1
|
Chen Z, Zhang W, Wang D, Luo R, Yao Y, Tao X, Li L, Pan Q, Sun X. CD44 is a macrophage receptor for TcdB from Clostridioides difficile that via its lysine-158 succinylation contributes to inflammation. Gut Microbes 2025; 17:2506192. [PMID: 40383912 DOI: 10.1080/19490976.2025.2506192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/28/2025] [Accepted: 05/08/2025] [Indexed: 05/20/2025] Open
Abstract
Toxin B (TcdB) is a critical virulence factor in Clostridioides difficile-associated disease (CDAD), which activates macrophages to promote inflammation and epithelial damage. However, the mechanism by which TcdB targets inflammation-related receptors on the macrophage surface and the underlying molecular mechanisms remain unknown. The frizzled-binding domain of TcdB (TcdB-FBD) is a promising target of TcdB. Here, FBD was found to trigger macrophage inflammation, similar to TcdB, but did not induce cytotoxicity. Thus, using FBD as a bait protein, macrophage CD44 was identified as an inflammation-related receptor for TcdB/FBD. The role of CD44 was confirmed by CRISPR/Cas9-mediated gene knockout in macrophages and CD44 knockout mice. Using 4-D label-free succinylation quantitative modification proteomics, we demonstrated that TcdB/FBD binds to CD44 in macrophages, promotes CD44 K158 succinylation via SUCLG2 suppression, and enhances NF-κB translocation/transcriptional activity, thereby driving inflammation. Finally, blocking the binding of TcdB to CD44 was demonstrated as a favorable strategy for inhibiting TcdB-mediated macrophage inflammation. This study not only provides a new therapeutic target for the prevention and treatment of CDAD but also elucidates a new molecular mechanism underlying the inflammatory effect of TcdB via the TcdB/FBD-CD44 axis.
Collapse
Affiliation(s)
- Zhuo Chen
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Wenzi Zhang
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
- Hubei Province Key Laboratory of Allergy and Immunology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China
| | - Danni Wang
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Ruiqin Luo
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Yuexin Yao
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Xiaoyang Tao
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Lu Li
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Qin Pan
- Hubei Province Key Laboratory of Allergy and Immunology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China
| | - Xiaoming Sun
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
2
|
Jiang M, Liu Y, Aweya JJ, Liang S, Zhou J, Tayyab M, Zhao Y, Liu Q, Zhang Y, Zheng Z. Fucosylation of hemocyanin is critical for antibacterial immunity in Penaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2025; 163:110406. [PMID: 40350103 DOI: 10.1016/j.fsi.2025.110406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 04/28/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
Posttranslational modifications (PTMs) play a pivotal role in expanding the function of immune related proteins, especially during pathogen infections. However, the precise impact of PTMs on the functional diversity of proteins such as respiratory glycoproteins and hemocyanins remains incompletely understood. In this study, we investigated the fucosylation modification of Penaeus vannamei hemocyanin (PvHMC) and its impact on antibacterial immunity. Our findings reveal that PvHMC underwent fucosylation, mediated by Penaeus vannamei fucosyltransferase 8/10 (PvFUT8/10), which enhances its antibacterial immunity and binding ability against Gram-negative bacteria. Conversely, defucosylation of PvHMC, catalyzed by Penaeus vannamei fucosidase (PvAFU) weakens its antibacterial activity in vitro. These results highlight the regulatory role of fucosylation in modulating the antibacterial function of PvHMC in shrimp.
Collapse
Affiliation(s)
- Mingming Jiang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Yiqi Liu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Jude Juventus Aweya
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China; Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada; The Canadian Centre for Agri-Food Research in Health and Medicine, St Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
| | - Shuaiqi Liang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Junyang Zhou
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Muhammad Tayyab
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Yongzhen Zhao
- Guangxi Academy of Fishery Sciences, Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Nanning, 530021, China
| | - Qingyun Liu
- Guangxi Academy of Fishery Sciences, Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Nanning, 530021, China
| | - Yueling Zhang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China.
| | - Zhihong Zheng
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China.
| |
Collapse
|
3
|
Su K, Tang M, Wu J, Ye N, Jiang X, Zhao M, Zhang R, Cai X, Zhang X, Li N, Peng J, Lin L, Wu W, Ye H. Mechanisms and therapeutic strategies for NLRP3 degradation via post-translational modifications in ubiquitin-proteasome and autophagy lysosomal pathway. Eur J Med Chem 2025; 289:117476. [PMID: 40056798 DOI: 10.1016/j.ejmech.2025.117476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/20/2025] [Accepted: 03/03/2025] [Indexed: 03/10/2025]
Abstract
The NLRP3 inflammasome is crucial for immune responses. However, its overactivation can lead to severe inflammatory diseases, underscoring its importance as a target for therapeutic intervention. Although numerous inhibitors targeting NLRP3 exist, regulating its degradation offers an alternative and promising strategy to suppress its activation. The degradation of NLRP3 is primarily mediated by the proteasomal and autophagic pathways. The review not only elaborates on the traditional concepts of ubiquitination and NLRP3 degradation but also investigates the important roles of indirect regulatory modifications, such as phosphorylation, acetylation, ubiquitin-like modifications, and palmitoylation-key post-translational modifications (PTMs) that influence NLRP3 degradation. Additionally, we also discuss the potential targets that may affect NLRP3 degradation during the proteasomal and autophagic pathways. By unraveling these complex regulatory mechanisms, the review aims to enhance the understanding of NLRP3 regulation and its implications for developing therapeutic strategies to combat inflammatory diseases.
Collapse
Affiliation(s)
- Kaiyue Su
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Minghai Tang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jie Wu
- Key Laboratory of Hydrodynamics (Ministry of Education), School of Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Neng Ye
- Scaled Manufacturing Center of Biological Products, Management Office of National Facility for Translational Medicine, West China Hospital, Sichuan University Chengdu 610041, China
| | - Xueqin Jiang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Min Zhao
- Laboratory of Metabolomics and Drug-induced Liver Injury, Department of Gastroenterology & Hepatology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ruijia Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoying Cai
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xinlu Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Na Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Peng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lei Lin
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenshuang Wu
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Haoyu Ye
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
4
|
Land WG, Linkermann A. Regulated cell death and DAMPs as biomarkers and therapeutic targets in normothermic perfusion of transplant organs. Part 1: their emergence from injuries to the donor organ. FRONTIERS IN TRANSPLANTATION 2025; 4:1571516. [PMID: 40343197 PMCID: PMC12060192 DOI: 10.3389/frtra.2025.1571516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 03/31/2025] [Indexed: 05/11/2025]
Abstract
This Part 1 of a bipartite review commences with a succinct exposition of innate alloimmunity in light of the danger/injury hypothesis in Immunology. The model posits that an alloimmune response, along with the presentation of alloantigens, is driven by DAMPs released from various forms of regulated cell death (RCD) induced by any severe injury to the donor or the donor organ, respectively. To provide a strong foundation for this review, which examines RCD and DAMPs as biomarkers and therapeutic targets in normothermic regional perfusion (NRP) and normothermic machine perfusion (NMP) to improve outcomes in organ transplantation, key insights are presented on the nature, classification, and functions of DAMPs, as well as the signaling mechanisms of RCD pathways, including ferroptosis, necroptosis, pyroptosis, and NETosis. Subsequently, a comprehensive discussion is provided on major periods of injuries to the donor or donor organs that are associated with the induction of RCD and DAMPs and precede the onset of the innate alloimmune response in recipients. These periods of injury to donor organs include conditions associated with donation after brain death (DBD) and donation after circulatory death (DCD). Particular emphasis in this discussion is placed on the different origins of RCD-associated DAMPs in DBD and DCD and the different routes they use within the circulatory system to reach potential allografts. The review ends by addressing another particularly critical period of injury to donor organs: their postischemic reperfusion following implantation into the recipient-a decisive factor in determining transplantation outcome. Here, the discussion focuses on mechanisms of ischemia-induced oxidative injury that causes RCD and generates DAMPs, which initiate a robust innate alloimmune response.
Collapse
Affiliation(s)
- Walter G. Land
- German Academy for Transplantation Medicine, Munich, Germany
- Laboratoire d'ImmunoRhumatologie Moléculaire, plateforme GENOMAX, INSERM UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Institut Thématique Interdisciplinaire TRANSPLANTEX NG, Université de Strasbourg, Strasbourg, France
- Department of Integrated Medical Sciences, Medical Science Faculty, State University of Rio De Janeiro, Cabo Frio, Brazil
| | - Andreas Linkermann
- Department of Medicine V, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- Division of Nephrology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
5
|
Zhao Y, Hou W, Yang L, Chen K, Lang Q, Sun W, Gao L. Higher mitochondrial protein-Succinylation detected in lung tissues of idiopathic pulmonary fibrosis patients. J Proteomics 2025; 314:105400. [PMID: 39938635 DOI: 10.1016/j.jprot.2025.105400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 02/07/2025] [Accepted: 02/08/2025] [Indexed: 02/14/2025]
Abstract
A new pathogenic role for mitochondrial dysfunction has been associated with the development of idiopathic pulmonary fibrosis (IPF). Lysine succinylation (Ksucc) is involved in many energy metabolism pathways in mitochondria, making Ksucc highly valuable for studying IPF. We used liquid chromatography with tandem mass spectrometry (LC-MS/MS) to perform the first global profiling of Ksucc in fibrotic lung tissues from IPF patients, providing a proof of concept for the alteration of Ksucc in IPF and highlighting its potential as a therapeutic target. Selected candidate proteins were further verified by targeted proteomics using parallel reaction monitoring (PRM). In this study, we identified 1964 Ksucc sites on 628 modified proteins, with675 of these Ksucc sites on 124 modified proteins closely related to mitochondrial metabolism. 117 succinylated proteins were associated with energy metabolism in mitochondria by comparing these proteins with those previously reported in normal lung tissues. The Ksucc levels in KYAT3, HSD17B8, GRHPR, and IDH2 were different between control and IPF groups by Using PRM. This study provides insight into Ksucc profile alterations in IPF pathogenesis and Ksucc sites in proteins associated with mitochondrial energy metabolism can also serve as candidate molecules for future mechanism exploration and drug target selection in IPF.
Collapse
Affiliation(s)
- Yunmulan Zhao
- Medical College, University of Electronic Science and Technology of China, Chengdu, China
| | - Wenyu Hou
- Medical College, University of Electronic Science and Technology of China, Chengdu, China
| | - Liqing Yang
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, Chengdu, China
| | - Kangyin Chen
- Department of Pulmonary and Critical Care Medicine, Second Hospital of Tianjin Medical University, Tianjing 300211, China
| | - Qin Lang
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, Chengdu, China
| | - Wei Sun
- Department of Pulmonary and Critical Care Medicine, Second Hospital of Tianjin Medical University, Tianjing 300211, China.
| | - Lingyun Gao
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, Chengdu, China; Department of Pulmonary and Critical Care Medicine, Ziyang People's Hospital, Ziyang, China.
| |
Collapse
|
6
|
Zhang J, Wu Y, Wang Y, Wang J, Ye Y, Yin H, Sun N, Qin B, Sun N. TRIM35 Negatively Regulates the cGAS-STING-Mediated Signaling Pathway by Attenuating K63-Linked Ubiquitination of STING. Inflammation 2025; 48:855-869. [PMID: 39088122 DOI: 10.1007/s10753-024-02093-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 08/02/2024]
Abstract
The cGAS-STING-mediated antiviral response plays an important role in the defense against DNA virus infection. Tripartite motif protein 35 (TRIM35), an E3 ubiquitin ligase, was identified as a positive regulator of RLR-mediated antiviral signaling in our previous study, but the effect of TRIM35 on the cGAS-STING signaling pathway has not been elucidated. Herein, we showed that TRIM35 negatively regulates the cGAS-STING signaling pathway by directly targeting STING. TRIM35 overexpression significantly inhibited the cGAMP-triggered phosphorylation of TBK1 and IRF3, attenuating IFN-β expression and the downstream antiviral response. Mechanistically, TRIM35 colocalized and directly interacted with STING in the cytoplasm. TRM35 removed K63-linked ubiquitin from STING through the C36 and C44 sites in the RING domain, which impaired the interaction of STING with TBK1 or IKKε. In addition, we demonstrated that the RING domain is a key region for the antiviral effects of TIRM35. These results collectively indicate that TRIM35 negatively regulates type I interferon (IFN-I) production by targeting and deubiquitinating STING. TRIM35 may be a potential therapeutic target for controlling viral infection.
Collapse
Affiliation(s)
- Jikai Zhang
- Xuzhou Medical University, Xuzhou, China
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Yuhao Wu
- Xuzhou Medical University, Xuzhou, China
| | - Yiwen Wang
- Xuzhou Medical University, Xuzhou, China
| | - Jing Wang
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yinlin Ye
- Xuzhou Medical University, Xuzhou, China
| | - Hang Yin
- Xuzhou Medical University, Xuzhou, China
| | - Ningye Sun
- Xuzhou Medical University, Xuzhou, China
| | | | - Nan Sun
- Xuzhou Medical University, Xuzhou, China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China.
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
7
|
Han Z, Shen Y, Yan Y, Bin P, Zhang M, Gan Z. Metabolic reprogramming shapes post-translational modification in macrophages. Mol Aspects Med 2025; 102:101338. [PMID: 39977975 DOI: 10.1016/j.mam.2025.101338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/10/2024] [Accepted: 01/11/2025] [Indexed: 02/22/2025]
Abstract
Polarized macrophages undergo metabolic reprogramming, as well as extensive epigenetic and post-translational modifications (PTMs) switch. Metabolic remodeling and dynamic changes of PTMs lead to timely macrophage response to infection or antigenic stimulation, as well as its transition from a pro-inflammatory to a reparative phenotype. The transformation of metabolites in the microenvironment also determines the PTMs of macrophages. Here we reviewed the current understanding of the altered metabolites of glucose, lipids and amino acids in macrophages shape signaling and metabolism pathway during macrophage polarization via PTMs, and how these metabolites in some macrophage-associated diseases affect disease progression by shaping macrophage PTMs.
Collapse
Affiliation(s)
- Ziyi Han
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yinhao Shen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yuqi Yan
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Peng Bin
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Meimei Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Zhending Gan
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
8
|
Chen B, Zhang C, Zhou M, Deng H, Xu J, Yin J, Chen C, Zhang D, Pu Y, Zheng L, Wang B, Fu J. CD4+ T-cell metabolism in the pathogenesis of Sjogren's syndrome. Int Immunopharmacol 2025; 150:114320. [PMID: 39970711 DOI: 10.1016/j.intimp.2025.114320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 02/21/2025]
Abstract
The abnormal effector function of CD4+ T cells plays a key role in the pathogenesis of Sjogren's syndrome (SS) and its associated systematic autoimmune response. Cellular metabolism, including glucose metabolism, lipid metabolism and amino acid metabolism, supports proliferation, migration, survival and differentiation into distinct CD4+ T-cell subsets. Different subtypes of T cells have significantly different demands for related metabolic processes, which enables us to finely regulate CD4+ T cells through different metabolic processes in autoimmune diseases such as SS. In this review, we summarize the effects of disturbances in distinct metabolic processes, such as glycolysis, fatty acid metabolism, glutamine decomposition, mitochondrial dynamics, and ferroptosis, on how to support the effector functions of CD4+ T cells in the SS. We also discuss potential drugs with high value in the treatment of SS through metabolic normalization in CD4+ T cells. Finally, we propose possible directions for future targeted therapy for immunometabolism in SS.
Collapse
Affiliation(s)
- Baixi Chen
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China; Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Chenji Zhang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Mengyuan Zhou
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Hongyu Deng
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Jiabao Xu
- Würzburg Institute of Systems Immunology, Max Planck Research Group, Julius-Maximilians University of Würzburg, Würzburg 97255, Germany
| | - Junhao Yin
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Prothodontics, Shanghai Tongji Stomatological Hospital and Dental School, Tongji University, Shanghai 200072, China
| | - Changyu Chen
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai 200001, China
| | - Dahe Zhang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Yiping Pu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Lingyan Zheng
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Baoli Wang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China.
| | - Jiayao Fu
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Prothodontics, Shanghai Tongji Stomatological Hospital and Dental School, Tongji University, Shanghai 200072, China.
| |
Collapse
|
9
|
Gutierrez IV, Park M, Sar L, Rodriguez R, Snider DL, Torres G, Scaglione KM, Horner SM. 14-3-3ε UFMylation promotes RIG-I-mediated signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.19.644084. [PMID: 40166322 PMCID: PMC11957140 DOI: 10.1101/2025.03.19.644084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Post-translational modifications are critical for regulating the RIG-I signaling pathway. Previously, we identified a role for the post-translation modification UFM1 (UFMylation) in promoting RIG-I signaling by stimulating the interaction between RIG-I and its membrane-targeting protein 14-3-3ε. Here, we identify UFMylation of 14-3-3ε as a novel regulatory mechanism promoting RIG-I signaling. We demonstrate that UFM1 conjugation to lysine residue K50 or K215 results in mono-UFMylation on 14-3-3ε and enhances its ability to promote RIG-I signaling. Importantly, we show that mutation of these residues (K50R/K215R) abolishes UFMylation and impairs induction of type I and III interferons without disrupting the interaction between 14-3-3ε and RIG-I. This suggests that UFMylation of 14-3-3ε likely stabilizes signaling events downstream of RIG-I activation to promote induction of interferon. Collectively, our work suggests that UFMylation-driven activation of 14-3-3ε facilitates innate immune signaling and highlights the broader role of UFMylation for antiviral defense and immune regulation. Importance Post-translational modifications provide regulatory control of antiviral innate immune responses. Our study reveals that UFMylation of 14-3-3ε is a control point for RIG-I-mediated antiviral signaling. We demonstrate that conjugation of UFM1 to specific lysine residues on 14-3-3ε enhances downstream signaling events that facilitate interferon induction, but surprisingly it does not affect 14-3-3ε binding to RIG-I. By identifying the precise sites of UFMylation on 14-3-3ε and their functional consequences, we provide insights into the regulatory layers governing antiviral innate immunity. These findings complement emerging evidence that UFMylation serves as a versatile modulator across diverse immune pathways. Furthermore, our work highlights how protein chaperones like 14-3-3ε can be dynamically modified to orchestrate complex signaling cascades, suggesting potential therapeutic approaches for targeting dysregulated innate immunity.
Collapse
|
10
|
Wang J, Liu Q, Zhang K, Zhao S, Shao Q, Fu F, Ma J, Wang Z, Yan YX, Wang H, Sun J, Cheng Y. RNF20 dual regulation of MDA5 signaling to maintain immune homeostasis in chickens. J Virol 2025; 99:e0200824. [PMID: 39998124 PMCID: PMC11915864 DOI: 10.1128/jvi.02008-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/05/2025] [Indexed: 02/26/2025] Open
Abstract
RIG-I and MDA5, known as the RIG-I-like receptors (RLRs), play a pivotal role in inducing antiviral responses to RNA viral infections. While chickens lack RIG-I, they possess a functionally enhanced MDA5 that recognizes pathogens and regulates immunity, underscoring the critical role of MDA5 in maintaining immune homeostasis in chickens. However, the precise mechanisms governing the expression and optimal activation of MDA5 remain unclear. Here, we reveal that the chicken E3 ubiquitin ligase RNF20 is essential for modulating MDA5-mediated innate immune homeostasis. Transcriptome sequencing analysis revealed that RNA viral infection of DF-1 cells significantly upregulated the expression of chicken RNF20. Overexpression of RNF20 markedly suppresses the expression of chicken innate immunity-related genes, while RNF20 knockout leads to immune deficiency both in vivo and in vitro. Mechanistically, RNF20 is located in the nucleus, where it maintains the basic expression and regulates the inducible expression of MDA5 to establish immune defense during the early infection phase. In the late phase, RNF20 translocates to the cytoplasm, where it facilitates the K27- and K48-linked polyubiquitination and subsequent degradation of MDA5, thereby preventing immune overstimulation. Overall, this study establishes RNF20 as an important E3 ubiquitin ligase that maintains chicken innate immune homeostasis. IMPORTANCE Chicken MDA5 is an important RNA viral sensor for initiating the antiviral innate immune response. The protein level of MDA5 must be tightly regulated to maintain antiviral innate immune homeostasis. In this study, we demonstrate that the E3 ubiquitin ligase RNF20 precisely regulates MDA5 protein stabilization through nucleoplasmic translocation. Specifically, in uninfected and during early infection, RNF20 regulates MDA5 transcription in the nucleus. While in the late stages of infection, RNF20 translocates out of the nucleus and catalyzes the ubiquitinated degradation of MDA5. Thus, RNF20 is important in regulating chicken antiviral innate immune homeostasis.
Collapse
Affiliation(s)
- Jie Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Qiuju Liu
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Kehui Zhang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shurui Zhao
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Qi Shao
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Feiyu Fu
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jingjiao Ma
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhaofei Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ya-xian Yan
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hengan Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jianhe Sun
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuqiang Cheng
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
11
|
Li L, Liu Y, Liu D, Wang J, Wang M, Xiang B, Qin J, Yao T, Li W, Wu P, Wang Q, Zhang J, Xu Y, Liu M, Wang Y, Ma G, Liu R, Li X, Huai Z, Huang Y, Guo H, Yang B, Feng L, Huang D, Zhang K, Wang L, Liu B. Microbiota-derived succinate promotes enterohaemorrhagic Escherichia coli virulence via lysine succinylation. Nat Microbiol 2025; 10:749-764. [PMID: 39891012 DOI: 10.1038/s41564-025-01931-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/13/2025] [Indexed: 02/03/2025]
Abstract
Succinate upregulates enterohaemorrhagic Escherichia coli (EHEC) virulence. Lysine succinylation, a post-translational modification, regulates cellular function in eukaryotes but is less characterized in bacteria. We hypothesized that lysine succinylation regulates EHEC virulence. Here we used SILAC-based proteomics and characterized the EHEC succinylome to show that the transcription factor, PurR, is succinylated at K24 and K55. Succinylation of PurR inhibited its ability to directly bind DNA and repress expression of a major virulence factor, the Type 3 Secretion System (T3SS), thus increasing T3SS expression. Deletion of purR, or K24E or K55E mutation, increased EHEC adherence to cells and colonization of infant rabbits. Using mice treated with streptomycin to deplete succinate, or colonized with succinate-producing Prevotella copri to increase succinate levels, we showed that microbiota-derived succinate increased succinylation of PurR to promote virulence of Citrobacter rodentium, a model for EHEC, in mice. Lastly, we identified CitC as the succinyltransferase required for PurR modification.
Collapse
Affiliation(s)
- Linxing Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, P. R. China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, P. R. China
- Nankai International Advanced Research Institute, Shenzhen, P. R. China
| | - Yutao Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, P. R. China
| | - Dan Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, P. R. China
| | - Jing Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, P. R. China
| | - Min Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, P. R. China
| | - Binbin Xiang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, P. R. China
| | - Jingliang Qin
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, P. R. China
| | - Ting Yao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, P. R. China
| | - Wanwu Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, P. R. China
| | - Pan Wu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, P. R. China
| | - Qian Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, P. R. China
| | - Jianji Zhang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yanli Xu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, P. R. China
| | - Miaomiao Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, P. R. China
| | - Yanling Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, P. R. China
| | - Guozhen Ma
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, P. R. China
| | - Ruiying Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, P. R. China
| | - Xiaoya Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, P. R. China
| | - Zimeng Huai
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, P. R. China
| | - Yu Huang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, P. R. China
| | - Han Guo
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, P. R. China
| | - Bin Yang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, P. R. China
| | - Lu Feng
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, P. R. China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, P. R. China
- Nankai International Advanced Research Institute, Shenzhen, P. R. China
| | - Di Huang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, P. R. China.
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, P. R. China.
- Nankai International Advanced Research Institute, Shenzhen, P. R. China.
| | - Kai Zhang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| | - Lei Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, P. R. China.
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, P. R. China.
- Nankai International Advanced Research Institute, Shenzhen, P. R. China.
| | - Bin Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, P. R. China.
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, P. R. China.
- Nankai International Advanced Research Institute, Shenzhen, P. R. China.
| |
Collapse
|
12
|
Wang X, Wang Q, Zheng C, Wang L. MAVS: The next STING in cancers and other diseases. Crit Rev Oncol Hematol 2025; 207:104610. [PMID: 39746492 DOI: 10.1016/j.critrevonc.2024.104610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/26/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025] Open
Abstract
The mitochondrial antiviral signaling protein (MAVS) is a pivotal adaptor in the antiviral innate immune signaling pathway and plays a crucial role in the activation of antiviral defences. This comprehensive review delves into the multifaceted functions of MAVS, spanning from its integral role in the RIG-I-like receptor (RLR) pathway to its emerging roles in tumor biology and autoimmune diseases. We discuss the structural and functional aspects of MAVS, its activation mechanisms, and the intricate regulatory networks that govern its activity. The potential of MAVS as a therapeutic target has been explored, highlighting its promise in personalized cancer therapy and developing combination treatment strategies. Additionally, we compare it with the STING signaling pathway and discuss the synergistic potential of targeting both pathways in immunotherapy. Our review underscores the importance of MAVS in maintaining immune homeostasis and its implications for a broad spectrum of diseases, offering new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Xichen Wang
- The Second People's Hospital of Lianyungang, Lianyungang 222000, China.
| | - Qingwen Wang
- Wuxi Medical College, Jiangnan University, Wuxi 214122, China.
| | - Chunfu Zheng
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada.
| | - Leisheng Wang
- Wuxi Medical College, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
13
|
He M, Yang Z, Xie L, Chen J, Liu S, Lu L, Li Z, Zheng B, Ye Y, Lin Y, Bu L, Xiao J, Zhong Y, Jia P, Li Q, Liang Y, Guo D, Li CM, Hou P. RNF167 mediates atypical ubiquitylation and degradation of RLRs via two distinct proteolytic pathways. Nat Commun 2025; 16:1920. [PMID: 39994288 PMCID: PMC11850712 DOI: 10.1038/s41467-025-57245-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 02/17/2025] [Indexed: 02/26/2025] Open
Abstract
The precise regulation of the RIG-I-like receptors (RLRs)-mediated type I interferon (IFN-I) activation is crucial in antiviral immunity and maintaining host immune homeostasis in the meantime. Here, we identify an E3 ubiquitin ligase, namely RNF167, as a negative regulator of RLR-triggered IFN signaling. Mechanistically, RNF167 facilitates both atypical K6- and K11-linked polyubiquitination of RIG-I/MDA5 within CARD and CTD domains, respectively, which leads to degradation of the viral RNA sensors through dual proteolytic pathways. RIG-I/MDA5 conjugated with K6-linked ubiquitin chains in CARD domains is recognized by the autophagy cargo adaptor p62, that delivers the substrates to autolysosomes for selective autophagic degradation. In contrast, K11-linked polyubiquitination in CTD domains leads to proteasome-dependent degradation of RLRs. Thus, our study clarifies a function of atypical K6- and K11-linked polyubiquitination in the regulation of RLR signaling. We also unveil an elaborate synergistic effect of dual proteolysis systems to control amplitude and duration of IFN-I activation, hereby providing insights into physiological roles of the cross-talk between these two protein quality control pathways.
Collapse
Affiliation(s)
- Miao He
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510182, China
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, 510005, China
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Zixiao Yang
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Luyang Xie
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Junhai Chen
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Shurui Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510182, China
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, 510005, China
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Liaoxun Lu
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Zibo Li
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Birong Zheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510182, China
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, 510005, China
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yu Ye
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yuxin Lin
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, 510005, China
| | - Lang Bu
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Jingshu Xiao
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yongheng Zhong
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Penghui Jia
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Qiang Li
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yinming Liang
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Deyin Guo
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510182, China
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, 510005, China
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Chun-Mei Li
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Panpan Hou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510182, China.
| |
Collapse
|
14
|
Li X, Hu X, You H, Zheng K, Tang R, Kong F. Regulation of pattern recognition receptor signaling by palmitoylation. iScience 2025; 28:111667. [PMID: 39877903 PMCID: PMC11772949 DOI: 10.1016/j.isci.2024.111667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
Pattern recognition receptors (PRRs), consisting of Toll-like receptors, RIG-I-like receptors, cytosolic DNA sensors, and NOD-like receptors, sense exogenous pathogenic molecules and endogenous damage signals to maintain physiological homeostasis. Upon activation, PRRs stimulate the sensitization of nuclear factor κB, mitogen-activated protein kinase, TANK-binding kinase 1-interferon (IFN) regulatory factor, and inflammasome signaling pathways to produce inflammatory factors and IFNs to activate Janus kinase/signal transducer and activator of transcription signaling pathways, resulting in anti-infection, antitumor, and other specific immune responses. Palmitoylation is a crucial type of post-translational modification that reversibly alters the localization, stability, and biological activity of target molecules. Here, we discuss the available knowledge on the biological roles and underlying mechanisms linked to protein palmitoylation in modulating PRRs and their downstream signaling pathways under physiological and pathological conditions. Moreover, recent advances in the use of palmitoylation as an attractive therapeutic target for disorders caused by the dysregulation of PRRs were summarized.
Collapse
Affiliation(s)
- Xiaocui Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaofang Hu
- Department of Breast Surgery, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
| | - Hongjuan You
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Renxian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Fanyun Kong
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
15
|
Lee E, Kim JH, Lee SY, Lee SH, Park YM, Oh HY, Yeom J, Ahn HS, Yoo HJ, Kim BS, Yun SM, Choi EJ, Song KB, Park MJ, Ahn K, Kim KW, Shin YH, Suh DI, Song JY, Hong SJ. Developmental trajectories of atopic dermatitis with multiomics approaches in the infant gut: COCOA birth cohort. J Allergy Clin Immunol 2025; 155:557-568. [PMID: 39547281 DOI: 10.1016/j.jaci.2024.10.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 10/07/2024] [Accepted: 10/30/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND An understanding of the phenotypes and endotypes of atopic dermatitis (AD) is essential for developing precision therapies. Recent studies have demonstrated evidence for the gut-skin axis in AD. OBJECTIVE We sought to determine the natural course and clinical characteristics of AD phenotypes and investigate their mechanisms on the basis of multiomics analyses. METHODS Latent class trajectory analysis was used to classify AD phenotypes in 2247 children who were followed until age 9 years from the COhort for Childhood Origin of Asthma and allergic diseases birth cohort study. Multiomics analyses (microbiome, metabolites, and gut epithelial cell transcriptome) using stool samples collected at age 6 months were performed to elucidate the underlying mechanisms of AD phenotypes. RESULTS Five AD phenotypes were classified as follows: never/infrequent, early-onset transient, intermediate transient, late-onset, and early-onset persistent. Early-onset persistent and late-onset phenotypes showed increased risks of food allergy and wheezing treatment ever, with bronchial hyperresponsiveness evident only in the early-onset persistent phenotype. Multiomics analyses revealed a significantly lower relative abundance of Ruminococcus gnavus and a decreased gut acetate level in the early-onset persistent phenotype, with potential associations to ACSS2, Janus kinase-signal transducer and activator of transcription signaling, and systemic TH2 inflammation. The early-onset transient phenotype was associated with adenosine monophosphate-activated protein kinase (AMPK) and/or chemokine signaling regulation, whereas the late-onset phenotype was linked with IL-17 and barrier dysfunction. CONCLUSIONS Multiomics profiling in early life may offer insights into different mechanisms underlying AD phenotypes in children.
Collapse
Affiliation(s)
- Eun Lee
- Department of Pediatrics, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea
| | - Jeong-Hyun Kim
- Department of Medicine, University of Ulsan Collage of Medicine, Seoul, Korea
| | | | - Si Hyeon Lee
- Department of Medicine, University of Ulsan Collage of Medicine, Seoul, Korea
| | - Yoon Mee Park
- Department of Medicine, University of Ulsan Collage of Medicine, Seoul, Korea
| | - Hea Young Oh
- Department of Medicine, University of Ulsan Collage of Medicine, Seoul, Korea
| | - Jeonghun Yeom
- Prometabio Research Institute, Prometabio Co, Ltd, Seoul, Korea
| | | | - Hyun Ju Yoo
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, Seoul, Korea
| | - Bong-Soo Kim
- Department of Life Science, Multidisciplinary Genome Institute, Hallym University, Chuncheon, Korea
| | - Sun Mi Yun
- Microbiome Division, Macrogen, Inc, Seoul, Korea
| | - Eom Ji Choi
- Department of Pediatrics, CHA Gangnam Medical Center, Seoul, Korea
| | - Kun Baek Song
- Department of Pediatrics, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Min Jee Park
- Department of Pediatrics, Soonchunhyang University College of Medicine, Bucheon Hospital, Bucheon, Korea
| | - Kangmo Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyung Won Kim
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea
| | - Youn Ho Shin
- Department of Pediatrics, Kyunghee University of Medicine, Seoul, Korea
| | - Dong In Suh
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Joo Young Song
- Department of Pediatrics, CHA University Ilsan Medical Center, Goyang, Korea
| | - Soo-Jong Hong
- Department of Pediatrics, Childhood Asthma Atopy Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|
16
|
Gao J, Ding M, Xiyang Y, Qin S, Shukla D, Xu J, Miyagi M, Fujioka H, Liang J, Wang X. Aggregatin is a mitochondrial regulator of MAVS activation to drive innate immunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025; 214:238-252. [PMID: 40073244 PMCID: PMC11878994 DOI: 10.1093/jimmun/vkae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/06/2024] [Indexed: 03/14/2025]
Abstract
Mitochondrial antiviral-signaling protein (MAVS) is a key adapter protein required for inducing type I interferons (IFN-Is) and other antiviral effector molecules. The formation of MAVS aggregates on mitochondria is essential for its activation; however, the regulatory mitochondrial factor that mediates the aggregation process is unknown. Our recent work has identified the protein Aggregatin as a critical seeding factor for β-amyloid peptide aggregation. Here we show that Aggregatin serves as a cross-seed for MAVS aggregates on mitochondria to orchestrate innate immune signaling. Aggregatin is primarily localized to mitochondria in the cytosol and has the ability to induce MAVS aggregation and MAVS-dependent IFN-I responses alone in both HEK293 cells and human leukemia monocytic THP-1 cells. Mitochondrial Aggregatin level increases upon viral infection. Also, Aggregatin knockout suppresses viral infection-induced MAVS aggregation and IFN-I signal cascade activation. Nemo-like kinase is further identified as a kinase phosphorylating Aggregatin at Ser59 to regulate its stability and cross-seeding activity. Collectively, our finding reveals an important physiological function of Aggregatin in innate immunity by cross-seeding MAVS aggregation.
Collapse
Affiliation(s)
- Ju Gao
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, United States
| | - Mao Ding
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, United States
| | - Yanbin Xiyang
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, United States
| | - Siyue Qin
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, United States
| | - Devanshi Shukla
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, United States
| | - Jiawei Xu
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, United States
| | - Masaru Miyagi
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, United States
| | - Hisashi Fujioka
- Electron Microscopy Core Facility, Case Western Reserve University, Cleveland, OH, United States
| | - Jingjing Liang
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Arizona, Tucson, AZ, United States
| | - Xinglong Wang
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, United States
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
17
|
You Y, Sarkar S, Deiter C, Elliott EC, Nicora CD, Mirmira RG, Sussel L, Nakayasu ES. Reduction of Chemokine CXCL9 Expression by Omega-3 Fatty Acids via ADP-Ribosylhydrolase ARH3 in MIN6 Insulin-Producing Cells. Proteomics 2025; 25:e202400053. [PMID: 39648458 PMCID: PMC11794668 DOI: 10.1002/pmic.202400053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 11/04/2024] [Accepted: 11/22/2024] [Indexed: 12/10/2024]
Abstract
Type 1 diabetes (T1D) results from the autoimmune destruction of the insulin-producing β cells of the pancreas. Omega-3 fatty acids protect β cells and reduce the incidence of T1D, but the mechanism is poorly understood. We have shown that omega-3 fatty acids reduce pro-inflammatory cytokine-mediated β-cell apoptosis by upregulating the expression of the ADP-ribosylhydrolase ARH3. Here, we further investigate the β-cell protection mechanism of ARH3 by performing siRNA analysis of its gene Adprhl2 in MIN6 insulin-producing cells, subsequent treatment with a cocktail of the pro-inflammatory cytokines IL-1β + IFN-γ + TNF-α, followed by proteomics analysis. ARH3 regulated proteins from several pathways related to the nucleus (splicing, RNA surveillance, and nucleocytoplasmic transport), mitochondria (metabolic pathways), and endoplasmic reticulum (protein folding). ARH3 also regulated the levels of proteins related to antigen processing and presentation, and the chemokine-signaling pathway. We further studied the role of ARH3 in regulating the chemokine CXCL9. We found that ARH3 reduces the cytokine-induced expression of CXCL9, which is dependent on omega-3 fatty acids. In conclusion, we demonstrate that omega-3 fatty acids regulate CXCL9 expression via ARH3, which may have a role in protecting β cells from immune attack thereby preventing T1D development. Significance of the Study: Omega-3 fatty acids have a variety of health benefits. In type 1 diabetes, omega-3 fatty acids reduce the islet autoimmune response and the disease development. Here, we studied the pathways regulated by the adenosine diphosphate (ADP)-ribosylhydrolase ARH3, a protein whose expression is regulated by omega-3 fatty acids. We showed that ARH3 reduces the expression of chemokines in response to omega-3 fatty acids. This represents an anti-inflammatory mechanism of omega-3 fatty acids that might be involved with protection against type 1 diabetes development.
Collapse
Affiliation(s)
- Youngki You
- Biological Sciences DivisionPacific Northwest National LaboratoryRichlandWashingtonUSA
| | - Soumyadeep Sarkar
- Biological Sciences DivisionPacific Northwest National LaboratoryRichlandWashingtonUSA
| | - Cailin Deiter
- Barbara Davis Center for DiabetesUniversity of Colorado Anschutz Medical CenterAuroraColoradoUSA
| | - Emily C. Elliott
- Biological Sciences DivisionPacific Northwest National LaboratoryRichlandWashingtonUSA
| | - Carrie D. Nicora
- Biological Sciences DivisionPacific Northwest National LaboratoryRichlandWashingtonUSA
| | - Raghavendra G. Mirmira
- Kovler Diabetes Center and Department of MedicineThe University of ChicagoChicagoIllinoisUSA
| | - Lori Sussel
- Barbara Davis Center for DiabetesUniversity of Colorado Anschutz Medical CenterAuroraColoradoUSA
| | - Ernesto S. Nakayasu
- Biological Sciences DivisionPacific Northwest National LaboratoryRichlandWashingtonUSA
| |
Collapse
|
18
|
He J, Yin S, Deng X, Ma Z, Zhang H, Miao Y, Yi J, Chen C, Zhang J. The effector protein BspE affects Brucella survival by regulating the inflammatory response and apoptosis. Int Immunopharmacol 2025; 144:113576. [PMID: 39566384 DOI: 10.1016/j.intimp.2024.113576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/24/2024] [Accepted: 11/03/2024] [Indexed: 11/22/2024]
Abstract
Brucella T4SS secretes numerous effector proteins to disrupt host immune responses and apoptosis, enabling long-term survival. One such effector protein is BspE, whose role remains largely unknown. In this study, we demonstrated that BspE promotes the growth of Brucella, enhances its survival in macrophages, and affects the release of macrophage inflammatory factors. Furthermore, BspE facilitates Brucella colonization and pathological damage in mice. Our findings reveal that BspE can be translated in the host cell nucleus, where it interacts with the host RNA-binding protein PCBP1 to promote Brucella replication in macrophages. Knockdown of PCBP1 affects BspE-mediated proliferation of Brucella in macrophages. Furthermore, the BspE-PCBP1 interaction hinders P53 signaling and inhibits macrophage apoptosis. Although this interaction affects inflammatory cytokines, it does not significantly involve the NF-κB pathway. These findings contribute to a better understanding of how the Brucella effector protein BspE regulates host immune responses and apoptosis to influence its own survival.
Collapse
Affiliation(s)
- Jinke He
- Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi Xinjiang 832003, China; Department of Basic Medicine, Xinjiang Second Medical College, Kelamayi 834000, Xinjiang, China
| | - Shuanghong Yin
- Guizhou Provincial Key Laboratory for Biodiversity Conservation and Utilization in the Fanjing Mountain Region, Tongren University, Tongren 554300, Guizhou, China; School of Sports and Health Science, Tongren University, Tongren 554300, China
| | - Xiaoyu Deng
- Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi Xinjiang 832003, China; Department of Basic Medicine, Hunan University of Medicine, huaihua 418000, Hunan, China
| | - Zhongchen Ma
- Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi Xinjiang 832003, China
| | - Huan Zhang
- Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi Xinjiang 832003, China
| | - Yuhe Miao
- Fujian Sunvet Biological Technology Co., Ltd, Nanping 354100, Fujian, China
| | - Jihai Yi
- Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi Xinjiang 832003, China.
| | - Chuangfu Chen
- Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi Xinjiang 832003, China.
| | - Junbo Zhang
- Guizhou Provincial Key Laboratory for Biodiversity Conservation and Utilization in the Fanjing Mountain Region, Tongren University, Tongren 554300, Guizhou, China; College of A&F Engineering and Planning, Tongren University, Tongren 554300, Guizhou, China.
| |
Collapse
|
19
|
Su C, Su C, Zheng C. Identifying a Ubiquitinated Adaptor Protein by a Viral E3 Ligase Through Co-immunoprecipitation. Methods Mol Biol 2025; 2854:35-40. [PMID: 39192116 DOI: 10.1007/978-1-0716-4108-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Co-immunoprecipitation is a technique widely utilized to isolate protein complexes and study protein-protein interactions. Ubiquitinated proteins could be identified by combining co-immunoprecipitation with SDS-PAGE followed by immunoblotting. In this chapter, we use Herpes Simplex Virus 1 immediate-early protein ICP0-mediated polyubiquitination of p50 as an example to describe the method to identify a ubiquitinated adaptor protein by a viral E3 ligase by co-immunoprecipitation.
Collapse
Affiliation(s)
- Chenhe Su
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, China
| | - Chenhao Su
- Department of Nephrology and Rheumatology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chunfu Zheng
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
20
|
Su C, Su C, Zheng C. Identifying an Abnormal Phosphorylated Adaptor by Viral Kinase Using Mass Spectrometry. Methods Mol Biol 2025; 2854:29-34. [PMID: 39192115 DOI: 10.1007/978-1-0716-4108-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Mass spectrometers are widely used to identify protein phosphorylation sites. The process usually involves selective isolation of phosphoproteins and subsequent fragmentation to identify both the peptide sequence and phosphorylation site. Immunoprecipitation could capture and purify the protein of interest, greatly reducing sample complexity before submitting it for mass spectrometry analysis. This chapter describes a method to identify an abnormal phosphorylated site of the adaptor protein by a viral kinase through immunoprecipitation followed by LC-MS/MS.
Collapse
Affiliation(s)
- Chenhe Su
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, China
| | - Chenhao Su
- Department of Nephrology and Rheumatology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chunfu Zheng
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
21
|
Zhang X, Ling C, Xiong Z, Gong T, Luo S, Liu X, Zhang L, Liao C, Lu Y, Huang X, Zhou W, Zhou S, Liu Y, Tang J. Desuccinylation of TBK1 by SIRT5 regulates inflammatory response of macrophages in sepsis. Cell Rep 2024; 43:115060. [PMID: 39673708 DOI: 10.1016/j.celrep.2024.115060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 08/19/2024] [Accepted: 11/21/2024] [Indexed: 12/16/2024] Open
Abstract
Tank-binding kinase 1 (TBK1) is a critical signal transducer in the nuclear factor κB (NF-κB) and interferon regulatory factor (IRF) pathways, essential for innate immunity. However, its negative regulation mechanisms remain unclear. This study demonstrates that TBK1 succinylation, regulated by desuccinylase SIRT5, inhibits lipopolysaccharide (LPS)/Toll-like receptor 4 (TLR4)-mediated NF-κB and IRF signaling activation. We identified three key succinylation sites on TBK1: K38, K154, and K692. In endotoxemia and sepsis models, reduced SIRT5 levels in macrophages increased TBK1 succinylation, inhibiting its binding to IRF3 and TRAF2 and suppressing the inflammatory response. In vivo, adoptive transfer of macrophages expressing the succinylation-resistant TBK1-2KR (K154/692R) mutant reversed the inflammatory cytokine suppression caused by SIRT5 deficiency, exacerbating sepsis-induced lung injury. These findings reveal a novel mechanism by which SIRT5 modulates TBK1 activity and macrophage-mediated inflammation during sepsis.
Collapse
Affiliation(s)
- Xuedi Zhang
- The Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, China; Guang Dong Medical University, Zhanjiang, Guangdong 524000, China; Department of Anesthesiology, Shenzhen Hospital of Southern Medical University, No. 1333, Xinhu Road, Baoan District, Shenzhen, Guangdong 518110, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Chunxiu Ling
- The Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, China; Guang Dong Medical University, Zhanjiang, Guangdong 524000, China
| | - Ziying Xiong
- The Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, China; Guang Dong Medical University, Zhanjiang, Guangdong 524000, China
| | - Ting Gong
- Department of Anesthesiology, Shenzhen Hospital of Southern Medical University, No. 1333, Xinhu Road, Baoan District, Shenzhen, Guangdong 518110, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Shuhua Luo
- The Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, China; Guang Dong Medical University, Zhanjiang, Guangdong 524000, China
| | - Xiaolei Liu
- The Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, China; Guang Dong Medical University, Zhanjiang, Guangdong 524000, China
| | - Lina Zhang
- The Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, China; Guang Dong Medical University, Zhanjiang, Guangdong 524000, China
| | - Chaoxiong Liao
- The Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, China; Guang Dong Medical University, Zhanjiang, Guangdong 524000, China
| | - Yue Lu
- The Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, China; Guang Dong Medical University, Zhanjiang, Guangdong 524000, China
| | - Xiao Huang
- The Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, China; Guang Dong Medical University, Zhanjiang, Guangdong 524000, China
| | - Wending Zhou
- The Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, China; Guang Dong Medical University, Zhanjiang, Guangdong 524000, China
| | - Shuangnan Zhou
- Senior Department of Infectious Disease, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China.
| | - Youtan Liu
- Department of Anesthesiology, Shenzhen Hospital of Southern Medical University, No. 1333, Xinhu Road, Baoan District, Shenzhen, Guangdong 518110, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| | - Jing Tang
- The Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, China; Guang Dong Medical University, Zhanjiang, Guangdong 524000, China.
| |
Collapse
|
22
|
Chen X, Zhang J. Understanding Post-Translational Modifications in Porcine Reproductive and Respiratory Syndrome Virus Infection. Vet Sci 2024; 11:654. [PMID: 39728994 DOI: 10.3390/vetsci11120654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/02/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a highly contagious virus affecting pigs with significant impacts to the swine industry worldwide. This review provides a comprehensive understanding of post-translational modifications (PTMs) associated with PRRSV infection. We discuss the various types of PTMs, including phosphorylation, ubiquitination, SUMoylation, acetylation, glycosylation, palmitoylation, and lactylation, that occur during PRRSV infection. We emphasize how these modifications affect the function and activity of viral proteins, thereby influencing virus replication, assembly, and egress. Additionally, we delve into the host cellular responses triggered by PRRSV, particularly the PTMs that regulate host signaling pathways and immune responses. Furthermore, we summarize the current understandings of how PTMs facilitate the ability of virus to evade the host immune system, enabling it to establish persistent infections. Finally, we address the implications of these modifications in the development of novel antiviral strategies and the potential for exploiting PTMs as therapeutic targets. This review highlights the significance of PTMs in shaping viral pathogenicity and host antiviral mechanisms and provides valuable insights for future research aimed at developing effective interventions against PRRSV infections.
Collapse
Affiliation(s)
- Xiaoyong Chen
- Xingzhi College, Zhejiang Normal University, Lanxi 321100, China
| | - Jianlong Zhang
- Pingliang Vocational and Technical College, Pingliang 744000, China
| |
Collapse
|
23
|
Lohner H, Han X, Ren J, Liang S, Liang R, Wang H. HDAC6-Mediated FoxO1 Acetylation And Phosphorylation Control Periodontal Inflammatory Responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.10.627820. [PMID: 39713362 PMCID: PMC11661216 DOI: 10.1101/2024.12.10.627820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Post-translational modifications (PTMs) are critical regulators of protein function and cellular signaling. While histone deacetylation by histone deacetylases (HDACs) is well established, the role of specific HDACs in modulating non-histone protein PTMs, particularly in an infectious context, is poorly understood. Here, we reveal a pivotal role for HDAC6 in orchestrating periodontal inflammation through its dual regulatory effects on FoxO1 acetylation and phosphorylation. Using Porphyromonas gingivalis , a key periodontal pathogen, as a model pathogen, we observed that infection induces HDAC6 activation, driving inflammatory responses via modulating FoxO1 activity. HDAC6 depletion increased FoxO1 acetylation and phosphorylation, leading to its cytoplasmic sequestration and subsequent suppression of FoxO1- mediated pro-inflammatory cytokine production in macrophages. Mechanistically, HDAC6 deficiency not only directly enhances the acetylation of FoxO1 but also upregulates the expression of Rictor, a critical component of the mTORC2 complex, thereby promoting Akt phosphorylation and subsequently FoxO1 phosphorylation. This results in its cytoplasmic retention and attenuated inflammatory transcriptional activity. Functional studies demonstrated that HDAC6 depletion suppressed the production of key inflammatory mediators, including TNFα, IL-6, IL-12p40, and MIP-2, while promoting macrophage polarization toward anti-inflammatory M2 phenotypes. In vivo , using oral gavage infection and ligature-induced mouse periodontitis models, HDAC6 deficiency significantly reduced inflammatory cell infiltration in gingival tissues and protected against alveolar bone loss. These findings establish HDAC6 as a central regulator of periodontal inflammation, acting through the coordinated modulation of FoxO1 acetylation and phosphorylation. Beyond its role in oral pathology, HDAC6 may serve as a promising therapeutic target for managing inflammatory diseases linked to immune dysregulation.
Collapse
|
24
|
Lu L, He H, Feng J, Hu Z, Zhang S, Yang L, Liu Y, Wang T. Post-translational modification in the pathogenesis of vitiligo. Immunol Res 2024; 72:1229-1237. [PMID: 39320694 PMCID: PMC11618162 DOI: 10.1007/s12026-024-09545-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024]
Abstract
Vitiligo is a chronic dermatological condition marked by the loss of skin pigmentation. Its complex etiology involves multiple factors and has not been completely elucidated. Protein post-translational modification pathways have been proven to play a significant role in inflammatory skin diseases, yet research in the context of vitiligo remains limited. This review focuses on the role of post-translational modifications in vitiligo pathogenesis, especially their impact on cellular signaling pathways related to immune response and melanocyte survival. Current therapeutic strategies targeting these pathways are discussed, emphasizing the potential for novel treatments in vitiligo management.
Collapse
Affiliation(s)
- Lu Lu
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| | - Huimin He
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| | - Jindi Feng
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| | - Zhonghui Hu
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| | - Shiyu Zhang
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| | - Lu Yang
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| | - Yuehua Liu
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China.
| | - Tao Wang
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China.
| |
Collapse
|
25
|
Abolfathi F, Ranjbar R, Tabandeh MR, Habibi A. Cold water immersion regulates NLRP3 inflammasome pathway in the rat skeletal muscle after eccentric exercise by regulating the ubiquitin proteasome related proteins. Cytokine 2024; 184:156793. [PMID: 39467485 DOI: 10.1016/j.cyto.2024.156793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/28/2024] [Accepted: 10/21/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Eccentric exercise (ECC) can induce NLRP3-related inflammation in skeletal muscle tissue. Limited available data have shown that Cold water immersion (CWI) after ECC can suppress skeletal muscle inflammation. This study aims to investigate the effect of CWI after ECC on the NLRP3 inflammasome pathway, and the expression of ubiquitin-proteasome-related proteins (UPPs) in the skeletal muscle of rats. METHODS Twenty-five male Wistar rats were randomly divided into control, ECC, ECC + CWI, ECC + NWI (normal water immersion), and ECC + AR (active recovery) groups. The Eccentric exercise consisted of 90 min of downhill running on a treadmill with a speed of 16 m/min and -16° incline. Animals in the NWI and CWI groups were immersed in water at 25 °C and 10 °C after ECC. Eventually, The soleus muscle was isolated and the expression of NLRP3, caspase-1, FBXL2, TRIM31, and PARKIN was evaluated by western blot. Tissue levels of IL-1β and IL-18 were measured by ELISA assay. RESULTS ECC significantly increased the expression of NLRP3, caspase-1, and the tissue levels of IL-1β and IL-18 compared to the control group. After ECC, FBXL2, and PARKIN were downregulated, whereas TRIM31 was up-regulated (P < 0.05). CWI after ECC suppressed the NLRP3 inflammasome components and increased the protein levels of FBXL2 and TRIM31 at higher levels than other recovery methods (P < 0.05). CWI and AR had the same increase in PARKIN expression and the same decrease in CK level compared to the ECC group (P < 0.05). CONCLUSION Our results indicated that CWI increased the expression of NLRP3-related UPPs in concomitant with suppression of NLRP3 in the soleus muscle of rats after ECC. As a result the beneficial effects of CWI on the attenuation of skeletal muscle inflammation may contribute to an alteration of UPPs expression.
Collapse
Affiliation(s)
- Farzaneh Abolfathi
- Department of Sport Physiology, Faculty of Sport Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Rouhollah Ranjbar
- Department of Sport Physiology, Faculty of Sport Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Mohammad Reza Tabandeh
- Department of Basic Sciences, Division of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran; Stem Cells and Transgenic Technology Research Center, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Abdolhamid Habibi
- Department of Sport Physiology, Faculty of Sport Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| |
Collapse
|
26
|
Zhu Q, Zhou H, Xie F. Regulation of ovarian cancer by protein post-translational modifications. Front Oncol 2024; 14:1437953. [PMID: 39678497 PMCID: PMC11638062 DOI: 10.3389/fonc.2024.1437953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 11/12/2024] [Indexed: 12/17/2024] Open
Abstract
Ovarian cancer is one of the predominant gynecologic malignancies worldwide, ranking as the fifth leading cause of cancer-induced mortality among women globally. Post-translational modifications (PTMs) refer to the enzyme-catalyzed attachment of functional groups to proteins, thereby inducing structural and functional alterations. Recent evidence suggests that PTMs play multifaceted roles in the pathogenesis of ovarian cancer, influencing processes such as cell cycle, metabolism reprogramming, chemoresistance, and immune responses against cancer. Accordingly, a comprehensive understanding of the diverse PTMs in ovarian cancer is imperative for decoding the complex molecular mechanisms that drive cancer progression. This review discusses the latest developments in the study of protein PTMs in ovarian cancer and introduces pharmacological approaches that target these modifications as therapeutic strategies.
Collapse
Affiliation(s)
- Qiugang Zhu
- Department of Laboratory Medicine, Shangyu People’s Hospital of Shaoxing, Shaoxing University, Shaoxing, China
| | - Huimin Zhou
- Department of Laboratory Medicine, Wuxi Ninth People’s Hospital Affiliated to Soochow University, Wuxi, China
| | - Feiting Xie
- Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
27
|
Huang YX, Liu R. Improved prediction of post-translational modification crosstalk within proteins using DeepPCT. Bioinformatics 2024; 40:btae675. [PMID: 39570595 PMCID: PMC11645436 DOI: 10.1093/bioinformatics/btae675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/18/2024] [Accepted: 11/19/2024] [Indexed: 11/22/2024] Open
Abstract
MOTIVATION Post-translational modification (PTM) crosstalk events play critical roles in biological processes. Several machine learning methods have been developed to identify PTM crosstalk within proteins, but the accuracy is still far from satisfactory. Recent breakthroughs in deep learning and protein structure prediction could provide a potential solution to this issue. RESULTS We proposed DeepPCT, a deep learning algorithm to identify PTM crosstalk using AlphaFold2-based structures. In this algorithm, one deep learning classifier was constructed for sequence-based prediction by combining the residue and residue pair embeddings with cross-attention techniques, while the other classifier was established for structure-based prediction by integrating the structural embedding and a graph neural network. Meanwhile, a machine learning classifier was developed using novel structural descriptors and a random forest model to complement the structural deep learning classifier. By integrating the three classifiers, DeepPCT outperformed existing algorithms in different evaluation scenarios and showed better generalizability on new data owing to its less distance dependency. AVAILABILITY AND IMPLEMENTATION Datasets, codes, and models of DeepPCT are freely accessible at https://github.com/hzau-liulab/DeepPCT/.
Collapse
Affiliation(s)
- Yu-Xiang Huang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Rong Liu
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P.R. China
| |
Collapse
|
28
|
Zhou YR, Dang JJ, Yang QC, Sun ZJ. The regulation of pyroptosis by post-translational modifications: molecular mechanisms and therapeutic targets. EBioMedicine 2024; 109:105420. [PMID: 39476537 PMCID: PMC11564932 DOI: 10.1016/j.ebiom.2024.105420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/23/2024] [Accepted: 10/09/2024] [Indexed: 11/17/2024] Open
Abstract
Pyroptosis, a type of programmed cell death mediated by gasdermin family proteins, releases a large amount of immune stimulatory substances, which further contribute to inflammation and elicit an adaptive immune response against tumours and pathogens. And it occurs through multiple pathways that involve the activation of specific caspases and the cleavage of gasdermins. Post-translational modifications (PTMs) could influence the chemical properties of the modified residues and neighbouring regions, ultimately affecting the activity, stability, and functions of proteins to regulate pyroptosis. Many studies have been conducted to explore the influence of PTMs on the regulation of pyroptosis. In this review, we provide a comprehensive summary of different types of PTMs that influence pyroptosis, along with their corresponding modifying enzymes. Moreover, it elaborates on the specific contributions of different PTMs to pyroptosis and delves into how the regulation of these modifications can be leveraged for therapeutic interventions in cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Yi-Rao Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Centre for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Jun-Jie Dang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Centre for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Qi-Chao Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Centre for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China.
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Centre for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
29
|
Li W, Zhou J, Gu Y, Chen Y, Huang Y, Yang J, Zhu X, Zhao K, Yan Q, Zhao Z, Li X, Chen G, Jia X, Gao SJ, Lu C. Lactylation of RNA m 6A demethylase ALKBH5 promotes innate immune response to DNA herpesviruses and mpox virus. Proc Natl Acad Sci U S A 2024; 121:e2409132121. [PMID: 39413129 PMCID: PMC11513906 DOI: 10.1073/pnas.2409132121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/31/2024] [Indexed: 10/18/2024] Open
Abstract
RNA N6-methyladenosine (m6A) demethylase AlkB homolog 5 (ALKBH5) plays a crucial role in regulating innate immunity. Lysine acylation, a widespread protein modification, influences protein function, but its impact on ALKBH5 during viral infections has not been well characterized. This study investigates the presence and regulatory mechanisms of a previously unidentified lysine acylation in ALKBH5 and its role in mediating m6A modifications to activate antiviral innate immune responses. We demonstrate that ALKBH5 undergoes lactylation, which is essential for an effective innate immune response against DNA herpesviruses, including herpes simplex virus type 1 (HSV-1), Kaposi's sarcoma-associated herpesvirus (KSHV), and mpox virus (MPXV). This lactylation attenuates viral replication. Mechanistically, viral infections enhance ALKBH5 lactylation by increasing its interaction with acetyltransferase ESCO2 and decreasing its interaction with deacetyltransferase SIRT6. Lactylated ALKBH5 binds interferon-beta (IFN-β) messenger RNA (mRNA), leading to demethylation of its m6A modifications and promoting IFN-β mRNA biogenesis. Overexpression of ESCO2 or depletion of SIRT6 further enhances ALKBH5 lactylation to strengthen IFN-β mRNA biogenesis. Our results identify a posttranslational modification of ALKBH5 and its role in regulating antiviral innate immune responses through m6A modification. The finding provides an understanding of innate immunity and offers a potential therapeutic target for HSV-1, KSHV, and MPXV infections.
Collapse
Affiliation(s)
- Wan Li
- Department of Gynecology, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing210004, People’s Republic of China
- Department of Microbiology, Nanjing Medical University, Nanjing211166, People’s Republic of China
- Changzhou Medical Center, Nanjing Medical University, Nanjing211166, People’s Republic of China
| | - Jing Zhou
- Department of Microbiology, Nanjing Medical University, Nanjing211166, People’s Republic of China
| | - Yang Gu
- Department of Microbiology, Nanjing Medical University, Nanjing211166, People’s Republic of China
| | - Yuheng Chen
- Department of Microbiology, Nanjing Medical University, Nanjing211166, People’s Republic of China
| | - Yiming Huang
- Department of Microbiology, Nanjing Medical University, Nanjing211166, People’s Republic of China
| | - Jingxin Yang
- Department of Microbiology, Nanjing Medical University, Nanjing211166, People’s Republic of China
| | - Xiaojuan Zhu
- Jiangsu Provincial Medical Key Laboratory of Pathogenic Microbiology in Emerging Major Infectious Diseases, National Health Commission (NHC) Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing210009, People’s Republic of China
| | - Kangchen Zhao
- Jiangsu Provincial Medical Key Laboratory of Pathogenic Microbiology in Emerging Major Infectious Diseases, National Health Commission (NHC) Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing210009, People’s Republic of China
| | - Qin Yan
- Department of Microbiology, Nanjing Medical University, Nanjing211166, People’s Republic of China
- Changzhou Medical Center, Nanjing Medical University, Nanjing211166, People’s Republic of China
| | - Zongzheng Zhao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun130122, People’s Republic of China
| | - Xiao Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun130122, People’s Republic of China
| | - Guochun Chen
- Changzhou Medical Center, Nanjing Medical University, Nanjing211166, People’s Republic of China
- Department of Infectious Diseases, Changzhou Third People’s Hospital, Changzhou213000, People’s Republic of China
| | - Xuemei Jia
- Department of Gynecology, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing210004, People’s Republic of China
| | - Shou-Jiang Gao
- Tumor Virology Program, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA15232
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA15232
| | - Chun Lu
- Department of Gynecology, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing210004, People’s Republic of China
- Department of Microbiology, Nanjing Medical University, Nanjing211166, People’s Republic of China
- Changzhou Medical Center, Nanjing Medical University, Nanjing211166, People’s Republic of China
| |
Collapse
|
30
|
Tapescu I, Cherry S. DDX RNA helicases: key players in cellular homeostasis and innate antiviral immunity. J Virol 2024; 98:e0004024. [PMID: 39212449 PMCID: PMC11494928 DOI: 10.1128/jvi.00040-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
RNA helicases are integral in RNA metabolism, performing important roles in cellular homeostasis and stress responses. In particular, the DExD/H-box (DDX) helicase family possesses a conserved catalytic core that binds structural features rather than specific sequences in RNA targets. DDXs have critical roles in all aspects of RNA metabolism including ribosome biogenesis, translation, RNA export, and RNA stability. Importantly, functional specialization within this family arises from divergent N and C termini and is driven at least in part by gene duplications with 18 of the 42 human helicases having paralogs. In addition to their key roles in the homeostatic control of cellular RNA, these factors have critical roles in RNA virus infection. The canonical RIG-I-like receptors (RLRs) play pivotal roles in cytoplasmic sensing of viral RNA structures, inducing antiviral gene expression. Additional RNA helicases function as viral sensors or regulators, further diversifying the innate immune defense arsenal. Moreover, some of these helicases have been coopted by viruses to facilitate their replication. Altogether, DDX helicases exhibit functional specificity, playing intricate roles in RNA metabolism and host defense. This review will discuss the mechanisms by which these RNA helicases recognize diverse RNA structures in cellular and viral RNAs, and how this impacts RNA processing and innate immune responses.
Collapse
Affiliation(s)
- Iulia Tapescu
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Biochemistry and Biophysics Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sara Cherry
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
31
|
Jing F, Zhu L, Zhang J, Zhou X, Bai J, Li X, Zhang H, Li T. Multi-omics reveals lactylation-driven regulatory mechanisms promoting tumor progression in oral squamous cell carcinoma. Genome Biol 2024; 25:272. [PMID: 39407253 PMCID: PMC11476802 DOI: 10.1186/s13059-024-03383-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/30/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Lactylation, a post-translational modification, is increasingly recognized for its role in cancer progression. This study investigates its prevalence and impact in oral squamous cell carcinoma (OSCC). RESULTS Immunohistochemical staining of 81 OSCC cases shows lactylation levels correlate with malignancy grading. Proteomic analyses of six OSCC tissue pairs reveal 2765 lactylation sites on 1033 proteins, highlighting its extensive presence. These modifications influence metabolic processes, molecular synthesis, and transport. CAL27 cells are subjected to cleavage under targets and tagmentation assay for accessible-chromatin with high-throughput sequencing, and transcriptomic sequencing pre- and post-lactate treatment, with 217 genes upregulated due to lactylation. Chromatin immunoprecipitation-quantitative PCR and real-time fluorescence quantitative PCR confirm the regulatory role of lactylation at the K146 site of dexh-box helicase 9 (DHX9), a key factor in OSCC progression. CCK8, colony formation, scratch healing, and Transwell assays demonstrate that lactylation mitigates the inhibitory effect of DHX9 on OSCC, thereby promoting its occurrence and development. CONCLUSIONS Lactylation actively modulates gene expression in OSCC, with significant effects on chromatin structure and cellular processes. This study provides a foundation for developing targeted therapies against OSCC, leveraging the role of lactylation in disease pathogenesis.
Collapse
Affiliation(s)
- Fengyang Jing
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, 100081, China
| | - Lijing Zhu
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, 100081, China
| | - Jianyun Zhang
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, 100081, China
| | - Xuan Zhou
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, 100081, China
| | - Jiaying Bai
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Xuefen Li
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Heyu Zhang
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, 100081, China.
| | - Tiejun Li
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China.
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, 100081, China.
| |
Collapse
|
32
|
Maccaferri M, Pisciotta A, Carnevale G, Salvarani C, Pignatti E. Human dental pulp stem cells modulate pro-inflammatory macrophages both through cell-to-cell contact and paracrine signaling. Front Immunol 2024; 15:1440974. [PMID: 39450172 PMCID: PMC11499095 DOI: 10.3389/fimmu.2024.1440974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Introduction Macrophages play a key role in most of the inflammatory diseases such as Rheumatoid Arthritis (RA), but the mechanism underlying their pathogenesis is still under study. Among stem cells, human dental pulp stem cells (hDPSCs) have attracted attention due to their easy accessibility and immunomodulatory properties, making them a promising adjuvant therapy. In this study, we aimed to evaluate the capacity of hDPSCs to modulate the phenotypes of primary human macrophages. Additionally, we sought to observe the differences induced on macrophages when cultured directly with hDPSCs or through a cell culture insert, mimicking the paracrine communication pathway. Methods Monocytes, isolated from buffy coats, were differentiated into pro-inflammatory M1 and anti-inflammatory M2 macrophages. Subsequently, they were cultured with hDPSCs either directly or via a cell-culture insert for 48 hours. Finally, they were analyzed for protein, gene expression, cytokines levels and immunofluorescence. Results In our study, we have demonstrated that, hDPSCs, even without priming, can reduce TNFα levels and enhancing IL-10 release in pro-inflammatory macrophages, both through direct contact and paracrine signaling. Furthermore, we found that their effects are more pronounced when in cell-to-cell contact through the decrease of NF-kB and COX-2 expression and of CD80/PD-L1 colocalization. HDPSCs, when in contact with macrophages, showed enhanced expression of NF-kB, COX-2, ICAM-1, PD-L1, FAS-L, TNFα and IFNγ. Conclusion We showed that hDPSCs exert immunomodulatory effects on pro-inflammatory macrophages, with cell-to-cell contact yielding a more pronounced outcome compared to paracrine signaling. Our work highlights the immunomodulatory properties of hDPSCs on activated pro-inflammatory macrophages and the potential therapeutic role in inflamed tissue.
Collapse
Affiliation(s)
- Monia Maccaferri
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandra Pisciotta
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Gianluca Carnevale
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Carlo Salvarani
- Rheumatology Unit, Azienda Unità Sanitaria Locale - Istituto di Ricovero e Cura a Carattere Scientifico (USL-IRCCS) di Reggio Emilia, Reggio Emilia, Italy
| | - Elisa Pignatti
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
- Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| |
Collapse
|
33
|
da Silva Cabral T, Cayuela NC, Carvalho KGB, Pimenta TS, Rodrigues APD, Diniz DG, Quaresma JAS, de Almeida Medeiros DB, Prazeres ITE, da Silva SP, Araújo TP, da Costa Vasconcelos PF, Diniz CWP, Diniz JAP. Juruaça virus taxonomy, tolerance and resistance to infection, and inflammatory response modulation in murine model. NPJ VIRUSES 2024; 2:46. [PMID: 40295833 PMCID: PMC11721108 DOI: 10.1038/s44298-024-00056-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/05/2024] [Indexed: 04/30/2025]
Abstract
Juruaça virus (JUAV), previously unclassified, was isolated from bats and administered to neonatal and adult BALB/c mice to investigate acute and chronic disease progression. In this study, we conducted genomic sequencing to achieve taxonomic classification and utilized these models to explore the inflammatory response and sickness behavior in both neonatal and adult mice. Neonates received a single intranasal instillation of infected brain homogenate (20 µL), whereas 31-day-old mice were given the same volume intranasally for three consecutive days. Control groups were administered equal volumes of uninfected brain homogenate. Our findings reveal that intranasal JUAV infection-induced acute meningoencephalitis and death in neonates, while adult mice exhibited chronic infection with variable clinical signs, inflammatory mediator production, histopathological changes, and neuropathological features. Interestingly, only some adult mice showed sickness behavior post-infection, and among these, a subset continued to decline and die. The differential tissue damage observed in mice with and without overt disease symptoms suggests mechanisms of resistance or tolerance, where exceeding tolerance capacity resulted in pathological outcomes, including chronic dysfunction or death. This study provides the first evidence of JUAV's capability to infect mammals, demonstrating its distinct impact on bats and variable effects in neonatal and adult mice. We provisionally classified JUAV as closely related to the clade containing tombus-like virus 6 found in mute swan feces. Our research highlights the importance of understanding viral-host interactions and the inflammatory responses that contribute to disease variability, offering insights into tolerance and resistance mechanisms based on inflammatory response modulation.
Collapse
Affiliation(s)
- Tatyane da Silva Cabral
- Laboratório de Microscopia Eletrônica, Instituto Evandro Chagas, Avenida Almirante Barroso, 492, Bairro do Marco, CEP 66.093-020, Belém, Pará, Brasil
| | - Natalie Chaves Cayuela
- Laboratório de Microscopia Eletrônica, Instituto Evandro Chagas, Avenida Almirante Barroso, 492, Bairro do Marco, CEP 66.093-020, Belém, Pará, Brasil
| | - Karina Glazianne Barbosa Carvalho
- Laboratório de Microscopia Eletrônica, Instituto Evandro Chagas, Avenida Almirante Barroso, 492, Bairro do Marco, CEP 66.093-020, Belém, Pará, Brasil
| | - Tamirys Simão Pimenta
- Laboratório de Microscopia Eletrônica, Instituto Evandro Chagas, Avenida Almirante Barroso, 492, Bairro do Marco, CEP 66.093-020, Belém, Pará, Brasil
| | - Ana Paula Drummond Rodrigues
- Laboratório de Microscopia Eletrônica, Instituto Evandro Chagas, Avenida Almirante Barroso, 492, Bairro do Marco, CEP 66.093-020, Belém, Pará, Brasil
| | - Daniel Guerreiro Diniz
- Laboratório de Microscopia Eletrônica, Instituto Evandro Chagas, Avenida Almirante Barroso, 492, Bairro do Marco, CEP 66.093-020, Belém, Pará, Brasil
- Laboratório de Investigações em Neurodegeneração e Infecção, Universidade Federal do Pará, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Rua dos Mundurucus, 4487, Guamá, CEP: 66.073-005, Belém, Pará, Brasil
- Universidade Federal do Pará, Hospital Universitário João de Barros Barreto, Núcleo de Pesquisas em Oncologia, Rua dos Mundurucus, 4487, Guamá, CEP: 66.073-005, Belém, Pará, Brasil
| | - Juarez Antônio Simões Quaresma
- Departamento de Patologia, Universidade do Estado do Pará, Centro de Ciências Biológicas e da Saúde, Belém, Pará, Brasil, Rua do Una, 156, Telégrafo, CEP: 66.050-540, Belém, Pará, Brasil
- Universidade Federal do Pará, Núcleo de Medicina Tropical, Av. Generalíssimo Deodoro, 92 - Umarizal, CEP: 66.055-240, Belém, Pará, Brasil
| | - Daniele Barbosa de Almeida Medeiros
- Instituto Evandro Chagas, Seção de Arbovirologia e Febres Hemorrágicas, Rodovia BR-316 km 7 s/n - Levilândia, CEP: 67.030-000, Ananindeua, Pará, Brasil
| | - Ivy Tsuya Essashika Prazeres
- Instituto Evandro Chagas, Seção de Arbovirologia e Febres Hemorrágicas, Rodovia BR-316 km 7 s/n - Levilândia, CEP: 67.030-000, Ananindeua, Pará, Brasil
| | - Sandro Patroca da Silva
- Instituto Evandro Chagas, Seção de Arbovirologia e Febres Hemorrágicas, Rodovia BR-316 km 7 s/n - Levilândia, CEP: 67.030-000, Ananindeua, Pará, Brasil
| | - Taís Pinheiro Araújo
- Instituto Evandro Chagas, Seção de Arbovirologia e Febres Hemorrágicas, Rodovia BR-316 km 7 s/n - Levilândia, CEP: 67.030-000, Ananindeua, Pará, Brasil
| | - Pedro Fernando da Costa Vasconcelos
- Departamento de Patologia, Universidade do Estado do Pará, Centro de Ciências Biológicas e da Saúde, Belém, Pará, Brasil, Rua do Una, 156, Telégrafo, CEP: 66.050-540, Belém, Pará, Brasil
- Instituto Evandro Chagas, Seção de Arbovirologia e Febres Hemorrágicas, Rodovia BR-316 km 7 s/n - Levilândia, CEP: 67.030-000, Ananindeua, Pará, Brasil
| | - Cristovam Wanderley Picanço Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção, Universidade Federal do Pará, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Rua dos Mundurucus, 4487, Guamá, CEP: 66.073-005, Belém, Pará, Brasil
| | - José Antonio Picanço Diniz
- Laboratório de Microscopia Eletrônica, Instituto Evandro Chagas, Avenida Almirante Barroso, 492, Bairro do Marco, CEP 66.093-020, Belém, Pará, Brasil.
| |
Collapse
|
34
|
Li G, Zhang J, Zhao Z, Wang J, Li J, Xu W, Cui Z, Sun P, Yuan H, Wang T, Li K, Bai X, Ma X, Li P, Fu Y, Cao Y, Bao H, Li D, Liu Z, Zhu N, Tang L, Lu Z. RNF144B negatively regulates antiviral immunity by targeting MDA5 for autophagic degradation. EMBO Rep 2024; 25:4594-4624. [PMID: 39285245 PMCID: PMC11467429 DOI: 10.1038/s44319-024-00256-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 08/14/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024] Open
Abstract
As a RIG-I-like receptor, MDA5 plays a critical role in antiviral innate immunity by acting as a cytoplasmic double-stranded RNA sensor capable of initiating type I interferon pathways. Here, we show that RNF144B specifically interacts with MDA5 and promotes K27/K33-linked polyubiquitination of MDA5 at lysine 23 and lysine 43, which promotes autophagic degradation of MDA5 by p62. Rnf144b deficiency greatly promotes IFN production and inhibits EMCV replication in vivo. Importantly, Rnf144b-/- mice has a significantly higher overall survival rate than wild-type mice upon EMCV infection. Collectively, our results identify RNF144B as a negative regulator of innate antiviral response by targeting CARDs of MDA5 and mediating autophagic degradation of MDA5.
Collapse
Affiliation(s)
- Guoxiu Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Jing Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China.
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China.
| | - Zhixun Zhao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Jian Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Jiaoyang Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Weihong Xu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Zhanding Cui
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Pu Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Hong Yuan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Tao Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Kun Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Xingwen Bai
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Xueqing Ma
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Pinghua Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Yuanfang Fu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Yimei Cao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Huifang Bao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Dong Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Zaixin Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Ning Zhu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Lijie Tang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China.
| | - Zengjun Lu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China.
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China.
| |
Collapse
|
35
|
Zhang Z, Uribe I, Davis KA, McPherson RL, Larson GP, Badiee M, Tran V, Ledwith MP, Feltman E, Yú S, Caì Y, Chang CY, Yang X, Ma Z, Chang P, Kuhn JH, Leung AKL, Mehle A. Global remodeling of ADP-ribosylation by PARP1 suppresses influenza A virus infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.19.613696. [PMID: 39345583 PMCID: PMC11430048 DOI: 10.1101/2024.09.19.613696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
ADP-ribosylation is a highly dynamic and fully reversible post-translational modification performed by poly(ADP-ribose) polymerases (PARPs) that modulates protein function, abundance, localization and turnover. Here we show that influenza A virus infection causes a rapid and dramatic upregulation of global ADP-ribosylation that inhibits viral replication. Mass spectrometry defined for the first time the global ADP-ribosylome during infection, creating an infection-specific profile with almost 4,300 modification sites on ~1,080 host proteins, as well as over 100 modification sites on viral proteins. Our data indicate that the global increase likely reflects a change in the form of ADP-ribosylation rather than modification of new targets. Functional assays demonstrated that modification of the viral replication machinery antagonizes its activity and further revealed that the anti-viral activity of PARPs and ADP-ribosylation is counteracted by the influenza A virus protein NS1, assigning a new activity to the primary viral antagonist of innate immunity. We identified PARP1 as the enzyme producing the majority of poly(ADP-ribose) present during infection. Influenza A virus replicated faster in cells lacking PARP1, linking PARP1 and ADP-ribosylation to the anti-viral phenotype. Together, these data establish ADP-ribosylation as an anti-viral innate immune-like response to viral infection antagonized by a previously unknown activity of NS1.
Collapse
Affiliation(s)
- Zhenyu Zhang
- Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, WI
| | - Isabel Uribe
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Kaitlin A. Davis
- Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, WI
| | - Robert Lyle McPherson
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Gloria P Larson
- Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, WI
| | - Mohsen Badiee
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Vy Tran
- Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, WI
| | - Mitchell P. Ledwith
- Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, WI
| | - Elizabeth Feltman
- Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, WI
| | - Shuǐqìng Yú
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Yíngyún Caì
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Che-Yuan Chang
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Xingyi Yang
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Zhuo Ma
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Paul Chang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Anthony K. L. Leung
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Molecular Biology and Genetics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Genetic Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Andrew Mehle
- Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, WI
- Lead Contact
| |
Collapse
|
36
|
Li X, Yu T, Li X, He X, Zhang B, Yang Y. Role of novel protein acylation modifications in immunity and its related diseases. Immunology 2024; 173:53-75. [PMID: 38866391 DOI: 10.1111/imm.13822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/21/2024] [Indexed: 06/14/2024] Open
Abstract
The cross-regulation of immunity and metabolism is currently a research hotspot in life sciences and immunology. Metabolic immunology plays an important role in cutting-edge fields such as metabolic regulatory mechanisms in immune cell development and function, and metabolic targets and immune-related disease pathways. Protein post-translational modification (PTM) is a key epigenetic mechanism that regulates various biological processes and highlights metabolite functions. Currently, more than 400 PTM types have been identified to affect the functions of several proteins. Among these, metabolic PTMs, particularly various newly identified histone or non-histone acylation modifications, can effectively regulate various functions, processes and diseases of the immune system, as well as immune-related diseases. Thus, drugs aimed at targeted acylation modification can have substantial therapeutic potential in regulating immunity, indicating a new direction for further clinical translational research. This review summarises the characteristics and functions of seven novel lysine acylation modifications, including succinylation, S-palmitoylation, lactylation, crotonylation, 2-hydroxyisobutyrylation, β-hydroxybutyrylation and malonylation, and their association with immunity, thereby providing valuable references for the diagnosis and treatment of immune disorders associated with new acylation modifications.
Collapse
Affiliation(s)
- Xiaoqian Li
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, People's Republic of China
| | - Tao Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Xiaolu Li
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Xiangqin He
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Bei Zhang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, People's Republic of China
| | - Yanyan Yang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, People's Republic of China
| |
Collapse
|
37
|
Liu X, Cui L, Tao Y, Xia S, Hou J, Cao X, Xu S. The deubiquitinase BAP1 and E3 ligase UBE3C sequentially target IRF3 to activate and resolve the antiviral innate immune response. Cell Rep 2024; 43:114608. [PMID: 39120972 DOI: 10.1016/j.celrep.2024.114608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/11/2024] [Accepted: 07/24/2024] [Indexed: 08/11/2024] Open
Abstract
Ubiquitination is essential for the proteasomal turnover of IRF3, the central factor mediating the antiviral innate immune response. However, the spatiotemporal regulation of IRF3 ubiquitination for the precise activation and timely resolution of innate immunity remains unclear. Here, we identified BRCA1-associated protein-1 (BAP1) and ubiquitin-protein ligase E3C (UBE3C) as the key deubiquitinase and ubiquitinase for temporal control of IRF3 stability during viral infection. In the early stage, BAP1 dominates and removes K48-linked ubiquitination of IRF3 in the nucleus, preventing its proteasomal degradation and facilitating efficient interferon (IFN)-β production. In the late stage, E3 ligase UBE3C, induced by IFN-β, specifically mediates IRF3 ubiquitination and promotes its proteasomal degradation. Overall, the sequential interactions with BAP1 and UBE3C govern IRF3 stability during innate response, ensuring effective viral clearance and inflammation resolution. Our findings provide insights into the temporal control of innate signaling and suggest potential interventions in viral infection.
Collapse
Affiliation(s)
- Xiang Liu
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Navy Medical University, Shanghai 200433, China; Department of Respiratory Disease, Affiliated Xihu Hospital, Hangzhou Medical College, Hangzhou 310013, China
| | - Likun Cui
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Navy Medical University, Shanghai 200433, China
| | - Yijie Tao
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Navy Medical University, Shanghai 200433, China
| | - Simo Xia
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Navy Medical University, Shanghai 200433, China
| | - Jin Hou
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Navy Medical University, Shanghai 200433, China
| | - Xuetao Cao
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Navy Medical University, Shanghai 200433, China; Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China; Institute of Immunology, College of Life Science, Nankai University, Tianjin 30071, China.
| | - Sheng Xu
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Navy Medical University, Shanghai 200433, China.
| |
Collapse
|
38
|
Shen X, Gu M, Zhan F, Cai H, Zhang K, Wang K, Li C. Porcine beta defensin 2 attenuates inflammatory responses in IPEC-J2 cells against Escherichia coli via TLRs-NF-κB/MAPK signaling pathway. BMC Vet Res 2024; 20:357. [PMID: 39127630 PMCID: PMC11316325 DOI: 10.1186/s12917-024-04220-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Porcine beta defensin 2 (pBD2) is one of the porcine beta defensins that has antibacterial activity, and plays an important role in the immunomodulatory activity that protects cells from pathogens. It has been reported that pBD2 plays their immunomodulatory functions related to the TLR4-NF-κB signal pathways. However, it is not completely clear how pBD2 reduces the inflammatory response caused by pathogens. RESULTS In this study, the effect of pBD2 on the expression of genes in the TLRs signaling pathway was investigated after IPEC-J2 cells were challenged with E. coli. The results showed that pBD2 decreased the expression of IL-8 induced by E. coli (P < 0.05), and pBD2 significantly decreased the expression of TLR4, TLR5 and TLR7 (P < 0.05), as well as the key downstream genes p38 and JNK which activated by E. coli (P < 0.05). In addition, pBD2 inhibited the p-p65, p-p38 and p-JNK which were up-regulated by E. coli. CONCLUSIONS pBD2 could reduce the inflammatory response induced by E. coli perhaps by inhibiting the TLRs-TAK1-NF-κB/MAPK signaling pathway which was activated by E. coli in IPEC-J2 cells. Our study further reveals the immunomodulatory activity of recombinant pBD2 against E. coli, and provides insights into the molecular mechanisms that protect cells from E. coli infection.
Collapse
Affiliation(s)
- Xiaoyang Shen
- College of Animal Science and Technology, Henan Agricultural University, No. 218, PingAn Road, Zheng Dong New District, Zhengzhou, 460045, Henan, The People's Republic of China
| | - Mingke Gu
- College of Animal Science and Technology, Henan Agricultural University, No. 218, PingAn Road, Zheng Dong New District, Zhengzhou, 460045, Henan, The People's Republic of China
| | - Fengting Zhan
- College of Animal Science and Technology, Henan Agricultural University, No. 218, PingAn Road, Zheng Dong New District, Zhengzhou, 460045, Henan, The People's Republic of China
| | - Hanfang Cai
- College of Animal Science and Technology, Henan Agricultural University, No. 218, PingAn Road, Zheng Dong New District, Zhengzhou, 460045, Henan, The People's Republic of China
| | - Kun Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, The People's Republic of China
| | - Kejun Wang
- College of Animal Science and Technology, Henan Agricultural University, No. 218, PingAn Road, Zheng Dong New District, Zhengzhou, 460045, Henan, The People's Republic of China.
| | - Chunli Li
- College of Animal Science and Technology, Henan Agricultural University, No. 218, PingAn Road, Zheng Dong New District, Zhengzhou, 460045, Henan, The People's Republic of China.
| |
Collapse
|
39
|
Yang Y, Long H, Long L, Guo B. Mechanism of desuccinylation of G6PD mediated by SIRT7 to promote vitiligo disease progression. Immun Inflamm Dis 2024; 12:e1341. [PMID: 39092715 PMCID: PMC11295095 DOI: 10.1002/iid3.1341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 04/30/2024] [Accepted: 06/29/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Sirtuin 7 (SIRT7) is pivotal in diverse diseases progression. Importantly, SIRT7 is associated with melanin production. However, whether SIRT7 regulates vitiligo is unclear. Therefore, we aimed to investigate the effects of SIRT7 on pigmentation and the modification of glucose 6-phosphate dehydrogenase (G6PD). METHODS After knockdown SIRT7 and G6PD, pigmentation of melanocytes was evaluated using commercial kits, immunofluorescence, and Western blot analysis. The succinylation of G6PD mediated by SIRT7 was analyzed using co-immunoprecipitation, immunofluorescence, Western blot analysis, and cycloheximide-chase experiment. RESULTS We found that SIRT7 was highly expressed in vitiligo skin lesions. Knockdown of SIRT7 increased tyrosinase activity, melanin content, and the levels of α-melanocyte-stimulating hormone, MITF, TYR, TRP1, and TRP2. Additionally, SIRT7 directly interacted with G6PD. Silenced SIRT7 promoted the succinylation of G6PD and enhanced its protein stability. G6PD knockdown reversed the effect of reduced SIRT7 expression on melanin production. CONCLSUION Silencing of SIRT7 promotes pigmentation of melanocytes by succinylating G6PD, suggesting that SIRT7-mediated G6PD desuccinylation may promote vitiligo progression.
Collapse
Affiliation(s)
- Yiyun Yang
- Department of DermatologyLonggang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College)ShenzhenChina
| | - Haidong Long
- Department of DermatologyLonggang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College)ShenzhenChina
| | - Lan Long
- Department of DermatologyLonggang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College)ShenzhenChina
| | - Bin Guo
- Department of DermatologyLonggang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College)ShenzhenChina
| |
Collapse
|
40
|
Liu J, Zhu P. A Novel Gene Signature Associated with Protein Post-translational Modification to Predict Clinical Outcomes and Therapeutic Responses of Colorectal Cancer. Mol Biotechnol 2024; 66:2106-2122. [PMID: 37592152 DOI: 10.1007/s12033-023-00852-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/03/2023] [Indexed: 08/19/2023]
Abstract
Accumulated evidence highlights the biological significance of diverse protein post-translational modifications (PTMs) in tumorigenicity and progression of colorectal cancer (CRC). In this study, ten PTM patterns (ubiquitination, methylation, phosphorylation, glycosylation, acetylation, SUMOylation, citrullination, neddylation, palmitoylation, and ADP-ribosylation) were analyzed for model construction. A post-translational modification index (PTMI) with a 14-gene signature was established. CRC patients with high PTMI had a worse prognosis after validating in nine independent datasets. By incorporating PTMI with clinical features, a nomogram with excellent predictive performance was constructed. Two molecular subtypes of CRC with obvious difference in survival time were identified by unsupervised clustering. Furthermore, PTMI was related to known immunoregulators and key tumor microenvironment components. Low-PTMI patients responded better to fluorouracil-based chemotherapy and immune checkpoint blockade therapy compared to high-PTMI patients, which was validated in multiple independent datasets. However, patients with high PTMI might be sensitive to bevacizumab. In short, we established a novel PTMI model by comprehensively analyzing diverse post-translational modification patterns, which can accurately predict clinical prognosis and treatment response of CRC patients.
Collapse
Affiliation(s)
- Jun Liu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Peng Zhu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| |
Collapse
|
41
|
Chen XH, Guo KX, Li J, Xu SH, Zhu H, Yan GR. Regulations of m 6A and other RNA modifications and their roles in cancer. Front Med 2024; 18:622-648. [PMID: 38907157 DOI: 10.1007/s11684-024-1064-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/17/2024] [Indexed: 06/23/2024]
Abstract
RNA modification is an essential component of the epitranscriptome, regulating RNA metabolism and cellular functions. Several types of RNA modifications have been identified to date; they include N6-methyladenosine (m6A), N1-methyladenosine (m1A), 5-methylcytosine (m5C), N7-methylguanosine (m7G), N6,2'-O-dimethyladenosine (m6Am), N4-acetylcytidine (ac4C), etc. RNA modifications, mediated by regulators including writers, erasers, and readers, are associated with carcinogenesis, tumor microenvironment, metabolic reprogramming, immunosuppression, immunotherapy, chemotherapy, etc. A novel perspective indicates that regulatory subunits and post-translational modifications (PTMs) are involved in the regulation of writer, eraser, and reader functions in mediating RNA modifications, tumorigenesis, and anticancer therapy. In this review, we summarize the advances made in the knowledge of different RNA modifications (especially m6A) and focus on RNA modification regulators with functions modulated by a series of factors in cancer, including regulatory subunits (proteins, noncoding RNA or peptides encoded by long noncoding RNA) and PTMs (acetylation, SUMOylation, lactylation, phosphorylation, etc.). We also delineate the relationship between RNA modification regulator functions and carcinogenesis or cancer progression. Additionally, inhibitors that target RNA modification regulators for anticancer therapy and their synergistic effect combined with immunotherapy or chemotherapy are discussed.
Collapse
Affiliation(s)
- Xin-Hui Chen
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, State Key Laboratory of Respiratory Disease, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Kun-Xiong Guo
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, State Key Laboratory of Respiratory Disease, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Jing Li
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, State Key Laboratory of Respiratory Disease, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Shu-Hui Xu
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, State Key Laboratory of Respiratory Disease, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Huifang Zhu
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, State Key Laboratory of Respiratory Disease, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Guang-Rong Yan
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, State Key Laboratory of Respiratory Disease, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| |
Collapse
|
42
|
Lu Y, Sun Y, Zhang J, Kong M, Zhao Z, Sun B, Wang Y, Jiang Y, Chen S, Wang C, Tong Y, Wen L, Huang M, Wu F, Zhang L. The deubiquitinase USP2a promotes tumor immunosuppression by stabilizing immune checkpoint B7-H4 in lung adenocarcinoma harboring EGFR-activating mutants. Cancer Lett 2024; 596:217020. [PMID: 38849009 DOI: 10.1016/j.canlet.2024.217020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/20/2024] [Accepted: 06/01/2024] [Indexed: 06/09/2024]
Abstract
B7-H4 is an immune checkpoint crucial for inhibiting CD8+ T-cell activity. A clinical trial is underway to investigate B7-H4 as a potential immunotherapeutic agent. However, the regulatory mechanism of B7-H4 degradation via the ubiquitin-proteasome pathway (UPP) remains poorly understood. In this study, we discovered that proteasome inhibitors effectively increased B7-H4 expression, while EGFR-activating mutants promoted B7-H4 expression through the UPP. We screened B7-H4 binding proteins by co-immunoprecipitation and mass spectrometry and found that USP2a acted as a deubiquitinase of B7-H4 by removing K48- and K63-linked ubiquitin chains from B7-H4, leading to a reduction in B7-H4 degradation. EGFR mutants enhanced B7-H4 stability by upregulating USP2a expression. We further investigated the role of USP2a in tumor growth in vivo. Depletion of USP2a in L858R/LLC cells inhibited tumor cell proliferation, consequently suppressing tumor growth in immune-deficient nude mice by destabilizing downstream molecules such as Cyclin D1. In an immune-competent C57BL/6 mouse tumor model, USP2a abrogation facilitated infiltration of CD95+CD8+ effector T cells and hindered infiltration of Tim-3+CD8+ and LAG-3+CD8+ exhausted T cells by destabilizing B7-H4. Clinical lung adenocarcinoma samples showed a significant correlation between B7-H4 abundance and USP2a expression, indicating the contribution of the EGFR/USP2a/B7-H4 axis to tumor immunosuppression. In summary, this study elucidates the dual effects of USP2a in tumor growth by stabilizing Cyclin D1, promoting tumor cell proliferation, and stabilizing B7-H4, contributing to tumor immunosuppression. Therefore, USP2a represents a potential target for tumor therapy.
Collapse
Affiliation(s)
- Youwei Lu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Yu Sun
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Jie Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Miao Kong
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Zhiming Zhao
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Boshu Sun
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Yuan Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Ying Jiang
- Department of Hematology, Shanghai Zhaxin Traditional Chinese and Western Medicine Hospital, Shanghai, China
| | - Shaomu Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Chao Wang
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, China
| | - Yin Tong
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liangzhu Wen
- He Cheng Biotechnology Suzhou Co.Ltd, Suzhou, Jiangsu, China
| | - Moli Huang
- Department of Bioinformatics, School of Biology & Basic Medical Sciences, Soochow University, Suzhou, China
| | - Fengying Wu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Liang Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
43
|
Heydari R, Karimi P, Meyfour A. Long non-coding RNAs as pathophysiological regulators, therapeutic targets and novel extracellular vesicle biomarkers for the diagnosis of inflammatory bowel disease. Biomed Pharmacother 2024; 176:116868. [PMID: 38850647 DOI: 10.1016/j.biopha.2024.116868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing disease of the gastrointestinal (GI) system that includes two groups, Crohn's disease (CD) and ulcerative colitis (UC). To cope with these two classes of IBD, the investigation of pathogenic mechanisms and the discovery of new diagnostic and therapeutic approaches are crucial. Long non-coding RNAs (lncRNAs) which are non-coding RNAs with a length of longer than 200 nucleotides have indicated significant association with the pathology of IBD and strong potential to be used as accurate biomarkers in diagnosing and predicting responses to the IBD treatment. In the current review, we aim to investigate the role of lncRNAs in the pathology and development of IBD. We first describe recent advances in research on dysregulated lncRNAs in the pathogenesis of IBD from the perspective of epithelial barrier function, intestinal immunity, mitochondrial function, and intestinal autophagy. Then, we highlight the possible translational role of lncRNAs as therapeutic targets, diagnostic biomarkers, and predictors of therapeutic response in colon tissues and plasma samples. Finally, we discuss the potential of extracellular vesicles and their lncRNA cargo in the pathophysiology, diagnosis, and treatment of IBD.
Collapse
Affiliation(s)
- Raheleh Heydari
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Padideh Karimi
- CRTD/Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden 01307, Germany
| | - Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
44
|
Geanes ES, McLennan R, Pierce SH, Menden HL, Paul O, Sampath V, Bradley T. SARS-CoV-2 envelope protein regulates innate immune tolerance. iScience 2024; 27:109975. [PMID: 38827398 PMCID: PMC11140213 DOI: 10.1016/j.isci.2024.109975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/01/2024] [Accepted: 05/10/2024] [Indexed: 06/04/2024] Open
Abstract
Severe COVID-19 often leads to secondary infections and sepsis that contribute to long hospital stays and mortality. However, our understanding of the precise immune mechanisms driving severe complications after SARS-CoV-2 infection remains incompletely understood. Here, we provide evidence that the SARS-CoV-2 envelope (E) protein initiates innate immune inflammation, via toll-like receptor 2 signaling, and establishes a sustained state of innate immune tolerance following initial activation. Monocytes in this tolerant state exhibit reduced responsiveness to secondary stimuli, releasing lower levels of cytokines and chemokines. Mice exposed to E protein before secondary lipopolysaccharide challenge show diminished pro-inflammatory cytokine expression in the lung, indicating that E protein drives this tolerant state in vivo. These findings highlight the potential of the SARS-CoV-2 E protein to induce innate immune tolerance, contributing to long-term immune dysfunction that could lead to susceptibility to subsequent infections, and uncovers therapeutic targets aimed at restoring immune function following SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Eric S. Geanes
- Genomic Medicine Center, Children’s Mercy Research Institute, Kansas City, MO, USA
| | - Rebecca McLennan
- Genomic Medicine Center, Children’s Mercy Research Institute, Kansas City, MO, USA
| | - Stephen H. Pierce
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Heather L. Menden
- Division of Neonatology, Children’s Mercy Research Institute, Kansas City, MO, USA
| | - Oishi Paul
- Genomic Medicine Center, Children’s Mercy Research Institute, Kansas City, MO, USA
| | - Venkatesh Sampath
- Division of Neonatology, Children’s Mercy Research Institute, Kansas City, MO, USA
- Department of Pediatrics, University of Missouri- Kansas City, Kansas City, MO, USA
| | - Todd Bradley
- Genomic Medicine Center, Children’s Mercy Research Institute, Kansas City, MO, USA
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Pediatrics, University of Missouri- Kansas City, Kansas City, MO, USA
- Department of Pediatrics, University of Kansas Medical Center, Kansas City, MO, USA
| |
Collapse
|
45
|
Hansen SSK, Krautz R, Rago D, Havelund J, Stigliani A, Færgeman NJ, Prézelin A, Rivière J, Couturier-Tarrade A, Akimov V, Blagoev B, Elfving B, Neess D, Vogel U, Khodosevich K, Hougaard KS, Sandelin A. Pulmonary maternal immune activation does not cross the placenta but leads to fetal metabolic adaptation. Nat Commun 2024; 15:4711. [PMID: 38830841 PMCID: PMC11148039 DOI: 10.1038/s41467-024-48492-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/29/2024] [Indexed: 06/05/2024] Open
Abstract
The fetal development of organs and functions is vulnerable to perturbation by maternal inflammation which may increase susceptibility to disorders after birth. Because it is not well understood how the placenta and fetus respond to acute lung- inflammation, we characterize the response to maternal pulmonary lipopolysaccharide exposure across 24 h in maternal and fetal organs using multi-omics, imaging and integrative analyses. Unlike maternal organs, which mount strong inflammatory immune responses, the placenta upregulates immuno-modulatory genes, in particular the IL-6 signaling suppressor Socs3. Similarly, we observe no immune response in the fetal liver, which instead displays metabolic changes, including increases in lipids containing docosahexaenoic acid, crucial for fetal brain development. The maternal liver and plasma display similar metabolic alterations, potentially increasing bioavailability of docosahexaenoic acid for the mother and fetus. Thus, our integrated temporal analysis shows that systemic inflammation in the mother leads to a metabolic perturbation in the fetus.
Collapse
Affiliation(s)
- Signe Schmidt Kjølner Hansen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.
- National Research Centre for the Working Environment, Copenhagen, Denmark.
| | - Robert Krautz
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Daria Rago
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Jesper Havelund
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Arnaud Stigliani
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Nils J Færgeman
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Audrey Prézelin
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Julie Rivière
- Paris-Saclay University, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Anne Couturier-Tarrade
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Vyacheslav Akimov
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Blagoy Blagoev
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Betina Elfving
- Translational Neuropsychiatry Unit, Aarhus University, Aarhus, Denmark
| | - Ditte Neess
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Konstantin Khodosevich
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Karin Sørig Hougaard
- National Research Centre for the Working Environment, Copenhagen, Denmark.
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark.
| | - Albin Sandelin
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
46
|
Bonhomme D, Poirier EZ. Early signaling pathways in virus-infected cells. Curr Opin Virol 2024; 66:101411. [PMID: 38718574 DOI: 10.1016/j.coviro.2024.101411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 06/07/2024]
Abstract
Virus infection activates specific pattern recognition receptors and immune signal transduction, resulting in pro-inflammatory cytokine production and activation of innate immunity. We describe here the molecular organization of early signaling pathways downstream of viral recognition, including conformational changes, post-translational modifications, formation of oligomers, and generation of small-molecule second messengers. Such molecular organization allows tight regulation of immune signal transduction, characterized by swift but transient responses, nonlinearity, and signal amplification. Pathologies of early immune signaling caused by genomic mutations illustrate the fine regulation of the immune transduction cascade.
Collapse
Affiliation(s)
- Delphine Bonhomme
- Institut Curie, Stem Cell Immunity Lab, PSL Research University, INSERM U932, Paris, France
| | - Enzo Z Poirier
- Institut Curie, Stem Cell Immunity Lab, PSL Research University, INSERM U932, Paris, France.
| |
Collapse
|
47
|
Liu R, Meng F, Liu T, Yang G, Shan S. RING finger protein 122-like (RNF122L) negatively regulates antiviral immune response by targeting STING in common carp (Cyprinus carpio L.). Int J Biol Macromol 2024; 269:132104. [PMID: 38719016 DOI: 10.1016/j.ijbiomac.2024.132104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
Stimulator of interferon genes (STING), as an imperative adaptor protein in innate immune, responds to nucleic acid from invading pathogens to build antiviral responses in host cells. Aberrant activation of STING may trigger tissue damage and autoimmune diseases. Given the decisive role in initiating innate immune response, the activity of STING is intricately governed by several posttranslational modifications, including phosphorylation and ubiquitination. Here, we cloned and characterized a novel RNF122 homolog from common carp (named CcRNF122L). Expression analysis disclosed that the expression of CcRNF122L is up-regulated under spring viremia of carp virus (SVCV) stimulation in vivo and in vitro. Overexpression of CcRNF122L hampers SVCV- or poly(I:C)-mediated the expression of IFN-1 and ISGs in a dose-dependent way. Mechanistically, CcRNF122L interacts with STING and promotes the polyubiquitylation of STING. This polyubiquitylation event inhibits the aggregation of STING and the subsequent recruitment of TBK1 and IRF3 to the signaling complex. Additionally, the deletion of the TM domain abolishes the negative regulatory function of CcRNF122L. Collectively, our discoveries unveil a mechanism that governs the STING function and the precise adjustment of the innate immune response in teleost.
Collapse
Affiliation(s)
- Rongrong Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No.88 East Wenhua Road, Jinan 250014, China
| | - Fei Meng
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No.88 East Wenhua Road, Jinan 250014, China
| | - Tingting Liu
- Shandong Industrial Technician College, No.6789 West Ring Road, Weifang 261000, China
| | - Guiwen Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No.88 East Wenhua Road, Jinan 250014, China.
| | - Shijuan Shan
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No.88 East Wenhua Road, Jinan 250014, China.
| |
Collapse
|
48
|
Zhou Y, Huang X, Jin Y, Qiu M, Ambe PC, Basharat Z, Hong W. The role of mitochondrial damage-associated molecular patterns in acute pancreatitis. Biomed Pharmacother 2024; 175:116690. [PMID: 38718519 DOI: 10.1016/j.biopha.2024.116690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 06/03/2024] Open
Abstract
Acute pancreatitis (AP) is one of the most common gastrointestinal tract diseases with significant morbidity and mortality. Current treatments remain unspecific and supportive due to the severity and clinical course of AP, which can fluctuate rapidly and unpredictably. Mitochondria, cellular power plant to produce energy, are involved in a variety of physiological or pathological activities in human body. There is a growing evidence indicating that mitochondria damage-associated molecular patterns (mtDAMPs) play an important role in pathogenesis and progression of AP. With the pro-inflammatory properties, released mtDAMPs may damage pancreatic cells by binding with receptors, activating downstream molecules and releasing inflammatory factors. This review focuses on the possible interaction between AP and mtDAMPs, which include cytochrome c (Cyt c), mitochondrial transcription factor A (TFAM), mitochondrial DNA (mtDNA), cardiolipin (CL), adenosine triphosphate (ATP) and succinate, with focus on experimental research and potential therapeutic targets in clinical practice. Preventing or diminishing the release of mtDAMPs or targeting the mtDAMPs receptors might have a role in AP progression.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China; School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Xiaoyi Huang
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China; School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Yinglu Jin
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China; School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Minhao Qiu
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Peter C Ambe
- Department of General Surgery, Visceral Surgery and Coloproctology, Vinzenz-Pallotti-Hospital Bensberg, Vinzenz-Pallotti-Str. 20-24, Bensberg 51429, Germany
| | | | - Wandong Hong
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
49
|
Xu Y, Li W, Chen Y, Xu T, Sun Y. STAM2 negatively regulates the MyD88-mediated NF-κB signaling pathway in miiuy croaker, Miichthys miiuy. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109550. [PMID: 38593891 DOI: 10.1016/j.fsi.2024.109550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/10/2024] [Accepted: 04/06/2024] [Indexed: 04/11/2024]
Abstract
Signal transducing adapter molecule 2 (STAM2), a member of the Signal Transducing Adapter Molecule (STAM) family, is a protein with significant implications in diverse signaling pathways and endocytic membrane trafficking. However, the role of the STAM2, especially in fish, remains largely unknown. In this study, we discovered that STAM2 negatively regulates the NF-κB signaling pathway, and its inhibitory effect is enhanced upon LPS induction. Our study confirmed that STAM2 can enhance the degradation of myeloid differentiation primary-response protein 88 (MyD88), an upstream regulator of NF-κB pathway. Furthermore, the UIM domain of STAM2 is important for the inhibition of MyD88. Mechanistically, STAM2 inhibits the NF-κB signaling pathway by targeting the MyD88 autophagy pathway. In addition, we showed that STAM2 promotes the proliferation of Vibrio harveyi. In summary, our study reveals that STAM2 inhibits NF-κB signaling activation and mediates innate immunity in teleost via the autophagy pathway.
Collapse
Affiliation(s)
- Yan Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Wenxin Li
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Ya Chen
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, China.
| | - Yuena Sun
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, China.
| |
Collapse
|
50
|
Zhu R, Zhang L, Zhang H, Hu Z. BRD4 promotes LPS-induced endothelial cells senescence via activating and cooperating STING-IRF3 pathway. Cell Signal 2024; 118:111127. [PMID: 38447881 DOI: 10.1016/j.cellsig.2024.111127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/12/2024] [Accepted: 03/03/2024] [Indexed: 03/08/2024]
Abstract
Endothelial cells (ECs) senescence is closely associated with the initiation and development of multiple age-related cardiovascular diseases. It is necessary to explore the underlying molecular mechanisms of ECs senescence, which is not only the basis to decipher cellular senescence, but also a novel therapeutic target for the endothelial senescence-related diseases. BRD4, a key epigenetic regulator, is universally related to gene expression regulation and has been reported to accelerate cell senescence. Besides, emerging evidence has suggested that the stimulator of interferon genes protein (STING) can regulate inflammatory and senescence-related diseases. However, whether STING pathway activation is regulated by BRD4 in the context of ECs senescence remains largely unclear. Here, we observed that elevated BRD4 and activated STING-IRF3 signaling pathway during ECs senescence and further confirmed that BRD4 could abolish STING activation. We demonstrated that BRD4 could inhibit E3 ubiquitin ligase HRD1-mediated ubiquitination degradation of STING via inhibiting HRD1 transcription. In addition to the direct regulatory effect of BRD4 on STING activation, we have confirmed that BRD4 cooperates with IRF3 and P65 to promote SASP gene expression, thereby accelerating ECs senescence. Here, we proposed a novel mechanism underlying BRD4' key dual role in activating the STING pathway during ECs senescence.
Collapse
Affiliation(s)
- Ruigong Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing City 210023, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang City 550014, China.
| | - Lei Zhang
- The Fifth People's Hospital of Huai'an, Huaiyin Hospital of Huai'an, Huai'an City 223300, China.
| | - Hao Zhang
- The Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong City 226006, China.
| | - Zhifeng Hu
- The Fifth People's Hospital of Huai'an, Huaiyin Hospital of Huai'an, Huai'an City 223300, China.
| |
Collapse
|