1
|
Li W, Bai J, Deng J, Xu W, Zhang QH, Wickham JD, Wu M, Zhang L. Silencing the β-glucan recognition protein enhanced the pathogenicity of Cordyceps fumosorose against Hyphantria cunea Drury larvae. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 211:106415. [PMID: 40350228 DOI: 10.1016/j.pestbp.2025.106415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 04/06/2025] [Accepted: 04/13/2025] [Indexed: 05/14/2025]
Abstract
The β-glucan recognition protein (βGRP) plays a crucial role in pathogen recognition by insects, thereby activating their innate immunity. However, the immune response of βGRP in Hyphantria cunea Drury (Lepidoptera: Noctuidae), an invasive pest of forests and agriculture, to pathogens remains unclear. In this study, we identified a new isolate of the entomopathogenic fungus Cordyceps fumosorosea. We found C. fumosorosea exhibits significant pathogenicity against H. cunea larvae. Based on the transcriptome, we found that the βGRP genes of H. cunea can be induced to express after infection by C. fumosorosea. βGRP1 is primarily expressed in the fat body and significantly upregulated by 11.23-fold at 12 h post-infection with C. fumosorosea. Besides, molecular docking showed a potential binding interaction between βGRP1 protein and β-1,3-glucans, which is further confirmed by protein-carbohydrate binding assays. Additionally, the knockdown of βGRP1 through RNA interference increases the mortality of H. cunea larvae following C. fumosorosea infection. Taken together, our study underscores the critical role of βGRP1 in the immune response to C. fumosorosea infection and suggests an integrated pest management strategy that combines entomopathogenic fungi with RNA interference technology as an effective approach for controlling H. cunea.
Collapse
Affiliation(s)
- Wenxuan Li
- Anhui Provincial Key Laboratory of Microbial Control, Anhui Provincial Key Laboratory of Forest Resources and Silviculture, Engineering Research Center of Fungal Biotechnology, Ministry of Education, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Jianyang Bai
- Anhui Provincial Key Laboratory of Microbial Control, Anhui Provincial Key Laboratory of Forest Resources and Silviculture, Engineering Research Center of Fungal Biotechnology, Ministry of Education, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Jundan Deng
- Anhui Provincial Key Laboratory of Microbial Control, Anhui Provincial Key Laboratory of Forest Resources and Silviculture, Engineering Research Center of Fungal Biotechnology, Ministry of Education, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Weikang Xu
- Anhui Provincial Key Laboratory of Microbial Control, Anhui Provincial Key Laboratory of Forest Resources and Silviculture, Engineering Research Center of Fungal Biotechnology, Ministry of Education, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Qing-He Zhang
- Sterling International, Inc., Spokane, Washington 99216, United States
| | - Jacob D Wickham
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| | - Mengting Wu
- Anhui Provincial Key Laboratory of Microbial Control, Anhui Provincial Key Laboratory of Forest Resources and Silviculture, Engineering Research Center of Fungal Biotechnology, Ministry of Education, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei 230036, China.
| | - Longwa Zhang
- Anhui Provincial Key Laboratory of Microbial Control, Anhui Provincial Key Laboratory of Forest Resources and Silviculture, Engineering Research Center of Fungal Biotechnology, Ministry of Education, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
2
|
Zhang Y, Yan J, Xie Y, Wang X, Ren F, Bian H, Sun J. β-1,3-Glucan Recognition Protein Can Inhibit the Proliferation of Bombyx mori Cytoplasmic Polyhedrosis Virus. INSECTS 2025; 16:431. [PMID: 40332953 PMCID: PMC12028182 DOI: 10.3390/insects16040431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 05/08/2025]
Abstract
Insects detect pathogens through their germ-line encoded pattern recognition receptors (PRRs). Among these, β-1,3-glucan recognition protein (βGRP) is a crucial PRR that specifically identifies pathogenic microorganisms and triggers innate immune signaling cascades. However, it remains unclear whether βGRP can detect viruses and protect the host from viral threats. In this study, using high-throughput sequencing technology, we observed a significant suppression of βGRP-3 in Bombyx mori during infection with the Bombyx mori cytoplasmic polyhedrosis virus (BmCPV). Moreover, overexpression of βGRP-3 in BmN cell lines resulted in a reduction of BmCPV proliferation, whereas knockdown of βGRP-3 in BmN cells promoted BmCPV proliferation. These findings suggest that the βGRP family functions not only as anti-bacterial, antifungal, and anti-yeast PRRs but also as protectors against various harmful viruses in insects.
Collapse
Affiliation(s)
- Yinong Zhang
- Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.Z.); (J.Y.); (Y.X.); (J.S.)
| | - Jiming Yan
- Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.Z.); (J.Y.); (Y.X.); (J.S.)
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yukai Xie
- Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.Z.); (J.Y.); (Y.X.); (J.S.)
| | - Xiong Wang
- College of Life Sciences, Nanyang Normal University, Nanyang 473061, China;
| | - Feifei Ren
- Department of Microbiology, College of Preclinical Medicine, Zunyi Medical University, Zunyi 563009, China
| | - Haixu Bian
- Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.Z.); (J.Y.); (Y.X.); (J.S.)
| | - Jingchen Sun
- Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.Z.); (J.Y.); (Y.X.); (J.S.)
| |
Collapse
|
3
|
Zhang R, Kang Z, Dong S, Shangguan D, Shoukat RF, Zhang J, Zafar J, Wu H, Yu XQ, Xu X, Jin F. Boosting the efficacy of fungal biocontrol: miRNA339-5p-mediated mosquito immunity regulation. PEST MANAGEMENT SCIENCE 2025; 81:1727-1739. [PMID: 39628139 DOI: 10.1002/ps.8572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/19/2024] [Accepted: 11/15/2024] [Indexed: 03/15/2025]
Abstract
BACKGROUND Aedes mosquitoes are vectors for numerous viral diseases, including dengue, zika, chikungunya, and yellow fever. Therefore, underscoring the urgent need for eco-friendly alternatives to combat insecticide resistance and the scarcity of effective vaccines. Entomopathogenic fungi present a sustainable alternative to chemical insecticides; however, their widespread application is limited by their relatively low virulence. RESULTS Here, we investigated the immunological interactions between Metarhizium anisopliae and Aedes albopictus, demonstrating that fungal infection significantly up-regulated immune-related genes in the Toll and melanization pathways, thereby enhancing antifungal and antibacterial defenses at 48 h post-infection (hpi). Small RNA sequencing identified miR339-5p as a crucial modulator, targeting the immune genes Gram-Negative Binding Protein 1 (GNBP1) and CLIP-domain Serine Protease B15 (CLIPB15), which are critical for Toll and phenoloxidase (PO) pathway activation. The administration of a synthetic miR339-5p mimic increased fungal virulence, resulting in a higher mortality rate among adult mosquitoes and a significant increase in the mortality rate of mosquito larvae within 24 hpi. GNBP1 was found to regulate both Toll and PO pathways, while CLIPB15 specifically modulated the PO system by cleaving prophenoloxidase (PPO). CONCLUSION This research highlights the potential of leveraging Ae. albopictus-encoded miR339-5p through advanced genetic engineering techniques to bolster the efficacy of existing fungal-based mosquito control strategies, providing a promising approach in the fight against mosquito-borne diseases. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ruonan Zhang
- State Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, College of Life Sciences, South China Normal University, Guangzhou, China
| | - Zehong Kang
- State Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Shengzhang Dong
- Department of Molecule Microbiology and Immunology, Johns Hopkins University, Baltimore, MD, USA
| | - Duanwen Shangguan
- State Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Rana Fartab Shoukat
- State Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Jie Zhang
- State Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Junaid Zafar
- State Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Hongxin Wu
- State Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Xiao-Qiang Yu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, College of Life Sciences, South China Normal University, Guangzhou, China
| | - Xiaoxia Xu
- State Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Fengliang Jin
- State Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou, China
| |
Collapse
|
4
|
Abreu Reis M, Marinho Coutinho de Souza F, da Silva Nobre IC, Gomes de Fraga Dias FM, Grossi-de-Sá MF, Antonino JD. Distinct biological control agents differentially modulate the immune system of the sugarcane borer larvae (Diatraea saccharalis). J Invertebr Pathol 2025; 209:108241. [PMID: 39642983 DOI: 10.1016/j.jip.2024.108241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/26/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
The humoral response plays a crucial role in insect defense against parasites and pathogens, typically producing antimicrobial peptides through the Toll, IMD, and Jak-STAT signaling pathways, as well as melanization via phenoloxidases. However, many studies use nonpathogenic or opportunistic organisms and often infect insects in nonnatural ways, such as piercing or injecting the pathogen into the hemocoel. The objective of this study was to examine the modulation of the main humoral pathway genes involved in the interaction between the nonmodel organism Diatraea saccharalis (the sugarcane borer) and different biological control agents. We identified and evaluated the expression of DsDorsal (Toll pathway), DsRelish (IMD pathway), DsSTAT (JAK/STAT pathway), DsPPO1, and DsPPO2 (PO pathway) in larvae and pupae of D. saccharalis exposed or not to different biological control agents. The biocontrol agents used were: (i) the bacterium Bacillus thuringiensis var. aizawai GC-91, which is pathogenic to D. saccharalis; (ii) the fungus Metarhizium anisopliae ESALQE9 strain, which is employed to control the froghoppers of the genus Mahanarva in sugarcane fields, though it exhibits low virulence to D. saccharalis; and (iii) the generalist parasitoid Tetrastichus howardi. Our results demonstrate that B. thuringiensis at LC30 induced the expression of DsRelish at 24 h and DsSTAT at 48 h after treatment initiation. In contrast, treatment with the M. anisopliae ESALQE9 strain reduced the levels of DsDorsal and DsSTAT 24 h post-infection compared to the control group. In larvae, DsDorsal, DsSTAT, DsPPO1, and DsPPO2 were induced in response to T. howardi, whereas no induction was observed in pupae. Notably, no immune-related genes were modulated during the pupae-parasitoid interaction. Additionally, we provide an explanation for why T. howardi shows superior parasitism success in D. saccharalis pupae compared with larvae. The data presented here introduce novel perspectives for enhancing pest management through the utilization of biocontrol agents.
Collapse
Affiliation(s)
- Manoely Abreu Reis
- Departamento de Agronomia- Entomologia, Universidade Federal Rural de Pernambuco, Rua Dom Manoel de Medeiros, 52171-900 Recife, PE, Brazil
| | - Felipe Marinho Coutinho de Souza
- Departamento de Agronomia- Entomologia, Universidade Federal Rural de Pernambuco, Rua Dom Manoel de Medeiros, 52171-900 Recife, PE, Brazil
| | - Ianne Caroline da Silva Nobre
- Departamento de Agronomia- Entomologia, Universidade Federal Rural de Pernambuco, Rua Dom Manoel de Medeiros, 52171-900 Recife, PE, Brazil
| | | | - Maria Fátima Grossi-de-Sá
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica - PqEB, 70770-901 Brasília, DF, Brazil; Universidade Católica de Brasília. QS 07, Lote 01, Taguatinga Sul, 71966-700, Taguatinga, Brasília, DF, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Parque Estação Biológica - PqEB, 70770-901, Brasília, DF, Brazil
| | - José Dijair Antonino
- Departamento de Agronomia- Entomologia, Universidade Federal Rural de Pernambuco, Rua Dom Manoel de Medeiros, 52171-900 Recife, PE, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Parque Estação Biológica - PqEB, 70770-901, Brasília, DF, Brazil.
| |
Collapse
|
5
|
Wang Y, Liu Z, Yin X, Liu S, Wang K, Wan R, Chen H, Li X, Huang B. Variation in Bombyx mori immune response against fungal pathogen Beauveria bassiana with variability in cell wall β-1,3-glucan. INSECT SCIENCE 2024; 31:211-224. [PMID: 37350124 DOI: 10.1111/1744-7917.13209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 06/24/2023]
Abstract
Entomopathogenic fungi are protected by a cell wall with dynamic structure for adapting to various environmental conditions. β-1,3-Glucan recognition proteins activate the innate immune system of insects by recognizing surface molecules of fungi. However, the associations between pathogenicity and the different components of entomopathogenic fungal cell walls remain unclear. Three Beauveria bassiana strains were selected that have significantly differing virulence against Bombyx mori. The molecular mechanisms underlying the immune response in B. mori were investigated using RNA sequencing, which revealed differences in the immune response to different B. bassiana strains at 12 h post-infection. Immunofluorescence assays revealed that β-1,3-glucan content had an opposite trend to that of fungal virulence. β-1,3-Glucan injection upregulated BmβGRP4 expression and significantly reduced the virulence of the high-virulence strain but not that of the medium-virulence or low-virulence strains. BmβGRP4 silencing in B. mori with RNA interference resulted in the opposite virulence pattern, indicating that the virulence of B. bassiana was affected by the cell walls' content of β-1,3-glucan, which could be recognized by BmβGRP4. Furthermore, interference with the gene CnA (calcineurin catalytic A subunit) involved in β-1,3-glucan synthesis eliminated differences in virulence between B. bassiana strains. These results indicate that strains of a single species of pathogenic fungi that have differing cell wall components are recognized differently by the innate immune system of B. mori.
Collapse
Affiliation(s)
- Yulong Wang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
| | - Zhen Liu
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
| | - Xuebing Yin
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
| | - Shihong Liu
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
| | - Kai Wang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
| | - Rongjie Wan
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
| | - Haoran Chen
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
| | - Xinyang Li
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
| | - Bo Huang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
| |
Collapse
|
6
|
Guluarte C, Pereyra A, Ramírez-Hernández E, Zenteno E, Luis Sánchez-Salgado J. The immunomodulatory and antioxidant effects of β-glucans in invertebrates. J Invertebr Pathol 2023; 201:108022. [PMID: 37984608 DOI: 10.1016/j.jip.2023.108022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
β-glucans (βGs) are carbohydrate polymers linked by β-1,3, 1,4 or 1,6 bonds, they have been used to protect against potential pathogens and prevent lethal diseases. The immune system possesses several receptors that identify a wide range of structures and trigger cellular and humoral mechanisms. However, the mechanisms by which βGs activate the immune system of invertebrate organisms have not been fully clarified. This review is focused on evaluating the effect of βGs on innate immune system in invertebrates. βGs stimulate different cellular and humoral mechanisms, such as phagocytosis, oxygen species production, extracellular trap formation, proPO system, and antimicrobial peptide synthesis, moreover, βGs increase survival rate and decrease pathogen load in several species.
Collapse
Affiliation(s)
- Crystal Guluarte
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, CP 04510 México City, Mexico
| | - Alí Pereyra
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, CP 04510 México City, Mexico
| | - Eleazar Ramírez-Hernández
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, CP 04510 México City, Mexico
| | - Edgar Zenteno
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, CP 04510 México City, Mexico
| | - José Luis Sánchez-Salgado
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, CP 04510 México City, Mexico.
| |
Collapse
|
7
|
Li M, Zhang J, Qin Q, Zhang H, Li X, Wang H, Meng Q. Transcriptome and Metabolome Analyses of Thitarodes xiaojinensis in Response to Ophiocordyceps sinensis Infection. Microorganisms 2023; 11:2361. [PMID: 37764206 PMCID: PMC10537090 DOI: 10.3390/microorganisms11092361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Ophiocordyceps sinensis exhibits more than 5 months of vegetative growth in Thitarodes xiaojinensis hemocoel. The peculiar development process of O. sinensis has been elucidated through morphological observation and omics technology; however, little information has been reported regarding the changes that occur in the host T. xiaojinensis. The RNA sequencing data showed that when O. sinensis blastospores were in the proliferative stage, the greatest change in the infected larval fat body was the selectively upregulated immune recognition and antimicrobial peptide genes. When O. sinensis blastospores were in the stationary stage, the immune pathways of T. xiaojinensis reverted to normal levels, which coincides with the successful settlement of O. sinensis. Pathway enrichment analysis showed a higher expression of genes involved in energy metabolism pathway in this stage. Metabolomic analyses revealed a reduction of amino acids and lipids in hemolymph, but an upregulation of lipids in the fat body of the host larvae after O. sinensis infection. We present the first transcriptome integrated with the metabolome study of T. xiaojinensis infected by O. sinensis. It will improve our understanding of the interaction mechanisms between the host and entomopathogenic fungi, and facilitate future functional studies of genes and pathways involved in these interactions.
Collapse
Affiliation(s)
- Miaomiao Li
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China (H.Z.)
| | - Jihong Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China (H.Z.)
| | - Qilian Qin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China (H.Z.)
| | - Huan Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China (H.Z.)
| | - Xuan Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China (H.Z.)
| | - Hongtuo Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China (H.Z.)
| | - Qian Meng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China (H.Z.)
| |
Collapse
|
8
|
Wang H, Lu Z, Keyhani NO, Deng J, Zhao X, Huang S, Luo Z, Jin K, Zhang Y. Insect fungal pathogens secrete a cell wall-associated glucanase that acts to help avoid recognition by the host immune system. PLoS Pathog 2023; 19:e1011578. [PMID: 37556475 PMCID: PMC10441804 DOI: 10.1371/journal.ppat.1011578] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/21/2023] [Accepted: 07/25/2023] [Indexed: 08/11/2023] Open
Abstract
Fungal insect pathogens have evolved diverse mechanisms to evade host immune recognition and defense responses. However, identification of fungal factors involved in host immune evasion during cuticular penetration and subsequent hemocoel colonization remains limited. Here, we report that the entomopathogenic fungus Beauveria bassiana expresses an endo-β-1,3-glucanase (BbEng1) that functions in helping cells evade insect immune recognition/ responses. BbEng1 was specifically expressed during infection, in response to host cuticle and hemolymph, and in the presence of osmotic or oxidative stress. BbEng1 was localized to the fungal cell surface/ cell wall, where it acts to remodel the cell wall pathogen associated molecular patterns (PAMPs) that can trigger host defenses, thus facilitating fungal cell evasion of host immune defenses. BbEng1 was secreted where it could bind to fungal cells. Cell wall β-1,3-glucan levels were unchanged in ΔBbEng1 cells derived from in vitro growth media, but was elevated in hyphal bodies, whereas glucan levels were reduced in most cell types derived from the BbEng1 overexpressing strain (BbEng1OE). The BbEng1OE strain proliferated more rapidly in the host hemocoel and displayed higher virulence as compared to the wild type parent. Overexpression of their respective Eng1 homologs or of BbEng1 in the insect fungal pathogens, Metarhizium robertsii and M. acridum also resulted in increased virulence. Our data support a mechanism by which BbEng1 helps the fungal pathogen to evade host immune surveillance by decreasing cell wall glucan PAMPs, promoting successful fungal mycosis.
Collapse
Affiliation(s)
- Huifang Wang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, People’s Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, Academy of Agricultural Sciences, Southwest University, Chongqing, People’s Republic of China
| | - Zhuoyue Lu
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, People’s Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, Academy of Agricultural Sciences, Southwest University, Chongqing, People’s Republic of China
| | - Nemat O. Keyhani
- Department of Biological Sciences, University of Illinois, Chicago, Illinois, United States of America
| | - Juan Deng
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, People’s Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, Academy of Agricultural Sciences, Southwest University, Chongqing, People’s Republic of China
| | - Xin Zhao
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, People’s Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, Academy of Agricultural Sciences, Southwest University, Chongqing, People’s Republic of China
| | - Shuaishuai Huang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, People’s Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, Academy of Agricultural Sciences, Southwest University, Chongqing, People’s Republic of China
| | - Zhibing Luo
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, People’s Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, Academy of Agricultural Sciences, Southwest University, Chongqing, People’s Republic of China
| | - Kai Jin
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, People’s Republic of China
| | - Yongjun Zhang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, People’s Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, Academy of Agricultural Sciences, Southwest University, Chongqing, People’s Republic of China
| |
Collapse
|
9
|
Sato R. Mechanisms and roles of the first stage of nodule formation in lepidopteran insects. JOURNAL OF INSECT SCIENCE (ONLINE) 2023; 23:3. [PMID: 37405874 DOI: 10.1093/jisesa/iead049] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/27/2023] [Accepted: 06/13/2023] [Indexed: 07/07/2023]
Abstract
Nodule formation is a process of cellular immunity in insects and other arthropods with open circulatory systems. Based on histological observations, nodule formation occurs in 2 stages. The first stage occurs immediately after microbial inoculation and includes aggregate formation by granulocytes. The second stage occurs approximately 2-6 h later and involves the attachment of plasmatocytes to melanized aggregates produced during the first stage. The first stage response is thought to play a major role in the rapid capture of invading microorganisms. However, little is known regarding how granulocytes in the hemolymph form aggregates, or how the first stage of the immunological response protects against invading microorganisms. Since the late 1990s, our understanding of the molecules and immune pathways that contribute to nodule formation has improved. The first stage of nodule formation involves a hemocyte-induced response that is triggered by pathogen-associated molecular pattern (PAMP) recognition proteins in the hemolymph regulated by a serine proteinase cascade and cytokine (Spätzle) and Toll signaling pathways. Hemocyte agglutination proceeds through stepwise release of biogenic amine, 5-HT, and eicosanoids that act downstream of the Toll pathway. The first stage of nodule formation is closely linked to melanization and antimicrobial peptide (AMP) production, which is critical for insect humoral immunity. Nodule formation in response to artificial inoculation with millions of microorganisms has long been studied. It has recently been suggested that this system is the original natural immune system, and enables insects to respond to a single invading microorganism in the hemocoel.
Collapse
Affiliation(s)
- Ryoichi Sato
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
10
|
Zhao L, Niu J, Feng D, Wang X, Zhang R. Immune functions of pattern recognition receptors in Lepidoptera. Front Immunol 2023; 14:1203061. [PMID: 37398667 PMCID: PMC10312389 DOI: 10.3389/fimmu.2023.1203061] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
Pattern recognition receptors (PRRs), as the "sensors" in the immune response, play a prominent role in recognizing pathogen-associated molecular patterns (PAMPs) and initiating an effective defense response to pathogens in Lepidoptera. It is becoming increasingly clear that damage-associated molecular patterns (DAMPs) normally play a physiological role within cells; however, when exposed to extracellular, they may become "part-time" critical signals of the immune response. Based on research in recent years, we review herein typical PRRs of Lepidoptera, including peptidoglycan recognition protein (PGRP), gram-negative binding protein (GNBP), β-1,3-glucan recognition protein (βGRP), C-type lectin (CTL), and scavenger receptor (SR). We also outline the ways in which DAMPs participate in the immune response and the correlation between PRRs and immune escape. Taken together, these findings suggest that the role of PRRs in insect innate immunity may be much greater than expected and that it is possible to recognize a broader range of signaling molecules.
Collapse
Affiliation(s)
- Lin Zhao
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Jinlan Niu
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Disong Feng
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Xialu Wang
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, China
| | - Rong Zhang
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
11
|
Feng K, Jiang D, Luo J, Tang F. OfGNBP silencing enhances the toxicity of Serratia marcescens Bizio (SM1) to Odontotermes formosanus (Shiraki). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 189:105306. [PMID: 36549813 DOI: 10.1016/j.pestbp.2022.105306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/16/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
The immunity of insects plays a vital role in their survival. Our experiments found that lipopolysaccharide (LPS) and glucono-δ-lactone (GDL) could influence the virulence of Serratia marcescens Bizio (SM1) to Odontotermes formosanus (Shiraki) by affecting the immunity. Gram-negative binding proteins (GNBPs) are an important pattern recognition proteins that play a crucial role in the innate immune system. Therefore, two OfGNBPs were cloned in O. formosanus. The expression of OfGNBPs was significantly changed by LPS,SM1 and GDL, not prick. In addition, the immune-related gene expression, the phenoloxidase activity and antibacterial activity of donor termites and recipient termites were significantly induced by SM1. Furthermore, the knockdown of OfGNBP by RNA interference reduced not only individual immunity but also social immunity in O. formosanus, which increased the virulence of SM1 to O. formosanus. Importantly, dsOfGNBP alone also had good control effect on O. formosanus. In summary, we concluded that dsOfGNBPs are important termite immunosuppressants.
Collapse
Affiliation(s)
- Kai Feng
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Forestry, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Dabao Jiang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Forestry, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Jian Luo
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Forestry, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Fang Tang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Forestry, Nanjing Forestry University, Nanjing 210037, People's Republic of China.
| |
Collapse
|
12
|
Dittmer NT, Hiromasa Y, Kanost MR. Proteomic analysis of pharate pupal molting fluid from the tobacco hornworm, Manduca sexta. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 149:103844. [PMID: 36115517 PMCID: PMC9875806 DOI: 10.1016/j.ibmb.2022.103844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/30/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
The insect cuticle is a key component of their success, being important for protection, communication, locomotion, and support. Conversely, as an exoskeleton, it also limits the size of the insect and must be periodically molted and a new one synthesized, to permit growth. To achieve this, the insect secretes a solution of chitinases, proteases and other proteins, known collectively as molting fluid, during each molting process to break down and recycle components of the old cuticle. Previous research has focused on the degradative enzymes in molting fluid and offered some characterization of their biochemical properties. However, identification of the specific proteins involved remained to be determined. We have used 2D SDS-PAGE and LC/MS-based proteomic analysis to identify proteins in the molting fluid of the tobacco hornworm, Manduca sexta, undergoing the larval to pupal molt. We categorized these proteins based on their proposed functions including chitin metabolism, proteases, peptidases, and immunity. This analysis complements previous reported work on M. sexta molting fluid and identifies candidate genes for enzymes involved in cuticle remodeling. Proteins classified as having an immune function highlight potential for molting fluid to act as an immune barrier to prevent infections during the cuticle degradation and ecdysis processes. Several proteins known to function in melanin synthesis as an immune response in hemolymph were present in molting fluid. We demonstrated that the bacterium Micrococcus luteus and the entomopathogenic fungus Beauveria bassiana can stimulate activation of phenoloxidase in molting fluid, indicating that the recognition proteins, protease cascade, and prophenoloxidase needed for melanin synthesis are present as a defense against infection during cuticle degradation. This analysis offers insights for proteins that may be important not only for molting in M. sexta but for insects in general.
Collapse
Affiliation(s)
- Neal T Dittmer
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA.
| | - Yasuaki Hiromasa
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - Michael R Kanost
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| |
Collapse
|
13
|
Wang Y, Kanost MR, Jiang H. A mechanistic analysis of bacterial recognition and serine protease cascade initiation in larval hemolymph of Manduca sexta. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 148:103818. [PMID: 36007679 PMCID: PMC9890636 DOI: 10.1016/j.ibmb.2022.103818] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/20/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Serine protease cascades have evolved in vertebrates and invertebrates to mediate rapid defense responses. Previous biochemical studies showed that in hemolymph of a caterpillar, Manduca sexta, recognition of fungi by β-1,3-glucan recognition proteins (βGRP1 and βGRP2) or recognition of bacteria by peptidoglycan recognition protein-1 (PGRP1) and microbe binding protein (MBP) results in autoactivation of hemolymph protease-14 precursor (proHP14). HP14 then activates downstream members of a protease cascade leading to the melanization immune response. ProHP14 has a complex domain architecture, with five low-density lipoprotein receptor class A repeats at its amino terminus, followed by a Sushi domain, a Sushi domain variant called Wonton, and a carboxyl-terminal serine protease catalytic domain. Its zymogen form is activated by specific proteolytic cleavage at the amino-terminal end of the protease domain. While a molecular mechanism for recognition and triggering the response to β-1,3-glucan has been delineated, it is unclear how bacterial recognition stimulates proHP14 activation. To fill this knowledge gap, we expressed the two domains of M. sexta MBP and found that the amino-terminal domain binds to diaminopimelic acid-peptidoglycan (DAP-PG). ProHP14 bound to both the carboxyl-terminal domain (MBP-C) and amino-terminal domain (MBP-N) of MBP. In the mixture of DAP-PG, MBP, and larval plasma, inclusion of an HP14 fragment composed of LDLa repeats 2-5 (LDLa2-5) or MBP-C significantly reduced prophenoloxidase activation, likely by competing with the interactions of the full-length proteins, and suggesting that molecular interactions involving these regions of proHP14 and MBP take part in proHP14 activation in response to peptidoglycan. Using a series of N-terminally truncated versions of proHP14, we found that autoactivation required LDLa2-5. The optimal ratio of PGRP1, MBP, and proHP14 is close to 3:2:1. In summary, proHP14 autoactivation by DAP-type peptidoglycan requires binding of DAP-PG by PGRP1 and the MBP N-terminal domain and association of the LDLa2-5 region of proHP14 with the MBP C-terminal domain. These interactions may concentrate the proHP14 zymogen at the bacterial cell wall surface and promote autoactivation.
Collapse
Affiliation(s)
- Yang Wang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Michael R Kanost
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
14
|
Eleftherianos I, Heryanto C, Bassal T, Zhang W, Tettamanti G, Mohamed A. Haemocyte-mediated immunity in insects: Cells, processes and associated components in the fight against pathogens and parasites. Immunology 2021; 164:401-432. [PMID: 34233014 PMCID: PMC8517599 DOI: 10.1111/imm.13390] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/28/2021] [Indexed: 12/27/2022] Open
Abstract
The host defence of insects includes a combination of cellular and humoral responses. The cellular arm of the insect innate immune system includes mechanisms that are directly mediated by haemocytes (e.g., phagocytosis, nodulation and encapsulation). In addition, melanization accompanying coagulation, clot formation and wound healing, nodulation and encapsulation processes leads to the formation of cytotoxic redox-cycling melanin precursors and reactive oxygen and nitrogen species. However, demarcation between cellular and humoral immune reactions as two distinct categories is not straightforward. This is because many humoral factors affect haemocyte functions and haemocytes themselves are an important source of many humoral molecules. There is also a considerable overlap between cellular and humoral immune functions that span from recognition of foreign intruders to clot formation. Here, we review these immune reactions starting with the cellular mechanisms that limit haemolymph loss and participate in wound healing and clot formation and advancing to cellular functions that are critical in restricting pathogen movement and replication. This information is important because it highlights that insect cellular immunity is controlled by a multilayered system, different components of which are activated by different pathogens or during the different stages of the infection.
Collapse
Affiliation(s)
- Ioannis Eleftherianos
- Infection and Innate Immunity LaboratoryDepartment of Biological SciencesInstitute for Biomedical SciencesThe George Washington UniversityWashingtonDCUSA
| | - Christa Heryanto
- Infection and Innate Immunity LaboratoryDepartment of Biological SciencesInstitute for Biomedical SciencesThe George Washington UniversityWashingtonDCUSA
| | - Taha Bassal
- Department of EntomologyFaculty of ScienceCairo UniversityGizaEgypt
| | - Wei Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural BioengineeringKey Laboratory of Green Pesticide and Agricultural BioengineeringMinistry of EducationGuizhou UniversityGuiyangChina
| | - Gianluca Tettamanti
- Department of Biotechnology and Life SciencesUniversity of InsubriaVareseItaly
- BAT Center‐Interuniversity Center for Studies on Bioinspired Agro‐Environmental TechnologyUniversity of Napoli Federico IINapoliItaly
| | - Amr Mohamed
- Department of EntomologyFaculty of ScienceCairo UniversityGizaEgypt
| |
Collapse
|
15
|
Wang GJ, Wang WW, Liu Y, Chai LQ, Wang GX, Liu XS, Wang YF, Wang JL. Steroid hormone 20-hydroxyecdysone promotes CTL1-mediated cellular immunity in Helicoverpa armigera. INSECT SCIENCE 2021; 28:1399-1413. [PMID: 32677271 DOI: 10.1111/1744-7917.12851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/25/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Mermithid nematodes, such as Ovomermis sinensis, are used as biological control agents against many insect pests, including cotton bollworm (Helicoverpa armigera). However, given the host's robust immune system, the infection rate of O. sinensis is low, thus restricting its widespread use. To understand the host defense mechanisms against mermithid nematodes, we identified and characterized a protein involved in the recognition of O. sinensis, the potential O. sinensis-binding protein C-type lectin 1 (HaCTL1a and/or HaCTL1b), which was eluted from the surface of O. sinensis after incubation with H. armigera plasma. HaCTL1b is homologous to the previously reported HaCTL1a protein. HaCTL1 was predominantly expressed in hemocytes and was induced by the steroid hormone 20-hydroxyecdysone through ecdysone receptor (HaEcR) or ultraspiracle (HaUSP), or both. Binding assays confirmed the interactions of the HaCTL1 proteins with O. sinensis but not with Romanomermis wuchangensis, a parasitic nematode of mosquito. Moreover, the HaCTL1 proteins were secreted into the hemocoel and promoted hemocyte-mediated encapsulation and phagocytosis. A knockdown of HaEcR and/or HaUSP resulted in compromised encapsulation and phagocytosis. Thus, HaCTL1 appears to modulate cellular immunity in the defense against parasitic nematodes, and the 20-hydroxyecdysone-HaEcR-HaUSP complex is involved in regulating the process.
Collapse
Affiliation(s)
- Gui-Jie Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Wen-Wen Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Yu Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Lian-Qin Chai
- School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Guo-Xiu Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Xu-Sheng Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Yu-Feng Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Jia-Lin Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| |
Collapse
|
16
|
Bombyx mori β-1,3-Glucan Recognition Protein 4 ( BmβGRP4) Could Inhibit the Proliferation of B. mori Nucleopolyhedrovirus through Promoting Apoptosis. INSECTS 2021; 12:insects12080743. [PMID: 34442307 PMCID: PMC8396850 DOI: 10.3390/insects12080743] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 01/12/2023]
Abstract
β-1,3-glucan recognition proteins (βGRPs) as pattern recognition receptors (PRRs) play an important role in recognizing various pathogens and trigger complicated signaling pathways in insects. In this study, we identified a Bombyx mori β-1,3-glucan recognition protein gene named BmβGRP4, which showed differential expression, from a previous transcriptome database. The full-length cDNA sequence was 1244 bp, containing an open reading frame (ORF) of 1128 bp encoding 375 amino acids. BmβGRP4 was strongly expressed in the larval stages and highly expressed in the midgut of B. mori larvae in particular. After BmNPV infection, the expression of BmβGRP4 was reduced significantly in the midgut. Furthermore, a significant increase in the copy number of BmNPV was observed after the knockdown of BmβGRP4 in 5th instar larvae, while the overexpression of BmβGRP4 suppressed the proliferation of BmNPV in BmN cells. Subsequently, the expression analysis of several apoptosis-related genes and observation of the apoptosis morphology demonstrated that overexpression of BmβGRP4 facilitated apoptosis induced by BmNPV in BmN cells. Moreover, BmβGRP4 positively regulated the phosphatase and tensin homolog gene (BmPTEN), while expression of the inhibitor of apoptosis gene (BmIAP) was negatively regulated by BmβGRP4. Hence, we hypothesize that BmNPV infection might suppress BmPTEN and facilitate BmIAP to inhibit cell apoptosis by downregulating the expression of BmβGRP4 to escape host antiviral defense. Taken together, these results show that BmβGRP4 may play a role in B. mori response to BmNPV infection and lay a foundation for studying its functions.
Collapse
|
17
|
Ji J, Zhou L, Xu Z, Ma L, Lu Z. Two atypical gram-negative bacteria-binding proteins are involved in the antibacterial response in the pea aphid (Acyrthosiphon pisum). INSECT MOLECULAR BIOLOGY 2021; 30:427-435. [PMID: 33928689 DOI: 10.1111/imb.12708] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/26/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
The activation of immune pathways is triggered by the recognition of pathogens by pattern recognition receptors (PRRs). Gram-negative bacteria-binding proteins (GNBPs)/β-1,3-glucan recognition proteins (βGRPs) are a conserved family of PRRs in insects. Two GNBPs are predicted in the genome database of pea aphids; however, little is known about their functions in the aphid immune system. Here, we show that pea aphid GNBPs possess domain architectures and sequence features distinct from those of typical GNBPs/βGRPs and that their expression is induced by bacterial infection. Knockdown of their expression by dsRNA resulted in lower phenoloxidase activity, higher bacterial loads and higher mortality in aphids after infection. Our data suggest that these two atypical GNBPs are involved in the antibacterial response in the pea aphid, likely acting as PRRs in the prophenoloxidase pathway.
Collapse
Affiliation(s)
- J Ji
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, China
| | - L Zhou
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Z Xu
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, China
| | - L Ma
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Z Lu
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| |
Collapse
|
18
|
Wu W, Lin S, Zhao Z, Su Y, Li R, Zhang Z, Guo X. Bombyx mori Apolipophorin-III inhibits Beauveria bassiana directly and through regulating expression of genes relevant to immune signaling pathways. J Invertebr Pathol 2021; 184:107647. [PMID: 34303711 DOI: 10.1016/j.jip.2021.107647] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 11/26/2022]
Abstract
Insect Apolipophorin-III is a multifunctional protein and also plays an important role in insect innate immunity. Early transcriptome and proteome studies indicated that the gene expression level of Bombyx mori Apolipophorin-III (BmApoLp-III) in silkworm larvae infected with Beauveria bassiana was significantly up-regulated. In this study, BmApoLp-III gene was cloned, its expression patterns in different larval tissues investigated, the BmApoLp-III protein was successfully expressed with prokaryotic expression system and its antifungal effect was verified. The results showed that the BmApoLp-III gene was expressed in all the tested tissues of the 5th instar larvae infected by B. bassiana, with the highest expression in fat body. The fungistatic zone test showed that the recombinant BmApoLp-III has a significant antifungal effect on B. bassiana. Injecting purified BmApoLp-III to the larvae delayed the onset and death of the infected larvae. Conversely, silencing BmApoLp-III gene by RNAi resulted in early morbidity and death of the infected larvae. At the same time, injecting BmApoLp-III up-regulated the expression of genes including BmβGRP4 and BmMyd88 in the Toll signaling pathway, BmCTL5 and BmHOP in the Jak/STAT signaling pathway, serine proteinase inhibitor BmSerpin5, and antimicrobial peptide BmCecA, but down-regulated the expression of BmTak1 of Imd signaling pathway; while silencing BmApoLp-III gene down-regulated the expression of BmβGRP1 and BmSpaetzle, BmCTL5 and BmHOP, BmSerpin2 and BmSerpin5, BmBAEE and BmPPO2 of relevant pathways and BmCecA, but up-regulated the expression of BmPGRP-Lc and BmTak1 of Imd pathway. These results indicate that the BmApoLp-III could not only directly inhibit B. bassiana, but also participate in regulation of the expression of immune signaling pathway related genes, promote the expression of immune effectors, and indirectly inhibit the reproduction of B. bassiana in the silkworm.
Collapse
Affiliation(s)
- Wanming Wu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Su Lin
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Ze Zhao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Yun Su
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Ruilin Li
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Zhendong Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Xijie Guo
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China.
| |
Collapse
|
19
|
Li L, Zhong K, Wang JL, Liu XS. Mechanism of Metarhizium rileyi evading cellular immune responses in Helicoverpa armigera. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 106:e21769. [PMID: 33590536 DOI: 10.1002/arch.21769] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/28/2020] [Accepted: 12/31/2020] [Indexed: 06/12/2023]
Abstract
Upon entry into the hemocoel of host insects, entomopathogenic fungi switch to yeast-like hyphal bodies that are not recognized by host hemocytes and replicate extensively in the hemolymph. The mechanism by which hyphal bodies evade host cellular immunity is not well understood. This study compares Metarhizium rileyi conidia and hyphal bodies with respect to elicitation of the immune response of Helicoverpa armigera and recognition by host pattern recognition receptors (PRRs). We found that the ability of host hemocytes to phagocytize and nodulate hyphal bodies was weaker than those responses against conidia, suggesting that hyphal bodies are more able to evade host cellular immunity. Additionally, we found that the binding affinity of H. armigera β-1,3-glucan recognition proteins was much lower for hyphal bodies than for conidia. We observed no agglutination response of H. armigera C-type lectin 3 (HaCTL3) against hyphal bodies, and HaCTL3 bound significantly less to hyphal bodies than to conidia, indicating that host PRRs have a lower affinity for hyphal bodies than for conidia. This study provides direct evidence that the mechanism whereby entomopathogenic fungi escape host cellular immunity involves the inability of host PRRs to sufficiently recognize hyphal bodies to elicit the cellular immune response.
Collapse
Affiliation(s)
- Li Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Ke Zhong
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Jia-Lin Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Xu-Sheng Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| |
Collapse
|
20
|
von Bredow YM, von Bredow CR, Trenczek TE. A novel site of haematopoiesis and appearance and dispersal of distinct haemocyte types in the Manduca sexta embryo (Insecta, Lepidoptera). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 111:103722. [PMID: 32360227 DOI: 10.1016/j.dci.2020.103722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/25/2020] [Accepted: 04/26/2020] [Indexed: 06/11/2023]
Abstract
With a set of haemocyte specific markers novel findings on haematopoiesis in the Manduca sexta embryo are presented. We identify a hitherto unknown paired haematopoietic cluster, the abdominal haemocyte cluster in abdominal segment 7 (A7-HCC). These clusters are localised at distinct positions and are established at around katatrepsis. Later in embryogenesis, the A7-HCCs disintegrate, thereby releasing numerous embryonic plasmatocytes which disperse both anteriorly and posteriorly. These cells follow stereotypic migration routes projecting anteriorly. The thoracic larval haematopoietic organs are established at around midembryogenesis. We identify embryonic oenocytoids in the M. sexta embryo for the first time. They appear in the head region roughly at the same time as the A7-HCCs occur and successively disperse in the body cavity during development. Localisation of the prophenoloxidase (proPO) mRNA and of the proPO protein are identical. Morphological, cytometric and antigenic traits show three independently generated haemocyte types during embryogenesis.
Collapse
Affiliation(s)
- Yvette M von Bredow
- Justus-Liebig-Universität Gießen, Institut für Allgemeine Zoologie und Entwicklungsbiologie, Zelluläre Erkennungs- und Abwehrprozesse, Stephanstraße 24, 35390, Gießen, Germany.
| | - Christoph-Rüdiger von Bredow
- Technische Universität Dresden, Fakultät Biologie, Institut für Zoologie, Professur für Allgemeine Zoologie und Entwicklungsbiologie, Zellescher Web 20 b, 01217, Dresden, Germany
| | - Tina E Trenczek
- Justus-Liebig-Universität Gießen, Institut für Allgemeine Zoologie und Entwicklungsbiologie, Zelluläre Erkennungs- und Abwehrprozesse, Stephanstraße 24, 35390, Gießen, Germany
| |
Collapse
|
21
|
Prabu S, Jing D, Shabbir MZ, Yuan W, Wang Z, He K. Contribution of phenoloxidase activation mechanism to Bt insecticidal protein resistance in Asian corn borer. Int J Biol Macromol 2020; 153:88-99. [DOI: 10.1016/j.ijbiomac.2020.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/09/2020] [Accepted: 03/02/2020] [Indexed: 01/29/2023]
|
22
|
Wang Y, Yang F, Cao X, Huang R, Paskewitz S, Hartson SD, Kanost MR, Jiang H. Inhibition of immune pathway-initiating hemolymph protease-14 by Manduca sexta serpin-12, a conserved mechanism for the regulation of melanization and Toll activation in insects. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 116:103261. [PMID: 31698082 PMCID: PMC6983340 DOI: 10.1016/j.ibmb.2019.103261] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/01/2019] [Accepted: 10/29/2019] [Indexed: 06/01/2023]
Abstract
A network of serine proteases (SPs) and their non-catalytic homologs (SPHs) activates prophenoloxidase (proPO), Toll pathway, and other insect immune responses. However, integration and conservation of the network and its control mechanisms have not yet been fully understood. Here we present evidence that these responses are initiated through a conserved serine protease and negatively regulated by serpins in two species, Manduca sexta and Anopheles gambiae. We have shown that M. sexta serpin-12 reduces the proteolytic activation of HP6, HP8, proPO activating proteases (PAPs), SPHs, and POs in larval hemolymph, and we hypothesized that these effects are due to the inhibition of the immune pathway-initiating protease HP14. To test whether these changes are due to HP14 inhibition, we isolated a covalent complex of HP14 with serpin-12 from plasma using polyclonal antibodies against the HP14 protease domain or against serpin-12, and confirmed formation of the complex by 2D-electrophoresis, immunoblotting, and mass spectrometry. Upon recognition of bacterial peptidoglycans or fungal β-1,3-glucan, the zymogen proHP14 became active HP14, which formed an SDS-stable complex with serpin-12 in vitro. Activation of proHP21 by HP14 was suppressed by serpin-12, consistent with the decrease in steps downstream of HP21, proteolytic activation of proPAP3, proSPH1/2 and proPO in hemolymph. Guided by the results of phylogenetic analysis, we cloned and expressed A. gambiae proSP217 (an ortholog of HP14) and core domains of A. gambiae serpin-11 and -17. The recombinant SP217 zymogen became active during expression, with cleavage between Tyr394 and Ile395. Both MsHP14 and AgSP217 cleaved MsSerpin-12 and AgSRPN11 at Leu*Ser (P1*P1') and formed complexes in vitro. ProPO activation in M. sexta plasma increased after recombinant AgSP217 had been added, indicating that it may function in a similar manner as the endogenous initiating protease HP14. Based on these data, we propose that inhibition of an initiating modular protease by a serpin may be a common mechanism in holometabolous insects to regulate proPO activation and other protease-induced immune responses.
Collapse
Affiliation(s)
- Yang Wang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Fan Yang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Xiaolong Cao
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Rudan Huang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Susan Paskewitz
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Steve D Hartson
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Michael R Kanost
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
23
|
Sivakamavalli J, Selvaraj C, Singh SK, Park K, Kwak IS, Vaseeharan B. Effect of Amino Acid Substitution in the Penaeus monodon LGBP and Specificity Through Mutational Analysis. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09960-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Sánchez-Salgado JL, Pereyra MA, Agundis C, Calzada-Ruiz M, Kantun-Briceño E, Zenteno E. In vivo administration of LPS and β-glucan generates the expression of a serum lectin and its cellular receptor in Cherax quadricarinatus. FISH & SHELLFISH IMMUNOLOGY 2019; 94:10-16. [PMID: 31465869 DOI: 10.1016/j.fsi.2019.08.061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 08/20/2019] [Accepted: 08/24/2019] [Indexed: 06/10/2023]
Abstract
In crustaceans, it has been suggested that specific protection against pathogens could be triggered by vaccines and biological response modifiers; although the specific mechanisms of this protection have not been clarified yet. In the crayfish Cherax quadricarinatus, a humoral lectin (CqL) binds its own granular hemocytes through a specific receptor (CqLR) and increases the production of reactive oxygen species (ROS). In the present study, we challenged in vivo crayfishes with immunostimulants, β-glucan (200 μg/kg) or LPS (20 μg/kg), and identified the participation of cellular and humoral mechanisms. The stimulants generated a complex modification in the total hemocytes count (THC), as well as in the proportion of hemocyte subsets. At 2 h after the challenge, the largest value in THC was observed in either challenged crayfishes. Furthermore, at the same time, hyaline hemocytes were the most abundant subset in the hemolymph; after 6 h, granular hemocytes (GH) were the most abundant hemocyte subset. It has been observed that a specific subset of GH possesses a CqLR that has been related to ROS production. After 2 and 6 h of the β-glucan challenge, a significant increase in CqLR expression was observed in the three circulating hemocyte subsets; also, an increased expression of CqL was detected in a granular hemocytes sub-population. After 2 and 6 h of stimulation, the specific activity of the serum lectin challenged with β-glucan was 250% and 160% higher than in the LPS-treated-group, respectively (P < 0.05). Hemocytes from challenged crayfishes were stimulated ex vivo with CqL, ROS production was 180% higher in hemocytes treated with β-glucan + CqL than in hemocytes treated with LPS + CqL (P < 0.05). The results evidence the effectivity of immune stimulators to activate specific crayfish defense mechanisms, the participation of CqL and its receptor (CqLR) could play an important role in the regulation of immune cellular functions, like ROS production, in Cherax quadricarinatus.
Collapse
Affiliation(s)
- José Luis Sánchez-Salgado
- Departamento de Bioquímica, Facultad de Medicina Universidad Nacional Autónoma de México, Mexico City, Mexico.
| | - Mohamed Alí Pereyra
- Departamento de Bioquímica, Facultad de Medicina Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Concepción Agundis
- Departamento de Bioquímica, Facultad de Medicina Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Montserrat Calzada-Ruiz
- Departamento de Bioquímica, Facultad de Medicina Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Erika Kantun-Briceño
- Departamento de Bioquímica, Facultad de Medicina Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Edgar Zenteno
- Departamento de Bioquímica, Facultad de Medicina Universidad Nacional Autónoma de México, Mexico City, Mexico; Centro de Investigaciones, Facultad de Medicina UNAM-Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| |
Collapse
|
25
|
Tawidian P, Rhodes VL, Michel K. Mosquito-fungus interactions and antifungal immunity. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 111:103182. [PMID: 31265904 PMCID: PMC6639037 DOI: 10.1016/j.ibmb.2019.103182] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 06/28/2019] [Indexed: 05/14/2023]
Abstract
The mosquito immune system has evolved in the presence of continuous encounters with fungi that range from food to foes. Herein, we review the field of mosquito-fungal interactions, providing an overview of current knowledge and topics of interest. Mosquitoes encounter fungi in their aquatic and terrestrial habitats. Mosquito larvae are exposed to fungi on plant detritus, within the water column, and at the water surface. Adult mosquitoes are exposed to fungi during indoor and outdoor resting, blood and sugar feeding, mating, and oviposition. Fungi enter the mosquito body through different routes, including ingestion and through active or passive breaches in the cuticle. Oral uptake of fungi can be beneficial to mosquitoes, as yeasts hold nutritional value and support larval development. However, ingestion of or surface contact with fungal entomopathogens leads to colonization of the mosquito with often lethal consequences to the host. The mosquito immune system recognizes fungi and mounts cellular and humoral immune responses in the hemocoel, and possibly epithelial immune responses in the gut. These responses are regulated transcriptionally through multiple signal transduction pathways. Proteolytic protease cascades provide additional regulation of antifungal immunity. Together, these immune responses provide an efficient barrier to fungal infections, which need to be overcome by entomopathogens. Therefore, fungi constitute an excellent tool to examine the molecular underpinnings of mosquito immunity and to identify novel antifungal peptides. In addition, recent advances in mycobiome analyses can now be used to examine the contribution of fungi to various mosquito traits, including vector competence.
Collapse
Affiliation(s)
- P Tawidian
- Division of Biology, Kansas State University, 267 Chalmers Hall, Manhattan, KS, 66506, USA
| | - V L Rhodes
- Missouri Southern State University, Biology Department, Reynolds Hall 220, 3950 E. Newman Rd., Joplin, MO, 64801-1595, USA
| | - K Michel
- Division of Biology, Kansas State University, 267 Chalmers Hall, Manhattan, KS, 66506, USA.
| |
Collapse
|
26
|
Yi Y, Xu H, Li M, Wu G. RNA-seq profiles of putative genes involved in specific immune priming in Bombyx mori haemocytes. INFECTION GENETICS AND EVOLUTION 2019; 74:103921. [PMID: 31207402 DOI: 10.1016/j.meegid.2019.103921] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/07/2019] [Accepted: 06/13/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND The immune system of many invertebrates, including insects, has been shown to comprise memory, or specific immune priming. However, knowledge of the molecular mechanisms especially the candidate immune-related genes mediated the specificity of the immune priming are still very scarce and fragmentary. We therefore used two closely related Gram-negative pathogenic bacteria (Photorhabdus luminescens TT01 and P. luminescens H06) as the priming agents and employed Illumina/Solexa platform to investigate the transcriptional changes of the haemocytes of Bombyx mori larvae after priming. RESULTS In total, 23.0 Gbp of sequence data and 153,331,564 reads were generated, representing 10,496 genes. Approximately 89% of the genes or sequenced reads could be aligned to the silkworm reference genome. The differentially expressed genes (DEGs) of PBS-vs-TT01 (up-regulated expression of TT01 relative to PBS), PBS-vs-H06 (up-regulated expression of H06 relative to PBS) and TT01-vs-H06 (up-regulated expression of H06 relative to TT01) were 707, 159 and 461 respectively. In addition, expression patterns of 25 selected DEGs derived from quantitative real-time polymerase chain reaction (qRT-PCR) were consistent with their transcript abundance changes obtained by transcriptomic analyses. The DEGs are mainly related to pattern recognition receptors (PRRs), antimicrobial peptides (AMPs), signaling molecular, effector molecules, phagosome and spliceosome, indicating that they have participated in the regulation of the specific immune priming in the B. mori larvae. CONCLUSIONS The transcriptome profiling data sets from this study will provide valuable resources to better understand the molecular and biological mechanisms regulating the specificity of invertebrates' immune priming. All these will shed light on controlling insect pests or preventing epidemic of infectious diseases in economic invertebrates.
Collapse
Affiliation(s)
- Yunhong Yi
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Hui Xu
- Jingzhou Academy of Agricultural Sciences, Jingzhou 434000, China
| | - Mei Li
- University of Electronic Science and Technology of China, Zhongshan Institute, Zhongshan 528402, China.
| | - Gongqing Wu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China.
| |
Collapse
|
27
|
Silkworm storage protein Bm30K-19G1 has a certain antifungal effects on Beauveria bassiana. J Invertebr Pathol 2019; 163:34-42. [DOI: 10.1016/j.jip.2019.02.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 01/22/2023]
|
28
|
Molecular cloning and characterization of the β-1,3-glucan recognition protein in Anatolica polita. Gene X 2019; 697:144-151. [DOI: 10.1016/j.gene.2019.02.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 02/03/2019] [Accepted: 02/19/2019] [Indexed: 11/17/2022] Open
|
29
|
He Y, Wang Y, Hu Y, Jiang H. Manduca sexta hemolymph protease-2 (HP2) activated by HP14 generates prophenoloxidase-activating protease-2 (PAP2) in wandering larvae and pupae. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 101:57-65. [PMID: 30098411 PMCID: PMC6163074 DOI: 10.1016/j.ibmb.2018.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/06/2018] [Accepted: 08/07/2018] [Indexed: 05/27/2023]
Abstract
Melanization is a universal defense mechanism of insects against microbial infection. During this response, phenoloxidase (PO) is activated from its precursor by prophenoloxidase activating protease (PAP), the terminal enzyme of a serine protease (SP) cascade. In the tobacco hornworm Manduca sexta, hemolymph protease-14 (HP14) is autoactivated from proHP14 to initiate the protease cascade after host proteins recognize invading pathogens. HP14, HP21, proHP1*, HP6, HP8, PAP1-3, and non-catalytic serine protease homologs (SPH1 and SPH2) constitute a portion of the extracellular SP-SPH system to mediate melanization and other immune responses. Here we report the expression, purification, and functional characterization of M. sexta HP2. The HP2 precursor is synthesized in hemocytes, fat body, integument, nerve and trachea. Its mRNA level is low in fat body of 5th instar larvae before wandering stage; abundance of the protein in hemolymph displays a similar pattern. HP2 exists as an active enzyme in plasma of the wandering larvae and pupae in the absence of an infection. HP14 cleaves proHP2 to yield active HP2. After incubating active HP2 with larval hemolymph, we detected higher levels of PO activity, i.e. an enhancement of proPO activation. HP2 cleaved proPAP2 (but not proPAP3 or proPAP1) to yield active PAP2, responsible for a major increase in IEARpNA hydrolysis. PAP2 activates proPOs in the presence of a cofactor of SPH1 and SPH2. In summary, we have identified a new member of the proPO activation system and reconstituted a pathway of HP14-HP2-PAP2-PO. Since high levels of HP2 mRNA were present in integument and active HP2 in plasma of wandering larvae, HP2 likely plays a role in cuticle melanization during pupation and protects host from microbial infection in a soil environment.
Collapse
Affiliation(s)
- Yan He
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Yang Wang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Yingxia Hu
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
30
|
Molecular characterization of a pattern recognition protein LGBP highly expressed in the early stages of mud crab Scylla paramamosain. Comp Biochem Physiol A Mol Integr Physiol 2018; 227:25-31. [PMID: 30201542 DOI: 10.1016/j.cbpa.2018.08.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/31/2018] [Accepted: 08/31/2018] [Indexed: 11/24/2022]
Abstract
The early developmental stages of the mud crab Scylla paramamosain suffer from high mortality caused by pathogen infections; however, few immune associated factors are known. Lipopolysaccharide and β-1,3-glucan-binding protein (LGBP) functions as a typical pathogen recognition receptor and plays an important role in the innate immune system of invertebrates. In this study we characterized a LGBP gene (SpLGBP) which was highly expressed in the late embryonic, zoea I larval stage and hepatopancreas of S. paramamosain.. It encodes 364 amino acids, composed of several conserved domains like the bacterial glucanase motif. The recombinant SpLGBP protein (rSpLGBP) was obtained through the E.coli expression system, in which two 6◊His-tags were added to both C and N terminals during vector construction for the improvement of purification efficiency. In vivo the study showed that the SpLGBP mRNA was significantly up-regulated under Vibrio parahaemolyticus and a lipopolysaccharide (LPS) challenge in the hemocytes and hepatopancreas. The ELISA binding assay in vitro indicated that the rSpLGBP was capable of binding to LPSs and peptidoglycan (PGN). The rSpLGBP could agglutinate both G+ and G- bacteria in the presence of Ca2+. Our results suggest that SpLGBP may play an immunological role against pathogenic infection in the early developmental stages of S. paramamosain.
Collapse
|
31
|
Zhou J, Yu HY, Zhang W, Ahmad F, Hu SN, Zhao LL, Zou Z, Sun JH. Comparative analysis of the Monochamus alternatus immune system. INSECT SCIENCE 2018; 25:581-603. [PMID: 28247970 DOI: 10.1111/1744-7917.12453] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 02/05/2017] [Accepted: 02/20/2017] [Indexed: 05/26/2023]
Abstract
The pine sawyer beetle, Monochamus alternatus, is regarded as a notorious forest pest in Asia, vectoring an invasive pathogenic nematode, Bursaphelenchus xylophilus, which is known to cause pine wilt disease. However, little sequence information is available for this vector beetle. This hampered the research on its immune system. Based on the transcriptome of M. alternatus, we have identified and characterized 194 immunity-related genes in M. alternatus, and compared them with homologues molecules from other species known to exhibit immune responses against invading microbes. The lower number of putative immunity-related genes in M. alternatus were attributed to fewer C-type lectin, serine protease (SP) and anti-microbial peptide (AMP) genes. Phylogenetic analysis revealed that M. alternatus had a unique recognition gene, galectin3, orthologues of which were not identified in Tribolium castaneum, Drosophila melanogastor, Anopheles gambiae and Apis mellifera. This suggested a lineage-specific gene evolution for coleopteran insects. Our study provides the comprehensive sequence resources of the immunity-related genes of M. alternatus, presenting valuable information for better understanding of the molecular mechanism of innate immunity processes in M. alternatus against B. xylophilus.
Collapse
Affiliation(s)
- Jiao Zhou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hai-Ying Yu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Wei Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Faheem Ahmad
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Song-Nian Hu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Li-Lin Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiang-Hua Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
32
|
Cheng Y, Lin Z, Wang JM, Xing LS, Xiong GH, Zou Z. CTL14, a recognition receptor induced in late stage larvae, modulates anti-fungal immunity in cotton bollworm Helicoverpa armigera. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 84:142-152. [PMID: 29453998 DOI: 10.1016/j.dci.2018.02.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/09/2018] [Accepted: 02/10/2018] [Indexed: 06/08/2023]
Abstract
C-type lectin (CTL) is usually considered as pattern recognition receptors in insect innate immunity. Here we found that CTL14 of Helicoverpa armigera was only activated in the fifth instar larvae not in the second instar by entomopathogen Beauveria bassiana infection. Recombinant CTL14 protein was found to form aggregates with zymosan and B. bassiana in vitro. Immunoprecipitation studies demonstrated that CTL14 interacted with serine proteinases (SP), serine proteinase inhibitor (serpin), prophenoloxidases (PPO) and vitellogenin (Vg) in the larval hemolymph. Furthermore, depletion of CTL14 using dsRNA led to dramatic decrease in the expression level of PPO1. Additionally, CTL14 depleted H. armigera decreased the resistance to fungal challenge. Taken together, our study showed the direct involvement of CTL14 in the anti-fungal immunity of H. armigera, which further explained the stronger immune responses in the fifth instar compared to the second instar larvae.
Collapse
Affiliation(s)
- Yang Cheng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhe Lin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ju-Mei Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Long-Sheng Xing
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guang-Hua Xiong
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; School of Life Sciences, Jinggangshan University, Ji'an, 343009, China
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
33
|
Rao XJ, Zhan MY, Pan YM, Liu S, Yang PJ, Yang LL, Yu XQ. Immune functions of insect βGRPs and their potential application. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 83:80-88. [PMID: 29229443 DOI: 10.1016/j.dci.2017.12.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/06/2017] [Accepted: 12/08/2017] [Indexed: 06/07/2023]
Abstract
Insects rely completely on the innate immune system to sense the foreign bodies and to mount the immune responses. Germ-line encoded pattern recognition receptors play crucial roles in recognizing pathogen-associated molecular patterns. Among them, β-1,3-glucan recognition proteins (βGRPs) and gram-negative bacteria-binding proteins (GNBPs) belong to the same pattern recognition receptor family, which can recognize β-1,3-glucans. Typical insect βGRPs are comprised of a tandem carbohydrate-binding module in the N-terminal and a glucanase-like domain in the C-terminal. The former can recognize triple-helical β-1,3-glucans, whereas the latter, which normally lacks the enzymatic activity, can recruit adapter proteins to initiate the protease cascade. According to studies, insect βGRPs possess at least three types of functions. Firstly, some βGRPs cooperate with peptidoglycan recognition proteins to recognize the lysine-type peptidoglycans upstream of the Toll pathway. Secondly, some directly recognize fungal β-1,3-glucans to activate the Toll pathway and melanization. Thirdly, some form the 'attack complexes' with other immune effectors to promote the antifungal defenses. The current review will focus on the discovery of insect βGRPs, functions of some well-characterized members, structure-function studies and their potential application.
Collapse
Affiliation(s)
- Xiang-Jun Rao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China.
| | - Ming-Yue Zhan
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yue-Min Pan
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Su Liu
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Pei-Jin Yang
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Li-Ling Yang
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xiao-Qiang Yu
- Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
34
|
Chen K, Lu Z. Immune responses to bacterial and fungal infections in the silkworm, Bombyx mori. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 83:3-11. [PMID: 29289612 DOI: 10.1016/j.dci.2017.12.024] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/17/2017] [Accepted: 12/25/2017] [Indexed: 06/07/2023]
Abstract
The silkworm Bombyx mori, an economically important insect that is usually reared indoors, is susceptible to various pathogens, including bacteria, fungi, viruses, and microsporidia. As with other insects, the silkworm lacks an adaptive immune system and relies solely on innate immunity to defend itself against infection. Compared to other intensively studied insects, such as the fruit fly and tobacco hornworm, the principal immune pathways in the silkworm remain unclear. In this article, we review the literature concerning silkworm immune responses to bacteria and fungi and present our perspectives on future research into silkworm immunity.
Collapse
Affiliation(s)
- Kangkang Chen
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Zhiqiang Lu
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
35
|
Gene expression profiling provides insights into the immune mechanism of Plutella xylostella midgut to microbial infection. Gene 2018; 647:21-30. [DOI: 10.1016/j.gene.2018.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 12/29/2017] [Accepted: 01/02/2018] [Indexed: 12/14/2022]
|
36
|
Wu T, Zhao Y, Wang Z, Song Q, Wang Z, Xu Q, Wang Y, Wang L, Zhang Y, Feng C. β-1,3-Glucan recognition protein 3 activates the prophenoloxidase system in response to bacterial infection in Ostrinia furnacalis Guenée. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 79:31-43. [PMID: 29032241 DOI: 10.1016/j.dci.2017.10.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 06/07/2023]
Abstract
Pattern recognition receptors (PRRs) are biosensor proteins that bind to non-self pathogen associated molecular patterns (PAMPs). β-1,3-glucan recognition proteins (βGRPs) play an essential role in immune recognition and signaling pathway of insect innate immunity. Here, we report the cloning and characterization of cDNA of OfβGRP3 from Ostrinia furnacalis larvae. The OfβGRP3 contains 1455 bp open reading frame, encoding a predicted 484 amino acid residue protein. In hemocytes, the expression levels of OfβGRP3 in Escherichia coli-challenged group were higher than those of Bacillus subtilis-challenged group at 2, 4, 8, 10 and 12 h post injection (HPI). In fat body, OfβGRP3 expression in both B. subtilis and E. coli-challenged group was significantly higher than that in untreated group from 4 to 10 HPI, and then the expression continuously dropped from 12 to 36 HPI. The OfβGRP3 expression in laminarin-injected group was higher than that in lipopolysaccharides (LPS)-injected group in various test tissues from 4 to 24 HPI. The LT50 of E. coli-infected OfβGRP3-RNAi larvae (1.0 days) was significantly lower compared with that of E. coli infected wild-type larvae (3.0 days) (p < 0.01). Only 10.2% Sephadex G50 beads (degree 3) were completely melanized in the larvae inoculated with OfβGRP3 dsRNA, as compared to 48.8% in control larvae (p < 0.01). A notable reduction in the PO activity and IEARase activity in hemolymph was also detected in the OfβGRP3 knockdown larvae. Our study demonstrates that OfβGRP3 is one of PRR members involved the PPO-activating system in O. furnacalis larvae.
Collapse
Affiliation(s)
- Taoyan Wu
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Ya Zhao
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Zhenying Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qisheng Song
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Zengxia Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qiuwen Xu
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Yingjuan Wang
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Libao Wang
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Yiqiang Zhang
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Congjing Feng
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China.
| |
Collapse
|
37
|
Ye BH, Zhang YB, Shu JP, Wu H, Wang HJ. RNA-sequencing analysis of fungi-induced transcripts from the bamboo wireworm Melanotus cribricollis (Coleoptera: Elateridae) larvae. PLoS One 2018; 13:e0191187. [PMID: 29338057 PMCID: PMC5770045 DOI: 10.1371/journal.pone.0191187] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 12/29/2017] [Indexed: 12/19/2022] Open
Abstract
Larvae of Melanotus cribricollis, feed on bamboo shoots and roots, causing serious damage to bamboo in Southern China. However, there is currently no effective control measure to limit the population of this underground pest. Previously, a new entomopathogenic fungal strain isolated from M. cribricollis larvae cadavers named Metarhizium pingshaense WP08 showed high pathogenic efficacy indoors, indicated that the fungus could be used as a bio-control measure. So far, the genetic backgrounds of both M. cribricollis and M. pingshaense WP08 were blank. Here, we analyzed the whole transcriptome of M. cribricollis larvae, infected with M. pingshaense WP08 or not, using high-throughput next generation sequencing technology. In addition, the transcriptome sequencing of M. pingshaense WP08 was also performed for data separation of those two non-model species. The reliability of the RNA-Seq data was also validated through qRT-PCR experiment. The de novo assembly, functional annotation, sequence comparison of four insect species, and analysis of DEGs, enriched pathways, GO terms and immune related candidate genes were operated. The results indicated that, multiple defense mechanisms of M. cribricollis larvae are initiated to protect against the more serious negative effects caused by fungal infection. To our knowledge, this was the first report of transcriptome analysis of Melanotus spp. infected with a fungus, and it could provide insights to further explore insect-fungi interaction mechanisms.
Collapse
Affiliation(s)
- Bi-huan Ye
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Ya-bo Zhang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Jin-ping Shu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
- * E-mail: (JPS); (HW)
| | - Hong Wu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
- * E-mail: (JPS); (HW)
| | - Hao-jie Wang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| |
Collapse
|
38
|
Zhang J, Huang W, Yuan C, Lu Y, Yang B, Wang CY, Zhang P, Dobens L, Zou Z, Wang C, Ling E. Prophenoloxidase-Mediated Ex Vivo Immunity to Delay Fungal Infection after Insect Ecdysis. Front Immunol 2017; 8:1445. [PMID: 29163517 PMCID: PMC5671992 DOI: 10.3389/fimmu.2017.01445] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/17/2017] [Indexed: 11/30/2022] Open
Abstract
Skin immunity protects animals from airborne pathogen infection. Unlike mammals, arthropods, including insects, undergo periodic ecdysis to grow and develop. Newly molted insects emerge with unsclerotized thin cuticles but successfully escape pathogenic infections during the post-molt period. Here we show that prophenoloxidases (PPOs) in molting fluids remain bioactive on the integument and impede fungal infection after ecdysis. We found that the purified plasma PPOs or recombinant PPOs could effectively bind to fungal spores (conidia) by targeting the cell wall components chitin and β-1,3-glucan. Pretreatment of the spores of the fungal pathogen Beauveria bassiana with PPOs increased spore hydrophilicity and reduced spore adhesion activity, resulting in a significant decrease in virulence as compared with mock infection. We also identified a spore-secreted protease BPS8, a member of peptidase S8 family of protease that degrade PPOs at high levels to benefit fungal infection, but which at lower doses activate PPOs to inhibit spore germination after melanization. These data indicate that insects have evolved a distinct strategy of ex vivo immunity to survive pathogen infections after ecdysis using PPOs in molting fluids retained on the underdeveloped and tender integument of newly molted insects for protection against airborne fungal infection.
Collapse
Affiliation(s)
- Jie Zhang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Shanghai Institute of Organic Chemistry Chinese Academy of Sciences, Shanghai, China
| | - Wuren Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chuanfei Yuan
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Virology and China Center for Virus Culture Collection, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yuzhen Lu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Bing Yang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Cheng-Yuan Wang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Peng Zhang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Leonard Dobens
- School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Chengshu Wang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Erjun Ling
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
39
|
Serine protease SP105 activates prophenoloxidase in Asian corn borer melanization, and is regulated by serpin-3. Sci Rep 2017; 7:45256. [PMID: 28358031 PMCID: PMC5372168 DOI: 10.1038/srep45256] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 06/22/2016] [Indexed: 12/23/2022] Open
Abstract
Melanization reaction, resulting from the activation of prophenoloxidase, is a vital immune response in insects for encapsulating and killing the invasive organisms. Prophenoloxidase needs to be proteolytically activated by its upstream prophenoloxidase-activating protease (PAP) in melanization. Identification and characterization of PAPs facilitates the understanding of the molecular mechanisms involved in insect immunity. We here cloned a full-length cDNA for a serine protease, named as SP105, from Asian corn borer, Ostrinia furnacalis (Guenée). The open reading frame of SP105 encodes 424-amino acid residue protein with a 19-residue signal peptide. Sequence comparison indicates that SP105 is most similar to Manduca sexta PAP3, a defined prophenoloxidase-activating protease. qRT-PCR analysis showed that SP105 mRNA levels increased significantly after a bacterial injection. Recombinant SP105 directly cleaved and activated Asian corn borer prophenoloxidase and therefore acted as the prophenoloxidase-activating protease. Additionally, SP105 formed SDS-stable complexes with a serine protease inhibitor, serpin-3, and its activity in activating prophenoloxidase was efficiently inhibited by serpin-3. Our work thus illustrated a prophenoloxidase-activating protease and revealed its regulation by serpin-3. The results would allow further advances in the understanding of the melanization in Asian corn borer and other insects.
Collapse
|
40
|
Chaosomboon A, Phupet B, Rattanaporn O, Runsaeng P, Utarabhand P. Lipopolysaccharide- and β-1,3-glucan-binding protein from Fenneropenaeus merguiensis functions as a pattern recognition receptor with a broad specificity for diverse pathogens in the defense against microorganisms. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 67:434-444. [PMID: 27431930 DOI: 10.1016/j.dci.2016.07.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 07/14/2016] [Accepted: 07/14/2016] [Indexed: 06/06/2023]
Abstract
In crustaceans, lipopolysaccharide- and β-1,3-glucan-binding protein (LGBP) plays an important role in innate immunity by mediating the recognition of pathogens to host cells. Hereby, LGBP was cloned from Fenneropenaeus merguiensis hepatopancreas. Its full-length cDNA (1280 bp) had an open reading frame of 1101 bp, encoding a peptide of 366 amino acids. The LGBP primary structure comprises a recognition motif for β-1,3-linkage of polysaccharides, two integrin binding motifs, a kinase C phosphorylation site and a bacterial glucanase motif. The LGBP mRNA was strongly expressed in hepatopancreas and significantly up-regulated to get the maximum at 12 h upon Vibrio harveyi challenge. Recombinant LGBP (rLGBP) could agglutinate Gram-negative and Gram-positive bacteria including yeast with Ca2+-dependence. V. harveyi agglutination induced by rLGBP was intensively inhibited by lipoteichoic acid, less in order were lipopolysaccharide, β-1,3-glucan and N-acetyl neuraminic acid. Western blotting revealed that rLGBP bound widely to Gram-negative and Gram-positive bacteria and also yeast. By ELISA quantification, rLGBP could bind to β-1,3-glucan better than to lipopolysaccharide and lipoteichoic acid. These findings suggest that LGBP may function as a receptor which recognizes invading diverse pathogens and contribute in F. merguiensis immune response.
Collapse
Affiliation(s)
- Areerat Chaosomboon
- Department of Biochemistry, Faculty of Science, Prince of Songkla University, Hat Yai, 90112, Thailand
| | - Benjaporn Phupet
- Department of Biochemistry, Faculty of Science, Prince of Songkla University, Hat Yai, 90112, Thailand
| | - Onnicha Rattanaporn
- Department of Biochemistry, Faculty of Science, Prince of Songkla University, Hat Yai, 90112, Thailand
| | - Phanthipha Runsaeng
- Department of Biochemistry, Faculty of Science, Prince of Songkla University, Hat Yai, 90112, Thailand
| | - Prapaporn Utarabhand
- Department of Biochemistry, Faculty of Science, Prince of Songkla University, Hat Yai, 90112, Thailand.
| |
Collapse
|
41
|
Arp AP, Hunter WB, Pelz-Stelinski KS. Annotation of the Asian Citrus Psyllid Genome Reveals a Reduced Innate Immune System. Front Physiol 2016; 7:570. [PMID: 27965582 PMCID: PMC5126049 DOI: 10.3389/fphys.2016.00570] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/09/2016] [Indexed: 01/06/2023] Open
Abstract
Citrus production worldwide is currently facing significant losses due to citrus greening disease, also known as Huanglongbing. The citrus greening bacteria, Candidatus Liberibacter asiaticus (CLas), is a persistent propagative pathogen transmitted by the Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae). Hemipterans characterized to date lack a number of insect immune genes, including those associated with the Imd pathway targeting Gram-negative bacteria. The D. citri draft genome was used to characterize the immune defense genes present in D. citri. Predicted mRNAs identified by screening the published D. citri annotated draft genome were manually searched using a custom database of immune genes from previously annotated insect genomes. Toll and JAK/STAT pathways, general defense genes Dual oxidase, Nitric oxide synthase, prophenoloxidase, and cellular immune defense genes were present in D. citri. In contrast, D. citri lacked genes for the Imd pathway, most antimicrobial peptides, 1,3-β-glucan recognition proteins (GNBPs), and complete peptidoglycan recognition proteins. These data suggest that D. citri has a reduced immune capability similar to that observed in A. pisum, P. humanus, and R. prolixus. The absence of immune system genes from the D. citri genome may facilitate CLas infections, and is possibly compensated for by their relationship with their microbial endosymbionts.
Collapse
Affiliation(s)
- Alex P Arp
- Citrus Research and Education Center, Department of Entomology and Nematology, University of Florida Fort Pierce, FL, USA
| | - Wayne B Hunter
- U.S. Horticultural Research Lab, Agricultural Research Service, United State Department of Agriculture Fort Pierce, FL, USA
| | - Kirsten S Pelz-Stelinski
- Citrus Research and Education Center, Department of Entomology and Nematology, University of Florida Fort Pierce, FL, USA
| |
Collapse
|
42
|
Woestmann L, Kvist J, Saastamoinen M. Fight or flight? - Flight increases immune gene expression but does not help to fight an infection. J Evol Biol 2016; 30:501-511. [PMID: 27864861 PMCID: PMC5347902 DOI: 10.1111/jeb.13007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/31/2016] [Indexed: 12/31/2022]
Abstract
Flight represents a key trait in most insects, being energetically extremely demanding, yet often necessary for foraging and reproduction. Additionally, dispersal via flight is especially important for species living in fragmented landscapes. Even though, based on life‐history theory, a negative relationship may be expected between flight and immunity, a number of previous studies have indicated flight to induce an increased immune response. In this study, we assessed whether induced immunity (i.e. immune gene expression) in response to 15‐min forced flight treatment impacts individual survival of bacterial infection in the Glanville fritillary butterfly (Melitaea cinxia). We were able to confirm previous findings of flight‐induced immune gene expression, but still observed substantially stronger effects on both gene expression levels and life span due to bacterial infection compared to flight treatment. Even though gene expression levels of some immunity‐related genes were elevated due to flight, these individuals did not show increased survival of bacterial infection, indicating that flight‐induced immune activation does not completely protect them from the negative effects of bacterial infection. Finally, an interaction between flight and immune treatment indicated a potential trade‐off: flight treatment increased immune gene expression in naïve individuals only, whereas in infected individuals no increase in immune gene expression was induced by flight. Our results suggest that the up‐regulation of immune genes upon flight is based on a general stress response rather than reflecting an adaptive response to cope with potential infections during flight or in new habitats.
Collapse
Affiliation(s)
- L Woestmann
- Metapopulation Research Centre, University of Helsinki, Helsinki, Finland
| | - J Kvist
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - M Saastamoinen
- Metapopulation Research Centre, University of Helsinki, Helsinki, Finland
| |
Collapse
|
43
|
Yang B, Huang W, Zhang J, Xu Q, Zhu S, Zhang Q, Beerntsen BT, Song H, Ling E. Analysis of gene expression in the midgut of Bombyx mori during the larval molting stage. BMC Genomics 2016; 17:866. [PMID: 27809786 PMCID: PMC5096333 DOI: 10.1186/s12864-016-3162-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 10/12/2016] [Indexed: 11/15/2022] Open
Abstract
Background Insects can be models for understanding human intestinal infection and pathology. Molting, a special period during which the old insect cuticle is shed and a new one is produced, is crucial for insect development. Holometabolous insects may experience several larva-to-larva moltings to become larger, a pupal molt and adult eclosion to become adults. During the larval molts, they stop feeding and become quiescent. Although the molting larvae become quiescent, it is not known if changes in microbiome, physiology, development and immunity of midguts occur. Results Transcriptome analysis indicated that functions such as metabolism, digestion, and transport may become reduced due to the downregulated expression of many associated genes. During the molting stage, midguts harbor less microflora and DNA synthesis decreases. Both ecdysone and juvenile hormone in the larval midgut likely degrade after entering the larva-to-larva molting stage. However, at 12 h after ecdysis, the feeding larvae of 5th instars that were injected with 20-hydroxyecdysone entered a molting-like stage, during which changes in midgut morphology, DNA synthesis, gene expression, and microflora exhibited the same patterns as observed in the actual molting state. Conclusion This study is important for understanding insect midgut physiology, development and immunity during a special development stage when no food is ingested. Although the molting larva becomes immobile and quiescent, we demonstrate that numerous changes occur in midgut morphology, physiology, metabolism and microbiome during this period. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3162-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bing Yang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Wuren Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jie Zhang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Qiuyun Xu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Shoulin Zhu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Qiaoli Zhang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Brenda T Beerntsen
- Veterinary Pathobiology, University of Missouri, Columbia, MO, 65211, USA
| | - Hongsheng Song
- College of Life Sciences, Shanghai University, Shanghai, 200444, China.
| | - Erjun Ling
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
44
|
Al Souhail Q, Hiromasa Y, Rahnamaeian M, Giraldo MC, Takahashi D, Valent B, Vilcinskas A, Kanost MR. Characterization and regulation of expression of an antifungal peptide from hemolymph of an insect, Manduca sexta. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 61:258-68. [PMID: 26976231 PMCID: PMC4866881 DOI: 10.1016/j.dci.2016.03.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 03/08/2016] [Accepted: 03/08/2016] [Indexed: 05/07/2023]
Abstract
Insects secrete antimicrobial peptides as part of the innate immune response. Most antimicrobial peptides from insects have antibacterial but not antifungal activity. We have characterized an antifungal peptide, diapausin-1 from hemolymph of a lepidopteran insect, Manduca sexta (tobacco hornworm). Diapausin-1 was isolated by size exclusion chromatography from hemolymph plasma of larvae that were previously injected with a yeast, Saccharomyces cerevisiae. Fractions containing activity against S. cerevisiae were analyzed by SDS-PAGE and MALDI-TOF MS/MS and found to contain a 45-residue peptide that was encoded by sequences identified in M. sexta transcriptome and genome databases. A cDNA for diapausin-1 was cloned from cDNA prepared from fat body RNA. Diapausin-1 is a member of the diapausin family of peptides, which includes members known to have antifungal activity. The M. sexta genome contains 14 genes with high similarity to diapausin-1, each with 6 conserved Cys residues. Diapausin-1 was produced as a recombinant protein in Escherichia coli. Purified recombinant diapausin-1 was active against S. cerevisiae, with IC50 of 12 μM, but had no detectable activity against bacteria. Spores of some plant fungal pathogens treated with diapausin-1 had curled germination tubes or reduced and branched hyphal growth. Diapausin-1 mRNA level in fat body strongly increased after larvae were injected with yeast or with Micrococcus luteus. In addition, diapausin-1 mRNA levels increased in midgut and fat body at the wandering larval stage prior to pupation, suggesting developmental regulation of the gene. Our results indicate that synthesis of diapausin-1 is part of an antifungal innate immune response to infection in M. sexta.
Collapse
Affiliation(s)
- Qasim Al Souhail
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Yasuaki Hiromasa
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Mohammad Rahnamaeian
- LOEWE Center for Insect Biotechnology and Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Giessen Winchesterstrasse 2, 35394 Giessen, Germany
| | - Martha C Giraldo
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Daisuke Takahashi
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Barbara Valent
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Andreas Vilcinskas
- LOEWE Center for Insect Biotechnology and Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Giessen Winchesterstrasse 2, 35394 Giessen, Germany; Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, 39592 Giessen, Germany
| | - Michael R Kanost
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
45
|
Qi L, Fang Q, Zhao L, Xia H, Zhou Y, Xiao J, Li K, Ye G. De Novo Assembly and Developmental Transcriptome Analysis of the Small White Butterfly Pieris rapae. PLoS One 2016; 11:e0159258. [PMID: 27428371 PMCID: PMC4948883 DOI: 10.1371/journal.pone.0159258] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 06/29/2016] [Indexed: 12/15/2022] Open
Abstract
The small white butterfly Pieris rapae is one of the most destructive pests of Brassicaceae. Yet little is understood about its genes involved in development. To facilitate research on P. rapae, we sequenced the transcriptome of P. rapae during six developmental stages, including the egg, three larval stages, the pupa, and the adult. In total, 240 million high-quality reads were obtained. De novo assembly generated 96,069 unigenes with an average length of 1353 nt. Of these, 31,629 unigenes had homologs as determined by a blastx search against the NR database with a cut-off e-value of 10−5. Clusters of Orthologous Groups of proteins (COG), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted to functionally annotate those genes. Then, 849 genes involved in seven canonical development signaling pathway were identified, including dozens of key genes such as Hippo, Notch, and JAK2. A total of 21,883 differentially expressed (cut-off of 2-fold) unigenes were detected across the developmental stages, most of which were found between the egg and first larval stages. Interestingly, only 34 differentially expressed unigenes, most of which are cuticle protein related genes, were detected with a cut-off of 210-fold. Furthermore, we identified 32 heat shock protein (Hsp) genes that were expressed with complete open reading frames. Based on phylogenetic trees of the Hsp genes, we found that Hsp genes with close evolutionary relationships had similar expression pattern. Additionally, partial pattern recognition receptors genes were found to be developmental regulated. This study provides comprehensive sequence resources for P. rapae and numerous differential expressed genes, and these findings will lay the foundation for future functional genomics studies on this species.
Collapse
Affiliation(s)
- Lixing Qi
- College of Chemistry, Chemical Engineering, and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Qi Fang
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Lei Zhao
- College of Chemistry, Chemical Engineering, and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Hao Xia
- College of Chemistry, Chemical Engineering, and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Yuxun Zhou
- College of Chemistry, Chemical Engineering, and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Junhua Xiao
- College of Chemistry, Chemical Engineering, and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Kai Li
- College of Chemistry, Chemical Engineering, and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Gongyin Ye
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
46
|
Liu K, Xu Y, Wang Y, Wei S, Feng D, Huang Q, Zhang S, Liu Z. Developmental expression and immune role of the class B scavenger receptor cd36 in zebrafish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 60:91-95. [PMID: 26915754 DOI: 10.1016/j.dci.2016.02.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 02/18/2016] [Accepted: 02/19/2016] [Indexed: 06/05/2023]
Abstract
CD36 is a transmembrane glycoprotein belonging to the scavenger receptor class B family which plays crucial roles in innate immunity. Although CD36 is widely documented in mammals, the study of its functions in fish is still limited. Here we report the identification of a zebrafish cd36 homologue. Zebrafish cd36 has a higher gene expression in the tissues of intestine and liver but very low in kidney and swim bladder. We find cd36 mRNA is maternally expressed and is mainly restricted to the intestine, branchial arches and regions around the lips after the segmentation stage during embryogenesis. Functionally, the recombinant Cd36 corresponding to the large extracellular loop is capable of binding both the Gram-negative and Gram-positive bacteria. These results indicate that zebrafish Cd36 is a microbial-binding molecule. The study expands our knowledge of the function of scavenger receptor molecules in fish innate immune process.
Collapse
Affiliation(s)
- Kai Liu
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, China
| | - Yanping Xu
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, China
| | - Ying Wang
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, China
| | - Shulei Wei
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, China
| | - Dong Feng
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, China
| | - Qiaoyan Huang
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, China
| | - Shicui Zhang
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, China
| | - Zhenhui Liu
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, China.
| |
Collapse
|
47
|
Co-expression of Dorsal and Rel2 Negatively Regulates Antimicrobial Peptide Expression in the Tobacco Hornworm Manduca sexta. Sci Rep 2016; 6:20654. [PMID: 26847920 PMCID: PMC4742911 DOI: 10.1038/srep20654] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/30/2015] [Indexed: 12/14/2022] Open
Abstract
Nuclear factor κB (NF-κB) plays an essential role in regulation of innate immunity. In mammals, NF-κB factors can form homodimers and heterodimers to activate gene expression. In insects, three NF-κB factors, Dorsal, Dif and Relish, have been identified to activate antimicrobial peptide (AMP) gene expression. However, it is not clear whether Dorsal (or Dif) and Relish can form heterodimers. Here we report the identification and functional analysis of a Dorsal homologue (MsDorsal) and two Relish short isoforms (MsRel2A and MsRel2B) from the tobacco hornworm, Manduca sexta. Both MsRel2A and MsRel2B contain only a Rel homology domain (RHD) and lack the ankyrin-repeat inhibitory domain. Overexpression of the RHD domains of MsDorsal and MsRel2 in Drosophila melanogaster S2 and Spodoptera frugiperda Sf9 cells can activate AMP gene promoters from M. sexta and D. melanogaster. We for the first time confirmed the interaction between MsDorsal-RHD and MsRel2-RHD, and suggesting that Dorsal and Rel2 may form heterodimers. More importantly, co-expression of MsDorsal-RHD with MsRel2-RHD suppressed activation of several M. sexta AMP gene promoters. Our results suggest that the short MsRel2 isoforms may form heterodimers with MsDorsal as a novel mechanism to prevent over-activation of antimicrobial peptides.
Collapse
|
48
|
Zhang W, Chen J, Keyhani NO, Zhang Z, Li S, Xia Y. Comparative transcriptomic analysis of immune responses of the migratory locust, Locusta migratoria, to challenge by the fungal insect pathogen, Metarhizium acridum. BMC Genomics 2015; 16:867. [PMID: 26503342 PMCID: PMC4624584 DOI: 10.1186/s12864-015-2089-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 10/15/2015] [Indexed: 01/20/2023] Open
Abstract
Background The migratory locust, Locusta migratoria manilensis, is an immensely destructive agricultural pest that forms a devastating and voracious gregarious phase. The fungal insect pathogen, Metarhizium acridum, is a specialized locust pathogen that has been used as a potent mycoinsecticide for locust control. Little, however, is known about locust immune tissue, i.e. fat body and hemocyte, responses to challenge by this fungus. Methods RNA-seq (RNA sequencing) technology were applied to comparatively examine the different roles of locust fat body and hemocytes, the two major contributors to the insect immune response, in defense against M. acridum. According to the sequence identity to homologies of other species explored immune response genes, immune related unigenes were screened in all transcriptome wide range from locust and the differential expressed genes were identified in these two tissues, respectively. Results Analysis of differentially expressed locust genes revealed 4660 and 138 up-regulated, and 1647 and 23 down-regulated transcripts in the fat body and hemocytes, respectively after inoculation with M. acridum spores. GO (Gene Ontology) enrichment analysis showed membrane biogenesis related proteins and effector proteins significantly differentially expressed in hemocytes, while the expression of energy metabolism and development related transcripts were enriched in the fat body after fungal infection. A total of 470 immune related unigenes were identified, including members of the three major insect immune pathways, i.e. Toll, Imd (immune deficiency) and JAK/STAT (janus kinase/signal transduction and activator of transcription). Of these, 58 and three were differentially expressed in the insect fat body or hemocytes after infection, respectively. Of differential expressed transcripts post challenge, 43 were found in both the fat body and hemocytes, including the LmLys4 lysozyme, representing a microbial cell wall targeting enzyme. Conclusions These data indicate that locust fat body and hemocytes adopt different strategies in response to M. acridum infection. Fat body gene expression after M. acridum challenge appears to function mainly through activation of innate immune related genes, energy metabolism and development related genes. Hemocyte responses attempt to limit fungal infection primarily through regulation of membrane related genes and activation of cellular immune responses and release of humoral immune factors. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2089-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wei Zhang
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 400045, People's Republic of China.
| | - Jianhong Chen
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 400045, People's Republic of China.
| | - Nemat O Keyhani
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32611, USA.
| | - Zhengyi Zhang
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 400045, People's Republic of China.
| | - Sai Li
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 400045, People's Republic of China.
| | - Yuxian Xia
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 400045, People's Republic of China. .,Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, 400045, People's Republic of China. .,Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, 400045, People's Republic of China.
| |
Collapse
|
49
|
Initiating protease with modular domains interacts with β-glucan recognition protein to trigger innate immune response in insects. Proc Natl Acad Sci U S A 2015; 112:13856-61. [PMID: 26504233 DOI: 10.1073/pnas.1517236112] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The autoactivation of an initiating serine protease upon binding of pattern recognition proteins to pathogen surfaces is a crucial step in eliciting insect immune responses such as the activation of Toll and prophenoloxidase pathways. However, the molecular mechanisms responsible for autoactivation of the initiating protease remains poorly understood. Here, we investigated the molecular basis for the autoactivation of hemolymph protease 14 (HP14), an initiating protease in hemolymph of Manduca sexta, upon the binding of β-1,3-glucan by its recognition protein, βGRP2. Biochemical analysis using HP14 zymogen (proHP14), βGRP2, and the recombinant proteins as truncated forms showed that the amino-terminal modular low-density lipoprotein receptor class A (LA) domains within HP14 are required for proHP14 autoactivation that is stimulated by its interaction with βGRP2. Consistent with this result, recombinant LA domains inhibit the activation of proHP14 and prophenoloxidase, likely by competing with the interaction between βGRP2 and LA domains within proHP14. Using surface plasmon resonance, we demonstrated that immobilized LA domains directly interact with βGRP2 in a calcium-dependent manner and that high-affinity interaction requires the C-terminal glucanase-like domain of βGRP2. Importantly, the affinity of LA domains for βGRP2 increases nearly 100-fold in the presence of β-1,3-glucan. Taken together, these results present the first experimental evidence to our knowledge that LA domains of an insect modular protease and glucanase-like domains of a βGRP mediate their interaction, and that this binding is essential for the protease autoactivation. Thus, our study provides important insight into the molecular basis underlying the initiation of protease cascade in insect immune responses.
Collapse
|
50
|
Kanost MR, Jiang H. Clip-domain serine proteases as immune factors in insect hemolymph. CURRENT OPINION IN INSECT SCIENCE 2015; 11:47-55. [PMID: 26688791 PMCID: PMC4680995 DOI: 10.1016/j.cois.2015.09.003] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
CLIP proteases are non-digestive serine proteases present in hemolymph of insects and other arthropods. They are composed of one or more amino-terminal clip domains followed by a linker sequence and a carboxyl-terminal S1A family serine protease domain. The genes for CLIP proteases have evolved as four clades (CLIPA, CLIPB, CLIPC, CLIPD), each present as multigene families in insect genomes. CLIP proteases in hemolymph function in innate immune responses. These include proteolytic activation of the cytokine Spätzle, to form an active Toll ligand leading to synthesis of antimicrobial peptides, and specific activation of prophenoloxidase, required for the melanization response. CLIP proteases act in cascade pathways. In the immune pathways that have been characterized, microbial surface molecules stimulate activation of an initiating modular serine protease, which then activates a CLIPC, which in turn activates a CLIPB. The active CLIPB then cleaves and activates an effector molecule (proSpätzle or prophenoloxidase). CLIPA proteins are pseudoproteases, lacking proteolytic activity, but some can function as regulators of the activity of other CLIP proteases and form high molecular weight immune complexes. A few three dimensional structures for CLIP proteases are now available for structure-function analysis of these immune factors, revealing structural features that may act in specific activation or in formation of immune complexes. The functions of most CLIP proteases are unknown, even in well studied insect species. It is very likely that additional proteins activated by CLIP proteases and acting in immunity remain to be discovered.
Collapse
Affiliation(s)
- Michael R. Kanost
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506 USA
- Communicating author: Michael R. Kanost, Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506 USA, 785-532-6964,
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078 USA
| |
Collapse
|