1
|
Swapnasrita S, Vries JCD, Öberg CM, Carlier AM, Gerritsen KG. Computational modeling of peritoneal dialysis: An overview. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2025; 22:431-476. [PMID: 40083302 DOI: 10.3934/mbe.2025017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Peritoneal dialysis (PD) is a kidney replacement therapy for patients with end-stage renal disease. It is becoming more popular as a result of a rising interest in home dialysis. Its effectiveness depends on several physiological and technical factors, which have led to the development of various computational models to better understand and predict PD outcomes. In this review, we traced the evolution of computational PD models, discussed the principles underlying these models, including the transport kinetics of solutes, the fluid dynamics within the peritoneal cavity, and the peritoneal membrane properties, and reviewed the various PD models that can be used to optimize and personalize PD treatment. By providing a comprehensive overview, we aim to guide both current clinical practice and future research into novel PD techniques such as the application of continuous flow and sorbent-based dialysate regeneration where mathematical modeling may offer an inexpensive and effective tool to optimize design of these novel techniques at a patient specific level.
Collapse
Affiliation(s)
- Sangita Swapnasrita
- MERLN Institute for Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Joost C de Vries
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Carl M Öberg
- Department of Clinical Sciences Lund, Division of Nephrology, Skåne University Hospital, Lund, University, Lund, Sweden
| | - Aurélie Mf Carlier
- MERLN Institute for Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Karin Gf Gerritsen
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
2
|
Pan S, Yuan H, Zhai Q, Zhang Y, He H, Yin T, Tang X, Gou J. The journey of nanoparticles in the abdominal cavity: Exploring their in vivo fate and impact factors. J Control Release 2024; 376:266-285. [PMID: 39396710 DOI: 10.1016/j.jconrel.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/15/2024]
Abstract
Peritoneal carcinomatosis (PC) is caused by metastasis of primary tumor cells from intra-abdominal organs to the peritoneal surface. Intraperitoneal (IP) chemotherapy allows close contact of high concentrations of therapeutic agents with cancer cells in the peritoneal cavity to prolong patient survival. However, conventional IP chemotherapy is prone to rapid elimination from the peritoneal cavity and lacks specificity towards cancer cells. To address these challenges, there is an imperative demand for exploiting novel drug delivery systems to enhance drug retention in the peritoneal cavity and target PC cells. Therefore, in this review, we first recapitulate the physiological structures and barriers associated with IP drug delivery, highlighting the in vivo fate of nanoparticles (NPs) after IP administration. Furthermore, the influence of physicochemical properties (particle size, charge, surface modification, and carrier composition) on the in vivo fate of NPs is discussed. Perspectives on the rational design of NPs for IP therapy and recent clinical progress are also provided.
Collapse
Affiliation(s)
- Shu Pan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Haoyang Yuan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Qiyao Zhai
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Yu Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Haibing He
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Tian Yin
- School of Functional Food and Wine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Xing Tang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China.
| | - Jingxin Gou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China.
| |
Collapse
|
3
|
Cai Y, Zhang Z, Liu C, Tai Z, Zhu Q, Qi J, Lu Y, Chen Z, Wu W, He H. Size-dependent translocation and lymphatic transportation of polymeric nanocarriers post intraperitoneal administration. J Control Release 2024; 376:553-565. [PMID: 39427777 DOI: 10.1016/j.jconrel.2024.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/06/2024] [Accepted: 10/16/2024] [Indexed: 10/22/2024]
Abstract
Intraperitoneal (i.p.) administered nanomedicine has been widely applied in the clinical treatment of intra-abdominal diseases and preclinical pharmacological investigations. However, current understandings about the in vivo fate of i.p.-administered drug remains controversial owing to lack of reliable investigation tools. This work presents a nanoparticle-labeling strategy based on aggregation-caused quenching (ACQ) probes in the second near-infrared (NIR-II) window, which can eliminate the interference of unbound probes and allow for non-invasive tracking of nanoparticles in deep tissues. Our results strongly evidence a size-dependent absorption and biodistribution of the i.p.-administered polymeric nanocarriers (PNs) with particle sizes ranging from 30 to 1000 nm both in vivo and ex vivo, and moreover provide a clear visualization of lymphatic transportation and lymph node retention of integral PNs. Importantly, our findings suggest that small particles (≤30 nm) are favorable in systemic therapies due to their rapid absorption and high concentration (>19 %ID mL-1) in circulation, while large particles (over 1000 nm) are meant for localized treatment of abdominal diseases. Besides, the high retention of 200 nm nanoparticles within lymph nodes indicates their promising role in cancer vaccines and lymphatic diseases including lymph node metastasis.
Collapse
Affiliation(s)
- Yifan Cai
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Zichen Zhang
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Chang Liu
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Jianping Qi
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China; Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Yi Lu
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China; Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China; Fudan Zhangjiang Institute, Shanghai 201203, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China.
| | - Wei Wu
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China; Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China; Fudan Zhangjiang Institute, Shanghai 201203, China; Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China.
| | - Haisheng He
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China.
| |
Collapse
|
4
|
Reddiar SB, Xie Y, Abdallah M, Han S, Hu L, Feeney OM, Gracia G, Anshabo A, Lu Z, Farooq MA, Styles IK, Phillips ARJ, Windsor JA, Porter CJH, Cao E, Trevaskis NL. Intestinal Lymphatic Biology, Drug Delivery, and Therapeutics: Current Status and Future Directions. Pharmacol Rev 2024; 76:1326-1398. [PMID: 39179383 DOI: 10.1124/pharmrev.123.001159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 07/29/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024] Open
Abstract
Historically, the intestinal lymphatics were considered passive conduits for fluids, immune cells, dietary lipids, lipid soluble vitamins, and lipophilic drugs. Studies of intestinal lymphatic drug delivery in the late 20th century focused primarily on the drugs' physicochemical properties, especially high lipophilicity, that resulted in intestinal lymphatic transport. More recent discoveries have changed our traditional view by demonstrating that the lymphatics are active, plastic, and tissue-specific players in a range of biological and pathological processes, including within the intestine. These findings have, in turn, inspired exploration of lymph-specific therapies for a range of diseases, as well as the development of more sophisticated strategies to actively deliver drugs or vaccines to the intestinal lymph, including a range of nanotechnologies, lipid prodrugs, and lipid-conjugated materials that "hitchhike" onto lymphatic transport pathways. With the increasing development of novel therapeutics such as biologics, there has been interest in whether these therapeutics are absorbed and transported through intestinal lymph after oral administration. Here we review the current state of understanding of the anatomy and physiology of the gastrointestinal lymphatic system in health and disease, with a focus on aspects relevant to drug delivery. We summarize the current state-of-the-art approaches to deliver drugs and quantify their uptake into the intestinal lymphatic system. Finally, and excitingly, we discuss recent examples of significant pharmacokinetic and therapeutic benefits achieved via intestinal lymphatic drug delivery. We also propose approaches to advance the development and clinical application of intestinal lymphatic delivery strategies in the future. SIGNIFICANCE STATEMENT: This comprehensive review details the understanding of the anatomy and physiology of the intestinal lymphatic system in health and disease, with a focus on aspects relevant to drug delivery. It highlights current state-of-the-art approaches to deliver drugs to the intestinal lymphatics and the shift toward the use of these strategies to achieve pharmacokinetic and therapeutic benefits for patients.
Collapse
Affiliation(s)
- Sanjeevini Babu Reddiar
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Yining Xie
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Mohammad Abdallah
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Sifei Han
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Luojuan Hu
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Orlagh M Feeney
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Gracia Gracia
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Abel Anshabo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Zijun Lu
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Muhammad Asim Farooq
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Ian K Styles
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Anthony R J Phillips
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - John A Windsor
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Christopher J H Porter
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Enyuan Cao
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Natalie L Trevaskis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| |
Collapse
|
5
|
Han J, Mao K, Yang YG, Sun T. Impact of inorganic/organic nanomaterials on the immune system for disease treatment. Biomater Sci 2024; 12:4903-4926. [PMID: 39190428 DOI: 10.1039/d4bm00853g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The study of nanomaterials' nature, function, and biocompatibility highlights their potential in drug delivery, imaging, diagnostics, and therapeutics. Advancements in nanotechnology have fostered the development and application of diverse nanomaterials. These materials facilitate drug delivery and influence the immune system directly. Yet, understanding of their impact on the immune system is incomplete, underscoring the need to select materials to achieve desired outcomes carefully. In this review, we outline and summarize the distinctive characteristics and effector functions of inorganic nanomaterials and organic materials in inducing immune responses. We highlight the role and advantages of nanomaterial-induced immune responses in the treatment of immune-related diseases. Finally, we briefly discuss the current challenges and future opportunities for disease treatment and clinical translation of these nanomaterials.
Collapse
Affiliation(s)
- Jing Han
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China.
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Kuirong Mao
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China.
- International Center of Future Science, Jilin University, Changchun, Jilin, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China.
- International Center of Future Science, Jilin University, Changchun, Jilin, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China.
- International Center of Future Science, Jilin University, Changchun, Jilin, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin, China
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
6
|
Tang Y, Liu B, Zhang Y, Liu Y, Huang Y, Fan W. Interactions between nanoparticles and lymphatic systems: Mechanisms and applications in drug delivery. Adv Drug Deliv Rev 2024; 209:115304. [PMID: 38599495 DOI: 10.1016/j.addr.2024.115304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/08/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
The lymphatic system has garnered significant attention in drug delivery research due to the advantages it offers, such as enhancing systemic exposure and enabling lymph node targeting for nanomedicines via the lymphatic delivery route. The journey of drug carriers involves transport from the administration site to the lymphatic vessels, traversing the lymph before entering the bloodstream or targeting specific lymph nodes. However, the anatomical and physiological barriers of the lymphatic system play a pivotal role in influencing the behavior and efficiency of carriers. To expedite research and subsequent clinical translation, this review begins by introducing the composition and classification of the lymphatic system. Subsequently, we explore the routes and mechanisms through which nanoparticles enter lymphatic vessels and lymph nodes. The review further delves into the interactions between nanomedicine and body fluids at the administration site or within lymphatic vessels. Finally, we provide a comprehensive overview of recent advancements in lymphatic delivery systems, addressing the challenges and opportunities inherent in current systems for delivering macromolecules and vaccines.
Collapse
Affiliation(s)
- Yisi Tang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; NHC Key Laboratory of Comparative Medicine, National Center of Technology Innovation for Animal Model, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China
| | - Bao Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yuting Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yuling Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yongzhuo Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528437, China; NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, Shanghai 201203, China.
| | - Wufa Fan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
7
|
Kocabiyik O, Amlashi P, Vo AL, Suh H, Rodriguez-Aponte SA, Dalvie NC, Love JC, Andrabi R, Irvine DJ. Vaccine targeting to mucosal lymphoid tissues promotes humoral immunity in the gastrointestinal tract. SCIENCE ADVANCES 2024; 10:eadn7786. [PMID: 38809992 PMCID: PMC11135404 DOI: 10.1126/sciadv.adn7786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/23/2024] [Indexed: 05/31/2024]
Abstract
Viruses, bacteria, and parasites frequently cause infections in the gastrointestinal tract, but traditional vaccination strategies typically elicit little or no mucosal antibody responses. Here, we report a strategy to effectively concentrate immunogens and adjuvants in gut-draining lymph nodes (LNs) to induce gut-associated mucosal immunity. We prepared nanoemulsions (NEs) based on biodegradable oils commonly used as vaccine adjuvants, which encapsulated a potent Toll-like receptor agonist and displayed antigen conjugated to their surface. Following intraperitoneal administration, these NEs accumulated in gut-draining mesenteric LNs, priming strong germinal center responses and promoting B cell class switching to immunoglobulin A (IgA). Optimized NEs elicited 10- to 1000-fold higher antigen-specific IgG and IgA titers in the serum and feces, respectively, compared to free antigen mixed with NE, and strong neutralizing antibody titers against severe acute respiratory syndrome coronavirus 2. Thus, robust gut humoral immunity can be elicited by exploiting the unique lymphatic collection pathways of the gut with a lymph-targeting vaccine formulation.
Collapse
Affiliation(s)
- Ozgun Kocabiyik
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Parastoo Amlashi
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - A. Lina Vo
- Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Heikyung Suh
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sergio A. Rodriguez-Aponte
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Neil C. Dalvie
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - J. Christopher Love
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Raiees Andrabi
- Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Darrell J. Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815 USA
| |
Collapse
|
8
|
Pharmacokinetic evaluation of poorly soluble compounds formulated as nano- or microcrystals after intraperitoneal injection to mice. Int J Pharm 2023; 636:122787. [PMID: 36894042 DOI: 10.1016/j.ijpharm.2023.122787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/09/2023]
Abstract
Intraperitonial (i.p.) delivery during initial stages of drug discovery can allow efficacy readouts for compounds which have suboptimal pharmacokinetics (PK) due to poor physiochemical properties and/or oral bioavailability. A major limitation for widespread use of i.p. administration is the paucity of published data and unclear mechanisms of absorption, particularly when using complex formulations. The aim of the present study was to investigate the PK of poorly soluble compounds with low oral bioavailability when administered i.p. as crystalline nano- and microsuspensions. Three compounds, with varying aqueous solubility (2, 7, and 38 µM, at 37 °C), were dosed to mice at 10 and 50 mg/kg. In vitro dissolution confirmed that nanocrystals dissolved faster than microcrystals and hence were expected to result in higher exposure after i.p. dosing. Surprisingly, the increase in dissolution rate with decrease in particle size did not result in higher in vivo exposure. In contrast, the microcrystals showed higher exposure. The potential of smaller particles to promote access to the lymphatic system is hypothesized and discussed as one plausible explanation. The present work demonstrates the importance of understanding physicochemical properties of drug formulations in the context of the microphysiology at the delivery site and how that knowledge can be leveraged to alter systemic PK.
Collapse
|
9
|
Development of the Peritoneal Metastasis: A Review of Back-Grounds, Mechanisms, Treatments and Prospects. J Clin Med 2022; 12:jcm12010103. [PMID: 36614904 PMCID: PMC9821147 DOI: 10.3390/jcm12010103] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Peritoneal metastasis is a malignant disease which originated from several gastrointestinal and gynecological carcinomas and has been leading to a suffering condition in patients for decades. Currently, as people have gradually become more aware of the severity of peritoneal carcinomatosis, new molecular mechanisms for targeting and new treatments have been proposed. However, due to the uncertainty of influencing factors involved and a lack of a standardized procedure for this treatment, as well as a need for more clinical data for specific evaluation, more research is needed, both for preventing and treating. We aim to summarize backgrounds, mechanisms and treatments in this area and conclude limitations or new aspects for treatments.
Collapse
|
10
|
Afshari AR, Sanati M, Mollazadeh H, Kesharwani P, Johnston TP, Sahebkar A. Nanoparticle-based drug delivery systems in cancer: A focus on inflammatory pathways. Semin Cancer Biol 2022; 86:860-872. [PMID: 35115226 DOI: 10.1016/j.semcancer.2022.01.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 01/23/2022] [Accepted: 01/23/2022] [Indexed: 12/16/2022]
Abstract
It has become necessary to accept the clinical reality of therapeutic agents targeting the cancer-associated immune system. In recent decades, several investigations have highlighted the role of inflammation in cancer development. It has now been recognized that inflammatory cells secrete mediators, including enzymes, chemokines, and cytokines. These secreted substances produce an inflammatory microenvironment that is critically involved in cancer growth. Inflammation may enhance genomic instability leading to DNA damage, activation of oncogenes, or compromised tumor suppressor activity, all of which may promote various phases of carcinogenesis. Conventional cancer treatment includes surgery, radiation, and chemotherapy. However, treatment failure occurs because current strategies are unable to achieve complete local control due to metastasis. Nanoparticles (NPs) are a broad spectrum of drug carriers typically below the size of 100 nm, targeting tumor sites while reducing off-target consequences. More importantly, NPs can stimulate innate and adaptive immune systems in the tumor microenvironment (TME); hence, they induce a cancer-fighting immune response. Strikingly, targeting cancer cells with NPs helps eliminate drug resistance and tumor recurrence, as well as prevents inflammation. Throughout this review, we provide recent data on the role of inflammation in cancer and explore nano-therapeutic initiatives to target significant mediators, for example, nuclear factor-kappa B (NF-κB), tumor necrosis factor-α (TNF-α), and interleukins (ILs) associated with cancer-related inflammation, to escort the immunomodulators to cancer cells and associated systemic compartments. We also highlight the necessity of better identifying inflammatory pathways in cancer pathophysiology to develop effective treatment plans.
Collapse
Affiliation(s)
- Amir R Afshari
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Hamid Mollazadeh
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Australia, Perth, Australia; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
11
|
Christian DA, Adams TA, Shallberg LA, Phan AT, Smith TE, Abraha M, Perry J, Ruthel G, Clark JT, Pritchard GH, Aronson LR, Gossa S, McGavern DB, Kedl RM, Hunter CA. cDC1 coordinate innate and adaptive responses in the omentum required for T cell priming and memory. Sci Immunol 2022; 7:eabq7432. [PMID: 36179012 PMCID: PMC9835709 DOI: 10.1126/sciimmunol.abq7432] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In the peritoneal cavity, the omentum contains fat-associated lymphoid clusters (FALCs) whose role in response to infection is poorly understood. After intraperitoneal immunization with Toxoplasma gondii, conventional type 1 dendritic cells (cDC1s) were critical to induce innate sources of IFN-γ and cellular changes in the FALCs. Unexpectedly, infected peritoneal macrophages that migrated into the FALCs primed CD8+ T cells. Although T cell priming was cDC1 independent, these DCs were required for maximal CD8+ T cell expansion. An agent-based computational model and experimental data highlighted that cDC1s affected the magnitude of the proliferative burst and promoted CD8+ T cell expression of nutrient uptake receptors and cell survival. Thus, although FALCs lack the organization of secondary lymphoid organs, cDC1s resident in this tissue coordinate innate responses to microbial challenge and provide secondary signals required for T cell expansion and memory formation.
Collapse
Affiliation(s)
- David A. Christian
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Thomas A. Adams
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario
| | | | - Anthony T. Phan
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Tony E. Smith
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Mosana Abraha
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario
| | - Joseph Perry
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Gordon Ruthel
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Joseph T. Clark
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA 19104
| | | | - Lillian R. Aronson
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA 19104
- Section of Surgery, Department of Clinical Studies, University of Pennsylvania, Philadelphia, PA 19104
| | - Selamawit Gossa
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20814
| | - Dorian B. McGavern
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20814
| | - Ross M. Kedl
- Department of Immunology & Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | | |
Collapse
|
12
|
Kono Y, Fushimi A, Yoshizawa Y, Higaki K, Ogawara KI. Effects of particle size and release property of paclitaxel-loaded nanoparticles on their peritoneal retention and therapeutic efficacy against mouse malignant ascites. Int J Pharm 2022; 623:121904. [PMID: 35716981 DOI: 10.1016/j.ijpharm.2022.121904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/11/2022] [Accepted: 06/07/2022] [Indexed: 11/25/2022]
Abstract
Malignant ascites accounts for abdominal pain, dyspnea and anorexia, all of which decrease quality of life in cancer patients. Intraperitoneal chemotherapy is a useful method for managing malignant ascites and nanoparticulate drug delivery system makes it more effective by increasing peritoneal retention of anti-cancer drugs. In this study, we prepared paclitaxel-loaded emulsions and liposomes with different particle sizes and drug release properties, and evaluated their peritoneal retention and therapeutic efficacy in Ehrlich's ascites carcinoma (EAC)-bearing mice. Liposomes with the size of 100 nm were rapidly absorbed from peritoneal cavity into blood after intraperitoneal injection into EAC-bearing mice, whereas 1000-nm liposomes were highly retained in peritoneal cavity. Accordingly, 1000 nm liposomes significantly prolonged survival time of EAC-bearing mice but did not inhibit the ascites accumulation because of too poor paclitaxel release. On the other hand, although peritoneal retention of emulsions themselves was similar irrespective of their sizes, 270-nm emulsions showed the higher PTX retention in ascites than other emulsions, and resulted in significantly prolonged survival time and lower accumulation of ascites in EAC-bearing mice. These results indicate that not only particle size but drug release property is one of key determinants of the biodisposition and therapeutic efficacy of intraperitoneally injected nanoparticulate PTX against malignant ascites.
Collapse
Affiliation(s)
- Yusuke Kono
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Aya Fushimi
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Yuta Yoshizawa
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Kazutaka Higaki
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Ken-Ichi Ogawara
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan.
| |
Collapse
|
13
|
Donnan MD, Kenig-Kozlovsky Y, Quaggin SE. The lymphatics in kidney health and disease. Nat Rev Nephrol 2021; 17:655-675. [PMID: 34158633 DOI: 10.1038/s41581-021-00438-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2021] [Indexed: 02/07/2023]
Abstract
The mammalian vascular system consists of two networks: the blood vascular system and the lymphatic vascular system. Throughout the body, the lymphatic system contributes to homeostatic mechanisms by draining extravasated interstitial fluid and facilitating the trafficking and activation of immune cells. In the kidney, lymphatic vessels exist mainly in the kidney cortex. In the medulla, the ascending vasa recta represent a hybrid lymphatic-like vessel that performs lymphatic-like roles in interstitial fluid reabsorption. Although the lymphatic network is mainly derived from the venous system, evidence supports the existence of lymphatic beds that are of non-venous origin. Following their development and maturation, lymphatic vessel density remains relatively stable; however, these vessels undergo dynamic functional changes to meet tissue demands. Additionally, new lymphatic growth, or lymphangiogenesis, can be induced by pathological conditions such as tissue injury, interstitial fluid overload, hyperglycaemia and inflammation. Lymphangiogenesis is also associated with conditions such as polycystic kidney disease, hypertension, ultrafiltration failure and transplant rejection. Although lymphangiogenesis has protective functions in clearing accumulated fluid and immune cells, the kidney lymphatics may also propagate an inflammatory feedback loop, exacerbating inflammation and fibrosis. Greater understanding of lymphatic biology, including the developmental origin and function of the lymphatics and their response to pathogenic stimuli, may aid the development of new therapeutic agents that target the lymphatic system.
Collapse
Affiliation(s)
- Michael D Donnan
- Feinberg Cardiovascular & Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Division of Nephrology & Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Susan E Quaggin
- Feinberg Cardiovascular & Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Division of Nephrology & Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
14
|
Testosterone-loaded GM1 micelles targeted to the intracellular androgen receptor for the specific induction of genomic androgen signaling. Int J Pharm 2020; 591:119985. [DOI: 10.1016/j.ijpharm.2020.119985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/08/2020] [Accepted: 10/11/2020] [Indexed: 02/07/2023]
|
15
|
Lymph-directed immunotherapy - Harnessing endogenous lymphatic distribution pathways for enhanced therapeutic outcomes in cancer. Adv Drug Deliv Rev 2020; 160:115-135. [PMID: 33039497 DOI: 10.1016/j.addr.2020.10.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/07/2020] [Accepted: 10/02/2020] [Indexed: 12/13/2022]
Abstract
The advent of immunotherapy has revolutionised the treatment of some cancers. Harnessing the immune system to improve tumour cell killing is now standard clinical practice and immunotherapy is the first line of defence for many cancers that historically, were difficult to treat. A unifying concept in cancer immunotherapy is the activation of the immune system to mount an attack on malignant cells, allowing the body to recognise, and in some cases, eliminate cancer. However, in spite of a significant proportion of patients that respond well to treatment, there remains a subset who are non-responders and a number of cancers that cannot be treated with these therapies. These limitations highlight the need for targeted delivery of immunomodulators to both tumours and the effector cells of the immune system, the latter being highly concentrated in the lymphatic system. In this context, macromolecular therapies may provide a significant advantage. Macromolecules are too large to easily access blood capillaries and instead typically exhibit preferential uptake via the lymphatic system. In contexts where immune cells are the therapeutic target, particularly in cancer therapy, this may be advantageous. In this review, we examine in brief the current immunotherapy approaches in cancer and how macromolecular and nanomedicine strategies may improve the therapeutic profiles of these drugs. We subsequently discuss how therapeutics directed either by parenteral or mucosal administration, can be taken up by the lymphatics thereby accessing a larger proportion of the body's immune cells. Finally, we detail drug delivery strategies that have been successfully employed to target the lymphatics.
Collapse
|
16
|
Calvo A, Moreno E, Larrea E, Sanmartín C, Irache JM, Espuelas S. Berberine-Loaded Liposomes for the Treatment of Leishmania infantum-Infected BALB/c Mice. Pharmaceutics 2020; 12:pharmaceutics12090858. [PMID: 32916948 PMCID: PMC7558179 DOI: 10.3390/pharmaceutics12090858] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/31/2020] [Accepted: 09/07/2020] [Indexed: 01/19/2023] Open
Abstract
Berberine (BER)—an anti-inflammatory quaternary isoquinoline alkaloid extracted from plants—has been reported to have a variety of biologic properties, including antileishmanial activity. This work addresses the preparation of BER-loaded liposomes with the aim to prevent its rapid liver metabolism and improve the drug selective delivery to the infected organs in visceral leishmaniasis (VL). BER liposomes (LP-BER) displayed a mean size of 120 nm, negative Z-potential of −38 mV and loaded 6 nmol/μmol lipid. In vitro, the loading of BER in liposomes enhanced its selectivity index more than 7-fold by decreasing its cytotoxicity to macrophages. In mice, LP-BER enhanced drug accumulation in the liver and the spleen. Consequently, the liposomal delivery of the drug reduced parasite burden in the liver and spleen by three and one logarithms (99.2 and 93.5%), whereas the free drug only decreased the infection in the liver by 1-log. The organ drug concentrations—far from IC50 values— indicate that BER immunomodulatory activity or drug metabolites also contribute to the efficacy. Although LP-BER decreased 10-fold—an extremely rapid clearance of the free drug in mice—the value remains very high. Moreover, LP-BER reduced plasma triglycerides levels.
Collapse
Affiliation(s)
- Alba Calvo
- ISTUN Institute of Tropical Health, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain; (A.C.); (E.M.); (E.L.); (C.S.)
- Chemistry and Pharmaceutical Technology Department, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain;
| | - Esther Moreno
- ISTUN Institute of Tropical Health, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain; (A.C.); (E.M.); (E.L.); (C.S.)
- Chemistry and Pharmaceutical Technology Department, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain;
- IdisNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Esther Larrea
- ISTUN Institute of Tropical Health, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain; (A.C.); (E.M.); (E.L.); (C.S.)
- IdisNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Carmen Sanmartín
- ISTUN Institute of Tropical Health, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain; (A.C.); (E.M.); (E.L.); (C.S.)
- Chemistry and Pharmaceutical Technology Department, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain;
- IdisNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Juan Manuel Irache
- Chemistry and Pharmaceutical Technology Department, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain;
- IdisNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Socorro Espuelas
- ISTUN Institute of Tropical Health, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain; (A.C.); (E.M.); (E.L.); (C.S.)
- Chemistry and Pharmaceutical Technology Department, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain;
- IdisNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- Correspondence: ; Tel.: +34-948-425-600 (ext. 806310)
| |
Collapse
|
17
|
Farra R, Maruna M, Perrone F, Grassi M, Benedetti F, Maddaloni M, El Boustani M, Parisi S, Rizzolio F, Forte G, Zanconati F, Cemazar M, Kamensek U, Dapas B, Grassi G. Strategies for Delivery of siRNAs to Ovarian Cancer Cells. Pharmaceutics 2019; 11:547. [PMID: 31652539 PMCID: PMC6835428 DOI: 10.3390/pharmaceutics11100547] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/15/2019] [Accepted: 10/18/2019] [Indexed: 12/13/2022] Open
Abstract
The unmet need for novel therapeutic options for ovarian cancer (OC) deserves further investigation. Among the different novel drugs, small interfering RNAs (siRNAs) are particularly attractive because of their specificity of action and efficacy, as documented in many experimental setups. However, the fragility of these molecules in the biological environment necessitates the use of delivery materials able to protect them and possibly target them to the cancer cells. Among the different delivery materials, those based on polymers and lipids are considered very interesting because of their biocompatibility and ability to carry/deliver siRNAs. Despite these features, polymers and lipids need to be engineered to optimize their delivery properties for OC. In this review, we concentrated on the description of the therapeutic potential of siRNAs and polymer-/lipid-based delivery systems for OC. After a brief description of OC and siRNA features, we summarized the strategies employed to minimize siRNA delivery problems, the targeting strategies to OC, and the preclinical models available. Finally, we discussed the most interesting works published in the last three years about polymer-/lipid-based materials for siRNA delivery.
Collapse
Affiliation(s)
- Rossella Farra
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy.
| | - Matea Maruna
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy.
| | - Francesca Perrone
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy.
| | - Mario Grassi
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6/A, I-34127 Trieste, Italy.
| | - Fabio Benedetti
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, I-34127 Trieste, Italy.
| | - Marianna Maddaloni
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy.
| | - Maguie El Boustani
- Pathology Unit, IRCCS CRO Aviano-National Cancer Institute, I-33081 Aviano, Italy.
- Doctoral School in Molecular Biomedicine, University of Trieste, I-34127 Trieste, Italy.
| | - Salvo Parisi
- Pathology Unit, IRCCS CRO Aviano-National Cancer Institute, I-33081 Aviano, Italy.
- Doctoral School in Molecular Biomedicine, University of Trieste, I-34127 Trieste, Italy.
| | - Flavio Rizzolio
- Pathology Unit, IRCCS CRO Aviano-National Cancer Institute, I-33081 Aviano, Italy.
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, I-30123 Venezia-Mestre, Italy.
| | - Giancarlo Forte
- International Clinical Research Center (ICRC), St Anne's University Hospital, CZ-65691 Brno, Czech Republic.
| | - Fabrizio Zanconati
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, I-34149 Trieste, Italy.
| | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia.
- Faculty of Health Sciences, University of Primorska, Polje 42, SI-6310 Izola, Slovenia.
| | - Urska Kamensek
- Faculty of Health Sciences, University of Primorska, Polje 42, SI-6310 Izola, Slovenia.
| | - Barbara Dapas
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy.
| | - Gabriele Grassi
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy.
| |
Collapse
|
18
|
Lee G, Han S, Inocencio I, Cao E, Hong J, Phillips ARJ, Windsor JA, Porter CJH, Trevaskis NL. Lymphatic Uptake of Liposomes after Intraperitoneal Administration Primarily Occurs via the Diaphragmatic Lymphatics and is Dependent on Liposome Surface Properties. Mol Pharm 2019; 16:4987-4999. [DOI: 10.1021/acs.molpharmaceut.9b00855] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Given Lee
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3052, Australia
| | - Sifei Han
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Iasmin Inocencio
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Enyuan Cao
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Jiwon Hong
- Applied Surgery and Metabolism Laboratory, School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
- Surgical and Translational Research Centre, University of Auckland, Auckland 1023, New Zealand
| | - Anthony R. J. Phillips
- Applied Surgery and Metabolism Laboratory, School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
- Surgical and Translational Research Centre, University of Auckland, Auckland 1023, New Zealand
| | - John A. Windsor
- Surgical and Translational Research Centre, University of Auckland, Auckland 1023, New Zealand
- HBP/Upper GI Unit, Department of General Surgery, Auckland City Hospital, Auckland 1023, New Zealand
| | - Christopher J. H. Porter
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3052, Australia
| | - Natalie L. Trevaskis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
19
|
Blei F. Update August 2019. Lymphat Res Biol 2019. [DOI: 10.1089/lrb.2019.29068.fb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|