1
|
Su WH, Smith JJ, Cheng E, Nishitani MS, Choi CY, Lee KR, Salzano AP, Schriner SE. Spermidine toxicity in Saccharomyces cerevisiae due to mitochondrial complex III deficiency. Biogerontology 2025; 26:91. [PMID: 40208436 PMCID: PMC11985560 DOI: 10.1007/s10522-025-10233-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 03/28/2025] [Indexed: 04/11/2025]
Abstract
Spermidine is a naturally occurring polyamine present in all cells and is necessary for viability in eukaryotic cells. The cellular levels of spermidine decline as an organism ages, and its supplementation has been found to extend lifespan in yeast, worms, flies, mice, and human cultured cells. The lifespan extending effect of spermidine is thought to be due to its ability to induce autophagy, a turnover of cellular components. Mitochondrial dysfunction is believed to be a major driver of the aging process. We asked whether spermidine could rescue mitochondrial dysfunction using the yeast Saccharomyces cerevisiae lacking mtDNA (ρ0 cells) as a model. Not only was spermidine unable to rescue survival in ρ0 cells, but it appeared to exhibit toxicity resulting in a shortened lifespan. This toxicity appears to not be due to the loss of mitochondrial respiration, elevated oxidative stress, or depleted ATP. Spermidine toxicity could be recapitulated by the genetic or pharmacological inactivation of mitochondrial complex III. It can also be prevented by the impairment of autophagy, through the inactivation of ATG8, or by impairment of mitochondrial complex II through the inactivation of SDH2. Spermidine toxicity in ρ0 cells was present in yeast strains BY4741 and W303, but not D273-10B, demonstrating genetic variance in the phenotype. Thus, caution may be suggested regarding the use of spermidine to alleviate aging in humans. Depending on the genotype of the individual, spermidine could potentially harm the very individuals it is intended to help.
Collapse
Affiliation(s)
- Wei-Hsuan Su
- School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, CA, USA
| | - Jessica J Smith
- School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, CA, USA
| | - Evien Cheng
- School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, CA, USA
| | - Megan S Nishitani
- School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, CA, USA
| | - Catherine Y Choi
- School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, CA, USA
| | - Kelsey R Lee
- School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, CA, USA
| | - Alexia Pardos Salzano
- School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, CA, USA
| | - Samuel E Schriner
- School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, CA, USA.
| |
Collapse
|
2
|
Ishida H, Sasaki Y, Shibata T, Sasaki H, Chhunchha B, Singh DP, Kubo E. Topical Instillation of N-Acetylcysteine and N-Acetylcysteine Amide Impedes Age-Related Lens Opacity in Mice. Biomolecules 2025; 15:442. [PMID: 40149978 PMCID: PMC11940285 DOI: 10.3390/biom15030442] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/13/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025] Open
Abstract
Cataracts, the leading cause of blindness globally, are caused by oxidative stress and inflammation, which disrupt lens transparency due to increased accumulation of reactive oxygen species (ROS) as well as protein and DNA damage during aging. Using in vitro, ex vivo, and in vivo models, we determined the protective efficacy of N-acetylcysteine amide (NACA) against oxidative stress-induced and aging-induced cataractogenesis. We found that lens epithelial cells exposed to the oxidative stress inducers hydrogen peroxide (H2O2) or tert-butyl hydroperoxide showed significant ROS accumulation and reduced cellular viability. These effects were inhibited by NACA via the suppression of ROS and thioredoxin-interacting protein (Txnip) expression, a regulator of oxidative stress-related cellular damage and inflammation. In ex vivo lens experiments, NACA significantly reduced H2O2-induced lens opacity and preserved lens integrity. Similarly to NACA-treated lenses ex vivo, the integrity and opacity of aged mouse lenses, when topically instilled with NACA, were preserved and reduced, respectively, and are directly related to reduced Txnip and increased thioredoxin (Trx) expression levels. Overall, our findings demonstrated the protective ability of NACA to abate aberrant redox-active pathways, particularly the ROS/TRX/TXNIP axis, thereby preventing cataractogenesis and preserving eye lens integrity and ultimately impeding aging-related cataracts.
Collapse
Affiliation(s)
- Hidetoshi Ishida
- Department of Ophthalmology, Kanazawa Medical University, Kanazawa 9200293, Japan; (H.I.); (Y.S.); (T.S.); (H.S.)
| | - Yu Sasaki
- Department of Ophthalmology, Kanazawa Medical University, Kanazawa 9200293, Japan; (H.I.); (Y.S.); (T.S.); (H.S.)
| | - Teppei Shibata
- Department of Ophthalmology, Kanazawa Medical University, Kanazawa 9200293, Japan; (H.I.); (Y.S.); (T.S.); (H.S.)
| | - Hiroshi Sasaki
- Department of Ophthalmology, Kanazawa Medical University, Kanazawa 9200293, Japan; (H.I.); (Y.S.); (T.S.); (H.S.)
| | - Bhavana Chhunchha
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; (B.C.); (D.P.S.)
| | - Dhirendra P. Singh
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; (B.C.); (D.P.S.)
| | - Eri Kubo
- Department of Ophthalmology, Kanazawa Medical University, Kanazawa 9200293, Japan; (H.I.); (Y.S.); (T.S.); (H.S.)
| |
Collapse
|
3
|
Hu Y, Su D, Zhang Y, Fu Y, Li S, Chen X, Zhang X, Zheng S, Ma X, Hu S. Genome-wide DNA methylation and transcriptome sequencing analyses of lens tissue in an age-related mouse cataract model. PLoS One 2025; 20:e0316766. [PMID: 39883715 PMCID: PMC11781636 DOI: 10.1371/journal.pone.0316766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 12/15/2024] [Indexed: 02/01/2025] Open
Abstract
DNA methylation is known to be associated with cataracts. In this study, we used a mouse model and performed DNA methylation and transcriptome sequencing analyses to find epigenetic indicators for age-related cataracts (ARC). Anterior lens capsule membrane tissues from young and aged mice were analyzed by MethylRAD-seq to detect the genome-wide methylation of extracted DNA. The young and aged mice had 76,524 and 15,608 differentially methylated CCGG and CCWGG sites, respectively. The Pearson correlation analysis detected 109 and 33 differentially expressed genes (DEGs) with negative methylation at CCGG and CCWGG sites, respectively, in their promoter regions. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analyses showed that DEGs with abnormal methylation at CCGG sites were primarily associated with protein kinase C signaling (Akap12, Capzb), protein threonine kinase activity (Dmpk, Mapkapk3), and calcium signaling pathway (Slc25a4, Cacna1f), whereas DEGs with abnormal methylation at CCWGG sites were associated with ribosomal protein S6 kinase activity (Rps6ka3). These genes were validated by pyrosequencing methylation analysis. The results showed that the ARC group (aged mice) had lower Dmpk and Slc25a4 methylation levels and a higher Rps6ka3 methylation than the control group (young mice), which is consistent with the results of the joint analysis of differentially methylated and differentially expressed genes. In conclusion, we confirmed the genome-wide DNA methylation pattern and gene expression profile of ARC based on the mouse cataract model with aged mice. The identified methylation molecular markers have great potential for application in the future diagnosis and treatment of ARC.
Collapse
Affiliation(s)
- Yuzhu Hu
- Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Dongmei Su
- Department of Genetics, Health Department, National Research Institute for Family Planning, Beijing, China
- Graduate School, Peking Union Medical College, Beijing, China
| | - Yue Zhang
- Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Yanjiang Fu
- Daqing Ophthalmology Hospital, Daqing, Heilongjiang, China
| | - Sijia Li
- Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Xiaoya Chen
- Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Xiao Zhang
- Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Shunfei Zheng
- Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Xu Ma
- Department of Genetics, Health Department, National Research Institute for Family Planning, Beijing, China
- Graduate School, Peking Union Medical College, Beijing, China
| | - Shanshan Hu
- Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| |
Collapse
|
4
|
Disatham J, Brennan L, Jiao X, Ma Z, Hejtmancik JF, Kantorow M. Changes in DNA methylation hallmark alterations in chromatin accessibility and gene expression for eye lens differentiation. Epigenetics Chromatin 2022; 15:8. [PMID: 35246225 PMCID: PMC8897925 DOI: 10.1186/s13072-022-00440-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/16/2022] [Indexed: 12/13/2022] Open
Abstract
Background Methylation at cytosines (mCG) is a well-known regulator of gene expression, but its requirements for cellular differentiation have yet to be fully elucidated. A well-studied cellular differentiation model system is the eye lens, consisting of a single anterior layer of epithelial cells that migrate laterally and differentiate into a core of fiber cells. Here, we explore the genome-wide relationships between mCG methylation, chromatin accessibility and gene expression during differentiation of eye lens epithelial cells into fiber cells. Results Whole genome bisulfite sequencing identified 7621 genomic loci exhibiting significant differences in mCG levels between lens epithelial and fiber cells. Changes in mCG levels were inversely correlated with the differentiation state-specific expression of 1285 genes preferentially expressed in either lens fiber or lens epithelial cells (Pearson correlation r = − 0.37, p < 1 × 10–42). mCG levels were inversely correlated with chromatin accessibility determined by assay for transposase-accessible sequencing (ATAC-seq) (Pearson correlation r = − 0.86, p < 1 × 10–300). Many of the genes exhibiting altered regions of DNA methylation, chromatin accessibility and gene expression levels in fiber cells relative to epithelial cells are associated with lens fiber cell structure, homeostasis and transparency. These include lens crystallins (CRYBA4, CRYBB1, CRYGN, CRYBB2), lens beaded filament proteins (BFSP1, BFSP2), transcription factors (HSF4, SOX2, HIF1A), and Notch signaling pathway members (NOTCH1, NOTCH2, HEY1, HES5). Analysis of regions exhibiting cell-type specific alterations in DNA methylation revealed an overrepresentation of consensus sequences of multiple transcription factors known to play key roles in lens cell differentiation including HIF1A, SOX2, and the MAF family of transcription factors. Conclusions Collectively, these results link DNA methylation with control of chromatin accessibility and gene expression changes required for eye lens differentiation. The results also point to a role for DNA methylation in the regulation of transcription factors previously identified to be important for lens cell differentiation. Supplementary Information The online version contains supplementary material available at 10.1186/s13072-022-00440-z.
Collapse
Affiliation(s)
- Joshua Disatham
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Lisa Brennan
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Xiaodong Jiao
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Zhiwei Ma
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - J Fielding Hejtmancik
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marc Kantorow
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA.
| |
Collapse
|
5
|
Muranov KO, Ostrovsky MA. Biochemistry of Eye Lens in the Norm and in Cataractogenesis. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:106-120. [PMID: 35508906 DOI: 10.1134/s0006297922020031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 06/14/2023]
Abstract
The absence of cellular organelles in fiber cells and very high cytoplasmic protein concentration (up to 900 mg/ml) minimize light scattering in the lens and ensure its transparency. Low oxygen concentration, powerful defense systems (antioxidants, antioxidant enzymes, chaperone-like protein alpha-crystallin, etc.) maintain lens transparency. On the other hand, the ability of crystallins to accumulate age-associated post-translational modifications, which reduce the resistance of lens proteins to oxidative stress, is an important factor contributing to the cataract formation. Here, we suggest a mechanism of cataractogenesis common for the action of different cataractogenic factors, such as age, radiation, ultraviolet light, diabetes, etc. Exposure to these factors leads to the damage and death of lens epithelium, which allows oxygen to penetrate into the lens through the gaps in the epithelial layer and cause oxidative damage to crystallins, resulting in protein denaturation, aggregation, and formation of multilamellar bodies (the main cause of lens opacification). The review discusses various approaches to the inhibition of lens opacification (cataract development), in particular, a combined use of antioxidants and compounds enhancing the chaperone-like properties of alpha-crystallin. We also discuss the paradox of high efficiency of anti-cataract drugs in laboratory settings with the lack of their clinical effect, which might be due to the late use of the drugs at the stage, when the opacification has already formed. A probable solution to this situation will be development of new diagnostic methods that will allow to predict the emergence of cataract long before the manifestation of its clinical signs and to start early preventive treatment.
Collapse
Affiliation(s)
- Konstantin O Muranov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia.
| | - Mikhail A Ostrovsky
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
| |
Collapse
|
6
|
Faranda AP, Shihan MH, Wang Y, Duncan MK. The aging mouse lens transcriptome. Exp Eye Res 2021; 209:108663. [PMID: 34119483 DOI: 10.1016/j.exer.2021.108663] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/04/2021] [Accepted: 06/01/2021] [Indexed: 02/06/2023]
Abstract
Age is a major risk factor for cataract (ARC). However, the influence of aging on the lens transcriptome is under studied. Lens epithelial (LEC) and fiber cells (LFC) were isolated from young (3 month old) and aged (24 month old) C57BL/6J mice, and the transcriptome elucidated via RNAseq. EdgeR estimated differential gene expression in pairwise contrasts, and Advaita's Ipathway guide and custom R scripts were used to evaluate the potential biological significance of differentially expressed genes (DEGs). This analysis revealed age-dependent decreases in lens differentiation marker expression in both LECs and LFCs, with gamma crystallin transcripts downregulating nearly 50 fold in aged LFCs. The expression of the transcription factors Hsf4 and Maf, which are known to activate lens fiber cell preferred genes, are downregulated, while FoxE3, which represses gamma crystallin expression, is upregulated in aged fibers. Aged LECs upregulate genes controlling the immune response, complement pathways, and cellular stress responses, including glutathione peroxidase 3 (Gpx3). Aged LFCs exhibit broad changes in the expression of genes regulating cell communication, and upregulate genes involved in antigen processing/presentation and cholesterol metabolism, while changes in the expression of mitochondrial respiratory chain genes are consistent with mitochondrial stress, including upregulation of NDufa4l2, which encodes an alternate electron transport chain protein. However, age did not profoundly affect the response of LECs to injury as both young and aged LECs upregulate inflammatory gene signatures at 24 h post injury to similar extents. These RNAseq profiles provide a rich data set that can be mined to understand the genetic regulation of lens aging and how this impinges on the pathophysiology of age related cataract.
Collapse
Affiliation(s)
- Adam P Faranda
- Department of Biological Sciences University of Delaware Newark, DE, 19716, USA
| | - Mahbubul H Shihan
- Department of Biological Sciences University of Delaware Newark, DE, 19716, USA
| | - Yan Wang
- Department of Biological Sciences University of Delaware Newark, DE, 19716, USA
| | - Melinda K Duncan
- Department of Biological Sciences University of Delaware Newark, DE, 19716, USA.
| |
Collapse
|
7
|
Hanafy BI, Cave GWV, Barnett Y, Pierscionek BK. Nanoceria Prevents Glucose-Induced Protein Glycation in Eye Lens Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1473. [PMID: 34206140 PMCID: PMC8228845 DOI: 10.3390/nano11061473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 12/16/2022]
Abstract
Cerium oxide nanoparticles (nanoceria) are generally known for their recyclable antioxidative properties making them an appealing biomaterial for protecting against physiological and pathological age-related changes that are caused by reactive oxygen species (ROS). Cataract is one such pathology that has been associated with oxidation and glycation of the lens proteins (crystallins) leading to aggregation and opacification. A novel coated nanoceria formulation has been previously shown to enter the human lens epithelial cells (HLECs) and protect them from oxidative stress induced by hydrogen peroxide (H2O2). In this work, the mechanism of nanoceria uptake in HLECs is studied and multiple anti-cataractogenic properties are assessed in vitro. Our results show that the nanoceria provide multiple beneficial actions to delay cataract progression by (1) acting as a catalase mimetic in cells with inhibited catalase, (2) improving reduced to oxidised glutathione ratio (GSH/GSSG) in HLECs, and (3) inhibiting the non-enzymatic glucose-induced glycation of the chaperone lens protein α-crystallin. Given the multifactorial nature of cataract progression, the varied actions of nanoceria render them promising candidates for potential non-surgical therapeutic treatment.
Collapse
Affiliation(s)
- Belal I. Hanafy
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK;
| | - Gareth W. V. Cave
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK;
| | - Yvonne Barnett
- Faculty of Heath, Education, Medicine and Social Care and Pharmaceutical Research Group, Medical Technology Research Centre, Anglia Ruskin University, Cambridgeshire CB1 1PT, UK;
| | - Barbara K. Pierscionek
- Faculty of Heath, Education, Medicine and Social Care and Pharmaceutical Research Group, Medical Technology Research Centre, Anglia Ruskin University, Cambridgeshire CB1 1PT, UK;
- School of Life Science and Education, Staffordshire University College Road, Stoke on Trent ST4 2DE, UK
| |
Collapse
|
8
|
Rosa AC, Corsi D, Cavi N, Bruni N, Dosio F. Superoxide Dismutase Administration: A Review of Proposed Human Uses. Molecules 2021; 26:1844. [PMID: 33805942 PMCID: PMC8037464 DOI: 10.3390/molecules26071844] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Superoxide dismutases (SODs) are metalloenzymes that play a major role in antioxidant defense against oxidative stress in the body. SOD supplementation may therefore trigger the endogenous antioxidant machinery for the neutralization of free-radical excess and be used in a variety of pathological settings. This paper aimed to provide an extensive review of the possible uses of SODs in a range of pathological settings, as well as describe the current pitfalls and the delivery strategies that are in development to solve bioavailability issues. We carried out a PubMed query, using the keywords "SOD", "SOD mimetics", "SOD supplementation", which included papers published in the English language, between 2012 and 2020, on the potential therapeutic applications of SODs, including detoxification strategies. As highlighted in this paper, it can be argued that the generic antioxidant effects of SODs are beneficial under all tested conditions, from ocular and cardiovascular diseases to neurodegenerative disorders and metabolic diseases, including diabetes and its complications and obesity. However, it must be underlined that clinical evidence for its efficacy is limited and consequently, this efficacy is currently far from being demonstrated.
Collapse
Affiliation(s)
- Arianna Carolina Rosa
- Department of Scienza e Tecnologia del Farmaco, University of Turin, Via P. Giuria 9, 10125 Turin, Italy; (D.C.); (N.C.); (F.D.)
| | - Daniele Corsi
- Department of Scienza e Tecnologia del Farmaco, University of Turin, Via P. Giuria 9, 10125 Turin, Italy; (D.C.); (N.C.); (F.D.)
| | - Niccolò Cavi
- Department of Scienza e Tecnologia del Farmaco, University of Turin, Via P. Giuria 9, 10125 Turin, Italy; (D.C.); (N.C.); (F.D.)
| | - Natascia Bruni
- Istituto Farmaceutico Candioli, Strada Comunale di None, 1, 10092 Beinasco, Italy;
| | - Franco Dosio
- Department of Scienza e Tecnologia del Farmaco, University of Turin, Via P. Giuria 9, 10125 Turin, Italy; (D.C.); (N.C.); (F.D.)
| |
Collapse
|
9
|
Young J, Bell S, Qian Y, Hyman C, Berryman DE. Mouse models of growth hormone insensitivity. Rev Endocr Metab Disord 2021; 22:17-29. [PMID: 33037595 PMCID: PMC7979446 DOI: 10.1007/s11154-020-09600-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/01/2020] [Indexed: 11/28/2022]
Abstract
Growth hormone (GH) induces pleiotropic effects on growth and metabolism via binding and subsequent activation of the growth hormone receptor (GHR) and its downstream signaling pathways. Growth hormone insensitivity (GHI) describes a group of disorders in which there is resistance to the action of GH and resultant insulin-like growth factor I (IGF-I) deficiency. GHI is commonly due to genetic disorders of the GH receptor causing GH receptor deficiency (e.g. Laron Syndrome (LS)), decreased activation of GHR, or defects in post-receptor signaling molecules. Genetically altered mouse lines have been invaluable to better understand the physiological impact of GHI due to the ability to do invasive and longitudinal measures of metabolism, growth, and health on a whole animal or in individual tissues/cells. In the current review, the phenotype of mouse lines with GHI will be reviewed. Mouse lines to be discussed include: 1) GHR-/- mice with a gene disruption in the GHR that results in no functional GHR throughout life, also referred to as the Laron mouse, 2) mice with temporal loss of GHR (aGHRKO) starting at 6 weeks of age, 3) mice transgenic for a GHR antagonist (GHA mice), 4) mice with GHI in select tissues or cells generated via Cre-lox or related technology, and 5) assorted mice with defects in post-receptor signaling molecules. Collectively, these mouse lines have revealed an intriguing role of GH action in health, disease, and aging.
Collapse
Affiliation(s)
- Jonathan Young
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Athens, OH, 45701, USA
- Edison Biotechnology Institute, Konneker Research Labs, Ohio University, Athens, OH, USA
| | - Stephen Bell
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Athens, OH, 45701, USA
- Edison Biotechnology Institute, Konneker Research Labs, Ohio University, Athens, OH, USA
| | - Yanrong Qian
- Edison Biotechnology Institute, Konneker Research Labs, Ohio University, Athens, OH, USA
| | - Caroline Hyman
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Athens, OH, 45701, USA
| | - Darlene E Berryman
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Athens, OH, 45701, USA.
- Edison Biotechnology Institute, Konneker Research Labs, Ohio University, Athens, OH, USA.
| |
Collapse
|
10
|
Brand MD. Riding the tiger - physiological and pathological effects of superoxide and hydrogen peroxide generated in the mitochondrial matrix. Crit Rev Biochem Mol Biol 2020; 55:592-661. [PMID: 33148057 DOI: 10.1080/10409238.2020.1828258] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Elevated mitochondrial matrix superoxide and/or hydrogen peroxide concentrations drive a wide range of physiological responses and pathologies. Concentrations of superoxide and hydrogen peroxide in the mitochondrial matrix are set mainly by rates of production, the activities of superoxide dismutase-2 (SOD2) and peroxiredoxin-3 (PRDX3), and by diffusion of hydrogen peroxide to the cytosol. These considerations can be used to generate criteria for assessing whether changes in matrix superoxide or hydrogen peroxide are both necessary and sufficient to drive redox signaling and pathology: is a phenotype affected by suppressing superoxide and hydrogen peroxide production; by manipulating the levels of SOD2, PRDX3 or mitochondria-targeted catalase; and by adding mitochondria-targeted SOD/catalase mimetics or mitochondria-targeted antioxidants? Is the pathology associated with variants in SOD2 and PRDX3 genes? Filtering the large literature on mitochondrial redox signaling using these criteria highlights considerable evidence that mitochondrial superoxide and hydrogen peroxide drive physiological responses involved in cellular stress management, including apoptosis, autophagy, propagation of endoplasmic reticulum stress, cellular senescence, HIF1α signaling, and immune responses. They also affect cell proliferation, migration, differentiation, and the cell cycle. Filtering the huge literature on pathologies highlights strong experimental evidence that 30-40 pathologies may be driven by mitochondrial matrix superoxide or hydrogen peroxide. These can be grouped into overlapping and interacting categories: metabolic, cardiovascular, inflammatory, and neurological diseases; cancer; ischemia/reperfusion injury; aging and its diseases; external insults, and genetic diseases. Understanding the involvement of mitochondrial matrix superoxide and hydrogen peroxide concentrations in these diseases can facilitate the rational development of appropriate therapies.
Collapse
|
11
|
Cheng C, Parreno J, Nowak RB, Biswas SK, Wang K, Hoshino M, Uesugi K, Yagi N, Moncaster JA, Lo WK, Pierscionek B, Fowler VM. Age-related changes in eye lens biomechanics, morphology, refractive index and transparency. Aging (Albany NY) 2019; 11:12497-12531. [PMID: 31844034 PMCID: PMC6949082 DOI: 10.18632/aging.102584] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/26/2019] [Indexed: 04/09/2023]
Abstract
Life-long eye lens function requires an appropriate gradient refractive index, biomechanical integrity and transparency. We conducted an extensive study of wild-type mouse lenses 1-30 months of age to define common age-related changes. Biomechanical testing and morphometrics revealed an increase in lens volume and stiffness with age. Lens capsule thickness and peripheral fiber cell widths increased between 2 to 4 months of age but not further, and thus, cannot account for significant age-dependent increases in lens stiffness after 4 months. In lenses from mice older than 12 months, we routinely observed cataracts due to changes in cell structure, with anterior cataracts due to incomplete suture closure and a cortical ring cataract corresponding to a zone of compaction in cortical lens fiber cells. Refractive index measurements showed a rapid growth in peak refractive index between 1 to 6 months of age, and the area of highest refractive index is correlated with increases in lens nucleus size with age. These data provide a comprehensive overview of age-related changes in murine lenses, including lens size, stiffness, nuclear fraction, refractive index, transparency, capsule thickness and cell structure. Our results suggest similarities between murine and primate lenses and provide a baseline for future lens aging studies.
Collapse
Affiliation(s)
- Catherine Cheng
- School of Optometry, Indiana University, Bloomington, IN 47405, USA
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Justin Parreno
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Roberta B. Nowak
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sondip K. Biswas
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA 30303, USA
| | - Kehao Wang
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Masato Hoshino
- Japan Synchrotron Radiation Research Institute (Spring-8), Sayo-cho, Sayo-gun, Hyogo, Japan
| | - Kentaro Uesugi
- Japan Synchrotron Radiation Research Institute (Spring-8), Sayo-cho, Sayo-gun, Hyogo, Japan
| | - Naoto Yagi
- Japan Synchrotron Radiation Research Institute (Spring-8), Sayo-cho, Sayo-gun, Hyogo, Japan
| | - Juliet A. Moncaster
- Department of Radiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Woo-Kuen Lo
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA 30303, USA
| | - Barbara Pierscionek
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Velia M. Fowler
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
12
|
Dewi CU, O'Connor MD. Use of Human Pluripotent Stem Cells to Define Initiating Molecular Mechanisms of Cataract for Anti-Cataract Drug Discovery. Cells 2019; 8:E1269. [PMID: 31627438 PMCID: PMC6830331 DOI: 10.3390/cells8101269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/08/2019] [Accepted: 10/15/2019] [Indexed: 01/09/2023] Open
Abstract
Cataract is a leading cause of blindness worldwide. Currently, restoration of vision in cataract patients requires surgical removal of the cataract. Due to the large and increasing number of cataract patients, the annual cost of surgical cataract treatment amounts to billions of dollars. Limited access to functional human lens tissue during the early stages of cataract formation has hampered efforts to develop effective anti-cataract drugs. The ability of human pluripotent stem (PS) cells to make large numbers of normal or diseased human cell types raises the possibility that human PS cells may provide a new avenue for defining the molecular mechanisms responsible for different types of human cataract. Towards this end, methods have been established to differentiate human PS cells into both lens cells and transparent, light-focusing human micro-lenses. Sensitive and quantitative assays to measure light transmittance and focusing ability of human PS cell-derived micro-lenses have also been developed. This review will, therefore, examine how human PS cell-derived lens cells and micro-lenses might provide a new avenue for development of much-needed drugs to treat human cataract.
Collapse
Affiliation(s)
- Chitra Umala Dewi
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia.
| | - Michael D O'Connor
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia.
| |
Collapse
|
13
|
Riddell N, Crewther SG. Novel evidence for complement system activation in chick myopia and hyperopia models: a meta-analysis of transcriptome datasets. Sci Rep 2017; 7:9719. [PMID: 28852117 PMCID: PMC5574905 DOI: 10.1038/s41598-017-10277-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/21/2017] [Indexed: 12/27/2022] Open
Abstract
Myopia (short-sightedness) and hyperopia (long-sightedness) occur when the eye grows too long or short, respectively, for its refractive power. There are currently approximately 1.45 billion myopes worldwide and prevalence is rising dramatically. Although high myopia significantly increases the risk of developing a range of sight-threatening disorders, the molecular mechanisms underlying ocular growth regulation and its relationship to these secondary complications remain poorly understood. Thus, this study meta-analyzed transcriptome datasets collected in the commonly used chick model of optically-induced refractive error. Fifteen datasets (collected across five previous studies) were obtained from GEO, preprocessed in Bioconductor, and divided into 4 conditions representing early (≤1 day) and late (>1 day) myopia and hyperopia induction. Differentially expressed genes in each condition were then identified using Rank Product meta-analysis. The results provide novel evidence for transcriptional activation of the complement system during both myopia and hyperopia induction, and confirm existing literature implicating cell signaling, mitochondrial, and structural processes in refractive error. Further comparisons demonstrated that the meta-analysis results also significantly improve concordance with broader omics data types (i.e., human genetic association and animal proteomics studies) relative to previous transcriptome studies, and show extensive similarities with the genes linked to age-related macular degeneration, choroidal neovascularization, and cataract.
Collapse
Affiliation(s)
- Nina Riddell
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Sheila G Crewther
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, 3086, Australia.
| |
Collapse
|
14
|
Freeman KS, Fiorello C, Murray M. Comparison of anterior segment health in wild and captive common murres. Vet Ophthalmol 2017; 21:174-181. [DOI: 10.1111/vop.12493] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kate S. Freeman
- Department of Clinical Sciences; College of Veterinary Medicine and Biomedical Sciences; Colorado State University; 300 W. Drake Rd. Fort Collins CO 80523 USA
| | - Christine Fiorello
- Oiled Wildlife Care Network; School of Veterinary Medicine; One Health Institute; University of California; 1089 Veterinary Medicine Drive Davis CA 95616 USA
| | - Michael Murray
- Monterey Bay Aquarium; 886 Cannery Row Monterey CA 93940 USA
| |
Collapse
|
15
|
Kubota M, Shui YB, Liu M, Bai F, Huang AJ, Ma N, Beebe DC, Siegfried CJ. Mitochondrial oxygen metabolism in primary human lens epithelial cells: Association with age, diabetes and glaucoma. Free Radic Biol Med 2016; 97:513-519. [PMID: 27445101 PMCID: PMC4996752 DOI: 10.1016/j.freeradbiomed.2016.07.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 06/14/2016] [Accepted: 07/18/2016] [Indexed: 12/13/2022]
Abstract
PURPOSE The hypoxic environment around the lens is important for maintaining lens transparency. Lens epithelial cells (LECs) play a key role in lens metabolism. We measured oxygen consumption to assess the role of human LECs in maintaining hypoxia around the lens, as well as the impact of systemic and ocular diagnosis on these cells. METHODS Baseline cellular respiration was measured in rabbit LECs (NN1003A), canine kidney epithelial cells (MDCK), trabecular meshwork cells (TM-5), and bovine corneal endothelial cells (CCEE) using a XF96 Extracellular Flux Analyzer (Seahorse Bioscience, North Billerica, MA), which measures oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) in vitro. Following informed written consent, lens capsule epithelial cells were obtained from patients during cataract surgery and were divided into small explants in 96-well plates. Capsules were removed when LECs became confluent. OCR was normalized to the number of cells per well using rabbit LECs as a standard. The effect of patient age, sex, race, and presence of diabetes or glaucoma on oxygen consumption was assessed by using the Mann-Whitney U test and multivariate regression analysis. RESULTS Primary LECs were obtained from 69 patients. The OCR from donors aged 70 and over was lower than that of those under 70 years (2.21±1.037 vs. 2.86±1.383 fmol/min/cell; p<0.05). Diabetic patients had lower OCR than non-diabetic patients (2.02±0.911 vs. 2.79±1.332fmol/min/cell; p<0.05), and glaucoma patients had lower OCR than non-glaucoma patients (2.27±1.19 vs. 2.83±1.286 fmol/min/cell; p<0.05). Multivariate regression analysis confirmed that donors aged 70 and over (p<0.05), diabetic patients (p<0.01), and glaucoma patients (p<0.05) had significantly lower OCR, independent of other variables. Gender and race had no significant effect on OCR. CONCLUSIONS The lower oxygen consumption rate of human LECs in older donors and patients with diabetes or glaucoma could contribute to cataract development. Diabetes and glaucoma are particularly important factors associated with decreased OCR, independent of age. Ongoing studies are examining pO2 at the anterior surface of the lens in vivo and oxygen consumption in the patient's LECs.
Collapse
Affiliation(s)
- M Kubota
- Departments of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, United States; Departments of Ophthalmology, Keio University School of Medicine, Tokyo, Japan.
| | - Y B Shui
- Departments of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, United States.
| | - M Liu
- Departments of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, United States.
| | - F Bai
- Departments of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, United States.
| | - A J Huang
- Departments of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, United States.
| | - N Ma
- Departments of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, United States; Departments of Ophthalmology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.
| | - D C Beebe
- Departments of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, United States; Departments of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, United States
| | - C J Siegfried
- Departments of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, United States.
| |
Collapse
|
16
|
Thangaraju P, Chakrabarti A, Banerjee D, Hota D, Tamilselvan, Bhatia A, Gupta A. Dual blockade of Renin Angiotensin system in reducing the early changes of diabetic retinopathy and nephropathy in a diabetic rat model. NORTH AMERICAN JOURNAL OF MEDICAL SCIENCES 2015; 6:625-32. [PMID: 25599050 PMCID: PMC4290051 DOI: 10.4103/1947-2714.147978] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Background: Diabetes mellitus is a real pandemic of the modern world and the incidence of the disease is increasing at a tremendous rate with a number of complications involving major systems of the human body. The renin angiotensin system (RAS) is considered to be involved in most of the pathological processes that result in diabetic nephropathy and retinopathy. Aim: The study was designed to evaluate and compare effects of ramipril (angiotensin-converting enzyme inhibitor-ACEI) and telmisartan (angiotensin II receptor blocker - ARBs) combinations on the progression of retinopathy and nephropathy in the streptozotocin (STZ) induced diabetic model. Materials and Methods: Diabetic state in rats was induced by chemical method using STZ 55 mg/kg intraperitoneally. Diabetic renal tubulopathy and interstitial inflammatory changes were done. Diabetic retinopathy manifested in the form of vacuolar changes in the inner plexiform and the ganglionic layers of the retina was observed. Results: Treatments with ACEI and ARBs reduced the incidence of the occurrence of cataract. The effect of combinational drugs of ACEI (ramipril) and AT1 receptor blocker (Telmisartan) was evaluated. The drugs used in combinations showed improvement in the histopathological and biochemical changes of the diabetic animals, both for the retina and kidney. Conclusion: The efficacy of the drugs suggests a pivotal role of the local RAS system in the pathogenesis of tubulopathy in the kidney and neuronal damage in the retina of the diabetic animals.
Collapse
Affiliation(s)
- Pugazhenthan Thangaraju
- Department of Clinical/Laboratory division, Central Leprosy Teaching and Research Institute, Chengalpattu, India
| | - Amitava Chakrabarti
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Dibyajyoti Banerjee
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Debasish Hota
- Department of Pharmacology, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Tamilselvan
- Department of Computer Science Engineering, SKP Engineering College, Tamil Nadu, India
| | - Alka Bhatia
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Amod Gupta
- Department of Ophthalmology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
17
|
Mason EJ, Grell JA, West SA, Conover CA. Motor and memory testing of long-lived pregnancy-associated plasma protein--a knock-out mice. Growth Horm IGF Res 2014; 24:251-255. [PMID: 25179152 PMCID: PMC4258118 DOI: 10.1016/j.ghir.2014.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 08/13/2014] [Accepted: 08/14/2014] [Indexed: 10/24/2022]
Abstract
UNLABELLED Mice deficient in pregnancy-associated plasma protein-A (PAPP-A), an IGF binding protein protease, have been shown to be resistant to experimentally induced atherosclerosis and diabetic nephropathy, and, in the laboratory environment, live 30-40% longer than wild-type littermates in association with delayed incidence and occurrence of age-related neoplasms and degenerative diseases. OBJECTIVE PAPP-A is highly expressed in the cerebellum and hippocampus of the mouse brain. Therefore, the studies presented here were aimed at determining motor behavior, learning and retention in PAPP-A knock-out (KO) mice compared to wild-type (WT) littermates with age. DESIGN Balance and coordination were assessed using an accelerating rotarod; learning and memory were assessed in a Stone T-maze. RESULTS Time on the rotarod decreased with age but there was no significant difference between PAPP-A KO and WT mice at any of the testing ages. Latency to reach the goal box and number of errors committed in the Stone T-maze did not change with age and there were no significant differences between PAPP-A KO and WT mice. CONCLUSION Lack of PAPP-A in mice did not impact central regulation of coordination, learning or memory.
Collapse
Affiliation(s)
- Emily J Mason
- Division of Endocrinology, Metabolism and Nutrition, Endocrine Research Unit, Mayo Clinic, 200 First Street SW, 5-194 Joseph, Rochester, MN55905, USA.
| | - Jacquelyn A Grell
- Division of Endocrinology, Metabolism and Nutrition, Endocrine Research Unit, Mayo Clinic, 200 First Street SW, 5-194 Joseph, Rochester, MN55905, USA.
| | - Sally A West
- Division of Endocrinology, Metabolism and Nutrition, Endocrine Research Unit, Mayo Clinic, 200 First Street SW, 5-194 Joseph, Rochester, MN55905, USA.
| | - Cheryl A Conover
- Division of Endocrinology, Metabolism and Nutrition, Endocrine Research Unit, Mayo Clinic, 200 First Street SW, 5-194 Joseph, Rochester, MN55905, USA.
| |
Collapse
|
18
|
Wu H, Yu Y, David L, Ho YS, Lou MF. Glutaredoxin 2 (Grx2) gene deletion induces early onset of age-dependent cataracts in mice. J Biol Chem 2014; 289:36125-39. [PMID: 25362663 DOI: 10.1074/jbc.m114.620047] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glutaredoxin 2 (Grx2) is an isozyme of glutaredoxin1 (thioltransferase) present in the mitochondria and nucleus with disulfide reductase and peroxidase activities, and it controls thiol/disulfide balance in cells. In this study, we investigated whether Grx2 gene deletion could induce faster age-related cataract formation and elucidated the biochemical changes effected by Grx2 gene deletion that may contribute to lens opacity. Slit lamp was used to examine the lenses in Grx2 knock-out (KO) mice and age-matched wild-type (WT) mice ages 1 to 16 months. In the Grx2 null mice, the lens nuclear opacity began at 5 months, 3 months sooner than that of the control mice, and the progression of cataracts was also much faster than the age-matched controls. Lenses of KO mice contained lower levels of protein thiols and GSH with a significant accumulation of S-glutathionylated proteins. Actin, αA-crystallin, and βB2-crystallin were identified by Western blot and mass spectroscopy as the major S-glutathionylated proteins in the lenses of 16-month-old Grx2 KO mice. Compared with the WT control, the lens of Grx2 KO mice had only 50% of the activity in complex I and complex IV and less than 10% of the ATP pool. It was concluded that Grx2 gene deletion altered the function of lens structural proteins through S-glutathionylation and also caused severe disturbance in mitochondrial function. These combined alterations affected lens transparency.
Collapse
Affiliation(s)
- Hongli Wu
- From the School of Veterinary Medicine and Biomedical Sciences, Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68583, the Department of Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas 76107
| | - Yibo Yu
- From the School of Veterinary Medicine and Biomedical Sciences, Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68583, the Department of Ophthalmology, Eye Center of the 2nd Affiliated Hospital, Medical College of Zhejiang University, Hangzhou 310009, China
| | - Larry David
- the Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239
| | - Ye-Shih Ho
- the Institute of Environment Health Sciences, Wayne State University, Detroit, Michigan 48201, and
| | - Marjorie F Lou
- From the School of Veterinary Medicine and Biomedical Sciences, Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68583, the Department of Ophthalmology, University of Nebraska Medical Center, Omaha, Nebraska 698583
| |
Collapse
|
19
|
GENG YU, LIN HAOTIAN, CHEN WAN, LIU ZHAOCHUAN, XIANG WU, CHEN WEIRONG. Age-related reduction in calbindin-D28K expression in the Sprague-Dawley rat lens. Mol Med Rep 2014; 11:422-6. [DOI: 10.3892/mmr.2014.2672] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 08/05/2014] [Indexed: 11/06/2022] Open
|
20
|
Fang X, Seim I, Huang Z, Gerashchenko MV, Xiong Z, Turanov AA, Zhu Y, Lobanov AV, Fan D, Yim SH, Yao X, Ma S, Yang L, Lee SG, Kim EB, Bronson RT, Šumbera R, Buffenstein R, Zhou X, Krogh A, Park TJ, Zhang G, Wang J, Gladyshev VN. Adaptations to a subterranean environment and longevity revealed by the analysis of mole rat genomes. Cell Rep 2014; 8:1354-64. [PMID: 25176646 PMCID: PMC4350764 DOI: 10.1016/j.celrep.2014.07.030] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 05/11/2014] [Accepted: 07/17/2014] [Indexed: 02/06/2023] Open
Abstract
Subterranean mammals spend their lives in dark, unventilated environments that are rich in carbon dioxide and ammonia and low in oxygen. Many of these animals are also long-lived and exhibit reduced aging-associated diseases, such as neurodegenerative disorders and cancer. We sequenced the genome of the Damaraland mole rat (DMR, Fukomys damarensis) and improved the genome assembly of the naked mole rat (NMR, Heterocephalus glaber). Comparative genome analyses, along with the transcriptomes of related subterranean rodents, revealed candidate molecular adaptations for subterranean life and longevity, including a divergent insulin peptide, expression of oxygen-carrying globins in the brain, prevention of high CO2-induced pain perception, and enhanced ammonia detoxification. Juxtaposition of the genomes of DMR and other more conventional animals with the genome of NMR revealed several truly exceptional NMR features: unusual thermogenesis, an aberrant melatonin system, pain insensitivity, and unique processing of 28S rRNA. Together, these genomes and transcriptomes extend our understanding of subterranean adaptations, stress resistance, and longevity.
Collapse
Affiliation(s)
- Xiaodong Fang
- BGI-Shenzhen, Shenzhen 518083, China; Department of Biology, University of Copenhagen, Copenhagen, 2200 Copenhagen N, Denmark
| | - Inge Seim
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, South Korea
| | | | - Maxim V Gerashchenko
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Anton A Turanov
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Alexei V Lobanov
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Sun Hee Yim
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Siming Ma
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Lan Yang
- BGI-Shenzhen, Shenzhen 518083, China
| | - Sang-Goo Lee
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, South Korea
| | - Eun Bae Kim
- Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, South Korea
| | - Roderick T Bronson
- Rodent Histopathology Laboratory, Harvard Medical School, Boston, MA 02115, USA
| | - Radim Šumbera
- University of South Bohemia, Faculty of Science, Ceske Budejovice 37005, Czech Republic
| | - Rochelle Buffenstein
- Department of Physiology and The Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, TX 78245, USA
| | - Xin Zhou
- BGI-Shenzhen, Shenzhen 518083, China
| | - Anders Krogh
- Department of Biology, University of Copenhagen, Copenhagen, 2200 Copenhagen N, Denmark
| | - Thomas J Park
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Guojie Zhang
- BGI-Shenzhen, Shenzhen 518083, China; Department of Biology, University of Copenhagen, Copenhagen, 2200 Copenhagen N, Denmark
| | - Jun Wang
- BGI-Shenzhen, Shenzhen 518083, China; Department of Biology, University of Copenhagen, Copenhagen, 2200 Copenhagen N, Denmark; King Abdulaziz University, Jeddah 21441, Saudi Arabia.
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, South Korea.
| |
Collapse
|
21
|
Mitchell SJ, Martin-Montalvo A, Mercken EM, Palacios HH, Ward TM, Abulwerdi G, Minor RK, Vlasuk GP, Ellis JL, Sinclair DA, Dawson J, Allison DB, Zhang Y, Becker KG, Bernier M, de Cabo R. The SIRT1 activator SRT1720 extends lifespan and improves health of mice fed a standard diet. Cell Rep 2014; 6:836-43. [PMID: 24582957 DOI: 10.1016/j.celrep.2014.01.031] [Citation(s) in RCA: 304] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 12/16/2013] [Accepted: 01/23/2014] [Indexed: 12/28/2022] Open
Abstract
The prevention or delay of the onset of age-related diseases prolongs survival and improves quality of life while reducing the burden on the health care system. Activation of sirtuin 1 (SIRT1), an NAD(+)-dependent deacetylase, improves metabolism and confers protection against physiological and cognitive disturbances in old age. SRT1720 is a specific SIRT1 activator that has health and lifespan benefits in adult mice fed a high-fat diet. We found extension in lifespan, delayed onset of age-related metabolic diseases, and improved general health in mice fed a standard diet after SRT1720 supplementation. Inhibition of proinflammatory gene expression in both liver and muscle of SRT1720-treated animals was noted. SRT1720 lowered the phosphorylation of NF-κB pathway regulators in vitro only when SIRT1 was functionally present. Combined with our previous work, the current study further supports the beneficial effects of SRT1720 on health across the lifespan in mice.
Collapse
Affiliation(s)
- Sarah J Mitchell
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA; Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW 2065, Australia; Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | - Alejandro Martin-Montalvo
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Evi M Mercken
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Hector H Palacios
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Theresa M Ward
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Gelareh Abulwerdi
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Robin K Minor
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - George P Vlasuk
- Sirtris, a GSK company, 200 Technology Square, Cambridge, MA 02139, USA
| | - James L Ellis
- Sirtris, a GSK company, 200 Technology Square, Cambridge, MA 02139, USA
| | - David A Sinclair
- Glenn Labs for the Biological Mechanisms of Aging, Harvard Medical School, Boston, MA 02115, USA
| | - John Dawson
- School of Public Health, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - David B Allison
- School of Public Health, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yongqing Zhang
- Gene Expression and Genomics Unit, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Kevin G Becker
- Gene Expression and Genomics Unit, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Michel Bernier
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA.
| |
Collapse
|
22
|
Zhong Y, Hu Y, Peng W, Sun Y, Yang Y, Zhao X, Huang X, Zhang H, Kong W. Age-related decline of the cytochrome c oxidase subunit expression in the auditory cortex of the mimetic aging rat model associated with the common deletion. Hear Res 2012; 294:40-8. [DOI: 10.1016/j.heares.2012.09.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 08/15/2012] [Accepted: 09/20/2012] [Indexed: 01/23/2023]
|
23
|
Rodriguez KA, Wywial E, Perez VI, Lambert AJ, Edrey YH, Lewis KN, Grimes K, Lindsey ML, Brand MD, Buffenstein R. Walking the oxidative stress tightrope: a perspective from the naked mole-rat, the longest-living rodent. Curr Pharm Des 2012; 17:2290-307. [PMID: 21736541 DOI: 10.2174/138161211797052457] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 07/07/2011] [Indexed: 12/24/2022]
Abstract
Reactive oxygen species (ROS), by-products of aerobic metabolism, cause oxidative damage to cells and tissue and not surprisingly many theories have arisen to link ROS-induced oxidative stress to aging and health. While studies clearly link ROS to a plethora of divergent diseases, their role in aging is still debatable. Genetic knock-down manipulations of antioxidants alter the levels of accrued oxidative damage, however, the resultant effect of increased oxidative stress on lifespan are equivocal. Similarly the impact of elevating antioxidant levels through transgenic manipulations yield inconsistent effects on longevity. Furthermore, comparative data from a wide range of endotherms with disparate longevity remain inconclusive. Many long-living species such as birds, bats and mole-rats exhibit high-levels of oxidative damage, evident already at young ages. Clearly, neither the amount of ROS per se nor the sensitivity in neutralizing ROS are as important as whether or not the accrued oxidative stress leads to oxidative-damage-linked age-associated diseases. In this review we examine the literature on ROS, its relation to disease and the lessons gleaned from a comparative approach based upon species with widely divergent responses. We specifically focus on the longest lived rodent, the naked mole-rat, which maintains good health and provides novel insights into the paradox of maintaining both an extended healthspan and lifespan despite high oxidative stress from a young age.
Collapse
Affiliation(s)
- Karl A Rodriguez
- Sam and Ann Barshop Institute for Aging and Longevity Studies, University of Texas Health Science Center at San Antonio, 15355 Lambda Dr. San Antonio, TX 78245, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Hamilton RT, Walsh ME, Van Remmen H. Mouse Models of Oxidative Stress Indicate a Role for Modulating Healthy Aging. ACTA ACUST UNITED AC 2012; Suppl 4. [PMID: 25300955 DOI: 10.4172/2161-0681.s4-005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Aging is a complex process that affects every major system at the molecular, cellular and organ levels. Although the exact cause of aging is unknown, there is significant evidence that oxidative stress plays a major role in the aging process. The basis of the oxidative stress hypothesis is that aging occurs as a result of an imbalance between oxidants and antioxidants, which leads to the accrual of damaged proteins, lipids and DNA macromolecules with age. Age-dependent increases in protein oxidation and aggregates, lipofuscin, and DNA mutations contribute to age-related pathologies. Many transgenic/knockout mouse models over expressing or deficient in key antioxidant enzymes have been generated to examine the effect of oxidative stress on aging and age-related diseases. Based on currently reported lifespan studies using mice with altered antioxidant defense, there is little evidence that oxidative stress plays a role in determining lifespan. However, mice deficient in antioxidant enzymes are often more susceptible to age-related disease while mice overexpressing antioxidant enzymes often have an increase in the amount of time spent without disease, i.e., healthspan. Thus, by understanding the mechanisms that affect healthy aging, we may discover potential therapeutic targets to extend human healthspan.
Collapse
Affiliation(s)
- Ryan T Hamilton
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245-3207, USA ; Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245-3207, USA
| | - Michael E Walsh
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245-3207, USA
| | - Holly Van Remmen
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245-3207, USA ; Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245-3207, USA ; GRECC, South Texas Veterans Health Care System, San Antonio, TX, USA
| |
Collapse
|
25
|
Urfer SR, Greer K, Wolf NS. Age-related cataract in dogs: a biomarker for life span and its relation to body size. AGE (DORDRECHT, NETHERLANDS) 2011; 33:451-60. [PMID: 20607428 PMCID: PMC3168595 DOI: 10.1007/s11357-010-9158-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 06/14/2010] [Indexed: 05/29/2023]
Abstract
Clinical data from 72 dog breeds of varying size and life expectancy were grouped according to breed body mass and tested for prevalence at ages 4 to 5, ages 7 to 10, and lifetime incidence of non-hereditary, age-related cataract (ARC). The incidence of ARC was found to be directly related to the relative life expectancies in the breed groups: The smallest dog breeds had a lower ARC prevalence between ages 4 and 5 than mid-size breeds and these, in turn, a lower prevalence than the giant breeds. A similar sequence was evident for ages 7 to 10 and for overall lifetime incidence of ARC. These differences became more significant when comparing small and giant breeds only. We could also confirm the inverse relationship between body size and life expectancy in these same sets of dog breeds. Our results show that body size, life expectancy, and ARC incidence are interrelated in dogs. Given that ARC has been shown to be at least partially caused by oxidative damage to lens epithelial cells and the internal lens, we suggest that it can be considered not only as a general biomarker for life expectancy in the canine and possibly other species, but also for the systemic damages produced by reactive oxygen species. This suggests new approaches to examine the gene expression pathways affecting the above-noted linkages.
Collapse
Affiliation(s)
- Silvan R. Urfer
- Department of Pathology, University of Washington, Seattle, WA 98195-7470 USA
| | - Kimberly Greer
- School of Natural Sciences and Mathematics, Indiana University East, Richmond, IN 47374 USA
| | - Norman S. Wolf
- Department of Pathology, University of Washington, Seattle, WA 98195-7470 USA
| |
Collapse
|
26
|
Szeto HH, Schiller PW. Novel Therapies Targeting Inner Mitochondrial Membrane—From Discovery to Clinical Development. Pharm Res 2011; 28:2669-79. [DOI: 10.1007/s11095-011-0476-8] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 05/06/2011] [Indexed: 10/18/2022]
|
27
|
Pettan-Brewer C, Treuting PM. Practical pathology of aging mice. PATHOBIOLOGY OF AGING & AGE RELATED DISEASES 2011; 1:PBA-1-7202. [PMID: 22953032 PMCID: PMC3417704 DOI: 10.3402/pba.v1i0.7202] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Revised: 05/10/2011] [Accepted: 05/10/2011] [Indexed: 11/30/2022]
Abstract
Old mice will have a subset of lesions as part of the progressive decline in organ function that defines aging. External and palpable lesions will be noted by the research, husbandry, or veterinary staff during testing, cage changing, or physical exams. While these readily observable lesions may cause alarm, not all cause undue distress or are life-threatening. In aging research, mice are maintained until near end of life that, depending on strain and genetic manipulation, can be upwards of 33 months. Aging research has unique welfare issues related to age-related decline, debilitation, fragility, and associated pain of chronic diseases. An effective aging research program includes the collaboration and education of the research, husbandry, and veterinary staff, and of the members of the institution animal care and use committee. This collaborative effort is critical to humanely maintaining older mice and preventing excessive censorship due to non-lethal diseases. Part of the educational process is becoming familiar with how old mice appear clinically, at necropsy and histopathologically. This baseline knowledge is important in making the determination of humane end points, defining health span, contributing causes of death and effects of interventions. The goal of this paper is to introduce investigators to age-associated diseases and lesion patterns in mice from clinical presentation to pathologic assessment. To do so, we present and illustrate the common clinical appearances, necropsy and histopathological lesions seen in subsets of the aging colonies maintained at the University of Washington.
Collapse
|
28
|
McCann JC, Ames BN. Adaptive dysfunction of selenoproteins from the perspective of the triage theory: why modest selenium deficiency may increase risk of diseases of aging. FASEB J 2011; 25:1793-814. [PMID: 21402715 DOI: 10.1096/fj.11-180885] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The triage theory proposes that modest deficiency of any vitamin or mineral (V/M) could increase age-related diseases. V/M-dependent proteins required for short-term survival and/or reproduction (i.e., "essential") are predicted to be protected on V/M deficiency over other "nonessential" V/M-dependent proteins needed only for long-term health. The result is accumulation of insidious damage, increasing disease risk. We successfully tested the theory against published evidence on vitamin K. Here, we review about half of the 25 known mammalian selenoproteins; all of those with mouse knockout or human mutant phenotypes that could be used as criteria for a classification of essential or nonessential. Five selenoproteins (Gpx4, Txnrd1, Txnrd2, Dio3, and Sepp1) were classified as essential and 7 (Gpx1, Gpx 2, Gpx 3, Dio1, Dio2, Msrb1, and SelN) nonessential. On modest selenium (Se) deficiency, nonessential selenoprotein activities and concentrations are preferentially lost, with one exception (Dio1 in the thyroid, which we predict is conditionally essential). Mechanisms include the requirement of a special form of tRNA sensitive to Se deficiency for translation of nonessential selenoprotein mRNAs except Dio1. The same set of age-related diseases and conditions, including cancer, heart disease, and immune dysfunction, are prospectively associated with modest Se deficiency and also with genetic dysfunction of nonessential selenoproteins, suggesting that Se deficiency could be a causal factor, a possibility strengthened by mechanistic evidence. Modest Se deficiency is common in many parts of the world; optimal intake could prevent future disease.
Collapse
Affiliation(s)
- Joyce C McCann
- Nutrition and Metabolism Center, Children's Hospital Oakland Research Institute, 5700 Martin Luthur King Jr. Way, Oakland, CA 94609, USA.
| | | |
Collapse
|
29
|
Abstract
Over the last two centuries, there has been a significant increase in average lifespan expectancy in the developed world. One unambiguous clinical implication of getting older is the risk of experiencing age-related diseases including various cancers, dementia, type-2 diabetes, cataracts and osteoporosis. Historically, the ageing process and its consequences were thought to be intractable. However, over the last two decades or so, a wealth of empirical data has been generated which demonstrates that longevity in model organisms can be extended through the manipulation of individual genes. In particular, many pathological conditions associated with the ageing process in model organisms, and importantly conserved from nematodes to humans, are attenuated in long-lived genetic mutants. For example, several long-lived genetic mouse models show attenuation in age-related cognitive decline, adiposity, cancer and glucose intolerance. Therefore, these long-lived mice enjoy a longer period without suffering the various sequelae of ageing. The greatest challenge in the biology of ageing is to now identify the mechanisms underlying increased healthy lifespan in these model organisms. Given that the elderly are making up an increasingly greater proportion of society, this focused approach in model organisms should help identify tractable interventions that can ultimately be translated to humans.
Collapse
Affiliation(s)
- Colin Selman
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - Dominic J. Withers
- Metabolic Signalling Group, Medical Research Council Clinical Sciences Centre, Imperial College, London W12 0NN, UK
| |
Collapse
|
30
|
Salmon AB, Richardson A, Pérez VI. Update on the oxidative stress theory of aging: does oxidative stress play a role in aging or healthy aging? Free Radic Biol Med 2010; 48:642-55. [PMID: 20036736 PMCID: PMC2819595 DOI: 10.1016/j.freeradbiomed.2009.12.015] [Citation(s) in RCA: 313] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 12/14/2009] [Accepted: 12/18/2009] [Indexed: 12/22/2022]
Abstract
The oxidative stress theory of aging predicts that manipulations that alter oxidative stress/damage will alter aging. The gold standard for determining whether aging is altered is life span, i.e., does altering oxidative stress/damage change life span? Mice with genetic manipulations in their antioxidant defense system designed to directly address this prediction have, with few exceptions, shown no change in life span. However, when these transgenic/knockout mice are tested using models that develop various types of age-related pathology, they show alterations in progression and/or severity of pathology as predicted by the oxidative stress theory: increased oxidative stress accelerates pathology and reduced oxidative stress retards pathology. These contradictory observations might mean that (a) oxidative stress plays a very limited, if any, role in aging but a major role in health span and/or (b) the role that oxidative stress plays in aging depends on environment. In environments with minimal stress, as expected under optimal husbandry, oxidative damage plays little role in aging. However, under chronic stress, including pathological phenotypes that diminish optimal health, oxidative stress/damage plays a major role in aging. Under these conditions, enhanced antioxidant defenses exert an "antiaging" action, leading to changes in life span, age-related pathology, and physiological function as predicted by the oxidative stress theory of aging.
Collapse
Affiliation(s)
- Adam B Salmon
- The Sam and Ann Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | | | | |
Collapse
|
31
|
Pérez VI, Bokov A, Van Remmen H, Mele J, Ran Q, Ikeno Y, Richardson A. Is the oxidative stress theory of aging dead? BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1790:1005-14. [PMID: 19524016 PMCID: PMC2789432 DOI: 10.1016/j.bbagen.2009.06.003] [Citation(s) in RCA: 436] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 05/14/2009] [Accepted: 06/04/2009] [Indexed: 01/18/2023]
Abstract
Currently, the oxidative stress (or free radical) theory of aging is the most popular explanation of how aging occurs at the molecular level. While data from studies in invertebrates (e.g., C. elegans and Drosophila) and rodents show a correlation between increased lifespan and resistance to oxidative stress (and in some cases reduced oxidative damage to macromolecules), direct evidence showing that alterations in oxidative damage/stress play a role in aging are limited to a few studies with transgenic Drosophila that overexpress antioxidant enzymes. Over the past eight years, our laboratory has conducted an exhaustive study on the effect of under- or overexpressing a large number and wide variety of genes coding for antioxidant enzymes. In this review, we present the survival data from these studies together. Because only one (the deletion of the Sod1 gene) of the 18 genetic manipulations we studied had an effect on lifespan, our data calls into serious question the hypothesis that alterations in oxidative damage/stress play a role in the longevity of mice.
Collapse
Affiliation(s)
- Viviana I Pérez
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Alex Bokov
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Department of Epidemiology and Biostatistics, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Holly Van Remmen
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Department of Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- GRECC, South Texas Veterans Health Care System, San Antonio, TX 78229,USA
| | - James Mele
- Department of Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Qitao Ran
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Yuji Ikeno
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Department of Pathology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- GRECC, South Texas Veterans Health Care System, San Antonio, TX 78229,USA
| | - Arlan Richardson
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- GRECC, South Texas Veterans Health Care System, San Antonio, TX 78229,USA
| |
Collapse
|
32
|
Meyer LM, Löfgren S, Ho YS, Lou M, Wegener A, Holz F, Söderberg P. Absence of glutaredoxin1 increases lens susceptibility to oxidative stress induced by UVR-B. Exp Eye Res 2009; 89:833-9. [PMID: 19664619 DOI: 10.1016/j.exer.2009.07.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 07/09/2009] [Accepted: 07/13/2009] [Indexed: 10/20/2022]
Abstract
We investigated if the absence of glutaredoxin1, a critical protein thiol repair enzyme, increases lens susceptibility to oxidative stress caused by in vivo exposure to ultraviolet radiation type B (UVR-B). Glrx(-/-) mice and Glrx(+/+) mice were unilaterally exposed in vivo to UVR-B for 15 min. Groups of 12 animals each received 4.3, 8.7, and 14.5 kJ/m(2) respectively. 48 h post UVR-B exposure, the induced cataract was quantified as forward lens light scattering. Cataract morphology was documented with darkfield illumination photography. Glutathione (GSH/GSSG) content was analyzed in Glrx(-/-) and Glrx(+/+) lenses. UVR-B exposure induced anterior sub-capsular cataract (ASC) in Glrx(-/-) and Glrx(+/+) mice. In Glrx(-/-) lenses the opacities extended further towards the lens equator than in wild type animals (Glrx(+/+)). Lens light scattering in Glrx(-/-) mice was increased in all dose groups compared to lenses with normal glutaredoxin1 function. The difference was more pronounced with increasing exposure dose. Lens sensitivity for UVR-B induced damage was significantly higher in Glrx(-/-) lenses compared to Glrx(+/+) lenses. The Glrx gene provides a 44% increase of protection against close to threshold UVR-B induced oxidative stress compared to the absence of the Glrx gene. In conclusion, the absence of glutaredoxin1 increases lens susceptibility to UVR-B induced oxidative stress in the mouse.
Collapse
Affiliation(s)
- Linda M Meyer
- Herzog Carl Theodor Eye Clinic, Nymphenburgerstrasse 43, Munich, Germany.
| | | | | | | | | | | | | |
Collapse
|
33
|
Chatoo W, Abdouh M, David J, Champagne MP, Ferreira J, Rodier F, Bernier G. The polycomb group gene Bmi1 regulates antioxidant defenses in neurons by repressing p53 pro-oxidant activity. J Neurosci 2009; 29:529-42. [PMID: 19144853 PMCID: PMC2744209 DOI: 10.1523/jneurosci.5303-08.2009] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Accepted: 12/02/2008] [Indexed: 11/21/2022] Open
Abstract
Aging may be determined by a genetic program and/or by the accumulation rate of molecular damages. Reactive oxygen species (ROS) generated by the mitochondrial metabolism have been postulated to be the central source of molecular damages and imbalance between levels of intracellular ROS and antioxidant defenses is a characteristic of the aging brain. How aging modifies free radicals concentrations and increases the risk to develop most neurodegenerative diseases is poorly understood, however. Here we show that the Polycomb group and oncogene Bmi1 is required in neurons to suppress apoptosis and the induction of a premature aging-like program characterized by reduced antioxidant defenses. Before weaning, Bmi1(-/-) mice display a progeroid-like ocular and brain phenotype, while Bmi1(+/-) mice, although apparently normal, have reduced lifespan. Bmi1 deficiency in neurons results in increased p19(Arf)/p53 levels, abnormally high ROS concentrations, and hypersensitivity to neurotoxic agents. Most Bmi1 functions on neurons' oxidative metabolism are genetically linked to repression of p53 pro-oxidant activity, which also operates in physiological conditions. In Bmi1(-/-) neurons, p53 and corepressors accumulate at antioxidant gene promoters, correlating with a repressed chromatin state and antioxidant gene downregulation. These findings provide a molecular mechanism explaining how Bmi1 regulates free radical concentrations and reveal the biological impact of Bmi1 deficiency on neuronal survival and aging.
Collapse
Affiliation(s)
| | | | | | | | - José Ferreira
- Department of Pathology, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada H1T 2M4
| | - Francis Rodier
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Gilbert Bernier
- Developmental Biology Laboratory and
- Department of Ophthalmology, University of Montreal, Montreal, Quebec, Canada H3T 1J4, and
| |
Collapse
|
34
|
Berryman DE, Christiansen JS, Johannsson G, Thorner MO, Kopchick JJ. Role of the GH/IGF-1 axis in lifespan and healthspan: lessons from animal models. Growth Horm IGF Res 2008; 18:455-71. [PMID: 18710818 PMCID: PMC2631405 DOI: 10.1016/j.ghir.2008.05.005] [Citation(s) in RCA: 203] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Accepted: 05/02/2008] [Indexed: 12/18/2022]
Abstract
Animal models are fundamentally important in our quest to understand the genetic, epigenetic, and environmental factors that contribute to human aging. In comparison to humans, relatively short-lived mammals are useful models as they allow for rapid assessment of both genetic manipulation and environmental intervention as related to longevity. These models also allow for the study of clinically relevant pathologies as a function of aging. Data associated with more distant species offers additional insight and critical consideration of the basic physiological processes and molecular mechanisms that influence lifespan. Consistently, two interventions, caloric restriction and repression of the growth hormone (GH)/insulin-like growth factor-1/insulin axis, have been shown to increase lifespan in both invertebrates and vertebrate animal model systems. Caloric restriction (CR) is a nutrition intervention that robustly extends lifespan whether it is started early or later in life. Likewise, genes involved in the GH/IGF-1 signaling pathways can lengthen lifespan in vertebrates and invertebrates, implying evolutionary conservation of the molecular mechanisms. Specifically, insulin and insulin-like growth factor-1 (IGF-1)-like signaling and its downstream intracellular signaling molecules have been shown to be associated with lifespan in fruit flies and nematodes. More recently, mammalian models with reduced growth hormone (GH) and/or IGF-1 signaling have also been shown to have extended lifespans as compared to control siblings. Importantly, this research has also shown that these genetic alterations can keep the animals healthy and disease-free for longer periods and can alleviate specific age-related pathologies similar to what is observed for CR individuals. Thus, these mutations may not only extend lifespan but may also improve healthspan, the general health and quality of life of an organism as it ages. In this review, we will provide an overview of how the manipulation of the GH/IGF axis influences lifespan, highlight the invertebrate and vertebrate animal models with altered lifespan due to modifications to the GH/IGF-1 signaling cascade or homologous pathways, and discuss the basic phenotypic characteristics and healthspan of these models.
Collapse
Affiliation(s)
- Darlene E. Berryman
- School of Human and Consumer Sciences, College of Health and Human Services, Ohio University, Athens, OH 45701
| | - Jens Sandahl Christiansen
- Jens Sandahl Christiansen, Department of Endocrinology, Aarhus University Hospital, Kommunehospitalet, DK 8000 Aarhus, Denmark
| | - Gudmundur Johannsson
- Gudmundur Johannsson, MD, Research Centre for Endocrinology and Metabolism, Sahlgrenska University Hospital, S-413 45 Göteborg, Sweden
| | - Michael O. Thorner
- Michael O. Thorner, University of Virginia Health System, Endocrinology and Metabolism, Charlottesville, VA 22908
| | - John J. Kopchick
- Edison Biotechnology Institute and Department of Biomedical Sciences, College of Osteopathic Medicine, Ohio University, Athens, OH 45701; Phone: (740)593-4534; Fax: (740)593-4795
| |
Collapse
|
35
|
Pearson KJ, Baur JA, Lewis KN, Peshkin L, Price NL, Labinskyy N, Swindell WR, Kamara D, Minor RK, Perez E, Jamieson HA, Zhang Y, Dunn SR, Sharma K, Pleshko N, Woollett LA, Csiszar A, Ikeno Y, Le Couteur D, Elliott PJ, Becker KG, Navas P, Ingram DK, Wolf NS, Ungvari Z, Sinclair DA, de Cabo R. Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span. Cell Metab 2008; 8:157-68. [PMID: 18599363 PMCID: PMC2538685 DOI: 10.1016/j.cmet.2008.06.011] [Citation(s) in RCA: 888] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Revised: 06/06/2008] [Accepted: 06/13/2008] [Indexed: 01/15/2023]
Abstract
A small molecule that safely mimics the ability of dietary restriction (DR) to delay age-related diseases in laboratory animals is greatly sought after. We and others have shown that resveratrol mimics effects of DR in lower organisms. In mice, we find that resveratrol induces gene expression patterns in multiple tissues that parallel those induced by DR and every-other-day feeding. Moreover, resveratrol-fed elderly mice show a marked reduction in signs of aging, including reduced albuminuria, decreased inflammation, and apoptosis in the vascular endothelium, increased aortic elasticity, greater motor coordination, reduced cataract formation, and preserved bone mineral density. However, mice fed a standard diet did not live longer when treated with resveratrol beginning at 12 months of age. Our findings indicate that resveratrol treatment has a range of beneficial effects in mice but does not increase the longevity of ad libitum-fed animals when started midlife.
Collapse
Affiliation(s)
- Kevin J. Pearson
- Laboratory of Experimental Gerontology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston MA, 02115, USA, Ph. 617 432 3931, Fax: 617 432 1313
| | - Joseph A. Baur
- Department of Pathology and Paul F. Glenn Laboratories for the Biological Mechanisms of Aging, Harvard Medical School, 77 Avenue Louis Pasteur, Boston MA, 02115, USA, Ph. 617 432 3931, Fax: 617 432 1313
| | - Kaitlyn N. Lewis
- Laboratory of Experimental Gerontology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston MA, 02115, USA, Ph. 617 432 3931, Fax: 617 432 1313
| | - Leonid Peshkin
- Department of Systems Biology and Center for Bio-Medical Informatics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston MA, 02115, USA, Ph. 617 432 3931, Fax: 617 432 1313
| | - Nathan L. Price
- Laboratory of Experimental Gerontology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston MA, 02115, USA, Ph. 617 432 3931, Fax: 617 432 1313
| | - Nazar Labinskyy
- Department of Physiology, New York Medical College, Valhalla, NY 10595, USA
| | - William R. Swindell
- Department of Pathology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48103, USA
| | - Davida Kamara
- Laboratory of Experimental Gerontology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston MA, 02115, USA, Ph. 617 432 3931, Fax: 617 432 1313
| | - Robin K. Minor
- Laboratory of Experimental Gerontology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston MA, 02115, USA, Ph. 617 432 3931, Fax: 617 432 1313
| | - Evelyn Perez
- Laboratory of Experimental Gerontology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston MA, 02115, USA, Ph. 617 432 3931, Fax: 617 432 1313
| | - Hamish A. Jamieson
- Centre for Education and Research on Ageing, and the ANZAC Research Institute University of Sydney, Concord NSW 2139, Australia
| | - Yongqing Zhang
- Gene Expression and Genomics Unit, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, Maryland, 21224, USA, Ph: 410 558 8510; Fax: 410 558 8302
| | - Stephen R. Dunn
- Cancer Genomics, Nucleic Acid/Microarray Facility, Kimmel Cancer Center, Thomas Jefferson University, 233 South 10th Street, Suite 1009 BLSB, Philadelphia, PA 19107, USA
| | - Kumar Sharma
- Translational Research in Kidney Disease, 9500 Gilman Drive, MC 0711, UCSD, La Jolla, CA 92014-0711, USA
| | - Nancy Pleshko
- Hospital for Special Surgery, 535 E. 70th St., New York, NY 10021; current address, Exponent, 3401 Market Street, Suite 300, Philadelphia, PA 19104, USA
| | - Laura A. Woollett
- Department of Pathology and Laboratory Medicine, Genome Research Center, University of Cincinnati Medical Center, 2180 East Galbraith Road, Cincinnati, OH 45237, USA
| | - Anna Csiszar
- Department of Physiology, New York Medical College, Valhalla, NY 10595, USA
| | - Yuji Ikeno
- Barshop Institute for Longevity and Aging Studies and Department of Pathology, University of Texas Health Science Center at San Antonio, and Research Service, Audie Murphy VA Hospital (STVHCS).15355 Lambda Drive, San Antonio, TX 78245-3207, USA
| | - David Le Couteur
- Centre for Education and Research on Ageing, and the ANZAC Research Institute University of Sydney, Concord NSW 2139, Australia
| | - Peter J. Elliott
- Sirtris Pharmaceuticals Inc, 200 Technology Square, Cambridge, MA 02139, USA
| | - Kevin G. Becker
- Gene Expression and Genomics Unit, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, Maryland, 21224, USA, Ph: 410 558 8510; Fax: 410 558 8302
| | - Placido Navas
- Centro Andaluz de Biología del Desarrollo, and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Universidad Pablo de Olavide-CSIC, 41013 Sevilla, Spain
| | - Donald K. Ingram
- Nutritional Neuroscience and Aging Laboratory, Pennington Biomedical Research Center, Louisiana State University System, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | - Norman S. Wolf
- Department of Pathology, University of Washington, Seattle, WA 98195-7470, USA
| | - Zoltan Ungvari
- Department of Physiology, New York Medical College, Valhalla, NY 10595, USA
| | - David A. Sinclair
- Department of Pathology and Paul F. Glenn Laboratories for the Biological Mechanisms of Aging, Harvard Medical School, 77 Avenue Louis Pasteur, Boston MA, 02115, USA, Ph. 617 432 3931, Fax: 617 432 1313
| | - Rafael de Cabo
- Laboratory of Experimental Gerontology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston MA, 02115, USA, Ph. 617 432 3931, Fax: 617 432 1313
| |
Collapse
|
36
|
Yuen J, Li Y, Shapiro LG, Clark JI, Arnett E, Sage EH, Brinkley JF. Automated, computerized, feature-based phenotype analysis of slit lamp images of the mouse lens. Exp Eye Res 2008; 86:562-75. [PMID: 18304532 PMCID: PMC2674242 DOI: 10.1016/j.exer.2007.11.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 11/27/2007] [Accepted: 11/28/2007] [Indexed: 11/19/2022]
Abstract
Longitudinal studies of a variety of transgenic mouse models for lens development can create substantial challenges in database management and analysis. We report a novel, automated, feature-based informatics approach to screening lens phenotypes in a large database of slit lamp images. Digital slit lamp images of normal and abnormal lenses in eyes of wild type (wt), SC1 null and SPARC null transgenic mice were recorded for quantitative evaluation of their structural phenotype. The images were processed to improve the contrast of structural features that corresponded to rings of opacity and fluctuations in scattering intensity in the lenses. Measurable attributes were assigned to the features in the lens images and given as an output vector of 46 dimensions. Characteristic patterns were correlated with the structural phenotype of each mutant and wt lens and a statistical fit for each phenotype was defined. The genotype was identified correctly in nearly 85% of the slit lamp images on the basis of an automated computer analysis of the lens structural phenotype. The automated computer algorithm has the potential to evaluate a large database of slit lamp images and distinguish mouse genotypes on the basis of lens phenotypes objectively using a neural network analysis of the structural features observed in the slit lamp images. The neural network approach is a promising technology for objective evaluation of genotype/phenotype relationships based on structural features and light scattering in lenses. Further improvements in the automated method can be expected to simplify and increase the accuracy and efficiency of the feature based analysis of structural phenotypes linked to genetic variation.
Collapse
Affiliation(s)
- Jenny Yuen
- Department of Computer Science and Engineering, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | | | | | |
Collapse
|
37
|
Dose dependent cataractogenesis and Maximum Tolerable Dose (MTD2.3:16) for UVR 300nm-induced cataract in C57BL/6J mice. Exp Eye Res 2008; 86:282-9. [DOI: 10.1016/j.exer.2007.10.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 10/17/2007] [Accepted: 10/26/2007] [Indexed: 11/24/2022]
|
38
|
Chandrashekar V, Dawson CR, Martin ER, Rocha JS, Bartke A, Kopchick JJ. Age-related alterations in pituitary and testicular functions in long-lived growth hormone receptor gene-disrupted mice. Endocrinology 2007; 148:6019-25. [PMID: 17872367 DOI: 10.1210/en.2007-0837] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The somatotropic axis, GH, and IGF-I interact with the hypothalamic-pituitary-gonadal axis in health and disease. GH-resistant GH receptor-disrupted knockout (GHRKO) male mice are fertile but exhibit delayed puberty and decreases in plasma FSH levels, testicular content of LH, and prolactin (PRL) receptors, whereas PRL levels are elevated. Because the lifespan of GHRKO mice is much greater than the lifespan of their normal siblings, it was of interest to compare age-related changes in the hypothalamic-pituitary-gonadal axis in GHRKO and normal animals. Plasma IGF-I, insulin, PRL, LH, FSH, androstenedione and testosterone levels, and acute responses to GnRH and LH were measured in young (2-4 and 5-6 months of age) and old (18-19 and 23-26 months of age) male GHRKO mice and their normal siblings. Plasma IGF-I was not detectable in GHRKO mice. Plasma PRL levels increased with age in normal mice but declined in GHRKO males, and did not differ in old GHRKO and normal animals. Plasma LH responses to acute GnRH stimulation were attenuated in GHRKO mice but increased with age only in normal mice. Plasma FSH levels were decreased in GHRKO mice regardless of age. Plasma testosterone responses to LH stimulation were attenuated in old mice regardless of genotype, whereas plasma androstenedione responses were reduced with age only in GHRKO mice. Testicular IGF-I mRNA levels were normal in young and increased in old GHRKO mice, whereas testicular concentrations and total IGF-I levels were decreased in these animals. These findings indicate that GH resistance due to targeted disruption of the GH receptor gene in mice leads to suppression of testicular IGF-I levels, and modifies the effects of aging on plasma PRL levels and responses of the pituitary and testes to GnRH and LH stimulation. Plasma testosterone levels declined during aging in normal but not in GHRKO mice, and the age-related increase in the LH responses to exogenous GnRH was absent in GHRKO mice, perhaps reflecting a delay of aging in these remarkably long-lived animals.
Collapse
Affiliation(s)
- Varadaraj Chandrashekar
- Department Physiology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | | | | | | | | | | |
Collapse
|
39
|
Muller FL, Lustgarten MS, Jang Y, Richardson A, Van Remmen H. Trends in oxidative aging theories. Free Radic Biol Med 2007; 43:477-503. [PMID: 17640558 DOI: 10.1016/j.freeradbiomed.2007.03.034] [Citation(s) in RCA: 705] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Revised: 03/29/2007] [Accepted: 03/29/2007] [Indexed: 12/11/2022]
Abstract
The early observations on the rate-of-living theory by Max Rubner and the report by Gershman that oxygen free radicals exist in vivo culminated in the seminal proposal in the 1950s by Denham Harman that reactive oxygen species are a cause of aging (free radical theory of aging). The goal of this review is to analyze recent findings relevant in evaluating Harman's theory using experimental results as grouped by model organisms (i.e., invertebrate models and mice). In this regard, we have focused primarily on recent work involving genetic manipulations. Because the free radical theory of aging is not the only theorem proposed to explain the mechanism(s) involved in aging at the molecular level, we also discuss how this theory is related to other areas of research in biogerontology, specifically, telomere/cell senescence, genomic instability, and the mitochondrial hypothesis of aging. We also discuss where we think the free radical theory is headed. It is now possible to give at least a partial answer to the question whether oxidative stress determines life span as Harman posed so long ago. Based on studies to date, we argue that a tentative case for oxidative stress as a life-span determinant can be made in Drosophila melanogaster. Studies in mice argue for a role of oxidative stress in age-related disease, especially cancer; however, with regard to aging per se, the data either do not support or remain inconclusive on whether oxidative stress determines life span.
Collapse
Affiliation(s)
- Florian L Muller
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA
| | | | | | | | | |
Collapse
|
40
|
Zubenko GS, Zubenko WN, Maher BS, Wolf NS. Reduced Age-Related Cataracts Among Elderly Persons Who Reach Age 90 With Preserved Cognition: A Biomarker of Successful Aging? J Gerontol A Biol Sci Med Sci 2007; 62:500-6. [PMID: 17522353 DOI: 10.1093/gerona/62.5.500] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Tissue damage due to oxidative stress has been implicated in aging, memory loss, and cataract formation. We hypothesized that persons who achieved exceptional longevity with preserved cognition (successful aging [SAG]) would exhibit a lower rate of age-related cataract (ARC) than the general population. The age-specific rates of ARC for a group of 100 (50 male, 50 female) elderly persons who reached at least age 90 years with preserved cognition were compared to the corresponding rates of ARC reported in five population-based studies. The principal finding of this report was that the SAG group manifested a significant reduction in the age-specific rate and lifetime cumulative incidence of ARC compared to the general population. Steroid use, alcohol consumption, gout, and skin lesions resulting from excessive sun exposure emerged as risk factors. Our findings suggest that the progressive development of lens opacities may be reflective of degenerative events occurring more generally throughout the body.
Collapse
Affiliation(s)
- George S Zubenko
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pennsylvania, USA.
| | | | | | | |
Collapse
|
41
|
Zubenko GS, Hughes HB, Zubenko WN, Maher BS. Genome survey for loci that influence successful aging: results at 10-cM resolution. Am J Geriatr Psychiatry 2007; 15:184-93. [PMID: 16905685 DOI: 10.1097/01.jgp.0000231681.89741.af] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE A systematic genome survey was initiated to identify loci that affect the likelihood of reaching age 90 with preserved cognition (successful aging). METHODS The genome survey was conducted at 10-cM resolution for simple sequence tandem repeat polymorphisms (SSTRPs) that identify genes for Successful AGing (SAG loci) by virtue of linkage disequilibrium. Efficiency was enhanced by genotyping pools of DNA from 100 cognitively intact elders and 100 young (18-25 years) adults. The comparison groups included equal numbers of white men and women of similar ethnicity that were recruited from the southwestern Pennsylvania region. RESULTS Our genome survey identified nine SAG candidate loci that may influence the likelihood of reaching age 90 or more with preserved cognition. Two of the autosomal SAG loci revealed stronger allelic associations with successful aging in men than women (D1S1728, D8S264) and two were located on sex chromosomes (DXS9902, DYS390). DXS9902 resides within a predicted gene, whereas six of the SAG loci are located within regions previously reported to show linkage to other phenotypes. CONCLUSIONS The results of our study suggest that loci with differential effects on the successful aging of men and women may be common. The majority of the SAG candidate loci detected in this study overlap with regions previously reported to show linkage to susceptibility genes for cardiovascular disorders, psychiatric disorders, and the accumulation of tissue damage resulting from oxidative stress.
Collapse
Affiliation(s)
- George S Zubenko
- Department of Psychiatry, University of Pittsburgh, School of Medicine, PA, USA.
| | | | | | | |
Collapse
|
42
|
de Fiebre NC, Sumien N, Forster MJ, de Fiebre CM. Spatial learning and psychomotor performance of C57BL/6 mice: age sensitivity and reliability of individual differences. AGE (DORDRECHT, NETHERLANDS) 2006; 28:235-53. [PMID: 22253492 PMCID: PMC3259155 DOI: 10.1007/s11357-006-9027-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2006] [Revised: 10/31/2006] [Accepted: 11/03/2006] [Indexed: 05/16/2023]
Abstract
Two tests often used in aging research, the elevated path test and the Morris water maze test, were examined for their application to the study of brain aging in a large sample of C57BL/6JNia mice. Specifically, these studies assessed: (1) sensitivity to age and the degree of interrelatedness among different behavioral measures derived from these tests, (2) the effect of age on variation in the measurements, and (3) the reliability of individual differences in performance on the tests. Both tests detected age-related deficits in group performance that occurred independently of each other. However, analysis of data obtained on the Morris water maze test revealed three relatively independent components of cognitive performance. Performance in initial acquisition of spatial learning in the Morris maze was not highly correlated with performance during reversal learning (when mice were required to learn a new spatial location), whereas performance in both of those phases was independent of spatial performance assessed during a single probe trial administered at the end of acquisition training. Moreover, impaired performance during initial acquisition could be detected at an earlier age than impairments in reversal learning. There were modest but significant age-related increases in the variance of both elevated path test scores and in several measures of learning in the Morris maze test. Analysis of test scores of mice across repeated testing sessions confirmed reliability of the measurements obtained for cognitive and psychomotor function. Power calculations confirmed that there are sufficiently large age-related differences in elevated path test performance, relative to within age variability, to render this test useful for studies into the ability of an intervention to prevent or reverse age-related deficits in psychomotor performance. Power calculations indicated a need for larger sample sizes for detection of intervention effects on cognitive components of the Morris water maze test, at least when implemented at the ages tested in this study. Variability among old mice in both tests, including each of the various independent measures in the Morris maze, may be useful for elucidating the biological bases of different aspects of dysfunctional brain aging.
Collapse
Affiliation(s)
- NancyEllen C. de Fiebre
- Department of Pharmacology & Neuroscience, Institute for Aging and Alzheimer’s Disease Research, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107-2699 USA
| | - Nathalie Sumien
- Department of Pharmacology & Neuroscience, Institute for Aging and Alzheimer’s Disease Research, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107-2699 USA
| | - Michael J. Forster
- Department of Pharmacology & Neuroscience, Institute for Aging and Alzheimer’s Disease Research, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107-2699 USA
| | - Christopher M. de Fiebre
- Department of Pharmacology & Neuroscience, Institute for Aging and Alzheimer’s Disease Research, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107-2699 USA
| |
Collapse
|
43
|
Hsu CD, Kymes S, Petrash JM. A transgenic mouse model for human autosomal dominant cataract. Invest Ophthalmol Vis Sci 2006; 47:2036-44. [PMID: 16639013 PMCID: PMC1855087 DOI: 10.1167/iovs.05-0524] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To characterize lenses from transgenic mice designed to express mutant and wild-type alphaA-crystallin subunits. METHODS A series of transgenic mouse strains was created to express mutant (R116C) and wild-type human alphaA-crystallin in fiber cells of the lens. Dissected lenses were phenotypically scored for the presence and extent of opacities, fiber cell morphology, and posterior suture morphology. Gene transcripts derived from integrated transgenes were detected by reverse transcriptase-PCR. Distribution of expressed transgenic protein was determined by immunohistochemical staining of lens tissue sections. The abundance of endogenous and transgenic lens proteins was estimated by quantitative Western blot analysis. RESULTS Expression of R116C mutant alphaA-crystallin subunits resulted in posterior cortical cataracts and abnormalities associated with the posterior suture. The severity of lens abnormalities did not increase between the ages of 9 and 30 weeks. With respect to opacities and morphologic abnormalities, lenses from transgenic mice that express wild-type human alphaA-crystallin subunits were indistinguishable from age-matched nontransgenic control mice. Similar phenotypes were observed in different independent lines of R116C transgenic mice that differed by at least two orders of magnitude in the expression level of the mutant transgenic protein. CONCLUSIONS The results show that lens opacities and posterior sutural defects occur when mutant R116C alphaA-crystallin subunits are expressed on the background of wild-type endogenous mouse alpha-crystallins. Low levels of R116C alphaA-crystallin subunits are sufficient to induce lens opacities and sutural defects.
Collapse
Affiliation(s)
- Cheng-Da Hsu
- Department of Ophthalmology and Visual Sciences, Washington, University School of Medicine, St. Louis, Missouri
| | - Steven Kymes
- Department of Ophthalmology and Visual Sciences, Washington, University School of Medicine, St. Louis, Missouri
- Division of Biostatistics, Washington, University School of Medicine, St. Louis, Missouri
| | - J. Mark Petrash
- Department of Ophthalmology and Visual Sciences, Washington, University School of Medicine, St. Louis, Missouri
- Department of Genetics, Washington, University School of Medicine, St. Louis, Missouri
| |
Collapse
|
44
|
Kong WJ, Wang Y, Wang Q, Hu YJ, Han YC, Liu J. The relation between d-galactose injection and mitochondrial DNA 4834bp deletion mutation. Exp Gerontol 2006; 41:628-34. [PMID: 16716550 DOI: 10.1016/j.exger.2006.04.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Revised: 04/01/2006] [Accepted: 04/04/2006] [Indexed: 10/24/2022]
Abstract
Since,D-galactose (D-gal) overload model has been used as a premature aging model, we hypothesized that it may also lead to accelerated aging in the inner ear. Furthermore, though the mitochondrial DNA (mtDNA) 4834 bp deletion mutation has been considered as the marker of aging, there is no information available in the literature concerning the mtDNA 4834 bp deletion mutation condition of the D-gal induced premature aging model. We investigate the changes in inner ear enzymatic activity, the occurring of mtDNA 4834 bp deletion in inner ear and other tissues and the relating hearing thresholds after the administration of high dosage (150 mg/kg per day) and low dosage (50 mg/kg per day) of D-gal to rats. Furthermore, the incidence of the mtDNA 4834 bp deletion in different tissues as well as in blood sample was compared. The results showed that daily subcutaneous injections of D-gal into rats for 8 weeks could lead to the biochemical defects and mtDNA 4834 bp deletion in the inner ear tissue and other tissues, which represent the typical aging animals, but the relating hearing threshold shifts (TS) were nearly identical in the three groups. This study also indicates that using of blood samples to detect mtDNA 4834 bp deletion in clinical research might lead to a 'false negative' result. A higher sensitive result could be gained using tissue biopsy to examine mtDNA 4834 bp deletion.
Collapse
Affiliation(s)
- Wei-jia Kong
- Department of Otorhinolaryngology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, Wuhan 430022, China.
| | | | | | | | | | | |
Collapse
|
45
|
Coschigano KT. Aging-related characteristics of growth hormone receptor/binding protein gene-disrupted mice. AGE (DORDRECHT, NETHERLANDS) 2006; 28:191-200. [PMID: 19943140 PMCID: PMC2464722 DOI: 10.1007/s11357-006-9004-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Accepted: 12/01/2005] [Indexed: 05/28/2023]
Abstract
Since generation of the growth hormone receptor/binding protein (GHR/BP) gene-disrupted mouse nearly 10 years ago, use of this mouse model has become widespread in the elucidation of the physiological roles of GH and insulin-like growth factor-1 (IGF-1). In particular, it serves as a useful model to study mechanisms of aging. This review highlights the evidence demonstrating that the loss of GH signaling leads to lifespan extension in mice, and presents the multiple characteristics of this mouse line that suggest the life extension is due to alteration of the aging process.
Collapse
Affiliation(s)
- Karen T Coschigano
- Department of Biomedical Sciences, College of Osteopathic Medicine, Ohio University, 351 Irvine Hall, Athens, OH 45701, USA.
| |
Collapse
|