1
|
Hatam-Nahavandi K, Ahmadpour E, Badri M, Eslahi AV, Anvari D, Carmena D, Xiao L. Global prevalence of Giardia infection in nonhuman mammalian hosts: A systematic review and meta-analysis of five million animals. PLoS Negl Trop Dis 2025; 19:e0013021. [PMID: 40273200 PMCID: PMC12052165 DOI: 10.1371/journal.pntd.0013021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/05/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND Members of the Giardia genus are zoonotic protozoan parasites that cause giardiasis, a diarrheal disease of public and veterinary health concern, in a wide range of mammal hosts, including humans. METHODOLOGY We conducted a systematic review and meta-analysis to provide evidence-based data on the worldwide prevalence of Giardia infection in nonhuman mammals that can be used as scientific foundation for further studies. We searched public databases using specific keywords to identify relevant publications from 1980 to 2023. We computed the pooled prevalence estimates utilizing a random-effects meta-analysis model. Animals were stratified according to their taxonomic hierarchy, as well as ecological and biological factors. We investigated the influence of predetermined variables on prevalence estimates and heterogeneity through subgroup and meta-regression analyses. We conducted phylogenetic analysis to examine the evolutionary relationships among different assemblages of G. duodenalis. PRINCIPAL FINDINGS The study included 861 studies (1,632 datasets) involving 4,917,663 animals from 327 species, 203 genera, 67 families, and 14 orders from 89 countries. The global pooled prevalence of Giardia infection in nonhuman mammals was estimated at 13.6% (95% CI: 13.4-13.8), with the highest rates observed in Rodentia (28.0%) and Artiodactyla (17.0%). Herbivorous (17.0%), semiaquatic (29.0%), and wild (19.0%) animals showed higher prevalence rates. A decreasing prevalence trend was observed over time (β = -0.1036477, 95% CI -0.1557359 to -0.0515595, p < 0.000). Among 16,479 G. duodenalis isolates, 15,999 mono-infections belonging to eight (A-H) assemblages were identified. Assemblage E was the predominant genotype (53.7%), followed by assemblages A (18.1%), B (14.1%), D (6.4%), C (5.6%), F (1.4%), G (0.6%), and H (0.1%). The highest G. duodenalis genetic diversity was found in cattle (n = 7,651, where six assemblages including A (13.6%), B (3.1%), C (0.2%), D (0.1%), E (81.7%), and mixed infections (1.2%) were identified. CONCLUSIONS/SIGNIFICANCE Domestic mammals are significant contributors to the environmental contamination with Giardia cysts, emphasizing the importance of implementing good management practices and appropriate control measures. The widespread presence of Giardia in wildlife suggests that free-living animals can potentially act as sources of the infection to livestock and even humans through overlapping of sylvatic and domestic transmission cycles of the parasite.
Collapse
Affiliation(s)
- Kareem Hatam-Nahavandi
- Tropical and Communicable Diseases Research Center, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Ehsan Ahmadpour
- Infectious and Tropical Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Badri
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Aida Vafae Eslahi
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Davood Anvari
- Tropical and Communicable Diseases Research Center, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - David Carmena
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, Health Institute Carlos III, Majadahonda, Spain
- CIBERINFEC, ISCIII – CIBER Infectious Diseases, Health Institute Carlos III, Madrid, Spain
| | - Lihua Xiao
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
2
|
Barbosa AD, Egan S, Feng Y, Xiao L, Balogun S, Ryan U. Zoonotic Cryptosporidium and Giardia in marsupials-an update. Parasitol Res 2024; 123:107. [PMID: 38253768 PMCID: PMC10803519 DOI: 10.1007/s00436-024-08129-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
Marsupials, inhabiting diverse ecosystems, including urban and peri-urban regions in Australasia and the Americas, intersect with human activities, leading to zoonotic spill-over and anthroponotic spill-back of pathogens, including Cryptosporidium and Giardia. This review assesses the current knowledge on the diversity of Cryptosporidium and Giardia species in marsupials, focusing on the potential zoonotic risks. Cryptosporidium fayeri and C. macropodum are the dominant species in marsupials, while in possums, the host-specific possum genotype dominates. Of these three species/genotypes, only C. fayeri has been identified in two humans and the zoonotic risk is considered low. Generally, oocyst shedding in marsupials is low, further supporting a low transmission risk. However, there is some evidence of spill-back of C. hominis into kangaroo populations, which requires continued monitoring. Although C. hominis does not appear to be established in small marsupials like possums, comprehensive screening and analysis are essential for a better understanding of the prevalence and potential establishment of zoonotic Cryptosporidium species in small marsupials. Both host-specific and zoonotic Giardia species have been identified in marsupials. The dominance of zoonotic G. duodenalis assemblages A and B in marsupials may result from spill-back from livestock and humans and it is not yet understood if these are transient or established infections. Future studies using multilocus typing tools and whole-genome sequencing are required for a better understanding of the zoonotic risk from Giardia infections in marsupials. Moreover, much more extensive screening of a wider range of marsupial species, particularly in peri-urban areas, is required to provide a clearer understanding of the zoonotic risk of Cryptosporidium and Giardia in marsupials.
Collapse
Affiliation(s)
- Amanda D Barbosa
- Harry Butler Institute, Vector- and Water-Borne Pathogens Research Group, Murdoch University, Murdoch, Western Australia, 6150, Australia.
- CAPES Foundation, Ministry of Education of Brazil, Brasilia, DF, 70040-020, Brazil.
| | - Siobhon Egan
- Harry Butler Institute, Vector- and Water-Borne Pathogens Research Group, Murdoch University, Murdoch, Western Australia, 6150, Australia
| | - Yaoyu Feng
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Lihua Xiao
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Samson Balogun
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Wales, United Kingdom
| | - Una Ryan
- Harry Butler Institute, Vector- and Water-Borne Pathogens Research Group, Murdoch University, Murdoch, Western Australia, 6150, Australia
| |
Collapse
|
3
|
Chen Y, Qin H, Wu Y, Xu H, Huang J, Li J, Zhang L. Global prevalence of Cryptosporidium spp. in pigs: a systematic review and meta-analysis. Parasitology 2023; 150:531-544. [PMID: 37051887 DOI: 10.1017/s0031182023000276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Cryptosporidium spp. are significant opportunistic pathogens causing diarrhoea in humans and animals. Pigs are one of the most important potential hosts for Cryptosporidium. We evaluated the prevalence of Cryptosporidium in pigs globally using published information and a random-effects model. In total, 131 datasets from 36 countries were included in the final quantitative analysis. The global prevalence of Cryptosporidium in pigs was 16.3% (8560/64 809; 95% confidence interval [CI] 15.0–17.6%). The highest prevalence of Cryptosporidium in pigs was 40.8% (478/1271) in Africa. Post-weaned pigs had a significantly higher prevalence (25.8%; 2739/11 824) than pre-weaned, fattening and adult pigs. The prevalence of Cryptosporidium was higher in pigs with no diarrhoea (12.2%; 371/3501) than in pigs that had diarrhoea (8.0%; 348/4874). Seven Cryptosporidium species (Cryptosporidium scrofarum, Cryptosporidium suis, Cryptosporidium parvum, Cryptosporidium muris, Cryptosporidium tyzzeri, Cryptosporidium andersoni and Cryptosporidium struthioni) were detected in pigs globally. The proportion of C. scrofarum was 34.3% (1491/4351); the proportion of C. suis was 31.8% (1385/4351) and the proportion of C. parvum was 2.3% (98/4351). The influence of different geographic factors (latitude, longitude, mean yearly temperature, mean yearly relative humidity and mean yearly precipitation) on the infection rate of Cryptosporidium in pigs was also analysed. The results indicate that C. suis is the dominant species in pre-weaned pigs, while C. scrofarum is the dominant species in fattening and adult pigs. The findings highlight the role of pigs as possible potential hosts of zoonotic cryptosporidiosis and the need for additional studies on the prevalence, transmission and control of Cryptosporidium in pigs.
Collapse
Affiliation(s)
- Yuancai Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, P. R. China
| | - Huikai Qin
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, P. R. China
| | - Yayun Wu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, P. R. China
| | - Huiyan Xu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, P. R. China
| | - Jianying Huang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, P. R. China
| | - Junqiang Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, P. R. China
| | - Longxian Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, P. R. China
| |
Collapse
|
4
|
Ryan U, Hill K, Deere D. Review of generic screening level assumptions for quantitative microbial risk assessment (QMRA) for estimating public health risks from Australian drinking water sources contaminated with Cryptosporidium by recreational activities. WATER RESEARCH 2022; 220:118659. [PMID: 35635918 DOI: 10.1016/j.watres.2022.118659] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 04/26/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
As urban communities continue to grow, demand for recreational access (including swimming) in drinking water sources have increased, yet relatively little is understood about the public health implications this poses for drinking water consumers. Preventative risk-based approaches to catchment management, informed by quantitative microbial risk assessment (QMRA), requires accurate input data to effectively model risks. A sound understanding of the knowledge gaps is also important to comprehend levels of uncertainty and help prioritise research needs. Cryptosporidium is one of the most important causes of waterborne outbreaks of gastroenteritis globally due to its resistance to chlorine. This review was undertaken by Water Research Australia to provide the most up-to-date information on current Cryptosporidium epidemiological data and underlying assumptions for exposure assessment, dose response and risk assessment for generic components of QMRA for Cryptosporidium and highlights priorities for common research. Key interim recommendations and guidelines for numerical values for relatively simple screening level QMRA modelling are provided to help support prospective studies of risks to drinking water consumers from Cryptosporidium due to body-contact recreation in source water. The review does not cover site-specific considerations, such as the levels of activity in the source water, the influence of dilution and inactivation in reservoirs, or water treatment. Although the focus is Australia, the recommendations and numerical values developed in this review, and the highlighted research priorities, are broadly applicable across all drinking source water sources that allow recreational activities.
Collapse
Affiliation(s)
- U Ryan
- Harry Butler Institute, Murdoch University, 90 South Street, Perth, Australia.
| | - Kelly Hill
- Water Research Australia, 250 Victoria Square, Adelaide, South Australia, Australia
| | - Dan Deere
- Water Futures, Sydney, Australia and Water Research Australia, Australia
| |
Collapse
|
5
|
Fu Y, Dong H, Bian X, Qin Z, Han H, Lang J, Zhang J, Zhao G, Li J, Zhang L. Molecular characterizations of Giardia duodenalis based on multilocus genotyping in sheep, goats, and beef cattle in Southwest Inner Mongolia, China. PARASITE (PARIS, FRANCE) 2022; 29:33. [PMID: 35801842 PMCID: PMC9265451 DOI: 10.1051/parasite/2022036] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/24/2022] [Indexed: 11/14/2022]
Abstract
Giardia duodenalis is an important zoonotic parasite that causes economic losses to animal husbandry and threatens public health. In the present study, a total of 1466 fresh fecal samples were collected from sheep (n = 797), goats (n = 561) and beef cattle (n = 108) in Southwest Inner Mongolia, China. Giardia duodenalis was initially screened via nested polymerase chain reaction (PCR) targeting the β-giardin (bg) gene, and bg-positive samples were subjected to PCR amplification targeting the glutamate dehydrogenase (gdh) and triose phosphate isomerase (tpi) genes. A total of 4.0% of samples (58/1466) were positive for G. duodenalis, with a prevalence of 3.4% in sheep, 3.7% in goats and 5.2% in beef cattle. Three G. duodenalis assemblages (A, B, and E) were identified, with E as the prevalent assemblage. Four and one novel assemblage E sequences were obtained for the gdh and tpi loci, respectively and four assemblage E multilocus genotypes (MLG) were obtained. This study demonstrates high genetic variations in G. duodenalis assemblage E, and provides baseline data for preventing and controlling G. duodenalis infection in livestock in Inner Mongolia.
Collapse
Affiliation(s)
- Yin Fu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China - International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou 450046, China
| | - Heping Dong
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Xiaokun Bian
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China - International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou 450046, China
| | - Ziyang Qin
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China - International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou 450046, China
| | - Han Han
- Norman Bethune Health Science Center of Jilin University, Changchun 130015, China
| | - Jiashu Lang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China - International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou 450046, China
| | - Junchen Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China - International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou 450046, China
| | - Guanghui Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Junqiang Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China - International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou 450046, China
| | - Longxian Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China - International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou 450046, China
| |
Collapse
|
6
|
Nakashima FT, Fonseca ABM, Coelho LFDO, Barbosa ADS, Bastos OMP, Uchôa CMA. Cryptosporidium species in non-human animal species in Latin America: Systematic review and meta-analysis. Vet Parasitol Reg Stud Reports 2022; 29:100690. [PMID: 35256118 DOI: 10.1016/j.vprsr.2022.100690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Cryptosporidiosis is an infection caused by a protozoon that inhabits the gastrointestinal tract. More than forty valid species have been described in the genus Cryptosporidium, infecting a broad range of hosts around the world, some with zoonotic transmission and others with predominant anthroponotic transmission. Prevalence studies conducted in Latin American countries have been specific, without consolidating information on species prevalences. Thus, the aim of this study was to perform a systematic review and meta-analysis addressing the prevalence of Cryptosporidium species in animals in Latin America. The estimated pooled prevalence rate for cryptosporidiosis in animals, by means of meta-analysis with a random-effects model, based on species identification, was 18.0% (95% CI 11.0%-27.0%) with high heterogeneity. The estimated overall prevalence was 20.3% (36/177) in pets, 19.9% (1309/6573) in livestock animals and 23.9% (954/3995) in exotic/captive animals. Evidence of circulation of 16 Cryptosporidium species was found in five Latin American countries: Brazil, Colombia, Chile, Argentina and Mexico. Through meta-analysis with a random-effects model, the pooled prevalence rate for Cryptosporidium parvum was 0.7% (95% CI 0.2%-2.4%). Cryptosporidium felis (8.5%) was the most prevalent species in pets, C. parvum (10.3%) in livestock animals and Cryptosporidium galli (17.6%) in exotic/captive animals. C. parvum was the species with the greatest geographical dispersion, which can be explained by its eurixenic and zoonotic potential. Few studies on cryptosporidiosis in animals in Latin America were found, which shows that there is a need for investment in and expansion of studies on this parasite. The pooled prevalence of C. parvum in Latin America and its wide circulation are similar to what has been observed in other developing regions, which reaffirms the importance of this species as the cause of a neglected, emerging and zoonotic parasitosis.
Collapse
Affiliation(s)
- Flávia Terumi Nakashima
- Department of Microbiology and Parasitology, Biomedical Institute, Fluminense Federal University, Rua Professor Hernani Pires de Melo 101, Centro, Niterói, RJ 24210-130, Brazil.
| | - Ana Beatriz Monteiro Fonseca
- Department of Statistics, Institute of Mathematics and Statistics, Fluminense Federal University, Rua Professor Marcos Waldemar de Freitas Reis s/n, Blocos G e H, Campus do Gragoatá, São Domingos, Niterói, RJ 24210-201, Brazil
| | - Luiz Fernando de Oliveira Coelho
- Department of Microbiology and Parasitology, Biomedical Institute, Fluminense Federal University, Rua Professor Hernani Pires de Melo 101, Centro, Niterói, RJ 24210-130, Brazil
| | - Alynne da Silva Barbosa
- Department of Microbiology and Parasitology, Biomedical Institute, Fluminense Federal University, Rua Professor Hernani Pires de Melo 101, Centro, Niterói, RJ 24210-130, Brazil
| | - Otilio Machado Pereira Bastos
- Department of Microbiology and Parasitology, Biomedical Institute, Fluminense Federal University, Rua Professor Hernani Pires de Melo 101, Centro, Niterói, RJ 24210-130, Brazil
| | - Claudia Maria Antunes Uchôa
- Department of Microbiology and Parasitology, Biomedical Institute, Fluminense Federal University, Rua Professor Hernani Pires de Melo 101, Centro, Niterói, RJ 24210-130, Brazil.
| |
Collapse
|
7
|
González-Ramírez LC, Vázquez CJ, Chimbaina MB, Djabayan-Djibeyan P, Prato-Moreno JG, Trelis M, Fuentes MV. Ocurrence of enteroparasites with zoonotic potential in animals of the rural area of San Andres, Chimborazo, Ecuador. Vet Parasitol Reg Stud Reports 2021; 26:100630. [PMID: 34879941 DOI: 10.1016/j.vprsr.2021.100630] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/23/2021] [Accepted: 08/28/2021] [Indexed: 01/01/2023]
Abstract
OBJECTIVE The aim of this research was the identification of the enteroparasites harbored by the animals of the San Andrés community, to evaluate their role as susceptible hosts and sources of infection for other animals, humans (zoonoses), as well as parasite forms spreaders to the environment in this rural area, located in the province of Chimborazo, Ecuadorian Andean region. MATERIAL AND METHODS The study was carried out combining 3 coproparasitological techniques: direct examination, Ritchie and Ziehl-Neelsen in 300 animal stool samples RESULTS: Blastocystis sp., Entamoeba spp., Giardia spp., Balantidium spp., Cryptosporidium spp., Ascaris spp., Toxocara spp., Ancylostoma spp., Strongylida, Hymenolepis nana and Echinococcus spp., were detected. Infection by protozoa (87.3%) was higher than helminths (31.0%). All cattle, sheep and guinea pigs were found parasitized, and the presence of Blastocystis sp., Entamoeba spp. and Cryptosporidium spp. by all groups of animals stands out. It is also remarkable the presence of Giardia spp. in swine (19.2%), big herbivores-livestock (11.5%), leporids (8.3%) and carnivores (5.9%); Balantidium spp. in swine (19.2%), big herbivores-livestock (5.8%) and carnivores (1.2%); Hymenolepis nana in guinea pigs (2.1%); and Toxocara spp. (15.7%), Echinococcus spp. (9.6%) and Ancylostoma spp. (6.0%) in dogs. CONCLUSION Animals from San Andrés have a wide spectrum of intestinal parasitic forms in their feces, being a source of infection to other animals and humans, and a source of contamination of the environment, posing a risk factor and reinforcing the idea of the need for more effective treatments and hygienic measures to improve livestock production and cutting its transmission.
Collapse
Affiliation(s)
- Luisa Carolina González-Ramírez
- Research Group "Analysis of Biological and Forensic Samples", Faculty of Health Sciences, Campus Edison Riera, Universidad Nacional de Chimborazo (UNACH), Av. Antonio José de Sucre, Riobamba 060150, Ecuador
| | - Cristian Joao Vázquez
- Research Group "Analysis of Biological and Forensic Samples", Faculty of Health Sciences, Campus Edison Riera, Universidad Nacional de Chimborazo (UNACH), Av. Antonio José de Sucre, Riobamba 060150, Ecuador
| | - Manuel Benjamín Chimbaina
- Research Group "Analysis of Biological and Forensic Samples", Faculty of Health Sciences, Campus Edison Riera, Universidad Nacional de Chimborazo (UNACH), Av. Antonio José de Sucre, Riobamba 060150, Ecuador
| | - Pablo Djabayan-Djibeyan
- Research Group "Public Health", Faculty of Health Sciences, Campus Edison Riera, Universidad Nacional de Chimborazo (UNACH), Av. Antonio José de Sucre, Riobamba 060150, Ecuador
| | - José Gregorio Prato-Moreno
- Research Group "Interdisciplinary Studies", Faculty of Engineering, Campus Edison Riera, UNACH, Av. Antonio José de Sucre, Riobamba 060150, Ecuador
| | - María Trelis
- Research Group "Parasites and Health", Universitat de València, Av. Vicente Andrés Estellés, s/n, 46100, Burjassot, València, Spain; Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Universitat de València - Health Research Institute La Fe (IISLAFE), Av. Fernando Abril Martorell, 106, 46026, Valencia, Spain.
| | - Màrius Vicent Fuentes
- Research Group "Parasites and Health", Universitat de València, Av. Vicente Andrés Estellés, s/n, 46100, Burjassot, València, Spain
| |
Collapse
|
8
|
Ryan U, Zahedi A, Feng Y, Xiao L. An Update on Zoonotic Cryptosporidium Species and Genotypes in Humans. Animals (Basel) 2021; 11:3307. [PMID: 34828043 PMCID: PMC8614385 DOI: 10.3390/ani11113307] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022] Open
Abstract
The enteric parasite, Cryptosporidium is a major cause of diarrhoeal illness in humans and animals worldwide. No effective therapeutics or vaccines are available and therefore control is dependent on understanding transmission dynamics. The development of molecular detection and typing tools has resulted in the identification of a large number of cryptic species and genotypes and facilitated our understanding of their potential for zoonotic transmission. Of the 44 recognised Cryptosporidium species and >120 genotypes, 19 species, and four genotypes have been reported in humans with C. hominis, C. parvum, C. meleagridis, C. canis and C. felis being the most prevalent. The development of typing tools that are still lacking some zoonotic species and genotypes and more extensive molecular epidemiological studies in countries where the potential for transmission is highest are required to further our understanding of this important zoonotic pathogen. Similarly, whole-genome sequencing (WGS) and amplicon next-generation sequencing (NGS) are important for more accurately tracking transmission and understanding the mechanisms behind host specificity.
Collapse
Affiliation(s)
- Una Ryan
- Harry Butler Institute, Murdoch University, Perth, WA 6152, Australia;
| | - Alireza Zahedi
- Harry Butler Institute, Murdoch University, Perth, WA 6152, Australia;
| | - Yaoyu Feng
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.F.); (L.X.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Lihua Xiao
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.F.); (L.X.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
9
|
Ryan UM, Feng Y, Fayer R, Xiao L. Taxonomy and molecular epidemiology of Cryptosporidium and Giardia - a 50 year perspective (1971-2021). Int J Parasitol 2021; 51:1099-1119. [PMID: 34715087 DOI: 10.1016/j.ijpara.2021.08.007] [Citation(s) in RCA: 193] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/25/2021] [Accepted: 08/31/2021] [Indexed: 12/11/2022]
Abstract
The protozoan parasites Cryptosporidium and Giardia are significant causes of diarrhoea worldwide and are responsible for numerous waterborne and foodborne outbreaks of diseases. Over the last 50 years, the development of improved detection and typing tools has facilitated the expanding range of named species. Currently at least 44 Cryptosporidium spp. and >120 genotypes, and nine Giardia spp., are recognised. Many of these Cryptosporidium genotypes will likely be described as species in the future. The phylogenetic placement of Cryptosporidium at the genus level is still unclear and further research is required to better understand its evolutionary origins. Zoonotic transmission has long been known to play an important role in the epidemiology of cryptosporidiosis and giardiasis, and the development and application of next generation sequencing tools is providing evidence for this. Comparative whole genome sequencing is also providing key information on the genetic mechanisms for host specificity and human infectivity, and will enable One Health management of these zoonotic parasites in the future.
Collapse
Affiliation(s)
- Una M Ryan
- Harry Butler Institute, Murdoch University, Perth, Western Australia, Australia.
| | - Yaoyu Feng
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, China
| | - Ronald Fayer
- Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, United States Department of Agriculture, 10300 Baltimore Avenue, BARC-East, Building 173, Beltsville, MD 20705, USA
| | - Lihua Xiao
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, China
| |
Collapse
|
10
|
Cai W, Ryan U, Xiao L, Feng Y. Zoonotic giardiasis: an update. Parasitol Res 2021; 120:4199-4218. [PMID: 34623485 DOI: 10.1007/s00436-021-07325-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/16/2021] [Indexed: 12/15/2022]
Abstract
Giardia duodenalis is a common intestinal parasite in various hosts, with the disease giardiasis being a zoonosis. The use of molecular typing tools has improved our understanding of the distribution and zoonotic potential of G. duodenalis genotypes in different animals. The present review summarizes recent data on the distribution of G. duodenalis genotypes in humans and animals in different areas. The dominance of G. duodenalis assemblages A and B in humans and common occurrence of host-adapted assemblages in most domesticated animals suggests that zoonotic giardiasis is probably less common than believed and could be attributed mainly to contact with or contamination from just a few species of animals such as nonhuman primates, equines, rabbits, guinea pigs, chinchillas, and beavers. Future studies should be directed to advanced genetic characterization of isolates from well-designed epidemiological investigations, especially comparative analyses of isolates from humans and animals living in the same household or community. This will likely lead to better understanding of zoonotic transmission of G. duodenalis in different environmental and socioeconomic settings.
Collapse
Affiliation(s)
- Weilong Cai
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Una Ryan
- Vector- and Water-Borne Pathogen Research Group, Harry Butler Institute, Murdoch University, Murdoch, WA, 6150, Australia
| | - Lihua Xiao
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China. .,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| | - Yaoyu Feng
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China. .,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
11
|
Davidson MJ, Huaman JL, Pacioni C, Stephens D, Hitchen Y, Carvalho TG. Active shedding of Neospora caninum detected in Australian wild canids in a nonexperimental context. Transbound Emerg Dis 2021; 69:1862-1871. [PMID: 34043877 PMCID: PMC9542884 DOI: 10.1111/tbed.14170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/23/2021] [Indexed: 11/29/2022]
Abstract
Infection with Neospora caninum parasites is a leading cause of reproduction losses in cattle worldwide. In Australia, this loss is estimated to total AU$110 million every year. However, despite this considerable economic impact, the transmission cycle and the host(s) responsible for the sylvatic transmission of the parasite remain to be defined. Dingoes (Canis familiaris) have been suggested to be a wildlife host of N. caninum in Australia, but this is yet to be proven in a nonexperimental setting. This study aimed to determine the prevalence of natural N. caninum shedding in Australian wild dogs (defined as dingoes, dingo-domestic dog hybrids and feral dogs) by performing molecular analysis of faecal samples collected in wild dog populations in south-east Australia. Molecular analysis allowed host species identification and dingo purity testing, while genetic analysis of Coccidia and Neospora conserved genes allowed for parasite identification. Among the 115 samples collected and determined to belong to dingoes, dingo-domestic dog hybrids and foxes, Coccidian parasites were detected in 41 samples and N. caninum was identified in one sample of canine origin from South East Australia (Mansfield). Across all samples collected in Mansfield only 15 individuals were successfully identified by genotype. Thereby our study determined that 6.7% (1/15, 95% confidence intervals 1.2-29.9) of wild dogs were actively shedding N. caninum oocysts at this site. Further, only four individuals were identified at a second site (Swift Creek), and none were positive. This study conclusively confirms the role of wild dogs in the horizontal transmission of N. caninum parasites in Australia.
Collapse
Affiliation(s)
- Mikaeylah J Davidson
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Jose L Huaman
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Carlo Pacioni
- Department of Environment, Land, Water and Planning, Arthur Rylah Institute for Environmental Research, Heidelberg, Victoria, Australia.,Environmental and Conservation Sciences, Murdoch University, Murdoch, WA, Australia
| | | | - Yvette Hitchen
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia.,Helix Molecular Solutions, WA, Australia
| | - Teresa G Carvalho
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
12
|
Occurrence of Ten Protozoan Enteric Pathogens in Three Non-Human Primate Populations. Pathogens 2021; 10:pathogens10030280. [PMID: 33801236 PMCID: PMC8001678 DOI: 10.3390/pathogens10030280] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 01/13/2023] Open
Abstract
Non-human primate populations act as potential reservoirs for human pathogens, including viruses, bacteria and parasites, which can lead to zoonotic infections. Furthermore, intestinal microorganisms may be pathogenic organisms to both non-human primates and humans. It is, therefore, essential to study the prevalence of these infectious agents in captive and wild non-human primates. This study aimed at showing the prevalence of the most frequently encountered human enteric protozoa in non-human primate populations based on qPCR detection. The three populations studied were common chimpanzees (Pan troglodytes) in Senegal and gorillas (Gorilla gorilla) in the Republic of the Congo and in the Beauval Zoo (France). Blastocystis spp. were mainly found, with an occurrence close to 100%, followed by Balantidiumcoli (23.7%), Giardiaintestinalis (7.9%), Encephalitozoonintestinalis (1.3%) and Dientamoebafragilis (0.2%). None of the following protozoa were detected: Entamoebahistolytica, Enterocytozoonbieneusi, Cryptosporidiumparvum, C. hominis, Cyclosporacayetanensis or Cystoisosporabelli. As chimpanzees and gorillas are genetically close to humans, it is important to monitor them frequently against different pathogens to protect these endangered species and to assess potential zoonotic transmissions to humans.
Collapse
|
13
|
Braima K, Zahedi A, Oskam C, Austen J, Egan S, Reid S, Ryan U. Zoonotic infection by Cryptosporidium fayeri IVgA10G1T1R1 in a Western Australian human. Zoonoses Public Health 2021; 68:358-360. [PMID: 33455078 DOI: 10.1111/zph.12806] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/14/2020] [Accepted: 12/29/2020] [Indexed: 12/15/2022]
Abstract
In the present study, a 37-year-old immunosuppressed female in Western Australia (WA) was identified as positive for Cryptosporidium by microscopy and treated with nitazoxanide. Molecular analyses at the 18S ribosomal RNA (18S) and 60 kDa glycoprotein (gp60) loci identified C. fayeri subtype IVgA10G1T1R1, which had previously been identified in western grey kangaroos (Macropus fuliginosus) in WA. Next generation sequencing (NGS) of the gp60 locus confirmed the absence of mixed infections with other Cryptosporidium species. This is only the second report of C. fayeri in a human host highlighting the zoonotic potential of this wildlife-associated species. Routine diagnosis using molecular methods in laboratories is required to better understand the diversity and epidemiology of Cryptosporidium parasite.
Collapse
Affiliation(s)
- Kamil Braima
- Vector and Waterborne Pathogen Research Group, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Alireza Zahedi
- Vector and Waterborne Pathogen Research Group, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Charlotte Oskam
- Vector and Waterborne Pathogen Research Group, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Jill Austen
- Vector and Waterborne Pathogen Research Group, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Siobhon Egan
- Vector and Waterborne Pathogen Research Group, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Simon Reid
- School of Public Health, The University of Queensland, Herston, Qld, Australia
| | - Una Ryan
- Vector and Waterborne Pathogen Research Group, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| |
Collapse
|
14
|
Davies C, Wright W, Wedrowicz F, Pacioni C, Hogan FE. Delineating genetic management units of sambar deer (Rusa unicolor) in south-eastern Australia, using opportunistic tissue sampling and targeted scat collection. WILDLIFE RESEARCH 2021. [DOI: 10.1071/wr19235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Zahedi A, Ryan U, Rawlings V, Greay T, Hancock S, Bruce M, Jacobson C. Cryptosporidium and Giardia in dam water on sheep farms – An important source of transmission? Vet Parasitol 2020. [DOI: 10.1108/01435129610106083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
16
|
Cryptosporidium and Giardia in dam water on sheep farms - An important source of transmission? Vet Parasitol 2020; 288:109281. [PMID: 33142151 DOI: 10.1016/j.vetpar.2020.109281] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/18/2022]
Abstract
Cryptosporidium and Giardia infections can negatively impact livestock health and reduce productivity, and some species and genotypes infecting livestock have zoonotic potential. Infection occurs via the faecal-oral route. Waterborne infections are a recognised source of infection for humans, but the role of livestock drinking water as a source of infection in livestock has not been described. This study aimed to determine whether contaminated drinking water supplies, such as farm dams, are a likely transmission source for Cryptosporidium and Giardia infections for extensively managed sheep. Dam water samples (n = 47) were collected during autumn, winter and spring from 12 farm dams located on six different farms in south west Western Australia, and faecal samples (n = 349) were collected from sheep with access to these dams. All samples were initially screened for Cryptosporidium spp. at the 18S locus and Giardia spp. at the gdh gene using qPCR, and oocyst numbers were determined directly from the qPCR data using DNA standards calibrated by droplet digital PCR. Cryptosporidium-positive sheep faecal samples were typed and subtyped by sequence analysis of 18S and gp60 loci, respectively. Giardia-specific PCR and Sanger sequencing targeting tpi and gdh loci were performed on Giardia- positive sheep faecal samples to characterise Giardia duodenalis assemblages. To identify Cryptosporidium and Giardia spp. in dam water samples, next-generation sequencing analysis of 18S and gdh amplicons were performed, respectively. Two species of Cryptosporidium (Cryptosporidium xiaoi and Cryptospordium ubiquitum (subtype family XIIa)) were detected in 38/345 sheep faecal samples, and in water from 9/12 farm dams during the study period, with C. xiaoi the species most frequently detected in both faeces and dam water overall. Giardia duodenalis assemblages AI, AII and E were detected in 36/348 faecal samples and water from 10/12 farm dams. For dam water samples where oo/cysts were detected by qPCR, Cryptosporidium oocyst concentration ranged from 518-2429 oocysts/L (n = 14), and Giardia cyst concentration ranged from 102 to 1077 cysts/L (n = 17). Cryptosporidium and Giardia with zoonotic potential were detected in farm dam water, including C. ubiquitum, C. hominis, C. parvum, C. cuniculus, C. xiaoi, and G. duodenalis assemblages A, B and E. The findings suggest that dam water can be contaminated with Cryptosporidium species and G. duodenalis assemblages that may infect sheep and with zoonotic potential, and farm dam water may represent one source of transmission for infections.
Collapse
|
17
|
Riches A, Hart CJS, Trenholme KR, Skinner-Adams TS. Anti- Giardia Drug Discovery: Current Status and Gut Feelings. J Med Chem 2020; 63:13330-13354. [PMID: 32869995 DOI: 10.1021/acs.jmedchem.0c00910] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Giardia parasites are ubiquitous protozoans of global importance that impact a wide range of animals including humans. They are the most common enteric pathogen of cats and dogs in developed countries and infect ∼1 billion people worldwide. While Giardia infections can be asymptomatic, they often result in severe and chronic diseases. There is also mounting evidence that they are linked to postinfection disorders. Despite growing evidence of the widespread morbidity associated with Giardia infections, current treatment options are limited to compound classes with broad antimicrobial activity. Frontline anti-Giardia drugs are also associated with increasing drug resistance and treatment failures. To improve the health and well-being of millions, new selective anti-Giardia drugs are needed alongside improved health education initiatives. Here we discuss current treatment options together with recent advances and gaps in drug discovery. We also propose criteria to guide the discovery of new anti-Giardia compounds.
Collapse
Affiliation(s)
- Andrew Riches
- Commonwealth Scientific and Industrial Research Organization, Biomedical Manufacturing, Clayton, Victoria 3168, Australia
| | - Christopher J S Hart
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Katharine R Trenholme
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, Queensland 4029, Australia.,School of Medicine, University of Queensland, Brisbane, Queensland 4029, Australia
| | - Tina S Skinner-Adams
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| |
Collapse
|
18
|
Zahedi A, Odgers T, Ball A, Watkinson A, Robertson I, Ryan U. Longitudinal analysis of Giardia duodenalis assemblages in animals inhabiting drinking water catchments in New South Wales and Queensland - Australia (2013-2015). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 718:137433. [PMID: 32105929 DOI: 10.1016/j.scitotenv.2020.137433] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/07/2020] [Accepted: 02/18/2020] [Indexed: 06/10/2023]
Abstract
Giardia duodenalis is one of the most common waterborne zoonotic parasites worldwide, and its occurrence in the environment and catchment reservoir water has serious implications for management of drinking water. The aim of the present study was to use molecular tools to identify the Giardia spp. infecting animals inhabiting five drinking water catchments across two states in Australia; New South Wales and Queensland, to better understand the potential health risks they pose. We used quantitative PCR to screen a total of 2174 faecal samples collected from dominant host species in catchment areas for the presence of G. duodenalis. All samples positive for G. duodenalis were further characterized and subtyped at tpi and gdh loci, respectively. The overall prevalence of G. duodenalis was 15.3% (332/2174, 95%CI; 13.8-16.9), and two zoonotic assemblages (assemblages A and B) and one potentially zoonotic assemblage (E) were detected in various host species. Additional subtyping of a subset of samples (n = 76) identified four human infectious sub-assemblages including AI, AII, BII-like and BIV-like, all of which have been previously reported in humans in Australia. The finding of zoonotic assemblages of G. duodenalis in the present study necessitates continued identification of the sources/carriers of human pathogenic strains in drinking water catchment areas for more accurate risk assessment and optimal catchment management.
Collapse
Affiliation(s)
- Alireza Zahedi
- College of Science, Health, Engineering and Education, Murdoch University, 6150 Perth, Australia.
| | - Tim Odgers
- Seqwater, Ipswich, Queensland, Australia
| | | | | | - Ian Robertson
- College of Science, Health, Engineering and Education, Murdoch University, 6150 Perth, Australia; China-Australia Joint Research and Training Center for Veterinary Epidemiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Una Ryan
- College of Science, Health, Engineering and Education, Murdoch University, 6150 Perth, Australia
| |
Collapse
|
19
|
Abstract
Cryptosporidium and Giardia are ubiquitous protozoan parasites that infect a broad range of vertebrate hosts, including domestic and wild animals as well as humans. Both parasites are of medical and veterinary importance. Infections with Cryptosporidium and Giardia in ruminants are associated with diarrhea outbreaks, mainly in young animals. Ruminants are potential sources of infection for humans because some species of Cryptosporidium and assemblages of Giardia duodenalis have been isolated from both ruminants and humans. Knowledge of these parasites has greatly expanded in the last 2 decades from simple microscopic observations of organisms to the knowledge acquired from molecular tools.
Collapse
Affiliation(s)
- Monica Santin
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, US Department of Agriculture, BARC-East, Building 173, 10300 Baltimore Avenue, Beltsville, MD 20705, USA.
| |
Collapse
|
20
|
Widmer G, Köster PC, Carmena D. Cryptosporidium hominis infections in non-human animal species: revisiting the concept of host specificity. Int J Parasitol 2020; 50:253-262. [PMID: 32205089 DOI: 10.1016/j.ijpara.2020.01.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 12/21/2022]
Abstract
Parasites in the genus Cryptosporidium, phylum Apicomplexa, are found worldwide in the intestinal tract of many vertebrate species and in the environment. Driven by sensitive PCR methods, and the availability of abundant sequence data and reference genomes, the taxonomic complexity of the genus has steadily increased; 38 species have been named to date. Due to its public health importance, Cryptosporidium hominis has long attracted the interest of the research community. This species was initially described as infectious to humans only. This perception has persisted in spite of an increasing number of observations of natural and experimental infections of animals with this species. Here we summarize and discuss this literature published since 2000 and conclude that the host range of C. hominis is broader than originally described. The evolving definition of the C. hominis host range raises interesting questions about host specificity and the evolution of Cryptosporidium parasites.
Collapse
Affiliation(s)
- Giovanni Widmer
- Department of Infectious Disease & Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA, 01536, United States
| | - Pamela C Köster
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Ctra. Majadahonda-Pozuelo Km 2, 28220 Majadahonda, Madrid, Spain
| | - David Carmena
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Ctra. Majadahonda-Pozuelo Km 2, 28220 Majadahonda, Madrid, Spain.
| |
Collapse
|
21
|
Davies C, Wright W, Hogan FE, Davies H. Detectability and activity patterns of sambar deer (Rusa unicolor) in Baw Baw National Park, Victoria. AUSTRALIAN MAMMALOGY 2020. [DOI: 10.1071/am19029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Introduced sambar deer (Rusa unicolor) are increasing in abundance and distribution across much of south-eastern Australia and causing damage to native ecosystems. However, the current paucity of knowledge surrounding many aspects of sambar deer ecology is limiting our capacity to make informed management decisions, and properly gauge the extent of deer impacts. Here we investigate correlates of sambar deer detectability and describe activity patterns of sambar deer in Baw Baw National Park (BBNP) to inform control operations. Camera traps were deployed in BBNP between October and December 2016. We used an occupancy modelling framework to investigate sambar deer detectability and camera trap record time stamps to determine sambar deer activity patterns. Sambar deer were found to be significantly more detectable near roads and in areas of sparse tree density and displayed strong crepuscular activity patterns. Control operations carried out along roads at dawn and dusk could be effective, at least in the short term. Likewise, aerial culling could be an effective control option for sambar deer populations in BBNP. This study highlights the utility of camera trap data to inform the application of control operations for cryptic invasive species.
Collapse
|
22
|
Kiani-Salmi N, Fattahi-Bafghi A, Astani A, Sazmand A, Zahedi A, Firoozi Z, Ebrahimi B, Dehghani-Tafti A, Ryan U, Akrami-Mohajeri F. Molecular typing of Giardia duodenalis in cattle, sheep and goats in an arid area of central Iran. INFECTION GENETICS AND EVOLUTION 2019; 75:104021. [PMID: 31494270 DOI: 10.1016/j.meegid.2019.104021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 08/02/2019] [Accepted: 09/03/2019] [Indexed: 12/13/2022]
Abstract
Giardia duodenalis is one of the most common intestinal parasites in humans as well as livestock and wildlife. It is of both public and veterinary health importance in developing nations. A molecular survey of Giardia duodenalis assemblages in ruminants from Yazd Province, Iran was conducted on 484 animal faecal samples collected per rectum from slaughtered ruminants including 192 cattle, 192 sheep and 100 goats from June to November 2017. Species-specific and assemblage-specific PCRs for assemblages A, B and E at the triose phosphate isomerase (tpi) gene were performed, and samples positive for Giardia were confirmed by sequencing. In total, 25 (5.16%) of examined faecal samples including eight cattle (4.2%), twelve sheep (6.2%) and five goats (5%) were infected with G. duodenalis. Assemblage-specific PCR detected G. duodenalis assemblage E in seven faecal samples (six in sheep and one in a goat). Assemblages A and B were not detected. This study provides the first insight into Giardia infection in slaughtered livestock in Iran. Although the prevalence of infection with Giardia in this hot-arid area of Iran was low, educating people about direct contact with livestock such as farmers and abattoirs workers about this zoonotic infection is important.
Collapse
Affiliation(s)
- Narges Kiani-Salmi
- Zoonotic Diseases Research Center, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Department of Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Ali Fattahi-Bafghi
- Department of Parasitology, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Akram Astani
- Zoonotic Diseases Research Center, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Department of Microbiology Sciences, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Alireza Sazmand
- Department of Pathobiology, Faculty of Veterinary Sciences, Bu-Ali Sina University, Hamedan, Iran
| | - Alireza Zahedi
- Vector- and Water-Borne Pathogens Research Group, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Zohre Firoozi
- Zoonotic Diseases Research Center, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Department of Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Behnam Ebrahimi
- Yazd Cardiovascular Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Arefeh Dehghani-Tafti
- Department of Biostatics and Epidemiology, School of Public Health, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Una Ryan
- Vector- and Water-Borne Pathogens Research Group, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Fateme Akrami-Mohajeri
- Zoonotic Diseases Research Center, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Department of Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran.
| |
Collapse
|
23
|
Ryan U, Zahedi A. Molecular epidemiology of giardiasis from a veterinary perspective. ADVANCES IN PARASITOLOGY 2019; 106:209-254. [PMID: 31630759 DOI: 10.1016/bs.apar.2019.07.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A total of eight Giardia species are accepted. These include: Giardia duodenalis (syn. Giardia intestinalis and Giardia lamblia), which infects humans and animals, Giardia agilis, Giardia ardeae, Giardia psittaci, Giardia muris, Giardia microti, Giardia peramelis and G. cricetidarum, which infect non-human hosts including amphibians, birds, rodents and marsupials. Giardia duodenalis is a species complex consisting of eight assemblages (A-H), with assemblages A and B the dominant assemblages in humans. Molecular studies to date on the zoonotic potential of Giardia in animals are problematic and are hampered by lack of concordance between loci. Livestock (cattle, sheep, goats and pigs) are predominantly infected with G. duodenalis assemblage E, which has recently been shown to be zoonotic, followed by assemblage A. In cats and dogs, assemblages A, B, C, D and F are commonly reported but relatively few studies have conducted molecular typing of humans and their pets and the results are contradictory with some studies support zoonotic transmission but the majority of studies suggesting separate transmission cycles. Giardia also infects a broad range of wildlife hosts and although much less well studied, host-adapted species as well as G. duodenalis assemblages (A-H) have been identified. Fish and other aquatic wildlife represent a source of infection for humans with Giardia via water contamination and/or consumption of undercooked fish and interestingly, assemblage B and A predominated in the two molecular studies conducted to date. Our current knowledge of the transmission dynamics of Giardia is still poor and the development of more discriminatory typing tools such as whole genome sequencing (WGS) of Giardia isolates is therefore essential.
Collapse
Affiliation(s)
- Una Ryan
- College of Science, Health, Education and Engineering, Murdoch University, Perth, WA, Australia.
| | - Alireza Zahedi
- College of Science, Health, Education and Engineering, Murdoch University, Perth, WA, Australia
| |
Collapse
|
24
|
Robertson LJ, Clark CG, Debenham JJ, Dubey J, Kváč M, Li J, Ponce-Gordo F, Ryan U, Schares G, Su C, Tsaousis AD. Are molecular tools clarifying or confusing our understanding of the public health threat from zoonotic enteric protozoa in wildlife? Int J Parasitol Parasites Wildl 2019; 9:323-341. [PMID: 31338293 PMCID: PMC6626983 DOI: 10.1016/j.ijppaw.2019.01.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 12/13/2022]
Abstract
Emerging infectious diseases are frequently zoonotic, often originating in wildlife, but enteric protozoa are considered relatively minor contributors. Opinions regarding whether pathogenic enteric protozoa may be transmitted between wildlife and humans have been shaped by our investigation tools, and have led to oscillations regarding whether particular species are zoonotic or have host-adapted life cycles. When the only approach for identifying enteric protozoa was morphology, it was assumed that many enteric protozoa colonized multiple hosts and were probably zoonotic. When molecular tools revealed genetic differences in morphologically identical species colonizing humans and other animals, host specificity seemed more likely. Parasites from animals found to be genetically identical - at the few genes investigated - to morphologically indistinguishable parasites from human hosts, were described as having zoonotic potential. More discriminatory molecular tools have now sub-divided some protozoa again. Meanwhile, some infection events indicate that, circumstances permitting, some "host-specific" protozoa, can actually infect various hosts. These repeated changes in our understanding are linked intrinsically to the investigative tools available. Here we review how molecular tools have assisted, or sometimes confused, our understanding of the public health threat from nine enteric protozoa and example wildlife hosts (Balantoides coli - wild boar; Blastocystis sp. - wild rodents; Cryptosporidium spp. - wild fish; Encephalitozoon spp. - wild birds; Entamoeba spp. - non-human primates; Enterocytozoon bieneusi - wild cervids; Giardia duodenalis - red foxes; Sarcocystis nesbitti - snakes; Toxoplasma gondii - bobcats). Molecular tools have provided evidence that some enteric protozoa in wildlife may infect humans, but due to limited discriminatory power, often only the zoonotic potential of the parasite is indicated. Molecular analyses, which should be as discriminatory as possible, are one, but not the only, component of the toolbox for investigating potential public health impacts from pathogenic enteric protozoa in wildlife.
Collapse
Affiliation(s)
- Lucy J. Robertson
- Parasitology Laboratory, Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, PO Box 369 Sentrum, 0102, Oslo, Norway
| | - C. Graham Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom
| | - John J. Debenham
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, PO Box 369 Sentrum, 0102, Oslo, Norway
| | - J.P. Dubey
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, Building 1001, Beltsville, MD, 20705-2350, USA
| | - Martin Kváč
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, Branišovská 31, 370 05, České Budějovice, Czech Republic
- Faculty of Agriculture, University of South Bohemia in České Budějovice, Studentská 1668, 370 05, Czech Republic
| | - Junqiang Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Francisco Ponce-Gordo
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain
| | - Una Ryan
- Centre for Sustainable Aquatic Ecosystems, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, 6150, Australia
| | - Gereon Schares
- Institute of Epidemiology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493, Greifswald, Insel Riems, Germany
| | - Chunlei Su
- Department of Microbiology, University of Tennessee, Knoxville, TN, 37996-1937, USA
| | - Anastasios D. Tsaousis
- Laboratory of Molecular & Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury, UK
| |
Collapse
|
25
|
Zahedi A, Greay TL, Paparini A, Linge KL, Joll CA, Ryan UM. Identification of eukaryotic microorganisms with 18S rRNA next-generation sequencing in wastewater treatment plants, with a more targeted NGS approach required for Cryptosporidium detection. WATER RESEARCH 2019; 158:301-312. [PMID: 31051375 DOI: 10.1016/j.watres.2019.04.041] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/02/2019] [Accepted: 04/19/2019] [Indexed: 06/09/2023]
Abstract
While some microbial eukaryotes can improve effluent quality in wastewater treatment plants (WWTPs), eukaryotic waterborne pathogens are a threat to public health. This study aimed to identify Eukarya, particularly faecal pathogens including Cryptosporidium, in different treatment stages (influent, intermediate and effluent) from four WWTPs in Western Australia (WA). Three WWTPs that utilise stabilisation ponds and one WWTP that uses activated sludge (oxidation ditch) treatment technologies were sampled. Eukaryotic 18S rRNA (18S) was targeted in the wastewater samples (n = 26) for next-generation sequencing (NGS), and a mammalian-blocking primer was used to reduce the amplification of mammalian DNA. Overall, bioinformatics analyses revealed 49 eukaryotic phyla in WWTP samples, and three of these phyla contained human intestinal parasites, which were primarily detected in the influent. These human intestinal parasites either had a low percent sequence composition or were not detected in the intermediate and effluent stages and included the amoebozoans Endolimax sp., Entamoeba sp. and Iodamoeba sp., the human pinworm Enterobius vermicularis (Nematoda), and Blastocystis sp. subtypes (Sarcomastigophora). Six Blastocystis subtypes and four Entamoeba species were identified by eukaryotic 18S NGS, however, Cryptosporidium sp. and Giardia sp. were not detected. Real-time polymerase chain reaction (PCR) also failed to detect Giardia, but Cryptosporidium-specific NGS detected Cryptosporidium in all WWTPs, and a total of nine species were identified, including five zoonotic pathogens. Although eukaryotic 18S NGS was able to identify some faecal pathogens, this study has demonstrated that more specific NGS approaches for pathogen detection are more sensitive and should be applied to future wastewater pathogen assessments.
Collapse
Affiliation(s)
- Alireza Zahedi
- Vector and Waterborne Pathogens Research Group, School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia; Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth, Western Australia, Australia.
| | - Telleasha L Greay
- Vector and Waterborne Pathogens Research Group, School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia; Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth, Western Australia, Australia.
| | - Andrea Paparini
- Vector and Waterborne Pathogens Research Group, School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia.
| | - Kathryn L Linge
- Curtin Water Quality Research Centre, Chemistry, School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, Australia; ChemCentre, PO Box 1250, Perth, Australia.
| | - Cynthia A Joll
- Curtin Water Quality Research Centre, Chemistry, School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, Australia.
| | - Una M Ryan
- Vector and Waterborne Pathogens Research Group, School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia.
| |
Collapse
|
26
|
Aburto-Medina A, Shahsavari E, Salzman SA, Kramer A, Ball AS, Allinson G. Elucidation of the microbial diversity in rivers in south-west Victoria, Australia impacted by rural agricultural contamination (dairy farming). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 172:356-363. [PMID: 30731266 DOI: 10.1016/j.ecoenv.2019.01.112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/24/2019] [Accepted: 01/31/2019] [Indexed: 06/09/2023]
Abstract
We assessed the water quality of south-west Victorian rivers impacted by the dairy industry using traditional water quality assessment together with culture-dependent (colilert/enterolert) and also culture-independent (next generation sequencing) microbial methods. The aim of the study was to identify relationships/associations between dairy farming intensity and water contamination. Water samples with high total and faecal coliforms (>1000 MPN cfu/100 ml), and with high nitrogen levels (TN) were observed in zones with a high proportion of dairy farming. Members of the genus Nitrospira, Rhodobacter and Rhodoplanes were predominant in such high cattle density zones. Samples from sites in zones with lower dairy farming activities registered faecal coliform numbers within the permissible limits (<1000 MPN cfu/100 ml) and showed the presence of a wide variety of microorganisms. However, no bacterial pathogens were found in the river waters regardless of the proportion of cattle. The data suggests that using the spatially weighted proportion of land used for dairy farming is a useful way to target at-risk sub-catchments across south west Victoria; further work is required to confirm that this approach is applicable in other regions.
Collapse
Affiliation(s)
- Arturo Aburto-Medina
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Victoria 3083, Australia.
| | - Esmaeil Shahsavari
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Victoria 3083, Australia
| | - Scott A Salzman
- Department of Information Systems and Business Analytics, Deakin University, Warrnambool, Victoria 3280 Australia
| | - Andrew Kramer
- Environment Protection Authority Victoria, Centre for Applied Sciences, Ernest Jones Drive, Macleod, Victoria 3085 Australia; Waikato Regional Council, Private Bag 3038, Waikato Mail Centre, Hamilton 3240, New Zealand
| | - Andrew S Ball
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Victoria 3083, Australia
| | - Graeme Allinson
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| |
Collapse
|
27
|
Giardia and Cryptosporidium in Red Foxes (Vulpes Vulpes): Screening for Coproantigens in a Population of Central Italy and Mini-Review of the Literature. MACEDONIAN VETERINARY REVIEW 2019. [DOI: 10.2478/macvetrev-2019-0013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Abstract
Giardia and Cryptosporidium are common protozoan parasites affecting several animal species and humans. The aim of this survey was to investigate, for the first time, their prevalence in red fox (Vulpes vulpes) faecal samples in central Italy. Seventy-one red foxes of different ages and sexes were examined for antigenic detection of Giardia and Cryptosporidium in fecal samples by means of a commercial rapid immunochromatographic test. The sample was randomly selected from foxes culled during a population control program. They were divided into groups based on sex and age (≤1-year-old and >1-year-old). Five (7%) and one (1.4%) out of 71 fecal samples were positive for the Giardia or Cryptosporidium antigens by immunochromatographic assay, respectively, and no coinfections were observed. The present prevalence rates of Giardia and Cryptosporidium antigens in faeces from V. vulpes suggest that this host species is likely to play only a limited role in the spread of the two protozoa in the study area. A concise review of the literature related to Giardia and Cryptosporidium in V. vulpes is presented.
Collapse
|
28
|
Anthropozoonotic significance, risk factors and spatial distribution of Giardia spp. infections in quenda ( Isoodon obesulus) in the greater Perth region, Western Australia. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2019; 9:42-48. [PMID: 30993073 PMCID: PMC6449742 DOI: 10.1016/j.ijppaw.2019.03.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/24/2019] [Accepted: 03/24/2019] [Indexed: 12/02/2022]
Abstract
Giardia spp. infections in wildlife populations have been linked to anthropogenic sources of infection and public health risk in a diversity of wildlife species and ecological locations worldwide. Quenda (Isoodon obesulus) remain in many urbanised areas of Perth, Western Australia, and can be gregarious in their interactions with humans and domestic animals. In a previous study, a high prevalence of Giardia spp. infection was identified amongst quenda trapped in urbanised environments and bushland in Perth, Western Australia. This study aimed to expand on that finding, by: identifying and estimating the prevalence of particular species of Giardia infecting quenda, and thus clarifying their anthropozoonotic/public health significance; identifying risk factors for Giardia spp. infection; and investigating putative associations between infection and indicators of ill health. Giardia spp. infections in Perth quenda are overwhelmingly of the host-adapted, non-zoonotic Giardia peramelis (apparent prevalence 22.2%; 95% CI 17.7–27.4%), indicating that quenda are not a substantial veterinary public health risk regarding this parasite genus. However, one case each of Giardia duodenalis and Giardia canis genotype D were identified in quenda trapped in urbanised environments (apparent prevalences 0.4%; 95% CI 0.1–1.9%). In quenda, Giardia spp. infection is associated with Cryptosporidium infection and flea infection intensity, which may reflect host population density, or regarding Cryptosporidium spp., similar transmission pathways or synergistic interactions between these taxa within the host. Giardia spp. infection is not associated with the measured indicators of ill health in Perth quenda, but this finding is representative of Giardia peramelis only, given the apparent rarity of other Giardia sp. infections in this study. Giardia spp. infections in Perth quenda are rarely of anthropozoonotic species. Anthropozoonotic Giardia spp. only found in quenda in urbanised environments. Quenda Giardia spp. infection risk is associated with Cryptosporidium spp. No association identified between G. peramelis infection and ill health indicators.
Collapse
|
29
|
Zahedi A, Gofton AW, Greay T, Monis P, Oskam C, Ball A, Bath A, Watkinson A, Robertson I, Ryan U. Profiling the diversity of Cryptosporidium species and genotypes in wastewater treatment plants in Australia using next generation sequencing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 644:635-648. [PMID: 30743878 DOI: 10.1016/j.scitotenv.2018.07.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/02/2018] [Accepted: 07/02/2018] [Indexed: 06/09/2023]
Abstract
Wastewater recycling is an increasingly popular option in worldwide to reduce pressure on water supplies due to population growth and climate change. Cryptosporidium spp. are among the most common parasites found in wastewater and understanding the prevalence of human-infectious species is essential for accurate quantitative microbial risk assessment (QMRA) and cost-effective management of wastewater. The present study conducted next generation sequencing (NGS) to determine the prevalence and diversity of Cryptosporidium species in 730 raw influent samples from 25 Australian wastewater treatment plants (WWTPs) across three states: New South Wales (NSW), Queensland (QLD) and Western Australia (WA), between 2014 and 2015. All samples were screened for the presence of Cryptosporidium at the 18S rRNA (18S) locus using quantitative PCR (qPCR), oocyst numbers were determined directly from the qPCR data using DNA standards calibrated by droplet digital PCR, and positives were characterized using NGS of 18S amplicons. Positives were also screened using C. parvum and C. hominis specific qPCRs. The overall Cryptosporidium prevalence was 11.4% (83/730): 14.3% (3/21) in NSW; 10.8% (51/470) in QLD; and 12.1% (29/239) in WA. A total of 17 Cryptosporidium species and six genotypes were detected by NGS. In NSW, C. hominis and Cryptosporidium rat genotype III were the most prevalent species (9.5% each). In QLD, C. galli, C. muris and C. parvum were the three most prevalent species (7.7%, 5.7%, and 4.5%, respectively), while in WA, C. meleagridis was the most prevalent species (6.3%). The oocyst load/Litre ranged from 70 to 18,055 oocysts/L (overall mean of 3426 oocysts/L: 4746 oocysts/L in NSW; 3578 oocysts/L in QLD; and 3292 oocysts/L in WA). NGS-based profiling demonstrated that Cryptosporidium is prevalent in the raw influent across Australia and revealed a large diversity of Cryptosporidium species and genotypes, which indicates the potential contribution of livestock, wildlife and birds to wastewater contamination.
Collapse
Affiliation(s)
- Alireza Zahedi
- School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
| | - Alexander W Gofton
- School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
| | - Telleasha Greay
- School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
| | - Paul Monis
- Australian Water Quality Centre, South Australian Water Corporation, Adelaide, Australia
| | - Charlotte Oskam
- School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
| | | | | | - Andrew Watkinson
- Seqwater, Ipswich, Queensland, Australia; University of Queensland, St Lucia, Queensland, Australia
| | - Ian Robertson
- School of Veterinary and Life Sciences, Murdoch University, Perth, Australia; China-Australia Joint Research and Training Centre for Veterinary Epidemiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Una Ryan
- School of Veterinary and Life Sciences, Murdoch University, Perth, Australia.
| |
Collapse
|
30
|
Genetic Diversity and Population Structure of Cryptosporidium. Trends Parasitol 2018; 34:997-1011. [DOI: 10.1016/j.pt.2018.07.009] [Citation(s) in RCA: 269] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 07/18/2018] [Accepted: 07/20/2018] [Indexed: 12/14/2022]
|
31
|
Zahedi A, Monis P, Gofton AW, Oskam CL, Ball A, Bath A, Bartkow M, Robertson I, Ryan U. Cryptosporidium species and subtypes in animals inhabiting drinking water catchments in three states across Australia. WATER RESEARCH 2018; 134:327-340. [PMID: 29438893 DOI: 10.1016/j.watres.2018.02.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/22/2018] [Accepted: 02/04/2018] [Indexed: 06/08/2023]
Abstract
As part of long-term monitoring of Cryptosporidium in water catchments serving Western Australia, New South Wales (Sydney) and Queensland, Australia, we characterised Cryptosporidium in a total of 5774 faecal samples from 17 known host species and 7 unknown bird samples, in 11 water catchment areas over a period of 30 months (July 2013 to December 2015). All samples were initially screened for Cryptosporidium spp. at the 18S rRNA locus using a quantitative PCR (qPCR). Positives samples were then typed by sequence analysis of an 825 bp fragment of the 18S gene and subtyped at the glycoprotein 60 (gp60) locus (832 bp). The overall prevalence of Cryptosporidium across the various hosts sampled was 18.3% (1054/5774; 95% CI, 17.3-19.3). Of these, 873 samples produced clean Sanger sequencing chromatograms, and the remaining 181 samples, which initially produced chromatograms suggesting the presence of multiple different sequences, were re-analysed by Next- Generation Sequencing (NGS) to resolve the presence of Cryptosporidium and the species composition of potential mixed infections. The overall prevalence of confirmed mixed infection was 1.7% (98/5774), and in the remaining 83 samples, NGS only detected one species of Cryptosporidium. Of the 17 Cryptosporidium species and four genotypes detected (Sanger sequencing combined with NGS), 13 are capable of infecting humans; C. parvum, C. hominis, C. ubiquitum, C. cuniculus, C. meleagridis, C. canis, C. felis, C. muris, C. suis, C. scrofarum, C. bovis, C. erinacei and C. fayeri. Oocyst numbers per gram of faeces (g-1) were also determined using qPCR, with medians varying from 6021-61,064 across the three states. The significant findings were the detection of C. hominis in cattle and kangaroo faeces and the high prevalence of C. parvum in cattle. In addition, two novel C. fayeri subtypes (IVaA11G3T1 and IVgA10G1T1R1) and one novel C. meleagridis subtype (IIIeA18G2R1) were identified. This is also the first report of C. erinacei in Australia. Future work to monitor the prevalence of Cryptosporidium species and subtypes in animals in these catchments is warranted.
Collapse
Affiliation(s)
- Alireza Zahedi
- School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
| | - Paul Monis
- Australian Water Quality Centre, South Australian Water Corporation, Adelaide, Australia
| | - Alexander W Gofton
- School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
| | - Charlotte L Oskam
- School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
| | | | | | | | - Ian Robertson
- School of Veterinary and Life Sciences, Murdoch University, Perth, Australia; China-Australia Joint Research and Training Center for Veterinary Epidemiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Una Ryan
- School of Veterinary and Life Sciences, Murdoch University, Perth, Australia.
| |
Collapse
|
32
|
Cacciò SM, Lalle M, Svärd SG. Host specificity in the Giardia duodenalis species complex. INFECTION GENETICS AND EVOLUTION 2017; 66:335-345. [PMID: 29225147 DOI: 10.1016/j.meegid.2017.12.001] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/01/2017] [Accepted: 12/02/2017] [Indexed: 12/15/2022]
Abstract
Giardia duodenalis is a unicellular flagellated parasite that infects the gastrointestinal tract of a wide range of mammalian species, including humans. Investigations of protein and DNA polymorphisms revealed that G. duodenalis should be considered as a species complex, whose members, despite being morphologically indistinguishable, can be classified into eight groups, or Assemblages, separated by large genetic distances. Assemblages display various degree of host specificity, with Assemblages A and B occurring in humans and many other hosts, Assemblage C and D in canids, Assemblage E in hoofed animals, Assemblage F in cats, Assemblage G in rodents, and Assemblage H in pinnipeds. The factors determining host specificity are only partially understood, and clearly involve both the host and the parasite. Here, we review the results of in vitro and in vivo experiments, and clinical observations to highlight relevant biological and genetic differences between Assemblages, with a focus on human infection.
Collapse
Affiliation(s)
- Simone M Cacciò
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy.
| | - Marco Lalle
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Staffan G Svärd
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
33
|
|
34
|
Barbosa A, Reiss A, Jackson B, Warren K, Paparini A, Gillespie G, Stokeld D, Irwin P, Ryan U. Prevalence, genetic diversity and potential clinical impact of blood-borne and enteric protozoan parasites in native mammals from northern Australia. Vet Parasitol 2017; 238:94-105. [DOI: 10.1016/j.vetpar.2017.04.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/15/2017] [Accepted: 04/03/2017] [Indexed: 12/29/2022]
|
35
|
Zoonotic Cryptosporidium Species in Animals Inhabiting Sydney Water Catchments. PLoS One 2016; 11:e0168169. [PMID: 27973572 PMCID: PMC5156390 DOI: 10.1371/journal.pone.0168169] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 11/25/2016] [Indexed: 11/19/2022] Open
Abstract
Cryptosporidium is one of the most common zoonotic waterborne parasitic diseases worldwide and represents a major public health concern of water utilities in developed nations. As animals in catchments can shed human-infectious Cryptosporidium oocysts, determining the potential role of animals in dissemination of zoonotic Cryptosporidium to drinking water sources is crucial. In the present study, a total of 952 animal faecal samples from four dominant species (kangaroos, rabbits, cattle and sheep) inhabiting Sydney's drinking water catchments were screened for the presence of Cryptosporidium using a quantitative PCR (qPCR) and positives sequenced at multiple loci. Cryptosporidium species were detected in 3.6% (21/576) of kangaroos, 7.0% (10/142) of cattle, 2.3% (3/128) of sheep and 13.2% (14/106) of rabbit samples screened. Sequence analysis of a region of the 18S rRNA locus identified C. macropodum and C. hominis in 4 and 17 isolates from kangaroos respectively, C. hominis and C. parvum in 6 and 4 isolates respectively each from cattle, C. ubiquitum in 3 isolates from sheep and C. cuniculus in 14 isolates from rabbits. All the Cryptosporidium species identified were zoonotic species with the exception of C. macropodum. Subtyping using the 5' half of gp60 identified C. hominis IbA10G2 (n = 12) and IdA15G1 (n = 2) in kangaroo faecal samples; C. hominis IbA10G2 (n = 4) and C. parvum IIaA18G3R1 (n = 4) in cattle faecal samples, C. ubiquitum subtype XIIa (n = 1) in sheep and C. cuniculus VbA23 (n = 9) in rabbits. Additional analysis of a subset of samples using primers targeting conserved regions of the MIC1 gene and the 3' end of gp60 suggests that the C. hominis detected in these animals represent substantial variants that failed to amplify as expected. The significance of this finding requires further investigation but might be reflective of the ability of this C. hominis variant to infect animals. The finding of zoonotic Cryptosporidium species in these animals may have important implications for the management of drinking water catchments to minimize risk to public health.
Collapse
|
36
|
Koloren Z, Ayaz E. Genotyping of Cryptosporidium spp. in environmental water in Turkey. Acta Parasitol 2016; 61:671-679. [PMID: 27787219 DOI: 10.1515/ap-2016-0094] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 05/23/2016] [Indexed: 11/15/2022]
Abstract
This research was undertaken to study the molecular detection and characterization of Cryptosporidium spp. in environmental water sources at Samsun and Giresun Provinces of The Black Sea in Turkey. Two-hundred forty and one-hundred eighty environmental samples were collected from a total of twenty and twenty-five sampling sites of Giresun and Samsun Provinces. One hundred twenty untreated drinking water samples were also detected for Cryptosporidium spp. in both investigated areas. 101 (%42), 92 (%38.3) of 240 and 74 (41.1%), 70 (38.8%) of 180 environmental samples have been found positive for Cryptosporidium spp. by Loop mediated isothermal amplification (LAMP) targeting the S-adenosyl-L-methionine synthetase (SAM) gene and nested PCR targeting small subunit (SSU)rRNA gene in Samsun and Giresun Provinces, respectively. Of the tested untreated drinking water samples collected from the investigated area, one sample was positive for Cryptosporidium spp. Six and twelve samples were clearly sequenced for the Cryptosporidium (SSU)rRNA gene among the highest positive samples selected from each of the twenty and twenty-five sampling sites of Giresun and Samsun Provinces, respectively. Genetic characterization of Cryptosporidium isolates from water samples represented Cryptosporidium bovis for five samples, Cryptosporidium parvum for six samples and one sample for Cryptosporidium felis in Samsun Province, where C. parvum for five samples and C. bovis for one sample were sequenced in Giresun Province. According to accessible information sources, this is the first research about genotyping of Cryptosporidium spp. in water samples collected from Samsun and Giresun Provinces of Turkey.
Collapse
|
37
|
Occurency of Giardia duodenalis assemblages in river water sources of Black Sea, Turkey. Acta Trop 2016; 164:337-344. [PMID: 27697482 DOI: 10.1016/j.actatropica.2016.09.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/23/2016] [Accepted: 09/25/2016] [Indexed: 11/23/2022]
Abstract
A total of 420 environmental water samples and 120 drinking water samples from 45 different sampling sites of the Black Sea in Turkey were collected between 2012 and 2014. Genomic DNA was isolated from all the investigated water samples and comparativelly analyzed by Loop-mediated isothermal amplification (LAMP) of the elongation factor 1 Alfa (EF1α) gene, and by nested Polymerase Chain Reaction (nPCR) of the small subunit (SSU) rRNA and semi-nested PCR (snPCR) of the glutamate dehydrogenase gene (GDH). 141 (58.7%), 125 (52.1%) and 120 (50%) samples respectivelly were positive by each method. Out of 240 environmental samples collected from 25 sites of Samsun Province have been found positive for G. duodenalis by LAMP, nPCR and snPCR, respectively. 55 (30.5%), 50 (27.8%) and 47 (26.1%) of 180 environmental samples collected from 20 other sampling sites of Giresun Province were positive for Giardia by LAMP, nPCR and snPCR, respectively. Five PCR products from different samples of the Giresun Province and 10 other samples from the Samsun Province were found positive for G. duodenalis assemblage B. Five PCR products from Giresun Province and 5 samples from Samsun Province were found positive for G. duodenalis assemblage A. This is the first report about G. duodenalis assemblages A and B from water samples investigations in Black Sea of Turkey.
Collapse
|
38
|
Schiller SE, Webster KN, Power M. Detection of Cryptosporidium hominis and novel Cryptosporidium bat genotypes in wild and captive Pteropus hosts in Australia. INFECTION GENETICS AND EVOLUTION 2016; 44:254-260. [DOI: 10.1016/j.meegid.2016.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 07/01/2016] [Accepted: 07/03/2016] [Indexed: 11/17/2022]
|
39
|
Chan D, Barratt J, Roberts T, Phillips O, Šlapeta J, Ryan U, Marriott D, Harkness J, Ellis J, Stark D. Detection of Dientamoeba fragilis in animal faeces using species specific real time PCR assay. Vet Parasitol 2016; 227:42-7. [PMID: 27523936 DOI: 10.1016/j.vetpar.2016.07.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/18/2016] [Accepted: 07/19/2016] [Indexed: 11/26/2022]
Abstract
Dientamoeba fragilis is a potentially pathogenic, enteric, protozoan parasite with a worldwide distribution. While clinical case reports and prevalence studies appear regularly in the scientific literature, little attention has been paid to this parasite's biology, life cycle, host range, and possible transmission routes. Overall, these aspects of Dientamoeba biology remain poorly understood at best. In this study, a total of 420 animal samples, collected from Australia, were surveyed for the presence of Dientamoeba fragilis using PCR. Several PCR assays were evaluated for sensitivity and specificity. Two previously published PCR methods demonstrated cross reactivity with other trichomonads commonly found in animal samples. Only one assay exhibited excellent specificity. Using this assay D. fragilis was detected from one dog and one cat sample. This is the first report of D. fragilis from these animals and highlights the role companion animals may play in D. fragilis transmission. This study demonstrated that some published D. fragilis molecular assays cross react with other closely related trichomonads and consequently are not suitable for animal prevalence studies.
Collapse
Affiliation(s)
- Douglas Chan
- Department of Microbiology, SydPath, St. Vincent's Hospital, Victoria St, Darlinghurst, N.S.W, Australia; i3 Institute, University of Technology, Sydney, Ultimo, N.S.W, Australia; School of Life Sciences, University of Technology, Sydney, Ultimo, N.S.W, Australia
| | - Joel Barratt
- i3 Institute, University of Technology, Sydney, Ultimo, N.S.W, Australia; School of Life Sciences, University of Technology, Sydney, Ultimo, N.S.W, Australia
| | - Tamalee Roberts
- Department of Microbiology, SydPath, St. Vincent's Hospital, Victoria St, Darlinghurst, N.S.W, Australia
| | - Owen Phillips
- Department of Microbiology, SydPath, St. Vincent's Hospital, Victoria St, Darlinghurst, N.S.W, Australia
| | - Jan Šlapeta
- School of Life and Environmental Sciences, Faculty of Veterinary Science, The University of Sydney, N.S.W., Australia
| | - Una Ryan
- School of Veterinary and Life Sciences, Murdoch University, Western Australia, Australia
| | - Deborah Marriott
- Department of Microbiology, SydPath, St. Vincent's Hospital, Victoria St, Darlinghurst, N.S.W, Australia
| | - John Harkness
- Department of Microbiology, SydPath, St. Vincent's Hospital, Victoria St, Darlinghurst, N.S.W, Australia
| | - John Ellis
- School of Life Sciences, University of Technology, Sydney, Ultimo, N.S.W, Australia
| | - Damien Stark
- Department of Microbiology, SydPath, St. Vincent's Hospital, Victoria St, Darlinghurst, N.S.W, Australia; School of Life Sciences, University of Technology, Sydney, Ultimo, N.S.W, Australia.
| |
Collapse
|
40
|
Asher AJ, Hose G, Power ML. Giardiasis in NSW: Identification of Giardia duodenalis assemblages contributing to human and cattle cases, and an epidemiological assessment of sporadic human giardiasis. INFECTION GENETICS AND EVOLUTION 2016; 44:157-161. [PMID: 27370572 DOI: 10.1016/j.meegid.2016.06.051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 06/19/2016] [Accepted: 06/27/2016] [Indexed: 11/19/2022]
Abstract
Two genetic assemblages (A and B) of the protozoan parasite species, Giardia duodenalis, infect humans, domestic animals and wildlife. In New South Wales, Australia, over 2000 sporadic human giardiasis cases are reported annually, but parasite sources and links between sporadic cases are unknown. This study describes G. duodenalis assemblages contributing to human and cattle cases in NSW, and examines demographic, spatial, and temporal distributions of NSW human infections and G. duodenalis assemblages. Genotyping by PCR-restriction fragment length polymorphism of the glutamate dehydrogenase (gdh) gene identified G. duodenalis assemblage B as the most common (86%) cause of infection among human cases (n=165). Approximately 37% of cattle DNA samples were PCR positive (18S rRNA, gdh), and G. duodenalis assemblages E (69%) or B (31%) were identified from these samples. Human assemblage A was more common among older age groups, and seasonality in the geographic dispersal of human assemblage A was observed. The results of this study indicate G. duodenalis assemblage B is highly prevalent among humans in NSW, and the potential for cross-species transmission exists between humans and cattle in this region. Spatio-temporal and demographic distributions of human assemblage A and B are highlighted, and risk factors associated with these dispersal patterns warrants further research.
Collapse
Affiliation(s)
- A J Asher
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia.
| | - G Hose
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - M L Power
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
41
|
Koehler AV, Haydon SR, Jex AR, Gasser RB. Cryptosporidium and Giardia taxa in faecal samples from animals in catchments supplying the city of Melbourne with drinking water (2011 to 2015). Parasit Vectors 2016; 9:315. [PMID: 27251294 PMCID: PMC4888428 DOI: 10.1186/s13071-016-1607-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 05/25/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In a long-term program to monitor pathogens in water catchments serving the City of Melbourne in the State of Victoria in Australia, we detected and genetically characterised Cryptosporidium and Giardia in faecal samples from various animals in nine water reservoir areas over a period of 4 years (July 2011 to November 2015). METHODS This work was conducted using PCR-based single-strand conformation polymorphism (SSCP) and phylogenetic analyses of portions of the small subunit of ribosomal RNA (SSU) and 60 kDa glycoprotein (gp60) genes for Cryptosporidium, and triose-phosphate isomerase (tpi) gene for Giardia. RESULTS The prevalence of Cryptosporidium was 1.62 % (69 of 4,256 samples); 25 distinct sequence types were defined for pSSU, and six for gp60 which represented C. hominis (genotype Ib - subgenotype IbA10G2), C. cuniculus (genotype Vb - subgenotypes VbA26, and VbA25), and C. canis, C. fayeri, C. macropodum, C. parvum, C. ryanae, Cryptosporidium sp. "duck" genotype, C. suis and C. ubiquitum as well as 12 novel SSU sequence types. The prevalence of Giardia was 0.31 % (13 of 4,256 samples); all three distinct tpi sequence types defined represented assemblage A of G. duodenalis. CONCLUSIONS Of the 34 sequence types (genotypes) characterized here, five and one have been recorded previously for Cryptosporidium and Giardia, respectively, from humans. Novel genotypes of Cryptosporidium and Giardia were recorded for SSU (n = 12), gp60 (n = 4) and tpi (n = 1); the zoonotic potential of these novel genotypes is presently unknown. Future work will continue to monitor the prevalence of Cryptosporidium and Giardia genotypes in animals in these catchments, and expand investigations to humans. Nucleotide sequences reported in this paper are available in the GenBank database under accession nos. KU531647-KU531718.
Collapse
Affiliation(s)
- Anson V Koehler
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| | | | - Aaron R Jex
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
- The Walter and Eliza Hall Institute, Parkville, Victoria, 3052, Australia
| | - Robin B Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
42
|
Heyworth MF. Giardia duodenalis genetic assemblages and hosts. ACTA ACUST UNITED AC 2016; 23:13. [PMID: 26984116 PMCID: PMC4794627 DOI: 10.1051/parasite/2016013] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/06/2016] [Indexed: 01/12/2023]
Abstract
Techniques for sub-classifying morphologically identical Giardia duodenalis trophozoites have included comparisons of the electrophoretic mobility of enzymes and of chromosomes, and sequencing of genes encoding β-giardin, triose phosphate isomerase, the small subunit of ribosomal RNA and glutamate dehydrogenase. To date, G. duodenalis organisms have been sub-classified into eight genetic assemblages (designated A–H). Genotyping of G. duodenalis organisms isolated from various hosts has shown that assemblages A and B infect the largest range of host species, and appear to be the main (or possibly only) G. duodenalis assemblages that undeniably infect human subjects. In at least some cases of assemblage A or B infection in wild mammals, there is suggestive evidence that the infection had resulted from environmental contamination by G. duodenalis cysts of human origin.
Collapse
Affiliation(s)
- Martin F Heyworth
- Research Service (151), Corporal Michael J. Crescenz Veterans Affairs (VA) Medical Center, University and Woodland Avenues, Philadelphia, PA 19104, USA - Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
43
|
Giardia duodenalis genotypes in domestic and wild animals from Romania identified by PCR-RFLP targeting the gdh gene. Vet Parasitol 2016; 217:71-5. [DOI: 10.1016/j.vetpar.2015.10.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/01/2015] [Accepted: 10/15/2015] [Indexed: 11/21/2022]
|
44
|
Hillman A, Ash A, Elliot A, Lymbery A, Perez C, Thompson RCA. Confirmation of a unique species of Giardia, parasitic in the quenda ( Isoodon obesulus). INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2016; 5:110-115. [PMID: 28560164 PMCID: PMC5439545 DOI: 10.1016/j.ijppaw.2016.01.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/27/2015] [Accepted: 01/07/2016] [Indexed: 11/24/2022]
Abstract
The ‘quenda genotype’ of Giardia was first identified in quenda (syn. southern brown bandicoots, Isoodon obesulus) in Western Australia in 2004. We aimed to formally describe this genotype as a species of Giardia, Giardia peramelis. Seventy five faecal samples positive for G. peramelis were obtained from quenda within the Statistical Division of Perth, Western Australia. These samples were used in morphological and molecular characterisation of G. peramelis. PCR amplification and sequencing was most successful at the 18S rRNA and ITS1-5.8s-ITS2 loci. Phylogenetic analyses placed G. peramelis external to the ‘Giardia duodenalis species complex’ and Giardia microti. This confirmed the uniqueness of G. peramelis, warranting classification as a separate species of Giardia. Study findings suggest quenda are a natural host for G. peramelis. Giardia peramelis is formally described. PCR techniques for G. peramelis are outlined. G. peramelis phylogenetic trees are presented.
Collapse
Affiliation(s)
- Alison Hillman
- Murdoch University, 90 South St, Murdoch, WA, 6150, Australia
| | - Amanda Ash
- Murdoch University, 90 South St, Murdoch, WA, 6150, Australia
| | - Aileen Elliot
- Murdoch University, 90 South St, Murdoch, WA, 6150, Australia
| | - Alan Lymbery
- Murdoch University, 90 South St, Murdoch, WA, 6150, Australia
| | - Catherine Perez
- Murdoch University, 90 South St, Murdoch, WA, 6150, Australia
| | | |
Collapse
|
45
|
Vermeulen ET, Power ML, Nipperess DA, Beveridge I, Eldridge MDB. Biodiversity of parasite assemblages in the genus Petrogale and its relation to the phylogeny and biogeography of their hosts. AUST J ZOOL 2016. [DOI: 10.1071/zo16023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Parasites form an integral part of overall biodiversity although they are often overlooked in conservation management, where emphasis is primarily directed towards the host. Parasites are often highly specialised to particular hosts, and thus may be just as threatened as the host they inhabit. For many of Australia’s wildlife species, little is known about their associated parasite communities. To begin to address this knowledge gap, we documented the parasite fauna described in the genetically diverse marsupial genus Petrogale, which contains seven species of conservation concern. The literature evaluation showed parasites of Petrogale to be highly diverse, with 17 species of protozoa, 8 species of cestodes, 102 species of nematodes and 30 species of ectoparasites identified in 16 of 17 Petrogale host species. A comparison of the parasite communities amongst Petrogale host species indicated a highly significant correlation between the parasite community similarity, and the phylogeny (P = 0.008) and biogeography (P = 0.0001) of their Petrogale hosts, suggesting high host specificity within their associated parasite assemblages. Five Petrogale species have established species recovery programs and their parasite communities should also be considered threatened, and management of parasite diversity required as part of these conservation programs.
Collapse
|
46
|
Davis NE, Bennett A, Forsyth DM, Bowman DMJS, Lefroy EC, Wood SW, Woolnough AP, West P, Hampton JO, Johnson CN. A systematic review of the impacts and management of introduced deer (family Cervidae) in Australia. WILDLIFE RESEARCH 2016. [DOI: 10.1071/wr16148] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Deer are among the world’s most successful invasive mammals and can have substantial deleterious impacts on natural and agricultural ecosystems. Six species have established wild populations in Australia, and the distributions and abundances of some species are increasing. Approaches to managing wild deer in Australia are diverse and complex, with some populations managed as ‘game’ and others as ‘pests’. Implementation of cost-effective management strategies that account for this complexity is hindered by a lack of knowledge of the nature, extent and severity of deer impacts. To clarify the knowledge base and identify research needs, we conducted a systematic review of the impacts and management of wild deer in Australia. Most wild deer are in south-eastern Australia, but bioclimatic analysis suggested that four species are well suited to the tropical and subtropical climates of northern Australia. Deer could potentially occupy most of the continent, including parts of the arid interior. The most significant impacts are likely to occur through direct effects of herbivory, with potentially cascading indirect effects on fauna and ecosystem processes. However, evidence of impacts in Australia is largely observational, and few studies have experimentally partitioned the impacts of deer from those of sympatric native and other introduced herbivores. Furthermore, there has been little rigorous testing of the efficacy of deer management in Australia, and our understanding of the deer ecology required to guide deer management is limited. We identified the following six priority research areas: (i) identifying long-term changes in plant communities caused by deer; (ii) understanding interactions with other fauna; (iii) measuring impacts on water quality; (iv) assessing economic impacts on agriculture (including as disease vectors); (v) evaluating efficacy of management for mitigating deer impacts; and (vi) quantifying changes in distribution and abundance. Addressing these knowledge gaps will assist the development and prioritisation of cost-effective management strategies and help increase stakeholder support for managing the impacts of deer on Australian ecosystems.
Collapse
|
47
|
Public health significance of zoonotic Cryptosporidium species in wildlife: Critical insights into better drinking water management. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2015; 5:88-109. [PMID: 28560163 PMCID: PMC5439462 DOI: 10.1016/j.ijppaw.2015.12.001] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/01/2015] [Accepted: 12/02/2015] [Indexed: 11/22/2022]
Abstract
Cryptosporidium is an enteric parasite that is transmitted via the faecal-oral route, water and food. Humans, wildlife and domestic livestock all potentially contribute Cryptosporidium to surface waters. Human encroachment into natural ecosystems has led to an increase in interactions between humans, domestic animals and wildlife populations. Increasing numbers of zoonotic diseases and spill over/back of zoonotic pathogens is a consequence of this anthropogenic disturbance. Drinking water catchments and water reservoir areas have been at the front line of this conflict as they can be easily contaminated by zoonotic waterborne pathogens. Therefore, the epidemiology of zoonotic species of Cryptosporidium in free-ranging and captive wildlife is of increasing importance. This review focuses on zoonotic Cryptosporidium species reported in global wildlife populations to date, and highlights their significance for public health and the water industry.
Collapse
|
48
|
Vermeulen ET, Ashworth DL, Eldridge MDB, Power ML. Investigation into potential transmission sources of Giardia duodenalis in a threatened marsupial (Petrogale penicillata). INFECTION GENETICS AND EVOLUTION 2015; 33:277-80. [PMID: 25986646 DOI: 10.1016/j.meegid.2015.05.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/20/2015] [Accepted: 05/14/2015] [Indexed: 11/17/2022]
Abstract
Assemblages of the protozoan parasite Giardia duodenalis common in humans and domestic species are increasingly identified in wildlife species, raising concern about the spill-over of pathogens from humans and domestic animals into wildlife. Here, the identity and prevalence of G. duodenalis in populations of a threatened marsupial, the brush-tailed rock-wallaby (Petrogale penicillata), was investigated. Identification of G. duodenalis isolates, across three loci (18S rRNA, β-giardin and gdh), from rock-wallaby fecal samples (n = 318) identified an overall detection rate of 6.3%. No significant difference in G. duodenalis detection was found among captive, wild and supplemented populations. Isolates were assigned to the zoonotic assemblages A and B at 18S rRNA, with sub-assemblages AI and BIV identified at the β-giardin and gdh loci, respectively. Assemblages AI and BIV have previously been identified in human clinical cases, but also in domestic animals and wildlife. The identification of these assemblages in brush-tailed rock-wallabies suggests there are transmission routes of G. duodenalis from humans or other animals to Australian wildlife, both in captivity and in the wild.
Collapse
Affiliation(s)
- Elke T Vermeulen
- Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia.
| | - Deborah L Ashworth
- Office of Environment and Heritage, PO Box 1967, Hurstville, NSW 2220, Australia.
| | - Mark D B Eldridge
- Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia; Australian Museum Research Institute, Australian Museum, 6 College Street, Sydney, NSW 2010, Australia.
| | - Michelle L Power
- Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia.
| |
Collapse
|
49
|
Vermeulen ET, Ashworth DL, Eldridge MD, Power ML. Diversity of Cryptosporidium in brush-tailed rock-wallabies (Petrogale penicillata) managed within a species recovery programme. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2015; 4:190-6. [PMID: 25834789 PMCID: PMC4372656 DOI: 10.1016/j.ijppaw.2015.02.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 02/11/2015] [Accepted: 02/13/2015] [Indexed: 11/19/2022]
Abstract
Cryptosporidium diversity was investigated in a BTRW as part of a recovery programme. Faecal samples from captive bred, supplemented and wild wallabies were screened. Cryptosporidium isolates were identified at three gene loci using PCR. Diverse species of Cryptosporidium were identified across populations. Both specific, C. fayeri, and broad host species, C. meleagridis, were identified.
Host–parasite relationships are likely to be impacted by conservation management practices, potentially increasing the susceptibility of wildlife to emerging disease. Cryptosporidium, a parasitic protozoan genus comprising host-adapted and host-specific species, was used as an indicator of parasite movement between populations of a threatened marsupial, the brush-tailed rock-wallaby (Petrogale penicillata). PCR screening of faecal samples (n = 324) from seven wallaby populations across New South Wales, identified Cryptosporidium in 7.1% of samples. The sampled populations were characterised as captive, supplemented and wild populations. No significant difference was found in Cryptosporidium detection between each of the three population categories. The positive samples, detected using 18S rRNA screening, were amplified using the actin and gp60 loci. Multi-locus sequence analysis revealed the presence of Cryptosporidium fayeri, a marsupial-specific species, and C. meleagridis, which has a broad host range, in samples from the three population categories. Cryptosporidium meleagridis has not been previously reported in marsupials and hence the pathogenicity of this species to brush-tailed rock-wallabies is unknown. Based on these findings, we recommend further study into Cryptosporidium in animals undergoing conservation management, as well as surveying wild animals in release areas, to further understand the diversity and epidemiology of this parasite in threatened wildlife.
Collapse
Affiliation(s)
- Elke T. Vermeulen
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
- Corresponding author. Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia. Tel.: +61 2 9850 9259; fax: +61 2 9850 8245.
| | - Deborah L. Ashworth
- Office of Environment and Heritage, PO Box 1967, Hurstville, NSW 2220, Australia
| | - Mark D.B. Eldridge
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
- Australian Museum Research Institute, Australian Museum, 6 College Street, Sydney, NSW 2010, Australia
| | - Michelle L. Power
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| |
Collapse
|
50
|
Cryptosporidiumspecies in humans and animals: current understanding and research needs. Parasitology 2014; 141:1667-85. [DOI: 10.1017/s0031182014001085] [Citation(s) in RCA: 402] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SUMMARYCryptosporidiumis increasingly recognized as one of the major causes of moderate to severe diarrhoea in developing countries. With treatment options limited, control relies on knowledge of the biology and transmission of the members of the genus responsible for disease. Currently, 26 species are recognized as valid on the basis of morphological, biological and molecular data. Of the nearly 20Cryptosporidiumspecies and genotypes that have been reported in humans,Cryptosporidium hominisandCryptosporidium parvumare responsible for the majority of infections. Livestock, particularly cattle, are one of the most important reservoirs of zoonotic infections. Domesticated and wild animals can each be infected with severalCryptosporidiumspecies or genotypes that have only a narrow host range and therefore have no major public health significance. Recent advances in next-generation sequencing techniques will significantly improve our understanding of the taxonomy and transmission ofCryptosporidiumspecies, and the investigation of outbreaks and monitoring of emerging and virulent subtypes. Important research gaps remain including a lack of subtyping tools for manyCryptosporidiumspecies of public and veterinary health importance, and poor understanding of the genetic determinants of host specificity ofCryptosporidiumspecies and impact of climate change on the transmission ofCryptosporidium.
Collapse
|