1
|
Zhong L, Wang YH, Kahlfuss S, Jishage M, McDermott M, Yang J, Tao AY, Hu K, Noyer L, Raphael D, Patel D, Knight TE, Chitlur M, Machaca K, Feske S. STIM1-mediated NFAT signaling synergizes with STAT1 to control T-bet expression and T H1 differentiation. Nat Immunol 2025; 26:484-496. [PMID: 39984734 DOI: 10.1038/s41590-025-02089-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 01/13/2025] [Indexed: 02/23/2025]
Abstract
Stromal interaction molecule 1 (STIM1) is critical for store-operated Ca2+ entry (SOCE) and T cell activation. T helper 1 (TH1) cells, which express T-bet (encoded by TBX21), mediate immunity to intracellular pathogens. Although SOCE is known to regulate other TH lineages, its role in Th1 differentiation remains unclear. Here, we report a patient with an intronic loss-of-function mutation in STIM1, which abolishes SOCE and causes immunodeficiency. We demonstrate that SOCE promotes nuclear factor of activated T cells (NFAT) binding to conserved noncoding sequence (CNS)-12 in the TBX21 enhancer and enables NFAT to synergize with STAT1 to mediate TBX21 expression. While SOCE-deficient CD4+ T cells have reduced expression of TBX21 in the absence of interleukin-12 (IL-12), their expression of IL-12 receptors β1 and β2 is increased, sensitizing them to IL-12 signaling and allowing IL-12 to rescue T-bet expression. Our study reveals that the STIM1-SOCE-NFAT signaling axis is essential for the differentiation of Th1 cells depending on the cytokine milieu.
Collapse
Affiliation(s)
- Li Zhong
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Yin-Hu Wang
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Sascha Kahlfuss
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
- Institute of Molecular and Clinical Immunology, Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Otto-von-Guericke-University, Magdeburg, Germany
| | - Miki Jishage
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Maxwell McDermott
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Jun Yang
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Anthony Y Tao
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Ke Hu
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Lucile Noyer
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Dimitrius Raphael
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Devisha Patel
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Tristan E Knight
- Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI, USA
- Kapiolani Medical Center for Women and Children, Burns School of Medicine, Honolulu, HI, USA
| | - Meera Chitlur
- Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI, USA
- Central Michigan University College of Medicine, Detroit, MI, USA
| | - Khaled Machaca
- Calcium Signaling Group, Research Department, Weill Cornell Medicine, Doha, Qatar; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Stefan Feske
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
2
|
Wang X, Hong Y, Zou J, Zhu B, Jiang C, Lu L, Tian J, Yang J, Rui K. The role of BATF in immune cell differentiation and autoimmune diseases. Biomark Res 2025; 13:22. [PMID: 39876010 PMCID: PMC11776340 DOI: 10.1186/s40364-025-00733-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/17/2025] [Indexed: 01/30/2025] Open
Abstract
As a member of the Activator Protein-1 (AP-1) transcription factor family, the Basic Leucine Zipper Transcription Factor (BATF) mediates multiple biological functions of immune cells through its involvement in protein interactions and binding to DNA. Recent studies have demonstrated that BATF not only plays pivotal roles in innate and adaptive immune responses but also acts as a crucial factor in the differentiation and function of various immune cells. Lines of evidence indicate that BATF is associated with the onset and progression of allergic diseases, graft-versus-host disease, tumors, and autoimmune diseases. This review summarizes the roles of BATF in the development and function of innate and adaptive immune cells, as well as its immunoregulatory effects in the development of autoimmune diseases, which may enhance the current understanding of the pathogenesis of autoimmune diseases and facilitate the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Xiaomeng Wang
- Department of Laboratory Medicine, Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yue Hong
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jinmei Zou
- Department of Rheumatology, School of Medicine, Mianyang Central Hospital, University of Electronic Science and Technology of China, Mianyang, China
| | - Bo Zhu
- Department of Laboratory Medicine, Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Chao Jiang
- Department of Orthopaedics, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Liwei Lu
- Department of Pathology, Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| | - Jie Tian
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China.
| | - Jing Yang
- Department of Rheumatology, School of Medicine, Mianyang Central Hospital, University of Electronic Science and Technology of China, Mianyang, China.
| | - Ke Rui
- Department of Laboratory Medicine, Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| |
Collapse
|
3
|
Granados ST, Yanushkevich S, Lok J, Concepcion AR. Analysis of Store-Operated Ca 2+ Entry in Primary T Cells. Methods Mol Biol 2025; 2904:91-113. [PMID: 40220228 DOI: 10.1007/978-1-0716-4414-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2025]
Abstract
Calcium ions (Ca2+) are key second messengers for signal transduction in virtually all cells. In T cells, Ca2+ signals are generated upon T cell receptor (TCR) stimulation in a two-step integrated process known as Store-Operated Ca2+ Entry (SOCE), which involves the depletion of endoplasmic reticulum (ER) Ca2+ stores, followed by the influx of extracellular Ca2+ via Ca2+ release-activated Ca2+ (CRAC) channels. The Ca2+ influx generated by the opening of CRAC channels in T cells is essential for their metabolic reprogramming, proliferation, cytokine production, and adaptive immune response.In this book chapter, we review general concepts, discuss the rationale for using ratiometric Ca2+-sensitive chemical dyes to monitor SOCE in primary murine T cells, and weigh the advantages and disadvantages of the different methods that are currently available to detect cytosolic Ca2+ dynamics. We provide detailed protocols to measure SOCE in mouse T cells including flow cytometry, fluorescent microplate reader and single-cell imaging, and offer a general guideline on how to quantify SOCE in these cells. These protocols are easily adaptable to monitor cytosolic Ca2+ dynamics in human T cells and other cell types of interest.
Collapse
Affiliation(s)
- Sara T Granados
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Sergei Yanushkevich
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Jessica Lok
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Axel R Concepcion
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL, USA.
- Committee on Immunology, University of Chicago, Chicago, IL, USA.
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA.
- University of Chicago Medicine Comprehensive Cancer Center, Chicago, IL, USA.
| |
Collapse
|
4
|
Karakus IS, Catak MC, Frohne A, Bayram Catak F, Yorgun Altunbas M, Babayeva R, Bal SK, Eltan SB, Yalcin Gungoren E, Esen F, Zemheri IE, Karakoc-Aydiner E, Ozen A, Caki-Kilic S, Kraakman MJ, Boztug K, Baris S. Rapamycin Controls Lymphoproliferation and Reverses T-Cell Responses in a Patient with a Novel STIM1 Loss-of-Function Deletion. J Clin Immunol 2024; 44:94. [PMID: 38578569 PMCID: PMC10997552 DOI: 10.1007/s10875-024-01682-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/27/2024] [Indexed: 04/06/2024]
Abstract
PURPOSE Deficiency of stromal interaction molecule 1 (STIM1) results in combined immunodeficiency accompanied by extra-immunological findings like enamel defects and myopathy. We here studied a patient with a STIM1 loss-of-function mutation who presented with severe lymphoproliferation. We sought to explore the efficacy of the mTOR inhibitor rapamycin in controlling disease manifestations and reversing aberrant T-cell subsets and functions, which has never been used previously in this disorder. METHODS Clinical findings of the patient were collected over time. We performed immunological evaluations before and after initiation of rapamycin treatment, including detailed lymphocyte subset analyses, alterations in frequencies of circulating T follicular helper (cTFH) and regulatory T (Treg) cells and their subtypes as well as T cell activation and proliferation capacities. RESULTS A novel homozygous exon 2 deletion in STIM1 was detected in a 3-year-old girl with severe lymphoproliferation, recurrent infections, myopathy, iris hypoplasia, and enamel hypoplasia. Lymphoproliferation was associated with severe T-cell infiltrates. The deletion resulted in a complete loss of protein expression, associated with a lack of store-operated calcium entry response, defective T-cell activation, proliferation, and cytokine production. Interestingly, patient blood contained fewer cTFH and increased circulating follicular regulatory (cTFR) cells. Abnormal skewing towards TH2-like responses in certain T-cell subpopulations like cTFH, non-cTFH memory T-helper, and Treg cells was associated with increased eosinophil numbers and serum IgE levels. Treatment with rapamycin controlled lymphoproliferation, improved T-cell activation and proliferation capacities, reversed T-cell responses, and repressed high IgE levels and eosinophilia. CONCLUSIONS This study enhances our understanding of STIM1 deficiency by uncovering additional abnormal T-cell responses, and reveals for the first time the potential therapeutic utility of rapamycin for this disorder.
Collapse
Affiliation(s)
| | - Mehmet Cihangir Catak
- Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Fevzi Çakmak Mah. No: 41, Pendik/Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | | | - Feyza Bayram Catak
- Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Fevzi Çakmak Mah. No: 41, Pendik/Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Melek Yorgun Altunbas
- Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Fevzi Çakmak Mah. No: 41, Pendik/Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Royala Babayeva
- Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Fevzi Çakmak Mah. No: 41, Pendik/Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | | | - Sevgi Bilgic Eltan
- Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Fevzi Çakmak Mah. No: 41, Pendik/Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Ezgi Yalcin Gungoren
- Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Fevzi Çakmak Mah. No: 41, Pendik/Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Fehim Esen
- Department of Ophthalmology, School of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| | - Itir Ebru Zemheri
- Department of Pathology, Umraniye Education and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Elif Karakoc-Aydiner
- Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Fevzi Çakmak Mah. No: 41, Pendik/Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Ahmet Ozen
- Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Fevzi Çakmak Mah. No: 41, Pendik/Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Suar Caki-Kilic
- Division of Pediatric Hematology, Umraniye Education and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | | | - Kaan Boztug
- Anna Children's Cancer Research Institute, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Anna Children's Hospital, Vienna, Austria
| | - Safa Baris
- Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Fevzi Çakmak Mah. No: 41, Pendik/Istanbul, Turkey.
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey.
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey.
| |
Collapse
|
5
|
Bacsa B, Hopl V, Derler I. Synthetic Biology Meets Ca 2+ Release-Activated Ca 2+ Channel-Dependent Immunomodulation. Cells 2024; 13:468. [PMID: 38534312 PMCID: PMC10968988 DOI: 10.3390/cells13060468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/27/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
Many essential biological processes are triggered by the proximity of molecules. Meanwhile, diverse approaches in synthetic biology, such as new biological parts or engineered cells, have opened up avenues to precisely control the proximity of molecules and eventually downstream signaling processes. This also applies to a main Ca2+ entry pathway into the cell, the so-called Ca2+ release-activated Ca2+ (CRAC) channel. CRAC channels are among other channels are essential in the immune response and are activated by receptor-ligand binding at the cell membrane. The latter initiates a signaling cascade within the cell, which finally triggers the coupling of the two key molecular components of the CRAC channel, namely the stromal interaction molecule, STIM, in the ER membrane and the plasma membrane Ca2+ ion channel, Orai. Ca2+ entry, established via STIM/Orai coupling, is essential for various immune cell functions, including cytokine release, proliferation, and cytotoxicity. In this review, we summarize the tools of synthetic biology that have been used so far to achieve precise control over the CRAC channel pathway and thus over downstream signaling events related to the immune response.
Collapse
Affiliation(s)
- Bernadett Bacsa
- Division of Medical Physics und Biophysics, Medical University of Graz, A-8010 Graz, Austria;
| | - Valentina Hopl
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria;
| | - Isabella Derler
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria;
| |
Collapse
|
6
|
Mignen O, Vannier JP, Schneider P, Renaudineau Y, Abdoul-Azize S. Orai1 Ca 2+ channel modulators as therapeutic tools for treating cancer: Emerging evidence! Biochem Pharmacol 2024; 219:115955. [PMID: 38040093 DOI: 10.1016/j.bcp.2023.115955] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/25/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
In non-excitable cells, Orai proteins represent the main channel for Store-Operated Calcium Entry (SOCE), and also mediate various store-independent Calcium Entry (SICE) pathways. Deregulation of these pathways contribute to increased tumor cell proliferation, migration, metastasis, and angiogenesis. Among Orais, Orai1 is an attractive therapeutic target explaining the development of specific modulators. Therapeutic trials using Orai1 channel inhibitors have been evaluated for treating diverse diseases such as psoriasis and acute pancreatitis, and emerging data suggest that Orai1 channel modulators may be beneficial for cancer treatment. This review discusses herein the importance of Orai1 channel modulators as potential therapeutic tools and the added value of these modulators for treating cancer.
Collapse
Affiliation(s)
| | | | | | - Yves Renaudineau
- Laboratory of Immunology, CHU Purpan Toulouse, INSERM U1291, CNRS U5051, University Toulouse III, 31062 Toulouse, France
| | - Souleymane Abdoul-Azize
- LBAI, UMR1227, Univ Brest, Inserm, Brest, France; Normandie Univ., UNIROUEN, INSERM, U1234, Rouen 76000, France.
| |
Collapse
|
7
|
Abdelnaby AE, Trebak M. Store-Operated Ca 2+ Entry in Fibrosis and Tissue Remodeling. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2024; 7:25152564241291374. [PMID: 39659877 PMCID: PMC11629433 DOI: 10.1177/25152564241291374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/29/2024] [Accepted: 09/27/2024] [Indexed: 12/12/2024]
Abstract
Fibrosis is a pathological condition characterized by excessive tissue deposition of extracellular matrix (ECM) components, leading to scarring and impaired function across multiple organ systems. This complex process is mediated by a dynamic interplay between cell types, including myofibroblasts, fibroblasts, immune cells, epithelial cells, and endothelial cells, each contributing distinctively through various signaling pathways. Critical to the regulatory mechanisms involved in fibrosis is store-operated calcium entry (SOCE), a calcium entry pathway into the cytosol active at the endoplasmic reticulum-plasma membrane contact sites and common to all cells. This review addresses the multifactorial nature of fibrosis with a focus on the pivotal roles of different cell types. We highlight the essential functions of myofibroblasts in ECM production, the transformation of fibroblasts, and the participation of immune cells in modulating the fibrotic landscape. We emphasize the contributions of SOCE in these different cell types to fibrosis, by exploring the involvement of SOCE in cellular functions such as proliferation, migration, secretion, and inflammatory responses. The examination of the cellular and molecular mechanisms of fibrosis and the role of SOCE in these mechanisms offers the potential of targeting SOCE as a therapeutic strategy for mitigating or reversing fibrosis.
Collapse
Affiliation(s)
- Ahmed Emam Abdelnaby
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Mohamed Trebak
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
8
|
Manolios N, Papaemmanouil J, Adams DJ. The role of ion channels in T cell function and disease. Front Immunol 2023; 14:1238171. [PMID: 37705981 PMCID: PMC10497217 DOI: 10.3389/fimmu.2023.1238171] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/21/2023] [Indexed: 09/15/2023] Open
Abstract
T lymphocytes (T cells) are an important sub-group of cells in our immune system responsible for cell-mediated adaptive responses and maintaining immune homeostasis. Abnormalities in T cell function, lead the way to the persistence of infection, impaired immunosurveillance, lack of suppression of cancer growth, and autoimmune diseases. Ion channels play a critical role in the regulation of T cell signaling and cellular function and are often overlooked and understudied. Little is known about the ion "channelome" and the interaction of ion channels in immune cells. This review aims to summarize the published data on the impact of ion channels on T cell function and disease. The importance of ion channels in health and disease plus the fact they are easily accessible by virtue of being expressed on the surface of plasma membranes makes them excellent drug targets.
Collapse
Affiliation(s)
- Nicholas Manolios
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Department of Rheumatology, Westmead Hospital, Sydney, NSW, Australia
| | - John Papaemmanouil
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - David J. Adams
- Illawarra Health and Medical Research Institute (IHMRI), Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
9
|
O'Connor RS, May MJ, Freedman BD. Opening Orai's to see B-yond current paradigms. Cell Calcium 2023; 113:102758. [PMID: 37209447 PMCID: PMC10804139 DOI: 10.1016/j.ceca.2023.102758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/22/2023]
Affiliation(s)
- Roderick S O'Connor
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA 19104
| | - Michael J May
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania
| | - Bruce D Freedman
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104.
| |
Collapse
|
10
|
Li Y, Xu Z, Wang J, Pei X, Chen J, Wan Q. Alginate-based biomaterial-mediated regulation of macrophages in bone tissue engineering. Int J Biol Macromol 2023; 230:123246. [PMID: 36649862 DOI: 10.1016/j.ijbiomac.2023.123246] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/06/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
Many studies in the bone tissue engineering field have focused on the interactions between materials and bone marrow stem cells. With the development of osteoimmunology, the immune cells' essential role in biomaterial-mediated osteogenesis has increasingly been recognized. As a promising therapeutic candidate for bone defects due to their prominent biocompatibility, tuneability, and versatility, it is necessary to develop alginate-based biomaterials that can regulate immune cells, especially macrophages. Moreover, modified alginate-based biomaterials may facilitate better regulation of macrophage phenotypes by the newly endowed physicochemical properties, including stiffness, porosity, hydrophilicity, and electrical properties. This review summarizes the role of macrophages in bone regeneration and the recent research progress related to the effects of alginate-based biomaterials on macrophages applied in bone tissue engineering. This review also emphasizes the strategies adopted by material design to regulate macrophage phenotypes, the corresponding macrophage responses, and their contribution to osteogenesis.
Collapse
Affiliation(s)
- Yuanyuan Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhengyi Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jian Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xibo Pei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Junyu Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; West China School of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Qianbing Wan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; West China School of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
11
|
Emrich SM, Yoast RE, Zhang X, Fike AJ, Wang YH, Bricker KN, Tao AY, Xin P, Walter V, Johnson MT, Pathak T, Straub AC, Feske S, Rahman ZSM, Trebak M. Orai3 and Orai1 mediate CRAC channel function and metabolic reprogramming in B cells. eLife 2023; 12:e84708. [PMID: 36803766 PMCID: PMC9998091 DOI: 10.7554/elife.84708] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/16/2023] [Indexed: 02/23/2023] Open
Abstract
The essential role of store-operated Ca2+ entry (SOCE) through Ca2+ release-activated Ca2+ (CRAC) channels in T cells is well established. In contrast, the contribution of individual Orai isoforms to SOCE and their downstream signaling functions in B cells are poorly understood. Here, we demonstrate changes in the expression of Orai isoforms in response to B cell activation. We show that both Orai3 and Orai1 mediate native CRAC channels in B cells. The combined loss of Orai1 and Orai3, but not Orai3 alone, impairs SOCE, proliferation and survival, nuclear factor of activated T cells (NFAT) activation, mitochondrial respiration, glycolysis, and the metabolic reprogramming of primary B cells in response to antigenic stimulation. Nevertheless, the combined deletion of Orai1 and Orai3 in B cells did not compromise humoral immunity to influenza A virus infection in mice, suggesting that other in vivo co-stimulatory signals can overcome the requirement of BCR-mediated CRAC channel function in B cells. Our results shed important new light on the physiological roles of Orai1 and Orai3 proteins in SOCE and the effector functions of B lymphocytes.
Collapse
Affiliation(s)
- Scott M Emrich
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of MedicineHersheyUnited States
| | - Ryan E Yoast
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of MedicineHersheyUnited States
| | - Xuexin Zhang
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of MedicineHersheyUnited States
| | - Adam J Fike
- Department of Microbiology and Immunology, Pennsylvania State University College of MedicineHersheyUnited States
| | - Yin-Hu Wang
- Department of Pathology, New York University School of MedicineNew YorkUnited States
| | - Kristen N Bricker
- Department of Microbiology and Immunology, Pennsylvania State University College of MedicineHersheyUnited States
| | - Anthony Y Tao
- Department of Pathology, New York University School of MedicineNew YorkUnited States
| | - Ping Xin
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of MedicinePittsburghUnited States
- Vascular Medicine Institute, University of Pittsburgh School of MedicinePittsburghUnited States
| | - Vonn Walter
- Department of Public Health Sciences, Pennsylvania State University College of MedicineHersheyUnited States
| | - Martin T Johnson
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of MedicineHersheyUnited States
| | - Trayambak Pathak
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of MedicinePittsburghUnited States
- Vascular Medicine Institute, University of Pittsburgh School of MedicinePittsburghUnited States
| | - Adam C Straub
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of MedicinePittsburghUnited States
- Vascular Medicine Institute, University of Pittsburgh School of MedicinePittsburghUnited States
| | - Stefan Feske
- Department of Pathology, New York University School of MedicineNew YorkUnited States
| | - Ziaur SM Rahman
- Department of Microbiology and Immunology, Pennsylvania State University College of MedicineHersheyUnited States
| | - Mohamed Trebak
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of MedicineHersheyUnited States
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of MedicinePittsburghUnited States
- Vascular Medicine Institute, University of Pittsburgh School of MedicinePittsburghUnited States
| |
Collapse
|
12
|
Betzler AC, Ushmorov A, Brunner C. The transcriptional program during germinal center reaction - a close view at GC B cells, Tfh cells and Tfr cells. Front Immunol 2023; 14:1125503. [PMID: 36817488 PMCID: PMC9936310 DOI: 10.3389/fimmu.2023.1125503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
The germinal center (GC) reaction is a key process during an adaptive immune response to T cell specific antigens. GCs are specialized structures within secondary lymphoid organs, in which B cell proliferation, somatic hypermutation and antibody affinity maturation occur. As a result, high affinity antibody secreting plasma cells and memory B cells are generated. An effective GC response needs interaction between multiple cell types. Besides reticular cells and follicular dendritic cells, particularly B cells, T follicular helper (Tfh) cells as well as T follicular regulatory (Tfr) cells are a key player during the GC reaction. Whereas Tfh cells provide help to GC B cells in selection processes, Tfr cells, a specialized subset of regulatory T cells (Tregs), are able to suppress the GC reaction maintaining the balance between immune activation and tolerance. The formation and function of GCs is regulated by a complex network of signals and molecules at multiple levels. In this review, we highlight recent developments in GC biology by focusing on the transcriptional program regulating the GC reaction. This review focuses on the transcriptional co-activator BOB.1/OBF.1, whose important role for GC B, Tfh and Tfr cell differentiation became increasingly clear in recent years. Moreover, we outline how deregulation of the GC transcriptional program can drive lymphomagenesis.
Collapse
Affiliation(s)
- Annika C. Betzler
- Department of Oto-Rhino-Laryngology, Ulm University Medical Center, Ulm, Germany
| | - Alexey Ushmorov
- Ulm University, Institute of Physiological Chemistry, Ulm, Germany
| | - Cornelia Brunner
- Department of Oto-Rhino-Laryngology, Ulm University Medical Center, Ulm, Germany,*Correspondence: Cornelia Brunner,
| |
Collapse
|
13
|
Steiner P, Arlt E, Boekhoff I, Gudermann T, Zierler S. TPC Functions in the Immune System. Handb Exp Pharmacol 2023; 278:71-92. [PMID: 36639434 DOI: 10.1007/164_2022_634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Two-pore channels (TPCs) are novel intracellular cation channels, which play a key role in numerous (patho-)physiological and immunological processes. In this chapter, we focus on their function in immune cells and immune reactions. Therefore, we first give an overview of the cellular immune response and the partaking immune cells. Second, we concentrate on ion channels which in the past have been shown to play an important role in the regulation of immune cells. The main focus is then directed to TPCs, which are primarily located in the membranes of acidic organelles, such as lysosomes or endolysosomes but also certain other vesicles. They regulate Ca2+ homeostasis and thus Ca2+ signaling in immune cells. Due to this important functional role, TPCs are enjoying increasing attention within the field of immunology in the last few decades but are also becoming more pertinent as pharmacological targets for the treatment of pro-inflammatory diseases such as allergic hypersensitivity. However, to uncover the precise molecular mechanism of TPCs in immune cell responses, further molecular, genetic, and ultrastructural investigations on TPCs are necessary, which then may pave the way to develop novel therapeutic strategies to treat diseases such as anaphylaxis more specifically.
Collapse
Affiliation(s)
- Philip Steiner
- Institute of Pharmacology, Faculty of Medicine, Johannes Kepler University Linz, Linz, Austria
| | - Elisabeth Arlt
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ingrid Boekhoff
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Thomas Gudermann
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Susanna Zierler
- Institute of Pharmacology, Faculty of Medicine, Johannes Kepler University Linz, Linz, Austria.
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
14
|
Jardin I, Berna-Erro A, Nieto-Felipe J, Macias A, Sanchez-Collado J, Lopez JJ, Salido GM, Rosado JA. Similarities and Differences between the Orai1 Variants: Orai1α and Orai1β. Int J Mol Sci 2022; 23:ijms232314568. [PMID: 36498894 PMCID: PMC9735889 DOI: 10.3390/ijms232314568] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
Orai1, the first identified member of the Orai protein family, is ubiquitously expressed in the animal kingdom. Orai1 was initially characterized as the channel responsible for the store-operated calcium entry (SOCE), a major mechanism that allows cytosolic calcium concentration increments upon receptor-mediated IP3 generation, which results in intracellular Ca2+ store depletion. Furthermore, current evidence supports that abnormal Orai1 expression or function underlies several disorders. Orai1 is, together with STIM1, the key element of SOCE, conducting the Ca2+ release-activated Ca2+ (CRAC) current and, in association with TRPC1, the store-operated Ca2+ (SOC) current. Additionally, Orai1 is involved in non-capacitative pathways, as the arachidonate-regulated or LTC4-regulated Ca2+ channel (ARC/LRC), store-independent Ca2+ influx activated by the secretory pathway Ca2+-ATPase (SPCA2) and the small conductance Ca2+-activated K+ channel 3 (SK3). Furthermore, Orai1 possesses two variants, Orai1α and Orai1β, the latter lacking 63 amino acids in the N-terminus as compared to the full-length Orai1α form, which confers distinct features to each variant. Here, we review the current knowledge about the differences between Orai1α and Orai1β, the implications of the Ca2+ signals triggered by each variant, and their downstream modulatory effect within the cell.
Collapse
|
15
|
Wang YH, Noyer L, Kahlfuss S, Raphael D, Tao AY, Kaufmann U, Zhu J, Mitchell-Flack M, Sidhu I, Zhou F, Vaeth M, Thomas PG, Saunders SP, Stauderman K, Curotto de Lafaille MA, Feske S. Distinct roles of ORAI1 in T cell-mediated allergic airway inflammation and immunity to influenza A virus infection. SCIENCE ADVANCES 2022; 8:eabn6552. [PMID: 36206339 PMCID: PMC9544339 DOI: 10.1126/sciadv.abn6552] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
T cell activation and function depend on Ca2+ signals mediated by store-operated Ca2+ entry (SOCE) through Ca2+ release-activated Ca2+ (CRAC) channels formed by ORAI1 proteins. We here investigated how SOCE controls T cell function in pulmonary inflammation during a T helper 1 (TH1) cell-mediated response to influenza A virus (IAV) infection and TH2 cell-mediated allergic airway inflammation. T cell-specific deletion of Orai1 did not exacerbate pulmonary inflammation and viral burdens following IAV infection but protected mice from house dust mite-induced allergic airway inflammation. ORAI1 controlled the expression of genes including p53 and E2F transcription factors that regulate the cell cycle in TH2 cells in response to allergen stimulation and the expression of transcription factors and cytokines that regulate TH2 cell function. Systemic application of a CRAC channel blocker suppressed allergic airway inflammation without compromising immunity to IAV infection, suggesting that inhibition of SOCE is a potential treatment for allergic airway disease.
Collapse
Affiliation(s)
- Yin-Hu Wang
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Lucile Noyer
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Sascha Kahlfuss
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Dimitrius Raphael
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Anthony Y. Tao
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ulrike Kaufmann
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Jingjie Zhu
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Marisa Mitchell-Flack
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ikjot Sidhu
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Fang Zhou
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Martin Vaeth
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Paul G. Thomas
- St. Jude’s Children’s Research Hospital, Memphis, TN 38105, USA
| | - Sean P. Saunders
- Division of Pulmonary, Critical Care and Sleep Medicine, Departments of Medicine and Cell Biology, New York University Grossman School of Medicine, NY 10016, USA
| | | | - Maria A. Curotto de Lafaille
- Division of Pulmonary, Critical Care and Sleep Medicine, Departments of Medicine and Cell Biology, New York University Grossman School of Medicine, NY 10016, USA
| | - Stefan Feske
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
16
|
Birla H, Xia J, Gao X, Zhao H, Wang F, Patel S, Amponsah A, Bekker A, Tao YX, Hu H. Toll-like receptor 4 activation enhances Orai1-mediated calcium signal promoting cytokine production in spinal astrocytes. Cell Calcium 2022; 105:102619. [PMID: 35780680 PMCID: PMC9928533 DOI: 10.1016/j.ceca.2022.102619] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/31/2022] [Accepted: 06/22/2022] [Indexed: 11/26/2022]
Abstract
Toll-like receptor 4 (TLR4) has been implicated in pathological conditions including chronic pain. Activation of astrocytic TLRs leads to the synthesis of pro-inflammatory cytokines like interleukin 6 (IL-6) and tumor necrosis factor-ɑ (TNF-α), which can cause pathological inflammation and tissue damage in the central nervous system. However, the mechanisms of TLR4-mediated cytokine releases from astrocytes are incomplete understood. Our previous study has shown that Orai1, a key component of calcium release activated calcium channels (CRACs), mediates Ca2+ entry in astrocytes. How Orai1 contributes to TLR4 signaling remains unclear. Here we show that Orai1 deficiency drastically attenuated lipopolysaccharides (LPS)-induced TNF-α and IL-6 production in astrocytes. Acute LPS treatment did not induce Ca2+ response and had no effect on thapsigargin (Ca2+-ATPase inhibitor)-induced store-dependent Ca2+ entry. Inhibition or knockdown of Orai1 showed no reduction in LPS-induced p-ERK1/2, p-c-Jun N-terminal kinase, or p-p38 MAPK activation. Interestingly, Orai1 protein level was significantly increased after LPS exposure, which was blocked by inhibition of NF-κB activity. LPS significantly increased basal Ca2+ level and SOCE after exposure to astrocytes. Moreover, elevating extracellular Ca2+ concentration increased cytosolic Ca2+ level, which was almost eliminated in Orai1 KO astrocytes. Our study reports novel findings that Orai1 acts as a Ca2+ leak channel regulating the basal Ca2+ level and enhancing cytokine production in astrocytes under the inflammatory condition. These findings highlight an important role of Orai1 in astrocytic TRL4 function and may suggest that Orai1 could be a potential therapeutic target for neuroinflammatory disorders including chronic pain.
Collapse
Affiliation(s)
- Hareram Birla
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Jingsheng Xia
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Xinghua Gao
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Hui Zhao
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Fengying Wang
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Shivam Patel
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Akwasi Amponsah
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Alex Bekker
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Yuan-Xiang Tao
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103,Department of Pharmacology, Physiology & Neuroscience, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Huijuan Hu
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA; Department of Pharmacology, Physiology & Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA.
| |
Collapse
|
17
|
Xue Y, Zhou S, Xie W, Meng M, Ma N, Zhang H, Wang Y, Chang G, Shen X. STIM1–Orai1 Interaction Exacerbates LPS-Induced Inflammation and Endoplasmic Reticulum Stress in Bovine Hepatocytes through Store-Operated Calcium Entry. Genes (Basel) 2022; 13:genes13050874. [PMID: 35627260 PMCID: PMC9140735 DOI: 10.3390/genes13050874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/08/2022] [Accepted: 05/11/2022] [Indexed: 12/15/2022] Open
Abstract
(1) Background: The basic mechanism of store-operated Ca2+ entry (SOCE) in bovine hepatocytes (BHEC) is related to the activation of STIM1 and Orai1. The effect of STIM1- and Orai1-dependent calcium ion signaling on the NF-κB signaling pathway is unclear. (2) Methods: In this study, the expression of STIM1 and Orai1 in BHEC was regulated. RT-qPCR, Western blotting, and an immunofluorescence antibody (IFA) assay were performed to elucidate the effect of inflammation and endoplasmic reticulum stress (ERS) in BHEC. (3) Results: First of all, in this study, RT-PCR and Western blotting were used to detect the levels of IκB, NF-κB, and inflammatory factors (IL-6, IL-8, and TNF-α) and the expression of genes and proteins related to ERS (PERK, IRE1, ATF6, GRP78, and CHOP), which reached peak levels simultaneously when BHEC were treated with 16 μg/mL LPS for 1 h. For STIM1, we overexpressed STIM1 in BHEC by using plasmid transfection technology. The results showed that after overexpression of STIM1, the gene and protein expression of STIM1 levels were significantly upregulated, and the expression of Orai1 on the cell membrane was also upregulated, which directly activated the SOCE channel and induced inflammation and ERS in BHEC. The overexpression group was then treated with LPS, and it was found that the overexpression of STIM1 could enhance LPS-induced BHEC inflammation and ERS in BHEC. For Orai1, BHEC were pretreated with 8 μg/mL of the specific inhibitor BTP2 for 6 h. It was found that BTP2 could inhibit the expression of mRNA in Orai1, significantly reduce the gene expression of STIM1, inhibit the activation of the NF-κB signaling pathway, and alleviate inflammation and ERS in BHEC under LPS stimulation. (4) Conclusions: In conclusion, STIM1/Orai1 can intervene and exacerbate LPS-induced inflammation and ERS in bovine hepatocytes through SOCE.
Collapse
|
18
|
Abstract
Store-operated Ca2+ entry (SOCE) is a ubiquitous Ca2+ signaling pathway that is evolutionarily conserved across eukaryotes. SOCE is triggered physiologically when the endoplasmic reticulum (ER) Ca2+ stores are emptied through activation of inositol 1,4,5-trisphosphate receptors. SOCE is mediated by the Ca2+ release-activated Ca2+ (CRAC) channels, which are highly Ca2+ selective. Upon store depletion, the ER Ca2+-sensing STIM proteins aggregate and gain extended conformations spanning the ER-plasma membrane junctional space to bind and activate Orai, the pore-forming proteins of hexameric CRAC channels. In recent years, studies on STIM and Orai tissue-specific knockout mice and gain- and loss-of-function mutations in humans have shed light on the physiological functions of SOCE in various tissues. Here, we describe recent findings on the composition of native CRAC channels and their physiological functions in immune, muscle, secretory, and neuronal systems to draw lessons from transgenic mice and human diseases caused by altered CRAC channel activity.
Collapse
Affiliation(s)
- Scott M Emrich
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA;
| | - Ryan E Yoast
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA;
| | - Mohamed Trebak
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA;
- Department of Pharmacology and Chemical Biology and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
19
|
The volume-regulated anion channel LRRC8C suppresses T cell function by regulating cyclic dinucleotide transport and STING-p53 signaling. Nat Immunol 2022; 23:287-302. [PMID: 35105987 DOI: 10.1038/s41590-021-01105-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 12/01/2021] [Indexed: 12/20/2022]
Abstract
The volume-regulated anion channel (VRAC) is formed by LRRC8 proteins and is responsible for the regulatory volume decrease (RVD) after hypotonic cell swelling. Besides chloride, VRAC transports other molecules, for example, immunomodulatory cyclic dinucleotides (CDNs) including 2'3'cGAMP. Here, we identify LRRC8C as a critical component of VRAC in T cells, where its deletion abolishes VRAC currents and RVD. T cells of Lrrc8c-/- mice have increased cell cycle progression, proliferation, survival, Ca2+ influx and cytokine production-a phenotype associated with downmodulation of p53 signaling. Mechanistically, LRRC8C mediates the transport of 2'3'cGAMP in T cells, resulting in STING and p53 activation. Inhibition of STING recapitulates the phenotype of LRRC8C-deficient T cells, whereas overexpression of p53 inhibits their enhanced T cell function. Lrrc8c-/- mice have exacerbated T cell-dependent immune responses, including immunity to influenza A virus infection and experimental autoimmune encephalomyelitis. Our results identify cGAMP uptake through LRRC8C and STING-p53 signaling as a new inhibitory signaling pathway in T cells and adaptive immunity.
Collapse
|
20
|
The Frequency of Intrathyroidal Follicular Helper T Cells Varies with the Progression of Graves’ Disease and Hashimoto’s Thyroiditis. J Immunol Res 2022; 2022:4075522. [PMID: 35224111 PMCID: PMC8872690 DOI: 10.1155/2022/4075522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 01/18/2022] [Indexed: 11/17/2022] Open
Abstract
Objective Autoimmune thyroid diseases (AITD), mainly Graves' disease (GD) and Hashimoto's thyroiditis (HT), are common organ-specific autoimmune diseases characterized by circulating antibodies and lymphocyte infiltration. Follicular helper T (Tfh) cell dysregulation is involved in the development of autoimmune pathologies. We aimed to explore the role of intrathyroidal and circulating Tfh cells in patients with GD and HT. Methods Ultrasound-guided thyroid fine-needle aspiration (FNA) was conducted in 35 patients with GD, 40 patients with HT, and 22 patients with nonautoimmune thyroid disease (nAITD). Peripheral blood samples were also obtained from 40 patients with GD, 40 patients with HT, and 40 healthy controls. The frequencies of intrathyroidal and circulating Tfh cells from FNA and peripheral blood samples were assessed by flow cytometry. Additionally, the correlations between the frequencies of the Tfh cells and the levels of autoantibodies and hormones or disease duration were analyzed. Results The frequency of intrathyroidal CD4+CXCR5+ICOShigh Tfh cells was higher in HT patients than in GD patients. Significant correlations were identified between the percentages of circulating and intrathyroidal Tfh cells and the serum concentrations of thyroid autoantibodies, especially thyroglobulin antibodies (TgAb), in AITD. Intrathyroidal CD4+CXCR5+ICOShigh Tfh cells were positively correlated with free triiodothyronine (FT3) in HT patients but negatively correlated with FT3 in GD patients. In addition, HT patients with a longer disease duration had an increased frequency of intrathyroidal CD4+CXCR5+ICOShigh and CD4+CXCR5+PD-1+ Tfh cells. In contrast, in the GD patients, a longer disease duration did not affect the frequency of intrathyroidal CD4+CXCR5+ICOShigh but was associated with a lower frequency of CD4+CXCR5+PD-1+ Tfh cells. Conclusions Our data suggest that intrathyroidal Tfh cells might play a role in the pathogenesis of AITD and they are potential immunobiomarkers for AITD.
Collapse
|
21
|
Ribeiro F, Perucha E, Graca L. T follicular cells: the regulators of germinal centre homeostasis. Immunol Lett 2022; 244:1-11. [DOI: 10.1016/j.imlet.2022.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 01/05/2023]
|
22
|
Wu H, Brand B, Eckstein M, Hochrein SM, Shumanska M, Dudek J, Nickel A, Maack C, Bogeski I, Vaeth M. Genetic Ablation of the Mitochondrial Calcium Uniporter (MCU) Does not Impair T Cell-Mediated Immunity In Vivo. Front Pharmacol 2022; 12:734078. [PMID: 34987384 PMCID: PMC8721163 DOI: 10.3389/fphar.2021.734078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/22/2021] [Indexed: 12/11/2022] Open
Abstract
T cell activation and differentiation is associated with metabolic reprogramming to cope with the increased bioenergetic demand and to provide metabolic intermediates for the biosynthesis of building blocks. Antigen receptor stimulation not only promotes the metabolic switch of lymphocytes but also triggers the uptake of calcium (Ca2+) from the cytosol into the mitochondrial matrix. Whether mitochondrial Ca2+ influx through the mitochondrial Ca2+ uniporter (MCU) controls T cell metabolism and effector function remained, however, enigmatic. Using mice with T cell-specific deletion of MCU, we here show that genetic inactivation of mitochondrial Ca2+ uptake increased cytosolic Ca2+ levels following antigen receptor stimulation and store-operated Ca2+ entry (SOCE). However, ablation of MCU and the elevation of cytosolic Ca2+ did not affect mitochondrial respiration, differentiation and effector function of inflammatory and regulatory T cell subsets in vitro and in animal models of T cell-mediated autoimmunity and viral infection. These data suggest that MCU-mediated mitochondrial Ca2+ uptake is largely dispensable for murine T cell function. Our study has also important technical implications. Previous studies relied mostly on pharmacological inhibition or transient knockdown of mitochondrial Ca2+ uptake, but our results using mice with genetic deletion of MCU did not recapitulate these findings. The discrepancy of our study to previous reports hint at compensatory mechanisms in MCU-deficient mice and/or off-target effects of current MCU inhibitors.
Collapse
Affiliation(s)
- Hao Wu
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Benjamin Brand
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Miriam Eckstein
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Sophia M Hochrein
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Magdalena Shumanska
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Jan Dudek
- Comprehensive Heart Failure Center (CHFC), University Hospital, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Alexander Nickel
- Comprehensive Heart Failure Center (CHFC), University Hospital, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Christoph Maack
- Comprehensive Heart Failure Center (CHFC), University Hospital, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Ivan Bogeski
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Martin Vaeth
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| |
Collapse
|
23
|
Song T, Li P, Wang Q, Hao B, Wang Y, Bian Y, Shi Y. Comprehensive Assessment of the STIMs and Orais Expression in Polycystic Ovary Syndrome. Front Endocrinol (Lausanne) 2022; 13:874987. [PMID: 35669690 PMCID: PMC9165061 DOI: 10.3389/fendo.2022.874987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a heterogeneous endocrine disease characterized by irregular menstrual, hyperandrogenism, and polycystic ovaries. The definitive mechanism of the disorder is not fully elucidated. Store-operated Ca2+ entry (SOCE) plays a role in glucose and lipid metabolism, inflammation, hormone secretion, and cell proliferation. STIMs and Orais are the main elements of SOCE. The potential role of SOCE in PCOS pathogenesis remains unclear. METHODS The expression of STIMs and Orais in granulosa cells (GCs) derived from 83 patients with PCOS and 83 controls were analyzed, respectively, by using quantitative reverse transcription polymerase chain reaction. Binary regression analysis was used to identify the factors affecting PCOS after adjusted by body mass index and age. Pearson correlation analysis was used to determine the association between PCOS phenotypes and SOCE genes expression. RESULTS Significantly increased expression of STIM1, STIM2, Orai1, and Orai2 were observed in patients with PCOS compared with controls (P = 0.037, P = 0.004, P ≤ 0.001, and P = 0.013, respectively), whereas the expression of Orai3 was decreased (P = 0.003). In addition, the expression levels of STIMs and Orais were identified as the factors affecting PCOS (P < 0.05). The expressions of these genes were correlated with hormone level and antral follicle count (P < 0.05). CONCLUSIONS For the first time, our findings indicated that the elements of SOCE were differently expressed, where STIM1, STIM2, Orai1, and Orai2 significantly increased, whereas Orai3 decreased in PCOS GCs, which might be dominantly involved in dysfunction of ovarian GCs and hormonal changes in PCOS.
Collapse
Affiliation(s)
- Tian Song
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Ping Li
- Department of Reproductive Medicine, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Reproduction and Genetics, Xiamen, China
| | - Qiumin Wang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Baozhen Hao
- Shandong Provincial Maternal and Child Health Care Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ying Wang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Yuehong Bian
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Yuhua Shi
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- Guangdong Provincial People’s Hospital, Guangzhou, China
- *Correspondence: Yuhua Shi,
| |
Collapse
|
24
|
Dhande IS, Braun MC, Doris PA. Emerging Insights Into Chronic Renal Disease Pathogenesis in Hypertension From Human and Animal Genomic Studies. Hypertension 2021; 78:1689-1700. [PMID: 34757770 PMCID: PMC8577298 DOI: 10.1161/hypertensionaha.121.18112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The pathogenic links between elevated blood pressure and chronic kidney disease remain obscure. This article examines progress in population genetics and in animal models of hypertension and chronic kidney disease. It also provides a critique of the application of genome-wide association studies to understanding the heritability of renal function. Emerging themes identified indicate that heritable risk of chronic kidney disease in hypertension can arise from genetic variation in (1) glomerular and tubular protein handling mechanisms; (2) autoregulatory capacity of the renal vasculature; and (3) innate and adaptive immune mechanisms. Increased prevalence of hypertension-associated chronic kidney disease that occurs with aging may reflect amplification of heritable risks by normal aging processes affecting immunity and autoregulation.
Collapse
Affiliation(s)
- Isha S. Dhande
- Center for Human Genetics, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas HSC, Houston (I.S.D., P.A.D.)
| | - Michael C. Braun
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston (M.C.B.)
| | - Peter A. Doris
- Center for Human Genetics, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas HSC, Houston (I.S.D., P.A.D.)
| |
Collapse
|
25
|
Jin YH, Kim DE, Jang MS, Min JS, Kwon S. Bavachin produces immunoadjuvant activity by targeting the NFAT signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 93:153796. [PMID: 34689117 DOI: 10.1016/j.phymed.2021.153796] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/19/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Bavachin, a flavonoid compound isolated from the seeds and fruits of Psoralea corylifolia l. (family Fabaceae), is used as a traditional medicine in Asia. Indeed, it is reported to have various medicinal functions such as estrogenic and antiinflammatory activities among others. However, to date, the effects of bavachin on T cell activation have yet to be reported. PURPOSE AND STUDY DESIGN We aimed to determine the effects of bavachin on the activation of a human T cell line in vitro and on antigen-specific immune responses in mice in vivo. METHODS In a nuclear factor of activated T cells (NFAT) activity assay, the Jurkat T cell line expressing a luciferase reporter driven by an NFAT-response element was stimulated with antihuman CD3/CD28 antibody and bavachin. Furthermore, the level of cytokine production was measured in the Jurkat T cell line stimulated with phorbol 12-myristate 13-acetate/ionomycin and bavachin using an IL-2 ELISA and a cytometric bead array assay. For in vivo analyses, mice were subcutaneously immunized with an antigen (ovalbumin protein) and bavachin, and the immune responses of mice were analyzed by FACS analysis, a T cell proliferation assay, a cytokine ELISA, and an antiovalbumin-specific antibody ELISA. RESULTS We found that bavachin activated NFAT-mediated transcription in the human T cell line in vitro. In mice, when bavachin was administered with the antigen, an increase in T cell responses and antibody production specific to the antigen was observed. CONCLUSION Our results suggest that bavachin has immunoadjuvant and immunomodulation effects, which arise through activation of the NFAT signaling pathway.
Collapse
Affiliation(s)
- Young-Hee Jin
- KM Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Korea; Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea.
| | - Dong Eon Kim
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea; KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea
| | - Min Seong Jang
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea; Department of Non-Clinical Studies, Korea Institute of Toxicology, Daejeon 34114, Korea
| | - Jung Sun Min
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea; KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea
| | - Sunoh Kwon
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea; KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.
| |
Collapse
|
26
|
Li X, Zeng Q, Wang S, Li M, Chen X, Huang Y, Chen B, Zhou M, Lai Y, Guo C, Zhao S, Zhang H, Yang N. CRAC Channel Controls the Differentiation of Pathogenic B Cells in Lupus Nephritis. Front Immunol 2021; 12:779560. [PMID: 34745151 PMCID: PMC8569388 DOI: 10.3389/fimmu.2021.779560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 10/05/2021] [Indexed: 12/02/2022] Open
Abstract
Store-operated Ca2+ release-activated Ca2+ (CRAC) channel is the main Ca2+ influx pathway in lymphocytes and is essential for immune response. Lupus nephritis (LN) is an autoimmune disease characterized by the production of autoantibodies due to widespread loss of immune tolerance. In this study, RNA-seq analysis revealed that calcium transmembrane transport and calcium channel activity were enhanced in naive B cells from patients with LN. The increased expression of ORAI1, ORAI2, and STIM2 in naive B cells from patients with LN was confirmed by flow cytometry and Western blot, implying a role of CRAC channel in B-cell dysregulation in LN. For in vitro study, CRAC channel inhibition by YM-58483 or downregulation by ORAI1-specific small-interfering RNA (siRNA) decreased the phosphorylation of Ca2+/calmodulin-dependent protein kinase2 (CaMK2) and suppressed Blimp-1 expression in primary human B cells, resulting in decreased B-cell differentiation and immunoglobulin G (IgG) production. B cells treated with CaMK2-specific siRNA showed defects in plasma cell differentiation and IgG production. For in vivo study, YM-58483 not only ameliorated the progression of LN but also prevented the development of LN. MRL/lpr lupus mice treated with YM-58483 showed lower percentage of plasma cells in the spleen and reduced concentration of anti-double-stranded DNA antibodies in the sera significantly. Importantly, mice treated with YM-58483 showed decreased immune deposition in the glomeruli and alleviated kidney damage, which was further confirmed in NZM2328 lupus mice. Collectively, CRAC channel controlled the differentiation of pathogenic B cells and promoted the progression of LN. This study provides insights into the pathogenic mechanisms of LN and that CRAC channel could serve as a potential therapeutic target for LN.
Collapse
Affiliation(s)
- Xue Li
- Department of Rheumatology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qin Zeng
- Department of Rheumatology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shuyi Wang
- Department of Rheumatology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mengyuan Li
- Department of Rheumatology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xionghui Chen
- Department of Nephrology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuefang Huang
- Department of Pediatrics, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Binfeng Chen
- Department of Rheumatology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mianjing Zhou
- Department of Rheumatology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yimei Lai
- Department of Rheumatology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chaohuan Guo
- Department of Rheumatology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Siyuan Zhao
- Department of Rheumatology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hui Zhang
- Department of Rheumatology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Precision Medicine, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Niansheng Yang
- Department of Rheumatology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
27
|
Functional role of crosslinking in alginate scaffold for drug delivery and tissue engineering: A review. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110807] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
28
|
Liu D, Yan J, Sun J, Liu B, Ma W, Li Y, Shao X, Qi H. BCL6 controls contact-dependent help delivery during follicular T-B cell interactions. Immunity 2021; 54:2245-2255.e4. [PMID: 34464595 PMCID: PMC8528402 DOI: 10.1016/j.immuni.2021.08.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/15/2021] [Accepted: 08/04/2021] [Indexed: 11/29/2022]
Abstract
BCL6 is required for development of follicular T helper (Tfh) cells to support germinal center (GC) formation. However, it is not clear what unique functions programmed by BCL6 can explain its absolute essentiality in T cells for GC formation. We found that ablation of one Bcl6 allele did not appreciably alter early T cell activation and follicular localization but inhibited GC formation and Tfh cell maintenance. BCL6 impinged on Tfh calcium signaling and also controlled Tfh entanglement with and CD40L delivery to B cells. Amounts of BCL6 protein and nominal frequencies of Tfh cells markedly changed within hours after strengths of T-B cell interactions were altered in vivo, while CD40L overexpression rectified both defective GC formation and Tfh cell maintenance because of the BCL6 haploinsufficiency. Our results reveal BCL6 functions in Tfh cells that are essential for GC formation and suggest that BCL6 helps maintain Tfh cell phenotypes in a T cell non-autonomous manner.
Collapse
Affiliation(s)
- Dan Liu
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China; Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing 100084, China; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jiacong Yan
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China; Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing 100084, China; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China; School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jiahui Sun
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China; Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing 100084, China; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Bo Liu
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China; Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing 100084, China; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Weiwei Ma
- Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing 100084, China; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Ye Li
- Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing 100084, China; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xingxing Shao
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China; Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing 100084, China; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China; School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hai Qi
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China; Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing 100084, China; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China; School of Life Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing 100084, China; Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
29
|
Zhao SJ, Jia H, Xu XL, Bu WB, Zhang Q, Chen X, Ji J, Sun JF. Identification of the Role of Wnt/β-Catenin Pathway Through Integrated Analyses and in vivo Experiments in Vitiligo. Clin Cosmet Investig Dermatol 2021; 14:1089-1103. [PMID: 34511958 PMCID: PMC8423189 DOI: 10.2147/ccid.s319061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/14/2021] [Indexed: 01/18/2023]
Abstract
Purpose Vitiligo is an acquired depigmentation skin disease, which affects an average of 1% of the world’s population. The purpose of this study is to identify the key genes and pathways responsible for vitiligo and find new therapeutic targets. Methods The datasets GSE65127, GSE53146, and GSE75819 were downloaded from the Gene Expression Omnibus (GEO) database. R language was used to identify the differentially expressed genes (DEGs) between lesional skin of vitiligo and non-lesional skin. Next, the key pathways were obtained by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. The protein–protein interaction (PPI) networks were conducted by STRING database and Cytoscape software. Subsequently, module analysis was performed by Cytoscape. Among these results, the Wnt/β-catenin pathway and melanogenesis pathway caught our attention. The expression level of β-catenin, microphthalmia-associated transcription factor (MITF) and tyrosinase (TYR) was detected by immunofluorescence in vitiligo lesions and healthy skin. Moreover, zebrafish was treated with XAV-939, an inhibitor of the Wnt/β-catenin pathway. After that, the area of melanin granules as a percentage of the head area was measured. The mRNA expression of β-catenin, lymphoid-enhancing factor 1(lef1), tyr and mitf were detected by q-PCR (quantitative polymerase chain reaction) in zebrafish (Danio rerio). Results A total of 2442 DEGs were identified, including 1068 upregulated and 1374 downregulated DEGs. The key pathways were identified by GO and KEGG analyses, such as “NOD-like receptor signaling pathway”, “Wnt signaling pathway”, “Melanogenesis”, “mTOR signaling pathway”, “PI3K-Akt signaling pathway”, “Calcium signaling pathway” and “Rap1 signaling pathway”. The immunofluorescence results showed that the level of β-catenin, MITF and TYR was significantly downregulated in vitiligo lesional skin. In zebrafish, the mean percentage area of melanin granules and the expression of β-catenin, lef1, tyr and mitf were decreased after treated with XAV-939. Conclusion The present study identified key genes and signaling pathways associated with the pathophysiology of vitiligo. Among them, the Wnt/β-catenin pathway played an essential role in pigmentation and could be a breakthrough point in vitiligo treatment.
Collapse
Affiliation(s)
- Si-Jia Zhao
- Department of Pathology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, People's Republic of China
| | - Hong Jia
- Department of Dermatology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, People's Republic of China
| | - Xiu-Lian Xu
- Department of Pathology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, People's Republic of China
| | - Wen-Bo Bu
- Department of Dermatologic Surgery, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, People's Republic of China
| | - Qian Zhang
- Department of Dermatologic Surgery, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, People's Republic of China
| | - Xi Chen
- Department of Medicine 3, Universitätsklinikum Erlangen, Friedrich Alexander University Erlangen Nuremberg, Erlangen, Bavaria, Germany
| | - Juan Ji
- Department of Dermatology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, People's Republic of China
| | - Jian-Fang Sun
- Department of Pathology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
30
|
Zhang X, Ge R, Chen H, Ahiafor M, Liu B, Chen J, Fan X. Follicular Helper CD4 + T Cells, Follicular Regulatory CD4 + T Cells, and Inducible Costimulator and Their Roles in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis. Mediators Inflamm 2021; 2021:2058964. [PMID: 34552387 PMCID: PMC8452443 DOI: 10.1155/2021/2058964] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/12/2021] [Accepted: 08/26/2021] [Indexed: 12/13/2022] Open
Abstract
Follicular helper CD4+ T (TFH) cells are a specialized subset of effector T cells that play a central role in orchestrating adaptive immunity. TFH cells mainly promote germinal center (GC) formation, provide help to B cells for immunoglobulin affinity maturation and class-switch recombination of B cells, and facilitate production of long-lived plasma cells and memory B cells. TFH cells express the nuclear transcriptional repressor B cell lymphoma 6 (Bcl-6), the chemokine (C-X-C motif) receptor 5 (CXCR5), the CD28 family members programmed cell death protein-1 (PD-1) and inducible costimulator (ICOS) and are also responsible for the secretion of interleukin-21 (IL-21) and IL-4. Follicular regulatory CD4+ T (TFR) cells, as a regulatory counterpart of TFH cells, participate in the regulation of GC reactions. TFR cells not only express markers of TFH cells but also express markers of regulatory T (Treg) cells containing FOXP3, glucocorticoid-induced tumor necrosis factor receptor (GITR), cytotoxic T lymphocyte antigen 4 (CTLA-4), and IL-10, hence owing to the dual characteristic of TFH cells and Treg cells. ICOS, expressed on activated CD4+ effector T cells, participates in T cell activation, differentiation, and effector process. The expression of ICOS is highest on TFH and TFR cells, indicating it as a key regulator of humoral immunity. Multiple sclerosis (MS) is a severe autoimmune disease that affects the central nervous system and results in disability, mediated by autoreactive T cells with evolving evidence of a remarkable contribution from humoral responses. This review summarizes recent advances regarding TFH cells, TFR cells, and ICOS, as well as their functional characteristics in relation to MS.
Collapse
Affiliation(s)
- Xue Zhang
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, 256603 Shandong, China
| | - Ruli Ge
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, 256603 Shandong, China
| | - Hongliang Chen
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, 256603 Shandong, China
| | - Maxwell Ahiafor
- School of International Studies, Binzhou Medical University, Yantai, 264003 Shandong, China
| | - Bin Liu
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, 256603 Shandong, China
| | - Jinbo Chen
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, 256603 Shandong, China
| | - Xueli Fan
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, 256603 Shandong, China
| |
Collapse
|
31
|
Wang YM, Xu WJ, Xiang LL, Ding M, Zhang JJ, Lu JY, Xie BJ, Gao YD. Store-operated Calcium Entry-associated Regulatory Factor Regulates Airway Inflammation and Airway Remodeling in Asthma Mice Models. Am J Physiol Lung Cell Mol Physiol 2021; 321:L533-L544. [PMID: 34231388 DOI: 10.1152/ajplung.00079.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Store-operated calcium entry (SOCE) is involved in the pathogenesis of airway inflammation and remodeling in asthma. Store-operated calcium entry-associated regulatory factor (SARAF) can down-regulate SOCE. OBJECTIVE We sought to investigate the role of SARAF in the regulation of airway inflammation and remodeling in asthma mice models, as well as in the functional regulation of human airway smooth muscle cells (hASMCs). METHODS Balb/c mice were sensitized and challenged with ovalbumin to establish the asthma mice models. Mice were transfected with lentivirus, which expressed the SARAF gene + GFP or the negative control gene + GFP. Airway resistance was measured with the animal pulmonary function system. Airway inflammation and remodeling were evaluated via histological staining. In vitro cultured hASMCs were transfected with scrambled small interfering RNA(siRNA) or SARAF-specific siRNA respecitvely. The proliferation, migration rate, hypertrophy and SOCE activity of hASMCs were examined with cell counting kit 8, wound healing test, bright field imaging and Ca2+ fluorescence imaging, respectively. SARAF expression was measured by quantitative real-time-PCR. RESULTS Asthma mice models showed decreased SARAF mRNA expression in the lungs. SARAF overexpression attenuated airway inflammation, resistance and also remodeling. Downregulation of SARAF expression with siRNA promoted the proliferation, migration, hypertrophy and SOCE activity in hASMCs. CONCLUSIONS SARAF plays a protective role against airway inflammation and remodeling in asthma mice models by blunting SOCE; SARAF may also be a functional regulating factor of hASMCs.
Collapse
Affiliation(s)
- Yi-Min Wang
- Department of Respiratory Medicine, Zhongnan Hospital of Wuhan University, China.,Department of Allergology, Zhongnan Hospital of Wuhan University, China
| | - Wen-Juan Xu
- Department of Respiratory Medicine, Zhongnan Hospital of Wuhan University, China
| | - Lin-Li Xiang
- Department of Respiratory Medicine, Zhongnan Hospital of Wuhan University, China
| | - Mei Ding
- Department of Allergology, Zhongnan Hospital of Wuhan University, China
| | - Jin-Jin Zhang
- Department of Allergology, Zhongnan Hospital of Wuhan University, China
| | - Jing-Ya Lu
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Bao-Juan Xie
- Department of Respiratory Medicine, Zhongnan Hospital of Wuhan University, China
| | - Ya-Dong Gao
- Department of Allergology, Zhongnan Hospital of Wuhan University, China
| |
Collapse
|
32
|
Basto AP, Graca L. Regulation of antibody responses against self and foreign antigens by Tfr cells: implications for vaccine development. OXFORD OPEN IMMUNOLOGY 2021; 2:iqab012. [PMID: 36845568 PMCID: PMC9914583 DOI: 10.1093/oxfimm/iqab012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/24/2021] [Accepted: 06/16/2021] [Indexed: 01/04/2023] Open
Abstract
The production of antibodies can constitute a powerful protective mechanism against infection, but antibodies can also participate in autoimmunity and allergic responses. Recent advances in the understanding of the regulation of germinal centres (GC), the sites where B cells acquire the ability to produce high-affinity antibodies, offered new prospects for the modulation of antibody production in autoimmunity and vaccination. The process of B cell affinity maturation and isotype switching requires signals from T follicular helper (Tfh) cells. In addition, Foxp3+ T follicular regulatory (Tfr) cells represent the regulatory counterpart of Tfh in the GC reaction. Tfr cells were identified one decade ago and since then it has become clear their role in controlling the emergence of autoreactive B cell clones following infection and immunization. At the same time, Tfr cells are essential for fine-tuning important features of the humoral response directed to foreign antigens that are critical in vaccination. However, this regulation is complex and several aspects of Tfr cell biology are yet to be disclosed. Here, we review the current knowledge about the regulation of antibody responses against self and foreign antigens by Tfr cells and its implications for the future rational design of safer and more effective vaccines.
Collapse
Affiliation(s)
- Afonso P Basto
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Portugal,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Luis Graca
- Correspondence address. Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal. Tel: +351 217999411; Fax: +351 217999412: E-mail:
| |
Collapse
|
33
|
Store-operated Ca 2+ entry as a key oncogenic Ca 2+ signaling driving tumor invasion-metastasis cascade and its translational potential. Cancer Lett 2021; 516:64-72. [PMID: 34089807 DOI: 10.1016/j.canlet.2021.05.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/12/2021] [Accepted: 05/26/2021] [Indexed: 12/25/2022]
Abstract
Tumor metastasis is the primary cause of treatment failure and cancer-related deaths. Store-operated Ca2+ entry (SOCE), which is mediated by stromal interaction molecules (STIM) and ORAI proteins, has been implicated in the tumor invasion-metastasis cascade. Epithelial-mesenchymal transition (EMT) is a cellular program that enables tumor cells to acquire the capacities needed for migration and invasion and the formation of distal metastases. Tumor-associated angiogenesis contributes to metastasis because aberrantly developed vessels offer a path for tumor cell dissemination as well as supply sufficient nutrients for the metastatic colony to develop into metastasis. Recently, increasing evidence has indicated that SOCE alterations actively participate in the multi-step process of tumor metastasis. In addition, the dysregulated expression of STIM/ORAI has been reported to be a predictor of poor prognosis. Herein, we review the latest advances about the critical role of SOCE in the tumor metastasis cascade and the underlying regulatory mechanisms. We emphasize the contributions of SOCE to the EMT program, tumor cell migration and invasion, and angiogenesis. We further discuss the possibility of modulating SOCE or intervening in the downstream signaling pathways as a feasible targeting therapy for cancer treatment.
Collapse
|
34
|
Hu C, Liu H, Pang B, Wu H, Lin X, Zhen Y, Yi H. Supraphysiological estradiol promotes human T follicular helper cell differentiation and favours humoural immunity during in vitro fertilization. J Cell Mol Med 2021; 25:6524-6534. [PMID: 34032001 PMCID: PMC8278094 DOI: 10.1111/jcmm.16651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/27/2021] [Accepted: 05/01/2021] [Indexed: 12/23/2022] Open
Abstract
During pregnancy, humoural immunity is essential for protection against many extracellular pathogens; however, autoimmune diseases may be induced or aggravated. T follicular helper (Tfh) cells contribute to humoural immunity. The aim of this study was to test whether Tfh cell function can be manipulated via hormones. Seventy‐four women who underwent in vitro fertilization were recruited and divided into four groups: menstrual period (MP), controlled ovarian hyperstimulation (COH), embryo transfer (ET) and pregnant after embryo transfer (P). A flow cytometry analysis was performed to identify Tfh cells in peripheral blood mononuclear cells (PBMCs). Bioinformatics analysis revealed a possible pathway between Tfh and B cells. Enzyme‐linked immunosorbent assays were used to detect interleukin (IL)‐21 and IL‐6. The quantitative polymerase chain reaction was performed to quantify BCL‐6, BACH2, XBP‐1, IRF‐4 and G protein‐coupled (GP)ER‐1 mRNA expression. Compared with the MP group, the COH, ET and P groups showed more Tfh and B cells, as well as higher IL‐21, IL‐6, BCL‐6 and BACH2 expression. Furthermore, Tfh cell frequency in PBMCs, as well as serum IL‐21 and IL‐6 levels, were all positively correlated with serum estradiol (E2) levels; the B cell percentage also correlated positively with Tfh cells in PBMCs. Combined with the bioinformatics analysis, XBP‐1, IRF‐4 and GPER‐1 expression was related to E2 levels, both in vivo and in vitro. We speculate that E2 augments Tfh cells and favours humoural immunity. This study indicates that Tfh cell regulation may be a novel target in maintaining the maternal‐foetal immune balance.
Collapse
Affiliation(s)
- Cong Hu
- Central Laboratory, The First Hospital of Jilin University, Changchun, China.,Center for Reproductive Medicine, Center for Prenatal Diagnosis, The First Hospital of Jilin University, Changchun, China
| | - HongLei Liu
- Department of Rheumatology and Immunology, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai, China
| | - Bo Pang
- Central Laboratory, The First Hospital of Jilin University, Changchun, China.,Department of Cardiology, The First Hospital of Jilin University, Changchun, China
| | - Hao Wu
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Xiuying Lin
- Center for Reproductive Medicine, Jilin Province People's Hospital, Changchun, China
| | - Yu Zhen
- Department of Dermatology and Venerology, The First Hospital of Jilin University, Changchun, China.,Key Laboratory of Organ Regeneration and Transplantation, Ministry of Education, Changchun, China
| | - Huanfa Yi
- Central Laboratory, The First Hospital of Jilin University, Changchun, China.,Key Laboratory of Organ Regeneration and Transplantation, Ministry of Education, Changchun, China
| |
Collapse
|
35
|
Ye Y, Wang M, Huang H. Follicular regulatory T cell biology and its role in immune-mediated diseases. J Leukoc Biol 2021; 110:239-255. [PMID: 33938586 DOI: 10.1002/jlb.1mr0321-601rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Follicular regulatory T (Tfr) cells are recently found to be a special subgroup of regulatory T (Treg) cells. Tfr cells play an important role in regulating the germinal center (GC) response, especially modulating follicular helper T (Tfh) cells and GC-B cells, thereby affecting the production of antibodies. Tfr cells are involved in the generation and development of many immune-related and inflammatory diseases. This article summarizes the advances in several aspects of Tfr cell biology, with special focus on definition and phenotype, development and differentiation, regulatory factors, functions, and interactions with T/B cells and molecules involved in performance and regulation of Tfr function. Finally, we highlight the current understanding of Tfr cells involvement in autoimmunity and alloreactivity, and describe some drugs targeting Tfr cells. These latest studies have answered some basic questions in Tfr cell biology and explored the roles of Tfr cells in immune-mediated diseases.
Collapse
Affiliation(s)
- Yishan Ye
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Mowang Wang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China
| |
Collapse
|
36
|
Hao H, Nakayamada S, Tanaka Y. Differentiation, functions, and roles of T follicular regulatory cells in autoimmune diseases. Inflamm Regen 2021; 41:14. [PMID: 33934711 PMCID: PMC8088831 DOI: 10.1186/s41232-021-00164-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/13/2021] [Indexed: 12/14/2022] Open
Abstract
T follicular helper cells participate in stimulating germinal center (GC) formation and supporting B cell differentiation and autoantibody production. However, T follicular regulatory (Tfr) cells suppress B cell activation. Since changes in the number and functions of Tfr cells lead to dysregulated GC reaction and autoantibody response, targeting Tfr cells may benefit the treatment of autoimmune diseases. Differentiation of Tfr cells is a multistage and multifactorial process with various positive and negative regulators. Therefore, understanding the signals regulating Tfr cell generation is crucial for the development of targeted therapies. In this review, we discuss recent studies that have elucidated the roles of Tfr cells in autoimmune diseases and investigated the modulators of Tfr cell differentiation. Additionally, potential immunotherapies targeting Tfr cells are highlighted.
Collapse
Affiliation(s)
- He Hao
- First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi, Kitakyushu, 807-8555, Japan.,Department of Immuno-oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shingo Nakayamada
- First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi, Kitakyushu, 807-8555, Japan
| | - Yoshiya Tanaka
- First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi, Kitakyushu, 807-8555, Japan.
| |
Collapse
|
37
|
Zhao M, Jia S, Gao X, Qiu H, Wu R, Wu H, Lu Q. Comparative Analysis of Global Proteome and Lysine Acetylome Between Naive CD4 + T Cells and CD4 + T Follicular Helper Cells. Front Immunol 2021; 12:643441. [PMID: 33841426 PMCID: PMC8027069 DOI: 10.3389/fimmu.2021.643441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/19/2021] [Indexed: 12/05/2022] Open
Abstract
As a subgroup of CD4+ T helper cells, follicular helper T (Tfh) cells provide help to germinal center B cells and mediate the development of long-lived humoral immunity. Dysregulation of Tfh cells is associated with several major autoimmune diseases. Although recent studies showed that Tfh cell differentiation is controlled by the transcription factor Bcl6, cytokines, and cell-cell signals, limited information is available on the proteome and post-translational modifications (PTMs) of proteins in human Tfh cells. In the present study, we investigated quantitative proteome and acetylome in human naive CD4+ T cells and in vitro induced Tfh (iTfh) cells using the tandem mass tag (TMT) labeling technique, antibody-based affinity enrichment, and high-resolution liquid chromatography-mass spectrometry (LC-MS)/mass spectrometry (MS) analysis. In total, we identified 802 upregulated proteins and 598 downregulated proteins at the threshold of 1.5-fold in iTfh cells compared to naive CD4+ T cells. With the aid of intensive bioinformatics, the biological process, the cellular compartment, the molecular function, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and protein–protein interaction of these differentially expressed proteins were revealed. Moreover, the acetylome data showed that 22 lysine (K) acetylated proteins are upregulated and 26 K acetylated proteins are downregulated in iTfh cells compared to the naive CD4+ T cells, among which 11 differentially acetylated K residues in core histones were identified, indicating that protein acetylation and epigenetic mechanism are involved in regulating Tfh cell differentiation. The study provides some important clues for investigating T cell activation and Tfh cell differentiation.
Collapse
Affiliation(s)
- Ming Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-Related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
| | - Sujie Jia
- Department of Pharmaceutics, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Xiaofei Gao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-Related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
| | - Hong Qiu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-Related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
| | - Ruifang Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-Related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
| | - Haijing Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-Related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
38
|
The Involvement of Innate and Adaptive Immunity in the Initiation and Perpetuation of Sjögren's Syndrome. Int J Mol Sci 2021; 22:ijms22020658. [PMID: 33440862 PMCID: PMC7826728 DOI: 10.3390/ijms22020658] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/01/2021] [Accepted: 01/06/2021] [Indexed: 02/07/2023] Open
Abstract
Sjogren’s syndrome (SS) is a chronic autoimmune disease characterized by the infiltration of exocrine glands including salivary and lachrymal glands responsible for the classical dry eyes and mouth symptoms (sicca syndrome). The spectrum of disease manifestations stretches beyond the classical sicca syndrome with systemic manifestations including arthritis, interstitial lung involvement, and neurological involvement. The pathophysiology underlying SS is not well deciphered, but several converging lines of evidence have supported the conjuncture of different factors interplaying together to foster the initiation and perpetuation of the disease. The innate and adaptive immune system play a cardinal role in this process. In this review, we discuss the inherent parts played by both the innate and adaptive immune system in the pathogenesis of SS.
Collapse
|
39
|
Li G, Ruan S, Zhao X, Liu Q, Dou Y, Mao F. Transcriptomic signatures and repurposing drugs for COVID-19 patients: findings of bioinformatics analyses. Comput Struct Biotechnol J 2020; 19:1-15. [PMID: 33312453 PMCID: PMC7719282 DOI: 10.1016/j.csbj.2020.11.056] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/24/2020] [Accepted: 11/28/2020] [Indexed: 12/16/2022] Open
Abstract
The novel coronavirus SARS-CoV-2 is damaging the world's social and economic fabrics seriously. Effective drugs are urgently needed to decrease the high mortality rate of COVID-19 patients. Unfortunately, effective antiviral drugs or vaccines are currently unavailable. Herein, we systematically evaluated the effect of SARS-CoV-2 on gene expression of both lung tissue and blood from COVID-19 patients using transcriptome profiling. Differential gene expression analysis revealed potential core mechanism of COVID-19-induced pneumonia in which IFN-α, IFN-β, IFN-γ, TNF and IL6 triggered cytokine storm mediated by neutrophil, macrophage, B and DC cells. Weighted gene correlation network analysis identified two gene modules that are highly correlated with clinical traits of COVID-19 patients, and confirmed that over-activation of immune system-mediated cytokine release syndrome is the underlying pathogenic mechanism for acute phase of COVID-19 infection. It suggested that anti-inflammatory therapies may be promising regimens for COVID-19 patients. Furthermore, drug repurposing analysis of thousands of drugs revealed that TNFα inhibitor etanercept and γ-aminobutyric acid-B receptor (GABABR) agonist baclofen showed most significant reversal power to COVID-19 gene signature, so we are highly optimistic about their clinical use for COVID-19 treatment. In addition, our results suggested that adalimumab, tocilizumab, rituximab and glucocorticoids may also have beneficial effects in restoring normal transcriptome, but not chloroquine, hydroxychloroquine or interferons. Controlled clinical trials of these candidate drugs are needed in search of effective COVID-19 treatment in current crisis.
Collapse
Affiliation(s)
- Guobing Li
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shasha Ruan
- Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
- The First Clinical College of Wuhan University, Wuhan, Hubei 430060, China
| | - Xiaolu Zhao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Qi Liu
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Yali Dou
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Fengbiao Mao
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
40
|
Influence of anti-osteoporosis treatments on the incidence of COVID-19 in patients with non-inflammatory rheumatic conditions. Aging (Albany NY) 2020; 12:19923-19937. [PMID: 33080571 PMCID: PMC7655189 DOI: 10.18632/aging.104117] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022]
Abstract
Coronavirus disease 19 (COVID-19) is currently a global pandemic that affects patients with other pathologies. Here, we investigated the influence of treatments for osteoporosis and other non-inflammatory rheumatic conditions, such as osteoarthritis and fibromyalgia, on COVID-19 incidence. To this end, we conducted a cross-sectional study of 2,102 patients being treated at the Rheumatology Service of Hospital del Mar (Barcelona, Spain). In our cohort, COVID-19 cumulative incidence from March 1 to May 3, 2020 was compared to population estimates for the same city. We used Poisson regression models to determine the adjusted relative risk ratios for COVID-19 associated with different treatments and comorbidities. Denosumab, zoledronate and calcium were negatively associated with COVID-19 incidence. Some analgesics, particularly pregabalin and most of the studied antidepressants, were positively associated with COVID-19 incidence, whereas duloxetine presented a negative association. Oral bisphosphonates, vitamin D, thiazide diuretics, anti-hypertensive drugs and chronic non-steroidal anti-inflammatory drugs had no effect on COVID-19 incidence in the studied population. Our results provide novel evidence to support the maintenance of the main anti-osteoporosis treatments in COVID-19 patients, which may be of particular relevance to elderly patients affected by the SARS-CoV-2 pandemic.
Collapse
|
41
|
Panagiotakopoulou V, Ivanyuk D, De Cicco S, Haq W, Arsić A, Yu C, Messelodi D, Oldrati M, Schöndorf DC, Perez MJ, Cassatella RP, Jakobi M, Schneiderhan-Marra N, Gasser T, Nikić-Spiegel I, Deleidi M. Interferon-γ signaling synergizes with LRRK2 in neurons and microglia derived from human induced pluripotent stem cells. Nat Commun 2020; 11:5163. [PMID: 33057020 PMCID: PMC7560616 DOI: 10.1038/s41467-020-18755-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 09/09/2020] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease-associated kinase LRRK2 has been linked to IFN type II (IFN-γ) response in infections and to dopaminergic neuronal loss. However, whether and how LRRK2 synergizes with IFN-γ remains unclear. In this study, we employed dopaminergic neurons and microglia differentiated from patient-derived induced pluripotent stem cells carrying LRRK2 G2019S, the most common Parkinson's disease-associated mutation. We show that IFN-γ enhances the LRRK2 G2019S-dependent negative regulation of AKT phosphorylation and NFAT activation, thereby increasing neuronal vulnerability to immune challenge. Mechanistically, LRRK2 G2019S suppresses NFAT translocation via calcium signaling and possibly through microtubule reorganization. In microglia, LRRK2 modulates cytokine production and the glycolytic switch in response to IFN-γ in an NFAT-independent manner. Activated LRRK2 G2019S microglia cause neurite shortening, indicating that LRRK2-driven immunological changes can be neurotoxic. We propose that synergistic LRRK2/IFN-γ activation serves as a potential link between inflammation and neurodegeneration in Parkinson's disease.
Collapse
Affiliation(s)
- Vasiliki Panagiotakopoulou
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, 72076, Germany
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, 72076, Germany
| | - Dina Ivanyuk
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, 72076, Germany
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, 72076, Germany
| | - Silvia De Cicco
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, 72076, Germany
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, 72076, Germany
| | - Wadood Haq
- Centre for Ophthalmology, Institute for Ophthalmic Research University of Tübingen, University of Tübingen, Tübingen, 72076, Germany
| | - Aleksandra Arsić
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, 72076, Germany
| | - Cong Yu
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, 72076, Germany
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, 72076, Germany
| | - Daria Messelodi
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, 72076, Germany
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, 72076, Germany
| | - Marvin Oldrati
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, 72076, Germany
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, 72076, Germany
| | - David C Schöndorf
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, 72076, Germany
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, 72076, Germany
| | - Maria-Jose Perez
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, 72076, Germany
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, 72076, Germany
| | - Ruggiero Pio Cassatella
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, 72076, Germany
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, 72076, Germany
| | - Meike Jakobi
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770, Reutlingen, Germany
| | - Nicole Schneiderhan-Marra
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770, Reutlingen, Germany
| | - Thomas Gasser
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, 72076, Germany
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, 72076, Germany
| | - Ivana Nikić-Spiegel
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, 72076, Germany
| | - Michela Deleidi
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, 72076, Germany.
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, 72076, Germany.
| |
Collapse
|
42
|
Abstract
T cells are an essential component of the immune system that provide antigen-specific acute and long lasting immune responses to infections and tumors, ascertain the maintenance of immunological tolerance and, on the flipside, mediate autoimmunity in a variety of diseases. The activation of T cells through antigen recognition by the T cell receptor (TCR) results in transient and sustained Ca2+ signals that are shaped by the opening of Ca2+ channels in the plasma membrane and cellular organelles. The dynamic regulation of intracellular Ca2+ concentrations controls a variety of T cell functions on the timescale of seconds to days after signal initiation. Among the more recently identified roles of Ca2+ signaling in T cells is the regulation of metabolic pathways that control the function of many T cell subsets. In this review, we discuss how Ca2+ regulates several metabolic programs in T cells such as the activation of AMPK and the PI3K-AKT-mTORC1 pathway, aerobic glycolysis, mitochondrial metabolism including tricarboxylic acid (TCA) cycle function and oxidative phosphorylation (OXPHOS), as well as lipid metabolism.
Collapse
Affiliation(s)
- Yinhu Wang
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Anthony Tao
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Martin Vaeth
- Institute of Systems Immunology, Julius Maximilians University of Würzburg, Würzburg, Germany
| | - Stefan Feske
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
43
|
Protein kinase 2 (CK2) controls CD4 + T cell effector function in the pathogenesis of colitis. Mucosal Immunol 2020; 13:788-798. [PMID: 31988467 PMCID: PMC7382987 DOI: 10.1038/s41385-020-0258-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 01/03/2020] [Accepted: 01/08/2020] [Indexed: 02/04/2023]
Abstract
Crohn's disease (CD), one of the major forms of inflammatory bowel disease (IBD), is characterized by chronic inflammation of the gastrointestinal tract and associated with aberrant CD4+ T-helper type 1 (Th1) and Th17 responses. Protein kinase 2 (CK2) is a conserved serine-threonine kinase involved in signal transduction pathways, which regulate immune responses. CK2 promotes Th17 cell differentiation and suppresses the generation of Foxp3+ regulatory T cells. The function of CK2 in CD4+ T cells during the pathogenesis of CD is unknown. We utilized the T cell-induced colitis model, transferring CD45RBhi-naive CD4+ T cells from CK2αfl/fl controls and CK2αfl/fldLck-Cre mice into Rag1-/- mice. CD4+ T cells from CK2αfl/fldLck-Cre mice failed to induce wasting disease and significant intestinal inflammation, which was associated with decreased interleukin-17A-positive (IL-17A+), interferon-γ-positive (IFN-γ+), and double-positive IL-17A+IFN-γ+ CD4+ T cells in the spleen and colon. We determined that CK2α regulates CD4+ T cell proliferation through a cell-intrinsic manner. CK2α is also important in controlling CD4+ T cell responses by regulating NFAT2, which is vital for T cell activation and proliferation. Our findings indicate that CK2α contributes to the pathogenesis of colitis by promoting CD4+ T cell proliferation and Th1 and Th17 responses, and that targeting CK2 may be a novel therapeutic treatment for patients with CD.
Collapse
|
44
|
Wang YH, Tao AY, Feske S. To B, or not to B: Is calcium the answer? Cell Calcium 2020; 90:102227. [PMID: 32563861 PMCID: PMC7483609 DOI: 10.1016/j.ceca.2020.102227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 05/30/2020] [Indexed: 10/24/2022]
Abstract
B lymphocytes are an important component of the adaptive and innate immune system because of their ability to secrete antibodies and to present antigens to T cells, which is critical for immune responses to many pathogens. Abnormal B cell function is the cause of diseases including autoimmune, paraneoplastic, and immunodeficiency disorders. The development, survival, and function of B cells depend on signaling through the B cell receptor (BCR) and costimulatory receptors. One of the signaling pathways induced by antigen binding to the BCR is store-operated Ca2+ entry (SOCE), which depends on the Ca2+ channel ORAI1 and its activators stromal interaction molecule (STIM) 1 and 2. A recent study by Berry et al. [1] reports that B cells lacking STIM1 and STIM2 fail to survive and proliferate because abolished SOCE results in impaired expression of two key anti-apoptotic genes and blunted activation of mTORC1 and c-Myc signaling. The associated Ca2+ regulated checkpoints of B cell survival and proliferation can be bypassed, at least partially, by costimulation through CD40 or TLR9. This study provides important new insights on how SOCE controls B cell function.
Collapse
Affiliation(s)
- Yin-Hu Wang
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Anthony Y Tao
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Stefan Feske
- Department of Pathology, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
45
|
Vaeth M, Kahlfuss S, Feske S. CRAC Channels and Calcium Signaling in T Cell-Mediated Immunity. Trends Immunol 2020; 41:878-901. [PMID: 32711944 DOI: 10.1016/j.it.2020.06.012] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 12/22/2022]
Abstract
Calcium (Ca2+) signals play fundamental roles in immune cell function. The main sources of Ca2+ influx in mammalian lymphocytes following antigen receptor stimulation are Ca2+ release-activated Ca2+ (CRAC) channels. These are formed by ORAI proteins in the plasma membrane and are activated by stromal interaction molecules (STIM) located in the endoplasmic reticulum (ER). Human loss-of-function (LOF) mutations in ORAI1 and STIM1 that abolish Ca2+ influx cause a unique disease syndrome called CRAC channelopathy that is characterized by immunodeficiency autoimmunity and non-immunological symptoms. Studies in mice lacking Stim and Orai genes have illuminated many cellular and molecular mechanisms by which these molecules control lymphocyte function. CRAC channels are required for the differentiation and function of several T lymphocyte subsets that provide immunity to infection, mediate inflammation and prevent autoimmunity. This review examines new insights into how CRAC channels control T cell-mediated immunity.
Collapse
Affiliation(s)
- Martin Vaeth
- Institute of Systems Immunology, Julius-Maximilians University of Würzburg, Würzburg, Germany; Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Sascha Kahlfuss
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology, and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Stefan Feske
- Department of Pathology, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
46
|
Wing JB, Lim EL, Sakaguchi S. Control of foreign Ag-specific Ab responses by Treg and Tfr. Immunol Rev 2020; 296:104-119. [PMID: 32564426 DOI: 10.1111/imr.12888] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/11/2020] [Accepted: 05/21/2020] [Indexed: 12/15/2022]
Abstract
Regulatory T cells (Tregs) expressing the transcription factor Foxp3 play a critical role in the control of immune homeostasis including the regulation of humoral immunity. Recently, it has become clear that a specialized subset of Tregs, T-follicular regulatory cells (Tfr), have a particular role in the control of T-follicular helper (Tfh) cell-driven germinal center (GC) responses. Following similar differentiation signals as received by Tfh, Tfr gain expression of characteristic chemokine receptors and transcription factors such as CXCR5 and BCL6 allowing them to travel to the B-cell follicle and deliver in situ suppression. It seems clear that Tfr are critical for the prevention of autoimmune antibody induction. However, their role in the control of foreign antigen-specific antibody responses appears more complex with various reports demonstrating either increased or decreased antigen-specific antibody responses following inhibition of Tfr function. Due to their recent discovery, our understanding of Tfr formation and function still has many gaps. In this review, we discuss our current knowledge of both Tregs and Tfr in the context of humoral immunity and how these cells might be manipulated in order to better control vaccine responses.
Collapse
Affiliation(s)
- James B Wing
- Laboritory of Human Immunology (Single Cell Immunology), Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Ee Lyn Lim
- Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Shimon Sakaguchi
- Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Suita, Japan.,Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
47
|
Dhande IS, Kneedler SC, Zhu Y, Joshi AS, Hicks MJ, Wenderfer SE, Braun MC, Doris PA. Natural genetic variation in Stim1 creates stroke in the spontaneously hypertensive rat. Genes Immun 2020; 21:182-192. [PMID: 32300198 PMCID: PMC7274944 DOI: 10.1038/s41435-020-0097-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 02/28/2020] [Accepted: 03/20/2020] [Indexed: 12/28/2022]
Abstract
Similar to humans, the risk of cerebrovascular disease in stroke-prone spontaneously hypertensive rats (SHR-A3/SHRSP) arises from naturally occurring genetic variation. In the present study, we show the involvement of genetic variation affecting the store-operated calcium signaling gene, Stim1, in the pathogenesis of stroke in SHR. Stim1 is a key lymphocyte activation signaling molecule and contains functional variation in SHR-A3 that diverges from stroke-resistant SHR-B2. We created a SHR-A3 congenic line in which Stim1 was substituted with the corresponding genomic segment from SHR-B2. Compared with SHR-A3 rats, Stim1 congenic SHR-A3 (SHR-A3(Stim1-B2)) have reduced cerebrovascular disease in response to salt loading including lower neurological deficit scores and cerebral edema. Microbleeds and major hemorrhages occurred in over half of SHR-A3 rats. These lesions were absent in SHR-A3(Stim1-B2) rats. Loss of Stim1 function in mice and humans is associated with antibody-mediated autoimmunity due to defects in T lymphocyte helper function to B cells. We investigated autoantibody formation using a high-density protein array to detect the presence of IgG and IgM autoantibodies in SHR-A3. Autoantibodies to key cerebrovascular stress proteins were detected that were reduced in the congenic line.
Collapse
Affiliation(s)
- Isha S Dhande
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Sterling C Kneedler
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Yaming Zhu
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Aniket S Joshi
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - M John Hicks
- Department of Pathology and Immunology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, 77030, USA
| | - Scott E Wenderfer
- Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, 77030, USA
| | - Michael C Braun
- Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, 77030, USA
| | - Peter A Doris
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
48
|
Dhande IS, Zhu Y, Kneedler SC, Joshi AS, Hicks MJ, Wenderfer SE, Braun MC, Doris PA. Stim1 Polymorphism Disrupts Immune Signaling and Creates Renal Injury in Hypertension. J Am Heart Assoc 2020; 9:e014142. [PMID: 32075490 PMCID: PMC7335582 DOI: 10.1161/jaha.119.014142] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Spontaneously hypertensive rats of the stroke‐prone line (SHR‐A3) develop hypertensive renal disease as a result of naturally occurring genetic variation. Our prior work identified a single‐nucleotide polymorphism unique to SHR‐A3 that results in truncation of the carboxy terminus of STIM1. The SHR‐B2 line, which is also hypertensive but resists hypertensive renal injury, expresses the wild‐type STIM1. STIM1 plays a central role in lymphocyte calcium signaling that directs immune effector responses. Here we show that major defects in lymphocyte function affecting calcium signaling, nuclear factor of activated T cells activation, cytokine production, proliferation, apoptosis, and regulatory T‐cell development are present in SHR‐A3 and attributable to STIM1. Methods and Results To assess the role of Stim1 variation in susceptibility to hypertensive renal injury, we created a Stim1 congenic line, SHR‐A3(Stim1‐B2), and STIM1 function was rescued in SHR‐A3. We found that Stim1 gene rescue restores disturbed lymphocyte function in SHR‐A3. Hypertensive renal injury was compared in SHR‐A3 and the SHR‐A3(Stim1‐B2) congenic line. Histologically assessed renal injury was markedly reduced in SHR‐A3(Stim1‐B2), as were renal injury biomarker levels measured in urine. Stim1 deficiency has been linked to the emergence of antibody‐mediated autoimmunity. Renal glomerular immunoglobulin deposition was greater in SHR‐A3 than SHR‐B2 and was reduced by Stim1 congenic substitution. Serum anti–double‐stranded DNA antibody titers in SHR‐A3 were elevated compared with SHR‐B2 and were reduced in SHR‐A3(Stim1‐B2). Conclusions Stim1 deficiency in lymphocyte function originating from Stim1 truncation in SHR‐A3 combines with hypertension to create end organ disease and may do so as a result of antibody formation.
Collapse
Affiliation(s)
- Isha S Dhande
- Institute of Molecular Medicine University of Texas Health Science Center at Houston Houston TX
| | - Yaming Zhu
- Institute of Molecular Medicine University of Texas Health Science Center at Houston Houston TX
| | - Sterling C Kneedler
- Institute of Molecular Medicine University of Texas Health Science Center at Houston Houston TX
| | - Aniket S Joshi
- Institute of Molecular Medicine University of Texas Health Science Center at Houston Houston TX
| | - M John Hicks
- Department of Pathology and Immunology Baylor College of Medicine and Texas Children's Hospital Houston TX
| | - Scott E Wenderfer
- Department of Pediatrics Baylor College of Medicine and Texas Children's Hospital Houston TX
| | - Michael C Braun
- Department of Pediatrics Baylor College of Medicine and Texas Children's Hospital Houston TX
| | - Peter A Doris
- Institute of Molecular Medicine University of Texas Health Science Center at Houston Houston TX
| |
Collapse
|
49
|
Huang Y, Chen Z, Wang H, Ba X, Shen P, Lin W, Wang Y, Qin K, Huang Y, Tu S. Follicular regulatory T cells: a novel target for immunotherapy? Clin Transl Immunology 2020; 9:e1106. [PMID: 32082569 PMCID: PMC7019198 DOI: 10.1002/cti2.1106] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/22/2019] [Accepted: 01/05/2020] [Indexed: 12/15/2022] Open
Abstract
High‐affinity antibodies are produced during multiple processes in germinal centres (GCs), where follicular helper T (Tfh) cells interact closely with B cells to support B‐cell survival, differentiation and proliferation. Recent studies have revealed that a specialised subset of regulatory T cells, follicular regulatory T (Tfr) cells, especially fine‐tune Tfh cells and GC B cells, ultimately regulating GC reactions. Alterations in frequencies or function of Tfr cells may result in multiple autoantibody‐mediated or autoantibody‐associated diseases. This review discusses recent insights into the physiology and pathology of Tfr cells, with a special emphasis on their potential roles in human diseases. Discrepancies are common among studies, reflecting the limited understanding of Tfr cells. Further exploration of the mechanisms of Tfr cells in these diseases and thus targeting Tfr cells may help reinstate immune homeostasis and provide novel immunotherapy.
Collapse
Affiliation(s)
- Yao Huang
- Institute of Integrated Traditional Chinese and Western Medicine Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Zhe Chen
- Department of Integrated Traditional Chinese and Western Medicine Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Hui Wang
- Institute of Integrated Traditional Chinese and Western Medicine Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Xin Ba
- Institute of Integrated Traditional Chinese and Western Medicine Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Pan Shen
- Institute of Integrated Traditional Chinese and Western Medicine Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Weiji Lin
- Institute of Integrated Traditional Chinese and Western Medicine Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Yu Wang
- Department of Integrated Traditional Chinese and Western Medicine Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Kai Qin
- Department of Integrated Traditional Chinese and Western Medicine Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Ying Huang
- Department of Integrated Traditional Chinese and Western Medicine Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Shenghao Tu
- Institute of Integrated Traditional Chinese and Western Medicine Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| |
Collapse
|
50
|
Bell L, Lenhart A, Rosenwald A, Monoranu CM, Berberich-Siebelt F. Lymphoid Aggregates in the CNS of Progressive Multiple Sclerosis Patients Lack Regulatory T Cells. Front Immunol 2020; 10:3090. [PMID: 32010141 PMCID: PMC6974514 DOI: 10.3389/fimmu.2019.03090] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/17/2019] [Indexed: 12/27/2022] Open
Abstract
In gray matter pathology of multiple sclerosis, neurodegeneration associates with a high degree of meningeal inflammatory activity. Importantly, ectopic lymphoid follicles (eLFs) were identified at the inflamed meninges of patients with progressive multiple sclerosis. Besides T lymphocytes, they comprise B cells and might elicit germinal center (GC)-like reactions. GC reactions are controlled by FOXP3+ T-follicular regulatory cells (TFR), but it is unknown if they participate in autoantibody production in eLFs. Receiving human post-mortem material, gathered from autopsies of progressive multiple sclerosis patients, indeed, distinct inflammatory infiltrates enriched with B cells could be detected in perivascular areas and deep sulci. CD35+ cells, parafollicular CD138+ plasma cells, and abundant expression of the homing receptor for GCs, CXCR5, on lymphocytes defined some of them as eLFs. However, they resembled GCs only in varying extent, as T cells did not express PD-1, only few cells were positive for the key transcriptional regulator BCL-6 and ongoing proliferation, whereas a substantial number of T cells expressed high NFATc1 like GC-follicular T cells. Then again, predominant cytoplasmic NFATc1 and an enrichment with CD3+CD27+ memory and CD4+CD69+ tissue-resident cells implied a chronic state, very much in line with PD-1 and BCL-6 downregulation. Intriguingly, FOXP3+ cells were almost absent in the whole brain sections and CD3+FOXP3+ TFRs were never found in the lymphoid aggregates. This also points to less controlled humoral immune responses in those lymphoid aggregates possibly enabling the occurrence of CNS-specific autoantibodies in multiple sclerosis patients.
Collapse
Affiliation(s)
- Luisa Bell
- Institute of Pathology, Julius-Maximilian University of Wuerzburg, Wuerzburg, Germany
| | - Alexander Lenhart
- Institute of Pathology, Julius-Maximilian University of Wuerzburg, Wuerzburg, Germany
| | - Andreas Rosenwald
- Institute of Pathology, Julius-Maximilian University of Wuerzburg, Wuerzburg, Germany.,Comprehensive Cancer Center Mainfranken, Julius-Maximilian University of Wuerzburg, Wuerzburg, Germany
| | - Camelia M Monoranu
- Department of Neuropathology, Institute of Pathology, Julius-Maximilian University of Wuerzburg, Wuerzburg, Germany
| | | |
Collapse
|