1
|
López-Cárdenas FG, Mateos R, Sánchez-Burgos JA, Zamora-Gasga VM, Blancas-Benítez FJ, González-Cordova AF, Sáyago-Ayerdi SG. In vitro gastrointestinal digestion of phlorotannins from Ulva lactuca: Nutritional value and implications in disease mechanisms through pharmacology network. Food Res Int 2025; 204:115928. [PMID: 39986775 DOI: 10.1016/j.foodres.2025.115928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/28/2025] [Accepted: 02/03/2025] [Indexed: 02/24/2025]
Abstract
Ulva lactuca, a green marine macroalga, is known for its potential health benefits due to bioactive compounds such as phlorotannins (PhT). This study aimed to identify and characterize the PhT profile in Ulva lactuca, evaluate their bioaccessibility, and explore their potential therapeutic targets through pharmacological network analysis. The study identified twenty PhT, showing a bioaccessibility of 54 %. Pharmacological network analysis revealed 54 potential targets associated with various disease pathways, including cancer. The findings highlight the nutritional value of Ulva lactuca and suggest the therapeutic potential of its PhT, offering new insights for future research and health applications.
Collapse
Affiliation(s)
- Francia G López-Cárdenas
- Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Av. Tecnológico 2595, Tepic 63175 Nayarit, Mexico
| | - Raquel Mateos
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Calle José Antonio Novais 10, Madrid 28040, Spain
| | - Jorge A Sánchez-Burgos
- Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Av. Tecnológico 2595, Tepic 63175 Nayarit, Mexico
| | - Víctor M Zamora-Gasga
- Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Av. Tecnológico 2595, Tepic 63175 Nayarit, Mexico
| | - Francisco J Blancas-Benítez
- Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Av. Tecnológico 2595, Tepic 63175 Nayarit, Mexico
| | - Aaron F González-Cordova
- Laboratorio de Calidad, Autenticidad y Trazabilidad de Alimentos, Coordinación de Tecnología de Alimentos de Origen Animal, Centro de Investigación en Alimentación y Desarrollo, A. C., Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo, Sonora 83304, Mexico
| | - Sonia G Sáyago-Ayerdi
- Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Av. Tecnológico 2595, Tepic 63175 Nayarit, Mexico.
| |
Collapse
|
2
|
Silva A, Carpena M, Cassani L, Grosso C, Garcia-Oliveira P, Delerue-Matos C, Simal-Gandara J, Barroso MF, Prieto MA. Optimization and Bioactive Evaluation of Bifurcaria bifurcata Antioxidant-Rich Extracts for Functional Food and Pharmaceutical Applications. Antioxidants (Basel) 2024; 13:1189. [PMID: 39456443 PMCID: PMC11505410 DOI: 10.3390/antiox13101189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
In recent years, consumers have been increasingly interested in natural, healthier, functional foods, with a focus on sea-based products such as algae. Bifurcaria bifurcata (BB) is a macroalga that belongs to the Phaeophyceae class. These brown algae are recognized as the source of bioactive molecules of great interest to the pharmaceutical and nutraceutical industries. The present work applied response surface methodology to optimize the microwave-assisted extraction of the poorly studied algae. The optimization variables were time, pressure, and solvent composition (ethanol/water) and the response parameters selected were yield, total phenolic and flavonoid content, and the antioxidant profile by evaluating DPPH•+, ABTS•+ scavenging activity, and β-carotene discoloration capacity. The results obtained reveal remarkable bioactivity of the crude extract of BB with positive results as an antioxidant and antimicrobial agent. Furthermore, the BB extract's capacity to inhibit enzymes related to neurodegenerative diseases and its anti-inflammatory and anti-proliferation activity open the possibility of future food or pharmaceutical applications.
Collapse
Affiliation(s)
- Aurora Silva
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, 36310 Vigo, Spain; (A.S.); (M.C.); (P.G.-O.); (J.S.-G.)
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (C.G.); (C.D.-M.)
| | - Maria Carpena
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, 36310 Vigo, Spain; (A.S.); (M.C.); (P.G.-O.); (J.S.-G.)
| | - Lucia Cassani
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, 36310 Vigo, Spain; (A.S.); (M.C.); (P.G.-O.); (J.S.-G.)
| | - Clara Grosso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (C.G.); (C.D.-M.)
| | - Paula Garcia-Oliveira
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, 36310 Vigo, Spain; (A.S.); (M.C.); (P.G.-O.); (J.S.-G.)
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (C.G.); (C.D.-M.)
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, 36310 Vigo, Spain; (A.S.); (M.C.); (P.G.-O.); (J.S.-G.)
| | - Maria Fatima Barroso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (C.G.); (C.D.-M.)
| | - Miguel A. Prieto
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, 36310 Vigo, Spain; (A.S.); (M.C.); (P.G.-O.); (J.S.-G.)
| |
Collapse
|
3
|
Aalilou Y, Moussa H, Lee LH, Bouyahya A, Zengin G, Faouzi MEA. What hidden treasure resides beneath the waves?: Phytochemistry, pharmacological properties and uses of Halopteris scoparia (Linnaeus) Sauvageau 1904: An overview. Fitoterapia 2024; 176:106016. [PMID: 38740345 DOI: 10.1016/j.fitote.2024.106016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
Over the years, the biological activities of seaweeds could have piqued research interest due to their specific functional phytochemistry, which may not be available in terrestrial plants. Seaweeds produce these compounds to overcome and control stressful biotic and abiotic conditions. Additionally, they are potentially excellent sources of highly useful leads in the development of new drugs. Our study aims to unveil, for the first time, an overview of Halopteris scoparia, a species belonging to the Phaeophyceae class and the Stypocaulacea family, by summarizing all available literature data. In this work, we attempt to shed light on its phytochemistry, nutritional values, pharmacological activities, and industrial uses and applications. To gather information related to H. scoparia, relevant keywords were used to search internet databases including Google Scholar, PubMed, ResearchGate, Web of Science, Algae Database, WoRMS database, and DORIS database. The chemical structures were drawn using Chemdraw and verified using the PubChem database. Chemically, this species contains a wide variety of secondary metabolites, such as terpenoids and phenolic compounds. Additionally, other chemical components with nutraceutical value have been identified, such as carbohydrates, proteins, lipids, pigments, minerals and mycosporine like amino acids. Then, holding several reported pharmacological properties, including antioxidant, anti-inflammatory, cytotoxic, dermoprotective, antidepressive, antibacterial, antibiofilm, antifungal, anti-parasitic activities and acute toxicity. In addition to other their applications such as bioconversion and antifouling activities. To confirm the previous pharmacological properties, more comprehensive and systematic in vivo, preclinical, and clinical studies are needed. Furthermore, research is required to uncover the mechanisms of its active compounds and their potential therapeutic effects in treating other diseases such as atherosclerosis, neurodegenerative diseases, and viral infections.
Collapse
Affiliation(s)
- Youssra Aalilou
- Laboratories of Pharmacology and Toxicology, Pharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Hanaa Moussa
- Applied Phycology-Mycology Group, Applied Botany Laboratory, Department of Biology, Faculty of Sciences, Abdelmalek Essaâdi University, M'Hannech II, 93030 Tetouan, Morocco
| | - Learn Han Lee
- Microbiome Research Group, Research Centre for Life Science and Healthcare, Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute (CBI), University of Nottingham Ningbo China, Ningbo, China 315000, China; Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Selangor 47500, Malaysia.
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Gokhan Zengin
- Physiology and Biochemistry Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey.
| | - My El Abbes Faouzi
- Laboratories of Pharmacology and Toxicology, Pharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| |
Collapse
|
4
|
Hamad GM, Samy H, Mehany T, Korma SA, Eskander M, Tawfik RG, EL-Rokh GEA, Mansour AM, Saleh SM, EL Sharkawy A, Abdelfttah HEA, Khalifa E. Utilization of Algae Extracts as Natural Antibacterial and Antioxidants for Controlling Foodborne Bacteria in Meat Products. Foods 2023; 12:3281. [PMID: 37685214 PMCID: PMC10486444 DOI: 10.3390/foods12173281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Padina pavonica, Hormophysa cuneiformis, and Corallina officinalis are three types of algae that are assumed to be used as antibacterial agents. Our study's goal was to look into algal extracts' potential to be used as food preservative agents and to evaluate their ability to inhibit pathogenic bacteria in several meat products (pastirma, beef burger, luncheon, minced meat, and kofta) from the local markets in Alexandria, Egypt. By testing their antibacterial activity, results demonstrated that Padina pavonica showed the highest antibacterial activity towards Bacillus cereus, Staphylococcus aureus, Escherichia coli, Streptococcus pyogenes, Salmonella spp., and Klebsiella pneumoniae. Padina pavonica extract also possesses most phenolic and flavonoid content overall. It has 24 mg gallic acid equivalent/g and 7.04 mg catechol equivalent/g, respectively. Moreover, the algae extracts were tested for their antioxidant activity, and the findings were measured using ascorbic acid as a benchmark. The IC50 of ascorbic acid was found to be 25.09 μg/mL, while Padina pavonica exhibited an IC50 value of 267.49 μg/mL, Corallina officinalis 305.01 μg/mL, and Hormophysa cuneiformis 325.23 μg/mL. In this study, Padina pavonica extract was utilized in three different concentrations (Treatment 1 g/100 g, Treatment 2 g/100 g, and Treatment 3 g/100 g) on beef burger as a model. The results showed that as the concentration of the extract increased, the bacterial inhibition increased over time. Bacillus cereus was found to be the most susceptible to the extract, while Streptococcus pyogenes was the least. In addition, Padina pavonica was confirmed to be a safe compound through cytotoxicity testing. After conducting a sensory evaluation test, it was confirmed that Padina pavonica in meat products proved to be a satisfactory product.
Collapse
Affiliation(s)
- Gamal M. Hamad
- Food Technology Department, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab 21934, Egypt;
| | - Haneen Samy
- Biotechnology and Chemistry Department, Faculty of Science, Alexandria University, Alexandria 22758, Egypt;
| | - Taha Mehany
- Food Technology Department, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab 21934, Egypt;
| | - Sameh A. Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt;
| | - Michael Eskander
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Alexandria University, Alexandria 22758, Egypt;
| | - Rasha G. Tawfik
- Department of Microbiology, Faculty of Veterinary Medicine, Alexandria University, Alexandria 22758, Egypt;
| | - Gamal E. A. EL-Rokh
- Department of Food Science and Technology, Faculty of Agriculture, Al-Azhar University, Assiut 71524, Egypt; (G.E.A.E.-R.); (H.E.A.A.)
| | - Alaa M. Mansour
- Department of Animal Hygiene and Zoonoses, Faculty of Veterinary Medicine, Alexandria University, Alexandria 22758, Egypt;
| | - Samaa M. Saleh
- Department of Food Science, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt;
| | - Amany EL Sharkawy
- National Institute of Oceanography and Fisheries (NIOF), Cairo 11516, Egypt;
| | - Hesham E. A. Abdelfttah
- Department of Food Science and Technology, Faculty of Agriculture, Al-Azhar University, Assiut 71524, Egypt; (G.E.A.E.-R.); (H.E.A.A.)
| | - Eman Khalifa
- Department of Microbiology, Faculty of Veterinary Medicine, Matrouh University, Matrouh 51511, Egypt
| |
Collapse
|
5
|
Matias M, Martins A, Alves C, Silva J, Pinteus S, Fitas M, Pinto P, Marto J, Ribeiro H, Murray P, Pedrosa R. New Insights into the Dermocosmetic Potential of the Red Seaweed Gelidium corneum. Antioxidants (Basel) 2023; 12:1684. [PMID: 37759987 PMCID: PMC10525542 DOI: 10.3390/antiox12091684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/24/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
This work addresses the potential of the red seaweed Gelidium corneum as a source of bioactive ingredients for skin health and wellness in response to the growing awareness regarding the significance of sustainable strategies in developing new nature-based dermocosmetic products. Hydroalcoholic extracts from the dried biomass were subjected to sequential liquid-liquid partitions, affording five different fractions (F1-F5). Their cosmetic potential was assessed through a set of in vitro assays concerning their antioxidant, photoprotective, and healing properties. Additionally, their cytotoxicity in HaCaT cells and their capacity to induce inflammation in RAW 264.7 cells were also evaluated. As a proof-of-concept, O/W emulsions were prepared, and emulsion stability was assessed by optical microscopy, droplet size analysis, centrifugation tests, and rheology analysis. Furthermore, in vivo tests were conducted with the final formulation to assess its antioxidant capacity. At subtoxic concentrations, the most lipophilic fraction has provided photoprotection against UV light-induced photooxidation in HaCaT cells. This was conducted together with the aqueous fraction, which also displayed healing capacities. Regarding the physical and stability assays, the best performance was achieved with the formulation containing 1% aqueous extract, which exhibited water retention and antioxidant properties in the in vivo assay. In summary, Gelidium corneum displayed itself as a potential source of bioactive ingredients with multitarget properties for dermatological use.
Collapse
Affiliation(s)
- Margarida Matias
- MARE-Marine and Environmental Sciences Centre and ARNET-Aquatic Research Network, Escola Superior de Turismo e Tecnologia do Mar, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (C.A.); (J.S.); (S.P.); (R.P.)
- LIFE-Health and Bioscience Research Institute, Technological University of Shannon, Moylish Park, V94 E8YF Limerick, Ireland;
| | - Alice Martins
- MARE-Marine and Environmental Sciences Centre and ARNET-Aquatic Research Network, Escola Superior de Turismo e Tecnologia do Mar, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (C.A.); (J.S.); (S.P.); (R.P.)
| | - Celso Alves
- MARE-Marine and Environmental Sciences Centre and ARNET-Aquatic Research Network, Escola Superior de Turismo e Tecnologia do Mar, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (C.A.); (J.S.); (S.P.); (R.P.)
| | - Joana Silva
- MARE-Marine and Environmental Sciences Centre and ARNET-Aquatic Research Network, Escola Superior de Turismo e Tecnologia do Mar, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (C.A.); (J.S.); (S.P.); (R.P.)
| | - Susete Pinteus
- MARE-Marine and Environmental Sciences Centre and ARNET-Aquatic Research Network, Escola Superior de Turismo e Tecnologia do Mar, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (C.A.); (J.S.); (S.P.); (R.P.)
| | - Manuel Fitas
- PhD Trials, Avenida Maria Helena Vieira da Silva, n° 24 A, 1750-182 Lisboa, Portugal; (M.F.); (P.P.)
| | - Pedro Pinto
- PhD Trials, Avenida Maria Helena Vieira da Silva, n° 24 A, 1750-182 Lisboa, Portugal; (M.F.); (P.P.)
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (J.M.); (H.R.)
| | - Joana Marto
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (J.M.); (H.R.)
| | - Helena Ribeiro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (J.M.); (H.R.)
| | - Patrick Murray
- LIFE-Health and Bioscience Research Institute, Technological University of Shannon, Moylish Park, V94 E8YF Limerick, Ireland;
| | - Rui Pedrosa
- MARE-Marine and Environmental Sciences Centre and ARNET-Aquatic Research Network, Escola Superior de Turismo e Tecnologia do Mar, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (C.A.); (J.S.); (S.P.); (R.P.)
| |
Collapse
|
6
|
Radman S, Čagalj M, Šimat V, Jerković I. Seasonal Monitoring of Volatiles and Antioxidant Activity of Brown Alga Cladostephus spongiosus. Mar Drugs 2023; 21:415. [PMID: 37504946 PMCID: PMC10381622 DOI: 10.3390/md21070415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/14/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023] Open
Abstract
Cladostephus spongiosus was harvested once a month during its growing season (from May to August) from the Adriatic Sea. Algal volatile organic compounds (VOCs) were obtained by headspace solid-phase microextraction (HS-SPME) and hydrodistillation (HD) and analysed by gas chromatography and mass spectrometry (GC-MS). The effects of air drying and growing season on VOCs were determined. Two different extraction methods (ultrasound-assisted extraction (UAE) and microwave-assisted extraction (MAE)) were used to obtain ethanolic extracts of C. spongiosus. In addition, the seasonal antioxidant potential of the extracts was determined, and non-volatile compounds were identified from the most potent antioxidant extract. Aliphatic compounds (e.g., pentadecane) were predominantly found by HS-SPME/GC-MS. Hydrocarbons were more than twice as abundant in the dry samples (except in May). Aliphatic alcohols (e.g., hexan-1-ol, octan-1-ol, and oct-1-en-3-ol) were present in high percentages and were more abundant in the fresh samples. Hexanal, heptanal, nonanal, and tridecanal were also found. Aliphatic ketones (octan-3-one, 6-methylhept-5-en-2-one, and (E,Z)-octa-3,5-dien-2-one) were more abundant in the fresh samples. Benzene derivatives (e.g., benzyl alcohol and benzaldehyde) were dominant in the fresh samples from May and August. (E)-Verbenol and p-cymen-8-ol were the most abundant in dry samples in May. HD revealed aliphatic compounds (e.g., heptadecane, pentadecanal, (E)-heptadec-8-ene, (Z)-heptadec-3-ene), sesquiterpenes (germacrene D, epi-bicyclosesquiphellandrene, gleenol), diterpenes (phytol, pachydictyol A, (E)-geranyl geraniol, cembra-4,7,11,15-tetraen-3-ol), and others. Among them, terpenes were the most abundant (except for July). Seasonal variations in the antioxidant activity of the ethanolic extracts were evaluated via different assays. MAE extracts showed higher peroxyl radical inhibition activity from 55.1 to 74.2 µM TE (Trolox equivalents). The highest reducing activity (293.8 µM TE) was observed for the May sample. Therefore, the May MAE extract was analysed via high-performance liquid chromatography with high-resolution mass spectrometry and electrospray ionisation (UHPLC-ESI-HRMS). In total, 17 fatty acid derivatives, 9 pigments and derivatives, and 2 steroid derivatives were found. The highest content of pheophorbide a and fucoxanthin, as well as the presence of other pigment derivatives, could be related to the observed antioxidant activity.
Collapse
Affiliation(s)
- Sanja Radman
- Department of Organic Chemistry, Faculty of Chemistry and Technology, University of Split, R. Boškovića 35, 21000 Split, Croatia
| | - Martina Čagalj
- Department of Marine Studies, University of Split, R. Boškovića 37, 21000 Split, Croatia; (M.Č.); (V.Š.)
| | - Vida Šimat
- Department of Marine Studies, University of Split, R. Boškovića 37, 21000 Split, Croatia; (M.Č.); (V.Š.)
| | - Igor Jerković
- Department of Organic Chemistry, Faculty of Chemistry and Technology, University of Split, R. Boškovića 35, 21000 Split, Croatia
| |
Collapse
|
7
|
Martínez MA, Aedo H, Lopez-Torres B, Maximiliano JE, Martínez-Larrañaga MR, Anadón A, Martínez M, Peteiro C, Cueto M, Rubiño S, Hortos M, Ares I. Bifurcaria bifurcata extract exerts antioxidant effects on human Caco-2 cells. ENVIRONMENTAL RESEARCH 2023; 231:116141. [PMID: 37187306 DOI: 10.1016/j.envres.2023.116141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/17/2023]
Abstract
The present research study investigated the potential protective effect of Bifurcaria bifurcata extract on cell viability and antioxidant defences of cultured human Caco-2 cells submitted to oxidative stress induced by tert-butylhydroperoxide (tert-BOOH). Aqueous extracts were firstly characterized in terms of total phenolic contents. Concentrations of reduced glutathione (GSH) and malondialdehyde (MDA), generation of reactive oxygen species (ROS), nitric oxide (NO) production, antioxidant enzymes activities [NADPH quinone dehydrogenase 1 (NQO1) and glutathione S-transferase (GST)], caspase 3/7 activity and gene expression linked to apoptosis, proinflammation and oxidative stress signaling pathways were used as markers of cellular oxidative status. B. bifurcata extract prevented the cytotoxicity, the decrease of GSH, the increase of MDA levels and the ROS generation induced by tert-BOOH. B. bifurcata extract prevented the significant decrease of NQO1 and GST activities, and the significant increase of caspase 3/7 activity induced by tert-BOOH. B. bifurcata extract also caused an over-expression of GSTM2, Nrf2 and AKT1 transcriptors, as well as reduced ERK1, JNK1, Bax, BNIP3, NFκB1, IL-6 and HO-1 gene expressions induced by tert-BOOH suggesting an increase in cellular resistance against oxidative stress. The results of the biomarkers analyzed show that treatment of Caco-2 cells with B. bifurcata extract enhance antioxidant defences, which imply an improved cell response to an oxidative challenge. B. bifurcata extract possesses strong antioxidant properties and may be a potential effective alternative to oxidant agents in the functional food industry.
Collapse
Affiliation(s)
- María-Aránzazu Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Hugo Aedo
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Bernardo Lopez-Torres
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Jorge-Enrique Maximiliano
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - María-Rosa Martínez-Larrañaga
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Arturo Anadón
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| | - Marta Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| | - Cesar Peteiro
- Planta de Algas, Unidad de Cultivos Marinos "El Bocal", Centro Oceanográfico de Santander, Instituto Español de Oceanografía (IEO, CSIC), 39012, Santander, Spain
| | - Mercedes Cueto
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), 38206, La Laguna, Tenerife, Spain
| | - Susana Rubiño
- Institut de Recerca i Tecnología Agroalimentaries (IRTA), Centro de Monells, 17121, Monells, Spain
| | - María Hortos
- Institut de Recerca i Tecnología Agroalimentaries (IRTA), Centro de Monells, 17121, Monells, Spain
| | - Irma Ares
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain
| |
Collapse
|
8
|
Gold Nanoparticles Synthesized by an Aqueous Extract of Codium tomentosum as Potential Antitumoral Enhancers of Gemcitabine. Mar Drugs 2022; 21:md21010020. [PMID: 36662193 PMCID: PMC9865996 DOI: 10.3390/md21010020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/21/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022] Open
Abstract
Cancer still poses a global threat, since a lot of tumors remain untreatable despite all the available chemotherapeutic drugs, whose side effects, it must also be noted, still raise concerns. The antitumoral properties of marine seaweeds make them a potential source of new, less toxic, and more active antitumoral agents. Furthermore, these natural extracts can be combined with nanotechnology to increase their efficacy and improve targeting. In this work, a Codium tomentosum (CT) aqueous extract was employed for the green synthesis of gold nanoparticles (Au@CT). The complete characterization of Au@CT was performed by UV-Vis spectroscopy, Fourier transform infrared (FTIR) spectroscopy, Zeta potential, electron microscopy, X-ray powder diffraction (XRD), high-performance steric exclusion chromatography (HPSEC), and by the determination of their antioxidant capacity. The antiproliferative activity of Au@CT was then tested in hepatic (HEPG-2) and pancreatic (BxPC-3) cell lines. Their potential capacity as enhancers of gemcitabine, a drug frequently used to treat both types of tumors, was also tested. The activity of Au@CT was compared to the activity of the CT extract alone. A synergistic effect with gemcitabine was proven for HEPG-2. Our results showed that gold nanoparticles synthesized from seaweed extracts with antitumoral activity could be a good gemcitabine enhancer.
Collapse
|
9
|
Vega J, Catalá TS, García-Márquez J, Speidel LG, Arijo S, Cornelius Kunz N, Geisler C, Figueroa FL. Molecular Diversity and Biochemical Content in Two Invasive Alien Species: Looking for Chemical Similarities and Bioactivities. Mar Drugs 2022; 21:5. [PMID: 36662178 PMCID: PMC9861339 DOI: 10.3390/md21010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/17/2022] [Accepted: 12/17/2022] [Indexed: 12/25/2022] Open
Abstract
The biochemical composition, molecular diversity, and two different bioactivities of Asparagopsis armata and Rugulopteryx okamurae (two alien species with different invasive patterns in the southern Iberian Peninsula) were analyzed through spectrophotometric methods and Fourier transform ion cyclotron mass spectroscopy (FT-ICR-MS). A total of 3042 molecular formulas were identified from the different extracts. The dH2O extracts were the most molecularly different. A. armata presented the highest content of nitrogenous compounds (proteins, CHON) and sulphur content, whereas R. okamurae was rich in carbonated compounds (total carbon, lipids, CHO, and CHOP). Antioxidant capacity and phenolic content were higher in R. okamurae than in A. armata. Antimicrobial activity was detected from both species. A. armata showed capacity to inhibit human and fish pathogens (e.g., Staphylococcus aureus or Vibrio anguillarum), whereas R. okamurae only showed inhibition against human bacteria (Staphylococcus aureus and Cutibacterium acnes). In R. okamurae, molecules with a great number of pharmaceutical activities (e.g., anti-inflammatory or antitumoral), antibacterial, biomaterial, and other utilities were found. The main molecules of A. armata had also pharmaceutical applications (e.g., antimalarian, antithrombotic, anti-inflammatory, or antiarthritis). The valorization of these species can help to counteract the environmental effects of the bioinvasions.
Collapse
Affiliation(s)
- Julia Vega
- Andalusian Institute of Blue Biotechnology and Development (IBYDA), Ecology Department, Faculty of Sciences, Malaga University, Campus Universitario de Teatinos s/n, 29071 Malaga, Spain
| | - Teresa S. Catalá
- Research Group for Marine Geochemistry, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University, 26129 Oldenburg, Germany
- Organization for Science, Education and Global Society, 70563 Stuttgart, Germany
| | - Jorge García-Márquez
- Andalusian Institute of Blue Biotechnology and Development (IBYDA), Microbiology Department, Faculty of Sciences, Malaga University, Campus Universitario de Teatinos s/n, 29071 Malaga, Spain
| | - Linn G. Speidel
- Biogeoscience Group, Geological Institute, ETH Zurich, Sonneggstr. 5, 8092 Zurich, Switzerland
| | - Salvador Arijo
- Andalusian Institute of Blue Biotechnology and Development (IBYDA), Microbiology Department, Faculty of Sciences, Malaga University, Campus Universitario de Teatinos s/n, 29071 Malaga, Spain
| | - Niklas Cornelius Kunz
- Artificial Intelligence in Healthcare and Biotechnology, ValueData GmbH, 51429 Bergisch Gladbach, Germany
| | - Christoph Geisler
- Organization for Science, Education and Global Society, 70563 Stuttgart, Germany
| | - Félix L. Figueroa
- Andalusian Institute of Blue Biotechnology and Development (IBYDA), Ecology Department, Faculty of Sciences, Malaga University, Campus Universitario de Teatinos s/n, 29071 Malaga, Spain
| |
Collapse
|
10
|
Olasehinde TA, Olaniran AO. Antiproliferative and apoptosis-inducing effects of aqueous extracts from Ecklonia maxima and Ulva rigida on HepG2 cells. J Food Biochem 2022; 46:e14498. [PMID: 36350831 DOI: 10.1111/jfbc.14498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/08/2022] [Accepted: 10/21/2022] [Indexed: 11/11/2022]
Abstract
This study examined the antiproliferative and apoptotic-inducing effects of Ecklonia maxima (KP) and Ulva rigida (URL) extracts in the human liver cancer (HepG2) cell line model. HepG2 cells were cultured and grown in an incubator (5% CO2 ) at 37°C. Cell viability was determined, while the effect of the extracts on apoptosis, ROS production, mitochondria membrane potential, and antioxidant enzymes were also assessed. KP and URL induced cytotoxic effects on HepG2 cells at the concentrations tested (0-1000 μg/ml). The morphological characteristics of the cells after treatment with KP and URL revealed cell shrinkage of the nucleus, cell injury, and damage compared to the control. The fluorescent micrographs from the apoptotic assay revealed induction of apoptosis and necrosis in HepG2 cells after treatment with KP and URL (200 and 400 μg/ml). The extracts also induced ROS production and reduced mitochondria membrane potential in HepG2 cells. The apoptotic-inducing effects, activation of ROS generation, and disruption of antioxidant enzymes are associated with the cytotoxic effects of the seaweed extracts. KP and URL showed good anticancer properties and could be explored as a good source of nutraceuticals, food additives, and dietary supplements to prevent uncontrolled proliferation of HepG2 cells. PRACTICAL APPLICATIONS: Seaweeds are reservoirs of nutrients and naturally occurring biologically active compounds, including sterols, phlorotannins, and polyunsaturated fatty acids. Due to the presence of these compounds, they are used as emulsifying agents, nutraceuticals, and additives in functional foods. Evidence suggests that seaweed bioactives may inhibit uncontrolled cell proliferation and induce apoptosis in cancer cells. Hence, exploring the antiproliferative and apoptotic-inducing effects of Ecklonia maxima and Ulva rigida will provide insights into their anticancer potentials as functional foods and nutraceuticals.
Collapse
Affiliation(s)
- Tosin A Olasehinde
- Nutrition and Toxicology Division, Food Technology Department, Federal Institute of Industrial Research Oshodi, Lagos, Nigeria
- Discipline of Microbiology, School of Life Sciences, University of Kwazulu-Natal, Durban, South Africa
| | - Ademola O Olaniran
- Discipline of Microbiology, School of Life Sciences, University of Kwazulu-Natal, Durban, South Africa
| |
Collapse
|
11
|
Susano P, Silva J, Alves C, Martins A, Pinteus S, Gaspar H, Goettert MI, Pedrosa R. Saccorhiza polyschides-A Source of Natural Active Ingredients for Greener Skincare Formulations. Molecules 2022; 27:6496. [PMID: 36235032 PMCID: PMC9573298 DOI: 10.3390/molecules27196496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/12/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
The growing knowledge about the harmful effects caused by some synthetic ingredients present in skincare products has led to an extensive search for natural bioactives. Thus, this study aimed to investigate the dermatological potential of five fractions (F1-F5), obtained by a sequential extraction procedure, from the brown seaweed Saccorhiza polyschides. The antioxidant (DPPH, FRAP, ORAC and TPC), anti-enzymatic (collagenase, elastase, hyaluronidase and tyrosinase), antimicrobial (Staphylococcus epidermidis, Cutibacterium acnes and Malassezia furfur), anti-inflammatory (nitric oxide, tumor necrosis factor-α, interleukin-6 and interleukin-10) and photoprotective (reactive oxygen species) properties of all fractions were evaluated. The ethyl acetate fraction (F3) displayed the highest antioxidant and photoprotective capacity, reducing ROS levels in UVA/B-exposed 3T3 fibroblasts, and the highest anti-enzymatic capacity against tyrosinase (IC50 value: 89.1 µg/mL). The solid water-insoluble fraction (F5) revealed the greatest antimicrobial activity against C. acnes growth (IC50 value: 12.4 µg/mL). Furthermore, all fractions demonstrated anti-inflammatory potential, reducing TNF-α and IL-6 levels in RAW 264.7 macrophages induced with lipopolysaccharides. Chemical analysis of the S. polyschides fractions by NMR revealed the presence of different classes of compounds, including lipids, polyphenols and sugars. The results highlight the potential of S. polyschides to be incorporated into new nature-based skincare products.
Collapse
Affiliation(s)
- Patrícia Susano
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Polytechnic of Leiria, 2520-630 Peniche, Portugal
| | - Joana Silva
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Polytechnic of Leiria, 2520-630 Peniche, Portugal
| | - Celso Alves
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Polytechnic of Leiria, 2520-630 Peniche, Portugal
| | - Alice Martins
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Polytechnic of Leiria, 2520-630 Peniche, Portugal
| | - Susete Pinteus
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Polytechnic of Leiria, 2520-630 Peniche, Portugal
| | - Helena Gaspar
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Polytechnic of Leiria, 2520-630 Peniche, Portugal
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisboa, Portugal
| | - Márcia Inês Goettert
- Cell Culture Laboratory, Postgraduate Programme in Biotechnology, University of Vale do Taquari-Univates, Lajeado 95914-014, RS, Brazil
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Eberhard Karls Universität Tübingen, D 72076 Tübingen, Germany
| | - Rui Pedrosa
- MARE/ARNET, ESTM, Polytechnic of Leiria, 2520-614 Peniche, Portugal
| |
Collapse
|
12
|
Dai J, Hu Y, Si Q, Gu Y, Xiao Z, Ge Q, Sha R. Antioxidant and Hypoglycemic Activity of Sequentially Extracted Fractions from Pingguoli Pear Fermentation Broth and Identification of Bioactive Compounds. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27186077. [PMID: 36144810 PMCID: PMC9505173 DOI: 10.3390/molecules27186077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 11/21/2022]
Abstract
Pear fruits have been reported to contain abundant bioactive compounds and exhibit antidiabetic activity. In this study, Pingguoli pear (Pyrus pyrifolia cv.‘Pingguoli’) fermentation broth was sequentially extracted by five solvents with increasing polarity (petroleum ether, chloroform, ethyl acetate, n-butanol, and water) to evaluate its antioxidant and hypothermic activities, and then the main compounds of the fraction with the highest activity were assessed, which might be responsible for such activities. The results showed that the ethyl acetate fraction (EAF) exhibited the highest antioxidant activity according to DPPH (IC50 = 0.238 mg/mL), ABTS (IC50 = 0.293 mg/mL), and FRAP (IC50 = 0.193 mg/mL) assays. The in vitro hypoglycemic activity assay showed that EAF exhibited the strongest inhibitory effect, with IC50 values of 0.34 and 0.95 mg/mL for α-amylase and α-glucosidase, respectively. The glucose consumption in HepG2 cells treated with EAF was significantly increased to 252%, compare with control group. Liquid chromatography–mass spectrometry analysis implied that the main compounds, 3′-C-glucosylisoliquiritigenin, robustside D, caffeic acid, and chlorogenic acid may be potential candidates for the antioxidant and hypoglycemic activities of the EAF. This study suggested that EAF of Pingguoli pear fermentation broth could be utilized for development of potential functional food and antidiabetic agents.
Collapse
Affiliation(s)
- Jing Dai
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
- Zhejiang Provincial Key Laboratory for Chemical and Biological Processing Technology of Farm Products, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, Hangzhou 310023, China
| | - Yu Hu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Qi Si
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Yifei Gu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Zhuqian Xiao
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
- Zhejiang Provincial Key Laboratory for Chemical and Biological Processing Technology of Farm Products, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, Hangzhou 310023, China
| | - Qin Ge
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
- Zhejiang Provincial Key Laboratory for Chemical and Biological Processing Technology of Farm Products, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, Hangzhou 310023, China
| | - Ruyi Sha
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
- Zhejiang Provincial Key Laboratory for Chemical and Biological Processing Technology of Farm Products, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, Hangzhou 310023, China
- Correspondence: ; Tel.: +86-571-85070390
| |
Collapse
|
13
|
De La Fuente G, Pinteus S, Silva J, Alves C, Pedrosa R. Antioxidant and antimicrobial potential of six Fucoids from the Mediterranean Sea and the Atlantic Ocean. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5568-5575. [PMID: 35439330 DOI: 10.1002/jsfa.11944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 04/04/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUD In recent years, research on the bioactive properties of macroalgae has increased, due to the great interest in exploring new products that can contribute to improve human health and wellbeing. In the present study, the antioxidant and antimicrobial potential of six different brown algae of the Fucales order were evaluated, namely Ericaria selaginoides, Ericaria amentacea, Gongolaria baccata, Gongolaria usneoides, Cystoseira compressa and Sargassum vulgare (collected along the Mediterranean and Atlantic coasts). The antioxidant capacity was measured by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, the oxygen radical absorbent capacity (ORAC) and the ferric reducing antioxidant power (FRAP) and were related to the total phenolic content (TPC). The antimicrobial activity was evaluated measuring the growth inhibition of Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans. RESULTS The highest antioxidant capacity was obtained for Ericaria selaginoides revealing the highest capacity to scavenge DPPH radical [half maximal effective concentration (EC50 ) = 27.02 μg mL-1 ], highest FRAP (1761.19 μmol FeSO4 equivalents g-1 extract), high ORAC (138.92 μmol TE g-1 extract), alongside to its high TPC (121.5 GAE g-1 extract). This species also reported the highest antimicrobial capacity against Staphylococcus aureus [half maximal inhibitory concentration (IC50 ) = 268 μg mL-1 ]. CONCLUSIONS Among all studied seaweed, Ericaria selaginoides reveals the highest antioxidant and antimicrobial activities, and thus should be explored as a natural food additive and/or functional ingredient. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Gina De La Fuente
- DiSTAV - Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, Università degli Studi di Genova, Genoa, Italy
| | - Susete Pinteus
- MARE - Marine and Environmental Sciences Center, Polytechnic of Leiria, Peniche, Portugal
| | - Joana Silva
- MARE - Marine and Environmental Sciences Center, Polytechnic of Leiria, Peniche, Portugal
| | - Celso Alves
- MARE - Marine and Environmental Sciences Center, Polytechnic of Leiria, Peniche, Portugal
| | - Rui Pedrosa
- MARE - Marine and Environmental Sciences Center, ESTM, Polytechnic of Leiria, Peniche, Portugal
| |
Collapse
|
14
|
Aydin Z, Akın Ş, Çenet EN, Keskinateş M, Akbulut A, Keleş H, Keleş M. Two novel enzyme-free colorimetric sensors for the detection of glyphosate in real samples. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Neuroprotective Effect of Luteolin-7-O-Glucoside against 6-OHDA-Induced Damage in Undifferentiated and RA-Differentiated SH-SY5Y Cells. Int J Mol Sci 2022; 23:ijms23062914. [PMID: 35328335 PMCID: PMC8949357 DOI: 10.3390/ijms23062914] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 02/04/2023] Open
Abstract
Luteolin is one of the most common flavonoids present in edible plants and its potential benefits to the central nervous system include decrease of microglia activation, neuronal damage and high antioxidant properties. The aim of this research was to evaluate the neuroprotective, antioxidant and anti-inflammatory activities of luteolin-7-O-glucoside (Lut7). Undifferentiated and retinoic acid (RA)-differentiated SH-SY5Y cells were pretreated with Lut7 and incubated with 6-hydroxydopamine (6-OHDA). Cytotoxic and neuroprotective effects were determined by MTT assay. Antioxidant capacity was determined by DPPH, FRAP, and ORAC assays. ROS production, mitochondrial membrane potential (ΔΨm), Caspase–3 activity, acetylcholinesterase inhibition (AChEI) and nuclear damage were also determined in SH-SY5Y cells. TNF-α, IL-6 and IL-10 release were evaluated in LPS-induced RAW264.7 cells by ELISA. In undifferentiated SH-SY5Y cells, Lut7 increased cell viability after 24 h, while in RA-differentiated SH-SY5Y cells, Lut7 increased cell viability after 24 and 48 h. Lut7 showed a high antioxidant activity when compared with synthetic antioxidants. In undifferentiated cells, Lut7 prevented mitochondrial membrane depolarization induced by 6-OHDA treatment, decreased Caspase-3 and AChE activity, and inhibited nuclear condensation and fragmentation. In LPS-stimulated RAW264.7 cells, Lut7 treatment reduced TNF-α levels and increased IL-10 levels after 3 and 24 h, respectively. In summary, the results suggest that Lut7 has neuroprotective effects, thus, further studies should be considered to validate its pharmacological potential in more complex models, aiming the treatment of neurodegenerative diseases.
Collapse
|
16
|
Evaluation of the Biological Potential of Himanthalia elongata (L.) S.F.Gray and Eisenia bicyclis (Kjellman) Setchell Subcritical Water Extracts. Foods 2022; 11:foods11050746. [PMID: 35267379 PMCID: PMC8909621 DOI: 10.3390/foods11050746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 02/06/2023] Open
Abstract
Neuroprotection is a need that remains unmet in treating chronic neurodegenerative disorders, despite decades of extensive research. To find new neuroprotective compounds, extracts of Himanthalia elongata (L.) S.F.Gray and of Eisenia bicyclis (Kjellman) Setchell were obtained through subcritical water extraction applying a four-step temperature gradient. The fractions obtained were screened against brain enzymes involved in neurodegenerative etiology, namely in Alzheimer’s and Parkinson’s diseases, and against reactive oxygen and nitrogen species, all contributing factors to the progression of neurodegeneration. Results showed no significant enzyme inhibition but strong radical scavenging activities, particularly in the fourth fraction, extracted at the highest temperature (250 °C), highlighting their ability to retard oxidative and nitrosative stresses. At higher temperatures, fractions were composed of phenolic compounds and Maillard reaction products, a combination that contributed to their antioxidant activity and, consequently, their neuroprotective properties. All fractions were evaluated for the presence of iodine, 14 organochlorine and 7 organophosphorus pesticides, and pharmaceuticals used in Alzheimer’s and Parkinson’s diseases (14), psychiatric drugs (8), and metabolites (8). The fractions studied did not present any of the screened contaminants, and only fraction 1 of E. bicyclis should be used with caution due to iodine content.
Collapse
|
17
|
Mitigating the negative impacts of marine invasive species – Sargassum muticum - a key seaweed for skincare products development. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
González-Ballesteros N, Diego-González L, Lastra-Valdor M, Grimaldi M, Cavazza A, Bigi F, Rodríguez-Argüelles MC, Simón-Vázquez R. Immunomodulatory and Antitumoral Activity of Gold Nanoparticles Synthesized by Red Algae Aqueous Extracts. Mar Drugs 2022; 20:md20030182. [PMID: 35323481 PMCID: PMC8953345 DOI: 10.3390/md20030182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 12/11/2022] Open
Abstract
This study reports on the green and cost-efficient synthesis of gold nanoparticles from three different red algae extracts. The nanoparticles synthesized were fully characterized by UV-Vis spectroscopy, HRTEM, and Z-potential. Relevant components occurring in the extracts, such as polysaccharides or phenolic content, were assessed by analytical techniques such as spectrophotometric assays and liquid chromatography. Finally, the antioxidant, antitumoral, and anti-inflammatory potential of both the extracts and the gold nanoparticles synthesized were analyzed in order to determine a possible synergistic effect on the nanoparticles. The results obtained confirmed the obtainment of gold nanoparticles with significant potential as immunotherapeutic agents. The therapeutic potential of these nanoparticles could be higher than that of inert gold nanoparticles loaded with bioactive molecules since the former would allow for higher accumulation into the targeted tissue.
Collapse
Affiliation(s)
| | - Lara Diego-González
- CINBIO, Immunology Group, Universidade de Vigo, 36310 Vigo, Spain; (L.D.-G.); (R.S.-V.)
- Instituto de Investigación Sanitaria Galicia Sur, Hospital Alvaro Cunqueiro, 36312 Vigo, Spain
| | | | - Maria Grimaldi
- Dipartimento Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, 43124 Parma, Italy; (M.G.); (A.C.); (F.B.)
| | - Antonella Cavazza
- Dipartimento Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, 43124 Parma, Italy; (M.G.); (A.C.); (F.B.)
| | - Franca Bigi
- Dipartimento Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, 43124 Parma, Italy; (M.G.); (A.C.); (F.B.)
- Institute of Materials for Electronics and Magnetism, National Research Council, 43124 Parma, Italy
| | | | - Rosana Simón-Vázquez
- CINBIO, Immunology Group, Universidade de Vigo, 36310 Vigo, Spain; (L.D.-G.); (R.S.-V.)
- Instituto de Investigación Sanitaria Galicia Sur, Hospital Alvaro Cunqueiro, 36312 Vigo, Spain
| |
Collapse
|
19
|
Stalin Dhas T, Sowmiya P, Parthasarathy K, Natarajan A, Narendrakumar G, Kumar R, Samrot AV, Riyaz SUM, Ganesh VK, Karthick V, Rajasekar A. In vitro antibacterial activity of biosynthesized silver nanoparticles against gram negative bacteria. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2022.2034014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Tharmathass Stalin Dhas
- Centre for Ocean Research (DST – FIST Sponsored Centre), MoES - Earth Science & Technology Cell, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Prasad Sowmiya
- Centre for Ocean Research (DST – FIST Sponsored Centre), MoES - Earth Science & Technology Cell, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Krupakar Parthasarathy
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Anandakumar Natarajan
- Department of Education, The Gandhigram Rural Institute-Deemed to be University, Gandhigram, Dindigul, Tamil Nadu, India
| | - Gopakumaran Narendrakumar
- Department of Biotechnology, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Ramesh Kumar
- Department of Biotechnology, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Antony Vincent Samrot
- School of Biosciences, Faculty of Medicine, Biosciences and Nursing, MAHSA University, Jalan SP2, Bandar Saujana Putra, Jenjarom, Selangor, Malaysia
| | | | - Vijayakumar Kumar Ganesh
- Centre for Ocean Research (DST – FIST Sponsored Centre), MoES - Earth Science & Technology Cell, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Velu Karthick
- Centre for Ocean Research (DST – FIST Sponsored Centre), MoES - Earth Science & Technology Cell, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Arulaih Rajasekar
- Department of Biotechnology, Thiruvalluvar University, Vellore, Tamil Nadu, India
| |
Collapse
|
20
|
Quitério E, Soares C, Ferraz R, Delerue-Matos C, Grosso C. Marine Health-Promoting Compounds: Recent Trends for Their Characterization and Human Applications. Foods 2021; 10:3100. [PMID: 34945651 PMCID: PMC8702156 DOI: 10.3390/foods10123100] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/09/2021] [Accepted: 12/12/2021] [Indexed: 12/24/2022] Open
Abstract
Seaweeds represent a rich source of biologically active compounds with several applications, especially in the food, cosmetics, and medical fields. The beneficial effects of marine compounds on health have been increasingly explored, making them an excellent choice for the design of functional foods. When studying marine compounds, several aspects must be considered: extraction, identification and quantification methods, purification steps, and processes to increase their stability. Advanced green techniques have been used to extract these valuable compounds, and chromatographic methods have been developed to identify and quantify them. However, apart from the beneficial effects of seaweeds for human health, these natural sources of bioactive compounds can also accumulate undesirable toxic elements with potential health risks. Applying purification techniques of extracts from seaweeds may mitigate the amount of excessive toxic components, ensuring healthy and safer products for commercialization. Furthermore, limitations such as stability and bioavailability problems, chemical degradation reactions during storage, and sensitivity to oxidation and photo-oxidation, need to be overcome using, for example, nanoencapsulation techniques. Here we summarize recent advances in all steps of marine products identification and purification and highlight selected human applications, including food and feed applications, cosmetic, human health, and fertilizers, among others.
Collapse
Affiliation(s)
- Eva Quitério
- Ciências Químicas e das Biomoléculas/CISA, Escola Superior de Saúde—Instituto Politécnico do Porto, Rua Doutor António Bernardino de Almeida 400, 4200-072 Porto, Portugal; (E.Q.); (R.F.)
| | - Cristina Soares
- LAQV-REQUIMTE, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Doutor António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (C.D.-M.); (C.G.)
| | - Ricardo Ferraz
- Ciências Químicas e das Biomoléculas/CISA, Escola Superior de Saúde—Instituto Politécnico do Porto, Rua Doutor António Bernardino de Almeida 400, 4200-072 Porto, Portugal; (E.Q.); (R.F.)
- LAQV-REQUIMTE, Departamento de Química e Bioquímica Faculdade de Ciências, Universidade do Porto, R. do Campo Alegre, 4169-007 Porto, Portugal
| | - Cristina Delerue-Matos
- LAQV-REQUIMTE, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Doutor António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (C.D.-M.); (C.G.)
| | - Clara Grosso
- LAQV-REQUIMTE, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Doutor António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (C.D.-M.); (C.G.)
| |
Collapse
|
21
|
Félix R, Dias P, Félix C, Cerqueira T, Andrade PB, Valentão P, Lemos MF. The biotechnological potential of Asparagopsis armata: What is known of its chemical composition, bioactivities and current market? ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
Dong JN, Wu GD, Dong ZQ, Yang D, Bo YK, An M, Zhao LS. Natural deep eutectic solvents as tailored and sustainable media for the extraction of five compounds from compound liquorice tablets and their comparison with conventional organic solvents. RSC Adv 2021; 11:37649-37660. [PMID: 35496443 PMCID: PMC9043790 DOI: 10.1039/d1ra06338c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/25/2021] [Indexed: 01/04/2023] Open
Abstract
An efficient and environmentally friendly ultrasound-assisted (UAE) natural deep eutectic solvent (NADES) extraction method was applied for the extraction of five bioactive compounds (liquiritin, isoliquiritin, liquiritigenin, glycyrrhizic acid and isoliquiritigenin) from compound liquorice tablets (CPLTs), and the antioxidant activities of these compounds were evaluated. In this study, eighteen different NADES systems based on either two or three components were tested and a 1,4-butanediol–levulinic acid system (1 : 3 molar ratio) was selected as a topgallant solvent for maximizing analyte extraction yields. Various extraction parameters, such as water content, liquid/solid ratio, extraction time and temperature, were systematically optimized by single-factor and response surface methodology (RSM) experiments. The results indicated that the optimum extraction conditions for the analytes featured a water content of 17%, a liquid/solid ratio of 42 mL g−1 and an extraction time of 30 min. The extracted amounts of liquiritin, isoliquiritin, liquiritigenin, glycyrrhizic acid and isoliquiritigenin reached 5.60, 3.17, 1.27, 74.62 and 1.34 mg g−1, respectively, under optimized conditions, which were much higher than those extracted using conventional organic solvents. In addition, antioxidant tests revealed that the NADES extracts showed higher DPPH and hydroxyl radical-scavenging capacity than the conventional solvent extracts used for comparison. This study provides a suitable approach for efficiently extracting the bioactive compounds of CPLTs. Meanwhile, NADESs can be extended to other natural products as green extraction media. A 1,4-butanediol–levulinic acid system was selected as a topgallant solvent and extraction parameters were optimized. NADES extracts exhibited higher extraction efficiency and in vitro antioxidant activities than conventional solvent extracts.![]()
Collapse
Affiliation(s)
- Jia-Ni Dong
- Baotou Medical College Baotou Inner Mongolia 014060 China +86 13847201181 +86 13514899325 +86 13474977691
| | - Guo-Dong Wu
- Baotou Medical College Baotou Inner Mongolia 014060 China +86 13847201181 +86 13514899325 +86 13474977691
| | - Zhi-Qiang Dong
- The First Affiliated Hospital of Baotou Medical College Baotou Inner Mongolia 014010 China
| | - Dan Yang
- Baotou Medical College Baotou Inner Mongolia 014060 China +86 13847201181 +86 13514899325 +86 13474977691
| | - Yu-Kun Bo
- Baotou Medical College Baotou Inner Mongolia 014060 China +86 13847201181 +86 13514899325 +86 13474977691
| | - Ming An
- Baotou Medical College Baotou Inner Mongolia 014060 China +86 13847201181 +86 13514899325 +86 13474977691
| | - Long-Shan Zhao
- Shenyang Pharmaceutical University Shenyang Liaoning Province 110016 China +86 24 43520571
| |
Collapse
|
23
|
Alves J, Gaspar H, Silva J, Alves C, Martins A, Teodoro F, Susano P, Pinteus S, Pedrosa R. Unravelling the Anti-Inflammatory and Antioxidant Potential of the Marine Sponge Cliona celata from the Portuguese Coastline. Mar Drugs 2021; 19:632. [PMID: 34822503 PMCID: PMC8625174 DOI: 10.3390/md19110632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/05/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022] Open
Abstract
Inflammation is a double-edged sword, as it can have both protective effects and harmful consequences, which, combined with oxidative stress (OS), can lead to the development of deathly chronic inflammatory conditions. Over the years, research has evidenced the potential of marine sponges as a source of effective anti-inflammatory therapeutic agents. Within this framework, the purpose of this study was to evaluate the antioxidant and the anti-inflammatory potential of the marine sponge Cliona celata. For this purpose, their organic extracts (C1-C5) and fractions were evaluated concerning their radical scavenging activity through 2,2-diphenyl-1-picrylhydrazyl radical (DPPH), ferric reducing antioxidant power (FRAP), oxygen radical absorbance capacity (ORAC), and anti-inflammatory activity through a (lipopolysaccharides (LPS)-induced inflammation on RAW 264.7 cells) model. Compounds present in the two most active fractions (F5 and F13) of C4 were tentatively identified by gas chromatography coupled to mass spectrometry (GC-MS). Even though samples displayed low antioxidant activity, they presented a high anti-inflammatory capacity in the studied cellular inflammatory model when compared to the anti-inflammatory standard, dexamethasone. GC-MS analysis led to the identification of n-hexadecanoic acid, cis-9-hexadecenal, and 13-octadecenal in fraction F5, while two major compounds, octadecanoic acid and cholesterol, were identified in fraction F13. The developed studies demonstrated the high anti-inflammatory activity of the marine sponge C. celata extracts and fractions, highlighting its potential for further therapeutic applications.
Collapse
Affiliation(s)
- Joana Alves
- MARE—Marine and Environmental Sciences Centre, Politécnico de Leiria, 2520-630 Peniche, Portugal; (J.A.); (J.S.); (C.A.); (F.T.); (P.S.); (S.P.)
| | - Helena Gaspar
- MARE—Marine and Environmental Sciences Centre, Politécnico de Leiria, 2520-630 Peniche, Portugal; (J.A.); (J.S.); (C.A.); (F.T.); (P.S.); (S.P.)
- BioISI—Biosystems and Integrative Sciences Institute, Faculty of Science, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Joana Silva
- MARE—Marine and Environmental Sciences Centre, Politécnico de Leiria, 2520-630 Peniche, Portugal; (J.A.); (J.S.); (C.A.); (F.T.); (P.S.); (S.P.)
| | - Celso Alves
- MARE—Marine and Environmental Sciences Centre, Politécnico de Leiria, 2520-630 Peniche, Portugal; (J.A.); (J.S.); (C.A.); (F.T.); (P.S.); (S.P.)
| | - Alice Martins
- MARE—Marine and Environmental Sciences Centre, Escola Superior de Turismo e Tecnologia do Mar, Politécnico de Leiria, 2520-614 Peniche, Portugal;
| | - Fernando Teodoro
- MARE—Marine and Environmental Sciences Centre, Politécnico de Leiria, 2520-630 Peniche, Portugal; (J.A.); (J.S.); (C.A.); (F.T.); (P.S.); (S.P.)
| | - Patrícia Susano
- MARE—Marine and Environmental Sciences Centre, Politécnico de Leiria, 2520-630 Peniche, Portugal; (J.A.); (J.S.); (C.A.); (F.T.); (P.S.); (S.P.)
| | - Susete Pinteus
- MARE—Marine and Environmental Sciences Centre, Politécnico de Leiria, 2520-630 Peniche, Portugal; (J.A.); (J.S.); (C.A.); (F.T.); (P.S.); (S.P.)
| | - Rui Pedrosa
- MARE—Marine and Environmental Sciences Centre, Escola Superior de Turismo e Tecnologia do Mar, Politécnico de Leiria, 2520-614 Peniche, Portugal;
| |
Collapse
|
24
|
Less Polar Compounds and Targeted Antioxidant Potential (In Vitro and In Vivo) of Codium adhaerens C. Agardh 1822. Pharmaceuticals (Basel) 2021; 14:ph14090944. [PMID: 34577644 PMCID: PMC8470845 DOI: 10.3390/ph14090944] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 12/14/2022] Open
Abstract
Codium adhaerens from the Adriatic Sea (Croatia) was comprehensively investigated regarding less polar compounds for the first time. Although there are several phytochemical studies on C. adhaerens from other regions, this is the first report on volatile organic compounds (VOCs) from fresh (FrCa) and air-dried (DrCa) samples. The novelty is also related to its targeted antioxidant potential in vitro and in vivo. The main aims were to: (a) identify and compare VOCs of FrCa and DrCa obtained by headspace solid-phase microextraction (HS-SPME) and hydrodistillation (HD); (b) determine fatty acid (FA) composition of freeze-dried sample (FdCa); (c) determine the composition of less polar fractions of FdCa by high-performance liquid chromatography-high-resolution mass spectrometry with electrospray ionisation (UHPLC-ESI-HRMS); and (d) comprehensively evaluate the antioxidant activity of the fractions by four in vitro assays and in vivo zebrafish model (including embryotoxicity). Significant changes of VOCs were found after air drying. ω6 FAs were present in higher content than ω3 FAs indicating C. adhaerens as a good source of dietary polyunsaturated FAs. The results obtained in vivo correlate well with in vitro methods and both fractions exerted similar antioxidative responses which is in agreement with the high abundance of present biomolecules with known antioxidant properties (e.g., fucoxanthin, pheophytin a, and pheophorbide a). These results suggest that C. adhaerens might be a potent source of natural antioxidants that could be further used in the research of oxidative stress-related diseases.
Collapse
|
25
|
Wilkin JD, Ross K, Alric T, Hooper M, Grigor JV, Chu BS. Optimisation of Concentration of Undaria pinnarifida (Wakame) and Himathalia elongate (Sea Spaghetti) Varieties to Effect Digestibility, Texture and Consumer Attribute Preference. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2021. [DOI: 10.1080/10498850.2021.1958114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Jonathan D. Wilkin
- Division of Engineering and Food Science, School of Applied Sciences, Abertay University, Dundee, Scotland
| | - Katrina Ross
- Division of Engineering and Food Science, School of Applied Sciences, Abertay University, Dundee, Scotland
| | - Tiffany Alric
- Veterinary and Agronomy School, VetAgro Sup, Lempdes, France
| | - Matthew Hooper
- Division of Engineering and Food Science, School of Applied Sciences, Abertay University, Dundee, Scotland
| | - John V. Grigor
- Division of Engineering and Food Science, School of Applied Sciences, Abertay University, Dundee, Scotland
| | - Boon-Seang Chu
- Division of Engineering and Food Science, School of Applied Sciences, Abertay University, Dundee, Scotland
| |
Collapse
|
26
|
Machado S, González-Ballesteros N, Gonçalves A, Magalhães L, Sárria Pereira de Passos M, Rodríguez-Argüelles MC, Castro Gomes A. Toxicity in vitro and in Zebrafish Embryonic Development of Gold Nanoparticles Biosynthesized Using Cystoseira Macroalgae Extracts. Int J Nanomedicine 2021; 16:5017-5036. [PMID: 34326639 PMCID: PMC8315781 DOI: 10.2147/ijn.s300674] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/23/2021] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Research on gold nanoparticles (AuNPs) occupies a prominent place in the field of biomedicine nowadays, being their putative toxicity and bioactivity areas of major concern. The green synthesis of metallic nanoparticles using extracts from marine organisms allows the avoidance of hazardous production steps while maintaining features of interest, thus enabling the exploitation of their promising bioactivity. OBJECTIVE To synthesize and characterize AuNPs using, for the first time, macroalga Cystoseira tamariscifolia aqueous extract (Au@CT). METHODS Algal aqueous extracts were used for the synthesis of AuNPs, which were characterized using a wide panel of physicochemical techniques and biological assays. RESULTS The characterization by UV-Vis spectroscopy, transmission electron microscopy, Z-potential and infrared spectroscopy confirmed that Au@CT were stable, spherical and polycrystalline, with a mean diameter of 7.6 ± 2.2 nm. The antioxidant capacity of the extract, prior to and after synthesis, was analyzed in vitro, showing that the high antioxidant potential was not lost during the synthesis. Subsequently, in vitro and in vivo toxicity was screened, by comparing two species of the genus Cystoseira (C. tamariscifolia and C. baccata) and the corresponding biosynthesized gold nanoparticles (Au@CT and Au@CB). Cytotoxicity was tested in mouse (L929) and human (BJ5ta) fibroblast cell lines. In both cases, only the highest (nominal) test concentration of both extracts (31.25 mg/mL) or Au@CB (12.5 mM) significantly affected cell viability, as measured by the MTT assay. These results were corroborated by a Fish Embryo Acute Toxicity (FET) test. Briefly, it was shown that, at the highest (nominal) tested concentration (31.25 mg/mL), CT extract induced significantly higher cytotoxicity and embryotoxicity than CB extract. However, it was demonstrated that Au@CT, but not Au@CB, were generally non-toxic. At sub-lethal (nominal) test concentrations (1.25 and 2.5 mM), Au@CT affected zebrafish embryonic development to a much lesser extent than Au@CB. In vitro wound healing assays also revealed that, while other experimental conditions did not impact cell migration, CT and Au@CT displayed a moderate positive effect. CONCLUSION Au@CT and Au@CB display promising features, desirable for biomedical applications, as wound healing.
Collapse
Affiliation(s)
- Sofia Machado
- Centre of Molecular and Environmental Biology (CBMA), Universidade do Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| | | | - Anabela Gonçalves
- Centre of Molecular and Environmental Biology (CBMA), Universidade do Minho, Campus de Gualtar, Braga, 4710-057, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IB-S), Universidade do Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| | - Luana Magalhães
- Centre of Molecular and Environmental Biology (CBMA), Universidade do Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| | - Marisa Sárria Pereira de Passos
- International Iberian Nanotechnology Laboratory (INL), Braga, 4715-330, Portugal
- European Commission, Joint Research Centre (JRC), Ispra, 21027, Italy
| | | | - Andreia Castro Gomes
- Centre of Molecular and Environmental Biology (CBMA), Universidade do Minho, Campus de Gualtar, Braga, 4710-057, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IB-S), Universidade do Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| |
Collapse
|
27
|
Erpel F, Mariotti-Celis MS, Parada J, Pedreschi F, Pérez-Correa JR. Pressurized Hot Liquid Extraction with 15% v/v Glycerol-Water as An Effective Environment-Friendly Process to Obtain Durvillaea incurvata and Lessonia spicata Phlorotannin Extracts with Antioxidant and Antihyperglycemic Potential. Antioxidants (Basel) 2021; 10:antiox10071105. [PMID: 34356338 PMCID: PMC8301173 DOI: 10.3390/antiox10071105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 11/16/2022] Open
Abstract
Brown seaweed phlorotannins have shown the potential to promote several health benefits. Durvillaea incurvata and Lessonia spicata-species that are widely distributed in central and southern Chile-were investigated to obtain phlorotannin extracts with antioxidant and antihyperglycemic potential. The use of an environmentally friendly and food-grade glycerol-based pressurized hot liquid extraction (PHLE) process (15% v/v glycerol water) was assessed for the first time to obtain phlorotannins. Multiple effects were analyzed, including the effect of the species, harvesting area (Las Cruces and Niebla), and anatomical part (holdfast, stipe, and frond) on the extracts' polyphenol content (TPC), antioxidant capacity (AC), and carbohydrate-hydrolyzing enzyme-α-glucosidase and α-amylase-inhibitory activity. Contaminants, such as mannitol, heavy metals (As, Cd, Pb, Hg, and Sn), and 5-hydroxymethylfurfural (HMF), were also determined. The anatomical part used demonstrated a significant impact on the extracts' TPC and AC, with holdfasts showing the highest values (TPC: 95 ± 24 mg phloroglucinol equivalents/g dry extract; DPPH: 400 ± 140 μmol Trolox equivalents/g dry extract; ORAC: 560 ± 130 μmol TE/g dry extract). Accordingly, holdfast extracts presented the most potent α-glucosidase inhibition, with D. incurvata from Niebla showing an activity equivalent to fifteen times that of acarbose. Only one frond and stipe extract showed significant α-glucosidase inhibitory capacity. No α-amylase inhibition was found in any extract. Although no HMF was detected, potentially hazardous cadmium levels (over the French limit) and substantial mannitol concentrations-reaching up to 50% of the extract dry weight-were found in most seaweed samples and extracts. Therefore, further purification steps are suggested if food or pharmaceutical applications are intended for the seaweed PHLE extracts obtained in this study.
Collapse
Affiliation(s)
- Fernanda Erpel
- Chemical and Bioprocess Engineering Department, School of Engineering, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (F.E.); (F.P.)
| | | | - Javier Parada
- Institute of Food Science and Technology, Faculty of Agricultural and Food Sciences, Universidad Austral de Chile, Valdivia 5110566, Chile;
| | - Franco Pedreschi
- Chemical and Bioprocess Engineering Department, School of Engineering, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (F.E.); (F.P.)
| | - José Ricardo Pérez-Correa
- Chemical and Bioprocess Engineering Department, School of Engineering, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (F.E.); (F.P.)
- Correspondence: ; Tel.: +56-2-23544258
| |
Collapse
|
28
|
Multi-Step Subcritical Water Extracts of Fucus vesiculosus L. and Codium tomentosum Stackhouse: Composition, Health-Benefits and Safety. Processes (Basel) 2021. [DOI: 10.3390/pr9050893] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mental health and active aging are two of the main concerns in the 21st century. To search for new neuroprotective compounds, extracts of Codium tomentosum Stackhouse and Fucus vesiculosus L. were obtained through multi-step (four step) subcritical water extraction using a temperature gradient. The safety assessment of the extracts was performed by screening pharmaceutical compounds and pesticides by UHPLC-MS/MS, and iodine and arsenic levels by ICP-MS. Although the extracts were free of pharmaceutical compounds and pesticides, the presence of arsenic and high iodine contents were found in the first two extraction steps. Thus, the health-benefits were only evaluated for the fractions obtained in steps 3 and 4 from the extraction process. These fractions were tested against five brain enzymes implicated in Alzheimer’s, Parkinson’s, and major depression etiology as well as against reactive oxygen and nitrogen species, having been observed a strong enzyme inhibition and radical scavenging activities for the step 4 fractions from both seaweed species. Regarding the variation of the chemical composition during the extraction, step 1 fractions were the richest in phenolic compounds. With the increase in temperature, Maillard reaction, caramelization and thermo-oxidation occurred, and the resulting products positively affected the antioxidant capacity and the neuroprotective effects.
Collapse
|
29
|
Calado MDL, Silva J, Alves C, Susano P, Santos D, Alves J, Martins A, Gaspar H, Pedrosa R, Campos MJ. Marine endophytic fungi associated with Halopteris scoparia (Linnaeus) Sauvageau as producers of bioactive secondary metabolites with potential dermocosmetic application. PLoS One 2021; 16:e0250954. [PMID: 33983974 PMCID: PMC8118457 DOI: 10.1371/journal.pone.0250954] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/17/2021] [Indexed: 12/16/2022] Open
Abstract
Marine fungi and, particularly, endophytic species have been recognised as one of the most prolific sources of structurally new and diverse bioactive secondary metabolites with multiple biotechnological applications. Despite the increasing number of bioprospecting studies, very few have already evaluated the cosmeceutical potential of marine fungal compounds. Thus, this study focused on a frequent seaweed in the Portuguese coast, Halopteris scoparia, to identify the endophytic marine fungi associated with this host, and assess their ability to biosynthesise secondary metabolites with antioxidative, enzymatic inhibitory (hyaluronidase, collagenase, elastase and tyrosinase), anti-inflammatory, photoprotective, and antimicrobial (Cutibacterium acnes, Staphylococcus epidermidis and Malassezia furfur) activities. The results revealed eight fungal taxa included in the Ascomycota, and in the most representative taxonomic classes in marine ecosystems (Eurotiomycetes, Sordariomycetes and Dothideomycetes). These fungi were reported for the first time in Portugal and in association with H. scoparia, as far as it is known. The screening analyses showed that most of these endophytic fungi were producers of compounds with relevant biological activities, though those biosynthesised by Penicillium sect. Exilicaulis and Aspergillus chevalieri proved to be the most promising ones for being further exploited by dermocosmetic industry. The chemical analysis of the crude extract from an isolate of A. chevalieri revealed the presence of two bioactive compounds, echinulin and neoechinulin A, which might explain the high antioxidant and UV photoprotective capacities exhibited by the extract. These noteworthy results emphasised the importance of screening the secondary metabolites produced by these marine endophytic fungal strains for other potential bioactivities, and the relevance of investing more efforts in understanding the ecology of halo/osmotolerant fungi.
Collapse
Affiliation(s)
- Maria da Luz Calado
- MARE–Marine and Environmental Sciences Centre, Polytechnic of Leiria, Peniche, Portugal
| | - Joana Silva
- MARE–Marine and Environmental Sciences Centre, Polytechnic of Leiria, Peniche, Portugal
| | - Celso Alves
- MARE–Marine and Environmental Sciences Centre, Polytechnic of Leiria, Peniche, Portugal
| | - Patrícia Susano
- MARE–Marine and Environmental Sciences Centre, Polytechnic of Leiria, Peniche, Portugal
| | - Débora Santos
- MARE–Marine and Environmental Sciences Centre, Polytechnic of Leiria, Peniche, Portugal
| | - Joana Alves
- MARE–Marine and Environmental Sciences Centre, Polytechnic of Leiria, Peniche, Portugal
| | - Alice Martins
- MARE–Marine and Environmental Sciences Centre, Polytechnic of Leiria, Peniche, Portugal
| | - Helena Gaspar
- MARE–Marine and Environmental Sciences Centre, Polytechnic of Leiria, Peniche, Portugal
- MARE–Marine and Environmental Sciences Centre, ESTM, Polytechnic of Leiria, Peniche, Portugal
| | - Rui Pedrosa
- BioISI–Biosystems and Integrative Sciences Institute, Faculty of Sciences of the University of Lisbon, Lisbon, Portugal
| | - Maria Jorge Campos
- BioISI–Biosystems and Integrative Sciences Institute, Faculty of Sciences of the University of Lisbon, Lisbon, Portugal
| |
Collapse
|
30
|
Maximizing the Antioxidant Capacity of Padina pavonica by Choosing the Right Drying and Extraction Methods. Processes (Basel) 2021. [DOI: 10.3390/pr9040587] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Marine algae are becoming an interesting source of biologically active compounds with a promising application as nutraceuticals, functional food ingredients, and therapeutic agents. The effect of drying (freeze-drying, oven-drying, and shade-drying) and extraction methods (shaking at room temperature, shaking in an incubator at 60 °C, ultrasound-assisted extraction (UAE), and microwave-assisted extraction (MAE)) on the total phenolics content (TPC), total flavonoids content (TFC), and total tannins content (TTC), as well as antioxidant capacity of the water/ethanol extracts from Padina pavonica were investigated. The TPC, TFC, and TTC values of P. pavonica were in the range from 0.44 ± 0.03 to 4.32 ± 0.15 gallic acid equivalents in mg/g (mg GAE/g) dry algae, from 0.31 ± 0.01 to 2.87 ± 0.01 mg QE/g dry algae, and from 0.32 ± 0.02 to 10.41 ± 0.62 mg CE/g dry algae, respectively. The highest TPC was found in the freeze-dried sample in 50% ethanol, extracted by MAE (200 W, 60 °C, and 5 min). In all cases, freeze-dried samples extracted with ethanol (both 50% and 70%) had the higher antioxidant activity, while MAE as a green option reduces the extraction time without the loss of antioxidant activity in P. pavonica.
Collapse
|
31
|
Pereira AG, Fraga-Corral M, Garcia-Oliveira P, Lourenço-Lopes C, Carpena M, Prieto MA, Simal-Gandara J. The Use of Invasive Algae Species as a Source of Secondary Metabolites and Biological Activities: Spain as Case-Study. Mar Drugs 2021; 19:178. [PMID: 33805184 PMCID: PMC8064379 DOI: 10.3390/md19040178] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 12/23/2022] Open
Abstract
In the recent decades, algae have proven to be a source of different bioactive compounds with biological activities, which has increased the potential application of these organisms in food, cosmetic, pharmaceutical, animal feed, and other industrial sectors. On the other hand, there is a growing interest in developing effective strategies for control and/or eradication of invasive algae since they have a negative impact on marine ecosystems and in the economy of the affected zones. However, the application of control measures is usually time and resource-consuming and not profitable. Considering this context, the valorization of invasive algae species as a source of bioactive compounds for industrial applications could be a suitable strategy to reduce their population, obtaining both environmental and economic benefits. To carry out this practice, it is necessary to evaluate the chemical and the nutritional composition of the algae as well as the most efficient methods of extracting the compounds of interest. In the case of northwest Spain, five algae species are considered invasive: Asparagopsis armata, Codium fragile, Gracilaria vermiculophylla, Sargassum muticum, and Grateulopia turuturu. This review presents a brief description of their main bioactive compounds, biological activities, and extraction systems employed for their recovery. In addition, evidence of their beneficial properties and the possibility of use them as supplement in diets of aquaculture animals was collected to illustrate one of their possible applications.
Collapse
Affiliation(s)
- Antia G. Pereira
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense, Spain; (A.G.P.); (M.F.-C.); (P.G.-O.); (C.L.-L.); (M.C.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - Maria Fraga-Corral
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense, Spain; (A.G.P.); (M.F.-C.); (P.G.-O.); (C.L.-L.); (M.C.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - Paula Garcia-Oliveira
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense, Spain; (A.G.P.); (M.F.-C.); (P.G.-O.); (C.L.-L.); (M.C.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - Catarina Lourenço-Lopes
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense, Spain; (A.G.P.); (M.F.-C.); (P.G.-O.); (C.L.-L.); (M.C.)
| | - Maria Carpena
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense, Spain; (A.G.P.); (M.F.-C.); (P.G.-O.); (C.L.-L.); (M.C.)
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense, Spain; (A.G.P.); (M.F.-C.); (P.G.-O.); (C.L.-L.); (M.C.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense, Spain; (A.G.P.); (M.F.-C.); (P.G.-O.); (C.L.-L.); (M.C.)
| |
Collapse
|
32
|
Cytotoxic Mechanism of Sphaerodactylomelol, an Uncommon Bromoditerpene Isolated from Sphaerococcus coronopifolius. Molecules 2021; 26:molecules26051374. [PMID: 33806445 PMCID: PMC7961984 DOI: 10.3390/molecules26051374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/21/2021] [Accepted: 02/26/2021] [Indexed: 11/17/2022] Open
Abstract
Marine natural products have exhibited uncommon chemical structures with relevant antitumor properties highlighting their potential to inspire the development of new anticancer agents. The goal of this work was to study the antitumor activities of the brominated diterpene sphaerodactylomelol, a rare example of the dactylomelane family. Cytotoxicity (10-100 µM; 24 h) was evaluated on tumor cells (A549, CACO-2, HCT-15, MCF-7, NCI-H226, PC-3, SH-SY5Y, SK-ML-28) and the effects estimated by MTT assay. Hydrogen peroxide (H2O2) levels and apoptosis biomarkers (membrane translocation of phosphatidylserine, depolarization of mitochondrial membrane potential, Caspase-9 activity, and DNA condensation and/or fragmentation) were studied in the breast adenocarcinoma cellular model (MCF-7) and its genotoxicity on mouse fibroblasts (L929). Sphaerodactylomelol displayed an IC50 range between 33.04 and 89.41 µM without selective activity for a specific tumor tissue. The cells' viability decrease was accompanied by an increase on H2O2 production, a depolarization of mitochondrial membrane potential and an increase of Caspase-9 activity and DNA fragmentation. However, the DNA damage studies in L929 non-malignant cell line suggested that this compound is not genotoxic for normal fibroblasts. Overall, the results suggest that the cytotoxicity of sphaerodactylomelol seems to be mediated by an increase of H2O2 levels and downstream apoptosis.
Collapse
|
33
|
Saccorhiza polyschides used to synthesize gold and silver nanoparticles with enhanced antiproliferative and immunostimulant activity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:111960. [PMID: 33812588 DOI: 10.1016/j.msec.2021.111960] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/02/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023]
Abstract
Over the last years, there has been an increasing trend towards the use of environmentally friendly processes to synthesize nanomaterials. In the case of nanomedicine, the use of bionanofactories with associated biological properties, such as seaweed, has emerged as a promising field of work due to the possibility they open for both the preservation of those properties in the nanomaterials synthesized and/or the reduction of their toxicity. In the present study, gold (Au@SP) and silver (Ag@SP) nanoparticles were synthesized using an aqueous extract of Saccorhiza polyschides (SP). Several techniques showed that the nanoparticles formed were spherical and stable, with mean diameters of 14 ± 2 nm for Au@SP and 15 ± 3 nm for Ag@SP. The composition of the biomolecules in the extract and the nanoparticles were also analyzed. The analyses performed indicate that the extract acts as a protective medium, with the particles embedded in it preventing aggregation and coalescence. Au@SP and Ag@SP showed superior immunostimulant and antiproliferative activity on immune and tumor cells, respectively, to that of the SP extract. Moreover, the nanoparticles were able to modulate the release of reactive oxygen species depending on the concentration. Hence, both nanoparticles have a significant therapeutic potential for the treatment of cancer or in immunostimulant therapy.
Collapse
|
34
|
De La Fuente G, Fontana M, Asnaghi V, Chiantore M, Mirata S, Salis A, Damonte G, Scarfì S. The Remarkable Antioxidant and Anti-Inflammatory Potential of the Extracts of the Brown Alga Cystoseira amentacea var. stricta. Mar Drugs 2020; 19:2. [PMID: 33374863 PMCID: PMC7823636 DOI: 10.3390/md19010002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 02/07/2023] Open
Abstract
Inflammation and oxidative stress are part of the complex biological responses of body tissues to harmful stimuli. In recent years, due to the increased understanding that oxidative stress is implicated in several diseases, pharmaceutical industries have invested in the research and development of new antioxidant compounds, especially from marine environment sources. Marine seaweeds have shown the presence of many bioactive secondary metabolites, with great potentialities from both the nutraceutical and the biomedical point of view. In this study, 50%-ethanolic and DMSO extracts from the species C. amentacea var. stricta were obtained for the first time from seaweeds collected in the Ligurian Sea (north-western Mediterranean). The bioactive properties of these extracts were then investigated, in terms of quantification of specific antioxidant activities by relevant ROS scavenging spectrophotometric tests, and of anti-inflammatory properties in LPS-stimulated macrophages by evaluation of inhibition of inflammatory cytokines and mediators. The data obtained in this study demonstrate a strong anti-inflammatory effect of both C. amentacea extracts (DMSO and ethanolic). The extracts showed a very low grade of toxicity on RAW 264.7 macrophages and L929 fibroblasts and a plethora of antioxidant and anti-inflammatory effects that were for the first time thoroughly investigated. The two extracts were able to scavenge OH and NO radicals (OH EC50 between 392 and 454 μg/mL; NO EC50 between 546 and 1293 μg/mL), to partially rescue H2O2-induced RAW 264.7 macrophages cell death, to abate intracellular ROS production in H2O2-stimulated macrophages and fibroblasts and to strongly inhibit LPS-induced inflammatory mediators, such as NO production and IL-1α, IL-6, cyclooxygenase-2 and inducible NO synthase gene expression in RAW 264.7 macrophages. These results pave the way, for the future use of C. amentacea metabolites, as an example, as antioxidant food additives in antiaging formulations as well as in cosmetic lenitive lotions for inflamed and/or damaged skin.
Collapse
Affiliation(s)
- Gina De La Fuente
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy; (G.D.L.F.); (M.F.); (V.A.); (M.C.); (S.M.)
| | - Marco Fontana
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy; (G.D.L.F.); (M.F.); (V.A.); (M.C.); (S.M.)
| | - Valentina Asnaghi
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy; (G.D.L.F.); (M.F.); (V.A.); (M.C.); (S.M.)
| | - Mariachiara Chiantore
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy; (G.D.L.F.); (M.F.); (V.A.); (M.C.); (S.M.)
| | - Serena Mirata
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy; (G.D.L.F.); (M.F.); (V.A.); (M.C.); (S.M.)
| | - Annalisa Salis
- Centre of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV 9, 16132 Genova, Italy; (A.S.); (G.D.)
| | - Gianluca Damonte
- Centre of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV 9, 16132 Genova, Italy; (A.S.); (G.D.)
| | - Sonia Scarfì
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy; (G.D.L.F.); (M.F.); (V.A.); (M.C.); (S.M.)
- Centro 3R, Interuniversitary Center for the Promotion of the Principles of the 3Rs in Teaching and Research, Via Caruso 16, 56122 Pisa, Italy
| |
Collapse
|
35
|
Silva J, Martins A, Alves C, Pinteus S, Gaspar H, Alfonso A, Pedrosa R. Natural Approaches for Neurological Disorders-The Neuroprotective Potential of Codium tomentosum. Molecules 2020; 25:E5478. [PMID: 33238492 PMCID: PMC7700523 DOI: 10.3390/molecules25225478] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/19/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder, and is characterized by a progressive degeneration of the dopaminergic neurons in the substantianigra. Although not completely understood, several abnormal cellular events are known to be related with PD progression, such as oxidative stress, mitochondrial dysfunction and apoptosis. Accordingly, the aim of this study was to evaluate the neuroprotective effects of Codium tomentosum enriched fractions in a neurotoxicity model mediated by 6-hydroxydopamine (6-OHDA) on SH-SY5Y human cells, and the disclosure of their mechanisms of action. Additionally, a preliminary chemical screening of the most promising bioactive fractions of C. tomentosum was carried out by GC-MS analysis. Among the tested fractions, four samples exhibited the capacity to revert the neurotoxicity induced by 6-OHDA to values higher or similar to the vitamin E (90.11 ± 3.74% of viable cells). The neuroprotective effects were mediated by the mitigation of reactive oxygen species (ROS) generation, mitochondrial dysfunctions and DNA damage, together with the reduction of Caspase-3 activity. Compounds belonging to different chemical classes, such as terpenes, alcohols, carboxylic acids, aldehydes, esters, ketones, saturated and unsaturated hydrocarbons were tentatively identified by GC-MS. The results show that C. tomentosum is a relevant source of neuroprotective agents, with particular interest for preventive therapeutics.
Collapse
Affiliation(s)
- Joana Silva
- MARE—Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (A.M.); (C.A.); (S.P.); (H.G.)
- Department of Pharmacology, Faculty of Veterinary, University of Santiago de Compostela, 27002 Lugo, Spain;
| | - Alice Martins
- MARE—Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (A.M.); (C.A.); (S.P.); (H.G.)
| | - Celso Alves
- MARE—Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (A.M.); (C.A.); (S.P.); (H.G.)
| | - Susete Pinteus
- MARE—Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (A.M.); (C.A.); (S.P.); (H.G.)
| | - Helena Gaspar
- MARE—Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (A.M.); (C.A.); (S.P.); (H.G.)
- BioISI—Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisboa, Portugal
| | - Amparo Alfonso
- Department of Pharmacology, Faculty of Veterinary, University of Santiago de Compostela, 27002 Lugo, Spain;
| | - Rui Pedrosa
- MARE—Marine and Environmental Sciences Centre, ESTM, Polytechnic of Leiria, 2520-630 Peniche, Portugal
| |
Collapse
|
36
|
Erpel F, Mateos R, Pérez-Jiménez J, Pérez-Correa JR. Phlorotannins: From isolation and structural characterization, to the evaluation of their antidiabetic and anticancer potential. Food Res Int 2020; 137:109589. [PMID: 33233195 DOI: 10.1016/j.foodres.2020.109589] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/19/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022]
Abstract
Phlorotannins are phenolic characteristic compounds of brown seaweeds that are only constituted by phloroglucinol (1,3,5-trihydroxybenzene). They are chain- and net-like structures of diverse molecular weights and have been widely identified in Ecklonia, Eisenia, and Ishige species. Since the time they were discovered in the '70 s, phlorotannins have been suggested as a main factor responsible for the antimicrobial activities attributed to algae extracts. Currently, cumulative in vitro and in vivo research evidence the diverse bioactivities of phlorotannin extracts -such as antidiabetic, anticancer, and antibacterial- pointing out their potential pharmacological and food applications. However, metabolomic studies and clinical trials are scarce, and thus many phlorotannins health-beneficial effects in humans are not yet confirmed. This article reviews recent studies assessing the antidiabetic and anticancer activities of phlorotannins. Particularly, their potential to prevent and control the progression of these non-communicable diseases is discussed, considering in vitro and animal studies, as well as clinical interventions. In contrast to other approaches, we only included investigations with isolated phlorotannins or phlorotannin-rich extracts. Thus, phlorotannin extraction, purification and characterization procedures are briefly addressed. Overall, although considerable research showing the antidiabetic and anticancer potential of phlorotannins is now available, further clinical trials are still necessary to conclusively demonstrate the efficacy of these compounds as adjuvants for diabetes and cancer prevention or treatment.
Collapse
Affiliation(s)
- Fernanda Erpel
- Chemical and Bioprocess Engineering Department, School of Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, P.O. Box 306, Santiago 7820436, Chile.
| | - Raquel Mateos
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Calle José Antonio Novais, 10, Madrid 28040, Spain.
| | - Jara Pérez-Jiménez
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Calle José Antonio Novais, 10, Madrid 28040, Spain.
| | - José Ricardo Pérez-Correa
- Chemical and Bioprocess Engineering Department, School of Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, P.O. Box 306, Santiago 7820436, Chile.
| |
Collapse
|
37
|
Silva J, Alves C, Pinteus S, Mendes S, Pedrosa R. Seaweeds' neuroprotective potential set in vitro on a human cellular stress model. Mol Cell Biochem 2020; 473:229-238. [PMID: 32656679 DOI: 10.1007/s11010-020-03824-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/29/2020] [Indexed: 10/23/2022]
Abstract
Neurodegenerative diseases, such as Parkinson's disease, represent a biggest challenge for medicine, imposing high social and economic impacts. As a result, it is of utmost importance to develop new therapeutic strategies. The present work evaluated the neuroprotective potential of seaweeds extracts on an in vitro dopamine (DA)-induced neurotoxicity cellular model. The neuroprotective effects on SH-SY5Y cells' viability were estimated by the MTT assay. Changes in mitochondrial membrane potential (MMP), caspase-3 activity, and hydrogen peroxide (H2O2) production were determined. DA (30-3000 µM; 24 h) treatment decreased SH-SY5Y cells' viability in concentration and time-dependent manner, increasing the H2O2 production, MMP depolarization, and caspase-3 activity. On the other hand, DA (1000 µM; 24 h) toxicity was reduced (10-15%) with Sargassum muticum and Codium tomentosum extracts (1000 µg/mL; 24 h). The highest neuroprotective activity was exhibited by a methanolic extract obtained from Saccorhiza polyschides, which completely blunted DA effects. Results show that the marine seaweed S. polyschides contain substances with high neuroprotective potential against the toxicity induced by DA, exhibiting anti-apoptotic effects associated with both mitochondrial protection and caspase-3 inhibition. S. polyschides reveals, therefore, to be an excellent source of bioactive molecules, for new drugs development aiming PD therapeutics.
Collapse
Affiliation(s)
- Joana Silva
- MARE-Marine and Environmental Sciences Centre, Politécnico de Leiria, 2520-630, Peniche, Portugal.
- Department of Pharmacology, Faculty of Veterinary, University of Santiago de Compostela, 27002, Lugo, Spain.
| | - Celso Alves
- MARE-Marine and Environmental Sciences Centre, Politécnico de Leiria, 2520-630, Peniche, Portugal
| | - Susete Pinteus
- MARE-Marine and Environmental Sciences Centre, Politécnico de Leiria, 2520-630, Peniche, Portugal
| | - Susana Mendes
- MARE-Marine and Environmental Sciences Centre, Politécnico de Leiria, 2520-630, Peniche, Portugal
| | - Rui Pedrosa
- MARE-Marine and Environmental Sciences Centre, Politécnico de Leiria, 2520-630, Peniche, Portugal
| |
Collapse
|
38
|
Getachew AT, Jacobsen C, Holdt SL. Emerging Technologies for the Extraction of Marine Phenolics: Opportunities and Challenges. Mar Drugs 2020; 18:E389. [PMID: 32726930 PMCID: PMC7459876 DOI: 10.3390/md18080389] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/17/2020] [Accepted: 07/23/2020] [Indexed: 12/15/2022] Open
Abstract
Natural phenolic compounds are important classes of plant, microorganism, and algal secondary metabolites. They have well-documented beneficial biological activities. The marine environment is less explored than other environments but have huge potential for the discovery of new unique compounds with potential applications in, e.g., food, cosmetics, and pharmaceutical industries. To survive in a very harsh and challenging environment, marine organisms like several seaweed (macroalgae) species produce and accumulate several secondary metabolites, including marine phenolics in the cells. Traditionally, these compounds were extracted from their sample matrix using organic solvents. This conventional extraction method had several drawbacks such as a long extraction time, low extraction yield, co-extraction of other compounds, and usage of a huge volume of one or more organic solvents, which consequently results in environmental pollution. To mitigate these drawbacks, newly emerging technologies, such as enzyme-assisted extraction (EAE), microwave-assisted extraction (MAE), ultrasound-assisted extraction (UAE), pressurized liquid extraction (PLE), and supercritical fluid extraction (SFE) have received huge interest from researchers around the world. Therefore, in this review, the most recent and emerging technologies are discussed for the extraction of marine phenolic compounds of interest for their antioxidant and other bioactivity in, e.g., cosmetic and food industry. Moreover, the opportunities and the bottleneck for upscaling of these technologies are also presented.
Collapse
Affiliation(s)
| | - Charlotte Jacobsen
- National Food Institute, Technical University of Denmark, Kemitorvet Building 204, 2800 Kgs Lyngby, Denmark; (A.T.G.); (S.L.H.)
| | | |
Collapse
|
39
|
Unraveling the Lipidome and Antioxidant Activity of Native Bifurcaria bifurcata and Invasive Sargassum muticum Seaweeds: A Lipid Perspective on How Systemic Intrusion May Present an Opportunity. Antioxidants (Basel) 2020; 9:antiox9070642. [PMID: 32708304 PMCID: PMC7420230 DOI: 10.3390/antiox9070642] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 01/08/2023] Open
Abstract
Brown seaweeds are known to present components with appealing bioactive properties eliciting great interest for industrial applications. However, their lipid content is generally disregarded beyond their fatty acid (FA) composition. This study thoroughly characterized the lipid profile of two brown seaweeds collected from Portuguese coast, the native Bifurcaria bifurcata and the invasive Sargassum muticum species, and bioprospecting for antioxidant activity. An integrated state-of-the-art approach including gas chromatography-mass spectrometry (GC–MS) and liquid chromatography-mass spectrometry (HILIC–ESI-MS/MS), allowed a comprehensive picture of FA and polar lipid content. Polar lipid profile of B. bifurcata and S. muticum included 143 and 217 lipid species respectively, distributed between glycolipids, phospholipids, and betaine lipids. Some of the lipid species found have been assigned biological activity and contain of n-3 and n-6 FA. Sargassum muticum presented the highest n-3 FA content. Low concentrations of extracts of both seaweeds displayed antioxidant activity, with S. muticum presenting more promising results. These findings contribute to the nutritional and industrial exploitation of both seaweeds, highlighting their relevance as viable sources of bioactive and added-value compounds. Sargassum muticum presented interesting lipid composition and bioactivity, which may represent an accessible opportunity for the exploitation of this invasive seaweed, especially taking advantage of Sargassum blooms.
Collapse
|
40
|
Influence of the Microalga Chlorella vulgaris on the Growth and Metabolic Activity of Lactobacillus spp. Bacteria. Foods 2020; 9:foods9070959. [PMID: 32698537 PMCID: PMC7404661 DOI: 10.3390/foods9070959] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/12/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023] Open
Abstract
The aim of this study was to evaluate the effect of the algae Chlorella vulgaris on the growth, acidifying activity, proportion of lactic acid isomers, and enzymatic profile of Lactobacillus brevis (ŁOCK 0944, ŁOCK 0980, ŁOCK 0992, and MG451814) isolated from vegetable silages. The results indicated that adding algae at concentrations of 0.1% (w/v) and 1.5% (w/v) to the Lactobacillus spp. growth medium accelerated the growth of bacteria and thus shortened their phase of logarithmic growth. The acidifying activity of the tested Lactobacillus brevis increased with an increased concentration of algae. Lactobacillus spp. cultured in the presence of Chlorella vulgaris showed higher production of l-lactic acid and lower d-lactic acid production. Moreover, the addition of algae changed the enzymatic activity of lactic acid bacteria; for instance, Lactobacillus brevis ŁOCK 0980 demonstrated more enzymatic activity of valine arylamidase, α-galactosidase, and α-glucosidase. Combining Lactobacillus brevis with the algae Chlorella vulgaris allows for the creation of innovative, functional products which confer favorable properties to the final product and open new horizons for the food industry.
Collapse
|
41
|
Highlighting the Biological Potential of the Brown Seaweed Fucus spiralis for Skin Applications. Antioxidants (Basel) 2020; 9:antiox9070611. [PMID: 32664603 PMCID: PMC7402176 DOI: 10.3390/antiox9070611] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/30/2020] [Accepted: 07/08/2020] [Indexed: 12/29/2022] Open
Abstract
Skin aging is a biological process influenced by intrinsic and extrinsic factors. The last ones, mainly exposure to UV radiation, increases reactive oxygen species (ROS) production leading to a loss of extracellular matrix, also enhanced by enzymatic degradation of matrix supporting molecules. Thus, and with the growing demand for eco-friendly skin products, natural compounds extracted from brown seaweeds revealed to be good candidates due to their broad range of bioactivities, especially as antioxidants. The aim of this study was to assess the dermo-cosmetic potential of different fractions obtained from the brown seaweed Fucus spiralis. For this purpose, in vitro antioxidant (Total Phenolic Content (TPC), 1,1-Diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, Ferric Reducing Antioxidant Power (FRAP), Oxygen Radical Absorbance Capacity (ORAC)), anti-enzymatic (collagenase, elastase and hyaluronidase), antimicrobial, anti-inflammatory (NO production) and photoprotective (ROS production) capacities were evaluated. Although nearly all fractions evidenced antioxidant effects, fraction F10 demonstrated the highest antioxidant ability (EC50 of 38.5 µg/mL, DPPH assay), and exhibited a strong effect as an inhibitor of collagenase (0.037 µg/mL) and elastase (3.0 µg/mL). Moreover, this fraction was also the most potent on reducing ROS production promoted by H2O2 (IC50 of 41.3 µg/mL) and by UVB (IC50 of 31.3 µg/mL). These bioactivities can be attributed to its high content of phlorotannins, as evaluated by LC-MS analysis, reinforcing the potential of F. spiralis for further dermatological applications.
Collapse
|
42
|
Zhong B, Robinson NA, Warner RD, Barrow CJ, Dunshea FR, Suleria HA. LC-ESI-QTOF-MS/MS Characterization of Seaweed Phenolics and Their Antioxidant Potential. Mar Drugs 2020; 18:E331. [PMID: 32599953 PMCID: PMC7344666 DOI: 10.3390/md18060331] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 01/24/2023] Open
Abstract
Seaweed is an important food widely consumed in Asian countries. Seaweed has a diverse array of bioactive compounds, including dietary fiber, carbohydrate, protein, fatty acid, minerals and polyphenols, which contribute to the health benefits and commercial value of seaweed. Nevertheless, detailed information on polyphenol content in seaweeds is still limited. Therefore, the present work aimed to investigate the phenolic compounds present in eight seaweeds [Chlorophyta (green), Ulva sp., Caulerpa sp. and Codium sp.; Rhodophyta (red), Dasya sp., Grateloupia sp. and Centroceras sp.; Ochrophyta (brown), Ecklonia sp., Sargassum sp.], using liquid chromatography electrospray ionization quadrupole time-of-flight mass spectrometry (LC-ESI-QTOF-MS/MS). The total phenolic content (TPC), total flavonoid content (TFC) and total tannin content (TTC) were determined. The antioxidant potential of seaweed was assessed using a 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay, a 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) free radical scavenging assay and a ferric reducing antioxidant power (FRAP) assay. Brown seaweed species showed the highest total polyphenol content, which correlated with the highest antioxidant potential. The LC-ESI-QTOF-MS/MS tentatively identified a total of 54 phenolic compounds present in the eight seaweeds. The largest number of phenolic compounds were present in Centroceras sp. followed by Ecklonia sp. and Caulerpa sp. Using high-performance liquid chromatography-photodiode array (HPLC-PDA) quantification, the most abundant phenolic compound was p-hydroxybenzoic acid, present in Ulva sp. at 846.083 ± 0.02 μg/g fresh weight. The results obtained indicate the importance of seaweed as a promising source of polyphenols with antioxidant properties, consistent with the health potential of seaweed in food, pharmaceutical and nutraceutical applications.
Collapse
Affiliation(s)
- Biming Zhong
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (B.Z.); (R.D.W.); (F.R.D.)
| | - Nicholas A. Robinson
- Sustainable Aquaculture Laboratory-Temperate and Tropical (SALTT), School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia;
- Norwegian Institute of Food, Fisheries and Aquaculture Research (Nofima), NO-1431 Ås, Norway
| | - Robyn D. Warner
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (B.Z.); (R.D.W.); (F.R.D.)
| | - Colin J. Barrow
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3217, Australia;
| | - Frank R. Dunshea
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (B.Z.); (R.D.W.); (F.R.D.)
| | - Hafiz A.R. Suleria
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (B.Z.); (R.D.W.); (F.R.D.)
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3217, Australia;
| |
Collapse
|
43
|
Abu-Khudir R, Ismail GA, Diab T. Antimicrobial, Antioxidant, and Anti-Tumor Activities of Sargassum linearifolium and Cystoseira crinita from Egyptian Mediterranean Coast. Nutr Cancer 2020; 73:829-844. [PMID: 32406258 DOI: 10.1080/01635581.2020.1764069] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/02/2020] [Accepted: 04/28/2020] [Indexed: 12/24/2022]
Abstract
Brown algae earned importance by virtue of their promising secondary metabolites of reasonable biological activities. Herein, the antioxidant, antimicrobial, and anticancer effects of crude extracts obtained from two Egyptian brown seaweeds, Sargassum linearifolium and Cystoseira crinita were evaluated. Phytochemical and GC-MS analyses revealed numerous active secondary metabolites in C. crinita cold methanolic extract (CCME) and S. linearifolium hot aqueous extract (SHAE). Both SHAE and CCME exhibited comparable DPPH (124.5 vs 125.6 µg/ml) and ABTS (257.1 vs 254.8 µg/ml) scavenging activities, respectively. Moreover, both crude extracts exhibited antimicrobial activity against various pathogenic microorganisms. Interestingly, employing MTT assay revealed cytotoxic effects of both extracts against a panel of cancer cells, where CCME showed a strong cytotoxic activity against MCF-7 cells (IC50 = 18.0 ± 0.74 µg/ml), while SHAE exhibited a moderate effect (IC50 = 31.1 ± 1.04 µg/ml). Increased mRNA and protein expression of Bax and Beclin-1 as well as the decreased expression of Bcl-2 revealed the ability of both extracts to induce apoptosis and autophagy in MCF-7 cells. Collectively, these findings provide evidence for antioxidant, antimicrobial, as well as anticancer effects driven by the two brown seaweeds that may underlay their plausible application in the therapeutic uses.
Collapse
Affiliation(s)
- Rasha Abu-Khudir
- Chemistry Department, College of Science, King Faisal University, Hofuf, Saudi Arabia
- Chemistry Department, Biochemistry Branch, Faculty of Science, Tanta University, Tanta, Egypt
| | - Gehan A Ismail
- Botany Department, Phycology Branch, Faculty of Science, Tanta University, Tanta, Egypt
| | - Thoria Diab
- Chemistry Department, Biochemistry Branch, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
44
|
Moussa H, Quezada E, Viña D, Riadi H, Gil-Longo J. Redox-Active Phenolic Compounds Mediate the Cytotoxic and Antioxidant Effects of Carpodesmia tamariscifolia (=Cystoseira tamariscifolia). Chem Biodivers 2020; 17:e2000121. [PMID: 32374938 DOI: 10.1002/cbdv.202000121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/06/2020] [Indexed: 12/22/2022]
Abstract
Carpodesmia tamariscifolia is a brown alga rich in (poly)phenols with important cytotoxic and antioxidant effects. However, the relationship between its chemical composition and its effects is unknown. The aim of this study is to identify the potential compounds and mechanisms responsible for its main effects. The alga was extracted consecutively with hexane, dichloromethane and methanol and further fractionated using Sephadex LH-20 and silica gel columns when appropriate. The fractions were subjected to thin-layer chromatography and liquid chromatography-mass spectrometry analysis and evaluated for their total phenolic content (Folin-Ciocalteu assay), radical scavenging activity (DPPH assay), cytotoxic activity (MTT assay on the SH-SY5Y cell line), and ability to generate H2 O2 (Amplex Red assay). Chromatographic and phenolic analyses of the fractions indicate that abundant redox-active phenols are present in all the fractions and that a high amount of prenylated hydroquinone derivatives is present in the apolar ones. In the hexane and dichloromethane fractions, the cytotoxic and antioxidant activities are closely related to their phenolic content, whereas in the methanol fractions, the cytotoxicity is negatively related to the phenolic content and the antioxidant activity is positively related to it. In the same tests, hydroquinone behaves as both strong cytotoxic and antioxidant agent. H2 O2 assay shows that C. tamariscifolia fractions and hydroquinone can autoxidize and generate H2 O2 . Our results suggest that redox-active phenols produce the pharmacological effects described for C. tamariscifolia and that the hydroquinone moiety of prenylated hydroquinone derivatives is responsible for both cytotoxic (through a pro-oxidant mechanism secondary to its autoxidation) and antioxidant effects of the apolar fractions.
Collapse
Affiliation(s)
- Hanaa Moussa
- Departamento de Farmacología, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain.,Present adress, Applied Phycology-Mycology Group (PMA), Applied Botany Laboratory, Department of Biology, Faculty of Sciences, Abdelmalek Essaâdi University, 93030, Tétouan, Morocco
| | - Elías Quezada
- Departamento de Química Orgánica, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Dolores Viña
- Farmacología de las Enfermedades Crónicas, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Hassane Riadi
- Applied Phycology-Mycology Group (PMA), Applied Botany Laboratory, Department of Biology, Faculty of Sciences, Abdelmalek Essaâdi University, 93030, Tétouan, Morocco
| | - José Gil-Longo
- Departamento de Farmacología, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| |
Collapse
|
45
|
Guilherme JR, Pacheco B, Soares BM, Pereira CMPD, Colepicolo P, Dias D. Phaeophyceae and rhodophyceae macroalgae from the Antarctic: A source of selenium. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2020.103430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
46
|
Yang S, Liu B, Tang M, Yang J, Kuang Y, Zhang M, Zhang C, Wang C, Qin J, Guo L, Zhao L. Extraction of flavonoids from
Cyclocarya paliurus
(Juglandaceae) leaves using ethanol/salt aqueous two‐phase system coupled with ultrasonic. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14469] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Sheng‐xiang Yang
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High‐Efficiency Utilization Zhejiang A & F University Lin'an China
| | - Bing Liu
- College of Plant Science Jilin University Changchun China
| | - Mei Tang
- College of Pharmacy Guangxi University of Chinese Medicine Nanning China
| | - Jian Yang
- The State Key Laboratory Breeding Base of Dao‐di Herbs National Resource Center for Chinese Materia Medica China Academy of Chinese Medical Sciences Beijing China
| | - Yi Kuang
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High‐Efficiency Utilization Zhejiang A & F University Lin'an China
| | - Ming‐zhe Zhang
- College of Plant Science Jilin University Changchun China
| | - Chun‐ying Zhang
- The State Key Laboratory Breeding Base of Dao‐di Herbs National Resource Center for Chinese Materia Medica China Academy of Chinese Medical Sciences Beijing China
| | - Chao‐yi Wang
- College of Plant Science Jilin University Changchun China
| | - Jian‐chun Qin
- College of Plant Science Jilin University Changchun China
| | - Lan‐ping Guo
- The State Key Laboratory Breeding Base of Dao‐di Herbs National Resource Center for Chinese Materia Medica China Academy of Chinese Medical Sciences Beijing China
| | - Li‐chun Zhao
- College of Pharmacy Guangxi University of Chinese Medicine Nanning China
| |
Collapse
|
47
|
Bioaccessibility of Antioxidants and Fatty Acids from Fucus Spiralis. Foods 2020; 9:foods9040440. [PMID: 32268534 PMCID: PMC7230824 DOI: 10.3390/foods9040440] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/31/2020] [Accepted: 04/03/2020] [Indexed: 12/18/2022] Open
Abstract
Fucus spiralis is an edible brown seaweed (SW) found in the Portuguese Coast. It has been reported to have high antioxidant activity, which may elicit a potential use for the food industry. However, little information is available on how the SW behaves during the digestive process and how the freeze-drying process might affect the bioaccessibility of the different compounds. Therefore, antioxidant activity, total polyphenols, lipid, and fatty acid contents were measured before and after in vitro simulation of the human digestive process, both in fresh and freeze-dry SW. F. spiralis had a lipid content of 3.49 ± 0.3% of dry weight (DW), which is a usual amount described for this SW genus. The total lipid bioaccessibility was 12.1 ± 0.1%. The major omega-3 fatty acid detected was eicosapentaenoic acid, 7.5 ± 0.1%, with a bioaccessibility percentage of 13.0 ± 1.0%. Four different methods—total phenolic content (TPC), ferric reducing antioxidant power (FRAP), oxygen radical absorbance capacity (ORAC), and 1,1-diphenyl-2-picryl-hydrazyl (DPPH)—were used to assess the antioxidant activity of F. spiralis. The bioaccessibility of the antioxidants studied, ranged between 42.7% and 59.5%, except the bioaccessibility of polyphenols in freeze-dried SW (23.0% ± 1.0%), suggesting that the freeze-drying process reduces the bioaccessibility of these compounds.
Collapse
|
48
|
El-Shaibany A, AL-Habori M, Al-Maqtari T, Al-Mahbashi H. The Yemeni Brown Algae Dictyota dichotoma Exhibit High In Vitro Anticancer Activity Independent of Its Antioxidant Capability. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2425693. [PMID: 32149090 PMCID: PMC7048913 DOI: 10.1155/2020/2425693] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/26/2019] [Accepted: 11/13/2019] [Indexed: 12/17/2022]
Abstract
The aim of this study was to investigate the anticancer and antioxidant activities as well as the safety of the brown algae Dictyota dichotoma of the Western seacoast of Yemen. Cytotoxicity of methanol extract of D. dichotoma and several of its fractions, petroleum ether, chloroform, ethyl acetate, n-butanol, and aqueous extracts against seven different cancer cell lines was determined by crystal violet staining. The antioxidant activity was also assessed using the DPPH radical scavenging assay. Acute toxicity study was performed on rats at increasing doses of the methanol extract. Extracts of D. dichotoma exerted a significant dose-dependent cytotoxicity on the seven tumor cell lines but were generally more selective on MCF-7 and PC-3. Among all fractions, the chloroform fraction of the D. dichotoma displayed the highest cytotoxic activity and was most effective in MCF-7, PC3, and CACO cells (IC50 = 1.93 ± 0.25, 2.2 ± 0.18, and 2.71 ± 0.53 μg/mL, respectively). The petroleum ether fraction was also effective, particularly against MCF-7 and PC-3 (IC50 = 4.77 ± 0.51 and 3.93 ± 0.51 μg/mL, respectively) whereas the activity of the ethyl acetate fraction was more pronounced against HepG2 and CACO (IC50 = 5.06 ± 0.21 and 5.06 ± 0.23 μg/mL, respectively). Of all the extracts tested, the crude methanolic extract of the algae exhibited only a modest antioxidant potential (IC50 = 204.6 ± 8.3 μg/mL). Doses as high as 5000 mg/kg body weight of D. dichotoma methanolic extracts were safe and well tolerated by rats. The overall results showed that D. dichotoma exhibited a significant cytotoxic activity probably due to the occurrence of nonpolar cytotoxic compounds, which is independent of its antioxidant capability.
Collapse
Affiliation(s)
- Amina El-Shaibany
- Department of Pharmacology, Faculty of Pharmacy, University of Sana'a, Sana'a, Yemen
| | - Molham AL-Habori
- Department of Biochemistry & Molecular Biology, Faculty of Medicine and Health Sciences, University of Sana'a, Sana'a, Yemen
| | - Tareq Al-Maqtari
- Department of Pharmacology, Faculty of Pharmacy, University of Sana'a, Sana'a, Yemen
| | - Hassan Al-Mahbashi
- Department of Forensic Medicine & Clinical Toxicology, Faculty of Medicine and Health Sciences, University of Sana'a, Sana'a, Yemen
| |
Collapse
|
49
|
Pais ACS, Pinto CA, Ramos PAB, Pinto RJB, Rosa D, Duarte MF, Abreu MH, Rocha SM, Saraiva JA, Silvestre AJD, Santos SAO. High pressure extraction of bioactive diterpenes from the macroalgae Bifurcaria bifurcata: an efficient and environmentally friendly approach. RSC Adv 2019; 9:39893-39903. [PMID: 35541373 PMCID: PMC9076218 DOI: 10.1039/c9ra06547d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/22/2019] [Indexed: 11/21/2022] Open
Abstract
The brown macroalgae Bifurcaria bifurcata have gained special attention due to their ability to biosynthesize linear diterpenes (rarely found in other species). However, the conventional extraction methods normally used to extract these compounds involve organic solvents and often high temperatures, leading to the degradation of thermo-labile compounds. In this context, the main objective of this work was to study and optimize for the first time the extraction of diterpenes from B. bifurcata through an environmentally friendly methodology, namely, high pressure extraction (HPE) using ethanol : water. This was compared with conventional Soxhlet extraction, using dichloromethane. Box–Behnken design was employed to evaluate the linear, quadratic, and interaction effects of 3 independent variables (pressure (X1), ethanol percentage (X2), and time of extraction (X3)) on response variables (extraction yield and diterpenes content (mg g−1 of extract and mg kg−1 of dry weight)) and the optimal extraction conditions (X1: 600 MPa; X2: 80%; X3: 5 min) were estimated by response surface methodology (RSM). B. bifurcata extract obtained under HPE optimal conditions showed a diterpenes content (612.2 mg g−1 of extract) 12.2 fold higher than that obtained by conventional extraction (50.1 mg g−1 of extract). The HPE extract, obtained under optimal conditions, showed antioxidant and antibacterial (against Staphylococcus aureus) activities considerably higher than the Soxhlet extract, and also presented a promising synergic effect with antibiotics, improving the antibiotic efficacy against S. aureus. In conclusion, these results indicate that HPE is a promising methodology, compared to conventional methodologies to obtain linear diterpene rich extracts from B. bifurcata with great potential to be exploited in pharmaceutical or biomedical applications. Bioactive linear diterpenes were selectively extracted from the macroalga Bifurcaria bifurcata through optimized high-pressure extraction.![]()
Collapse
Affiliation(s)
- Adriana C S Pais
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus de Santiago 3810-193 Aveiro Portugal
| | - Carlos A Pinto
- QOPNA/LAQV & REQUIMTE, Department of Chemistry, University of Aveiro, Campus de Santiago 3810-193 Aveiro Portugal
| | - Patrícia A B Ramos
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus de Santiago 3810-193 Aveiro Portugal .,QOPNA/LAQV & REQUIMTE, Department of Chemistry, University of Aveiro, Campus de Santiago 3810-193 Aveiro Portugal
| | - Ricardo J B Pinto
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus de Santiago 3810-193 Aveiro Portugal
| | - Daniela Rosa
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL), Instituto Politécnico de Beja (IPBeja) Beja 7801-908 Portugal
| | - Maria F Duarte
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL), Instituto Politécnico de Beja (IPBeja) Beja 7801-908 Portugal.,Instituto de Ciências Agrárias e Ambientais Mediterrânicas (ICAAM), Universidade de Évora Pólo da Mitra 7002-554 Évora Portugal
| | - M Helena Abreu
- ALGAplus-Prod. e Comerc. De Algas e Seus Derivados, Lda. Ílhavo 3830-196 Portugal
| | - Silvia M Rocha
- QOPNA/LAQV & REQUIMTE, Department of Chemistry, University of Aveiro, Campus de Santiago 3810-193 Aveiro Portugal
| | - Jorge A Saraiva
- QOPNA/LAQV & REQUIMTE, Department of Chemistry, University of Aveiro, Campus de Santiago 3810-193 Aveiro Portugal
| | - Armando J D Silvestre
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus de Santiago 3810-193 Aveiro Portugal
| | - Sónia A O Santos
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus de Santiago 3810-193 Aveiro Portugal
| |
Collapse
|
50
|
Macroalgae as a Valuable Source of Naturally Occurring Bioactive Compounds for the Treatment of Alzheimer's Disease. Mar Drugs 2019; 17:md17110609. [PMID: 31731422 PMCID: PMC6891758 DOI: 10.3390/md17110609] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 01/02/2023] Open
Abstract
Alzheimer's disease (AD) is a neurological condition that affects mostly aged individuals. Evidence suggests that pathological mechanisms involved in the development of AD are associated with cholinergic deficit, glutamate excitotoxicity, beta-amyloid aggregation, tau phosphorylation, neuro-inflammation, and oxidative damage to neurons. Currently there is no cure for AD; however, synthetic therapies have been developed to effectively manage some of the symptoms at the early stage of the disease. Natural products from plants and marine organisms have been identified as important sources of bioactive compounds with neuroprotective potentials and less adverse effects compared to synthetic agents. Seaweeds contain several kinds of secondary metabolites such as phlorotannins, carotenoids, sterols, fucoidans, and poly unsaturated fatty acids. However, their neuroprotective effects and mechanisms of action have not been fully explored. This review discusses recent investigations and/or updates on interactions of bioactive compounds from seaweeds with biomarkers involved in the pathogenesis of AD using reports in electronic databases such as Web of science, Scopus, PubMed, Science direct, Scifinder, Taylor and Francis, Wiley, Springer, and Google scholar between 2015 and 2019. Phlorotannins, fucoidans, sterols, and carotenoids showed strong neuroprotective potentials in different experimental models. However, there are no data from human studies and/or clinical trials.
Collapse
|