1
|
Rossi G, Psarianos M, Ojha S, Schlüter OK. Review: Insects as a novel feed ingredient: processing technologies, quality and safety considerations. Animal 2025:101495. [PMID: 40263065 DOI: 10.1016/j.animal.2025.101495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 03/18/2025] [Accepted: 03/18/2025] [Indexed: 04/24/2025] Open
Abstract
The current food system is placing significant strain on limited available resources. Novel protein sources have been suggested as a potential solution for ensuring further growth without compromising the natural balance of the planet. In this direction, edible insects appear to be crucial players. Consumers may not always prefer the direct use of insects as human food, indicating that the indirect use of insects as animal feed might be more suitable. Insects are characterised by high nutritional value and similar digestibility compared to more traditional feed such as soybean meal and fishmeal. However, effective introduction of edible insects in animal diets requires one or more processing operations. Processing is paramount for ensuring high microbiological safety while improving the quality, digestibility and palatability of the insect. Additionally, feed processing could allow a combination of insect-based ingredients with other traditional feed ingredients, obtaining a uniform and stable mixture, which can easily and conveniently be provided to the farmed animals. In this review, an overview of the most common processing methods (blanching, grinding, drying, mixing, extrusion) applied to edible insects with the aim of delivering high-quality insect-based feed is presented. Each processing step is carefully evaluated, the pros and cons of each operation are considered and important recommendations are provided. Barriers and opportunities for advancing the use of insects within the feed sector are finally illustrated. A strong emphasis is placed on the need of evaluating the effect of any processing step on the quality and safety of insect-derived products, particularly considering the possibility of replacing traditional feed ingredients with insect-derived materials.
Collapse
Affiliation(s)
- G Rossi
- Department of Systems Process Engineering, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, 14469 Potsdam, Germany.
| | - M Psarianos
- Department of Systems Process Engineering, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, 14469 Potsdam, Germany
| | - S Ojha
- Department of Land Sciences, School of Science and Computing, South East Technological University, Cork Road, X91 K0EK Waterford, Ireland
| | - O K Schlüter
- Department of Systems Process Engineering, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, 14469 Potsdam, Germany; Department of Agricultural and Food Sciences, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| |
Collapse
|
2
|
Kiskó G, Bajramović B, Elzhraa F, Erdei-Tombor P, Dobó V, Mohácsi-Farkas C, Taczman-Brückner A, Belák Á. The Invisible Threat of Antibiotic Resistance in Food. Antibiotics (Basel) 2025; 14:250. [PMID: 40149061 PMCID: PMC11939317 DOI: 10.3390/antibiotics14030250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/29/2025] [Accepted: 02/26/2025] [Indexed: 03/29/2025] Open
Abstract
The continued and improper use of antibiotics has resulted in the emergence of antibiotic resistance (AR). The dissemination of antibiotic-resistant microorganisms occurs via a multitude of pathways, including the food supply. The failure to comply with the regulatory withdrawal period associated with the treatment of domestic animals or the illicit use of antibiotics as growth promoters has contributed to the proliferation of antibiotic-resistant bacteria in meat and dairy products. It was demonstrated that not only do animal and human pathogens act as donors of antibiotic resistance genes, but also that lactic acid bacteria can serve as reservoirs of genes encoding for antibiotic resistance. Consequently, the consumption of fermented foods also presents a potential conduit for the dissemination of AR. This review provides an overview of the potential for the transmission of antibiotic resistance in a range of traditional and novel foods. The literature data reveal that foodborne microbes can be a significant factor in the dissemination of antibiotic resistance.
Collapse
Affiliation(s)
- Gabriella Kiskó
- Department of Food Microbiology, Hygiene and Safety, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, H-1118 Budapest, Hungary; (G.K.); (B.B.); (F.E.); (P.E.-T.); (V.D.); (C.M.-F.); (Á.B.)
| | - Belma Bajramović
- Department of Food Microbiology, Hygiene and Safety, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, H-1118 Budapest, Hungary; (G.K.); (B.B.); (F.E.); (P.E.-T.); (V.D.); (C.M.-F.); (Á.B.)
| | - Fatma Elzhraa
- Department of Food Microbiology, Hygiene and Safety, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, H-1118 Budapest, Hungary; (G.K.); (B.B.); (F.E.); (P.E.-T.); (V.D.); (C.M.-F.); (Á.B.)
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Patrícia Erdei-Tombor
- Department of Food Microbiology, Hygiene and Safety, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, H-1118 Budapest, Hungary; (G.K.); (B.B.); (F.E.); (P.E.-T.); (V.D.); (C.M.-F.); (Á.B.)
| | - Viktória Dobó
- Department of Food Microbiology, Hygiene and Safety, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, H-1118 Budapest, Hungary; (G.K.); (B.B.); (F.E.); (P.E.-T.); (V.D.); (C.M.-F.); (Á.B.)
| | - Csilla Mohácsi-Farkas
- Department of Food Microbiology, Hygiene and Safety, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, H-1118 Budapest, Hungary; (G.K.); (B.B.); (F.E.); (P.E.-T.); (V.D.); (C.M.-F.); (Á.B.)
| | - Andrea Taczman-Brückner
- Department of Food Microbiology, Hygiene and Safety, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, H-1118 Budapest, Hungary; (G.K.); (B.B.); (F.E.); (P.E.-T.); (V.D.); (C.M.-F.); (Á.B.)
| | - Ágnes Belák
- Department of Food Microbiology, Hygiene and Safety, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, H-1118 Budapest, Hungary; (G.K.); (B.B.); (F.E.); (P.E.-T.); (V.D.); (C.M.-F.); (Á.B.)
| |
Collapse
|
3
|
Cruz-García K, Ortiz-Hernández YD, Acevedo-Ortiz MA, Aquino-Bolaños T, Aquino-López T, Lugo-Espinosa G, Ortiz-Hernández FE. Edible Insects: Global Research Trends, Biosafety Challenges, and Market Insights in the Mexican Context. Foods 2025; 14:663. [PMID: 40002106 PMCID: PMC11854334 DOI: 10.3390/foods14040663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
The growing global interest in edible insects as a sustainable protein source has positioned them as a promising solution to food security challenges. In Mexico, entomophagy is deeply embedded in cultural traditions, particularly in Oaxaca, where grasshoppers, leafcutter ants, and red agave worms form an integral part of the region's intangible heritage. This study conducted a bibliometric analysis of global research on edible insects (2009-2023) using Scopus and tools such as VOSviewer and Bibliometrix to analyze 218 publications. The analysis highlighted research trends, influential authors, and key themes, including nutrition, biosafety, and sustainability. To complement the bibliometric study, an exploratory analysis of edible insect commercialization in Oaxaca was conducted, focusing on virtual platforms and local markets. The findings reveal consistent global growth in edible insect research, with Mexico contributing six publications between 2020 and 2023. Despite advancements in safety standards and regulatory frameworks globally, Mexico still lacks formal sanitary controls and regulations for insect-based products. Nevertheless, its diverse commercialization efforts and rich cultural heritage, particularly in Oaxaca, showcase its potential to bridge tradition and innovation. This study highlights the urgent need for regulatory frameworks and research capacity to ensure safety, preserve cultural identity, and sustainably expand Mexico's edible insect market.
Collapse
Affiliation(s)
- Keyla Cruz-García
- Instituto Politécnico Nacional, CIIDIR Unidad Oaxaca, Santa Cruz Xoxocotlán 71230, Oaxaca, Mexico; (K.C.-G.); (T.A.-B.); (T.A.-L.)
| | - Yolanda Donají Ortiz-Hernández
- Instituto Politécnico Nacional, CIIDIR Unidad Oaxaca, Santa Cruz Xoxocotlán 71230, Oaxaca, Mexico; (K.C.-G.); (T.A.-B.); (T.A.-L.)
| | - Marco Aurelio Acevedo-Ortiz
- Secretaría de Ciencias, Humanidades, Tecnología e Innovación (SECIHTI), Instituto Politécnico Nacional, CIIDIR Unidad Oaxaca, Santa Cruz Xoxocotlán 71230, Oaxaca, Mexico;
| | - Teodulfo Aquino-Bolaños
- Instituto Politécnico Nacional, CIIDIR Unidad Oaxaca, Santa Cruz Xoxocotlán 71230, Oaxaca, Mexico; (K.C.-G.); (T.A.-B.); (T.A.-L.)
| | - Tlacaelel Aquino-López
- Instituto Politécnico Nacional, CIIDIR Unidad Oaxaca, Santa Cruz Xoxocotlán 71230, Oaxaca, Mexico; (K.C.-G.); (T.A.-B.); (T.A.-L.)
| | - Gema Lugo-Espinosa
- Secretaría de Ciencias, Humanidades, Tecnología e Innovación (SECIHTI), Instituto Politécnico Nacional, CIIDIR Unidad Oaxaca, Santa Cruz Xoxocotlán 71230, Oaxaca, Mexico;
| | | |
Collapse
|
4
|
Rampanti G, Cardinali F, Ferrocino I, Milanović V, Garofalo C, Osimani A, Aquilanti L. Deciphering the Microbiota of Edible Insects Sold by Street Vendors in Thailand Using Metataxonomic Analysis. INSECTS 2025; 16:122. [PMID: 40003751 PMCID: PMC11855710 DOI: 10.3390/insects16020122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/16/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025]
Abstract
The aim of the present study was to investigate the microbiota of processed ready-to-eat (fried or boiled) edible insects sold by street vendors at local green markets in Thailand (Bangkok and Koh Samui). To this end, samples of 4 insect species (rhino beetle adults, silkworm pupae, giant waterbugs adults, and black scorpions) were collected and analyzed through viable counting and metataxonomic analysis. Enterobacteriaceae showed counts below 1 log cfu g-1 in all samples, except for black scorpions, which showed elevated counts reaching up to 4 log cfu g-1. Total mesophilic aerobes counts were up to 8 log cfu g-1 in all the analyzed samples. Counts below 1 log cfu g-1 were observed for Escherichia coli, Staphylococcus aureus, sulfite-reducing clostridia viable cells and spores, and Bacillus cereus. All the samples showed the absence of Listeria monocytogenes and Salmonella spp. According to metataxonomic analysis, 14 taxa were consistently present across all insect samples, including Dellaglioa algida, Latilactobacillus curvatus, Latilactobacillus sakei, Acetobacteraceae, Apilactobacillus kunkeei, Bombilactobacillus spp., Enterobacteriaceae, Gilliamella spp., Lactobacillus spp., Lactobacillus apis, Streptococcus thermophilus, Lacticaseibacillus rhamnosus, Lactiplantibacillus plantarum, and Weissella spp. Minority taxa included Alcaligenes spp., Brochothrix thermosphacta, Psychrobacter spp., Staphylococcus saprophyticus, Lactobacillus melliventris, Pediococcus spp., Levilactobacillus brevis, and Snodgrassella alvi.
Collapse
Affiliation(s)
- Giorgia Rampanti
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; (G.R.); (F.C.); (V.M.); (C.G.); (L.A.)
| | - Federica Cardinali
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; (G.R.); (F.C.); (V.M.); (C.G.); (L.A.)
| | - Ilario Ferrocino
- Department of Agricultural, Forest, and Food Science, University of Turin, Largo Paolo Braccini 2, Grugliasco, 10095 Torino, Italy;
| | - Vesna Milanović
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; (G.R.); (F.C.); (V.M.); (C.G.); (L.A.)
| | - Cristiana Garofalo
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; (G.R.); (F.C.); (V.M.); (C.G.); (L.A.)
| | - Andrea Osimani
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; (G.R.); (F.C.); (V.M.); (C.G.); (L.A.)
| | - Lucia Aquilanti
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; (G.R.); (F.C.); (V.M.); (C.G.); (L.A.)
| |
Collapse
|
5
|
Mašková Z, Medo J, Kolesár E, Tančinová D, Ivanišová E, Urminská D, Hleba L, Urminská J, Mrvová M, Barboráková Z. Hermetia illucens in the Process of Kitchen Waste Biodegradation: The Effect of Different Approaches to Waste Storage on the Microbiological Profile and Nutritional Parameters of the Larvae. INSECTS 2025; 16:87. [PMID: 39859667 PMCID: PMC11765827 DOI: 10.3390/insects16010087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/09/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025]
Abstract
This study assessed the bioconversion efficiency of Hermetia illucens larvae (BSFL) fed on food waste stored under different conditions, focusing on the nutritional and microbial quality of the resulting larval biomass. Food waste was prepared as a fresh diet (FD) or naturally contaminated and stored at 20-22 °C (OS-T, opened storage-tempered) or under refrigeration, at 5-8 °C (CS-C, closed storage-cooled). Refrigerated, closed storage (CS-C) led to the highest rates of waste reduction (91.0%) and bioconversion efficiency (30.2%), with larvae exhibiting the highest protein content (36.83%) compared to the FD (35.5%) and OS-T (34.71%) groups. Microbiome analysis revealed that the CS-C condition promoted beneficial yeasts like Pichia and Diutia, which correlated positively with improved protein content and microbial safety. In contrast, OS-T storage supported spoilage fungi (Mucor, Rhizopus) and elevated total aerobic counts (7.28 log CFU/g), indicating higher microbial risks. The observed trends in waste reduction and protein content most probably relate to differences in microbial profiles, as controlled cooling affected microbial dynamics, preserving substrate quality and supporting larval growth. These findings emphasize the importance of refrigerated, closed storage to optimize bioconversion, improve larval nutritional value, and minimize microbiological hazards.
Collapse
Affiliation(s)
- Zuzana Mašková
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia; (J.M.); (D.T.); (D.U.); (L.H.); (M.M.); (Z.B.)
| | - Juraj Medo
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia; (J.M.); (D.T.); (D.U.); (L.H.); (M.M.); (Z.B.)
| | | | - Dana Tančinová
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia; (J.M.); (D.T.); (D.U.); (L.H.); (M.M.); (Z.B.)
| | - Eva Ivanišová
- Institute of Food Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia; (E.I.); (J.U.)
| | - Dana Urminská
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia; (J.M.); (D.T.); (D.U.); (L.H.); (M.M.); (Z.B.)
| | - Lukáš Hleba
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia; (J.M.); (D.T.); (D.U.); (L.H.); (M.M.); (Z.B.)
| | - Jana Urminská
- Institute of Food Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia; (E.I.); (J.U.)
| | - Monika Mrvová
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia; (J.M.); (D.T.); (D.U.); (L.H.); (M.M.); (Z.B.)
| | - Zuzana Barboráková
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia; (J.M.); (D.T.); (D.U.); (L.H.); (M.M.); (Z.B.)
| |
Collapse
|
6
|
Herrera-Cardoso ED, Tapia-Cervantes KA, Cepeda-Negrete J, Gutiérrez-Vargas S, León-Galván MF. Isolation and identification of Lactobacillus species from gut microbiota of Aegiale hesperiaris (Lepidoptera: Hesperiidae) larvae. FEMS Microbiol Lett 2025; 372:fnaf015. [PMID: 39886864 DOI: 10.1093/femsle/fnaf015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/06/2024] [Accepted: 01/28/2025] [Indexed: 02/01/2025] Open
Abstract
Entomophagy, the practice of consuming insects, is a global tradition. In Mexico, one of the most notable and widely consumed insects is the larva of Aegiale hesperiaris. This insect feeds on the leaves of various Agave species with high polysaccharide content, suggesting their potential role as prebiotics for the intestinal microbiota, particularly lactic acid bacteria (LAB). LAB are recognized for their use as probiotics in foods due to their health-promoting capabilities. In this study, LAB from the intestinal microbiota of A. hesperiaris larvae were isolated and characterized, utilizing 16S rRNA gene identification. The analysis revealed three bacterial species from the Lactobacillaceae family, indicating a close symbiotic relationship with the insect. This suggests a significant impact on carbohydrate and protein metabolism, vitamin synthesis, and amino acid production, contributing to the high nutritional value of this edible insect. The study provides insights into the bacteria within the digestive tract of A. hesperiaris larvae and their role in enhancing the nutritional value of this edible insect. Additionally, it establishes a foundation for future research on the ecological roles and potential biotechnological benefits of these bacteria in the food industry and the development of therapies for various conditions and diseases.
Collapse
Affiliation(s)
- Ericka Denice Herrera-Cardoso
- Life Science Division, Graduate Program in Biosciences, University of Guanajuato, Campus Irapuato-Salamanca, Irapuato, Guanajuato 36500, Mexico
| | - Karen Alejandra Tapia-Cervantes
- Life Science Division, Graduate Program in Biosciences, University of Guanajuato, Campus Irapuato-Salamanca, Irapuato, Guanajuato 36500, Mexico
| | - Jonathan Cepeda-Negrete
- Life Science Division, Graduate Program in Biosciences, University of Guanajuato, Campus Irapuato-Salamanca, Irapuato, Guanajuato 36500, Mexico
- Department of Agricultural engineering, University of Guanajuato, Campus Irapuato-Salamanca, Irapuato, Guanajuato 36500, Mexico
| | - Santiago Gutiérrez-Vargas
- Department of Science and Engineering, Engineering Division, University of Guanajuato, Campus León, León, Guanajuato 37670, México
| | - Ma Fabiola León-Galván
- Life Science Division, Graduate Program in Biosciences, University of Guanajuato, Campus Irapuato-Salamanca, Irapuato, Guanajuato 36500, Mexico
- Department of Foods, University of Guanajuato, Campus Irapuato-Salamanca, Irapuato, Guanajuato 36500, Mexico
| |
Collapse
|
7
|
Boykin KL, Mitchell MA. What Veterinarians Need to Know About the Newly-Emerging Field of Insects-as-Food-and-Feed. Vet Sci 2024; 12:12. [PMID: 39852887 PMCID: PMC11769356 DOI: 10.3390/vetsci12010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/24/2024] [Accepted: 12/27/2024] [Indexed: 01/26/2025] Open
Abstract
Over the last two decades, the insects-as-food-and-feed industry has rapidly emerged. Its growth is largely because insects require substantially less resources (water, food, and energy) to produce than traditional sources of animal protein, making it a sustainable alternative food option. As this industry continues to grow, veterinarians will likely be called upon to assist in identifying food safety concerns, assessing animal health, implementing biosecurity measures, and formulating/prescribing treatment protocols comparable to what we have seen with the honeybee industry and the institution of veterinary feed directives (VFDs). Similar to other agricultural markets, high animal densities and management practices put insects at high risk for infectious diseases. Veterinarians interested in working with these species will need to become knowledgeable regarding the diseases afflicting the feeder insect industry and how best to diagnose and treat pathogens of concern. Using the edible cricket industry as an example, this review will highlight health and production issues while drawing similarities to other traditional livestock operations. If the insects-as-feed-and-food industry is going to be viable, veterinary involvement will be essential to ensure that insects can be used as a safe source of food for all.
Collapse
Affiliation(s)
- Kimberly L. Boykin
- Department of Veterinary Clinical Sciences, Louisiana State University, Skip Bertman Dr, Baton Rouge, LA 70803, USA
| | | |
Collapse
|
8
|
van Kessel K, Castelijn G, van der Voort M, Meijer N. Investigation of Bacillus cereus growth and sporulation during Hermetia illucens larval rearing. Heliyon 2024; 10:e40912. [PMID: 39759298 PMCID: PMC11696645 DOI: 10.1016/j.heliyon.2024.e40912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 01/07/2025] Open
Abstract
Insects are increasingly used as an alternative protein source for feed and food production. One of the main biological hazards associated with edible insects is the bio-accumulation of foodborne pathogenic microorganisms. In this study, the interaction of larvae of the black soldier fly (BSFL, Hermetia illucens (L.), Diptera: Stratiomyidae) with the foodborne pathogen Bacillus cereus was explored. As such, BSFL were reared on a substrate of wheat-based insect feed mixed with water, which was inoculated with either B. cereus vegetative cells or endospores. After seven days of rearing, the larvae and the residual substrate (frass) were analyzed for the presence of B. cereus, phenotypically via classical microbial counting and genotypically via real-time PCR. Endospores were detected on a selective growth medium in the larvae as well as in the frass. An additional heating step (1 min at 100 °C) to mimic blanching did not reduce the microbial count of the endospores. Results show that B. cereus endospores can be transferred to larvae. It is therefore recommend that substrate ingredients for BSFL rearing are tested for the presence of B. cereus endospores.
Collapse
Affiliation(s)
- K. van Kessel
- Wageningen Food Safety Research, Akkermaalsbos 2, P.O. box 230, 3700 AE, Wageningen, the Netherlands
| | - G. Castelijn
- Wageningen Food Safety Research, Akkermaalsbos 2, P.O. box 230, 3700 AE, Wageningen, the Netherlands
| | - M. van der Voort
- Wageningen Food Safety Research, Akkermaalsbos 2, P.O. box 230, 3700 AE, Wageningen, the Netherlands
| | - N. Meijer
- Wageningen Food Safety Research, Akkermaalsbos 2, P.O. box 230, 3700 AE, Wageningen, the Netherlands
| |
Collapse
|
9
|
Lemke B, Röpper D, Arki A, Visscher C, Plötz M, Krischek C. Processing of Larvae of Alphitobius diaperinus and Tenebrio molitor in Cooked Sausages: Effects on Physicochemical, Microbiological, and Sensory Parameters. INSECTS 2024; 15:843. [PMID: 39590443 PMCID: PMC11594820 DOI: 10.3390/insects15110843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/28/2024]
Abstract
Proteins from insect production represent an interesting (environmentally friendly) option or supplement to commercial livestock farming. At present, however, the larval stages of T. molitor (mealworm) and A. diaperinus (buffalo worm) have been authorized as food for human consumption EU-wide, as have the nymph and adult stages of Locusta (L.) migratoria (Locusta migratoria, Linnaeus, 1758) and Acheta (A.) domesticus (house cricket, Acheta domesticus, Linnaeus, 1758). However, there is the problem that insects that are recognizable as a whole tend to be avoided by consumers, especially in the European region, as they are reminiscent of living things and can cause aversion and disgust in consumers. Against this background, in the present study, five batches of two types of cooked sausages were produced: on the one hand, with turkey, and on the other hand, with pork lean meat as a base. In different formulations, 10% and 20% of the meat contents (turkey or pork) in these meat products were replaced by deep-frozen, pulverized T. molitor and A. diaperinus larvae. The effects of the addition of these insects in the products on the microbiological and physicochemical parameters of these cooked sausages, compared to a product without insect content, directly after heating, were investigated. After production, a storage trial was also carried out to determine whether possible insect ingredients could influence the growth of inoculated bacterial species (Bacillus (B.) cereus, Escherichia (E.) coli, Listeria (L.) monocytogenes, and Campylobacter (C.) jejuni) and how the addition of insect larvae affectsthe sensory and physicochemical properties during storage. The study showed that the products with insects had reduced lightness (turkey p C = 0.025), increased yellowness (pork p S = 0.0009, p C < 0.0001 and turkey p C = 0.0027) and a reduced red color (pork p S < 0.0001, p C = 0.0001) after heating when compared to the cooked sausages without insects. However, no significant differences between the various cooked sausages with or without insects in terms of cooking loss, firmness, and protein, ash, and fat or water contents were found. The microbiological tests showed, on the one hand, that the prior microbial reduction (e.g., in the form of blanching) of the insect larvae was essential in order to guarantee the flawless microbiological quality of the cooked sausages and, on the other hand, that the addition of insects to the cooked sausages did not significantly affect the growth of the inoculated bacterial species and that no sensory differences could be detected during storage. Despite the significant color effects on the product, A. diaperinus and T. molitor larvae would be suitable as protein or meat alternatives in cooked sausages, but they would have to undergo pre-treatment, primarily with regard to microbiological safety. The extent to which a complete replacement of meat is possible has to be investigated in further studies.
Collapse
Affiliation(s)
- Barbara Lemke
- Institute of Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany (M.P.); (C.K.)
| | - Darleen Röpper
- Institute of Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany (M.P.); (C.K.)
| | - Anahita Arki
- Institute of Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany (M.P.); (C.K.)
| | - Christian Visscher
- Institute of Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Madeleine Plötz
- Institute of Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany (M.P.); (C.K.)
| | - Carsten Krischek
- Institute of Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany (M.P.); (C.K.)
| |
Collapse
|
10
|
Raka RN, Zhang L, Chen R, Xue X. Antibiotic Resistance Genes in Global Food Transformation System: Edible Insects vs. Livestock. Foods 2024; 13:3257. [PMID: 39456319 PMCID: PMC11506948 DOI: 10.3390/foods13203257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Antibiotic-resistant genes (ARGs) pose a significant threat to the global food transformation system. The increasing prevalence of ARGs in food has elicited apprehension about public health safety. The widespread dissemination of ARGs in food products, driven by the inappropriate use of antibiotics, presents significant adversity for the safety of emerging future food sources such as edible insects. As the world faces increasing challenges related to food security, climate change, and antibiotic resistance, edible insects offer a sustainable and resilient food source. The intriguing possibility of edible insects serving as a less conducive environment for ARGs compared to livestock warrants further exploration and investigation. In this recent work, we listed ARGs from edible insects detected so far by in vitro approaches and aimed to construct a fair comparison with ARGs from livestock based on relevant genes. We also presented our argument by analyzing the factors that might be responsible for ARG abundance in livestock vs. edible insects. Livestock and edible insects have diverse gut microbiota, and their diets differ with antibiotics. Consequently, their ARG abundance may vary as well. In addition, processed edible insects have lower levels of ARGs than raw ones. We hypothesize that edible insects could potentially contain a lower abundance of ARGs and exhibit a diminished ability to disseminate ARGs relative to livestock. A regulatory framework could help intercept the increasing prevalence of ARGs. Due diligence should also be taken when marketing edible insects for consumption.
Collapse
Affiliation(s)
| | | | | | - Xiaofeng Xue
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (R.N.R.)
| |
Collapse
|
11
|
Yimam MA, Andreini M, Carnevale S, Muscaritoli M. The role of algae, fungi, and insect-derived proteins and bioactive peptides in preventive and clinical nutrition. Front Nutr 2024; 11:1461621. [PMID: 39449824 PMCID: PMC11499197 DOI: 10.3389/fnut.2024.1461621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
The current global trend in the nutrition, epidemiologic and demographic transitions collectively alarms the need to pursue a sustainable protein diet that respects ecosystem and biodiversity from alternative sources, such as algae, fungi and edible insects. Then, changing the nutrition reality is extremely important to impede the global syndemic of obesity, undernutrition and climate change. This review aims to synthesize the published literature on the potential roles of alternative proteins and their derived bioactive peptides in preventive and clinical nutrition, identify research gaps and inform future research areas. Google Scholar and PubMed databases from their inception up to 30 June 2024 were searched using keywords to access pertinent articles published in English language for the review. Overall, proteins derived from algae, fungi, and edible insects are high-quality proteins as animal sources and demonstrate significant potential as a sustainable source of bioactive peptides, which are metabolically potent and have negligible adverse effects. They show promise to prevent and treat diseases associated with oxidative stress, obesity, diabetes, cancer, cardiovascular disease (especially hypertension), and neurodegenerative diseases. Given the abundance of algae, fungi and insect peptides performed in vitro or in vivo animals, further clinical studies are needed to fully establish their safety, efficacy and practical application in preventive and clinical nutrition. Additionally, social and behavioral change communication strategies would be important to increase health awareness of nutritional benefits and promote consumer acceptance of alternative protein sources.
Collapse
Affiliation(s)
- Mohammed Ahmed Yimam
- Department of Science, Technology and Society, University School for Advanced Studies IUSS Pavia, Pavia, Italy
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
- Department of Public Health, College of Health Science, Woldia University, Woldia, Ethiopia
| | - Martina Andreini
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Maurizio Muscaritoli
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
12
|
Carpentier J, Abenaim L, Luttenschlager H, Dessauvages K, Liu Y, Samoah P, Francis F, Caparros Megido R. Microorganism Contribution to Mass-Reared Edible Insects: Opportunities and Challenges. INSECTS 2024; 15:611. [PMID: 39194816 DOI: 10.3390/insects15080611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024]
Abstract
The interest in edible insects' mass rearing has grown considerably in recent years, thereby highlighting the challenges of domesticating new animal species. Insects are being considered for use in the management of organic by-products from the agro-industry, synthetic by-products from the plastics industry including particular detoxification processes. The processes depend on the insect's digestive system which is based on two components: an enzymatic intrinsic cargo to the insect species and another extrinsic cargo provided by the microbial community colonizing-associated with the insect host. Advances have been made in the identification of the origin of the digestive functions observed in the midgut. It is now evident that the community of microorganisms can adapt, improve, and extend the insect's ability to digest and detoxify its food. Nevertheless, edible insect species such as Hermetia illucens and Tenebrio molitor are surprisingly autonomous, and no obligatory symbiosis with a microorganism has yet been uncovered for digestion. Conversely, the intestinal microbiota of a given species can take on different forms, which are largely influenced by the host's environment and diet. This flexibility offers the potential for the development of novel associations between insects and microorganisms, which could result in the creation of synergies that would optimize or expand value chains for agro-industrial by-products, as well as for contaminants.
Collapse
Affiliation(s)
- Joachim Carpentier
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Passage Des Déportés 2, 5030 Gembloux, Belgium
| | - Linda Abenaim
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Hugo Luttenschlager
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Passage Des Déportés 2, 5030 Gembloux, Belgium
| | - Kenza Dessauvages
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Passage Des Déportés 2, 5030 Gembloux, Belgium
| | - Yangyang Liu
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Passage Des Déportés 2, 5030 Gembloux, Belgium
- Institute of Feed Research, Chinese Academy of Agricultural Sciences (CAAS), Haidian District, Beijing 100193, China
| | - Prince Samoah
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Passage Des Déportés 2, 5030 Gembloux, Belgium
| | - Frédéric Francis
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Passage Des Déportés 2, 5030 Gembloux, Belgium
| | - Rudy Caparros Megido
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Passage Des Déportés 2, 5030 Gembloux, Belgium
| |
Collapse
|
13
|
Maity T, Saxena A. Challenges and innovations in food and water availability for a sustainable Mars colonization. LIFE SCIENCES IN SPACE RESEARCH 2024; 42:27-36. [PMID: 39067987 DOI: 10.1016/j.lssr.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/23/2024] [Accepted: 03/05/2024] [Indexed: 07/30/2024]
Abstract
In recent years, extensive research has been dedicated to Mars exploration and the potential for sustainable interplanetary human colonization. One of the significant challenges in ensuring the survival of life on Mars lies in the production of food as the Martian environment is highly inhospitable to agriculture, rendering it impractical to transport food from Earth. To improve the well-being and quality of life for future space travelers on Mars, it is crucial to develop innovative horticultural techniques and food processing technologies. The unique challenges posed by the Martian environment, such as the lack of oxygen, nutrient-deficient soil, thin atmosphere, low gravity, and cold, dry climate, necessitate the development of advanced farming strategies. This study explores existing knowledge and various technological innovations that can help overcome the constraints associated with food production and water extraction on Mars. The key lies in utilizing resources available on Mars through in-situ resource utilization. Water can be extracted from beneath the ice and from the Martian soil. Furthermore, hydroponics in controlled environment chambers, equipped with nutrient delivery systems and waste recovery mechanisms, have been investigated as a means of cultivating crops on Mars. The inefficiency of livestock production, which requires substantial amounts of water and land, highlights the need for alternative protein sources such as microbial protein, insects, and in-vitro meat. Moreover, the fields of synthetic biology and 3-D food printing hold immense potential in revolutionizing food production and making significant contributions to the sustainability of human life on Mars.
Collapse
Affiliation(s)
- Tanushree Maity
- O/o Director General - Life Sciences, Defence Research and Development Organization, SSPL Campus, Lucknow Road, Timarpur, New Delhi 110054, India
| | - Alok Saxena
- Amity Institute of Food Technology, Amity University Uttar Pradesh, Sector-125, Noida 201313, India.
| |
Collapse
|
14
|
Simojima Y, Ishikawa T, Noguchi E, Araki R, Gomyo K, Miyajima I, Akita Y, Ohara Y, Nakagawa R, Okada Y, Morita Y. Bacteriological Survey of Insect Products in Japan. Foodborne Pathog Dis 2024; 21:478-484. [PMID: 38682437 DOI: 10.1089/fpd.2024.0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024] Open
Abstract
A microbiological study was conducted on 41 insect product samples (29 raw frozen [21 domestic and 8 imported], 10 powdered, and 2 processed), which were commercially available in Japan. The total aerobic count for raw frozen insects was 5.61 log cfu/g (range: 2.52-8.40), whereas the powdered insect count was 2.89 log cfu/g (range: 1.00-4.57). The bacterial count was significantly higher in raw frozen insects (p < 0.05). The coliform count for the raw frozen insects ranged from <1 to 6.90 log cfu/g, and that for the powdered insects ranged from <1 to 1.00 log cfu/g. The number of samples with values above the detection limit was significantly higher in raw frozen insects (p < 0.05). The detection frequencies of aerobic spores (<1-4.63 log cfu/g), anaerobic spores (<0-4.40 log cfu/g), and Bacillus cereus (<1.7-3.83 log cfu/g) showed no sample type-related significant difference. Listeria spp. was isolated from four samples of raw frozen insects, one of which was Listeria monocytogenes. We did not detect any of the following: Salmonella spp., Shiga toxin-producing E. coli (STEC), Campylobacter jejuni/coli, or pathogenic Yersinia. We isolated insect products retailed in Japan harboring food poisoning bacteria, including L. monocytogenes and B. cereus. In particular, raw frozen products displayed high levels of hygienic indicator bacteria.
Collapse
Affiliation(s)
- Yukako Simojima
- Department of Food and Nutritional Sciences, Toyo University, Gunma, Japan
| | - Tamako Ishikawa
- Department of Nutritional Management, Sagami Women's University, Kanagawa, Japan
| | - Erika Noguchi
- Department of Nutritional Management, Sagami Women's University, Kanagawa, Japan
| | - Reina Araki
- Department of Nutritional Management, Sagami Women's University, Kanagawa, Japan
| | - Kai Gomyo
- Department of Food and Nutritional Sciences, Toyo University, Gunma, Japan
| | - Itsuki Miyajima
- Department of Food and Nutritional Sciences, Toyo University, Gunma, Japan
| | - Yuka Akita
- Department of Food and Nutritional Sciences, Toyo University, Gunma, Japan
| | - Yui Ohara
- Department of Food and Nutritional Sciences, Toyo University, Gunma, Japan
| | - Ryuga Nakagawa
- Department of Food and Nutritional Sciences, Toyo University, Gunma, Japan
| | - Yumiko Okada
- Division of Biomedical Food Research, National Institute of Health Sciences, Kanagawa, Japan
| | - Yukio Morita
- School of Veterinary Medicine, Azabu University, Kanagawa, Japan
| |
Collapse
|
15
|
Pal A, Mann A, den Bakker HC. Analysis of Microbial Composition of Edible Insect Products Available for Human Consumption within the United States Using Traditional Microbiological Methods and Whole Genome Sequencing. J Food Prot 2024; 87:100277. [PMID: 38615992 DOI: 10.1016/j.jfp.2024.100277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 04/03/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
Edible insects offer a promising protein source for humans, but their food safety risks have not been previously investigated within the United States. Therefore, the aim of this study was to investigate the microbial content of processed edible insect products. A total of eight different types of edible insect products, including diving beetles, silkworms, grasshoppers, Jamaican crickets, mealworms, mole crickets, whole roasted crickets, and 100% pure cricket powder, were purchased from a large online retailer for the analysis. All the products were purchased in August 2022 and examined between August 2022 and November 2022. Traditional microbiological methods were employed to determine microbial counts for each product type using three replicates (total number of samples = 24). This included assessing aerobic bacterial spore, lactic acid bacteria, Enterobacteriaceae, total viable counts, and the presence of Salmonella. Additionally, whole genome sequencing was employed to further characterize selected colonies (n = 96). Microbial counts data were statistically analyzed using one-way ANOVA, while sequence data were taxonomically classified using Sepia.Bacilluscereusgroup isolates underwent additional characterization with Btyper3. Product type significantly influenced total viable counts, bacterial spore counts, and lactic acid bacteria counts (P = 0.00391, P = 0.0065, and P < 0.001, respectively), with counts ranging from < 1.70 to 6.01 Log10 CFU/g, <1.70 to 5.25 Log10 CFU/g, and < 1.70 to 4.86 Log10 CFU/g, respectively. Enterobacteriaceae were only detected in mole crickets (<2.30 Log10 CFU/g) and house cricket powder (<2.15 Log10 CFU/g). All samples were negative for Salmonella. Whole genome sequencing revealed the presence of 12 different bacterial genera among the analyzed isolates, with a majority belonging to the Bacillus genus. Some of the isolates of Bacillus cereus group were identified as biovar Emeticus. Overall, although edible insects offer a promising food alternative, the presence of Bacillus cereus group in some products could raise concerns regarding food safety.
Collapse
Affiliation(s)
- Amrit Pal
- Center for Food Safety, Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of Georgia, Griffin, GA, USA
| | - Amy Mann
- Center for Food Safety, Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of Georgia, Griffin, GA, USA
| | - Henk C den Bakker
- Center for Food Safety, Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of Georgia, Griffin, GA, USA.
| |
Collapse
|
16
|
Shelomi M. Mitigation Strategies against Food Safety Contaminant Transmission from Black Soldier Fly Larva Bioconversion. Animals (Basel) 2024; 14:1590. [PMID: 38891637 PMCID: PMC11171339 DOI: 10.3390/ani14111590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/16/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
The black soldier fly larva, Hermetia illucens, can efficiently convert organic waste into biomatter for use in animal feed. This circularity comes with a risk of contaminating downstream consumers of the larval products with microbes, heavy metals, and other hazards potentially present in the initial substrate. This review examines research on mitigation techniques to manage these contaminants, from pretreatment of the substrate to post-treatment of the larvae. While much research has been done on such techniques, little of it focused on their effects on food safety contaminants. Cheap and low-technology heat treatment can reduce substrate and larval microbial load. Emptying the larval gut through starvation is understudied but promising. Black soldier fly larvae accumulate certain heavy metals like cadmium, and their ability to process certain hazards is unknown, which is why some government authorities are erring on the side of caution regarding how larval bioconversion can be used within feed production. Different substrates have different risks and some mitigation strategies may affect larval rearing performance and the final products negatively, so different producers will need to choose the right strategy for their system to balance cost-effectiveness with sustainability and safety.
Collapse
Affiliation(s)
- Matan Shelomi
- Department of Entomology, National Taiwan University, 106319 Taipei, Taiwan
| |
Collapse
|
17
|
Liang Z, Zhu Y, Leonard W, Fang Z. Recent advances in edible insect processing technologies. Food Res Int 2024; 182:114137. [PMID: 38519159 DOI: 10.1016/j.foodres.2024.114137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/06/2024] [Accepted: 02/17/2024] [Indexed: 03/24/2024]
Abstract
Alternative foods have emerged as one of the hot research topics aiming at alleviating food shortage. Insects are one of the alternative foods due to their rich nutrients. Processing is a critical step to develop insect foods, while there is a lack of comprehensive reviews to summarize the main studies. This review aims to demonstrate different processing methods in terms of their impact on insect nutrition and their potential risks. Heat treatments such as boiling and blanching show a negative effect on insect nutrition, but essential to assure food safety. Insects treated by high-pressure hydrostatic technology (HPP) and cold atmospheric pressure plasma (CAPP) can achieve a similar sterilization effect but retain the nutritional and sensory properties. Drying is a practical processing method for industrial insect production, where oven drying serves as a cost-effective method yielding products comparable in quality to freeze-dried ones. In terms of extraction technology, supercritical carbon dioxide and ultrasound-assisted technology can improve the extraction efficiency of proteins and lipids from insects, enhance the production of composite insect-fortified foods, and thus facilitate the development of the insect food industry. To address the widespread negative perceptions and low acceptance towards insect foods among consumers, the primary development direction of the insect food industry may involve creating composite fortified foods and extracting insect-based food components.
Collapse
Affiliation(s)
- Zijian Liang
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Yijin Zhu
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia; Institute of Agro-Products Processing, Yunnan Academy of Agricultural Sciences, Kunming 65022, China
| | - William Leonard
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Zhongxiang Fang
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
18
|
Conway A, Jaiswal S, Jaiswal AK. The Potential of Edible Insects as a Safe, Palatable, and Sustainable Food Source in the European Union. Foods 2024; 13:387. [PMID: 38338521 PMCID: PMC10855650 DOI: 10.3390/foods13030387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 02/12/2024] Open
Abstract
Entomophagy describes the practice of eating insects. Insects are considered extremely nutritious in many countries worldwide. However, there is a lethargic uptake of this practice in Europe where consuming insects and insect-based foodstuffs is often regarded with disgust. Such perceptions and concerns are often due to a lack of exposure to and availability of food-grade insects as a food source and are often driven by neophobia and cultural norms. In recent years, due to accelerating climate change, an urgency to develop alternate safe and sustainable food-sources has emerged. There are currently over 2000 species of insects approved by the World Health Organization as safe to eat and suitable for human consumption. This review article provides an updated overview of the potential of edible insects as a safe, palatable, and sustainable food source. Furthermore, legislation, food safety issues, and the nutritional composition of invertebrates including, but not limited, to crickets (Orthoptera) and mealworms (Coleoptera) are also explored within this review. This article also discusses insect farming methods and the potential upscaling of the industry with regard to future prospects for insects as a sustainable food source. Finally, the topics addressed in this article are areas of potential concern to current and future consumers of edible insects.
Collapse
Affiliation(s)
- Ann Conway
- School of Food Science and Environmental Health, Faculty of Sciences and Health, Technological University Dublin—City Campus, Grangegorman, Dublin 7, D07 ADY7, Ireland; (A.C.); (S.J.)
- Environmental Sustainability and Health Institute, Technological University Dublin—City Campus, Grangegorman, Dublin 7, D07 H6K8, Ireland
| | - Swarna Jaiswal
- School of Food Science and Environmental Health, Faculty of Sciences and Health, Technological University Dublin—City Campus, Grangegorman, Dublin 7, D07 ADY7, Ireland; (A.C.); (S.J.)
- Environmental Sustainability and Health Institute, Technological University Dublin—City Campus, Grangegorman, Dublin 7, D07 H6K8, Ireland
| | - Amit K. Jaiswal
- School of Food Science and Environmental Health, Faculty of Sciences and Health, Technological University Dublin—City Campus, Grangegorman, Dublin 7, D07 ADY7, Ireland; (A.C.); (S.J.)
- Environmental Sustainability and Health Institute, Technological University Dublin—City Campus, Grangegorman, Dublin 7, D07 H6K8, Ireland
| |
Collapse
|
19
|
Nicoletti R, Russo E, Becchimanzi A. Cladosporium-Insect Relationships. J Fungi (Basel) 2024; 10:78. [PMID: 38276024 PMCID: PMC10820778 DOI: 10.3390/jof10010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
The range of interactions between Cladosporium, a ubiquitous fungal genus, and insects, a class including about 60% of the animal species, is extremely diverse. The broad case history of antagonism and mutualism connecting Cladosporium and insects is reviewed in this paper based on the examination of the available literature. Certain strains establish direct interactions with pests or beneficial insects or indirectly influence them through their endophytic development in plants. Entomopathogenicity is often connected to the production of toxic secondary metabolites, although there is a case where these compounds have been reported to favor pollinator attraction, suggesting an important role in angiosperm reproduction. Other relationships include mycophagy, which, on the other hand, may reflect an ecological advantage for these extremely adaptable fungi using insects as carriers for spreading in the environment. Several Cladosporium species colonize insect structures, such as galleries of ambrosia beetles, leaf rolls of attelabid weevils and galls formed by cecidomyid midges, playing a still uncertain symbiotic role. Finally, the occurrence of Cladosporium in the gut of several insect species has intriguing implications for pest management, also considering that some strains have proven to be able to degrade insecticides. These interactions especially deserve further investigation to understand the impact of these fungi on pest control measures and strategies to preserve beneficial insects.
Collapse
Affiliation(s)
- Rosario Nicoletti
- Council for Agricultural Research and Economics, Research Center for Olive, Fruit and Citrus Crops, 81100 Caserta, Italy
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (E.R.); (A.B.)
| | - Elia Russo
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (E.R.); (A.B.)
| | - Andrea Becchimanzi
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (E.R.); (A.B.)
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055 Portici, Italy
| |
Collapse
|
20
|
Siddiqui SA, Tettey E, Yunusa BM, Ngah N, Debrah SK, Yang X, Fernando I, Povetkin SN, Shah MA. Legal situation and consumer acceptance of insects being eaten as human food in different nations across the world-A comprehensive review. Compr Rev Food Sci Food Saf 2023; 22:4786-4830. [PMID: 37823805 DOI: 10.1111/1541-4337.13243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 08/06/2023] [Accepted: 08/28/2023] [Indexed: 10/13/2023]
Abstract
Insect consumption is a traditional practice in many countries. Currently, the urgent need for ensuring food sustainability and the high pressure from degrading environment are urging food scientists to rethink the possibility of introducing edible insects as a promising food type. However, due to the lack of the standardized legislative rules and the adequate scientific data that demonstrate the safety of edible insects, many countries still consider it a grey area to introduce edible insects into food supply chains. In this review, we comprehensively reviewed the legal situation, consumer willingness, acceptance, and the knowledge on edible insect harvesting, processing as well as their safety concerns. We found that, despite the great advantage of introducing edible insects in food supply chains, the legal situation and consumer acceptance for edible insects are still unsatisfactory and vary considerably in different countries, which mostly depend on geographical locations and cultural backgrounds involving psychological, social, religious, and anthropological factors. Besides, the safety concern of edible insect consumption is still a major issue hurdling the promotion of edible insects, which is particularly concerning for countries with no practice in consuming insects. Fortunately, the situation is improving. So far, some commercial insect products like energy bars, burgers, and snack foods have emerged in the market. Furthermore, the European Union has also recently issued a specific item for regulating new foods, which is believed to establish an authorized procedure to promote insect-based foods and should be an important step for marketizing edible insects in the near future.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), D-Quakenbrück, Germany
| | - Elizabeth Tettey
- Council for Scientific and Industrial Research - Oil Palm Research Institute, Sekondi, Takoradi W/R, Ghana
| | | | - Norhayati Ngah
- Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut, Terengganu, Malaysia
| | - Shadrack Kwaku Debrah
- Department of Horticulture and Crop Production, University of Energy and Natural Resources, Sunyani, Ghana
| | - Xi Yang
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Minato-ku, Tokyo, Japan
| | - Ito Fernando
- Department of Plant Pest and Diseases, Faculty of Agriculture, Universitas Brawijaya, Malang, East Java, Indonesia
| | | | - Mohd Asif Shah
- Department of Economics, Kabridahar University, Kabridahar, Somali, Ethiopia
- School of Business, Woxsen University, Hyderabad, India
- Division of Research and Development, Lovely Professional University, Phagwara, Punjab, India
- Research Fellow, INTI International University, Nilai, Negeri Sembilan, Malaysia
| |
Collapse
|
21
|
Sun H, Li H, Zhang X, Liu Y, Chen H, Zheng L, Zhai Y, Zheng H. The honeybee gut resistome and its role in antibiotic resistance dissemination. Integr Zool 2023; 18:1014-1026. [PMID: 36892101 DOI: 10.1111/1749-4877.12714] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
There is now general concern about widespread antibiotic resistance, and growing evidence indicates that gut microbiota is critical in providing antibiotic resistance. Honeybee is an important pollinator; the incidence of antibiotic resistance genes in honeybee gut causes potential risks to not only its own health but also to public and animal health, for its potential disseminator role, thus receiving more attention from the public. Recent analysis results reveal that the gut of honeybee serves as a reservoir of antibiotic resistance genes, probably due to antibiotics application history in beekeeping and horizontal gene transfer from the highly polluted environment. These antibiotic resistance genes accumulate in the honeybee gut and could be transferred to the pathogen, even having the potential to spread during pollination, tending, social interactions, etc. Newly acquired resistance traits may cause fitness reduction in bacteria whereas facilitating adaptive evolution as well. This review outlines the current knowledge about the resistome in honeybee gut and emphasizes its role in antibiotic resistance dissemination.
Collapse
Affiliation(s)
- Huihui Sun
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- Sanya Institute of China Agricultural University, Sanya, China
| | - Hu Li
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xue Zhang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yan Liu
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan, China
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Diseases and Insect Pests, Jinan, China
| | - Hao Chen
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan, China
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Diseases and Insect Pests, Jinan, China
| | - Li Zheng
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan, China
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Diseases and Insect Pests, Jinan, China
| | - Yifan Zhai
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan, China
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Diseases and Insect Pests, Jinan, China
| | - Hao Zheng
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan, China
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Diseases and Insect Pests, Jinan, China
| |
Collapse
|
22
|
Montalbán A, Martínez-Miró S, Schiavone A, Madrid J, Hernández F. Growth Performance, Diet Digestibility, and Chemical Composition of Mealworm ( Tenebrio molitor L.) Fed Agricultural By-Products. INSECTS 2023; 14:824. [PMID: 37887836 PMCID: PMC10607911 DOI: 10.3390/insects14100824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023]
Abstract
Humanity's growing demand for animal protein exceeds the capacity of traditional protein sources to support growing livestock production. Insects offer promising partial substitutes, converting low-nutritional quality materials into high-value biomass. Hence, the bioconversion ability of Tenebrio molitor larvae was assessed by using three types of agricultural by-products (broccoli by-product, tigernut pulp, and grape pomace) at different inclusion levels (0%, 25%, 50%, and 100%) in a carbohydrate-based diet. Ten diets were formulated to assess their impact on the growth, diet digestibility, and nutritional composition of the larvae. For each treatment, eight replicates were employed: five for the growth-performance-digestibility trial and three for the complementary test of uric acid determination. The growth was influenced by the type of diet administered. The broccoli by-product resulted in higher larvae weight and a better feed conversion ratio. However, diets based solely on a single by-product (100%) compromised the productivity and diet digestibility. The larvae changed their nutritional composition depending on the rearing substrate, although the amino acid profile remained consistent. In conclusion, the studied by-products have the potential for use in T. molitor rearing as part of the diet but not as the exclusive ingredients, indicating promising opportunities for using agricultural by-products in T. molitor rearing and production.
Collapse
Affiliation(s)
- Ana Montalbán
- Department of Animal Production, Faculty of Veterinary Science, Regional Campus of International Excellence “Mare Nostrum”, University of Murcia, Espinardo, 30100 Murcia, Spain; (A.M.); (J.M.); (F.H.)
| | - Silvia Martínez-Miró
- Department of Animal Production, Faculty of Veterinary Science, Regional Campus of International Excellence “Mare Nostrum”, University of Murcia, Espinardo, 30100 Murcia, Spain; (A.M.); (J.M.); (F.H.)
| | - Achille Schiavone
- Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, Italy;
| | - Josefa Madrid
- Department of Animal Production, Faculty of Veterinary Science, Regional Campus of International Excellence “Mare Nostrum”, University of Murcia, Espinardo, 30100 Murcia, Spain; (A.M.); (J.M.); (F.H.)
| | - Fuensanta Hernández
- Department of Animal Production, Faculty of Veterinary Science, Regional Campus of International Excellence “Mare Nostrum”, University of Murcia, Espinardo, 30100 Murcia, Spain; (A.M.); (J.M.); (F.H.)
| |
Collapse
|
23
|
Belleggia L, Osimani A. Fermented fish and fermented fish-based products, an ever-growing source of microbial diversity: A literature review. Food Res Int 2023; 172:113112. [PMID: 37689879 DOI: 10.1016/j.foodres.2023.113112] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/04/2023] [Accepted: 06/09/2023] [Indexed: 09/11/2023]
Abstract
Fermented fish and fermented fish-based products are part of the diet of many countries all over the world. Their popularity is not only due to the unique flavor, the distinct texture, and the good nutritional quality, but also to the easiness of the production process, that is commonly based on empirical traditional methods. Fish fermentation techniques ususally rely on the combination of some key steps, including salting, addition of spices or additives, and maintenance of anaerobic conditions, thus selecting for the multiplication of some pro-technological microorganisms. The objective of the present review was to provide an overview of the current knowledge of the microbial communities occurring in fermented fish and fish-based products. Specific information was collected from scientific publications published from 2000 to 2022 with the aim of generating a comprehensive database. The production of fermented fish and fish-based foods was mostly localized in West African countries, Northern European countries, and Southeast Asian countries. Based on the available literature, the microbial composition of fermented fish and fish-based products was delineated by using viable counting combined with identification of isolates, and culture-independent techniques. The data obtained from viable counting highlighted the occurrence of microbial groups usually associated with food fermentation, namely lactic acid bacteria, staphylococci, Bacillus spp., and yeasts. The identification of isolates combined with culture-independent methods showed that the fermentative process of fish-based products was generally guided by lactobacilli (Lactiplantibacillus plantarum, Latilactobacillus sakei, and Latilactobacillus curvatus) or Tetragenococcus spp. depending on the salt concentration. Among lactic acid bacteria populations, Lactococcus spp., Pediococcus spp., Leuconostoc spp., Weissella spp., Enterococcus spp., Streptococcus spp., and Vagococcus spp. were frequently identified. Staphylococcus spp. and Bacillus spp. confirmed a great adaptation to fermented fish-based products. Other noteworthy bacterial taxa included Micrococcus spp., Pseudomonas spp., Psychrobacter spp., Halanaerobium spp., and Halomonas spp. Among human pathogenic bacteria, the occurrence of Clostridium spp. and Vibrio spp. was documented. As for yeast populations, the predominance of Candida spp., Debaryomyces spp., and Saccharomyces spp. was evidenced. The present literature review could serve as comprehensive database for the scientific community, and as a reference for the food industry in order to formulate tailored starter or adjunctive cultures for product improvement.
Collapse
Affiliation(s)
- Luca Belleggia
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, Ancona, Italy
| | - Andrea Osimani
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, Ancona, Italy.
| |
Collapse
|
24
|
Lin X, Wang F, Lu Y, Wang J, Chen J, Yu Y, Tao X, Xiao Y, Peng Y. A review on edible insects in China: Nutritional supply, environmental benefits, and potential applications. Curr Res Food Sci 2023; 7:100596. [PMID: 37744556 PMCID: PMC10517268 DOI: 10.1016/j.crfs.2023.100596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/26/2023] Open
Abstract
This review explored the potential of edible insects to address the challenges of malnutrition and food security. Although grain production in China has met the Food and Agriculture Organization standards, the shortage of protein supply is still a big issue. Moreover, expanding livestock farming is considered unsustainable and environmentally unfriendly. Edible insects have become an alternative with higher sustainable and ecological properties. There are 324 species of insects currently consumed in China, and they have high nutritional value, with a rich source of protein and unsaturated fatty acids. Insect farming provides numerous benefits, including green feeds for livestock, poultry, and aquaculture, sustainable organic waste management, as well as industrial and pharmaceutical raw materials. The food toxicological evaluations conducted in China indicated that edible insects are safe for general consumption by the Chinese, but allergies and other related food safety issues should not be ignored. Consumer acceptance is another barrier to overcome, with different schemas between China and Western countries. More research on the potential functions of edible insects and their product development may enhance their acceptance in China. Overall, incorporating edible insects into our diet is a promising solution to address challenges related to protein supply and food security. To ensure safety and sustainability, appropriate legislation, quality regulations, large-scale insect farms, and acceptable processing techniques are necessary. Moreover, more scientific research and social awareness are required to promote the culture and utilization of edible insects in China.
Collapse
Affiliation(s)
- Xueying Lin
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, 999078, China
| | - Feifan Wang
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, 999078, China
| | - Yuting Lu
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, 999078, China
| | - Jiarui Wang
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, 999078, China
| | - Jingwen Chen
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, 999078, China
| | - Yingxin Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiaoyu Tao
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, 999078, China
| | - Ying Xiao
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, 999078, China
| | - Ye Peng
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, 999078, China
| |
Collapse
|
25
|
Bruno A, Sandionigi A, Panio A, Rimoldi S, Orizio F, Agostinetto G, Hasan I, Gasco L, Terova G, Labra M. Aquaculture ecosystem microbiome at the water-fish interface: the case-study of rainbow trout fed with Tenebrio molitor novel diets. BMC Microbiol 2023; 23:248. [PMID: 37674159 PMCID: PMC10481543 DOI: 10.1186/s12866-023-02990-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 08/21/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND Sustainable aquaculture relies on multiple factors, including water quality, fish diets, and farmed fish. Replacing fishmeal (FM) with alternative protein sources is key for improving sustainability in aquaculture and promoting fish health. Indeed, great research efforts have been made to evaluate novel feed formulations, focusing especially on the effects on the fish gut microbiome. Few studies have explored host-environment interactions. In the present study, we evaluated the influence of novel insect-based (Tenebrio molitor) fish diets on the microbiome at the water-fish interface in an engineered rainbow trout (Oncorhynchus mykiss) farming ecosystem. Using 16S rRNA gene metabarcoding, we comprehensively analyzed the microbiomes of water, tank biofilm, fish intestinal mucus, fish cutis, and feed samples. RESULTS Core microbiome analysis revealed the presence of a highly reduced core shared by all sample sources, constituted by Aeromonas spp., in both the control and novel feed test groups. Network analysis showed that samples were clustered based on the sample source, with no significant differences related to the feed formulation tested. Thus, the different diets did not seem to affect the environment (water and tank biofilm) and fish (cutis and intestinal mucus) microbiomes. To disentangle the contribution of feed at a finer scale, we performed a differential abundance analysis and observed differential enrichment/impoverishment in specific taxa, comparing the samples belonging to the control diet group and the insect-based diet group. CONCLUSIONS Omic exploration of the water-fish interface exposes patterns that are otherwise undetected. These data demonstrate a link between the environment and fish and show that subtle but significant differences are caused by feed composition. Thus, the research presented here is a step towards positively influencing the aquaculture environment and its microbiome.
Collapse
Affiliation(s)
- Antonia Bruno
- ZooPlantLab, Biotechnology and Biosciences Department, University of Milano-Bicocca, Milan, Italy.
| | | | - Antonella Panio
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Milan, Italy
| | - Simona Rimoldi
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Flavio Orizio
- ZooPlantLab, Biotechnology and Biosciences Department, University of Milano-Bicocca, Milan, Italy
| | - Giulia Agostinetto
- ZooPlantLab, Biotechnology and Biosciences Department, University of Milano-Bicocca, Milan, Italy
| | - Imam Hasan
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Laura Gasco
- Department of Agricultural, Forest and Food Sciences, University of Turin, Torino, Italy
| | - Genciana Terova
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Massimo Labra
- ZooPlantLab, Biotechnology and Biosciences Department, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
26
|
Pedonese F, Fratini F, Copelotti E, Marconi F, Carrese R, Mancini S. Behaviour of Staphylococcus aureus in the Rearing Substrate of Tenebrio molitor Larvae. Vet Sci 2023; 10:549. [PMID: 37756071 PMCID: PMC10534670 DOI: 10.3390/vetsci10090549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023] Open
Abstract
Tenebrio molitor (mealworm) is one of the most promising insect species to produce sustainable feed and food with high nutritional value. Insects may harbour microorganisms both in the gut and on the exoskeleton originating from the rearing environment. Staphylococcus aureus is a pathogenic microorganism frequently involved in food poisoning due to its enterotoxin production. This study aimed to evaluate the S. aureus growth and enterotoxins production following an experimental inoculation into the T. molitor rearing substrate (about 7 log CFU/g). Analyses on the substrate and larvae were performed over a testing period of seven days. The microbial population dynamics were also evaluated through total viable count and lactic acid bacteria count. The effects of fasting, washing, and cooking on the microbial loads of mealworms were evaluated. The results highlighted that mealworms and substrates can maintain their microbial loads of S. aureus over the tested period. Moreover, fasting and washing were generally not able to significantly reduce (p-value > 0.05) S. aureus count in mealworms. On the other hand, cooking significantly reduced (p-value < 0.001) the microbial load in almost all cases. No production of enterotoxins was revealed during the trial. Therefore, microbiological risks can be reduced by a wise choice of substrate, appropriate control measures, and thermal treatment of larvae.
Collapse
Affiliation(s)
- Francesca Pedonese
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (F.P.); (E.C.); (F.M.); (S.M.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Filippo Fratini
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (F.P.); (E.C.); (F.M.); (S.M.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Emma Copelotti
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (F.P.); (E.C.); (F.M.); (S.M.)
| | - Francesca Marconi
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (F.P.); (E.C.); (F.M.); (S.M.)
| | - Roberto Carrese
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (F.P.); (E.C.); (F.M.); (S.M.)
| | - Simone Mancini
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (F.P.); (E.C.); (F.M.); (S.M.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|
27
|
Pinarelli Fazion J, Marzoli F, Pezzuto A, Bertola M, Antonelli P, Dolzan B, Barco L, Belluco S. A systematic review of experimental studies on Salmonella persistence in insects. NPJ Sci Food 2023; 7:44. [PMID: 37640696 PMCID: PMC10462725 DOI: 10.1038/s41538-023-00223-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023] Open
Abstract
The consumption of insects as food and feed has been recently suggested as a possible alternative to the rising global food need, thus it is crucial to monitor any potential food safety hazards in the insect supply chain. The aims of this systematic review were to collect, select, and evaluate studies investigating the persistence of Salmonella in insects. We searched PUBMED, EMBASE, WEB of Science Core Collection, and Food Science and Technology Abstracts. In total, 36 papers investigating the persistence of Salmonella in insects (both holometabolous and heterometabolous) were included after screening. Regarding complete metamorphosis insects, the longest Salmonella persistence was reported in Phormia regina, in which the pathogen persisted for 29 days at 5 °C. Similarly, Salmonella persisted in the feces of Alphitobius diaperinus for 28 days. The incomplete metamorphosis insect showing the longest Salmonella persistence (>10 months) was Blatella germanica. Periplaneta americana excreted Salmonella via feces for 44 days until all the insects were dead. The retrieved data on the persistence of Salmonella can be useful for further analysis by risk assessors and decision-makers involved in the safety of insect-based food, contributing to defining the sanitary requirements and risk mitigation measures along the supply chain. The review protocol is registered in PROSPERO database (CRD42022329213).
Collapse
Affiliation(s)
- Juliane Pinarelli Fazion
- Laboratory of Safety and Quality of the Food Chain, Istituto Zooprofilattico Sperimentale Delle Venezie, Viale Fiume 78, 36100, Vicenza, Italy
| | - Filippo Marzoli
- Laboratory of Safety and Quality of the Food Chain, Istituto Zooprofilattico Sperimentale Delle Venezie, Viale Fiume 78, 36100, Vicenza, Italy
| | - Alessandra Pezzuto
- WOAH and Italian National Reference Laboratory for Salmonella and, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020, Legnaro (PD), Italy
- Laboratory of hygiene and safety of the food chain, Istituto Zooprofilattico Sperimentale delle Venezie, Via Calvecchia 4, 30027, San Donà di Piave (VE), Italy
| | - Michela Bertola
- WOAH and Italian National Reference Laboratory for Diseases at the Animal/Human Interface and Laboratory of Parasitology, Micology and Sanitary Entomology, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020, Legnaro (PD), Italy
| | - Pietro Antonelli
- WOAH and Italian National Reference Laboratory for Salmonella and, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020, Legnaro (PD), Italy
| | - Beatrice Dolzan
- Laboratory of Safety and Quality of the Food Chain, Istituto Zooprofilattico Sperimentale Delle Venezie, Viale Fiume 78, 36100, Vicenza, Italy
| | - Lisa Barco
- WOAH and Italian National Reference Laboratory for Salmonella and, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020, Legnaro (PD), Italy
| | - Simone Belluco
- Laboratory of Safety and Quality of the Food Chain, Istituto Zooprofilattico Sperimentale Delle Venezie, Viale Fiume 78, 36100, Vicenza, Italy.
| |
Collapse
|
28
|
Gnana Moorthy Eswaran U, Karunanithi S, Gupta RK, Rout S, Srivastav PP. Edible insects as emerging food products-processing and product development perspective. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:2105-2120. [PMID: 37273559 PMCID: PMC10232397 DOI: 10.1007/s13197-022-05489-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/12/2022] [Accepted: 05/15/2022] [Indexed: 06/06/2023]
Abstract
Edible insects (EI) are also becoming as a part of the diet due to their nutritional value and health benefits in many regions of the world. These EI are inexhaustible sources accessible by garnering from the wild with high feed conversion efficiency. Appreciating the budding of EI in justifiable food production, enlightening food security and biodiversity conversion, is promising a sufficient supply of the insect resource for future food to the world. These insects are processed to develop new products, improve organoleptic and nutritional parameters as well as the extension of shelf life. In this review, we discuss the edible insect characteristics, the potential application of EI in food industry, processing, pretreatments, drying, extraction of edible compounds like protein, lipid and chitin various food products formulation, safety regulation. Availability of broad nutritional spectrum of EI includes protein, mono and poly unsaturaturated fatty acids, amino acids, vitamins, amino aids and minerals has been used as an ingredient in development of various forms of food products such as flours in the form of whole insect powder, protein isolate, canned products, extruded products, hard candies, spreads, liquor infusion, cookies and other products.
Collapse
Affiliation(s)
- U. Gnana Moorthy Eswaran
- Department of Agricultural and Food Engineering, Indian Institute of Technology, Kharagpur, 721302 West Bengal India
| | - Sangeetha Karunanithi
- Department of Agricultural and Food Engineering, Indian Institute of Technology, Kharagpur, 721302 West Bengal India
| | - Rakesh Kumar Gupta
- Department of Agricultural and Food Engineering, Indian Institute of Technology, Kharagpur, 721302 West Bengal India
| | - Srutee Rout
- Department of Agricultural and Food Engineering, Indian Institute of Technology, Kharagpur, 721302 West Bengal India
| | - Prem Prakash Srivastav
- Department of Agricultural and Food Engineering, Indian Institute of Technology, Kharagpur, 721302 West Bengal India
| |
Collapse
|
29
|
Pöllinger-Zierler B, Lienhard A, Mayer C, Berner S, Rehorska R, Schöpfer A, Grasser M. Tenebrio molitor (Linnaeus, 1758): Microbiological Screening of Feed for a Safe Food Choice. Foods 2023; 12:foods12112139. [PMID: 37297384 DOI: 10.3390/foods12112139] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
As a result of the increasing focus on alternative protein sources which are ideally still sustainable, the yellow mealworm, Tenebrio molitor, has come into focus. To verify its suitability as a food source in relation to human health, an analysis of the microbiome of larvae of T. molitor is pertinent. Subsequently, the focus of this study was, on the one hand, to analyze the influence of the substrate on the microbial load of the larvae microbiome, and, on the other hand, to determine which processing methods ensure the risk-free consumption of mealworms. For this purpose, mealworms were grown on 10 different substrates derived from by-products of food production (malt residual pellets, corn germ meal, chestnut breakage and meal, wheat bran, bread remains, draff, nettle, hemp seed oil cake, oyster mushrooms with coffee grounds, pumpkin seed oil cake) and microbial loads were analyzed using different selective media. Further starvation/defecation and heating (850 W for 10 min) methods were used to investigate how the reduction of microorganisms is enabled by these methods. The results showed that there was no significant relationship between the microbial load of the substrate and the mealworm. Starvation and defecation led to a lower stock of microorganisms. Heating led to a significant microbial reduction in non-defecated mealworms. The group of defecated and heated mealworms showed no detectable microbial load. In conclusion, firstly, the choice of substrate showed no effect on the microbial load of larvae of Tenebrio molitor and secondly, heating and starvation allow risk-free consumption. This study makes an important contribution for evaluating the safety of mealworms as a sustainable protein source in human nutrition.
Collapse
Affiliation(s)
- Barbara Pöllinger-Zierler
- Sustainable Food Management, Institute of Applied Production Sciences, Department of Engineering, University of Applied Sciences, FH JOANNEUM GmbH, Eggenberger Allee 11, 8020 Graz, Austria
| | - Andrea Lienhard
- Sustainable Food Management, Institute of Applied Production Sciences, Department of Engineering, University of Applied Sciences, FH JOANNEUM GmbH, Eggenberger Allee 11, 8020 Graz, Austria
| | - Chiara Mayer
- Sustainable Food Management, Institute of Applied Production Sciences, Department of Engineering, University of Applied Sciences, FH JOANNEUM GmbH, Eggenberger Allee 11, 8020 Graz, Austria
| | - Simon Berner
- Sustainable Food Management, Institute of Applied Production Sciences, Department of Engineering, University of Applied Sciences, FH JOANNEUM GmbH, Eggenberger Allee 11, 8020 Graz, Austria
| | - René Rehorska
- Sustainable Food Management, Institute of Applied Production Sciences, Department of Engineering, University of Applied Sciences, FH JOANNEUM GmbH, Eggenberger Allee 11, 8020 Graz, Austria
| | - Angela Schöpfer
- Sustainable Food Management, Institute of Applied Production Sciences, Department of Engineering, University of Applied Sciences, FH JOANNEUM GmbH, Eggenberger Allee 11, 8020 Graz, Austria
| | - Monika Grasser
- Sustainable Food Management, Institute of Applied Production Sciences, Department of Engineering, University of Applied Sciences, FH JOANNEUM GmbH, Eggenberger Allee 11, 8020 Graz, Austria
| |
Collapse
|
30
|
Gałęcki R, Bakuła T, Gołaszewski J. Foodborne Diseases in the Edible Insect Industry in Europe-New Challenges and Old Problems. Foods 2023; 12:770. [PMID: 36832845 PMCID: PMC9956073 DOI: 10.3390/foods12040770] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/25/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
Insects play a key role in European agroecosystems. Insects provide important ecosystem services and make a significant contribution to the food chain, sustainable agriculture, the farm-to-fork (F2F) strategy, and the European Green Deal. Edible insects are regarded as a sustainable alternative to livestock, but their microbiological safety for consumers has not yet been fully clarified. The aim of this article is to describe the role of edible insects in the F2F approach, to discuss the latest veterinary guidelines concerning consumption of insect-based foods, and to analyze the biological, chemical, and physical hazards associated with edible insect farming and processing. Five groups of biological risk factors, ten groups of chemical risk factors, and thirteen groups of physical risks factors have been identified and divided into sub-groups. The presented risk maps can facilitate identification of potential threats, such as foodborne pathogens in various insect species and insect-based foods. Ensuring safety of insect-based foods, including effective control of foodborne diseases, will be a significant milestone on the path to maintaining a sustainable food chain in line with the F2F strategy and EU policies. Edible insects constitute a new category of farmed animals and a novel link in the food chain, but their production poses the same problems and challenges that are encountered in conventional livestock rearing and meat production.
Collapse
Affiliation(s)
- Remigiusz Gałęcki
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Tadeusz Bakuła
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Janusz Gołaszewski
- Center for Bioeconomy and Renewable Energies, Department of Genetics, Plant Breeding and Bioresource Engineering, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| |
Collapse
|
31
|
Edible insects: Tendency or necessity (a review). EFOOD 2023. [DOI: 10.1002/efd2.58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
32
|
Yan X, Laurent S, Hue I, Cabon S, Grua-Priol J, Jury V, Federighi M, Boué G. Quality of Tenebrio molitor Powders: Effects of Four Processes on Microbiological Quality and Physicochemical Factors. Foods 2023; 12:foods12030572. [PMID: 36766101 PMCID: PMC9914264 DOI: 10.3390/foods12030572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 02/03/2023] Open
Abstract
Tenebrio molitor, the first edible insect approved as a novel food in the EU, is a promising candidate for alternative protein sources, implementing circular and sustainable production systems. This study aims to determine the microbiological quality and physicochemical properties of mealworm powders obtained by four different processing pathways. Contents of dry matter, protein, fat, ash, water activity (aw) and a range of microbial counts were measured and analyzed by one-way ANOVA with Tukey's test. Results showed small differences in the proximate composition of the powder samples (protein 55.62-57.90% and fat 23.63-28.21% of dry matter, DM), except for the one that underwent a defatting step (protein 70.04% and fat 16.84%), p < 0.05. A level of water activity of less than 0.2 was reached for all pathways. Fresh mealworm samples had high total aerobic counts (8.4 log CFU/g) but were free of foodborne pathogens. Heat treatments applied during transformation were sufficient to kill vegetative cells (reduction of 2.8-5.1 log CFU/g) rather than bacterial endospores (reduction of 0.3-1.8 log CFU/g). Results were confirmed by predictive microbiology. This study validated the efficacy of a boiling step as critical control points (CCPs) of insect powder processing, providing primary data for the implementation of HACCP plans.
Collapse
Affiliation(s)
- Xin Yan
- Oniris, INRAE, SECALIM, 44300 Nantes, France
| | - Sophie Laurent
- Oniris, Université de Nantes, CNRS, GEPEA UMR 6144, 44322 Nantes, France
| | | | | | - Joelle Grua-Priol
- Oniris, Université de Nantes, CNRS, GEPEA UMR 6144, 44322 Nantes, France
| | - Vanessa Jury
- Oniris, Université de Nantes, CNRS, GEPEA UMR 6144, 44322 Nantes, France
| | - Michel Federighi
- Oniris, INRAE, SECALIM, 44300 Nantes, France
- EnvA, ANSES, LSA, 94700 Maison-Alfort, France
| | - Geraldine Boué
- Oniris, INRAE, SECALIM, 44300 Nantes, France
- Correspondence:
| |
Collapse
|
33
|
Cesaro C, Mannozzi C, Lepre A, Ferrocino I, Belleggia L, Corsi L, Ruschioni S, Isidoro N, Riolo P, Petruzzelli A, Savelli D, Milanović V, Cardinali F, Garofalo C, Cocolin L, Aquilanti L, Osimani A. Staphylococcus aureus artificially inoculated in mealworm larvae rearing chain for human consumption: Long-term investigation into survival and toxin production. Food Res Int 2022; 162:112083. [DOI: 10.1016/j.foodres.2022.112083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/17/2022] [Accepted: 10/22/2022] [Indexed: 11/25/2022]
|
34
|
Suppression of Methicillin-Resistant Staphylococcus aureus and Reduction of Other Bacteria by Black Soldier Fly Larvae Reared on Potato Substrate. Microbiol Spectr 2022; 10:e0232122. [PMID: 36197291 PMCID: PMC9602475 DOI: 10.1128/spectrum.02321-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Larvae of black soldier flies, Hermetia illucens, are increasingly used for biological conversion of animal and plant wastes into ingredients of animal feeds on an industrial scale. The presence of pathogenic microorganisms in harvested larvae may be a serious problem for wide-scale adoption of this technology. Fortunately, black soldier fly larvae may have some antimicrobial properties. Methicillin-resistant Staphylococcus aureus (MRSA) is a bacterium associated with various environments that can be pathogenic to humans and farmed animals. We tested whether black soldier fly larvae suppress MRSA on potato substrate. Autoclaved potatoes containing black soldier fly larvae (P+BSFL), potatoes inoculated with MRSA and containing black soldier fly larvae (P+MRSA+BSFL), and potatoes inoculated with MRSA (P+MRSA) were incubated in glass jars. Substrate samples were taken after 3 and 7 days of incubation and plated on Trypticase soy agar (TSA) and Staphylococcus medium 110 agar (SA) to quantify total bacteria and MRSA, respectively. DNA was extracted from potato substrates on both days and sequenced to assess bacterial and fungal diversity using 515F/806R and internal transcribed spacer (ITS) 1/2 primers, respectively, and QIIME 2.0 software. Both total bacterial and MRSA-specific CFU were reduced in the presence of black soldier fly larvae, with a larger reduction for the latter. Twenty-five bacterial genera and 3 fungal genera were detected. Twenty bacterial genera were shared among the treatments and the days, but their relative abundances often varied. Among the most abundant genera, only Enterococcus and Lactococcus were universally present. Our findings confirm antimicrobial properties of black soldier fly larvae. IMPORTANCE Larvae of black soldier flies, Hermetia illucens, may be used to provide an environmentally sustainable and economically viable method for biological conversion of animal and plant wastes into ingredients of animal feeds on an industrial scale. However, contamination of harvested larvae by pathogenic microorganisms inhabiting decaying substrates may be a serious problem for wide-scale adoption of this technology. Fortunately, black soldier fly larvae may have some antimicrobial properties, including suppression of several common pathogens. Our study showed that such a suppression applies to methicillin-resistant Staphylococcus aureus, which is a ubiquitous bacterium pathogenic to animals (including humans).
Collapse
|
35
|
Boué G, Ververis E, Niforou A, Federighi M, Pires SM, Poulsen M, Thomsen ST, Naska A. Risk-Benefit assessment of foods: Development of a methodological framework for the harmonized selection of nutritional, microbiological, and toxicological components. Front Nutr 2022; 9:951369. [PMID: 36386902 PMCID: PMC9665408 DOI: 10.3389/fnut.2022.951369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/30/2022] [Indexed: 10/22/2024] Open
Abstract
Investigating the impact of diet on public health using risk-benefit assessment (RBA) methods that simultaneously consider both beneficial and adverse health outcomes could be useful for shaping dietary policies and guidelines. In the field of food safety and nutrition, RBA is a relatively new approach facing methodological challenges and being subject to further developments. One of the methodological aspects calling for improvement is the selection of components to be considered in the assessment, currently based mainly on non-harmonized unstandardized experts' judgment. Our aim was to develop a harmonized, transparent, and documented methodological framework for selecting nutritional, microbiological, and toxicological RBA components. The approach was developed under the Novel foods as red meat replacers-an insight using Risk-Benefit Assessment methods (NovRBA) case study, which attempted to estimate the overall health impact of replacing red meat with an edible insect species, Acheta domesticus. Starting from the compositional profiles of both food items, we created a "long list" of food components. By subsequently applying a series of predefined criteria, we proceeded from the "long" to the "short list." These criteria were established based on the occurrence and severity of health outcomes related to these components. For nutrition and microbiology, the occurrence of health outcomes was evaluated considering the presence of a component in the raw material, as well as the effect of processing on the respective component. Regarding toxicology, the presence and exposure relative to reference doses and the contribution to total exposure were considered. Severity was graded with the potential contribution to the background diet alongside bioavailability aspects (nutrition), the disability-adjusted life years per case of illness of each hazard (microbiology), and disease incidence in the population, potential fatality, and lifelong disability (toxicology). To develop the "final list" of components, the "short list" was refined by considering the availability and quality of data for a feasible inclusion in the RBA model. The methodology developed can be broadly used in food RBA, to guide and reinforce a harmonized selection of nutritional, microbiological, and toxicological components and will contribute to facilitating RBA implementation, enabling the generation of transparent, robust, and comparable outcomes.
Collapse
Affiliation(s)
| | - Ermolaos Ververis
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens (NKUA), Athens, Greece
- European Food Safety Authority, Parma, Italy
| | - Aikaterini Niforou
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Michel Federighi
- Oniris, INRAE, SECALIM, Nantes, France
- ENVA, ANSES, LSA, Maisons-Alfort, France
| | - Sara M. Pires
- Risk Benefit Research Group, National Food Institute/DTU, Lyngby, Denmark
| | - Morten Poulsen
- Risk Benefit Research Group, National Food Institute/DTU, Lyngby, Denmark
| | - Sofie T. Thomsen
- Risk Benefit Research Group, National Food Institute/DTU, Lyngby, Denmark
| | - Androniki Naska
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| |
Collapse
|
36
|
Sándor ZJ, Banjac V, Vidosavljević S, Káldy J, Egessa R, Lengyel-Kónya É, Tömösközi-Farkas R, Zalán Z, Adányi N, Libisch B, Biró J. Apparent Digestibility Coefficients of Black Soldier Fly ( Hermetia illucens), Yellow Mealworm ( Tenebrio molitor), and Blue Bottle Fly ( Calliphora vicina) Insects for Juvenile African Catfish Hybrids ( Clarias gariepinus × Heterobranchus longifilis). AQUACULTURE NUTRITION 2022; 2022:4717014. [PMID: 36860442 PMCID: PMC9973197 DOI: 10.1155/2022/4717014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/12/2022] [Accepted: 08/22/2022] [Indexed: 06/18/2023]
Abstract
A digestibility trial was conducted with African catfish hybrid juveniles in order to determine the apparent digestibility coefficients (ADCs) of different nutrients. The experimental diets contained defatted black soldier fly (BSL), yellow mealworm (MW), or fully fat blue bottle fly (BBF) meals, in a 70 : 30 ratio between the control diet and the tested insect meals. The indirect method for the digestibility study was performed using 0.1% yttrium oxide as an inert marker. Fish juveniles of 217.4 ± 9.5 g initial weight were distributed in 1 m3 tanks (75 fish/tank) of a recirculating aquaculture system (RAS), in triplicates, and fed until satiation for 18 days. The average final weight of the fish was 346 ± 35.8 g. The ADCs of the dry matter, protein, lipid, chitin, ash, phosphorus, amino acids, fatty acids, and gross energy for the test ingredients and diets were calculated. A six-month storage test was carried out to evaluate the shelf life of the experimental diets, while the peroxidation and microbiological status of the diets were also assessed. The ADC values of the test diets differed significantly (p < 0.001) compared to those of the control for most of the nutrients. Altogether, the BSL diet was significantly more digestible for protein, fat, ash, and phosphorus than the control diet but less digestible for essential amino acids. Significant differences were found between the ADCs of the different insect meals evaluated (p < 0.001) for practically all nutritional fractions analyzed. The African catfish hybrids were able to digest BSL and BBF more efficiently than MW, and the calculated ADC values agreed with those of other fish species. The lower ADCs of the tested MW meal correlated (p < 0.05) with the markedly higher acid detergent fiber (ADF) levels present in the MW meal and MW diet. Microbiological evaluation of the feeds revealed that mesophilic aerobic bacteria in the BSL feed were 2-3 orders of magnitude more abundant than those in the other diets and their numbers significantly increased during storage. Overall, BSL and BBF proved to be potential feed ingredients for African catfish juveniles and the shelf life of the produced diets with 30% inclusion of insect meal retained the required quality during a six-month period of storage.
Collapse
Affiliation(s)
- Zsuzsanna J. Sándor
- Research Centre for Aquaculture and Fisheries (HAKI), Hungarian University of Agriculture and Life Sciences, Anna liget u. 35, Szarvas, Hungary
| | - Vojislav Banjac
- University of Novi Sad, Institute of Food Technology, Bulevar cara Lazara br. 1, Novi Sad, Serbia
| | - Strahinja Vidosavljević
- University of Novi Sad, Institute of Food Technology, Bulevar cara Lazara br. 1, Novi Sad, Serbia
| | - Jenő Káldy
- Research Centre for Aquaculture and Fisheries (HAKI), Hungarian University of Agriculture and Life Sciences, Anna liget u. 35, Szarvas, Hungary
| | - Robert Egessa
- Doctoral School of Animal Husbandry Science, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
- National Agricultural Research Organisation (NARO), Jinja, Uganda
| | - Éva Lengyel-Kónya
- Research Group of Food Science, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Herman Ottó u. 15, Budapest, Hungary
| | - Rita Tömösközi-Farkas
- Research Group of Food Science, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Herman Ottó u. 15, Budapest, Hungary
| | - Zsolt Zalán
- Research Group of Food Science, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Herman Ottó u. 15, Budapest, Hungary
| | - Nóra Adányi
- Research Group of Food Science, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Herman Ottó u. 15, Budapest, Hungary
| | - Balázs Libisch
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi Albert u. 4, Gödöllő, Hungary
| | - Janka Biró
- Research Centre for Aquaculture and Fisheries (HAKI), Hungarian University of Agriculture and Life Sciences, Anna liget u. 35, Szarvas, Hungary
| |
Collapse
|
37
|
Barry ES, Merkebu J, Varpio L. State-of-the-art literature review methodology: A six-step approach for knowledge synthesis. PERSPECTIVES ON MEDICAL EDUCATION 2022; 11:281-288. [PMID: 36063310 PMCID: PMC9582072 DOI: 10.1007/s40037-022-00725-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 06/01/2023]
Abstract
INTRODUCTION Researchers and practitioners rely on literature reviews to synthesize large bodies of knowledge. Many types of literature reviews have been developed, each targeting a specific purpose. However, these syntheses are hampered if the review type's paradigmatic roots, methods, and markers of rigor are only vaguely understood. One literature review type whose methodology has yet to be elucidated is the state-of-the-art (SotA) review. If medical educators are to harness SotA reviews to generate knowledge syntheses, we must understand and articulate the paradigmatic roots of, and methods for, conducting SotA reviews. METHODS We reviewed 940 articles published between 2014-2021 labeled as SotA reviews. We (a) identified all SotA methods-related resources, (b) examined the foundational principles and techniques underpinning the reviews, and (c) combined our findings to inductively analyze and articulate the philosophical foundations, process steps, and markers of rigor. RESULTS In the 940 articles reviewed, nearly all manuscripts (98%) lacked citations for how to conduct a SotA review. The term "state of the art" was used in 4 different ways. Analysis revealed that SotA articles are grounded in relativism and subjectivism. DISCUSSION This article provides a 6-step approach for conducting SotA reviews. SotA reviews offer an interpretive synthesis that describes: This is where we are now. This is how we got here. This is where we could be going. This chronologically rooted narrative synthesis provides a methodology for reviewing large bodies of literature to explore why and how our current knowledge has developed and to offer new research directions.
Collapse
Affiliation(s)
- Erin S Barry
- Department of Anesthesiology, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD, USA.
- School of Health Professions Education (SHE), Maastricht University, Maastricht, The Netherlands.
| | - Jerusalem Merkebu
- Department of Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD, USA
| | - Lara Varpio
- Department of Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD, USA
| |
Collapse
|
38
|
Frentzel H, Kelner-Burgos Y, Fischer J, Heise J, Göhler A, Wichmann-Schauer H. Occurrence of selected bacterial pathogens in insect-based food products and in-depth characterisation of detected Bacillus cereus group isolates. Int J Food Microbiol 2022; 379:109860. [DOI: 10.1016/j.ijfoodmicro.2022.109860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/06/2022] [Accepted: 07/26/2022] [Indexed: 10/16/2022]
|
39
|
Fate of Escherichia coli artificially inoculated in Tenebrio molitor L. larvae rearing chain for human consumption. Food Res Int 2022; 157:111269. [DOI: 10.1016/j.foodres.2022.111269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 01/04/2023]
|
40
|
Making a meal out of bugs. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1002/fsat.3602_5.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
41
|
Bessette E, Williams B. Protists in the Insect Rearing Industry: Benign Passengers or Potential Risk? INSECTS 2022; 13:482. [PMID: 35621816 PMCID: PMC9144225 DOI: 10.3390/insects13050482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 02/01/2023]
Abstract
As the insects for food and feed industry grows, a new understanding of the industrially reared insect microbiome is needed to better comprehend the role that it plays in both maintaining insect health and generating disease. While many microbiome projects focus on bacteria, fungi or viruses, protists (including microsporidia) can also make up an important part of these assemblages. Past experiences with intensive invertebrate rearing indicate that these parasites, whilst often benign, can rapidly sweep through populations, causing extensive damage. Here, we review the diversity of microsporidia and protist species that are found in reared insect hosts and describe the current understanding of their host spectra, life cycles and the nature of their interactions with hosts. Major entomopathogenic parasite groups with the potential to infect insects currently being reared for food and feed include the Amoebozoa, Apicomplexa, Ciliates, Chlorophyta, Euglenozoa, Ichtyosporea and Microsporidia. However, key gaps exist in the understanding of how many of these entomopathogens affect host biology. In addition, for many of them, there are very limited or even no molecular data, preventing the implementation of molecular detection methods. There is now a pressing need to develop and use novel molecular tools, coupled with standard molecular diagnostic methods, to help unlock their biology and predict the effects of these poorly studied protist parasites in intensive insect rearing systems.
Collapse
Affiliation(s)
- Edouard Bessette
- Living Systems Institute, Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK;
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Copenhagen, Denmark
| | - Bryony Williams
- Living Systems Institute, Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK;
| |
Collapse
|
42
|
Neuzil-Bunesova V, Ramirez Garcia A, Modrackova N, Makovska M, Sabolova M, Spröer C, Bunk B, Blom J, Schwab C. Feed Insects as a Reservoir of Granadaene-Producing Lactococci. Front Microbiol 2022; 13:848490. [PMID: 35615513 PMCID: PMC9125021 DOI: 10.3389/fmicb.2022.848490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/04/2022] [Indexed: 11/15/2022] Open
Abstract
Insects are a component of the diet of different animal species and have been suggested as the major source of human dietary protein for the future. However, insects are also carriers of potentially pathogenic microbes that constitute a risk to food and feed safety. In this study, we reported the occurrence of a hemolytic orange pigmented producing phenotype of Lactococcus garvieae/petauri/formosensis in the fecal microbiota of golden lion tamarins (Leontopithecus rosalia) and feed larvae (Zophobas atratus). Feed insects were identified as a regular source of L. garvieae/petauri/formosensis based on a reanalysis of available 16S rRNA gene libraries. Pan-genome analysis suggested the existence of four clusters within the L. garvieae/petauri/formosensis group. The presence of cyl cluster indicated that some strains of the L. garvieae/petauri/formosensis group produced a pigment similar to granadaene, an orange cytotoxic lipid produced by group B streptococci, including Streptococcus agalactiae. Pigment production by L. garvieae/petauri/formosensis strains was dependent on the presence of the fermentable sugars, with no pigment being observed at pH <4.7. The addition of buffering compounds or arginine, which can be metabolized to ammonium, restored pigment formation. In addition, pigment formation might be related to the source of peptone. These data suggest that edible insects are a possible source of granadaene-producing lactococci, which can be considered a pathogenic risk with zoonotic potential.
Collapse
Affiliation(s)
- Vera Neuzil-Bunesova
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences Prague, Prague, Czechia
- *Correspondence: Vera Neuzil-Bunesova,
| | - Alejandro Ramirez Garcia
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zürich, Zurich, Switzerland
| | - Nikol Modrackova
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences Prague, Prague, Czechia
| | - Marie Makovska
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences Prague, Prague, Czechia
| | - Monika Sabolova
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences Prague, Prague, Czechia
| | - Cathrin Spröer
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
| | - Boyke Bunk
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
| | - Jochen Blom
- Bioinformatics and Systems Biology, University Giessen, Giessen, Germany
| | - Clarissa Schwab
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences Prague, Prague, Czechia
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zürich, Zurich, Switzerland
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
| |
Collapse
|
43
|
Borges MM, da Costa DV, Trombete FM, Câmara AKFI. Edible insects as a sustainable alternative to food products: an insight into quality aspects of reformulated bakery and meat products. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
44
|
Rizou E, Kalogiouri N, Bisba M, Papadimitriou A, Kyrila G, Lazou A, Andreadis S, Hatzikamari M, Mourtzinos I, Touraki M. Amelioration of growth, nutritional value, and microbial load of Tenebrio molitor (Coleoptera: Tenebrionidae) through probiotic supplemented feed. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03925-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
45
|
Greenwood MP, Hull KL, Brink-Hull M, Lloyd M, Rhode C. Feed and Host Genetics Drive Microbiome Diversity with Resultant Consequences for Production Traits in Mass-Reared Black Soldier Fly ( Hermetia illucens) Larvae. INSECTS 2021; 12:1082. [PMID: 34940170 PMCID: PMC8706267 DOI: 10.3390/insects12121082] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 01/25/2023]
Abstract
Mass rearing the black soldier fly, Hermetia illucens, for waste bioremediation and valorisation is gaining traction on a global scale. While the health and productivity of this species are underpinned by associations with microbial taxa, little is known about the factors that govern gut microbiome assembly, function, and contributions towards host phenotypic development in actively feeding larvae. In the present study, a 16S rDNA gene sequencing approach applied to a study system incorporating both feed substrate and genetic variation is used to address this knowledge gap. It is determined that the alpha diversity of larval gut bacterial communities is driven primarily by features of the larval feed substrate, including the diversity of exogenous bacterial populations. Microbiome beta diversity, however, demonstrated patterns of differentiation consistent with an influence of diet, larval genetic background, and a potential interaction between these factors. Moreover, evidence for an association between microbiome structure and the rate of larval fat accumulation was uncovered. Taxonomic enrichment analysis and clustering of putative functional gut profiles further suggested that feed-dependent turnover in microbiome communities is most likely to impact larval characteristics. Taken together, these findings indicate that host-microbiome interactions in this species are complex yet relevant to larval trait emergence.
Collapse
Affiliation(s)
- Matthew P. Greenwood
- Department of Genetics, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa; (M.P.G.); (K.L.H.); (M.B.-H.)
| | - Kelvin L. Hull
- Department of Genetics, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa; (M.P.G.); (K.L.H.); (M.B.-H.)
| | - Marissa Brink-Hull
- Department of Genetics, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa; (M.P.G.); (K.L.H.); (M.B.-H.)
| | - Melissa Lloyd
- Insect Technology Group Holdings UK Ltd., 1 Farnham Road, Guildford, Surrey GU2 4RG, UK;
| | - Clint Rhode
- Department of Genetics, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa; (M.P.G.); (K.L.H.); (M.B.-H.)
| |
Collapse
|
46
|
Errico S, Spagnoletta A, Verardi A, Moliterni S, Dimatteo S, Sangiorgio P. Tenebrio molitor as a source of interesting natural compounds, their recovery processes, biological effects, and safety aspects. Compr Rev Food Sci Food Saf 2021; 21:148-197. [PMID: 34773434 DOI: 10.1111/1541-4337.12863] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/13/2021] [Accepted: 10/04/2021] [Indexed: 12/14/2022]
Abstract
Nowadays, it is urgent to produce in larger quantities and more sustainably to reduce the gap between food supply and demand. In a circular bioeconomy vision, insects receive great attention as a sustainable alternative to satisfy food and nutritional needs. Among all insects, Tenebrio molitor (TM) is the first insect approved by the European Food Safety Authority as a novel food in specific conditions and uses, testifying its growing relevance and potential. This review holistically presents the possible role of TM in the sustainable and circular solution to the growing needs for food and nutrients. We analyze all high value-added products obtained from TM (powders and extracts, oils and fatty acids, proteins and peptides, and chitin and chitosan), their recovery processes (evaluating the best ones in technical and environmental terms), their nutritional and economical values, and their biological effects. Safety aspects are also mentioned. TM potential is undoubted, but some aspects still need to be discussed, including the health effects of substances and microorganisms in its body, the optimal production conditions (that affect product quality and safety), and TM capacity to convert by-products into new products. Environmental, economic, social, and market feasibility studies are also required to analyze the new value chains. Finally, to unlock the enormous potential of edible insects as a source of nutritious and sustainable food, it will be necessary to overcome the cultural, psychological, and regulatory barriers still present in Western countries.
Collapse
Affiliation(s)
- Simona Errico
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Department of Sustainability, Trisaia Research Center, Rotondella, Italy
| | - Anna Spagnoletta
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Department of Sustainability, Trisaia Research Center, Rotondella, Italy
| | - Alessandra Verardi
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Department of Sustainability, Trisaia Research Center, Rotondella, Italy
| | - Stefania Moliterni
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Department of Sustainability, Trisaia Research Center, Rotondella, Italy
| | - Salvatore Dimatteo
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Department of Sustainability, Trisaia Research Center, Rotondella, Italy
| | - Paola Sangiorgio
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Department of Sustainability, Trisaia Research Center, Rotondella, Italy
| |
Collapse
|
47
|
Yellow Mealworm and Black Soldier Fly Larvae for Feed and Food Production in Europe, with Emphasis on Iceland. Foods 2021; 10:foods10112744. [PMID: 34829029 PMCID: PMC8625742 DOI: 10.3390/foods10112744] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 01/02/2023] Open
Abstract
Insects are part of the diet of over 2 billion people worldwide; however, insects have not been popular in Europe, neither as food nor as a feed ingredient. This has been changing in recent years, due to increased knowledge regarding the nutritional benefits, the need for novel protein production and the low environmental impact of insects compared to conventional protein production. The purpose of this study is to give an overview of the most popular insects farmed in Europe, yellow mealworm, Tenebrio molitor, and black soldier fly (BSF), Hermetia illucens, together with the main obstacles and risks. A comprehensive literature study was carried out and 27 insect farming companies found listed in Europe were contacted directly. The results show that the insect farming industry is increasing in Europe, and the success of the frontrunners is based on large investments in technology, automation and economy of scale. The interest of venture capital firms is noticeable, covering 90% of the investment costs in some cases. It is concluded that insect farming in Europe is likely to expand rapidly in the coming years, offering new proteins and other valuable products, not only as a feed ingredient, but also for human consumption. European regulations have additionally been rapidly changing, with more freedom towards insects as food and feed. There is an increased knowledge regarding safety concerns of edible insects, and the results indicate that edible insects pose a smaller risk for zoonotic diseases than livestock. However, knowledge regarding risk posed by edible insects is still lacking, but food and feed safety is essential to put products on the European market.
Collapse
|
48
|
Liceaga AM, Aguilar-Toalá JE, Vallejo-Cordoba B, González-Córdova AF, Hernández-Mendoza A. Insects as an Alternative Protein Source. Annu Rev Food Sci Technol 2021; 13:19-34. [PMID: 34699254 DOI: 10.1146/annurev-food-052720-112443] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The recent COVID-19 pandemic drastically affected food supply chains worldwide, showing the vulnerability of food security. Efforts to develop alternative protein sources that are sustainable and can help alleviate global food shortage problems should be prioritized. Insects have been part of our diet for thousands of years and still are today, and market trends show a global increase in the number of food-grade insect producers. The global market for edible insects has been forecasted to reach US$8 billion by the year 2030. Insects are highly nutritious and have bioactive peptides with potential therapeutic effects. This review provides an overview of the consumption of insects from ancient to modern times, discusses the rationale for using insects as alternative protein sources, and presents a summary of the major insects consumed worldwide as well as a brief description of the traditional and novel technologies currently used to process insects and/or extract their nutritional components. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Andrea M Liceaga
- Protein Chemistry and Bioactive Peptides Laboratory, Department of Food Science, Purdue University, West Lafayette, Indiana, USA;
| | - José Eleazar Aguilar-Toalá
- Laboratorio de Procesos de Transformación y Tecnologías Emergentes de Alimentos, Departamento de Ingeniería y Tecnología, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, San Sebastián Xhala, Cuautitlán Izcalli, Estado de México, México
| | - Belinda Vallejo-Cordoba
- Laboratorio de Calidad, Autenticidad y Trazabilidad de los Alimentos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD, A.C.), Hermosillo, Sonora, México
| | - Aarón F González-Córdova
- Laboratorio de Calidad, Autenticidad y Trazabilidad de los Alimentos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD, A.C.), Hermosillo, Sonora, México
| | - Adrián Hernández-Mendoza
- Laboratorio de Calidad, Autenticidad y Trazabilidad de los Alimentos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD, A.C.), Hermosillo, Sonora, México
| |
Collapse
|
49
|
Characterization of Escherichia coli from Edible Insect Species: Detection of Shiga Toxin-Producing Isolate. Foods 2021; 10:foods10112552. [PMID: 34828833 PMCID: PMC8618678 DOI: 10.3390/foods10112552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/20/2021] [Indexed: 11/29/2022] Open
Abstract
Insects as novel foods are gaining popularity in Europe. Regulation (EU) 2015/2283 laid the framework for the application process to market food insects in member states, but potential hazards are still being evaluated. The aim of this study was to investigate samples of edible insect species for the presence of antimicrobial-resistant and Shiga toxin-producing Escherichia coli (STEC). Twenty-one E. coli isolates, recovered from samples of five different edible insect species, were subjected to antimicrobial susceptibility testing, PCR-based phylotyping, and macrorestriction analysis. The presence of genes associated with antimicrobial resistance or virulence, including stx1, stx2, and eae, was investigated by PCR. All isolates were subjected to genome sequencing, multilocus sequence typing, and serotype prediction. The isolates belonged either to phylogenetic group A, comprising mostly commensal E. coli, or group B1. One O178:H7 isolate, recovered from a Zophobas atratus sample, was identified as a STEC. A single isolate was resistant to tetracyclines and carried the tet(B) gene. Overall, this study shows that STEC can be present in edible insects, representing a potential health hazard. In contrast, the low resistance rate among the isolates indicates a low risk for the transmission of antimicrobial-resistant E. coli to consumers.
Collapse
|
50
|
Gloder G, Bourne ME, Verreth C, Wilberts L, Bossaert S, Crauwels S, Dicke M, Poelman EH, Jacquemyn H, Lievens B. Parasitism by endoparasitoid wasps alters the internal but not the external microbiome in host caterpillars. Anim Microbiome 2021; 3:73. [PMID: 34654483 PMCID: PMC8520287 DOI: 10.1186/s42523-021-00135-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 10/01/2021] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND The microbiome of many insects consists of a diverse community of microorganisms that can play critical roles in the functioning and overall health of their hosts. Although the microbial communities of insects have been studied thoroughly over the past decade, little is still known about how biotic interactions affect the microbial community structure in and on the bodies of insects. In insects that are attacked by parasites or parasitoids, it can be expected that the microbiome of the host insect is affected by the presence of these parasitic organisms that develop in close association with their host. In this study, we used high-throughput amplicon sequencing targeting both bacteria and fungi to test the hypothesis that parasitism by the endoparasitoid Cotesia glomerata affected the microbiome of its host Pieris brassicae. Healthy and parasitized caterpillars were collected from both natural populations and a laboratory culture. RESULTS Significant differences in bacterial community structure were found between field-collected caterpillars and laboratory-reared caterpillars, and between the external and the internal microbiome of the caterpillars. Parasitism significantly altered the internal microbiome of caterpillars, but not the external microbiome. The internal microbiome of all parasitized caterpillars and of the parasitoid larvae in the caterpillar hosts was dominated by a Wolbachia strain, which was completely absent in healthy caterpillars, suggesting that the strain was transferred to the caterpillars during oviposition by the parasitoids. CONCLUSION We conclude that biotic interactions such as parasitism have pronounced effects on the microbiome of an insect host and possibly affect interactions with higher-order insects.
Collapse
Affiliation(s)
- Gabriele Gloder
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, Willem De Croylaan 46, 3001 Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, 3001 Leuven, Belgium
| | - Mitchel E. Bourne
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Christel Verreth
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, Willem De Croylaan 46, 3001 Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, 3001 Leuven, Belgium
| | - Liesbet Wilberts
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, Willem De Croylaan 46, 3001 Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, 3001 Leuven, Belgium
| | - Sofie Bossaert
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, Willem De Croylaan 46, 3001 Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, 3001 Leuven, Belgium
| | - Sam Crauwels
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, Willem De Croylaan 46, 3001 Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, 3001 Leuven, Belgium
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Erik H. Poelman
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Hans Jacquemyn
- Leuven Plant Institute (LPI), KU Leuven, 3001 Leuven, Belgium
- Laboratory of Plant Conservation and Population Biology, Biology Department, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium
| | - Bart Lievens
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, Willem De Croylaan 46, 3001 Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, 3001 Leuven, Belgium
| |
Collapse
|