1
|
Malik M, Steele SA, Mitra D, Long CJ, Hickman JJ. Trans-epithelial/endothelial electrical resistance (TEER): Current state of integrated TEER measurements in organ-on-a-chip devices. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2025; 34:100588. [PMID: 40276329 PMCID: PMC12017418 DOI: 10.1016/j.cobme.2025.100588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Trans-epithelial/endothelial electrical resistance (TEER) is a non-invasive and quick method of assessing the integrity of barrier tissues. Traditional TEER measurement methods such as chopstick electrode-based and chamber-based measurement work well with static, Transwell-based models; however, the same methods do not directly apply to human on a chip or organ-on-a-chip (OOC) platforms. With the wide variety of organ-on-a-chip devices, innovative designs to accurately measure TEER, without disturbing cells, are customized for various devices. Wire electrode integration, integrating a two-probe or four-probe technique, flexible printed circuit boards or multi-electrode glass substrate-based methods are some of the TEER measurement setups being utilized in conjunction with OOC systems. The variability in measurement setups associated with OOCs make standardization challenging; however, the field is working towards establishing guidelines on acceptable TEER values of different OOC constructs.
Collapse
Affiliation(s)
- Mridu Malik
- Hesperos Inc., 12501 Research Pkwy, Suite 100, Orlando, Florida 32826, USA
| | - Stecia A. Steele
- Hesperos Inc., 12501 Research Pkwy, Suite 100, Orlando, Florida 32826, USA
| | - Deepshikha Mitra
- Hesperos Inc., 12501 Research Pkwy, Suite 100, Orlando, Florida 32826, USA
| | | | - James J. Hickman
- Hesperos Inc., 12501 Research Pkwy, Suite 100, Orlando, Florida 32826, USA
- Nanoscience Technology Center, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA
| |
Collapse
|
2
|
Dalla Costa V, Piovan A, Varfaj I, Marcotullio MC, Brun P, Filippini R. From "Maraschino" to Cell Cultures: A Deep Study on Prunus cerasus L. Cell Culture Juices. Molecules 2025; 30:1089. [PMID: 40076313 PMCID: PMC11901658 DOI: 10.3390/molecules30051089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Prunus cerasus var. Marasca (Rosaceae) is an important Croatian cultivar, known wordwide for the production of Luxardo maraschino liqueur, which occurs in the eastern Po Valley of Italy. Besides liqueur, Marasca is attractive for its beneficial effects on human health and well-being. The undifferentiated in vitro cell cultures of Marasca were investigated as a source of healthy products. The in vitro conditions for obtaining callus and suspension cultures under photoperiod were defined. The cell lines were evaluated for growth rate, total phenol and proanthocyanidin contents, and antioxidant activities via colorimetric assays. The best cell lines were also subcultured in darkness, studying the importance of the light parameter in the possible industrial scaling-up. The juices extracted from the obtained biomasses were analyzed by LC-DAD-MS and six flavanone derivatives, among which naringenin and its glucoside were identified. The quantitative analysis, pursued during the cell growth cycle, revealed that the flavanone content was higher at the end of the growth cycle (28th day) and that the total content of identified flavanone compounds varied from 17.22 to 79.22 μg/mL of juice. The results of the antioxidant and anti-inflammatory activities on Caco-2 cells support the potential applications of this material in human health.
Collapse
Affiliation(s)
- Vanessa Dalla Costa
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo, 5, 35131 Padua, Italy; (A.P.); (R.F.)
| | - Anna Piovan
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo, 5, 35131 Padua, Italy; (A.P.); (R.F.)
| | - Ina Varfaj
- Department of Pharmaceutical Sciences, University of Perugia, Via Fabretti 48, 06123 Perugia, Italy; (I.V.); (M.C.M.)
| | - Maria Carla Marcotullio
- Department of Pharmaceutical Sciences, University of Perugia, Via Fabretti 48, 06123 Perugia, Italy; (I.V.); (M.C.M.)
| | - Paola Brun
- Department of Molecular Medicine, University of Padova, Via Gabelli 63, 35121 Padova, Italy;
| | - Raffaella Filippini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo, 5, 35131 Padua, Italy; (A.P.); (R.F.)
| |
Collapse
|
3
|
Ramal-Sanchez M, Bravo-Trippetta C, D’Antonio V, Corvaglia E, Kämpfer AAM, Schins RPF, Serafini M, Angelino D. Development and assessment of an intestinal tri-cellular model to investigate the pro/anti-inflammatory potential of digested foods. Front Immunol 2025; 16:1545261. [PMID: 39975553 PMCID: PMC11835836 DOI: 10.3389/fimmu.2025.1545261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 01/20/2025] [Indexed: 02/21/2025] Open
Abstract
Introduction Immunonutrition, defined as the potential of foods, nutrients and dietary patterns to modulate the immune system activity, has been proposed as a strategy to enhance the immune response in both metabolic and immune-mediated diseases. However, the anti-/pro-inflammatory role of foods and diets is far to be fully ascertained, and thus there is a continued needed for appropriate in vitro cell-culture models to investigate the role of foods in modulating cell-mediated inflammatory processes. This study aims to develop and test an in vitro tri-culture model, simulating the complexity of the intestinal tract and its multiple cell interactions. Methods To achieve this, the intestinal epithelial barrier was established by co-culturing human Caco-2 enterocyte-like and HT29-MTX-E12 mucus producing goblet-like colon cells, then adding human monocyte THP-1 cells to the basolateral compartment. The integrity and stability of the epithelial barrier were monitored and the inflammatory response of the model was assessed using various stressors at different concentrations, both individually and in combination (phorbol-12- myristate-13-acetate or PMA, and lipopolysaccharide or LPS), in terms of cytokines production. To test the model, different concentrations of in vitro digested broccoli (BD) were added to the apical section of the model. Results Supernatants from the basolateral compartment were collected and analyzed for cytokines production (IL-6, TNF-α, IL-12p70, IL-18 and IL-8) using automated ELISA (ELLA). Additionally, ZO-1 protein from the tight junctions of epithelial cells was analyzed by flow cytometry. The results indicated that 100 nM PMA added to the whole model for 20 h was the best stressor to simulate a mild-inflammatory status of the gut. Following treatment with BD, IL-6, TNF-α, IL-8 and IL-18 were significantly reduced compared to the control group, while ZO-1 expression increased at the lowest BD concentration. Conclusions These findings confirm the feasibility of the model for assessing the effects of food digesta on specific cytokines and permeability markers, representing a valuable strategy for investigating the role of foods in modulating the inflammatory response. The results obtained may support dietary strategies aimed at promoting wellbeing and preventing inflammatory-related metabolic diseases.
Collapse
Affiliation(s)
- Marina Ramal-Sanchez
- Functional Foods and Stress Prevention Laboratory, Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Chiara Bravo-Trippetta
- Functional Foods and Stress Prevention Laboratory, Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Veronica D’Antonio
- Functional Foods and Stress Prevention Laboratory, Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Elena Corvaglia
- Functional Foods and Stress Prevention Laboratory, Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Angela A. M. Kämpfer
- IUF – Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Roel P. F. Schins
- IUF – Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Mauro Serafini
- Functional Foods and Stress Prevention Laboratory, Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Donato Angelino
- Functional Foods and Stress Prevention Laboratory, Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
4
|
Rolo D, Pereira JFS, Gonçalves L, Bettencourt A, Jordan P, Silva MJ, Matos P, Louro H. Assessing the impact of TiO 2 nanomaterials on intestinal cells: New evidence for epithelial translocation and potential pro-inflammatory effects. Toxicology 2025; 511:154066. [PMID: 39870156 DOI: 10.1016/j.tox.2025.154066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/14/2025] [Accepted: 01/23/2025] [Indexed: 01/29/2025]
Abstract
Understanding the potential impact of nanomaterials (NMs) on human health requires further investigation into the organ-specific nano-bio interplay at the cellular and molecular levels. We showed increased chromosomal damage in intestinal cells exposed to some of in vitro digested Titanium dioxide (TiO2) NMs. The present study aimed to explore possible mechanisms linked to the uptake, epithelial barrier integrity, cellular trafficking, as well as activation of pro-inflammatory pathways, after exposure to three TiO2-NMs (NM-102, NM-103, and NM-105). Using confocal microscopy, we show that all NMs, digested or not, were able to enter different types of intestinal cells. At the physiologically relevant concentration of 14 µg/mL, the digested TiO2-NMs did not compromise the transepithelial resistance, nor the levels of epithelial markers E-cadherin and Zonula occludens protein 1 (ZO-1), of polarized enterocyte monolayers. Nonetheless, all NMs were internalized by intestinal cells and, while NM-102 was retained in lysosomes, NM-103 and NM-105 were able to transverse the epithelial barrier through transcytosis. Moreover, 24 h exposure of 14 and 1.4 μg/mL digested NM-105, promoted interleukin IL-1β expression in activated M1 macrophages, indicating a potential pro-inflammatory action in the gut. Taken together, our findings shed light on the cell-specific nano-bio interplay of TiO2-NMs in the context of the intestinal tract and highlight transcytosis as a potential gateway for their systemic distribution. The potential pro-inflammatory action of digested NM-105 emphasizes the importance of pursuing research into the potential impact of NMs on human health and contribute to the weight of evidence to limit their use in food.
Collapse
Affiliation(s)
- Dora Rolo
- National Institute of Health Doutor Ricardo Jorge, I.P (INSA), Department of Human Genetics, Lisbon, Portugal; bCentre for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Joana F S Pereira
- National Institute of Health Doutor Ricardo Jorge, I.P (INSA), Department of Human Genetics, Lisbon, Portugal; BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisboa 1749-016, Portugal
| | - Lídia Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa 1649-003, Portugal
| | - Ana Bettencourt
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa 1649-003, Portugal
| | - Peter Jordan
- National Institute of Health Doutor Ricardo Jorge, I.P (INSA), Department of Human Genetics, Lisbon, Portugal; BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisboa 1749-016, Portugal
| | - Maria João Silva
- National Institute of Health Doutor Ricardo Jorge, I.P (INSA), Department of Human Genetics, Lisbon, Portugal; bCentre for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Paulo Matos
- National Institute of Health Doutor Ricardo Jorge, I.P (INSA), Department of Human Genetics, Lisbon, Portugal; BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisboa 1749-016, Portugal
| | - Henriqueta Louro
- National Institute of Health Doutor Ricardo Jorge, I.P (INSA), Department of Human Genetics, Lisbon, Portugal; bCentre for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal.
| |
Collapse
|
5
|
Tonolo F, Fiorese F, Rilievo G, Grinzato A, Latifidoost Z, Nikdasti A, Cecconello A, Cencini A, Folda A, Arrigoni G, Marin O, Rigobello MP, Magro M, Vianello F. Bioactive peptides from food waste: New innovative bio-nanocomplexes to enhance cellular uptake and biological effects. Food Chem 2025; 463:141326. [PMID: 39316902 DOI: 10.1016/j.foodchem.2024.141326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/28/2024] [Accepted: 09/15/2024] [Indexed: 09/26/2024]
Abstract
Mastitis is the most important bovine disease, causing dramatic economic losses to the dairy industry, worldwide. This study explores the valorization of whey from cows affected by mastitis, through a novel separation approach. Surface Active Maghemite Nanoparticles (SAMNs) were used as magnetic baits to selectively bind bioactive peptides with potential health benefits. Advanced techniques such as HPLC and LC-MS/MS highlighted SAMN capability of isolating a restricted group of peptides, drastically diverging from the control profile (Solid Phase Extraction, SPE) and characterized by a peculiar acidic residue distribution. Most importantly, both magnetically purified and nano-immobilized peptides (SAMN@peptides) showed protective activity against oxidative stress and inflammation, when tested on Caco-2 cells; with SAMN@peptides being associated with the strongest biological effect. SAMNs exhibited excellent characteristics, they are environmentally sustainable, and their synthesis is cost-effective prompting at a scalable and selective tool for capturing bioactive peptides, with potential applications in functional foods and nutraceuticals.
Collapse
Affiliation(s)
- Federica Tonolo
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro, PD, Italy.
| | - Federico Fiorese
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Graziano Rilievo
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro, PD, Italy
| | - Alessandro Grinzato
- ESRF: European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Zahra Latifidoost
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro, PD, Italy
| | - Ali Nikdasti
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro, PD, Italy
| | - Alessandro Cecconello
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro, PD, Italy
| | - Aura Cencini
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro, PD, Italy
| | - Alessandra Folda
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Giorgio Arrigoni
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Oriano Marin
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Maria Pia Rigobello
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Massimiliano Magro
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro, PD, Italy.
| | - Fabio Vianello
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro, PD, Italy
| |
Collapse
|
6
|
Chanajon P, Hamzeh A, Tian F, Roytrakul S, Oluwagunwa OA, Kadam D, Aluko RE, Aueviriyavit S, Wongwanakul R, Yongsawatdigul J. Hypotensive effect of potent angiotensin-I-converting enzyme inhibitory peptides from corn gluten meal hydrolysate: Gastrointestinal digestion and transepithelial transportation modifications. Food Chem 2025; 462:140953. [PMID: 39216374 DOI: 10.1016/j.foodchem.2024.140953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/07/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
The study examined the antihypertensive effect of peptides derived from pepsin-hydrolyzed corn gluten meal, namely KQLLGY and PPYPW, and their in silico gastrointestinal tract digested fragments, KQL and PPY, respectively. KQLLGY and PPYPW showed higher angiotensin I-converting enzyme (ACE)-inhibitory activity and lower ACE inhibition constant (Ki) values when compared to KQL and PPY. Only KQL showed a mild antihypertensive effect in spontaneously hypertensive rats with -7.83 and - 5.71 mmHg systolic and diastolic blood pressure values, respectively, after 8 h oral administration. During passage through Caco-2 cells, KQL was further degraded to QL, which had reduced ACE inhibitory activity. In addition, molecular dynamics revealed that the QL-ACE complex was less stable compared to the KQL-ACE. This study reveals that structural transformation during peptide permeation plays a vital role in attenuating antihypertensive effect of the ACE inhibitor peptide.
Collapse
Affiliation(s)
- Phiromya Chanajon
- School of Food Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Ali Hamzeh
- School of Food Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Fu Tian
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang 550000, China
| | - Sittiruk Roytrakul
- National Center for Genetic Engineering and biotechnology, Pathumthani 12120, Thailand
| | - Olayinka A Oluwagunwa
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Deepak Kadam
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Rotimi E Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada.
| | - Sasitorn Aueviriyavit
- National Nanotechnology Center, National Science and Technology Development Agency, 111 Thailand Science Park, Pathum Thani, 12120, Thailand
| | - Ratjika Wongwanakul
- National Nanotechnology Center, National Science and Technology Development Agency, 111 Thailand Science Park, Pathum Thani, 12120, Thailand
| | - Jirawat Yongsawatdigul
- School of Food Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
| |
Collapse
|
7
|
Shen Y, Fang C, Huang X, Zhang J, Zhu J, Zhu K, You Y, Yang D. Chitosan-zein-icariin complexes modulate double emulsion phase transitions to potentiate absorption efficiency. Int J Biol Macromol 2025; 287:138516. [PMID: 39647726 DOI: 10.1016/j.ijbiomac.2024.138516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
This study developed a chitosan-zein-icariin ternary complex through reversed-phase precipitation to stabilize double emulsions using one-step emulsification method. Results indicated that icariin and chitosan-zein formed spherical microstructures via the rearrangement of hydrogen bonding networks and hydrophobic interactions. All complexes exhibited pale-yellow color and demonstrated single and uniform size distribution. The thermal stability and interfacial contact angle of the complexes significantly decreased with the incorporation of icariin. The prepared double emulsion microstructures displayed multi-chambered configurations due to polarity differences, solidifying during cold storage as a result of phase shifts in coconut oil, which led to an increased storage modulus. While the double emulsion microstructure showed enhanced storage stability, droplet size increased markedly when subjected to NaCl and temperature variations. Following in-vitro digestion, the double emulsion microstructure disintegrated; average particle size decreased, resulting in the release of icariin from the ternary complex during intestinal phases, thereby enhancing bioaccessibility. Furthermore, it was observed that icariin within the ternary complex influenced absorption efficacy based on its concentration levels, as evidenced by Caco-2 cell studies, though this effect was greater than that observed for the zein-icariin binary complex. The results of this study provide a theoretical foundation for efficient delivery systems involving hydrophobic multivariate complexes.
Collapse
Affiliation(s)
- Yifeng Shen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China
| | - Chunyan Fang
- Institute of Quality Standard and Testing Technology for Agro-Products, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Xiaopeng Huang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China
| | - Jingyi Zhang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China
| | - Junlong Zhu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China
| | - Kun Zhu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China
| | - Yaodong You
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China.
| | - Dongdong Yang
- Department of Neurology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China.
| |
Collapse
|
8
|
Yang D, Li P, Dang Y, Zhu S, Shi H, Wu T, Zhang Z, Chen C, Zong Y. Identifying the importance of PCK1 in maintaining ileal epithelial barrier integrity in Crohn's disease. Gene 2024; 931:148872. [PMID: 39159791 DOI: 10.1016/j.gene.2024.148872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/03/2024] [Accepted: 08/15/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND Crohn's disease (CD) is marked by disruption of intestinal epithelial barrier, with unclear underlying molecular mechanisms. This study aimed to investigate key genes regulating the intestinal barrier in CD patients. METHODS Differential gene expression analysis and gene set enrichment analysis were conducted to identify potential key genes involved in CD within the GEO database. Single-cell RNA sequencing from ileum samples in GSE134809 of 59,831 inflamed and uninflamed cells from 11 CD patients and microarray data from ileal tissues in GSE69762 (3 controls and 4 CD patients) and GSE75214 (11 controls and 51 CD patients) with GSE179285 (49 uninflamed and 33 inflamed from CD patients) as the validation set. Protein-protein interaction and logistic regression analyses identified key downregulated genes in CD. A key gene was then investigated through immunohistochemistry of ileal tissues from 5 CD patients and in the Caco-2 cell line with RNA interference and treatment with IFN-γ and TNF-α to stimulate inflammation. RESULTS Single-cell RNA-seq identified 33 genes and microarray identified 167 genes with significant downregulation in inflamed CD samples. PCK1 was identified and validated as one of the most promising candidate genes. Reduced PCK1 expression was evident in inflamed ileal tissues. In vitro, knockdown of PCK1 resulted in decreased cell viability, increased apoptosis, and reduced nectin-2 production, while combination of IFN-γ and TNF-α significantly reduced PCK1. CONCLUSIONS PCK1 is downregulated in inflamed ileal tissues of CD patients and may be a key factor in maintaining epithelial integrity during inflammation in Crohn's disease.
Collapse
Affiliation(s)
- Deyi Yang
- Department of Gastroenterology, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Pengchong Li
- Department of Gastroenterology, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Yan Dang
- Department of Gastroenterology, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Shengtao Zhu
- Department of Gastroenterology, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Haiyun Shi
- Department of Gastroenterology, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Ting Wu
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zinan Zhang
- Department of Gastroenterology, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Chuyan Chen
- Department of Gastroenterology, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Ye Zong
- Department of Gastroenterology, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| |
Collapse
|
9
|
Wang L, Hu X, Jiang J, Wang D, Qin C, Li L, Shi D, Liu Q, Wang J, Li H, Huang J, Li Z. Novel Insight into the Composition Differences Between Buffalo and Holstein Milk and Potential Anti-Inflammation and Antioxidant Effect on Caco-2 Cells. Foods 2024; 13:3915. [PMID: 39682987 DOI: 10.3390/foods13233915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/30/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Milk is one of the most common sources of nutrients in humans, however, the composition and healthy value of the milk derived from different animals are very different. Here, we systemically compared the protein and lipid profiles and evaluated the anti-inflammation and antioxidant effect of buffalo and Holstein-derived milk on Caco-2 cells. Results showed that 906 proteins and 1899 lipids were identified in the buffalo milk and Holstein milk samples including 161 significantly different proteins (DEPs) and 49 significantly different lipids. The DEPs were mainly enriched in defense response-related terms, while the differential lipids were mainly included in fat digestion and absorption and cholesterol metabolism pathways. In addition, the Caco-2 cells co-cultured with buffalo and Holstein milk components showed significant benefits in being resistant to LPS-induced inflammation stress and H2O2-induced ROS stress. The qRT-PCR and ELISA results showed that the expression of TNF-α, IL-1β, and IL-6 was significantly lower (p < 0.05) in the cells co-cultured with milk components. Further analysis showed that, after H2O2 treatment, the expression of keap1 and Nrf-2 in the Caco-2 cells co-cultured with milk components was significantly lower (p < 0.05). In addition, being co-cultured with milk components significantly decreased the SOD, MDA, CAT, and GSH-Px content (p < 0.05) in the Caco-2 cells induced by H2O2. This study provides a novel insight into the differences in proteins and lipids between buffalo milk and Holstein milk, and a reference understanding of the anti-inflammation and antioxidant effect of the consumption of milk on the intestines.
Collapse
Affiliation(s)
- Luyao Wang
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Xinyue Hu
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Jiaqi Jiang
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
| | - Dong Wang
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Chaobin Qin
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Ling Li
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
| | - Deshun Shi
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Qingyou Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Jian Wang
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Hui Li
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Jieping Huang
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Zhipeng Li
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
| |
Collapse
|
10
|
Sanchez Armengol E, Sánchez Soler LA, Valverde Offermann N, Laffleur F. Polymer powerhouse: Methyl methacrylate - A breakthrough blend for superior adhesion to gingiva. Dent Mater 2024; 40:2101-2113. [PMID: 39424527 DOI: 10.1016/j.dental.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/01/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
The goal of this study was to develop a new poly(methyl methacrylate) (PMMA)-based conjugate with enhanced mucoadhesive features for gingiva. Five MMA-based conjugates with varying amounts of hydroxyethyl maleimide (HEM) and poly(ethylene glycol) (PEG) were synthesized and characterized using infrared spectroscopy and proton nuclear magnetic resonance. Quantification of attached HEM and PEG was performed using assay kits and established protocols. Mucoadhesiveness was tested through rheological measurements, retention time, and tensile strength studies. Results showed successful unification of MMA with HEM and PEG, with varying degrees of modification and no toxic effects. Dynamic viscosity was enhanced up to 13-fold for MMA-100Mal, decreasing incrementally for MMA-75Mal, MMA-50Mal, MMA-25Mal, and MMA-0Mal. Retention time improved up to 120-fold for MMA-100Mal, decreasing to 37.5-fold for MMA-0Mal. Mucoadhesiveness followed the order: MMA-100Mal > MMA-75Mal > MMA-50Mal > MMA-25Mal > MMA-0Mal. In conclusion, the novel modification of MMA with increased mucoadhesive features to buccal gingiva suggests its potential as a long-term total denture base material, paving the way for more patient-friendly prostheses.
Collapse
Affiliation(s)
- Eva Sanchez Armengol
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - Luis Alberto Sánchez Soler
- Faculty of Medicine and Health Sciences, Department of Odontostomatology, University of Barcelona, Barcelona, Spain
| | - Noah Valverde Offermann
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - Flavia Laffleur
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
11
|
Di Stasio L, De Caro S, Marulo S, Ferranti P, Picariello G, Mamone G. Impact of porcine brush border membrane enzymes on INFOGEST in vitro digestion model: A step forward to mimic the small intestinal phase. Food Res Int 2024; 197:115300. [PMID: 39577947 DOI: 10.1016/j.foodres.2024.115300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/21/2024] [Accepted: 10/31/2024] [Indexed: 11/24/2024]
Abstract
Brush border membrane (BBM) enzymes greatly affect the bioaccessibility and bioavailability of food nutrients. Despite their physiological importance, a step simulating the final stage of intestinal digestion has not yet been included in the harmonized protocols for in vitro digestion, primarily due to the challenges of replicating the dynamics of intestinal degradation. Herein, we propose an advancement toward a more physiologically relevant method, complementing the harmonized static gastric-duodenal digestion INFOGEST model with the missing small intestinal phase. BBM hydrolase activity, incubation time, at pH 7.2 were established to reproduce the small intestinal conditions. Skim milk powder, as a model of protein food, was subjected to the in vitro static digestion. Immediately after the duodenal phase, digesta were supplemented with BBM vesicles purified from pig jejunum. To comply with the dynamic nature of intestinal digestion and balance the spontaneous inactivation of hydrolases, BBM supplements were added every two hours throughout 6 h incubation time. Peptide degradation was monitored at each stage of digestion by amino acid analysis, free α-amino group assay, HPLC, LC-MS/MS. Hydrolysis by BBM peptidases led to a significant increase of free amino acids, reflecting the known level of amino acid adsorption (>90 %) in humans after eating milk proteins. LC-MS/MS analysis demonstrated that BBM hydrolases erode progressively the peptides released by gastro-duodenal processing up to stable sequence motifs. The approach described is particularly relevant when the endpoint is identifying the peptide sequences that cannot be further hydrolysed by digestive enzymes or to determine the amino acid bio-accessibility.
Collapse
Affiliation(s)
- Luigia Di Stasio
- Institute of Food Sciences, National Research Council (CNR-ISA), Avellino, Italy
| | - Salvatore De Caro
- Institute of Food Sciences, National Research Council (CNR-ISA), Avellino, Italy
| | - Serena Marulo
- Institute of Food Sciences, National Research Council (CNR-ISA), Avellino, Italy
| | - Pasquale Ferranti
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Gianluca Picariello
- Institute of Food Sciences, National Research Council (CNR-ISA), Avellino, Italy
| | - Gianfranco Mamone
- Institute of Food Sciences, National Research Council (CNR-ISA), Avellino, Italy.
| |
Collapse
|
12
|
Pinto A, Daly A, Newby C, Robotham A, Heales S, Eaton S, Aitkenhead H, Gilmour K, Jackson R, Ashmore C, Evans S, Rocha JC, Ilgaz F, Hickson M, MacDonald A. The effects of casein glycomacropeptide on general health status in children with PKU: A randomized crossover trial. Mol Genet Metab 2024; 143:108607. [PMID: 39579672 DOI: 10.1016/j.ymgme.2024.108607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/22/2024] [Accepted: 10/28/2024] [Indexed: 11/25/2024]
Abstract
In PKU, it is suggested that casein glycomacropeptide based protein substitute (GMP) may have physiological advantage when satiety, oxidative stress, renal function and inflammation are considered. Its prebiotic properties may also help gastrointestinal (GI) tolerance. In children with PKU, a randomized/crossover trial comparing phenylalanine-free amino acids (AA) vs GMP as the single source of protein substitute for 12-weeks in each arm was conducted. There was a 4-week wash out period with AA in-between. At baseline and end of each intervention, blood and fecal samples were taken to monitor gut health, oxidative stress, renal function, inflammatory markers and plasma amino acids. Satiety and Pediatric Quality of Life (PedsQL) GI symptoms questionnaires were completed. Usual weekly blood spots for phenylalanine and tyrosine were done. Twelve patients (8 males; aged 4-9y) with PKU participated. GMP improved the following GI symptoms: stomach pain (p = 0.003), heartburn and reflux (p = 0.041) wind and bloating (p = 0.018). With GMP, there was also a trend for less constipation (p = 0.068), discomfort with eating (p = 0.065) and nausea and vomiting (p = 0.087). There were no changes on stool gut health markers (IgA, short chain fatty acids and fecal calprotectin). There were no statistically significant differences for renal, oxidative stress, inflammatory and gut health markers or measures of satiety except for adiponectin (p = 0.028) and total antioxidant capacity (p = 0.049), although the latter was possibly without clinical significance. Mean dried blood spot phenylalanine (Phe) was 114 μmol/L higher with GMP vs AA (p < 0.001). There was no difference in tyrosine levels. In conclusion, GI symptoms statistically significantly improved with GMP versus AA. The Phe content of GMP may present challenges when it is used as the only protein substitute in children with classical PKU with low Phe tolerance.
Collapse
Affiliation(s)
- Alex Pinto
- Birmingham Women's and Children's Hospital, Birmingham, UK; Plymouth Institute of Health and Care Research, Faculty of Health, University of Plymouth, UK.
| | - Anne Daly
- Birmingham Women's and Children's Hospital, Birmingham, UK
| | - Camille Newby
- Bristol Royal Hospital for Children, Upper Maudlin St, Bristol, UK
| | - Abigail Robotham
- Bristol Royal Hospital for Children, Upper Maudlin St, Bristol, UK
| | - Simon Heales
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Simon Eaton
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Helen Aitkenhead
- Department of Chemical Pathology, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Kimberly Gilmour
- Cell Therapy and Immunology, NIHR GOSH BRC, Camelia Botnar Laboratories, Great Ormond Street Hospital for Children, London, UK
| | - Richard Jackson
- Department of Health Data Science, University of Liverpool, Liverpool, UK
| | | | - Sharon Evans
- Birmingham Women's and Children's Hospital, Birmingham, UK
| | - Júlio Cesar Rocha
- Nutrition and Metabolism, NOVA Medical School (NMS), Faculdade de Ciências Médicas (FCM), Universidade Nova de Lisboa, Lisboa, Portugal,; CINTESIS@RISE, Nutrition and Metabolism, NOVA Medical School (NMS), Faculdade de Ciências Médicas, (FCM), Universidade NOVA de Lisboa, Campo Mártires da Pátria, Lisboa, Portugal; Reference Center of Inherited Metabolic Diseases, Centro Hospitalar Universitario de Lisboa Central, Lisboa, Portugal; Comprehensive Health Research Centre (CHRC), NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Fatma Ilgaz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara, Turkey
| | - Mary Hickson
- Plymouth Institute of Health and Care Research, Faculty of Health, University of Plymouth, UK
| | | |
Collapse
|
13
|
Yu Y, Sun B, Ye X, Wang Y, Zhao M, Song J, Geng X, Marx U, Li B, Zhou X. Hepatotoxic assessment in a microphysiological system: Simulation of the drug absorption and toxic process after an overdosed acetaminophen on intestinal-liver-on-chip. Food Chem Toxicol 2024; 193:115016. [PMID: 39304085 DOI: 10.1016/j.fct.2024.115016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/01/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
To compensate the limitation of animal models, new models were proposed for drug safety evaluation to refine and reduce existing models. To mimic drug absorption and metabolism and predict toxicokinetic and toxic effects in an in vitro intestinal-liver microphysiological system (MPS), we constructed an intestinal-liver-on-chip and detected the acute liver injury process after an overdose of acetaminophen (APAP). Caco-2 and HT29-MTX-E12 cell lines were utilized to establish intestinal equivalents, along with HepG2, HUVEC-T1, and THP-1 induced by PMA and human hepatic stellate cell to establish liver equivalents. The APAP concentration was determined using high-performance liquid chromatography, and the toxicokinetic parameters were fitted using the non-compartmental analysis method by Phoenix. Changes in liver injury biomarkers aspartate aminotransferase and alanine aminotransferase, and liver function marker albumin indicated that the short-term culture of the two organs-on-chip model was stable for 4 days. Reactive oxygen species signaling was enhanced after APAP administration, along with decreased mitochondrial membrane potential, activated caspase-3, and enhanced p53 signaling, indicating a toxic response induced by APAP overdose. In the gut-liver MPS model, we fitted the toxicokinetic parameters and simulated the hepatotoxicity procedure following an APAP overdose, which will facilitate the organ-on-chips application in drug toxicity assays.
Collapse
Affiliation(s)
- Yue Yu
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China; Institute for Safety Evaluation, National Institutes for Food and Drug Control, Beijing Key Laboratory for Safety Evaluation of Drugs, Beijing, 100176, China
| | - Baiyang Sun
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China; Institute for Safety Evaluation, National Institutes for Food and Drug Control, Beijing Key Laboratory for Safety Evaluation of Drugs, Beijing, 100176, China
| | - Xiao Ye
- Institute for Safety Evaluation, National Institutes for Food and Drug Control, Beijing Key Laboratory for Safety Evaluation of Drugs, Beijing, 100176, China
| | - Yupeng Wang
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China; Institute for Safety Evaluation, National Institutes for Food and Drug Control, Beijing Key Laboratory for Safety Evaluation of Drugs, Beijing, 100176, China
| | - Manman Zhao
- Institute for Safety Evaluation, National Institutes for Food and Drug Control, Beijing Key Laboratory for Safety Evaluation of Drugs, Beijing, 100176, China
| | - Jie Song
- Institute for Safety Evaluation, National Institutes for Food and Drug Control, Beijing Key Laboratory for Safety Evaluation of Drugs, Beijing, 100176, China
| | - Xingchao Geng
- Institute for Safety Evaluation, National Institutes for Food and Drug Control, Beijing Key Laboratory for Safety Evaluation of Drugs, Beijing, 100176, China
| | - Uwe Marx
- TissUse GmbH, Oudenarder Str. 16, D-13347, Berlin, Germany.
| | - Bo Li
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China; Institute for Safety Evaluation, National Institutes for Food and Drug Control, Beijing Key Laboratory for Safety Evaluation of Drugs, Beijing, 100176, China.
| | - Xiaobing Zhou
- Institute for Safety Evaluation, National Institutes for Food and Drug Control, Beijing Key Laboratory for Safety Evaluation of Drugs, Beijing, 100176, China.
| |
Collapse
|
14
|
Saliba ASMC, Sartori AGDO, Rosalen PL, Lazarini JG, do Amaral JEPG, da Luz CFP, Martarello NS, Torres LCR, de Souza LM, de Alencar SM. Bee pollen from bracatinga (Mimosa scabrella): Effects of gastrointestinal digestion and epithelial transport in vitro on phenolic profile and bioactivities. Food Res Int 2024; 196:115142. [PMID: 39614590 DOI: 10.1016/j.foodres.2024.115142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 09/02/2024] [Accepted: 09/25/2024] [Indexed: 12/01/2024]
Abstract
The main objective of the present work was to assess the phenolic profile of bracatinga (Mimosa scabrella) bee pollen, and its antioxidant and anti-inflammatory activities after gastrointestinal digestion in vitro and epithelial transport in a Caco-2 cell monolayer model. The botanical origin of bee pollen was confirmed by optical microscopy and scanning electron microscopy. As major results, 34 phenolic compounds (13 phenylamides, 14 flavonols, and 7 flavanones) were tentatively identified in the extract of bracatinga bee pollen by HPLC-ESI-QTOF-MS. The aglycone forms of quercetin and p-coumaric acid were identified only after digestion, indicating the breakage of flavonols and phenylamides, respectively. These compounds may have contributed to the decrease in NF-κΒ activation up to 54% and in the release of TNF-α and CXCL2/MIP-2 by 26% and 21%, respectively, in raw 264.7 murine macrophages activated with microbial lipopolysaccharide and treated with the digested fraction. Among all tentatively identified phenolic compounds, five of them were found in the basolateral fraction. These compounds, represented by four aglycone flavonoids (quercetin, kaempferol, naringenin, and herbacetin methyl ether) and a phenolic acid (p-coumaric acid) may be responsible for its outstanding antioxidant activity in Caco-2 cells, as well as for its remaining capacity in mitigating CXCL2/MIP-2 release after transport through the Caco-2 cell monolayer, as an intestinal barrier model. Therefore, our work sheds light on the phenolic profile and bioactivities of an interesting functional food produced by bees throughout a simulated gastrointestinal system.
Collapse
Affiliation(s)
| | - Alan Giovanini de Oliveira Sartori
- Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, SP, Brazil; Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brazil.
| | - Pedro Luiz Rosalen
- Faculdade de Odontologia, Universidade Estadual de Campinas, Piracicaba, SP, Brazil; Faculdade de Ciências Farmacêuticas, Universidade Federal de Alfenas, MG, Brazil
| | - Josy Goldoni Lazarini
- Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, SP, Brazil
| | | | | | | | | | - Leila Muriel de Souza
- Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Severino Matias de Alencar
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil; Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, SP, Brazil.
| |
Collapse
|
15
|
Jasim MHM, Mustafa YF. Synthesis of Acetaminophen-Based Coumarins as Selective COX-2 Inhibitors: An in vitro-in silico Study. Chem Biodivers 2024; 21:e202401309. [PMID: 39011809 DOI: 10.1002/cbdv.202401309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/17/2024]
Abstract
Acetaminophen, a centrally-acting old analgesic drug, is a weak inhibitor of cyclooxygenase (COX) isoforms with some selectivity toward COX-2. This compound was used in this work as a precursor to create nine acetaminophen based coumarins (ACFs). To satisfy the aim of this work, which states the synthesis of acetaminophen-based coumarins as selective COX-2 inhibitors, the ACFs were subjected to two types of investigation: in vitro and in silico. Given the former type, the ACFs capacity to block COX-1 and COX-2 was investigated in lab settings. On the other hand, the in silico investigation included docking the chemical structures of ACFs into the active sites of these enzymes, predicting their anticipated toxicities, and determining the ADME characteristics. The results of the in vitro study revealed that the synthesized ACFs demonstrated good-to-excellent inhibitory properties against the enzymes under study. Also, these ACFs exhibited a high level of COX-2 selectivity, which improved as the capacity of the aromatic substitute for withdrawing electrons was enhanced. Results of docking were comparable to the in vitro investigation in case of COX-2. On the other hand, the in silico investigations indicated that the synthesized ACFs are safer than their precursor, acetaminophen, with a high potential to consider oral-administrated candidates.
Collapse
Affiliation(s)
- Mahmood H M Jasim
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| |
Collapse
|
16
|
Li G, Yu X, Zhan J, Wu C, Wu Y, Wan Y, Wan W, Hu Y, Yang W. A review: Interactions between protein from blue foods and functional components in delivery systems: Function exertion and transmembrane transport by in vitro digestion/cells model. Int J Biol Macromol 2024; 276:133839. [PMID: 39004248 DOI: 10.1016/j.ijbiomac.2024.133839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/03/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Functional compounds (FCs) had some functions, which are affected easily by digestion and transmembrane transport leading to low absorption rates, such as lutein, quercetin, xylo-oligosaccharide. Protein from blue foods is a potential bioactive compound, which had higher bioavailability, especially for bioactive peptides (BBPs). The BBPs has great limitations, especially the variability under pepsin digestion. However, the limitation of single FCs and BBPs in bioavailability might can be complemented by mixture of different bioactive compounds. Therefore, this review provides an in-depth study on the function and mechanism of different FCs/BBPs and their mixtures. Specifically, digestion effect of mixtures on function and transmembrane transport mechanisms of different bioactive compounds were exhibited to elaborate interactions between BBPs and FCs in delivery systems (function and bioavailability). Combination of FCs/BBPs could enhance bioactive compounds function by mutual complement of function mechanisms, as well as improving the function after digestion by regulating digestion process. Moreover, transmembrane absorption and transport of FCs/BBPs also could be facilitated by mixtures due to complement of transmembrane mechanism (endocytosis, protein channels, cell bypass way). This manuscript lays a foundation for the development of active ingredient bioavailability in functional food processing.
Collapse
Affiliation(s)
- Gaoshang Li
- School of Food Science and Engineering, Ningbo University, Ningbo 315800, Zhejiang, China
| | - Xuemei Yu
- School of Food Science and Engineering, Ningbo University, Ningbo 315800, Zhejiang, China
| | - Junqi Zhan
- School of food science and biotechnology, Zhejiang Gongshang University, Hangzhou 310000, Zhejiang, China
| | - Chunhua Wu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yiduo Wu
- College of Food Science and Engineering, Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Hainan Key Laboratory of Herpetological Research, Sanya 572022, China
| | - Yue Wan
- College of Food Science and Engineering, Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Hainan Key Laboratory of Herpetological Research, Sanya 572022, China
| | - Wubo Wan
- College of Food Science and Engineering, Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Hainan Key Laboratory of Herpetological Research, Sanya 572022, China
| | - Yaqin Hu
- College of Food Science and Engineering, Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Hainan Key Laboratory of Herpetological Research, Sanya 572022, China.
| | - Wenge Yang
- School of Food Science and Engineering, Ningbo University, Ningbo 315800, Zhejiang, China.
| |
Collapse
|
17
|
Wang Z, Li G, Liu X. Identification of Corn Peptides with Alcohol Dehydrogenase Activating Activity Absorbed by Caco-2 Cell Monolayers. Molecules 2024; 29:1523. [PMID: 38611803 PMCID: PMC11013139 DOI: 10.3390/molecules29071523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Alcohol dehydrogenase (ADH) plays a pivotal role in constraining alcohol metabolism. Assessing the ADH-activating activity in vitro can provide insight into the capacity to accelerate ethanol metabolism in vivo. In this study, ADH-activating peptides were prepared from corn protein meal (CGM) using enzymatic hydrolysis, and these peptides were subsequently identified following simulated gastrointestinal digestion and their absorption through the Caco-2 cell monolayer membrane. The current investigation revealed that corn protein hydrolysate hydrolyzed using alcalase exhibited the highest ADH activation capability, maintaining an ADH activation rate of 52.93 ± 2.07% following simulated gastrointestinal digestion in vitro. After absorption through the Caco-2 cell monolayer membrane, ADH-activating peptides were identified. Among them, SSNCQPF, TGCPVLQ, and QPQQPW were validated to possess strong ADH activation activity, with EC50 values of 1.35 ± 0.22 mM, 2.26 ± 0.16 mM, and 2.73 ± 0.13 mM, respectively. Molecular Docking revealed that the activation of ADH occurred via the formation of a stable complex between the peptide and the active center of ADH by hydrogen bonds and hydrophobic interactions. The results of this study also suggest that corn protein hydrolysate could be a novel functional dietary element that helps protects the liver from damage caused by alcohol and aids in alcohol metabolism.
Collapse
Affiliation(s)
- Zhe Wang
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China;
- Key Laboratory of Corn Deep Processing Theory and Technology of Heilongjiang Province, College of Food and Bioengineering, Qiqihar University, Qiqihar 161006, China;
| | - Guanlong Li
- Key Laboratory of Corn Deep Processing Theory and Technology of Heilongjiang Province, College of Food and Bioengineering, Qiqihar University, Qiqihar 161006, China;
| | - Xiaolan Liu
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China;
- Key Laboratory of Corn Deep Processing Theory and Technology of Heilongjiang Province, College of Food and Bioengineering, Qiqihar University, Qiqihar 161006, China;
| |
Collapse
|
18
|
Zhang X, Xiao Y, Huang Q. Investigation of cellular uptake and transport capacity of Cordyceps sinensis exopolysaccharide‑selenium nanoparticles with different particle sizes in Caco-2 cell monolayer. Int J Biol Macromol 2024; 262:130060. [PMID: 38340938 DOI: 10.1016/j.ijbiomac.2024.130060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Cordyceps sinensis exopolysaccharide‑selenium nanoparticles (EPS-SeNPs) were successfully constructed, characterized, and its Se release kinetics and mechanism were also evaluated in our previous studies. However, the intestinal cellular uptake and transport capacities of EPS-SeNPs remain unknown. On the basis of our previous researches, this work was designed to evaluate the uptake and transport capacities of EPS-SeNPs (EPS/Se = 20/1, 3/1, 1/1, and 3/4) in intestinal epithelial (Caco-2) cells. Confocal laser scanning microscopy results indicated that the internalization of coumarin-6 labeled EPS-SeNPs was in a time-dependent process and eventually located in the cytoplasm, not in the nucleus. Endocytosis inhibitors were employed to evaluate the cellular uptake pathway of EPS-SeNPs, relevant results revealed that clathrin-, caveolae-, and energy-mediated pathways were participated in the internalization of EPS-SeNPs by Caco-2 cells. In addition, the transportation of EPS-SeNPs across Caco-2 cell monolayers was in a concentration-dependent manner. Different particle sizes of EPS-SeNPs presented different uptake and transport capacities in Caco-2 cells. Noteworthy, EPS/Se = 3/4 with the highest selenium content possessed the most superior cellular uptake and transport abilities in Caco-2 cells. The present work may contribute to illustrate the internalization and transport mechanism of EPS-SeNPs, thus facilitating its application in food and medical industries.
Collapse
Affiliation(s)
- Xiao Zhang
- College of Food Science and Technology and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yidong Xiao
- College of Food Science and Technology and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; College of Food Science and Technology, Wuhan Business University, Wuhan 430056, China
| | - Qilin Huang
- College of Food Science and Technology and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
19
|
Wu J, Li Q, Cui C, Xu J. Screening of novel bovine-elastin-derived peptides with elastase inhibition and photoprotective potential: a combined in silico and in vitro study. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:716-726. [PMID: 37658829 DOI: 10.1002/jsfa.12961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/17/2023] [Accepted: 09/02/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND The demand for food-based anti-photoaging products is surging because of the rising recognition of health and beauty, as well as enhanced comprehension of the detrimental impact of ultraviolet (UV) radiation. This study aimed to investigate the potential of bioactive peptides derived from bovine elastin, specifically focusing on identifying novel elastase inhibitory peptides and assessing their photoprotective properties using bioinformatics techniques. RESULTS A total of 48 bioactive peptides were screened in bovine elastin hydrolysate (EH) utilizing Peptide Ranker analysis. Three novel elastase inhibitory peptides, GAGQPFPI, FFPGAG and FPGIG (in descending order of activity), exhibited potent inhibitory effects on elastase in vitro, surpassing the inhibitory effect of EH by a factor of 1-2 and reaching significantly lower concentrations (8-15 times lower) than EH. The cumulative inhibitory effect of GAGQPFPI, FFPGAG, and FPGIG reached 91.5%. Further analysis revealed that FFPGAG and FPGIG exhibited mixed inhibition, whereas GAGQPFPI displayed non-competitive inhibition. Molecular simulations showed that these peptides interacted effectively with the elastase active site through hydrogen bonding and hydrophobic interactions. Furthermore, GAGQPFPI, FFPGAG, and FPGIG demonstrated high stability in gastrointestinal digestion, demonstrated transcellular permeability across Caco-2 cell monolayers, and exhibited remarkable photoprotective properties against UVB-irradiated HaCaT cells. CONCLUSION GAGQPFPI showed the most promising potential as a functional food with photoprotective effects against UVB damage and inhibitory properties against elastase. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jing Wu
- School of Food Science and Technology, South China University of Technology, Guangzhou, China
| | - Qinglan Li
- School of Food Science and Technology, South China University of Technology, Guangzhou, China
| | - Chun Cui
- School of Food Science and Technology, South China University of Technology, Guangzhou, China
| | - Jucai Xu
- School of Biotechnology and Health Sciences & International Healthcare Innovation Institute (Jiangmen), Wuyi University, Jiangmen, China
| |
Collapse
|
20
|
Xiao J, Li M, Zhang M, Dai K, Ju X, Liu Y, Liu Z, Cao H, Shi Y. Transport and interaction mechanism of four pesticide residues from Chaenomeles speciosa across Caco-2 cells. Food Chem 2024; 431:137156. [PMID: 37591142 DOI: 10.1016/j.foodchem.2023.137156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 08/19/2023]
Abstract
The presence of multiple pesticide residues in agricultural production highlights the need for studying mixture interaction during transepithelial transport. This study applied the Caco-2 cell model to investigate the interaction of four pesticide residues (carbendazim, epoxiconazole, phoxim, and chlorpyrifos) in Chaenomeles speciosa during transepithelial transport. Results demonstrated that co-treatment with pesticide mixtures generally increased the cumulative transport amount of carbendazim and epoxiconazole by 0.32-1.60 times and 0.32-0.98 times, respectively, compared to individual treatments. Notably, the combination of carbendazim and epoxiconazole displayed a significant synergistic effect. The use of transporter inhibitors and molecular docking analysis provided insights into the interaction mechanism, suggesting that the competitive inhibition of MRP2 and/or BCRP binding via π-bonds contributed to the inhibition of BL-to-AP efflux and a significant increase in AP-to-BL influx of carbendazim and epoxiconazole. The results are of great theoretical significance and practical value for risk assessment of multiple pesticide residues in agricultural products.
Collapse
Affiliation(s)
- Jinjing Xiao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, PR China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, Anhui Province 230036, PR China
| | - Minkun Li
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, PR China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, Anhui Province 230036, PR China
| | - Mengya Zhang
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, PR China
| | - Kaijie Dai
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, PR China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, Anhui Province 230036, PR China
| | - Xiaowei Ju
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, PR China
| | - Yuying Liu
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, PR China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, Anhui Province 230036, PR China
| | - Ziqi Liu
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, PR China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, Anhui Province 230036, PR China
| | - Haiqun Cao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, PR China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, Anhui Province 230036, PR China
| | - Yanhong Shi
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, PR China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, Anhui Province 230036, PR China.
| |
Collapse
|
21
|
Jan KC, Gavahian M. Hydroxylated Tetramethoxyflavone Affects Intestinal Cell Permeability and Inhibits Cytochrome P450 Enzymes. Molecules 2024; 29:322. [PMID: 38257234 PMCID: PMC10820070 DOI: 10.3390/molecules29020322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Tetramethoxyflavones (TMFs) found in the Citrus genus have garnered considerable interest from food scientists and the health food industry because of their promising biological properties. Nonetheless, there are currently limited data available regarding the effectiveness and bioavailability of "hydroxylated TMFs", which are flavones known for their potential in disease prevention through dietary means. This study aims to provide insights into the chemical and biological properties of hydroxylated TMF and evaluates its effects on intestinal cell permeability and cytochrome P450 (CYP) inhibition. Liquid chromatography-mass spectrometry (LC-MS) and microsomes analyze the TMFs and hydroxylated TMFs, elucidating cell penetration and metabolic inhibition potential. 3H7-TMF shows the fastest (1-h) transport efficiency in intestinal cells. The Caco-2 cell model exhibits significant transport and absorption efficiency. Dissolved hydroxyl-TMF with hydrophilicity possibly permeates the gut. 3H7-TMF has higher transport efficiency (46%) 3H6-TMF (39%). IC50 values of TMFs (78-TMF, 57-TMF, 3H7-TMF, 3H6-TMF) against CYP enzymes (CYP1A2, CYP2D6, CYP2C9, CYP2C19, CYP3A4) range from 0.15 to 108 μM, indicating potent inhibition. Hydroxyl groups enhance TMF hydrophilicity and membrane permeability. TMFs display varied inhibitory effects due to hydroxyl and methoxy hindrance. This study underscores the strong CYP inhibitory capabilities in these TMFs, implying potential food-drug interactions if used in medicines or supplements. These findings can also help with food nutrition improvement and pharma food developments through innovative approaches for Citrus waste valorization.
Collapse
Affiliation(s)
| | - Mohsen Gavahian
- Department of Food Science, National Pingtung University of Science and Technology, No. 1, Xuefu Rd, Neipu, Pingtung 91201, Taiwan;
| |
Collapse
|
22
|
Lin Y, Deng H, Deng F, Yao S, Deng X, Cheng Y, Chen Y, He B, Dai W, Zhang H, Zhang Q, Wang X. Remodeling of intestinal epithelium derived extracellular vesicles by nanoparticles and its bioeffect on tumor cell migration. J Control Release 2024; 365:60-73. [PMID: 37972765 DOI: 10.1016/j.jconrel.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/05/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
Extracellular vesicles (EVs) are an effective tool to elucidate the bioeffect of nanomedicines. To clarify the interaction between oral nanomedicines and intestinal epithelial cells, and their bioeffects on downstream cells, polystyrene nanoparticles (PS-NPs) with different sizes were used as the model nanomedicines for EVs induction. Caco-2 monolayers were selected as the model of the intestinal epithelium and DLD-1 cells as the colorectal cancer model proximal to the gastrointestinal tract. It is found that compared with small-sized (25, 50, 100 nm) PS-NPs, the large-sized (200 and 500 nm) exhibited higher co-localization with multivesicular bodies and lysosomes, and more significant reduction of lysosomal acidification in Caco-2 cells. Proteomic and western-blotting analysis showed that the EVs remodeled by large-sized PS-NPs exhibited a higher extent of protein expression changes. The in vitro and in vivo signaling pathway detection in DLD-1 cells and DLD-1 cell xenograft nude mice showed that the remodeled EVs by large-sized PS-NPs inhibited the activation of multiple signaling pathways including Notch3, EGF/EGFR, and PI3K/Akt pathways, which resulted in the inhibition of tumor cell migration. These results primarily clarify the regulation mechanisms of nanomedicines-EVs-receptor cells chain. It provides a new perspective for the rational design and bioeffect evaluation of oral drug nanomaterials and sets up the fundamental knowledge for novel tumor therapeutics in the future.
Collapse
Affiliation(s)
- Yuxing Lin
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hailiang Deng
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Feiyang Deng
- Department of Biomedical Engineering, College of Engineering, Boston University, Boston, MA 02215, USA
| | - Siyu Yao
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xinxin Deng
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yuxi Cheng
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ying Chen
- Guangdong Institute for Drug Control, Guangzhou 510700, China; NMPA Key Laboratory for Quality Control and Evaluation of Pharmaceutical Excipients, Guangzhou 510700, China
| | - Bing He
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China; NMPA Key Laboratory for Quality Control and Evaluation of Pharmaceutical Excipients, Guangzhou 510700, China
| | - Wenbing Dai
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hua Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; NMPA Key Laboratory for Quality Control and Evaluation of Pharmaceutical Excipients, Guangzhou 510700, China.
| |
Collapse
|
23
|
Vilas-Boas AA, Goméz-García R, Machado M, Nunes C, Ribeiro S, Nunes J, Oliveira ALS, Pintado M. Lavandula pedunculata Polyphenol-Rich Extracts Obtained by Conventional, MAE and UAE Methods: Exploring the Bioactive Potential and Safety for Use a Medicine Plant as Food and Nutraceutical Ingredient. Foods 2023; 12:4462. [PMID: 38137266 PMCID: PMC10742868 DOI: 10.3390/foods12244462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Nowadays, plant-based bioactive compounds (BCs) are a key focus of research, supporting sustainable food production and favored by consumers for their perceived safety and health advantages over synthetic options. Lavandula pedunculata (LP) is a Portuguese, native species relevant to the bioeconomy that can be useful as a source of natural BCs, mainly phenolic compounds. This study compared LP polyphenol-rich extracts from conventional maceration extraction (CE), microwave and ultrasound-assisted extraction (MAE and UAE). As a result, rosmarinic acid (58.68-48.27 mg/g DE) and salvianolic acid B (43.19-40.09 mg/g DE) were the most representative phenolic compounds in the LP extracts. The three methods exhibited high antioxidant activity, highlighting the ORAC (1306.0 to 1765.5 mg Trolox equivalents (TE)/g DE) results. In addition, the extracts obtained with MAE and CE showed outstanding growth inhibition for B. cereus, S. aureus, E. coli, S. enterica and P. aeruginosa (>50%, at 10 mg/mL). The MAE extract showed the lowest IC50 (0.98 mg DE/mL) for angiotensin-converting enzyme inhibition and the best results for α-glucosidase and tyrosinase inhibition (at 5 mg/mL, the inhibition was 87 and 73%, respectively). The LP polyphenol-rich extracts were also safe on caco-2 intestinal cells, and no mutagenicity was detected. The UAE had lower efficiency in obtaining LP polyphenol-rich extracts. MAE equaled CE's efficiency, saving time and energy. LP shows potential as a sustainable raw material, allowing diverse extraction methods to safely develop health-promoting food and nutraceutical ingredients.
Collapse
Affiliation(s)
- Ana A. Vilas-Boas
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (A.A.V.-B.); (R.G.-G.); (M.M.); (A.L.S.O.)
| | - Ricardo Goméz-García
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (A.A.V.-B.); (R.G.-G.); (M.M.); (A.L.S.O.)
- Centro de Investigación e Innovación Científica y Tecnológica—CIICYT, Universidad Autónoma de Coahuila, Saltillo 25280, Coahuila, Mexico
| | - Manuela Machado
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (A.A.V.-B.); (R.G.-G.); (M.M.); (A.L.S.O.)
| | - Catarina Nunes
- Association BLC3—Technology and Innovation Campus, Centre Bio R&D Unit, Senhora da Conceição, 3045-155 Oliveira do Hospital, Portugal; (C.N.); (S.R.); (J.N.)
| | - Sónia Ribeiro
- Association BLC3—Technology and Innovation Campus, Centre Bio R&D Unit, Senhora da Conceição, 3045-155 Oliveira do Hospital, Portugal; (C.N.); (S.R.); (J.N.)
| | - João Nunes
- Association BLC3—Technology and Innovation Campus, Centre Bio R&D Unit, Senhora da Conceição, 3045-155 Oliveira do Hospital, Portugal; (C.N.); (S.R.); (J.N.)
| | - Ana L. S. Oliveira
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (A.A.V.-B.); (R.G.-G.); (M.M.); (A.L.S.O.)
| | - Manuela Pintado
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (A.A.V.-B.); (R.G.-G.); (M.M.); (A.L.S.O.)
| |
Collapse
|
24
|
Ozel‐Tasci C, Gulec S. Golden thistle ( Scolymus hispanicus L.) hydromethanolic extracts ameliorated glucose absorption and inflammatory markers in vitro. Food Sci Nutr 2023; 11:7974-7984. [PMID: 38107090 PMCID: PMC10724633 DOI: 10.1002/fsn3.3716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 12/19/2023] Open
Abstract
Golden thistle (GT, Scolymus hispanicus L.) is an edible plant native to the Mediterranean. Several activities have been reported for the GT, as it is used for traditional medicinal purposes in some cultures. In this study, we aimed to investigate the effects of GT crude extract on phenolic bioavailability, antidiabetic, and anti-inflammatory activities by using colonic epithelium (CaCo-2) and murine macrophage (RAW 264.7) cell lines. The CaCo-2 cells were grown on the bicameral membrane system for intestinal bioavailability and glucose efflux. Lipopolysaccharide (LPS, 0.5 μg/mL) was used to induce systemic inflammation on RAW 264.7. The inflammatory medium of RAW 264.7 cells was given to Caco-2 cells to mimic colonic inflammation. Our results showed that 5-o-caffeoylquinic acid had an apparent permeability of (1.82 ± 0.07) × 10-6 cm/s after 6 h. The extract lowered the glucose efflux by 39.4%-42.6%, in addition to the reductions in relative GLUT2 mRNA expressions by 49%-66% in pre- and co-treatments (p < .05). Decreases in systemic inflammation markers of nitric oxide, tumor necrosis factor-alpha, and interleukin-6 (IL-6) were also detected in 30%-45% range after pre-treatments with the GT extract (p < .05). Lastly, colonic inflammation markers of IL-6 and IL-8 were reduced by 8.7%-19.5% as a result of GT pre-treatments (p < .05). Thus, an in vitro investigation of GT extract revealed promising results on antidiabetic and anti-inflammatory activities.
Collapse
Affiliation(s)
- Cansu Ozel‐Tasci
- Department of Food Engineering, Molecular Nutrition and Cell Physiology LaboratoryIzmir Institute of TechnologyUrlaIzmirTurkey
| | - Sukru Gulec
- Department of Food Engineering, Molecular Nutrition and Cell Physiology LaboratoryIzmir Institute of TechnologyUrlaIzmirTurkey
| |
Collapse
|
25
|
Feng H, Liu C, Liu Q, Wang J, Zeng Y, Sun Y, Zhang M, Zhang H, Liu Z, Zhao J, Liu H. Study on the transport and internalisation mechanism of dietary supplement nattokinase in the small intestine using animal and Caco-2 cell monolayer models. Xenobiotica 2023; 53:670-680. [PMID: 37971898 DOI: 10.1080/00498254.2023.2284249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
Maintaining proper blood flow is critical to promoting good health. Nattokinase is a serine protease from Bacillus subtilis that has significant in vitro thrombolytic activity, but its mechanism as a dietary supplement to prevent thrombosis through intestinal absorption and transport is still unclear.The purpose of this study is to study the transport and internalisation mechanism of NK in the small intestine using animal models and Caco-2 cell monolayer models.This study first evaluated the preventive effect of supplementing low dose (4000 FU (Fibrin Unit)/kg, n = 6), medium dose (8000 FU/kg, n = 6), and high dose (12000 FU/kg, n = 6) of nattokinase on carrageenan induced thrombosis in mice. Subsequently, we used the rat gut sac model, ligated intestinal loop model, and Caco-2 cell uptake model to study the intestinal transport mechanism of NK.Results indicate that NK is a moderately absorbed biomolecule whose transport through enterocytes is energy- and time-dependent. Chlorpromazine, nystatin and EIPA all inhibited the endocytosis of NK to varying degrees, indicating that the endocytosis of NK in Caco-2 cells involves macropinocytosis, clathrin-mediated and caveolae-mediated pathway. These findings offer a theoretical basis for investigating the mechanism of oral NK supplementation in greater depth.
Collapse
Affiliation(s)
- Huawei Feng
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, China
- Key Laboratory of Computational Simulation and Information Processing of Biomacromolecules of Liaoning Province, Shenyang, China
- Engineering Laboratory for Molecular Simulation and Designing of Drug Molecules of Liaoning, Shenyang, China
- Key Laboratory for Computer Simulating and Information Processing of Bio-Macromolecules of Shenyang, Shenyang, China
| | - Chang Liu
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, China
| | - Qingqing Liu
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, China
| | - Jie Wang
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, China
| | - Yingyue Zeng
- Key Laboratory of Computational Simulation and Information Processing of Biomacromolecules of Liaoning Province, Shenyang, China
- Engineering Laboratory for Molecular Simulation and Designing of Drug Molecules of Liaoning, Shenyang, China
- Key Laboratory for Computer Simulating and Information Processing of Bio-Macromolecules of Shenyang, Shenyang, China
- School of Life Science, Liaoning University, Shenyang, China
| | - Yue Sun
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, China
| | - Man Zhang
- School of Life Science, Liaoning University, Shenyang, China
| | - Hui Zhang
- School of Life Science, Liaoning University, Shenyang, China
| | - Zhikui Liu
- Liaoning Huikang Testing and Evaluation Technology Co., Shenyang, China
| | - Jian Zhao
- Key Laboratory for Computer Simulating and Information Processing of Bio-Macromolecules of Shenyang, Shenyang, China
- School of Life Science, Liaoning University, Shenyang, China
| | - Hongsheng Liu
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, China
- Key Laboratory of Computational Simulation and Information Processing of Biomacromolecules of Liaoning Province, Shenyang, China
- Engineering Laboratory for Molecular Simulation and Designing of Drug Molecules of Liaoning, Shenyang, China
- Key Laboratory for Computer Simulating and Information Processing of Bio-Macromolecules of Shenyang, Shenyang, China
| |
Collapse
|
26
|
Yao X, Bunt C, Liu M, Quek SY, Shaw J, Cornish J, Wen J. Enhanced Cellular Uptake and Transport of Bovine Lactoferrin Using Pectin- and Chitosan-Modified Solid Lipid Nanoparticles. Pharmaceutics 2023; 15:2168. [PMID: 37631382 PMCID: PMC10457979 DOI: 10.3390/pharmaceutics15082168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/14/2023] [Accepted: 08/20/2023] [Indexed: 08/27/2023] Open
Abstract
AIM The aim of this project is to use pectin- and chitosan-modified solid lipid nanoparticles for bovine lactoferrin to enhance its cellular uptake and transport. METHODS Solid lipid particles containing bovine lactoferrin (bLf) were formulated through the solvent evaporation technique, incorporating stearic acid along with either chitosan or pectin modification. bLf cellular uptake and transport were evaluated in vitro using the human adenocarcinoma cell line Caco-2 cell model. RESULTS AND DISCUSSION The bLf-loaded SLPs showed no significant effect on cytotoxicity and did not induce apoptosis within the eight-hour investigation. The use of confocal laser scanning microscopy confirmed that bLf follows the receptor-mediated endocytosis, whereas the primary mechanism for the cellular uptake of SLPs was endocytosis. The bLf-loaded SLPs had significantly more cellular uptake compared to bLf alone, and it was observed that this impact varied based on the time, temperature, and concentration. Verapamil and EDTA were determined to raise the apparent permeability coefficients (App) of bLf and bLf-loaded SLPs. CONCLUSION This occurred because they hindered efflux by interacting with P-glycoproteins and had a penetration-enhancing influence. These findings propose the possibility of an additional absorption mechanism for SLPs, potentially involving active transportation facilitated by the P-glycoprotein transporter in Caco-2 cells. These results suggest that SLPs have the potential to be applied as effective carriers to improve the oral bioavailability of proteins and peptides.
Collapse
Affiliation(s)
- Xudong Yao
- School of Pharmacy, Faculty of Medical and Health Science, The University of Auckland, Auckland 1142, New Zealand (M.L.); (J.S.)
| | - Craig Bunt
- Department of Food Science, Otago University, Dunedin 9054, New Zealand;
| | - Mengyang Liu
- School of Pharmacy, Faculty of Medical and Health Science, The University of Auckland, Auckland 1142, New Zealand (M.L.); (J.S.)
| | - Siew-Young Quek
- Chemical Science, The University of Auckland, Auckland 1142, New Zealand;
| | - John Shaw
- School of Pharmacy, Faculty of Medical and Health Science, The University of Auckland, Auckland 1142, New Zealand (M.L.); (J.S.)
| | - Jillian Cornish
- School of Medicine, Faculty of Medical and Health Science, The University of Auckland, Auckland 1142, New Zealand
| | - Jingyuan Wen
- School of Pharmacy, Faculty of Medical and Health Science, The University of Auckland, Auckland 1142, New Zealand (M.L.); (J.S.)
| |
Collapse
|
27
|
Vacca M, Pinto D, Annunziato A, Ressa A, Calasso M, Pontonio E, Celano G, De Angelis M. Gluten-Free Bread Enriched with Artichoke Leaf Extract In Vitro Exerted Antioxidant and Anti-Inflammatory Properties. Antioxidants (Basel) 2023; 12:antiox12040845. [PMID: 37107220 PMCID: PMC10135093 DOI: 10.3390/antiox12040845] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Due to its high nutritional value and broad beneficial effects, the artichoke plant (Cynara cardunculus L.) is an excellent healthy food candidate. Additionally, the artichoke by-products are usually discarded even though they still contain a huge concentration of dietary fibers, phenolic acids, and other micronutrients. The present work aimed to characterize a laboratory-made gluten-free bread (B) using rice flour supplemented with a powdered extract from artichoke leaves (AEs). The AE, accounting for the 5% of titratable chlorogenic acid, was added to the experimental gluten-free bread. Accounting for different combinations, four different bread batches were prepared. To evaluate the differences, a gluten-free type-II sourdough (tII-SD) was added in two doughs (SB and SB-AE), while the related controls (YB and YB-AE) did not contain the tII-SD. Profiling the digested bread samples, SB showed the lowest glycemic index, while SB-AE showed the highest antioxidant properties. The digested samples were also fermented in fecal batches containing viable cells from fecal microbiota samples obtained from healthy donors. Based on plate counts, no clear tendencies emerged concerning the analyzed microbial patterns; by contrast, when profiling volatile organic compounds, significant differences were observed in SB-AE, exhibiting the highest scores of hydrocinnamic and cyclohexanecarboxylic acids. The fecal fermented supernatants were recovered and assayed for healthy properties on human keratinocyte cell lines against oxidative stress and for effectiveness in modulating the expression of proinflammatory cytokines in Caco-2 cells. While the first assay emphasized the contribution of AE to protect against stressor agents, the latter enlightened how the combination of SB with AE decreased the cellular TNF-α and IL1-β expression. In conclusion, this preliminary study suggests that the combination of AE with sourdough biotechnology could be a promising tool to increase the nutritional and healthy features of gluten-free bread.
Collapse
Affiliation(s)
- Mirco Vacca
- Department of Soil, Plant and Food Science (DiSSPA), University of Bari Aldo Moro, 70126 Bari, Italy
| | - Daniela Pinto
- Human Microbiome Advanced Project-HMPA, Giuliani SpA, 20129 Milan, Italy
| | - Alessandro Annunziato
- Department of Soil, Plant and Food Science (DiSSPA), University of Bari Aldo Moro, 70126 Bari, Italy
| | - Arianna Ressa
- Department of Soil, Plant and Food Science (DiSSPA), University of Bari Aldo Moro, 70126 Bari, Italy
| | - Maria Calasso
- Department of Soil, Plant and Food Science (DiSSPA), University of Bari Aldo Moro, 70126 Bari, Italy
| | - Erica Pontonio
- Department of Soil, Plant and Food Science (DiSSPA), University of Bari Aldo Moro, 70126 Bari, Italy
| | - Giuseppe Celano
- Department of Soil, Plant and Food Science (DiSSPA), University of Bari Aldo Moro, 70126 Bari, Italy
| | - Maria De Angelis
- Department of Soil, Plant and Food Science (DiSSPA), University of Bari Aldo Moro, 70126 Bari, Italy
| |
Collapse
|
28
|
Su D, Lu J, Nie C, Guo Z, Li C, Yu Q, Xie J, Chen Y. Combined Effects of Acrylamide and Ochratoxin A on the Intestinal Barrier in Caco-2 Cells. Foods 2023; 12:foods12061318. [PMID: 36981244 PMCID: PMC10048136 DOI: 10.3390/foods12061318] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Acrylamide (AA) and ochratoxin A (OTA) are contaminants that co-exist in the same foods, and may create a serious threat to human health. However, the combined effects of AA and OTA on intestinal epithelial cells remain unclear. The purpose of this research was to investigate the effects of AA and OTA individually and collectively on Caco-2 cells. The results showed that AA and OTA significantly inhibited Caco-2 cell viability in a concentration- and time-dependent manner, decreased transepithelial electrical resistance (TEER) values, and increased the lucifer yellow (LY) permeabilization, lactate dehydrogenase (LDH) release and reactive oxygen species (ROS) levels. In addition, the levels of IL-1β, IL-6, and TNF-α increased, while the levels of IL-10 decreased after AA and OTA treatment. Western blot analysis revealed that AA and OTA damaged the intestinal barrier by reducing the expression of the tight junction (TJ) protein. The collective effects of AA and OTA exhibited enhanced toxicity compared to either single compound and, for most of the intestinal barrier function indicators, AA and OTA combined exposure tended to produce synergistic toxicity to Caco-2 cells. Overall, this research suggests the possibility of toxic reactions arising from the interaction of toxic substances present in foodstuffs with those produced during processing.
Collapse
Affiliation(s)
- Dan Su
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Jiawen Lu
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Chunchao Nie
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Ziyan Guo
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Chang Li
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| |
Collapse
|
29
|
Simulated gastrointestinal digestion/Caco-2 cell transport: Effects on biological activities and toxicity of a Brazilian propolis. Food Chem 2023; 403:134330. [DOI: 10.1016/j.foodchem.2022.134330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/02/2022] [Accepted: 09/15/2022] [Indexed: 11/22/2022]
|
30
|
Effects of 6-Shogaol on Glucose Uptake and Intestinal Barrier Integrity in Caco-2 Cells. Foods 2023; 12:foods12030503. [PMID: 36766032 PMCID: PMC9913893 DOI: 10.3390/foods12030503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 01/25/2023] Open
Abstract
As the main bioactive component in dried ginger, 6-shogaol has potential hypoglycemic activity, but its mechanism is still unclear. The process of carbohydrate digestion and glucose absorption is closely related to the enzymatic activity of epithelial brush cells, expression of glucose transporters, and permeability of intestinal epithelial cells. Therefore, this study explored the hypoglycemic mechanism of 6-shogaol from the perspective of glucose uptake, absorption transport, and protection of intestinal barrier function. Based on molecular docking, the binding energy of 6-shogaol and α-glucosidase is -6.24 kcal/mol, showing a high binding affinity. Moreover, a-glucosidase enzymatic activity was reduced (-78.96%) when the 6-shogaol concentration was 500 µg/mL. After 6-shogaol intervention, the glucose uptake was reduced; the relative expression of glucose transporters GLUT2 and SGLT1 were down regulated; and tight junction proteins ZO-1, Occludin and Claudin were up regulated in differentiated Caco-2 cells. This study confirmed that 6-shogaol effectively inhibits the activity of α-glucosidase and has beneficial effects on glucose uptake, protection of intestinal barrier function, and promotion of intestinal material absorption.
Collapse
|
31
|
Stanton JE, Grabrucker AM. The use of organoids in food research. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
32
|
Shahidi F, Danielski R, Rhein SO, Meisel LA, Fuentes J, Speisky H, Schwember AR, de Camargo AC. Wheat and Rice beyond Phenolic Acids: Genetics, Identification Database, Antioxidant Properties, and Potential Health Effects. PLANTS (BASEL, SWITZERLAND) 2022; 11:3283. [PMID: 36501323 PMCID: PMC9739071 DOI: 10.3390/plants11233283] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Wheat and rice play a vital role in human nutrition and food security. A better understanding of the potential health benefits associated with consuming these cereals, combined with studies by plant scientists and food chemists to view the entire food value chain from the field, pre and post-harvest processing, and subsequent "fork" consumption, may provide the necessary tools to optimize wheat and rice production towards the goal of better human health improvement and food security, providing tools to better adapt to the challenges associated with climate change. Since the available literature usually focuses on only one food chain segment, this narrative review was designed to address the identities and concentration of phenolics of these cereal crops from a farm-to-fork perspective. Wheat and rice genetics, phenolic databases, antioxidant properties, and potential health effects are summarized. These cereals contain much more than phenolic acids, having significant concentrations of flavonoids (including anthocyanins) and proanthocyanidins in a cultivar-dependent manner. Their potential health benefits in vitro have been extensively studied. According to a number of in vivo studies, consumption of whole wheat, wheat bran, whole rice, and rice bran may be strategies to improve health. Likewise, anthocyanin-rich cultivars have shown to be very promising as functional foods.
Collapse
Affiliation(s)
- Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
| | - Renan Danielski
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
| | - Samantha Ottani Rhein
- Nutrition and Food Technology Institute, University of Chile, Santiago 7830490, Chile
| | - Lee A. Meisel
- Nutrition and Food Technology Institute, University of Chile, Santiago 7830490, Chile
| | - Jocelyn Fuentes
- Nutrition and Food Technology Institute, University of Chile, Santiago 7830490, Chile
| | - Hernan Speisky
- Nutrition and Food Technology Institute, University of Chile, Santiago 7830490, Chile
| | - Andrés R. Schwember
- Departament of Plant Sciences, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | | |
Collapse
|
33
|
Jensen-Kroll J, Demetrowitsch T, Clawin-Rädecker I, Klempt M, Waschina S, Schwarz K. Microbiota independent effects of oligosaccharides on Caco-2 cells -A semi-targeted metabolomics approach using DI-FT-ICR-MS coupled with pathway enrichment analysis. Front Mol Biosci 2022; 9:968643. [PMID: 36353731 PMCID: PMC9638022 DOI: 10.3389/fmolb.2022.968643] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/03/2022] [Indexed: 08/07/2024] Open
Abstract
Milk oligosaccharides (MOS) and galactooligosaccharides (GOS) are associated with many benefits, including anti-microbial effects and immune-modulating properties. However, the cellular mechanisms of these are largely unknown. In this study, the effects of enriched GOS and MOS mixtures from caprine and bovine milk consisting mainly 6'-galactosyllactose, 3'-sialyllactose, and 6'-sialyllactose on Caco-2 cells were investigated, and the treatment-specific metabolomes were described. In the control, the cells were treated with a sugar mix consisting of one-third each of glucose, galactose and lactose. A local metabolomics workflow with pathway enrichment was established, which specifically addresses DI-FT-ICR-MS analyses and includes adaptations in terms of measurement technology and sample matrices. By including quality parameters, especially the isotope pattern, we increased the precision of annotation. The independence from online tools, the fast adaptability to changes in databases, and the specific adjustment to the measurement technology and biomaterial used, proved to be a great advantage. For the first time it was possible to find 71 active pathways in a Caco-2 cell experiment. These pathways were assigned to 12 main categories, with amino acid metabolism and carbohydrate metabolism being the most dominant categories in terms of the number of metabolites and metabolic pathways. Treatment of Caco-2 cells with high GOS and glucose contents resulted in significant effects on several metabolic pathways, whereas the MOS containing treatments resulted only for individual metabolites in significant changes. An effect based on bovine or caprine origin alone could not be observed. Thus, it was shown that MOS and GOS containing treatments can exert microbiome-independent effects on the metabolome of Caco-2 cells.
Collapse
Affiliation(s)
- Julia Jensen-Kroll
- Institute of Human Nutrition and Food Science, Division of Food Technology, Kiel University, Kiel, Germany
| | - Tobias Demetrowitsch
- Institute of Human Nutrition and Food Science, Division of Food Technology, Kiel University, Kiel, Germany
| | - Ingrid Clawin-Rädecker
- Federal Research Institute of Nutrition and Food, Department of Safety and Quality of Milk and Fish Products, Max Rubner-Institute, Kiel, Germany
| | - Martin Klempt
- Federal Research Institute of Nutrition and Food, Department of Microbiology and Biotechnology, Max Rubner-Institute, Kiel, Germany
| | - Silvio Waschina
- Institute of Human Nutrition and Food Science, Division of Nutriinformatics, Kiel University, Kiel, Germany
| | - Karin Schwarz
- Institute of Human Nutrition and Food Science, Division of Food Technology, Kiel University, Kiel, Germany
| |
Collapse
|
34
|
Shirai I, Karasawa K, Kodaira Y, Iwasaki Y, Shigemura Y, Makabe H, Katayama S. Intestinal permeability of agaro-oligosaccharides: Transport across Caco-2 cell monolayers and pharmacokinetics in rats. Front Nutr 2022; 9:996607. [PMID: 36185657 PMCID: PMC9525106 DOI: 10.3389/fnut.2022.996607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/25/2022] [Indexed: 11/21/2022] Open
Abstract
Agaro-oligosaccharides (AOSs), even-numbered oligosaccharides prepared from agar, are applied to various food, including supplements, drinks, and jellies because of their biological activities. This study aimed to evaluate the AOS permeation in the gastrointestinal tract in vivo and in vitro. Agarobiose (Abi), agarotetraose (Ate), and agarohexaose (Ahe) were detected in rat plasma after oral administration of AOSs. The detection level of agarobiose in the plasma was higher than that of agarohexaose, which was consistent with the permeation study using Caco-2 cell monolayers. Further, the adenosine triphosphate inhibitor (sodium azide) or endocytosis inhibitor (colchicine) did not inhibit AOS permeation through Caco-2 cell monolayers. Conversely, AOS permeation enhanced upon treatment with cytochalasin B, a tight junction disrupter, suggesting that AOSs might have passed mainly through the tight junctions between the intestinal epithelial cells. These results indicate that AOSs, especially agarobiose, can be absorbed as an intact form via the gastrointestinal tract across the intestinal epithelium through the paracellular pathway.
Collapse
Affiliation(s)
- Ikuya Shirai
- Department of Science and Technology, Graduate School of Medicine, Science and Technology, Shinshu University, Nagano, Japan
- Ina Food Industry Co., Ltd., Ina, Japan
| | | | - Yusuke Kodaira
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, Japan
| | - Yu Iwasaki
- Faculty of Domestic Science, Tokyo Kasei University, Tokyo, Japan
| | | | - Hidefumi Makabe
- Department of Science and Technology, Graduate School of Medicine, Science and Technology, Shinshu University, Nagano, Japan
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, Japan
| | - Shigeru Katayama
- Department of Science and Technology, Graduate School of Medicine, Science and Technology, Shinshu University, Nagano, Japan
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, Japan
| |
Collapse
|
35
|
Hu S, Lin S, He X, Sun N. Iron delivery systems for controlled release of iron and enhancement of iron absorption and bioavailability. Crit Rev Food Sci Nutr 2022; 63:10197-10216. [PMID: 35588258 DOI: 10.1080/10408398.2022.2076652] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Iron deficiency is a global nutritional problem, and adding iron salts directly to food will have certain side effects on the human body. Therefore, there is growing interest in food-grade iron delivery systems. This review provides an overview of iron delivery systems, with emphasis on the controlled release of iron during gastrointestinal digestion, as well as the enhancement of iron absorption and bioavailability. Iron-bearing proteins are easily degraded by digestive enzymes and absorbed through receptor-mediated endocytosis. Instead, protein aggregates are slowly degraded in the stomach, which delays iron release and serves as a potential iron supplement. Amino acids, peptides and polysaccharides can bind iron through iron binding sites, but the formed compounds are prone to dissociation in the stomach. Moreover, peptides and polysaccharides can deliver iron by mediating the formation of ferric oxyhydroxide which is absorbed through endocytosis or bivalent transporter 1. In addition, liposomes are unstable during gastric digestion and iron is released in large quantities. Complexes formed by polysaccharides and proteins, and microcapsules formed by polysaccharides can delay the release of iron in the gastric environment and prolong iron release in the intestinal environment. This review is conducive to the development of iron functional ingredients and dietary supplements.
Collapse
Affiliation(s)
- Shengjie Hu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
| | - Songyi Lin
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P. R. China
| | - Xueqing He
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
| | - Na Sun
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P. R. China
| |
Collapse
|
36
|
Peng S, Song H, Chen Y, Li S, Guan X. Oral Delivery of Food-derived Bioactive Peptides: Challenges and Strategies. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2062772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Shiyu Peng
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Hongdong Song
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, China
| | - Yaqiong Chen
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Sen Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, China
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
37
|
Zheng T, Yin Z, Huang Q. Assessment of Digestion, Absorption, and Metabolism of Nanoencapsulated Phytochemicals Using In Vitro and In Vivo Models: A Perspective Paper. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4548-4555. [PMID: 35385653 DOI: 10.1021/acs.jafc.1c07919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanoencapsulation delivery systems have been used to enhance the absorption and bioefficacy of phytochemicals. With modified physical and chemical properties, nanoencapsulated phytochemicals differ from their free forms in digestion, absorption, and metabolism. These pharmacokinetic processes can be assessed using a combination of various in vitro/in vivo models and analytical strategies, but each approach has its limitations. The correlation between current models and physiological conditions and their feasibility for nanoencapsulation systems require further validation. More detailed studies are still needed to clarify how nanoencapsulation affects the phytochemical and host interaction. Future investigations must take extra caution in model selection and result interpretation.
Collapse
Affiliation(s)
- Ting Zheng
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, United States
| | - Zhiya Yin
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, United States
| | - Qingrong Huang
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, United States
| |
Collapse
|
38
|
Zhuang X, Chen B, Huang S, Han J, Zhou G, Xu S, Chen M, Zeng Z, Zhang S. Hypermethylation of miR-145 promoter-mediated SOX9-CLDN8 pathway regulates intestinal mucosal barrier in Crohn's disease. EBioMedicine 2022; 76:103846. [PMID: 35124427 PMCID: PMC8829091 DOI: 10.1016/j.ebiom.2022.103846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 12/20/2022] Open
Abstract
Background Intestinal barrier impairment plays an essential role in the pathogenesis of Crohn's disease (CD), and claudins (CLDNs) dysfunction contributes to intestinal mucosa injury. SOX9, an important transcription factor, is upregulated in the disease-affected colon of patients with CD; however, its precise role in CD remains largely unknown. Our aim was to explore the interaction between SOX9 and CLDNs, and further elucidate the underlying mechanisms in CD. Methods SOX9 expression in patients with CD was evaluated using quantitative polymerase chain reaction, immunoblotting, and immunohistochemistry. The regulatory relationship between SOX9 and CLDNs was analyzed via a dual-luciferase reporter assay, chromatin immunoprecipitation, overexpression, and RNA interference methods. MicroRNAs (miRNAs) involved in the SOX9-CLDN pathway were predicted with bioinformatics analysis, and the upstream molecular mechanism was interpreted using MassARRAY methylation detection. Findings Upregulated expression of SOX9 in the disease-affected intestine mucosa was identified in both patients with CD and mice challenged with trinitrobenzene sulfonic acid (TNBS). SOX9 negatively regulated the expression of CLDN8, accompanying reduced intestinal permeability. MiR-145-5p downregulation was found in patients with CD and TNBS-induced colitis mice owing to an aberrant miR-145 promoter hypermethylation, which subsequently interfered the SOX9-CLDN8 pathway. MiR-145-5p agomir treatment alleviated TNBS-induced colitis in wild-type mice by inhibiting Sox9 expression and restoring Cldn8 expression, whereas similar findings were not apparent in the Cldn8−/− mice. Interpretation SOX9 mediates the crosstalk between upstream miR-145-5p and downstream CLDN8, and further impairs intestinal mucosal barrier homeostasis in CD. Targeting the miR-145-5p/SOX9/CLDN8 pathway represents a promising therapeutic strategy for CD. Funding The National Natural Science Foundation of China (#81870374, #81670498, #81630018, #82070538, #8210031148), the Guangdong Science and Technology (#2017A030306021, #2020A1515111087), the Guangzhou Science and Technology Department (#202002030041), and the Fundamental Research Funds for the Central Universities (#19ykzd11).
Collapse
Affiliation(s)
- Xiaojun Zhuang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Baili Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shanshan Huang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jing Han
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Gaoshi Zhou
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shu Xu
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Minhu Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhirong Zeng
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Shenghong Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
39
|
Huo J, Wu Z, Sun W, Wang Z, Wu J, Huang M, Wang B, Sun B. Protective Effects of Natural Polysaccharides on Intestinal Barrier Injury: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:711-735. [PMID: 35078319 DOI: 10.1021/acs.jafc.1c05966] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Owing to their minimal side effects and effective protection from oxidative stress, inflammation, and malignant growth, natural polysaccharides (NPs) are a potential adjuvant therapy for several diseases caused by intestinal barrier injury (IBI). More studies are accumulating on the protective effects of NPs with respect to IBI, but the underlying mechanisms remain unclear. Thus, this review aims to represent current studies that investigate the protective effects of NPs on IBI by directly maintaining intestinal epithelial barrier integrity (inhibiting oxidative stress, regulating inflammatory cytokine expression, and increasing tight junction protein expression) and indirectly regulating intestinal immunity and microbiota. Furthermore, the mechanisms underlying IBI development are briefly introduced, and the structure-activity relationships of polysaccharides with intestinal barrier protection effects are discussed. Potential developments and challenges associated with NPs exhibiting protective effects against IBI have also been highlighted to guide the application of NPs in the treatment of intestinal diseases caused by IBI.
Collapse
Affiliation(s)
- Jiaying Huo
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China
| | - Ziyan Wu
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| | - Weizheng Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China
| | - Zhenhua Wang
- Center for Mitochondria and Healthy Aging, College of Life Science, Yantai University, Yantai, Shandong 264005, People's Republic of China
| | - Jihong Wu
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| | - Mingquan Huang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| | - Bowen Wang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| | - Baoguo Sun
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| |
Collapse
|
40
|
WANG S, YU D, SHI Y, JIANG L, YANG F, YU G. Investigation into the bioavailability of synthesized phytosterol esters in vitro and in vivo using Caco-2 cell model and Wistar rats. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.68620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Shirang WANG
- Northeast Agricultural University, China; Heilongjiang Communications Polytechnic, China
| | - Dianyu YU
- Northeast Agricultural University, China
| | - Yongge SHI
- Jiusan Grains and Oils Industrial Group Co., China
| | | | | | - Guoping YU
- Northeast Agricultural University, China
| |
Collapse
|
41
|
Promises of phytochemical based nano drug delivery systems in the management of cancer. Chem Biol Interact 2021; 351:109745. [PMID: 34774839 DOI: 10.1016/j.cbi.2021.109745] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/29/2021] [Accepted: 11/09/2021] [Indexed: 12/11/2022]
Abstract
Cancer is the leading cause of human disease and death worldwide, accounting for 7.6 million deaths per year and projected to reach 13.1 million by 2030. Many phytochemicals included in traditional medicine have been utilized in the management of cancer. Conventional chemotherapy is generally known to be the most effective treatment of metastatic cancer but these cancerous cells might grow resistant to numerous anticancer drugs over time that resulting in treatment failure. This review tried to portray the advancement in the anticancer and chemopreventive effects of several phytochemicals and some of its members encapsulated in the nano-based delivery system of the drug. It comprises the issue associated with limited use of each phytoconstituents in human cancer treatment are discussed, and the benefits of entrapment into nanocarriers are evaluated in terms of drug loading efficiency, nanocarrier size, release profile of the drug, and in vitro and/or in vivo research and treatment testing, such as cytotoxicity assays and cell inhibition/viability.
Collapse
|
42
|
Current perspectives in cell-based approaches towards the definition of the antioxidant activity in food. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.07.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
43
|
Kell DB. The Transporter-Mediated Cellular Uptake and Efflux of Pharmaceutical Drugs and Biotechnology Products: How and Why Phospholipid Bilayer Transport Is Negligible in Real Biomembranes. Molecules 2021; 26:5629. [PMID: 34577099 PMCID: PMC8470029 DOI: 10.3390/molecules26185629] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/03/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Over the years, my colleagues and I have come to realise that the likelihood of pharmaceutical drugs being able to diffuse through whatever unhindered phospholipid bilayer may exist in intact biological membranes in vivo is vanishingly low. This is because (i) most real biomembranes are mostly protein, not lipid, (ii) unlike purely lipid bilayers that can form transient aqueous channels, the high concentrations of proteins serve to stop such activity, (iii) natural evolution long ago selected against transport methods that just let any undesirable products enter a cell, (iv) transporters have now been identified for all kinds of molecules (even water) that were once thought not to require them, (v) many experiments show a massive variation in the uptake of drugs between different cells, tissues, and organisms, that cannot be explained if lipid bilayer transport is significant or if efflux were the only differentiator, and (vi) many experiments that manipulate the expression level of individual transporters as an independent variable demonstrate their role in drug and nutrient uptake (including in cytotoxicity or adverse drug reactions). This makes such transporters valuable both as a means of targeting drugs (not least anti-infectives) to selected cells or tissues and also as drug targets. The same considerations apply to the exploitation of substrate uptake and product efflux transporters in biotechnology. We are also beginning to recognise that transporters are more promiscuous, and antiporter activity is much more widespread, than had been realised, and that such processes are adaptive (i.e., were selected by natural evolution). The purpose of the present review is to summarise the above, and to rehearse and update readers on recent developments. These developments lead us to retain and indeed to strengthen our contention that for transmembrane pharmaceutical drug transport "phospholipid bilayer transport is negligible".
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool L69 7ZB, UK;
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs Lyngby, Denmark
- Mellizyme Biotechnology Ltd., IC1, Liverpool Science Park, Mount Pleasant, Liverpool L3 5TF, UK
| |
Collapse
|
44
|
Pardo Z, Seiquer I. Supplemental Zinc exerts a positive effect against the heat stress damage in intestinal epithelial cells: Assays in a Caco-2 model. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
45
|
Koriem KMM. Lipidome is lipids regulator in gastrointestinal tract and it is a life collar in COVID-19: A review. World J Gastroenterol 2021; 27:37-54. [PMID: 33505149 PMCID: PMC7789067 DOI: 10.3748/wjg.v27.i1.37] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/02/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023] Open
Abstract
The term lipidome is mentioned to the total amount of the lipids inside the biological cells. The lipid enters the human gastrointestinal tract through external source and internal source. The absorption pathway of lipids in the gastrointestinal tract has many ways; the 1st way, the lipid molecules are digested in the lumen before go through the enterocytes, digested products are re-esterified into complex lipid molecules. The 2nd way, the intracellular lipids are accumulated into lipoproteins (chylomicrons) which transport lipids throughout the whole body. The lipids are re-synthesis again inside the human body where the gastrointestinal lipids are: (1) Transferred into the endoplasmic reticulum; (2) Collected as lipoproteins such as chylomicrons; or (3) Stored as lipid droplets in the cytosol. The lipids play an important role in many stages of the viral replication cycle. The specific lipid change occurs during viral infection in advanced viral replication cycle. There are 47 lipids within 11 lipid classes were significantly disturbed after viral infection. The virus connects with blood-borne lipoproteins and apolipoprotein E to change viral infectivity. The viral interest is cholesterol- and lipid raft-dependent molecules. In conclusion, lipidome is important in gastrointestinal fat absorption and coronavirus disease 2019 (COVID-19) infection so lipidome is basic in gut metabolism and in COVID-19 infection success.
Collapse
|
46
|
Pro-Inflammatory Effect of Gliadins and Glutenins Extracted from Different Wheat Cultivars on an In Vitro 3D Intestinal Epithelium Model. Int J Mol Sci 2020; 22:ijms22010172. [PMID: 33375311 PMCID: PMC7795490 DOI: 10.3390/ijms22010172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/17/2020] [Accepted: 12/23/2020] [Indexed: 12/18/2022] Open
Abstract
There is a need to assess the relationship between improved rheological properties and the immunogenic potential of wheat proteins. The present study aimed to investigate the in vitro effects of total protein extracts from three modern and two landrace Triticum aestivum commercial flour mixes, with significant differences in gluten strength (GS), on cell lines. Cytotoxicity and innate immune responses induced by wheat proteins were investigated using Caco-2 monocultures, two dimensional (2D) Caco-2/U937 co-cultures, and three dimensional (3D) co-cultures simulating the intestinal mucosa with Caco-2 epithelial cells situated above an extra-cellular matrix containing U937 monocytes and L929 fibroblasts. Modern wheat proteins, with increased GS, significantly reduced Caco-2 cell proliferation and vitality in monoculture and 2D co-cultures than landrace proteins. Modern wheat proteins also augmented Caco-2 monolayer disruption and tight junction protein, occludin, redistribution in 3D co-cultures. Release of interleukin-8 into the cell medium and increased U937 monocyte migration in both 2D and 3D co-cultures were similarly apparent. Immuno-activation of migrating U937 cells was evidenced from cluster of differentiation 14 (CD14) staining and CD11b-related differentiation into macrophages. The modern wheat proteins, with gluten polymorphism relatedness and increased GS, were shown to be more cytotoxic and immunogenic than the landrace wheat proteins.
Collapse
|
47
|
Tran VN, Viktorová J, Ruml T. Mycotoxins: Biotransformation and Bioavailability Assessment Using Caco-2 Cell Monolayer. Toxins (Basel) 2020; 12:E628. [PMID: 33008111 PMCID: PMC7601793 DOI: 10.3390/toxins12100628] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/24/2020] [Accepted: 09/18/2020] [Indexed: 12/17/2022] Open
Abstract
The determination of mycotoxins content in food is not sufficient for the prediction of their potential in vivo cytotoxicity because it does not reflect their bioavailability and mutual interactions within complex matrices, which may significantly alter the toxic effects. Moreover, many mycotoxins undergo biotransformation and metabolization during the intestinal absorption process. Biotransformation is predominantly the conversion of mycotoxins meditated by cytochrome P450 and other enzymes. This should transform the toxins to nontoxic metabolites but it may possibly result in unexpectedly high toxicity. Therefore, the verification of biotransformation and bioavailability provides valuable information to correctly interpret occurrence data and biomonitoring results. Among all of the methods available, the in vitro models using monolayer formed by epithelial cells from the human colon (Caco-2 cell) have been extensively used for evaluating the permeability, bioavailability, intestinal transport, and metabolism of toxic and biologically active compounds. Here, the strengths and limitations of both in vivo and in vitro techniques used to determine bioavailability are reviewed, along with current detailed data about biotransformation of mycotoxins. Furthermore, the molecular mechanism of mycotoxin effects is also discussed regarding the disorder of intestinal barrier integrity induced by mycotoxins.
Collapse
Affiliation(s)
| | | | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 166 28 Prague 6, Czech Republic; (V.N.T.); (J.V.)
| |
Collapse
|