- Scientific Observing and Experimental Station of Crop cultivation in South China, Ministry of Agriculture, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Zhaowen Mo
- Department of Crop science and Technology, College of Agriculture, South China Agricultural University, Guangzhou, 510642, People's Republic of China
- Scientific Observing and Experimental Station of Crop cultivation in South China, Ministry of Agriculture, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Saddam Hussain
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Shakeel Ahmad Anjum
- Department of Agronomy, University of Agriculture, Faisalabad, 38040, Punjab, Pakistan
| | - Imran Khan
- Department of Agronomy, University of Agriculture, Faisalabad, 38040, Punjab, Pakistan
| | - Rana Nadeem Abbas
- Department of Agronomy, University of Agriculture, Faisalabad, 38040, Punjab, Pakistan
| | - Xiangru Tang
- Department of Crop science and Technology, College of Agriculture, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
- Scientific Observing and Experimental Station of Crop cultivation in South China, Ministry of Agriculture, Guangzhou, 510642, Guangdong, People's Republic of China.
| |
Collapse
|
45
|
Rabęda I, Bilski H, Mellerowicz EJ, Napieralska A, Suski S, Woźny A, Krzesłowska M. Colocalization of low-methylesterified pectins and Pb deposits in the apoplast of aspen roots exposed to lead. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 205:315-26. [PMID: 26123720 DOI: 10.1016/j.envpol.2015.05.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 05/22/2015] [Accepted: 05/26/2015] [Indexed: 05/06/2023]
Abstract
Low-methylesterified homogalacturonans have been suggested to play a role in the binding and immobilization of Pb in CW. Using root apices of hybrid aspen, a plant with a high phytoremediation potential, as a model, we demonstrated that the in situ distribution pattern of low-methylesterified homogalacturonan, pectin epitope (JIM5-P), reflects the pattern of Pb occurrence. The region which indicated high JIM5-P level corresponded with "Pb accumulation zone". Moreover, JIM5-P was especially abundant in cell junctions, CWs lining the intercellular spaces and the corners of intercellular spaces indicating the highest accumulation of Pb. Furthermore, JIM5-P and Pb commonly co-localized. The observations indicate that low-methylesterified homogalacturonan is the CW polymer that determines the capacity of CW for Pb sequestration. Our results suggest a promising directions for CW modification for enhancing the efficiency of plant roots in Pb accumulation, an important aspect in the phytoremediation of soils contaminated with trace metals.
Collapse
Affiliation(s)
- Irena Rabęda
- Laboratory of General Botany, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| | - Henryk Bilski
- Laboratory of Electron Microscopy, Nencki Institute of Experimental Biology, Pasteur Street 3, 02-093 Warszawa, Poland
| | - Ewa J Mellerowicz
- Umea Plant Science Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-90183 Umea, Sweden
| | - Anna Napieralska
- Laboratory of General Botany, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| | - Szymon Suski
- Laboratory of Electron Microscopy, Nencki Institute of Experimental Biology, Pasteur Street 3, 02-093 Warszawa, Poland
| | - Adam Woźny
- Laboratory of General Botany, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| | - Magdalena Krzesłowska
- Laboratory of General Botany, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland.
| |
Collapse
|
46
|
de Freitas TA, França MGC, de Almeida AAF, de Oliveira SJR, de Jesus RM, Souza VL, Dos Santos Silva JV, Mangabeira PA. Morphology, ultrastructure and mineral uptake is affected by copper toxicity in young plants of Inga subnuda subs. luschnathiana (Benth.) T.D. Penn. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:15479-94. [PMID: 26006069 DOI: 10.1007/s11356-015-4610-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 04/26/2015] [Indexed: 05/23/2023]
Abstract
Toxic effects of copper (Cu) were analyzed in young plants of Inga subnuda subs. luschnathiana, a species that is highly tolerant to flooding and found in Brazil in wetlands contaminated with Cu. Plants were cultivated in fully nutritive solution, containing different concentrations of Cu (from 0.08 μmol to 0.47 mmol L(-1)). Symptoms of Cu toxicity were observed in both leaves and roots of plants cultivated from 0.16 mmol Cu L(-1). In the leaves, Cu clearly induced alterations in the thickness of the epidermis, mesophyll, palisade parenchyma, and intercellular space of the lacunose parenchyma. Also, this metal induced disorganization in thylakoid membranes, internal and external membrane rupture in chloroplasts, mitochondrial alterations, and electrodense material deposition in vacuoles of the parenchyma and cell walls. The starch grains disappeared; however, an increase of plastoglobule numbers was observed according to Cu toxicity. In the roots, destruction of the epidermis, reduction of the intercellular space, and modifications in the format of initial cells of the external cortex were evident. Cell walls and endoderm had been broken, invaginations of tonoplast and vacuole retractions were found, and, again, electrodense material was observed in these sites. Mineral nutrient analysis revealed higher Cu accumulation in the roots and greater macro- and micronutrients accumulation into shoots. Thus, root morphological and ultrastructural changes induced differential nutrients uptake and their translocations from root toward shoots, and this was related to membrane and endoderm ruptures caused by Cu toxicity.
Collapse
Affiliation(s)
- Tielle Abreu de Freitas
- Department of Biological Science, Santa Cruz State University, Km 16, Rodovia Jorge Amado, Ilhéus, BA, 45.662-000, Brazil
| | | | - Alex-Alan Furtado de Almeida
- Department of Biological Science, Santa Cruz State University, Km 16, Rodovia Jorge Amado, Ilhéus, BA, 45.662-000, Brazil
| | | | - Raildo Mota de Jesus
- Department of Technology Science and Department of Agrarian Science and Environment, Ilhéus, BA, 45.662-000, Brazil
| | - Vânia Lima Souza
- Bahia Federal Institute of Education, Science and Technology, Irecê, BA, Brazil
| | - José Victor Dos Santos Silva
- Department of Biological Science, Santa Cruz State University, Km 16, Rodovia Jorge Amado, Ilhéus, BA, 45.662-000, Brazil
| | - Pedro Antônio Mangabeira
- Department of Biological Science, Santa Cruz State University, Km 16, Rodovia Jorge Amado, Ilhéus, BA, 45.662-000, Brazil.
| |
Collapse
|
47
|
Kaur G, Kaur S, Singh HP, Batish DR, Kohli RK, Rishi V. Biochemical Adaptations in Zea mays Roots to Short-Term Pb(2+) Exposure: ROS Generation and Metabolism. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2015; 95:246-53. [PMID: 26048438 DOI: 10.1007/s00128-015-1564-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 05/20/2015] [Indexed: 05/20/2023]
Abstract
The present study investigated the effect of lead (0, 16, 40 and 80 mg L(-1) Pb2+) exposure for 3, 12 and 24 h on root biochemistry in hydroponically grown Zea mays (maize). Pb2+ exposure (80 mg L(-1)) enhanced malondialdehyde content (239%-427%), reactive carbonyl groups (425%-512%) and H2O2 (129%-294%) accumulation during 3-24 h of treatment, thereby indicating cellular peroxidation and oxidative damage. The quantitative estimations were in accordance with in situ detection of ROS generation (using 2',7'-dichlorodihydrofluorescein diacetate dye) and H2O2 accumulation. Pb2+ treatment significantly reduced ascorbate and glutathione content during 3-24 h of exposure. On the contrary, levels of non-protein thiols were enhanced by 3-11.8 time over control in response to 16-80 mg L(-1) Pb2+ treatment, after 24 h. A dose-dependent induction in ascorbate peroxidase and lipoxygenase enzyme activity was observed in Z. mays roots. The activities of ascorbate-recycling enzymes (dehydroascorbate reductase and monodehydroascorbate reductase) were significantly increased in relation to concentration and duration of Pb2+ treatment. The study concludes that Pb2+-exposure induces ROS-mediated oxidative damage during early period of exposure despite the upregulation of enzymes of ascorbate-glutathione cycle.
Collapse
Affiliation(s)
- Gurpreet Kaur
- Department of Environment Studies, Panjab University, Chandigarh, India
| | | | | | | | | | | |
Collapse
|
48
|
Ronchini M, Cherchi L, Cantamessa S, Lanfranchi M, Vianelli A, Gerola P, Berta G, Fumagalli A. Palladium uptake by Pisum sativum: partitioning and effects on growth and reproduction. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:7600-11. [PMID: 25639246 DOI: 10.1007/s11356-015-4132-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
Environmental palladium levels are increasing because of anthropogenic activities. The considerable mobility of the metal, due to solubilisation phenomena, and its known bioavailability may indicate interactions with higher organisms. The aim of the study was to determine the Pd uptake and distribution in the various organs of the higher plant Pisum sativum and the metal-induced effects on its growth and reproduction. P. sativum was grown in vermiculite with a modified Hoagland's solution of nutrients in the presence of Pd at concentrations ranging 0.10-25 mg/L. After 8-10 weeks in a controlled environment room, plants were harvested and dissected to isolate the roots, stems, leaves, pods and peas. The samples were analysed for Pd content using AAS and SEM-EDX. P. sativum absorbed Pd, supplied as K₂PdCl₄, beginning at seed germination and continuing throughout its life. Minimal doses (0.10-1.0 mg Pd/L) severely inhibited pea reproductive processes while showing a peculiar hormetic effect on root development. Pd concentrations ≥1 mg/L induced developmental delay, with late growth resumption, increased leaf biomass (up to 25%) and a 15-20% reduction of root mass. Unsuccessful repeated blossoming efforts led to misshapen pods and no seed production. Photosynthesis was also disrupted. The absorbed Pd (ca. 0.5 % of the supplied metal) was primarily fixed in the root, specifically in the cortex, reaching concentrations up to 200 μg/g. The metal moved through the stem (up to 1 μg/g) to the leaves (2 μg/g) and pods (0.3 μg/g). The presence of Pd in the pea fruits, together with established evidence of environmental Pd accumulation and bioavailability, suggests possible contamination of food plants and propagation in the food chain and must be the cause for concern.
Collapse
Affiliation(s)
- Matteo Ronchini
- Dipartimento di Scienze Teoriche e Applicate, Università degli Studi dell'Insubria, via J. H. Dunant 3, 21100, Varese, Italy
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Le Gall H, Philippe F, Domon JM, Gillet F, Pelloux J, Rayon C. Cell Wall Metabolism in Response to Abiotic Stress. PLANTS (BASEL, SWITZERLAND) 2015; 4:112-66. [PMID: 27135320 PMCID: PMC4844334 DOI: 10.3390/plants4010112] [Citation(s) in RCA: 636] [Impact Index Per Article: 63.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/05/2015] [Accepted: 02/11/2015] [Indexed: 12/17/2022]
Abstract
This review focuses on the responses of the plant cell wall to several abiotic stresses including drought, flooding, heat, cold, salt, heavy metals, light, and air pollutants. The effects of stress on cell wall metabolism are discussed at the physiological (morphogenic), transcriptomic, proteomic and biochemical levels. The analysis of a large set of data shows that the plant response is highly complex. The overall effects of most abiotic stress are often dependent on the plant species, the genotype, the age of the plant, the timing of the stress application, and the intensity of this stress. This shows the difficulty of identifying a common pattern of stress response in cell wall architecture that could enable adaptation and/or resistance to abiotic stress. However, in most cases, two main mechanisms can be highlighted: (i) an increased level in xyloglucan endotransglucosylase/hydrolase (XTH) and expansin proteins, associated with an increase in the degree of rhamnogalacturonan I branching that maintains cell wall plasticity and (ii) an increased cell wall thickening by reinforcement of the secondary wall with hemicellulose and lignin deposition. Taken together, these results show the need to undertake large-scale analyses, using multidisciplinary approaches, to unravel the consequences of stress on the cell wall. This will help identify the key components that could be targeted to improve biomass production under stress conditions.
Collapse
Affiliation(s)
- Hyacinthe Le Gall
- EA3900-BIOPI, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 80039 Amiens, France.
| | - Florian Philippe
- EA3900-BIOPI, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 80039 Amiens, France.
| | - Jean-Marc Domon
- EA3900-BIOPI, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 80039 Amiens, France.
| | - Françoise Gillet
- EA3900-BIOPI, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 80039 Amiens, France.
| | - Jérôme Pelloux
- EA3900-BIOPI, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 80039 Amiens, France.
| | - Catherine Rayon
- EA3900-BIOPI, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 80039 Amiens, France.
| |
Collapse
|
50
|
Samardakiewicz S, Krzeszowiec-Jeleń W, Bednarski W, Jankowski A, Suski S, Gabryś H, Woźny A. Pb-induced avoidance-like chloroplast movements in fronds of Lemna trisulca L. PLoS One 2015; 10:e0116757. [PMID: 25646776 PMCID: PMC4315572 DOI: 10.1371/journal.pone.0116757] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 12/12/2014] [Indexed: 11/18/2022] Open
Abstract
Lead ions are particularly dangerous to the photosynthetic apparatus, but little is known about the effects of trace metals, including Pb, on regulation of chloroplast redistribution. In this study a new effect of lead on chloroplast distribution patterns and movements was demonstrated in mesophyll cells of a small-sized aquatic angiosperm Lemna trisulca L. (star duckweed). An analysis of confocal microscopy images of L. trisulca fronds treated with lead (15 μM Pb2+, 24 h) in darkness or in weak white light revealed an enhanced accumulation of chloroplasts in the profile position along the anticlinal cell walls, in comparison to untreated plants. The rearrangement of chloroplasts in their response to lead ions in darkness was similar to the avoidance response of chloroplasts in plants treated with strong white light. Transmission electron microscopy X-ray microanalysis showed that intracellular chloroplast arrangement was independent of the location of Pb deposits, suggesting that lead causes redistribution of chloroplasts, which looks like a light-induced avoidance response, but is not a real avoidance response to the metal. Furthermore, a similar redistribution of chloroplasts in L. trisulca cells in darkness was observed also under the influence of exogenously applied hydrogen peroxide (H2O2). In addition, we detected an enhanced accumulation of endogenous H2O2 after treatment of plants with lead. Interestingly, H2O2-specific scavenger catalase partly abolished the Pb-induced chloroplast response. These results suggest that H2O2 can be involved in the avoidance-like movement of chloroplasts induced by lead. Analysis of photometric measurements revealed also strong inhibition (but not complete) of blue-light-induced chloroplast movements by lead. This inhibition may result from disturbances in the actin cytoskeleton, as we observed fragmentation and disappearance of actin filaments around chloroplasts. Results of this study show that the mechanisms of the toxic effect of lead on chloroplasts can include disturbances in their movement and distribution pattern.
Collapse
Affiliation(s)
- Sławomir Samardakiewicz
- Laboratory of Electron and Confocal Microscopy, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Weronika Krzeszowiec-Jeleń
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Waldemar Bednarski
- Institute of Molecular Physics, Polish Academy of Sciences, Poznań, Poland
| | - Artur Jankowski
- Laboratory of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Szymon Suski
- Laboratory of Electron Microscopy, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warszawa, Poland
| | - Halina Gabryś
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Adam Woźny
- Laboratory of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|