1
|
Yang OO. The immunopathogenesis of SARS-CoV-2 infection: Overview of lessons learned in the first 5 years. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkaf033. [PMID: 40180332 DOI: 10.1093/jimmun/vkaf033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 02/11/2025] [Indexed: 04/05/2025]
Abstract
This review provides a broad overview of lessons learned in the five years since COVID-19 was identified. It is a bimodal disease, starting with an initially virus-driven phase, followed by resolution or ensuing inappropriate immune activation causing severe inflammation that is no longer strictly virus dependent. Humoral immunity is beneficial for preventing or attenuating the early stage, without benefit once the later stage begins. Neutralizing antibodies elicited by natural infection or vaccination are short-lived and highly vulnerable to viral sequence variation. By contrast, cellular immunity, particularly the CD8+ T cell arm, has a role in preventing or attenuating severe disease, is far less susceptible to viral variation, and is longer-lived than antibodies. Finally, an ill-defined phenomenon of prolonged symptoms after acute infection, termed "long COVID," is poorly understood but may involve various immunologic defects that are hyperactivating or immunosuppressive. Remaining issues include needing to better understand the immune dysregulation of severe disease to allow more tailored therapeutic interventions, developing antibody strategies that cope with the viral spike sequence variability, prolonging vaccine efficacy, and unraveling the mechanisms of long COVID to design therapeutic approaches.
Collapse
Affiliation(s)
- Otto O Yang
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
2
|
Schmidt KG, Geißler P, Schuster EM, Schülein C, Harrer EG, Schönau V, Luber M, Spriewald B, Steininger P, Bergmann S, Ensser A, Schober K, Nganou-Makamdop K, Harrer T. Coronavirus replicase epitopes induce cross-reactive CD8 T cell responses in SARS-CoV-2-naive people with HIV-1. iScience 2025; 28:111949. [PMID: 40034846 PMCID: PMC11872457 DOI: 10.1016/j.isci.2025.111949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/12/2024] [Accepted: 01/30/2025] [Indexed: 03/05/2025] Open
Abstract
Cross-reactive T cell immunity between common cold coronaviruses and SARS-CoV-2 may influence COVID-19 susceptibility. To identify cross-reactive CD8 T cell epitopes, we analyzed responses to 21 homologous SARS-CoV-2 replicase peptides in 177 people living with HIV (PLWH) on antiretroviral therapy, of which 133 did not have prior SARS-CoV-2 infection. Replicase peptides induced IFN-γ responses in 63% of the SARS-CoV-2-naïve individuals and in 73% of individuals with prior SARS-CoV-2-infection. We could define several cross-reactive epitopes, including the HLA-B∗35:03 restricted CoV-YL8, and characterized a CoV-YL8-specific T cell receptor cloned from a SARS-CoV-2 seronegative individual. Analysis of the association between HLA-I alleles and SARS-CoV-2 infections over a 16-months period revealed that in a cohort of 452 PLWH, HLA-B∗35:03 and C∗07 were underrepresented in the 55 persons with a history of SARS-CoV-2 infection while HLA-B∗35:01 and HLA-C∗04 were associated with a higher infection rate. Taken together, our study suggests an HLA-I-mediated effect of common cold coronaviruses on SARS-CoV-2 immunity.
Collapse
Affiliation(s)
- Katja G. Schmidt
- Infectious Diseases and Immunodeficiency Section, Department of Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
| | - Paulina Geißler
- Infectious Diseases and Immunodeficiency Section, Department of Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
| | - Ev-Marie Schuster
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
| | - Christine Schülein
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
| | - Ellen G. Harrer
- Infectious Diseases and Immunodeficiency Section, Department of Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
| | - Verena Schönau
- Department of Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
| | - Markus Luber
- Department of Medicine 5, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
| | - Bernd Spriewald
- Department of Medicine 5, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
- FAU Profile Center Immunomedicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Philipp Steininger
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
| | - Silke Bergmann
- Infectious Diseases and Immunodeficiency Section, Department of Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
| | - Armin Ensser
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
| | - Kilian Schober
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
- FAU Profile Center Immunomedicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Krystelle Nganou-Makamdop
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
| | - Thomas Harrer
- Infectious Diseases and Immunodeficiency Section, Department of Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
- FAU Profile Center Immunomedicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
3
|
Tang W, Chang ZW, Goh YS, Tan YJ, Hor PX, Loh CY, Lye DC, Young BE, Ng LFP, Tay MZ, Rénia L. SARS-CoV-2 mRNA Vaccines Induce Cross-Reactive Antibodies to NL63 Coronavirus but Do Not Boost Pre-Existing Immunity Anti-NL63 Antibody Responses. Vaccines (Basel) 2025; 13:268. [PMID: 40266143 PMCID: PMC11945495 DOI: 10.3390/vaccines13030268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND/OBJECTIVES mRNA vaccines have demonstrated strong immunogenicity and efficacy against SARS-CoV-2. However, the extent of antibody cross-reactivity against human seasonal coronaviruses, such as NL63, remains unclear. Furthermore, it is unknown whether pre-existing antibody responses against NL63 might influence the outcome of SARS-CoV-2 mRNA vaccination. METHODS We used a flow cytometry-based serological assay and an in vitro neutralization assay to analyze NL63 antibody responses in sera from SARS-CoV-2 mRNA-vaccinated mice and plasma samples from a vaccinated human cohort. RESULTS We found that the Moderna mRNA-1273 vaccine can generate cross-reactive antibodies against NL63. Importantly, SARS-CoV-2 mRNA vaccination did not boost pre-existing anti-NL63 responses in humans, and pre-existing NL63 antibody levels did not affect the antibody response induced by SARS-CoV-2 mRNA vaccination. CONCLUSIONS These findings suggest that while SARS-CoV-2 mRNA vaccination can induce cross-reactive antibodies against NL63, pre-existing immunity to this seasonal coronavirus does not appear to significantly impact vaccine immunogenicity. These findings contribute to our understanding of the complex interplay between pre-existing immunity to seasonal coronaviruses and the immune response generated by SARS-CoV-2 mRNA vaccines.
Collapse
Affiliation(s)
- Weiyi Tang
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore; (W.T.); (Z.W.C.); (Y.S.G.); (Y.J.T.); (P.X.H.); (C.Y.L.); (L.F.P.N.); (M.Z.T.)
| | - Zi Wei Chang
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore; (W.T.); (Z.W.C.); (Y.S.G.); (Y.J.T.); (P.X.H.); (C.Y.L.); (L.F.P.N.); (M.Z.T.)
| | - Yun Shan Goh
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore; (W.T.); (Z.W.C.); (Y.S.G.); (Y.J.T.); (P.X.H.); (C.Y.L.); (L.F.P.N.); (M.Z.T.)
| | - Yong Jie Tan
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore; (W.T.); (Z.W.C.); (Y.S.G.); (Y.J.T.); (P.X.H.); (C.Y.L.); (L.F.P.N.); (M.Z.T.)
| | - Pei Xiang Hor
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore; (W.T.); (Z.W.C.); (Y.S.G.); (Y.J.T.); (P.X.H.); (C.Y.L.); (L.F.P.N.); (M.Z.T.)
| | - Chiew Yee Loh
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore; (W.T.); (Z.W.C.); (Y.S.G.); (Y.J.T.); (P.X.H.); (C.Y.L.); (L.F.P.N.); (M.Z.T.)
| | - David C. Lye
- National Centre for Infectious Diseases, Singapore 308442, Singapore; (D.C.L.); (B.E.Y.)
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Barnaby E. Young
- National Centre for Infectious Diseases, Singapore 308442, Singapore; (D.C.L.); (B.E.Y.)
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Lisa F. P. Ng
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore; (W.T.); (Z.W.C.); (Y.S.G.); (Y.J.T.); (P.X.H.); (C.Y.L.); (L.F.P.N.); (M.Z.T.)
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Matthew Zirui Tay
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore; (W.T.); (Z.W.C.); (Y.S.G.); (Y.J.T.); (P.X.H.); (C.Y.L.); (L.F.P.N.); (M.Z.T.)
| | - Laurent Rénia
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore; (W.T.); (Z.W.C.); (Y.S.G.); (Y.J.T.); (P.X.H.); (C.Y.L.); (L.F.P.N.); (M.Z.T.)
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | | | | | | |
Collapse
|
4
|
Masuda K, Iketani S, Liu L, Huang J, Qiao Y, Shah J, McNairy ML, Groso C, Ricupero C, Loffredo LF, Wang Q, Purpura L, Coelho-dos-Reis JGA, Sheng Z, Yin MT, Tsuji M. Distinct CD8 + T-cell types Associated with COVID-19 Severity in Unvaccinated HLA-A2 + Patients. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.12.632164. [PMID: 39868279 PMCID: PMC11761488 DOI: 10.1101/2025.01.12.632164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Although emerging data have revealed the critical role of memory CD8+ T cells in preventing and controlling SARS-CoV-2 infection, virus-specific CD8+ T-cell responses against SARS-CoV-2 and its memory and innate-like subsets in unvaccinated COVID-19 patients with various disease manifestations in an HLA-restricted fashion remain to be understood. Here, we show the strong association of protective cellular immunity with mild COVID-19 and unique cell types against SARS-CoV-2 virus in an HLA-A2 restricted manner. ELISpot assays reveal that SARS-CoV-2-specific CD8+ T-cell responses in mild COVID-19 patients are significantly higher than in severe patients, whereas neutralizing antibody responses against SARS-CoV-2 virus significantly correlate with disease severity. Single-cell analyses of HLA-A2-restricted CD8+ T cells, which recognize highly conserved immunodominant SARS-CoV-2-specific epitopes, demonstrate divergent profiles in unvaccinated patients with mild versus severe disease. CD8+ T-cell types including cytotoxic KLRB1 + CD8αα cells with innate-like T-cell signatures, IFNG hi ID3 hi memory cells and IL7R + proliferative stem cell-like memory cells are preferentially observed in mild COVID-19, whereas distinct terminally-differentiated T-cell subsets are predominantly detected in severe COVID-19: highly activated FASL hi T-cell subsets and early-terminated or dysfunctional IL4R + GATA3 + stem cell-like memory T-cell subset. In conclusion, our findings suggest that unique and contrasting SARS-CoV-2-specific CD8+ T-cell profiles may dictate COVID-19 severity.
Collapse
Affiliation(s)
- Kazuya Masuda
- Aaron Diamond AIDS Research Center, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Sho Iketani
- Aaron Diamond AIDS Research Center, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Department of Microbiology and Immunology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Lihong Liu
- Aaron Diamond AIDS Research Center, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Jing Huang
- Aaron Diamond AIDS Research Center, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Yujie Qiao
- Aaron Diamond AIDS Research Center, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Jayesh Shah
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Meredith L. McNairy
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Christine Groso
- Aaron Diamond AIDS Research Center, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Christopher Ricupero
- Center for Dental & Craniofacial Regeneration, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Lucas F. Loffredo
- Department of Microbiology and Immunology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Qian Wang
- Aaron Diamond AIDS Research Center, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Lawrence Purpura
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | | | - Zizhang Sheng
- Aaron Diamond AIDS Research Center, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Michael T Yin
- Aaron Diamond AIDS Research Center, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Moriya Tsuji
- Aaron Diamond AIDS Research Center, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Lead contact
| |
Collapse
|
5
|
Wang H, Gao H, Li M, Cheng L, Zhang X, Zhang X, Zhan H, Liu Y, Wang Y, Ren J, Hu D, He F, Dai E, Li Y, Yu X. Proteome-Wide Analysis of Antibody Responses in Asymptomatic Omicron BA.2-Infected Individuals at the Amino Acid Resolution. J Proteome Res 2025; 24:189-201. [PMID: 39661118 DOI: 10.1021/acs.jproteome.4c00546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Humoral immunity plays a critical role in clearing SARS-CoV-2 during viral invasion. However, the proteome-wide characteristics of antibody responses in individuals infected with Omicron variant, both asymptomatic and symptomatic, remain poorly understood. We profiled the serum antibodies from 108 individuals, including healthy controls and those infected with Omicron BA.2, using a SARS-CoV-2 proteome microarray at the amino acid resolution. We constructed a landscape of B-cell epitopes across the SARS-CoV-2 proteome in symptomatic and asymptomatic individuals. Immunodominant epitopes were mainly derived from S, N, Nsp3, M, and ORF3a proteins, with some epitopes overlapping with T-cell epitopes. Using machine learning, we identified a proteomic signature capable of distinguishing asymptomatic individuals from healthy controls in both training and validation cohorts, achieving AUCs of 0.988 and 0.857, respectively. These findings provide crucial immunological insights into BA.2 infections of the Omicron and have implications for future COVID-19 diagnostics and therapeutics.
Collapse
Affiliation(s)
- Hongye Wang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Huixia Gao
- Department of Laboratory Medicine, The Fifth Hospital of Shijiazhuang, North China University of Science and Technology, Shijiazhuang 050021, China
| | - Mansheng Li
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Linlin Cheng
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, China
| | - Xin Zhang
- Department of Laboratory Medicine, The Fifth Hospital of Shijiazhuang, North China University of Science and Technology, Shijiazhuang 050021, China
| | - Xiaomei Zhang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Haoting Zhan
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, China
| | - Yongmei Liu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, China
| | - Yuling Wang
- Department of Laboratory Medicine, The Fifth Hospital of Shijiazhuang, North China University of Science and Technology, Shijiazhuang 050021, China
| | - Jing Ren
- ProteomicsEra Medical Co., Ltd, Beijing 102206, China
| | - Di Hu
- ProteomicsEra Medical Co., Ltd, Beijing 102206, China
| | - Fuchu He
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Erhei Dai
- Department of Laboratory Medicine, The Fifth Hospital of Shijiazhuang, North China University of Science and Technology, Shijiazhuang 050021, China
| | - Yongzhe Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, China
| | - Xiaobo Yu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing 102206, China
| |
Collapse
|
6
|
Missailidis D, Ebrahimie E, Dehcheshmeh MM, Allan C, Sanislav O, Fisher P, Gras S, Annesley SJ. A blood-based mRNA signature distinguishes people with Long COVID from recovered individuals. Front Immunol 2024; 15:1450853. [PMID: 39691709 PMCID: PMC11649547 DOI: 10.3389/fimmu.2024.1450853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/13/2024] [Indexed: 12/19/2024] Open
Abstract
Introduction Long COVID is a debilitating condition that lasts for more than three months post-infection by SARS-CoV-2. On average, one in ten individuals infected with SARS CoV- 2 develops Long COVID worldwide. A knowledge gap exists in our understanding of the mechanisms, genetic risk factors, and biomarkers that could be associated with Long COVID. Methods In this pilot study we used RNA-Seq to quantify the transcriptomes of peripheral blood mononuclear cells isolated from COVID-recovered individuals, seven with and seven without Long COVID symptoms (age- and sex-matched individuals), on average 6 months after infection. Results Seventy genes were identified as significantly up- or down-regulated in Long COVID samples, and the vast majority were downregulated. The most significantly up- or downregulated genes fell into two main categories, either associated with cell survival or with inflammation. This included genes such as ICOS (FDR p = 0.024) and S1PR1 (FDR p = 0.019) that were both up-regulated, indicating that a pro-inflammatory state is sustained in Long COVID PBMCs compared with COVID recovered PBMCs. Functional enrichment analysis identified that immune-related functions were expectedly predominant among the up- or down-regulated genes. The most frequently downregulated genes in significantly altered functional categories were two leukocyte immunoglobulin like receptors LILRB1 (FDR p = 0.005) and LILRB2 (FDR p = 0.027). PCA analysis demonstrated that LILRB1 and LILRB2 expression discriminated all of the Long COVID samples from COVID recovered samples. Discussion Downregulation of these inhibitory receptors similarly indicates a sustained pro-inflammatory state in Long COVID PBMCs. LILRB1 and LILRB2 should be validated as prospective biomarkers of Long COVID in larger cohorts, over time and against clinically overlapping conditions.
Collapse
Affiliation(s)
- Daniel Missailidis
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, VIC, Australia
| | - Esmaeil Ebrahimie
- Genomics Research Platform, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
- School of Animal and Veterinary Sciences, Faculty of Sciences, Engineering and Technology, University of Adelaide, Adelaide, SA, Australia
| | - Manijeh Mohammadi Dehcheshmeh
- Genomics Research Platform, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| | - Claire Allan
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, VIC, Australia
| | - Oana Sanislav
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, VIC, Australia
| | - Paul Fisher
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, VIC, Australia
| | - Stephanie Gras
- Infection & Immunity Program, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Bundoora, VIC, Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Sarah J. Annesley
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
7
|
Hurst JR, Naghibosadat M, Budowski P, Liu J, Samaan P, Budiman F, Kurtesi A, Qi F, Menon H, Krishnan R, Abioye J, Gingras AC, Ostrowski M, Orozco NM, Kozak RA. Comparison of a SARS-CoV-2 mRNA booster immunization containing additional antigens to a spike-based mRNA vaccine against Omicron BA.5 infection in hACE2 mice. PLoS One 2024; 19:e0314061. [PMID: 39625929 PMCID: PMC11614295 DOI: 10.1371/journal.pone.0314061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 11/04/2024] [Indexed: 12/06/2024] Open
Abstract
The emergence of SARS-CoV-2 variants presents challenges to vaccine effectiveness, underlining the necessity for next-generation vaccines with multiple antigens beyond the spike protein. Here, we investigated a multiantigenic booster containing spike and a chimeric construct composed of nucleoprotein (N) and membrane (M) proteins, comparing its efficacy to a spike-only booster against Omicron BA.5 in K18-hACE2 mice. Initially, mice were primed and boosted with Beta (B.1.351) spike-only mRNA, showing strong spike-specific T cell responses and neutralizing antibodies, albeit with limited cross-neutralization to Omicron variants. Subsequently, a spike-NM multiantigenic vaccine was then examined as a second booster dose for protection in hACE2-transgenic mice. Mice receiving either homologous spike-only or heterologous spike-NM booster had nearly complete inhibition of infectious virus shedding in oral swabs and reduced viral burdens in both lung and nasal tissues following BA.5 challenge. Examination of lung pathology further revealed that both spike-only and spike-NM boosters provided comparable protection against inflammatory infiltrates and fibrosis. Moreover, the spike-NM booster demonstrated neutralization efficacy in a pseudovirus assay against Wuhan-Hu-1, Beta, and Omicron variants akin to the spike-only booster. These findings indicate that supplementing spike with additional SARS-CoV-2 targets in a booster immunization confers equivalent immunity and protection against Omicron BA.5. This work highlights a promising strategy for individuals previously vaccinated with spike-only vaccines, potentially offering enhanced protection against emerging coronaviruses.
Collapse
Affiliation(s)
- Jacklyn R. Hurst
- Biological Sciences Platform, Sunnybrook Research Institute at Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Maedeh Naghibosadat
- Biological Sciences Platform, Sunnybrook Research Institute at Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Patrick Budowski
- Institute of Medical Sciences, University of Toronto, Ontario, Canada
| | - Jun Liu
- Providence Therapeutics Holdings, Inc., Calgary, AB, Canada
| | - Philip Samaan
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada
| | - Frans Budiman
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Alexandra Kurtesi
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Fredo Qi
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Haritha Menon
- Providence Therapeutics Holdings, Inc., Calgary, AB, Canada
| | | | - Jumai Abioye
- Providence Therapeutics Holdings, Inc., Calgary, AB, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Mario Ostrowski
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | | | - Robert A. Kozak
- Biological Sciences Platform, Sunnybrook Research Institute at Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada
- Division of Microbiology, Sunnybrook Health Sciences Centre, Department of Laboratory Medicine and Molecular Diagnostics, Toronto, ON, Canada
| |
Collapse
|
8
|
Yang Y, Miller H, Byazrova MG, Cndotti F, Benlagha K, Camara NOS, Shi J, Forsman H, Lee P, Yang L, Filatov A, Zhai Z, Liu C. The characterization of CD8 + T-cell responses in COVID-19. Emerg Microbes Infect 2024; 13:2287118. [PMID: 37990907 PMCID: PMC10786432 DOI: 10.1080/22221751.2023.2287118] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/19/2023] [Indexed: 11/23/2023]
Abstract
This review gives an overview of the protective role of CD8+ T cells in SARS-CoV-2 infection. The cross-reactive responses intermediated by CD8+ T cells in unexposed cohorts are described. Additionally, the relevance of resident CD8+ T cells in the upper and lower airway during infection and CD8+ T-cell responses following vaccination are discussed, including recent worrisome breakthrough infections and variants of concerns (VOCs). Lastly, we explain the correlation between CD8+ T cells and COVID-19 severity. This review aids in a deeper comprehension of the association between CD8+ T cells and SARS-CoV-2 and broadens a vision for future exploration.
Collapse
Affiliation(s)
- Yuanting Yang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Heather Miller
- Cytek Biosciences, R&D Clinical Reagents, Fremont, CA, USA
| | - Maria G. Byazrova
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, Moscow, Russia
| | - Fabio Cndotti
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Kamel Benlagha
- Institut de Recherche Saint-Louis, Université de Paris, Paris, France
| | - Niels Olsen Saraiva Camara
- Laboratory of Human Immunology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Junming Shi
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Huamei Forsman
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Pamela Lee
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Lu Yang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Alexander Filatov
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, Moscow, Russia
| | - Zhimin Zhai
- Department of Hematology, The Second Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| |
Collapse
|
9
|
Krishna B, Metaxaki M, Perera M, Wills M, Sithole N. Comparison of different T cell assays for the retrospective determination of SARS-CoV-2 infection. J Gen Virol 2024; 105. [PMID: 39704047 DOI: 10.1099/jgv.0.002055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024] Open
Abstract
It is important to be able to retrospectively determine severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections with high accuracy, both for post-coronavirus disease 2019 (COVID-19) epidemiological studies, and to distinguish between Long COVID and other multi-syndromic diseases that have overlapping symptoms. Although serum antibody levels can be measured to retrospectively diagnose SARS-CoV-2 infections, peptide stimulation of memory T cell responses is a more sensitive approach. This is because robust memory T cells are generated after SARS-CoV-2 infection and persist even after antibodies wane below detectability thresholds. In this study, we compare T cell responses using FluoroSpot-based methods and overnight stimulation of whole blood with SARS-CoV-2 peptides followed by an ELISA. Both approaches have comparable sensitivity and specificity but require different equipment and samples to be used. Furthermore, the elimination of peptides that cross-react with other coronaviruses increases the assay specificity but trades off some sensitivity. Finally, this approach can be used on archival, cryopreserved PBMCs. This work shows comparative advantages for several methods to measure SARS-CoV-2 T cell responses that could be utilized by any laboratory studying the effects of the coronavirus disease 2019 pandemic.
Collapse
Affiliation(s)
- Benjamin Krishna
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, UK
| | - Marina Metaxaki
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, UK
| | - Marianne Perera
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, UK
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Mark Wills
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, UK
| | - Nyarie Sithole
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, UK
| |
Collapse
|
10
|
Esler M, Belica C, Rollie J, Brown W, Moghadasi SA, Shi K, Harki D, Harris R, Aihara H. A compact stem-loop DNA aptamer targets a uracil-binding pocket in the SARS-CoV-2 nucleocapsid RNA-binding domain. Nucleic Acids Res 2024; 52:13138-13151. [PMID: 39380503 PMCID: PMC11602162 DOI: 10.1093/nar/gkae874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 08/29/2024] [Accepted: 09/24/2024] [Indexed: 10/10/2024] Open
Abstract
SARS-CoV-2 nucleocapsid (N) protein is a structural component of the virus with essential roles in the replication and packaging of the viral RNA genome. The N protein is also an important target of COVID-19 antigen tests and a promising vaccine candidate along with the spike protein. Here, we report a compact stem-loop DNA aptamer that binds tightly to the N-terminal RNA-binding domain of SARS-CoV-2 N protein. Crystallographic analysis shows that a hexanucleotide DNA motif (5'-TCGGAT-3') of the aptamer fits into a positively charged concave surface of N-NTD and engages essential RNA-binding residues including Tyr109, which mediates a sequence-specific interaction in a uracil-binding pocket. Avid binding of the DNA aptamer allows isolation and sensitive detection of full-length N protein from crude cell lysates, demonstrating its selectivity and utility in biochemical applications. We further designed a chemically modified DNA aptamer and used it as a probe to examine the interaction of N-NTD with various RNA motifs, which revealed a strong preference for uridine-rich sequences. Our studies provide a high-affinity chemical probe for the SARS-CoV-2 N protein RNA-binding domain, which may be useful for diagnostic applications and investigating novel antiviral agents.
Collapse
Affiliation(s)
- Morgan A Esler
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Christopher A Belica
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Joseph A Rollie
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - William L Brown
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Seyed Arad Moghadasi
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ke Shi
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Daniel A Harki
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Reuben S Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
11
|
Grant EJ, Gras S. CD8 + T cell epitope conservation in emerging H5N1 viruses suggests global protection. Clin Transl Immunology 2024; 13:e70017. [PMID: 39584190 PMCID: PMC11583075 DOI: 10.1002/cti2.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/05/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024] Open
Abstract
Objectives The recent H5N1 avian influenza outbreak in the USA has sparked fresh fears of avian viruses causing the next pandemic. To date, the H5N1 (clade 2.3.4.4b) outbreak in cattle has spread across several states in the USA, with several humans infected following exposure to cows. This H5N1 clade is also reportedly circulating across Europe, Africa and South America. H5N1 was also detected in a child returning to Australia following travel in India where H5N1 (clade 2.3.2.1a) is also reported to be circulating. There are no licenced vaccines against H5N1 avian influenza viruses for humans. Current vaccines aim to protect against seasonal H1N1 and H3N2 variants are unlikely to provide much protection against the different H5, or other avian viruses. CD8+ T cells are known to provide protection against influenza infection, enhancing viral control and decreasing disease severity. Methods We recently compiled and published a list of the known immunogenic influenza-derived CD8+ T cell epitopes restricted to the most prevalent 10 HLA-A, -B and -C molecules worldwide. We assessed the conservation of a curated list of these influenza A virus-derived CD8+ T cell epitopes in H5N1 viruses' sequences at the heart of the outbreak. Results We identified that > 64% of the CD8+ T cell epitopes are highly conserved (> 90% sequence identity) in the H5N1 viruses, with 60% (18/30) of the most prevalent HLA-I molecules have at least one immunogenic CD8+ T cell epitope conserved in H5N1 viruses. Together these HLA-I molecules with conserved epitopes have a cumulative total of > 100% global coverage. Epitopes derived from the NP, M1, PB2, NS1 and PB1 proteins displayed the highest level of conservation. Conclusions Together, this analysis highlights that globally there is the potential for T cell cross-recognition against the H5N1 viruses that may provide some protection in humans towards the current avian flu outbreak.
Collapse
Affiliation(s)
- Emma J Grant
- Infection and Immunity Program, La Trobe Institute for Molecular Science (LIMS)La Trobe UniversityBundooraVICAustralia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment (SABE)La Trobe UniversityBundooraVICAustralia
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVICAustralia
| | - Stephanie Gras
- Infection and Immunity Program, La Trobe Institute for Molecular Science (LIMS)La Trobe UniversityBundooraVICAustralia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment (SABE)La Trobe UniversityBundooraVICAustralia
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVICAustralia
| |
Collapse
|
12
|
Jiang D, Ma Z, Zhang J, Sun Y, Bai T, Liu R, Wang Y, Guan L, Fu S, Sun Y, Li Y, Zhou B, Yang Y, Yang S, Chang Y, Sun B, Yang K. Immunoreactivity Analysis of MHC-I Epitopes Derived from the Nucleocapsid Protein of SARS-CoV-2 via Computation and Vaccination. Vaccines (Basel) 2024; 12:1214. [PMID: 39591116 PMCID: PMC11598499 DOI: 10.3390/vaccines12111214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
Background: Since 2019, the SARS-CoV-2 virus has been responsible for the global spread of respiratory illness. As of 1 September 2024, the cumulative number of infections worldwide exceeded 776 million. There are many structural proteins of the virus, among which the SARS-CoV-2 nucleocapsid (N) protein plays a pivotal role in the viral life cycle, participating in a multitude of essential activities following viral invasion. An important antiviral immune response is the major histocompatibility complex (MHC)-restricted differentiation cluster 8 (CD8+) T cell cytotoxicity. Therefore, understanding the immunogenicity of SARS-CoV-2 NP-specific MHC-I-restricted epitopes is highly important. Methods: MHC-I molecules from 11 human leukocyte antigen I (HLA-I) superfamilies with 98% population coverage and 6 mouse H2 alleles were selected. The affinity were screened by IEDB, NetMHCpan, SYFPEITHI, SMMPMBEC and Rankpep. Further immunogenicity and conservative analyses were performed using VaxiJen and BLASTp, respectively. EpiDock was used to simulate molecular docking. Cluster analysis was performed. Selective epitopes were validated by enzyme-linked immunospot (ELISpot) assay and flow cytometry in the mice with pVAX-NPSARS-CoV-2 immunization. Enzyme-Linked Immunosorbent Assay (ELISA) was used to detect whether the preferred epitope induced humoral immunity. Results: There were 64 dominant epitopes for the H-2 haplotype and 238 dominant epitopes for the HLA-I haplotype. Further analysis of immunogenicity and conservation yielded 8 preferred epitopes, and docking simulations were conducted with corresponding MHC-I alleles. The relationships between the NP peptides and MHC-I haplotypes were then determined via two-way hierarchical clustering. ELISA, ELISpot assay, and flow cytometry revealed that the preferred epitope stimulated both humoral and cellular immunity and enhanced cytokine secretion in mice. Conclusions: our study revealed the general patterns among multiple haplotypes within the humans and mice superfamily, providing a comprehensive assessment of the pan-MHC-I immunoreactivity of SARS-CoV-2 NP. Our findings would render prospects for the development and application of epitope-based immunotherapy in lasting viral epidemics.
Collapse
Affiliation(s)
- Dongbo Jiang
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air Force Medical University (In Former The Fourth Military Medical University), Xi’an 710032, China; (D.J.); (Z.M.); (J.Z.); (Y.S.); (T.B.); (R.L.); (Y.W.); (L.G.); (S.F.); (Y.S.); (Y.L.); (B.Z.); (Y.Y.); (S.Y.); (Y.C.)
| | - Zilu Ma
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air Force Medical University (In Former The Fourth Military Medical University), Xi’an 710032, China; (D.J.); (Z.M.); (J.Z.); (Y.S.); (T.B.); (R.L.); (Y.W.); (L.G.); (S.F.); (Y.S.); (Y.L.); (B.Z.); (Y.Y.); (S.Y.); (Y.C.)
| | - Junqi Zhang
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air Force Medical University (In Former The Fourth Military Medical University), Xi’an 710032, China; (D.J.); (Z.M.); (J.Z.); (Y.S.); (T.B.); (R.L.); (Y.W.); (L.G.); (S.F.); (Y.S.); (Y.L.); (B.Z.); (Y.Y.); (S.Y.); (Y.C.)
| | - Yubo Sun
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air Force Medical University (In Former The Fourth Military Medical University), Xi’an 710032, China; (D.J.); (Z.M.); (J.Z.); (Y.S.); (T.B.); (R.L.); (Y.W.); (L.G.); (S.F.); (Y.S.); (Y.L.); (B.Z.); (Y.Y.); (S.Y.); (Y.C.)
| | - Tianyuan Bai
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air Force Medical University (In Former The Fourth Military Medical University), Xi’an 710032, China; (D.J.); (Z.M.); (J.Z.); (Y.S.); (T.B.); (R.L.); (Y.W.); (L.G.); (S.F.); (Y.S.); (Y.L.); (B.Z.); (Y.Y.); (S.Y.); (Y.C.)
| | - Ruibo Liu
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air Force Medical University (In Former The Fourth Military Medical University), Xi’an 710032, China; (D.J.); (Z.M.); (J.Z.); (Y.S.); (T.B.); (R.L.); (Y.W.); (L.G.); (S.F.); (Y.S.); (Y.L.); (B.Z.); (Y.Y.); (S.Y.); (Y.C.)
| | - Yongkai Wang
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air Force Medical University (In Former The Fourth Military Medical University), Xi’an 710032, China; (D.J.); (Z.M.); (J.Z.); (Y.S.); (T.B.); (R.L.); (Y.W.); (L.G.); (S.F.); (Y.S.); (Y.L.); (B.Z.); (Y.Y.); (S.Y.); (Y.C.)
| | - Liang Guan
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air Force Medical University (In Former The Fourth Military Medical University), Xi’an 710032, China; (D.J.); (Z.M.); (J.Z.); (Y.S.); (T.B.); (R.L.); (Y.W.); (L.G.); (S.F.); (Y.S.); (Y.L.); (B.Z.); (Y.Y.); (S.Y.); (Y.C.)
| | - Shuaishuai Fu
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air Force Medical University (In Former The Fourth Military Medical University), Xi’an 710032, China; (D.J.); (Z.M.); (J.Z.); (Y.S.); (T.B.); (R.L.); (Y.W.); (L.G.); (S.F.); (Y.S.); (Y.L.); (B.Z.); (Y.Y.); (S.Y.); (Y.C.)
| | - Yuanjie Sun
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air Force Medical University (In Former The Fourth Military Medical University), Xi’an 710032, China; (D.J.); (Z.M.); (J.Z.); (Y.S.); (T.B.); (R.L.); (Y.W.); (L.G.); (S.F.); (Y.S.); (Y.L.); (B.Z.); (Y.Y.); (S.Y.); (Y.C.)
| | - Yuanzhe Li
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air Force Medical University (In Former The Fourth Military Medical University), Xi’an 710032, China; (D.J.); (Z.M.); (J.Z.); (Y.S.); (T.B.); (R.L.); (Y.W.); (L.G.); (S.F.); (Y.S.); (Y.L.); (B.Z.); (Y.Y.); (S.Y.); (Y.C.)
| | - Bingquan Zhou
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air Force Medical University (In Former The Fourth Military Medical University), Xi’an 710032, China; (D.J.); (Z.M.); (J.Z.); (Y.S.); (T.B.); (R.L.); (Y.W.); (L.G.); (S.F.); (Y.S.); (Y.L.); (B.Z.); (Y.Y.); (S.Y.); (Y.C.)
| | - Yulin Yang
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air Force Medical University (In Former The Fourth Military Medical University), Xi’an 710032, China; (D.J.); (Z.M.); (J.Z.); (Y.S.); (T.B.); (R.L.); (Y.W.); (L.G.); (S.F.); (Y.S.); (Y.L.); (B.Z.); (Y.Y.); (S.Y.); (Y.C.)
| | - Shuya Yang
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air Force Medical University (In Former The Fourth Military Medical University), Xi’an 710032, China; (D.J.); (Z.M.); (J.Z.); (Y.S.); (T.B.); (R.L.); (Y.W.); (L.G.); (S.F.); (Y.S.); (Y.L.); (B.Z.); (Y.Y.); (S.Y.); (Y.C.)
| | - Yuanhang Chang
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air Force Medical University (In Former The Fourth Military Medical University), Xi’an 710032, China; (D.J.); (Z.M.); (J.Z.); (Y.S.); (T.B.); (R.L.); (Y.W.); (L.G.); (S.F.); (Y.S.); (Y.L.); (B.Z.); (Y.Y.); (S.Y.); (Y.C.)
| | - Baozeng Sun
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air Force Medical University (In Former The Fourth Military Medical University), Xi’an 710032, China; (D.J.); (Z.M.); (J.Z.); (Y.S.); (T.B.); (R.L.); (Y.W.); (L.G.); (S.F.); (Y.S.); (Y.L.); (B.Z.); (Y.Y.); (S.Y.); (Y.C.)
- Yingtan Detachment, Jiangxi General Hospital, Chinese People’s Armed Police Force, Nanchang 330001, China
- General Practice Medicine Base of Shanghai Changzheng Hospital, Shanghai 200041, China
| | - Kun Yang
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air Force Medical University (In Former The Fourth Military Medical University), Xi’an 710032, China; (D.J.); (Z.M.); (J.Z.); (Y.S.); (T.B.); (R.L.); (Y.W.); (L.G.); (S.F.); (Y.S.); (Y.L.); (B.Z.); (Y.Y.); (S.Y.); (Y.C.)
| |
Collapse
|
13
|
Callery EL, Morais CLM, Taylor JV, Challen K, Rowbottom AW. Investigation of Long-Term CD4+ T Cell Receptor Repertoire Changes Following SARS-CoV-2 Infection in Patients with Different Severities of Disease. Diagnostics (Basel) 2024; 14:2330. [PMID: 39451653 PMCID: PMC11507081 DOI: 10.3390/diagnostics14202330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/04/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND The difference in the immune response to severe acute respiratory syndrome coro-navirus 2 (SARS-CoV-2) in patients with mild versus severe disease remains poorly understood. Recent scientific advances have recognised the vital role of both B cells and T cells; however, many questions remain unanswered, particularly for T cell responses. T cells are essential for helping the generation of SARS-CoV-2 antibody responses but have also been recognised in their own right as a major factor influencing COVID-19 disease outcomes. The examination of T cell receptor (TCR) family differences over a 12-month period in patients with varying COVID-19 disease severity is crucial for understanding T cell responses to SARS-CoV-2. METHODS We applied a machine learning approach to analyse TCR vb family responses in COVID-19 patients (n = 151) across multiple timepoints and disease severities alongside SARS-CoV-2 infection-naïve (healthy control) individ-uals (n = 62). RESULTS Blood samples from hospital in-patients with moderate, severe, or critical disease could be classified with an accuracy of 94%. Furthermore, we identified significant variances in TCR vb family specificities between disease and control subgroups. CONCLUSIONS Our findings suggest advantageous and disadvantageous TCR repertoire patterns in relation to disease severity. Following validation in larger cohorts, our methodology may be useful in detecting protective immunity and the assessment of long-term outcomes, particularly as we begin to unravel the immunological mechanisms leading to post-COVID complications.
Collapse
Affiliation(s)
- Emma L. Callery
- Department of Immunology, Lancashire Teaching Hospitals NHS Foundation, Preston PR2 9HT, UK;
| | - Camilo L. M. Morais
- Institute of Chemistry, Federal University of Rio Grande do Norte, Natal 59072-970, Brazil;
| | - Jemma V. Taylor
- Department of Immunology, Lancashire Teaching Hospitals NHS Foundation, Preston PR2 9HT, UK;
| | - Kirsty Challen
- Department of Emergency Medicine, Lancashire Teaching Hospitals NHS Foundation, Preston PR2 9HT, UK;
| | - Anthony W. Rowbottom
- Department of Immunology, Lancashire Teaching Hospitals NHS Foundation, Preston PR2 9HT, UK;
- School of Medicine, University of Central Lancashire, Preston PR1 2HE, UK
| |
Collapse
|
14
|
Deng S, Xu Z, Hu J, Yang Y, Zhu F, Liu Z, Zhang H, Wu S, Jin T. The molecular mechanisms of CD8 + T cell responses to SARS-CoV-2 infection mediated by TCR-pMHC interactions. Front Immunol 2024; 15:1468456. [PMID: 39450171 PMCID: PMC11499136 DOI: 10.3389/fimmu.2024.1468456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/16/2024] [Indexed: 10/26/2024] Open
Abstract
Cytotoxic CD8+ T lymphocytes (CTLs) have been implicated in the severity of COVID-19. The TCR-pMHC ternary complex, formed by the T cell receptor (TCR) and peptide-MHC (major histocompatibility complex), constitutes the molecular basis of CTL responses against SARS-CoV-2. While numerous studies have been conducted on T cell immunity, the molecular mechanisms underlying CTL-mediated immunity against SARS-CoV-2 infection have not been well elaborated. In this review, we described the association between HLA variants and different immune responses to SARS-CoV-2 infection, which may lead to varying COVID-19 outcomes. We also summarized the specific TCR repertoires triggered by certain SARS-CoV-2 CTL epitopes, which might explain the variations in disease outcomes among different patients. Importantly, we have highlighted the primary strategies used by SARS-CoV-2 variants to evade T-cell killing: disrupting peptide-MHC binding, TCR recognition, and antigen processing. This review provides valuable insights into the molecule mechanism of CTL responses during SARS-CoV-2 infection, aiding efforts to control the pandemic and prepare for future challenges.
Collapse
Affiliation(s)
- Shasha Deng
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhihao Xu
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jing Hu
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yunru Yang
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Fang Zhu
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhuan Liu
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hongliang Zhang
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
| | - Songquan Wu
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
| | - Tengchuan Jin
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science & Technology of China, Hefei, China
- Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China
| |
Collapse
|
15
|
Markov NS, Ren Z, Senkow KJ, Grant RA, Gao CA, Malsin ES, Sichizya L, Kihshen H, Helmin KA, Jovisic M, Arnold JM, Pérez-Leonor XG, Abdala-Valencia H, Swaminathan S, Nwaezeapu J, Kang M, Rasmussen L, Ozer EA, Lorenzo-Redondo R, Hultquist JF, Simons LM, Rios-Guzman E, Misharin AV, Wunderink RG, Budinger GRS, Singer BD, Morales-Nebreda L. Distinctive evolution of alveolar T cell responses is associated with clinical outcomes in unvaccinated patients with SARS-CoV-2 pneumonia. Nat Immunol 2024; 25:1607-1622. [PMID: 39138384 PMCID: PMC11490290 DOI: 10.1038/s41590-024-01914-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/03/2024] [Indexed: 08/15/2024]
Abstract
The evolution of T cell molecular signatures in the distal lung of patients with severe pneumonia is understudied. Here, we analyzed T cell subsets in longitudinal bronchoalveolar lavage fluid samples from 273 patients with severe pneumonia, including unvaccinated patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or with respiratory failure not linked to pneumonia. In patients with SARS-CoV-2 pneumonia, activation of interferon signaling pathways, low activation of the NF-κB pathway and preferential targeting of spike and nucleocapsid proteins early after intubation were associated with favorable outcomes, whereas loss of interferon signaling, activation of NF-κB-driven programs and specificity for the ORF1ab complex late in disease were associated with mortality. These results suggest that in patients with severe SARS-CoV-2 pneumonia, alveolar T cell interferon responses targeting structural SARS-CoV-2 proteins characterize individuals who recover, whereas responses against nonstructural proteins and activation of NF-κB are associated with poor outcomes.
Collapse
Affiliation(s)
- Nikolay S Markov
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ziyou Ren
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Karolina J Senkow
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Rogan A Grant
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Catherine A Gao
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Elizabeth S Malsin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Lango Sichizya
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Hermon Kihshen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Kathryn A Helmin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Milica Jovisic
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jason M Arnold
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Xóchitl G Pérez-Leonor
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Hiam Abdala-Valencia
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Suchitra Swaminathan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Julu Nwaezeapu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Mengjia Kang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Luke Rasmussen
- Division of Health and Biomedical Informatics, Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Egon A Ozer
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Pathogen Genomics and Microbial Evolution, Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ramon Lorenzo-Redondo
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Pathogen Genomics and Microbial Evolution, Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Judd F Hultquist
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Pathogen Genomics and Microbial Evolution, Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Lacy M Simons
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Pathogen Genomics and Microbial Evolution, Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Estefany Rios-Guzman
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Pathogen Genomics and Microbial Evolution, Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Alexander V Misharin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Richard G Wunderink
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - G R Scott Budinger
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Benjamin D Singer
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Luisa Morales-Nebreda
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
16
|
Serdyuk YV, Zornikova KV, Dianov DV, Ivanova NO, Davydova VD, Fefelova EI, Nenasheva TA, Sheetikov SA, Bogolyubova AV. T-Cell Receptors Cross-Reactive to Coronaviral Epitopes Homologous to the SPR Peptide. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1631-1642. [PMID: 39418521 DOI: 10.1134/s0006297924090098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/26/2024] [Accepted: 08/09/2024] [Indexed: 10/19/2024]
Abstract
The COVID-19 pandemic caused by the rapid spread of the novel coronavirus SARS-CoV-2, has promoted an interest in studying the T-cell immune response. It was found that the polyclonal and cross-reactive T-cell response against seasonal coronaviruses and other SARS-CoV-2 strains reduced disease severity. We investigated the immunodominant T-cell epitope SPRWYFYYYL from the nucleocapsid protein of SARS-CoV-2. The immune response to this epitope is characterized by the formation of highly homologous (convergent) receptors that have been found in the T-cell receptor (TCR) repertoires of different individuals. This epitope belongs to a group of highly conserved peptides that are rarely mutated in novel SARS-CoV-2 strains and are homologous to the epitopes of seasonal coronaviruses. It has been suggested that the cross-reactive response to homologous peptides contributes to the reduction of COVID-19 severity. However, some investigators have questioned this hypothesis, suggesting that the low affinity of the cross-reactive receptors reduces the strength of the immune response. The aim of this study was to evaluate the effect of amino acid substitutions in the SPR epitope on its binding affinity to specific TCRs. For this, we performed antigen-dependent cellular expansions were performed using samples from four COVID-19-transfected donors and sequenced their TCR repertoires. The resulting SPR-specific repertoire of β-chains in TCRs had a greater sequence diversity than the repertoire of α-chains. However, the TCR repertoires of all four donors contained public receptors, three of which were cloned and used to generate the Jurkat E6-1 TPR cell line. Only one of these receptors was activated by the SPR peptide and recognized with the same affinity by its mutant homologue LPRWYFYYY from seasonal coronaviruses. This indicates that the presence of the mutation did not affect the strength of the immune response, which may explain why the cross-reactive response to the SPR epitope is so frequent and contributes positively to COVID-19 infection.
Collapse
Affiliation(s)
- Yana V Serdyuk
- National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia
| | - Ksenia V Zornikova
- National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia
| | - Dmitry V Dianov
- National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia
| | - Nataliia O Ivanova
- National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia
| | - Vassa D Davydova
- National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia
| | - Ekaterina I Fefelova
- National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia
| | - Tatiana A Nenasheva
- National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia
| | - Saveliy A Sheetikov
- National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia
| | - Apollinariya V Bogolyubova
- National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia.
| |
Collapse
|
17
|
Deng Q, Wang Z, Xiang S, Wang Q, Liu Y, Hou T, Sun H. RLpMIEC: High-Affinity Peptide Generation Targeting Major Histocompatibility Complex-I Guided and Interpreted by Interaction Spectrum-Navigated Reinforcement Learning. J Chem Inf Model 2024; 64:6432-6449. [PMID: 39118363 DOI: 10.1021/acs.jcim.4c01153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Major histocompatibility complex (MHC) plays a vital role in presenting epitopes (short peptides from pathogenic proteins) to T-cell receptors (TCRs) to trigger the subsequent immune responses. Vaccine design targeting MHC generally aims to find epitopes with a high binding affinity for MHC presentation. Nevertheless, to find novel epitopes usually requires high-throughput screening of bulk peptide database, which is time-consuming, labor-intensive, more unaffordable, and very expensive. Excitingly, the past several years have witnessed the great success of artificial intelligence (AI) in various fields, such as natural language processing (NLP, e.g., GPT-4), protein structure prediction and engineering (e.g., AlphaFold2), and so on. Therefore, herein, we propose a deep reinforcement-learning (RL)-based generative algorithm, RLpMIEC, to quantitatively design peptide targeting MHC-I systems. Specifically, RLpMIEC combines the energetic spectrum (namely, the molecular interaction energy component, MIEC) based on the peptide-MHC interaction and the sequence information to generate peptides with strong binding affinity and precise MIEC spectra to accelerate the discovery of candidate peptide vaccines. RLpMIEC performs well in all the generative capability evaluations and can generate peptides with strong binding affinities and precise MIECs and, moreover, with high interpretability, demonstrating its powerful capability in participation for accelerating peptide-based vaccine development.
Collapse
Affiliation(s)
- Qirui Deng
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009 Jiangsu, P. R. China
| | - Zhe Wang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 Zhejiang, P. R. China
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Sutong Xiang
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009 Jiangsu, P. R. China
| | - Qinghua Wang
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009 Jiangsu, P. R. China
| | - Yifei Liu
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 Zhejiang, P. R. China
| | - Tingjun Hou
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 Zhejiang, P. R. China
| | - Huiyong Sun
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009 Jiangsu, P. R. China
| |
Collapse
|
18
|
Zhang J. Immune responses in COVID-19 patients: Insights into cytokine storms and adaptive immunity kinetics. Heliyon 2024; 10:e34577. [PMID: 39149061 PMCID: PMC11325674 DOI: 10.1016/j.heliyon.2024.e34577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 08/17/2024] Open
Abstract
SARS-CoV-2 infection can trigger cytokine storm in some patients, which characterized by an excessive production of cytokines and chemical mediators. This hyperactive immune response may cause significant tissue damage and multiple organ failure (MOF). The severity of COVID-19 correlates with the intensity of cytokine storm, involving elements such as IFN, NF-κB, IL-6, HMGB1, etc. It is imperative to rapidly engage adaptive immunity to effectively control the disease progression. CD4+ T cells facilitate an immune response by improving B cells in the production of neutralizing antibodies and activating CD8+ T cells, which are instrumental in eradicating virus-infected cells. Meanwhile, antibodies from B cells can neutralize virus, obstructing further infection of host cells. In individuals who have recovered from the disease, virus-specific antibodies and memory T cells were observed, which could confer a level of protection, reducing the likelihood of re-infection or attenuating severity. This paper discussed the roles of macrophages, IFN, IL-6 and HMGB1 in cytokine release syndrome (CRS), the intricacies of adaptive immunity, and the persistence of immune memory, all of which are critical for the prevention and therapeutic strategies against COVID-19.
Collapse
Affiliation(s)
- Junguo Zhang
- Pulmonology Department, Fengdu General Hospital, Chongqing, 408200, China
| |
Collapse
|
19
|
Kanth SM, Huapaya JA, Gairhe S, Wang H, Tian X, Demirkale CY, Hou C, Ma J, Kuhns DB, Fink DL, Malayeri A, Turkbey E, Harmon SA, Chen MY, Regenold D, Lynch NF, Ramelli S, Li W, Krack J, Kuruppu J, Lionakis MS, Strich JR, Davey R, Childs R, Chertow DS, Kovacs JA, Parizi PT, Suffredini AF. Longitudinal analysis of the lung proteome reveals persistent repair months after mild to moderate COVID-19. Cell Rep Med 2024; 5:101642. [PMID: 38981485 PMCID: PMC11293333 DOI: 10.1016/j.xcrm.2024.101642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/23/2024] [Accepted: 06/13/2024] [Indexed: 07/11/2024]
Abstract
In order to assess homeostatic mechanisms in the lung after COVID-19, changes in the protein signature of bronchoalveolar lavage from 45 patients with mild to moderate disease at three phases (acute, recovery, and convalescent) are evaluated over a year. During the acute phase, inflamed and uninflamed phenotypes are characterized by the expression of tissue repair and host defense response molecules. With recovery, inflammatory and fibrogenic mediators decline and clinical symptoms abate. However, at 9 months, quantified radiographic abnormalities resolve in the majority of patients, and yet compared to healthy persons, all showed ongoing activation of cellular repair processes and depression of the renin-kallikrein-kinin, coagulation, and complement systems. This dissociation of prolonged reparative processes from symptom and radiographic resolution suggests that occult ongoing disruption of the lung proteome is underrecognized and may be relevant to recovery from other serious viral pneumonias.
Collapse
Affiliation(s)
- Shreya M Kanth
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Julio A Huapaya
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Salina Gairhe
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Honghui Wang
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xin Tian
- Office of Biostatistics Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cumhur Y Demirkale
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chunyan Hou
- Mass Spectrometry and Analytical Pharmacology Shared Resource, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, USA
| | - Junfeng Ma
- Mass Spectrometry and Analytical Pharmacology Shared Resource, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, USA
| | - Douglas B Kuhns
- Neutrophil Monitoring Lab, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21701, USA
| | - Danielle L Fink
- Neutrophil Monitoring Lab, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21701, USA
| | - Ashkan Malayeri
- Radiology and Imaging Sciences, Clinical Center (CC), National Institutes of Health, Bethesda, MD 20892, USA
| | - Evrim Turkbey
- Radiology and Imaging Sciences, Clinical Center (CC), National Institutes of Health, Bethesda, MD 20892, USA
| | - Stephanie A Harmon
- Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marcus Y Chen
- Cardiovascular Branch, National Institute of Heart, Lung, and Blood, National Institutes of Health, Bethesda, MD 20892, USA
| | - David Regenold
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicolas F Lynch
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sabrina Ramelli
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Willy Li
- Pharmacy Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Janell Krack
- Pharmacy Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Janaki Kuruppu
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michail S Lionakis
- Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeffrey R Strich
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard Davey
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard Childs
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel S Chertow
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA; Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joseph A Kovacs
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Parizad Torabi- Parizi
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anthony F Suffredini
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
20
|
Lisi S, Malerba F, Quaranta P, Florio R, Vitaloni O, Monaca E, Bruni Ercole B, Bitonti AR, Del Perugia O, Mignanelli M, Perrera P, Sabbatella R, Raimondi F, Piazza CR, Moles A, Alfano C, Pistello M, Cattaneo A. Selection and characterization of human scFvs targeting the SARS-CoV-2 nucleocapsid protein isolated from antibody libraries of COVID-19 patients. Sci Rep 2024; 14:15864. [PMID: 38982108 PMCID: PMC11233501 DOI: 10.1038/s41598-024-66558-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024] Open
Abstract
In 2019, the novel SARS-CoV-2 coronavirus emerged in China, causing the pneumonia named COVID-19. At the beginning, all research efforts were focused on the spike (S) glycoprotein. However, it became evident that the nucleocapsid (N) protein is pivotal in viral replication, genome packaging and evasion of the immune system, is highly immunogenic, which makes it another compelling target for antibody development alongside the spike protein. This study focused on the construction of single chain fragments variable (scFvs) libraries from SARS-CoV-2-infected patients to establish a valuable, immortalized and extensive antibodies source. We used the Intracellular Antibody Capture Technology to select a panel of scFvs against the SARS-CoV-2 N protein. The whole panel of scFv was expressed and characterized both as intrabodies and recombinant proteins. ScFvs were then divided into 2 subgroups: those that exhibited high binding activity to N protein when expressed in yeast or in mammalian cells as intrabodies, and those purified as recombinant proteins, displaying affinity for recombinant N protein in the nanomolar range. This panel of scFvs against the N protein represents a novel platform for research and potential diagnostic applications.
Collapse
Affiliation(s)
- Simonetta Lisi
- Bio@SNS Laboratory, Scuola Normale Superiore, 56126, Pisa, Italy
| | - Francesca Malerba
- Fondazione EBRI (European Brain Research Institute) Rita Levi-Montalcini, 00161, Rome, Italy
| | - Paola Quaranta
- Retrovirus Centre, Department of Translational Research, University of Pisa, 56126, Pisa, Italy
- Virology Operative Unit, Pisa University Hospital, 56124, Pisa, Italy
| | - Rita Florio
- Fondazione EBRI (European Brain Research Institute) Rita Levi-Montalcini, 00161, Rome, Italy
| | - Ottavia Vitaloni
- Bio@SNS Laboratory, Scuola Normale Superiore, 56126, Pisa, Italy
| | - Elisa Monaca
- Structural Biology and Biophysics Unit, Fondazione Ri.MED, 90133, Palermo, Italy
| | - Bruno Bruni Ercole
- Fondazione EBRI (European Brain Research Institute) Rita Levi-Montalcini, 00161, Rome, Italy
| | | | - Olga Del Perugia
- Bio@SNS Laboratory, Scuola Normale Superiore, 56126, Pisa, Italy
| | | | - Paola Perrera
- Retrovirus Centre, Department of Translational Research, University of Pisa, 56126, Pisa, Italy
| | - Raffaele Sabbatella
- Structural Biology and Biophysics Unit, Fondazione Ri.MED, 90133, Palermo, Italy
| | | | - Carmen Rita Piazza
- Retrovirus Centre, Department of Translational Research, University of Pisa, 56126, Pisa, Italy
- Department of Medical Biotechnologies, University of Siena, 53100, Siena, Italy
| | - Anna Moles
- Genomnia Srl, 20091, Bresso, MI, Italy
- Institute of Biochemistry and Cell Biology, CNR, 80131, Napoli, Italy
| | - Caterina Alfano
- Structural Biology and Biophysics Unit, Fondazione Ri.MED, 90133, Palermo, Italy
| | - Mauro Pistello
- Retrovirus Centre, Department of Translational Research, University of Pisa, 56126, Pisa, Italy
- Virology Operative Unit, Pisa University Hospital, 56124, Pisa, Italy
| | - Antonino Cattaneo
- Bio@SNS Laboratory, Scuola Normale Superiore, 56126, Pisa, Italy.
- Fondazione EBRI (European Brain Research Institute) Rita Levi-Montalcini, 00161, Rome, Italy.
| |
Collapse
|
21
|
Heiskanen A, Galipeau Y, Little J, Langlois M, Cooper CL. Reduced seasonal coronavirus incidence in high-risk population groups during the COVID-19 pandemic. Immun Inflamm Dis 2024; 12:e1342. [PMID: 39023424 PMCID: PMC11256882 DOI: 10.1002/iid3.1342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/03/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Epidemiological data on seasonal coronaviruses (sCoVs) may provide insight on transmission patterns and demographic factors that favor coronaviruses (CoVs) with greater disease severity. This study describes the incidence of CoVs in several high-risk groups in Ottawa, Canada, from October 2020 to March 2022. METHODS Serological assays quantified IgG and IgM antibodies to SARS-CoV-2, HCoV-OC43, HCoV-NL63, HCoV-HKU1, and HCoV-229E. Incident infections were compared between four population groups: individuals exposed to children, transit users, immunocompromised, and controls. Associations between antibody prevalence indicative of natural infection and demographic variables were assessed using regression analyses. RESULTS Transit users and those exposed to children were at no greater risk of infection compared to the control group. Fewer infections were detected in the immunocompromised group (p = .03). SARS-CoV-2 seroprevalence was greater in individuals with low income and within ethnic minorities. CONCLUSIONS Our findings suggest that nonpharmaceutical interventions intended to reduce SAR-CoV-2 transmission protected populations at high risk of exposure. The re-emergence of sCoVs and other common respiratory viruses alongside SARS-CoV-2 may alter infection patterns and increase the risk in vulnerable populations.
Collapse
Affiliation(s)
- Aliisa Heiskanen
- School of Epidemiology and Public Health, Faculty of MedicineUniversity of OttawaOttawaOntarioCanada
| | - Yannick Galipeau
- Department of Biochemistry, Microbiology & Immunology, Faculty of MedicineUniversity of OttawaOttawaOntarioCanada
| | - Julian Little
- School of Epidemiology and Public Health, Faculty of MedicineUniversity of OttawaOttawaOntarioCanada
| | - Marc‐André Langlois
- Department of Biochemistry, Microbiology & Immunology, Faculty of MedicineUniversity of OttawaOttawaOntarioCanada
- Centre for Infection, Immunity and Inflammation (CI3)University of OttawaOttawaOntarioCanada
| | - Curtis L. Cooper
- School of Epidemiology and Public Health, Faculty of MedicineUniversity of OttawaOttawaOntarioCanada
- Ottawa Hospital Research InstituteOttawaOntarioCanada
| |
Collapse
|
22
|
Wang X, Zhang J, Liu M, Guo Y, Guo P, Yang X, Shang B, Li M, Tian J, Zhang T, Wang X, Jin R, Zhou J, Gao GF, Liu J. Nonconserved epitopes dominate reverse preexisting T cell immunity in COVID-19 convalescents. Signal Transduct Target Ther 2024; 9:160. [PMID: 38866784 PMCID: PMC11169541 DOI: 10.1038/s41392-024-01876-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 04/30/2024] [Accepted: 05/20/2024] [Indexed: 06/14/2024] Open
Abstract
The herd immunity against SARS-CoV-2 is continuously consolidated across the world during the ongoing pandemic. However, the potential function of the nonconserved epitopes in the reverse preexisting cross-reactivity induced by SARS-CoV-2 to other human coronaviruses is not well explored. In our research, we assessed T cell responses to both conserved and nonconserved peptides shared by SARS-CoV-2 and SARS-CoV, identifying cross-reactive CD8+ T cell epitopes using enzyme-linked immunospot and intracellular cytokine staining assays. Then, in vitro refolding and circular dichroism were performed to evaluate the thermal stability of the HLA/peptide complexes. Lastly, single-cell T cell receptor reservoir was analyzed based on tetramer staining. Here, we discovered that cross-reactive T cells targeting SARS-CoV were present in individuals who had recovered from COVID-19, and identified SARS-CoV-2 CD8+ T cell epitopes spanning the major structural antigens. T cell responses induced by the nonconserved peptides between SARS-CoV-2 and SARS-CoV were higher and played a dominant role in the cross-reactivity in COVID-19 convalescents. Cross-T cell reactivity was also observed within the identified series of CD8+ T cell epitopes. For representative immunodominant peptide pairs, although the HLA binding capacities for peptides from SARS-CoV-2 and SARS-CoV were similar, the TCR repertoires recognizing these peptides were distinct. Our results could provide beneficial information for the development of peptide-based universal vaccines against coronaviruses.
Collapse
Affiliation(s)
- Xin Wang
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
- NHC Key Laboratory of Biosafety, Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, 102206, China
| | - Jie Zhang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Beijing Institute of Infectious Diseases, Beijing, 100015, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, P.R. China
| | - Maoshun Liu
- NHC Key Laboratory of Biosafety, Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, 102206, China
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yuanyuan Guo
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
- NHC Key Laboratory of Biosafety, Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, 102206, China
| | - Peipei Guo
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
- NHC Key Laboratory of Biosafety, Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, 102206, China
| | - Xiaonan Yang
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
- NHC Key Laboratory of Biosafety, Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, 102206, China
| | - Bingli Shang
- NHC Key Laboratory of Biosafety, Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, 102206, China
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Min Li
- NHC Key Laboratory of Biosafety, Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, 102206, China
| | - Jinmin Tian
- NHC Key Laboratory of Biosafety, Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, 102206, China
- School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Ting Zhang
- NHC Key Laboratory of Biosafety, Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, 102206, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Xi Wang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Beijing Institute of Infectious Diseases, Beijing, 100015, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, P.R. China
| | - Ronghua Jin
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Beijing Institute of Infectious Diseases, Beijing, 100015, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, P.R. China
| | - Jikun Zhou
- Shijiazhuang Fifth Hospital, Shijiazhuang, 050011, China.
| | - George F Gao
- NHC Key Laboratory of Biosafety, Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, 102206, China.
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, China.
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jun Liu
- NHC Key Laboratory of Biosafety, Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, 102206, China.
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
23
|
Sun L, Zhao F, Xiang Y, Chen S, Shu Q. Association of immune checkpoint inhibitors with SARS-CoV-2 infection rate and prognosis in patients with solid tumors: a systematic review and meta-analysis. Front Immunol 2024; 15:1259112. [PMID: 38887296 PMCID: PMC11180804 DOI: 10.3389/fimmu.2024.1259112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 05/15/2024] [Indexed: 06/20/2024] Open
Abstract
The rate and prognosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in patients with solid cancer tumors actively treated with immune checkpoint inhibitors (ICIs) have not been fully determined. The goal of this meta-analysis was to explore this issue, which can be helpful to clinicians in their decision-making concerning patient treatment. We conducted a thorough search for relevant cohort studies in the databases PubMed, Embase, Cochrane Library, and Web of Science. Mortality and infection rate were the primary endpoints, and the incidence of severe or critical disease was the secondary result. A total of 6,267 cases (individual patients) were represented in 15 studies. Prior exposure to ICIs was not correlated with an elevated risk of SARS-CoV-2 infection (relative risk (RR) 1.04, 95% CI 0.57-1.88, z = 0.12, P = 0.905) or mortality (RR 1.22, 95% CI 0.99-1.50, z = 1.90, P = 0.057). However, the results of the meta-analysis revealed that taking ICIs before SARS-CoV-2 diagnosis increased the chance of developing severe or critical disease (RR 1.51, 95% CI 1.09-2.10, z = 2.46, P = 0.014). No significant inter-study heterogeneity was observed. The infection and mortality rates of SARS-CoV-2 in patients with solid tumors who previously received ICIs or other antitumor therapies did not differ significantly. However, secondary outcomes showed that ICIs treatment before the diagnosis of SARS-CoV-2 infection was significantly associated with the probability of severe or critical illness. Systematic review registration https://www.crd.york.ac.uk/prospero/#recordDetails PROSPERO, identifier CRD42023393511.
Collapse
Affiliation(s)
- Lin Sun
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Fangmin Zhao
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yuying Xiang
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Shuyi Chen
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| | - Qijin Shu
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| |
Collapse
|
24
|
Leong SL, Murdolo L, Maddumage JC, Koutsakos M, Kedzierska K, Purcell AW, Gras S, Grant EJ. Characterisation of novel influenza-derived HLA-B*18:01-restricted epitopes. Clin Transl Immunology 2024; 13:e1509. [PMID: 38737448 PMCID: PMC11087170 DOI: 10.1002/cti2.1509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/09/2024] [Accepted: 04/16/2024] [Indexed: 05/14/2024] Open
Abstract
Objectives Seasonal influenza viruses cause roughly 650 000 deaths annually despite available vaccines. CD8+ T cells typically recognise influenza-derived peptides from internal structural and non-structural influenza proteins and are an attractive avenue for future vaccine design as they could reduce the severity of disease following infection with diverse influenza strains. CD8+ T cells recognise peptides presented by the highly polymorphic Human Leukocyte Antigens class I molecules (HLA-I). Each HLA-I variant has distinct peptide binding preferences, representing a significant obstacle for designing vaccines that elicit CD8+ T cell responses across broad populations. Consequently, the rational design of a CD8+ T cell-mediated vaccine would require the identification of highly immunogenic peptides restricted to a range of different HLA molecules. Methods Here, we assessed the immunogenicity of six recently published novel influenza-derived peptides identified by mass-spectrometry and predicted to bind to the prevalent HLA-B*18:01 molecule. Results Using CD8+ T cell activation assays and protein biochemistry, we showed that 3/6 of the novel peptides were immunogenic in several HLA-B*18:01+ individuals and confirmed their HLA-B*18:01 restriction. We subsequently compared CD8+ T cell responses towards the previously identified highly immunogenic HLA-B*18:01-restricted NP219 peptide. Using X-ray crystallography, we solved the first crystal structures of HLA-B*18:01 presenting immunogenic influenza-derived peptides. Finally, we dissected the first TCR repertoires specific for HLA-B*18:01 restricted pathogen-derived peptides, identifying private and restricted repertoires against each of the four peptides. Conclusion Overall the characterisation of these novel immunogenic peptides provides additional HLA-B*18:01-restricted vaccine targets derived from the Matrix protein 1 and potentially the non-structural protein and the RNA polymerase catalytic subunit of influenza viruses.
Collapse
Affiliation(s)
- Samuel Liwei Leong
- Infection and Immunity Program, La Trobe Institute for Molecular Science (LIMS)La Trobe UniversityBundooraVICAustralia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment (SABE)La Trobe UniversityBundooraVICAustralia
| | - Lawton Murdolo
- Infection and Immunity Program, La Trobe Institute for Molecular Science (LIMS)La Trobe UniversityBundooraVICAustralia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment (SABE)La Trobe UniversityBundooraVICAustralia
| | - Janesha C Maddumage
- Infection and Immunity Program, La Trobe Institute for Molecular Science (LIMS)La Trobe UniversityBundooraVICAustralia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment (SABE)La Trobe UniversityBundooraVICAustralia
| | - Marios Koutsakos
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and ImmunityUniversity of MelbourneMelbourneVICAustralia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and ImmunityUniversity of MelbourneMelbourneVICAustralia
| | - Anthony W Purcell
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery InstituteMonash UniversityClaytonVICAustralia
| | - Stephanie Gras
- Infection and Immunity Program, La Trobe Institute for Molecular Science (LIMS)La Trobe UniversityBundooraVICAustralia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment (SABE)La Trobe UniversityBundooraVICAustralia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery InstituteMonash UniversityClaytonVICAustralia
| | - Emma J Grant
- Infection and Immunity Program, La Trobe Institute for Molecular Science (LIMS)La Trobe UniversityBundooraVICAustralia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment (SABE)La Trobe UniversityBundooraVICAustralia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery InstituteMonash UniversityClaytonVICAustralia
| |
Collapse
|
25
|
Ahn YM, Maddumage JC, Grant EJ, Chatzileontiadou DS, Perera WG, Baker BM, Szeto C, Gras S. The impact of SARS-CoV-2 spike mutation on peptide presentation is HLA allomorph-specific. Curr Res Struct Biol 2024; 7:100148. [PMID: 38742159 PMCID: PMC11089313 DOI: 10.1016/j.crstbi.2024.100148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/11/2024] [Accepted: 04/28/2024] [Indexed: 05/16/2024] Open
Abstract
CD8+ T cells are crucial for viral elimination and recovery from viral infection. Nonetheless, the current understanding of the T cell response to SARS-CoV-2 at the antigen level remains limited. The Spike protein is an external structural protein that is prone to mutations, threatening the efficacy of current vaccines. Therefore, we have characterised the immune response towards the immunogenic Spike-derived peptide (S976-984, VLNDILSRL), restricted to the HLA-A*02:01 molecule, which is mutated in both Alpha (S982A) and Omicron BA.1 (L981F) variants of concern. We determined that the mutation in the Alpha variant (S982A) impacted both the stability and conformation of the peptide, bound to HLA-A*02:01, in comparison to the original S976-984. We identified a longer and overlapping immunogenic peptide (S975-984, SVLNDILSRL) that could be presented by HLA-A*02:01, HLA-A*11:01 and HLA-B*13:01 allomorphs. We showed that S975-specific CD8+ T cells were weakly cross-reactive to the mutant peptides despite their similar conformations when presented by HLA-A*11:01. Altogether, our results show that the impact of SARS-CoV-2 mutations on peptide presentation is HLA allomorph-specific, and that post vaccination there are T cells able to react and cross-react towards the variant of concern peptides.
Collapse
Affiliation(s)
- You Min Ahn
- Infection & Immunity Program, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Bundoora, Victoria, Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Agriculture (SABE), La Trobe University, Bundoora, Victoria, Australia
| | - Janesha C. Maddumage
- Infection & Immunity Program, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Bundoora, Victoria, Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Agriculture (SABE), La Trobe University, Bundoora, Victoria, Australia
| | - Emma J. Grant
- Infection & Immunity Program, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Bundoora, Victoria, Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Agriculture (SABE), La Trobe University, Bundoora, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Demetra S.M. Chatzileontiadou
- Infection & Immunity Program, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Bundoora, Victoria, Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Agriculture (SABE), La Trobe University, Bundoora, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - W.W.J. Gihan Perera
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA
| | - Brian M. Baker
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA
| | - Christopher Szeto
- Infection & Immunity Program, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Bundoora, Victoria, Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Agriculture (SABE), La Trobe University, Bundoora, Victoria, Australia
- Australian Synchrotron, ANSTO, Clayton, Victoria, Australia
| | - Stephanie Gras
- Infection & Immunity Program, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Bundoora, Victoria, Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Agriculture (SABE), La Trobe University, Bundoora, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
26
|
van den Dijssel J, Duurland MC, Konijn VA, Kummer LY, Hagen RR, Kuijper LH, Wieske L, van Dam KP, Stalman EW, Steenhuis M, Geerdes DM, Mok JY, Kragten AH, Menage C, Koets L, Veldhuisen B, Verstegen NJ, van der Schoot CE, van Esch WJ, D'Haens GR, Löwenberg M, Volkers AG, Rispens T, Kuijpers TW, Eftimov F, van Gisbergen KP, van Ham SM, Ten Brinke A, van de Sandt CE. mRNA-1273 vaccinated inflammatory bowel disease patients receiving TNF inhibitors develop broad and robust SARS-CoV-2-specific CD8 + T cell responses. J Autoimmun 2024; 144:103175. [PMID: 38387105 DOI: 10.1016/j.jaut.2024.103175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 02/24/2024]
Abstract
SARS-CoV-2-specific CD8+ T cells recognize conserved viral peptides and in the absence of cross-reactive antibodies form an important line of protection against emerging viral variants as they ameliorate disease severity. SARS-CoV-2 mRNA vaccines induce robust spike-specific antibody and T cell responses in healthy individuals, but their effectiveness in patients with chronic immune-mediated inflammatory disorders (IMIDs) is less well defined. These patients are often treated with systemic immunosuppressants, which may negatively affect vaccine-induced immunity. Indeed, TNF inhibitor (TNFi)-treated inflammatory bowel disease (IBD) patients display reduced ability to maintain SARS-CoV-2 antibody responses post-vaccination, yet the effects on CD8+ T cells remain unclear. Here, we analyzed the impact of IBD and TNFi treatment on mRNA-1273 vaccine-induced CD8+ T cell responses compared to healthy controls in SARS-CoV-2 experienced and inexperienced patients. CD8+ T cells were analyzed for their ability to recognize 32 SARS-CoV-2-specific epitopes, restricted by 10 common HLA class I allotypes using heterotetramer combinatorial coding. This strategy allowed in-depth ex vivo profiling of the vaccine-induced CD8+ T cell responses using phenotypic and activation markers. mRNA vaccination of TNFi-treated and untreated IBD patients induced robust spike-specific CD8+ T cell responses with a predominant central memory and activated phenotype, comparable to those in healthy controls. Prominent non-spike-specific CD8+ T cell responses were observed in SARS-CoV-2 experienced donors prior to vaccination. Non-spike-specific CD8+ T cells persisted and spike-specific CD8+ T cells notably expanded after vaccination in these patient cohorts. Our data demonstrate that regardless of TNFi treatment or prior SARS-CoV-2 infection, IBD patients benefit from vaccination by inducing a robust spike-specific CD8+ T cell response.
Collapse
Affiliation(s)
- Jet van den Dijssel
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands; Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands; Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Mariël C Duurland
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands; Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Veronique Al Konijn
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands; Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Laura Yl Kummer
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands; Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands; Department of Neurology and Neurophysiology, Amsterdam Neuroscience, Amsterdam UMC Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Ruth R Hagen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands; Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands; Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Lisan H Kuijper
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands; Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Luuk Wieske
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, Amsterdam UMC Location AMC, University of Amsterdam, Amsterdam, Netherlands; Department of Clinical Neurophysiology, St Antonius Hospital, Nieuwegein, Netherlands
| | - Koos Pj van Dam
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, Amsterdam UMC Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Eileen W Stalman
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, Amsterdam UMC Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Maurice Steenhuis
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | | | - Juk Yee Mok
- Sanquin Reagents B.V., Amsterdam, Netherlands
| | | | - Charlotte Menage
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands; Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Lianne Koets
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands; National Screening Laboratory of Sanquin, Research and Laboratory Services, Amsterdam, Netherlands
| | - Barbera Veldhuisen
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands; Department of Immunohematology Diagnostics, Sanquin Diagnostic Services, Amsterdam, Netherlands
| | - Niels Jm Verstegen
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands; Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - C Ellen van der Schoot
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands; Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | | | - Geert Ram D'Haens
- Department of Gastroenterology and Hepatology, Amsterdam UMC Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Mark Löwenberg
- Department of Gastroenterology and Hepatology, Amsterdam UMC Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Adriaan G Volkers
- Department of Gastroenterology and Hepatology, Amsterdam UMC Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Theo Rispens
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands; Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Taco W Kuijpers
- Department of Pediatric Immunology, Rheumatology and Infectious Disease, University of Amsterdam, Amsterdam, Netherlands
| | - Filip Eftimov
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, Amsterdam UMC Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Klaas Pjm van Gisbergen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands; Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - S Marieke van Ham
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands; Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands; Swammerdam Institute for Life Sciences, University of Amsterdam, Netherlands
| | - Anja Ten Brinke
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands; Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Carolien E van de Sandt
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands; Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands; Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
| |
Collapse
|
27
|
Sechan F, Edridge AWD, van Rijswijk J, Jebbink MF, Deijs M, Bakker M, Matser A, Prins M, van der Hoek L. Influenza-like illness symptoms due to endemic human coronavirus reinfections are not influenced by the length of the interval separating reinfections. Microbiol Spectr 2024; 12:e0391223. [PMID: 38329364 PMCID: PMC10913438 DOI: 10.1128/spectrum.03912-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/15/2024] [Indexed: 02/09/2024] Open
Abstract
After 3 years of its introduction to humans, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been declared as endemic. Little is known about the severity of the disease manifestation that future infections may cause, especially when reinfections occur after humoral immunity from a previous infection or vaccination has waned. Such knowledge could inform policymakers regarding the frequency of vaccination. Reinfections by endemic human coronaviruses (HCoVs) can serve as a model system for SARS-CoV-2 endemicity. We monitored 44 immunocompetent male adults with blood sampling every 6 months (for 17 years), for the frequency of HCoV (re-)infections, using rises in N-antibodies of HCoV-NL63, HCoV-29E, HCoV-OC43, and HCoV-HKU1 as markers of infection. Disease associations during (re-)infections were examined by comparison of self-reporting records of influenza-like illness (ILI) symptoms, every 6 months, by all participants. During 8,549 follow-up months, we found 364 infections by any HCoV with a median of eight infections per person. Symptoms more frequently reported during HCoV infection were cough, sore throat, and myalgia. Two hundred fifty-one of the 364 infections were species-specific HCoV-reinfections, with a median interval of 3.58 (interquartile range 1.92-5.67) years. The length of the interval between reinfections-being either short or long-had no influence on the frequency of reporting ILI symptoms. All HCoV-NL63, HCoV-229E, HCoV-OC43, and HCoV-HKU1 (re-)infections are associated with the reporting of ILIs. Importantly, in immunocompetent males, these symptoms are not influenced by the length of the interval between reinfections. IMPORTANCE Little is known about the disease following human coronavirus (HCoV) reinfection occurring years after the previous infection, once humoral immunity has waned. We monitored endemic HCoV reinfection in immunocompetent male adults for up to 17 years. We found no influence of reinfection interval length in the disease manifestation, suggesting that immunocompetent male adults are adequately protected against future HCoV infections.
Collapse
Affiliation(s)
- Ferdyansyah Sechan
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Arthur W. D. Edridge
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Jacqueline van Rijswijk
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Maarten F. Jebbink
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Martin Deijs
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Margreet Bakker
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Amy Matser
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Amsterdam Public Health, Amsterdam, the Netherlands
- Netherlands Institute for Health Services Research (NIVEL), Utrecht, the Netherlands
| | - Maria Prins
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Department of Infectious Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Department of Infectious Diseases, Public Health Service of Amsterdam, Amsterdam, the Netherlands
| | - Lia van der Hoek
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| |
Collapse
|
28
|
Eggenhuizen PJ, Ooi JD. The Influence of Cross-Reactive T Cells in COVID-19. Biomedicines 2024; 12:564. [PMID: 38540178 PMCID: PMC10967880 DOI: 10.3390/biomedicines12030564] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 01/22/2025] Open
Abstract
Memory T cells form from the adaptive immune response to historic infections or vaccinations. Some memory T cells have the potential to recognise unrelated pathogens like severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and generate cross-reactive immune responses. Notably, such T cell cross-reactivity has been observed between SARS-CoV-2 and other human coronaviruses. T cell cross-reactivity has also been observed between SARS-CoV-2 variants from unrelated microbes and unrelated vaccinations against influenza A, tuberculosis and measles, mumps and rubella. Extensive research and debate is underway to understand the mechanism and role of T cell cross-reactivity and how it relates to Coronavirus disease 2019 (COVID-19) outcomes. Here, we review the evidence for the ability of pre-existing memory T cells to cross-react with SARS-CoV-2. We discuss the latest findings on the impact of T cell cross-reactivity and the extent to which it can cross-protect from COVID-19.
Collapse
Affiliation(s)
- Peter J. Eggenhuizen
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC 3800, Australia
| | | |
Collapse
|
29
|
Tranter E, Frentsch M, Hütter-Krönke ML, Vuong GL, Busch D, Loyal L, Henze L, Rosnev S, Blau IW, Thiel A, Beule D, Bullinger L, Obermayer B, Na IK. Comparable CD8 + T-cell responses to SARS-CoV-2 vaccination in single-cell transcriptomics of recently allogeneic transplanted patients and healthy individuals. J Med Virol 2024; 96:e29539. [PMID: 38516755 DOI: 10.1002/jmv.29539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/23/2024]
Abstract
Despite extensive research on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination responses in healthy individuals, there is comparatively little known beyond antibody titers and T-cell responses in the vulnerable cohort of patients after allogeneic hematopoietic stem cell transplantation (ASCT). In this study, we assessed the serological response and performed longitudinal multimodal analyses including T-cell functionality and single-cell RNA sequencing combined with T cell receptor (TCR)/B cell receptor (BCR) profiling in the context of BNT162b2 vaccination in ASCT patients. In addition, these data were compared to publicly available data sets of healthy vaccinees. Protective antibody titers were achieved in 40% of patients. We identified a distorted B- and T-cell distribution, a reduced TCR diversity, and increased levels of exhaustion marker expression as possible causes for the poorer vaccine response rates in ASCT patients. Immunoglobulin heavy chain gene rearrangement after vaccination proved to be highly variable in ASCT patients. Changes in TCRα and TCRβ gene rearrangement after vaccination differed from patterns observed in healthy vaccinees. Crucially, ASCT patients elicited comparable proportions of SARS-CoV-2 vaccine-induced (VI) CD8+ T-cells, characterized by a distinct gene expression pattern that is associated with SARS-CoV-2 specificity in healthy individuals. Our study underlines the impaired immune system and thus the lower vaccine response rates in ASCT patients. However, since protective vaccine responses and VI CD8+ T-cells can be induced in part of ASCT patients, our data advocate early posttransplant vaccination due to the high risk of infection in this vulnerable group.
Collapse
Affiliation(s)
- Eva Tranter
- Medizinische Klinik m. S. Hämatologie, Onkologie und Tumorimmunologie, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Marco Frentsch
- Medizinische Klinik m. S. Hämatologie, Onkologie und Tumorimmunologie, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Marie Luise Hütter-Krönke
- Medizinische Klinik m. S. Hämatologie, Onkologie und Tumorimmunologie, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Giang Lam Vuong
- Medizinische Klinik m. S. Hämatologie, Onkologie und Tumorimmunologie, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - David Busch
- Medizinische Klinik m. S. Hämatologie, Onkologie und Tumorimmunologie, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Lucie Loyal
- Si-M/"Der Simulierte Mensch", A Science Framework of Technische Universität Berlin and Charité-Universitätsmedizin Berlin, Berlin, Germany
- BIH Center of Immunomics-Regenerative Immunology and Aging, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Larissa Henze
- Si-M/"Der Simulierte Mensch", A Science Framework of Technische Universität Berlin and Charité-Universitätsmedizin Berlin, Berlin, Germany
- BIH Center of Immunomics-Regenerative Immunology and Aging, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Stanislav Rosnev
- Medizinische Klinik m. S. Hämatologie, Onkologie und Tumorimmunologie, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Igor-Wolfgang Blau
- Medizinische Klinik m. S. Hämatologie, Onkologie und Tumorimmunologie, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Thiel
- Si-M/"Der Simulierte Mensch", A Science Framework of Technische Universität Berlin and Charité-Universitätsmedizin Berlin, Berlin, Germany
- BIH Center of Immunomics-Regenerative Immunology and Aging, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Dieter Beule
- Core Unit Bioinformatics, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Lars Bullinger
- Medizinische Klinik m. S. Hämatologie, Onkologie und Tumorimmunologie, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité Universitätsmedizin Berlin, Berlin, Germany
- ECRC Experimental and Clinical Research Center, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Benedikt Obermayer
- Core Unit Bioinformatics, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Il-Kang Na
- Medizinische Klinik m. S. Hämatologie, Onkologie und Tumorimmunologie, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité Universitätsmedizin Berlin, Berlin, Germany
- Si-M/"Der Simulierte Mensch", A Science Framework of Technische Universität Berlin and Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité Universitätsmedizin Berlin, Berlin, Germany
- ECRC Experimental and Clinical Research Center, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
30
|
Kim SH, Kim Y, Jeon S, Park U, Kang JI, Jeon K, Kim HR, Oh S, Rhee JY, Choi JP, Park WB, Park SW, Yang JS, Lee JY, Kang J, Shin HS, Kim Y, Kim S, Kim YS, Lim DG, Cho NH. Rise in broadly cross-reactive adaptive immunity against human β-coronaviruses in MERS-recovered patients during the COVID-19 pandemic. SCIENCE ADVANCES 2024; 10:eadk6425. [PMID: 38416834 PMCID: PMC10901372 DOI: 10.1126/sciadv.adk6425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 01/23/2024] [Indexed: 03/01/2024]
Abstract
To develop a universal coronavirus (CoV) vaccine, long-term immunity against multiple CoVs, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants, Middle East respiratory syndrome (MERS)-CoV, and future CoV strains, is crucial. Following the 2015 Korean MERS outbreak, we conducted a long-term follow-up study and found that although neutralizing antibodies and memory T cells against MERS-CoV declined over 5 years, some recovered patients exhibited increased antibody levels during the COVID-19 pandemic. This likely resulted from cross-reactive immunity induced by SARS-CoV-2 vaccines or infections. A significant correlation in antibody responses across various CoVs indicates shared immunogenic epitopes. Two epitopes-the spike protein's stem helix and intracellular domain-were highly immunogenic after MERS-CoV infection and after SARS-CoV-2 vaccination or infection. In addition, memory T cell responses, especially polyfunctional CD4+ T cells, were enhanced during the pandemic, correlating significantly with MERS-CoV spike-specific antibodies and neutralizing activity. Therefore, incorporating these cross-reactive and immunogenic epitopes into pan-CoV vaccine formulations may facilitate effective vaccine development.
Collapse
Affiliation(s)
- So-Hee Kim
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Yuri Kim
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
- Institute of Endemic Disease, Seoul National University Medical Research, Seoul 03080, Republic of Korea
| | - Sangeun Jeon
- Zoonotic Virus Laboratory, Institut Pasteur Korea, Seongnam 13488, Republic of Korea
| | - Uni Park
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Ju-Il Kang
- Institute of Endemic Disease, Seoul National University Medical Research, Seoul 03080, Republic of Korea
| | - Kyeongseok Jeon
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Hye-Ran Kim
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Songhyeok Oh
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Ji-Young Rhee
- Division of Infectious Diseases, Department of Medicine, Dankook University College of Medicine, Cheonan 31116, Republic of Korea
| | - Jae-Phil Choi
- Department of Internal Medicine, Seoul Medical Center, Seoul 02053, Republic of Korea
| | - Wan Beom Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Sang Won Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Jeong-Sun Yang
- Center for Emerging Virus Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju 28159, Republic of Korea
| | - Joo-Yeon Lee
- Center for Emerging Virus Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju 28159, Republic of Korea
| | - Jihye Kang
- Translational Research Center, Research Institute of Public Health, National Medical Center, Seoul 04564, Republic of Korea
| | - Hyoung-Shik Shin
- Division of Infectious Diseases, Department of Internal Medicine, Daejeon Eulji Medical Center, Eulji University School of Medicine, Daejeon 34824, Republic of Korea
| | - Yeonjae Kim
- Center for Infectious Diseases, National Medical Center, Seoul 04564, Republic of Korea
| | - Seungtaek Kim
- Zoonotic Virus Laboratory, Institut Pasteur Korea, Seongnam 13488, Republic of Korea
| | - Yeon-Sook Kim
- Division of Infectious Diseases, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea
| | - Dong-Gyun Lim
- Translational Research Center, Research Institute of Public Health, National Medical Center, Seoul 04564, Republic of Korea
| | - Nam-Hyuk Cho
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
- Institute of Endemic Disease, Seoul National University Medical Research, Seoul 03080, Republic of Korea
- Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do 13620, Republic of Korea
| |
Collapse
|
31
|
Hoover AR, More S, Liu K, West CL, Valerio TI, Furrer CL, Adams JP, Yu N, Villalva C, Kumar A, Alleruzzo L, Lam SSK, Hode T, Papin JF, Chen WR. N-dihydrogalactochitosan serves as an effective mucosal adjuvant for intranasal vaccine in combination with recombinant viral proteins against respiratory infection. Acta Biomater 2024; 175:279-292. [PMID: 38160856 DOI: 10.1016/j.actbio.2023.12.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Mucosal vaccinations for respiratory pathogens provide effective protection as they stimulate localized cellular and humoral immunities at the site of infection. Currently, the major limitation of intranasal vaccination is using effective adjuvants capable of withstanding the harsh environment imposed by the mucosa. Herein, we describe the efficacy of using a unique biopolymer, N-dihydrogalactochitosan (GC), as a nasal mucosal vaccine adjuvant against respiratory infections. Specifically, we mixed GC with recombinant SARS-CoV-2 trimeric spike (S) and nucleocapsid (NC) proteins to intranasally vaccinate K18-hACE2 transgenic mice, in comparison with Addavax (AV), an MF-59 equivalent. In contrast to AV, intranasal application of GC induces a robust, systemic antigen-specific antibody response and increases the number of T cells in the cervical lymph nodes. Moreover, GC+S+NC-vaccinated animals were largely resistant to the lethal SARS-CoV-2 challenge and experienced drastically reduced morbidity and mortality, with animal weights and behavior returning to normal 22 days post-infection. In contrast, animals intranasally vaccinated with AV+S+NC experienced severe weight loss, mortality, and respiratory distress, with none surviving beyond 6 days post-infection. Our findings demonstrate that GC can serve as a potent mucosal vaccine adjuvant against SARS-CoV-2 and potentially other respiratory viruses. STATEMENT OF SIGNIFICANCE: We demonstrated that a unique biopolymer, N-dihydrogalactochitosan (GC), was an effective nasal mucosal vaccine adjuvant against respiratory infections. Specifically, we mixed GC with recombinant SARS-CoV-2 trimeric spike (S) and nucleocapsid (NC) proteins to intranasally vaccinate K18-hACE2 transgenic mice, in comparison with Addavax (AV). In contrast to AV, GC induces a robust, systemic antigen-specific antibody response and increases the number of T cells in the cervical lymph nodes. About 90 % of the GC+S+NC-vaccinated animals survived the lethal SARS-CoV-2 challenge and remained healthy 22 days post-infection, while the AV+S+NC-vaccinated animals experienced severe weight loss and respiratory distress, and all died within 6 days post-infection. Our findings demonstrate that GC is a potent mucosal vaccine adjuvant against SARS-CoV-2 and potentially other respiratory viruses.
Collapse
Affiliation(s)
- Ashley R Hoover
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, USA; Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Sunil More
- Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK USA
| | - Kaili Liu
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, USA
| | - Connor L West
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, USA
| | - Trisha I Valerio
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, USA
| | - Coline L Furrer
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, USA
| | - Jacob P Adams
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, USA
| | - Ningli Yu
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, USA
| | - Crystal Villalva
- Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK USA
| | - Amit Kumar
- Biogen Inc., 225 Bnney Street, Cambridge, MA, USA
| | - Lu Alleruzzo
- Immunophotonics, Inc., 4340 Duncan Avenue, Suite 212, Saint Louis, MO, USA
| | - Samuel S K Lam
- Immunophotonics, Inc., 4340 Duncan Avenue, Suite 212, Saint Louis, MO, USA
| | - Tomas Hode
- Immunophotonics, Inc., 4340 Duncan Avenue, Suite 212, Saint Louis, MO, USA
| | - James F Papin
- Department Pathology and Division of Comparative Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Wei R Chen
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, USA.
| |
Collapse
|
32
|
Ren J, Zhou X, Huang K, Chen L, Guo W, Feng K, Huang T, Cai YD. Identification of key genes associated with persistent immune changes and secondary immune activation responses induced by influenza vaccination after COVID-19 recovery by machine learning methods. Comput Biol Med 2024; 169:107883. [PMID: 38157776 DOI: 10.1016/j.compbiomed.2023.107883] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/27/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
COVID-19 is hypothesized to exert enduring effects on the immune systems of patients, leading to alterations in immune-related gene expression. This study aimed to scrutinize the persistent implications of SARS-CoV-2 infection on gene expression and its influence on subsequent immune activation responses. We designed a machine learning-based approach to analyze transcriptomic data from both healthy individuals and patients who had recovered from COVID-19. Patients were categorized based on their influenza vaccination status and then compared with healthy controls. The initial sample set encompassed 86 blood samples from healthy controls and 72 blood samples from recuperated COVID-19 patients prior to influenza vaccination. The second sample set included 123 blood samples from healthy controls and 106 blood samples from recovered COVID-19 patients who had been vaccinated against influenza. For each sample, the dataset captured expression levels of 17,060 genes. Above two sample sets were first analyzed by seven feature ranking algorithms, yielding seven feature lists for each dataset. Then, each list was fed into the incremental feature selection method, incorporating three classic classification algorithms, to extract essential genes, classification rules and build efficient classifiers. The genes and rules were analyzed in this study. The main findings included that NEXN and ZNF354A were highly expressed in recovered COVID-19 patients, whereas MKI67 and GZMB were highly expressed in patients with secondary immune activation post-COVID-19 recovery. These pivotal genes could provide valuable insights for future health monitoring of COVID-19 patients and guide the creation of continued treatment regimens.
Collapse
Affiliation(s)
- Jingxin Ren
- School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| | - XianChao Zhou
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Ke Huang
- School of Life Science and Technology, Shanghai Tech University, Shanghai, 201210, China.
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai, 201306, China.
| | - Wei Guo
- Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200030, China.
| | - KaiYan Feng
- Department of Computer Science, Guangdong AIB Polytechnic College, Guangzhou, 510507, China.
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China; CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
33
|
Dos Santos Alves RP, Timis J, Miller R, Valentine K, Pinto PBA, Gonzalez A, Regla-Nava JA, Maule E, Nguyen MN, Shafee N, Landeras-Bueno S, Olmedillas E, Laffey B, Dobaczewska K, Mikulski Z, McArdle S, Leist SR, Kim K, Baric RS, Ollmann Saphire E, Elong Ngono A, Shresta S. Human coronavirus OC43-elicited CD4 + T cells protect against SARS-CoV-2 in HLA transgenic mice. Nat Commun 2024; 15:787. [PMID: 38278784 PMCID: PMC10817949 DOI: 10.1038/s41467-024-45043-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/10/2024] [Indexed: 01/28/2024] Open
Abstract
SARS-CoV-2-reactive T cells are detected in some healthy unexposed individuals. Human studies indicate these T cells could be elicited by the common cold coronavirus OC43. To directly test this assumption and define the role of OC43-elicited T cells that are cross-reactive with SARS-CoV-2, we develop a model of sequential infections with OC43 followed by SARS-CoV-2 in HLA-B*0702 and HLA-DRB1*0101 Ifnar1-/- transgenic mice. We find that OC43 infection can elicit polyfunctional CD8+ and CD4+ effector T cells that cross-react with SARS-CoV-2 peptides. Furthermore, pre-exposure to OC43 reduces subsequent SARS-CoV-2 infection and disease in the lung for a short-term in HLA-DRB1*0101 Ifnar1-/- transgenic mice, and a longer-term in HLA-B*0702 Ifnar1-/- transgenic mice. Depletion of CD4+ T cells in HLA-DRB1*0101 Ifnar1-/- transgenic mice with prior OC43 exposure results in increased viral burden in the lung but no change in virus-induced lung damage following infection with SARS-CoV-2 (versus CD4+ T cell-sufficient mice), demonstrating that the OC43-elicited SARS-CoV-2 cross-reactive T cell-mediated cross-protection against SARS-CoV-2 is partially dependent on CD4+ T cells. These findings contribute to our understanding of the origin of pre-existing SARS-CoV-2-reactive T cells and their effects on SARS-CoV-2 clinical outcomes, and also carry implications for development of broadly protective betacoronavirus vaccines.
Collapse
Affiliation(s)
| | - Julia Timis
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Robyn Miller
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Kristen Valentine
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | - Andrew Gonzalez
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Jose Angel Regla-Nava
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Microbiology and Pathology, University Center for Health Science (CUCS), University of Guadalajara, Guadalajara, 44340, Mexico
| | - Erin Maule
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Michael N Nguyen
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Norazizah Shafee
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Sara Landeras-Bueno
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Eduardo Olmedillas
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Brett Laffey
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Katarzyna Dobaczewska
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Zbigniew Mikulski
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Sara McArdle
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Sarah R Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kenneth Kim
- Histopathology Core Facility, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Erica Ollmann Saphire
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Annie Elong Ngono
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA.
| | - Sujan Shresta
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA.
| |
Collapse
|
34
|
Lineburg KE, Crooks P, Raju J, Le Texier L, Khaledi P, Berry K, Swaminathan S, Panikkar A, Rehan S, Guppy-Coles K, Neller MA, Khanna R, Smith C. Breakthrough SARS-COV-2 infection induces broad anti-viral T cell immunity. iScience 2023; 26:108474. [PMID: 38077128 PMCID: PMC10698266 DOI: 10.1016/j.isci.2023.108474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/11/2023] [Accepted: 11/13/2023] [Indexed: 05/18/2024] Open
Abstract
Vaccines have curtailed the devastation wrought by COVID-19. Nevertheless, emerging variants result in a high incidence of breakthrough infections. Here we assess the impact of vaccination and breakthrough infection on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) T cell immunity. We demonstrate that COVID-19 vaccination induces robust spike-specific T cell responses that, within the CD4+ compartment, display comparable IFN-γ responses to SARS-CoV-2 infection without vaccination. Vaccine-induced CD8+ IFN-γ responses however, were significantly greater than those primed by SARS-CoV-2 infection alone. This increased responsiveness is associated with induction of novel HLA-restricted CD8+ T cell epitopes not primed by infection alone (without vaccination). Despite these augmented responses, breakthrough infection still induced de novo T cell responses against additional SARS-CoV-2 CD8+ epitopes that display HLA-associated immunodominance hierarchies consistent with those in unvaccinated COVID-19 convalescent individuals. This study demonstrates the unique modulation of anti-viral T cell responses against multiple viral antigens following consecutive yet distinct priming events in COVID-19 vaccination and breakthrough infection.
Collapse
Affiliation(s)
- Katie Eireann Lineburg
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Pauline Crooks
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Jyothy Raju
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Laetitia Le Texier
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Panteha Khaledi
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Kiana Berry
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
- Faculty of Medicine, The University of Queensland, Herston, QLD 4006, Australia
| | - Srividhya Swaminathan
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
- Faculty of Medicine, The University of Queensland, Herston, QLD 4006, Australia
| | - Archana Panikkar
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Sweera Rehan
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Kristyan Guppy-Coles
- Cardiology, Royal Brisbane and Women’s Hospital, Metro North Hospital and Health Services, Queensland Health, QLD 4006, Australia
| | - Michelle Anne Neller
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Rajiv Khanna
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Corey Smith
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
- Faculty of Medicine, The University of Queensland, Herston, QLD 4006, Australia
| |
Collapse
|
35
|
Markov NS, Ren Z, Senkow KJ, Grant RA, Gao CA, Malsin ES, Sichizya L, Kihshen H, Helmin KA, Jovisic M, Arnold JM, Pérez-Leonor XG, Abdala-Valencia H, Swaminathan S, Nwaezeapu J, Kang M, Rasmussen L, Ozer EA, Lorenzo-Redondo R, Hultquist JF, Simons LM, Rios-Guzman E, Misharin AV, Wunderink RG, Budinger GS, Singer BD, Morales-Nebreda L. A distinctive evolution of alveolar T cell responses is associated with clinical outcomes in unvaccinated patients with SARS-CoV-2 pneumonia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.13.571479. [PMID: 38168346 PMCID: PMC10760069 DOI: 10.1101/2023.12.13.571479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Pathogen clearance and resolution of inflammation in patients with pneumonia require an effective local T cell response. Nevertheless, local T cell activation may drive lung injury, particularly during prolonged episodes of respiratory failure characteristic of severe SARS-CoV-2 pneumonia. While T cell responses in the peripheral blood are well described, the evolution of T cell phenotypes and molecular signatures in the distal lung of patients with severe pneumonia caused by SARS-CoV-2 or other pathogens is understudied. Accordingly, we serially obtained 432 bronchoalveolar lavage fluid samples from 273 patients with severe pneumonia and respiratory failure, including 74 unvaccinated patients with COVID-19, and performed flow cytometry, transcriptional, and T cell receptor profiling on sorted CD8+ and CD4+ T cell subsets. In patients with COVID-19 but not pneumonia secondary to other pathogens, we found that early and persistent enrichment in CD8+ and CD4+ T cell subsets correlated with survival to hospital discharge. Activation of interferon signaling pathways early after intubation for COVID-19 was associated with favorable outcomes, while activation of NF-κB-driven programs late in disease was associated with poor outcomes. Patients with SARS-CoV-2 pneumonia whose alveolar T cells preferentially targeted the Spike and Nucleocapsid proteins tended to experience more favorable outcomes than patients whose T cells predominantly targeted the ORF1ab polyprotein complex. These results suggest that in patients with severe SARS-CoV-2 pneumonia, alveolar T cell interferon responses targeting structural SARS-CoV-2 proteins characterize patients who recover, yet these responses progress to NF-κB activation against non-structural proteins in patients who go on to experience poor clinical outcomes.
Collapse
Affiliation(s)
- Nikolay S. Markov
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Ziyou Ren
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Karolina J. Senkow
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Rogan A. Grant
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Catherine A. Gao
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Elizabeth S. Malsin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Lango Sichizya
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Hermon Kihshen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Kathryn A. Helmin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Milica Jovisic
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Jason M. Arnold
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | | | - Hiam Abdala-Valencia
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Suchitra Swaminathan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Julu Nwaezeapu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Mengjia Kang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Luke Rasmussen
- Division of Health and Biomedical Informatics, Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Egon A. Ozer
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Center for Pathogen Genomics and Microbial Evolution, Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Ramon Lorenzo-Redondo
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Center for Pathogen Genomics and Microbial Evolution, Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Judd F. Hultquist
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Center for Pathogen Genomics and Microbial Evolution, Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Lacy M. Simons
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Center for Pathogen Genomics and Microbial Evolution, Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Estefany Rios-Guzman
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Center for Pathogen Genomics and Microbial Evolution, Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Alexander V. Misharin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Richard G. Wunderink
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - G.R. Scott Budinger
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Benjamin D. Singer
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Luisa Morales-Nebreda
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | | |
Collapse
|
36
|
Tong MZW, Sng JDJ, Carney M, Cooper L, Brown S, Lineburg KE, Chew KY, Collins N, Ignacio K, Airey M, Burr L, Joyce BA, Jayasinghe D, McMillan CLD, Muller DA, Adhikari A, Gallo LA, Dorey ES, Barrett HL, Gras S, Smith C, Good‐Jacobson K, Short KR. Elevated BMI reduces the humoral response to SARS-CoV-2 infection. Clin Transl Immunology 2023; 12:e1476. [PMID: 38050635 PMCID: PMC10693902 DOI: 10.1002/cti2.1476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/05/2023] [Accepted: 11/09/2023] [Indexed: 12/06/2023] Open
Abstract
Objective Class III obesity (body mass index [BMI] ≥ 40 kg m-2) significantly impairs the immune response to SARS-CoV-2 vaccination. However, the effect of an elevated BMI (≥ 25 kg m-2) on humoral immunity to SARS-CoV-2 infection and COVID-19 vaccination remains unclear. Methods We collected blood samples from people who recovered from SARS-CoV-2 infection approximately 3 and 13 months of post-infection (noting that these individuals were not exposed to SARS-CoV-2 or vaccinated in the interim). We also collected blood samples from people approximately 5 months of post-second dose COVID-19 vaccination (the majority of whom did not have a prior SARS-CoV-2 infection). We measured their humoral responses to SARS-CoV-2, grouping individuals based on a BMI greater or less than 25 kg m-2. Results Here, we show that an increased BMI (≥ 25 kg m-2), when accounting for age and sex differences, is associated with reduced antibody responses after SARS-CoV-2 infection. At 3 months of post-infection, an elevated BMI was associated with reduced antibody titres. At 13 months of post-infection, an elevated BMI was associated with reduced antibody avidity and a reduced percentage of spike-positive B cells. In contrast, no significant association was noted between a BMI ≥ 25 kg m-2 and humoral immunity to SARS-CoV-2 at 5 months of post-secondary vaccination. Conclusions Taken together, these data showed that elevated BMI is associated with an impaired humoral immune response to SARS-CoV-2 infection. The impairment of infection-induced immunity in individuals with a BMI ≥ 25 kg m-2 suggests an added impetus for vaccination rather than relying on infection-induced immunity.
Collapse
Affiliation(s)
- Marcus ZW Tong
- School of Chemistry and Molecular BiosciencesThe University of QueenslandSt LuciaQLDAustralia
| | - Julian DJ Sng
- School of Chemistry and Molecular BiosciencesThe University of QueenslandSt LuciaQLDAustralia
| | - Meagan Carney
- School of Mathematics and PhysicsThe University of QueenslandSt LuciaQLDAustralia
| | - Lucy Cooper
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVICAustralia
- Immunity Program, Biomedicine Discovery InstituteMonash UniversityClaytonVICAustralia
| | - Samuel Brown
- School of Chemistry and Molecular BiosciencesThe University of QueenslandSt LuciaQLDAustralia
| | - Katie E Lineburg
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Infection and Inflammation ProgramQIMR Berghofer Medical Research InstituteHerstonQLDAustralia
| | - Keng Yih Chew
- School of Chemistry and Molecular BiosciencesThe University of QueenslandSt LuciaQLDAustralia
| | - Neve Collins
- School of Chemistry and Molecular BiosciencesThe University of QueenslandSt LuciaQLDAustralia
| | - Kirsten Ignacio
- School of Chemistry and Molecular BiosciencesThe University of QueenslandSt LuciaQLDAustralia
| | - Megan Airey
- School of Chemistry and Molecular BiosciencesThe University of QueenslandSt LuciaQLDAustralia
| | - Lucy Burr
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Infection and Inflammation ProgramQIMR Berghofer Medical Research InstituteHerstonQLDAustralia
- Department of Respiratory MedicineMater HealthBrisbaneQLDAustralia
| | - Briony A Joyce
- School of Chemistry and Molecular BiosciencesThe University of QueenslandSt LuciaQLDAustralia
| | - Dhilshan Jayasinghe
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVICAustralia
- Department of Biochemistry and ChemistryLa Trobe Institute for Molecular Science, La Trobe UniversityBundooraVICAustralia
| | - Christopher LD McMillan
- School of Chemistry and Molecular BiosciencesThe University of QueenslandSt LuciaQLDAustralia
- Australian Infectious Diseases Research CentreThe University of QueenslandSt LuciaQLDAustralia
| | - David A Muller
- School of Chemistry and Molecular BiosciencesThe University of QueenslandSt LuciaQLDAustralia
- Australian Infectious Diseases Research CentreThe University of QueenslandSt LuciaQLDAustralia
| | - Anurag Adhikari
- Department of Biochemistry and ChemistryLa Trobe Institute for Molecular Science, La Trobe UniversityBundooraVICAustralia
| | - Linda A Gallo
- School of HealthUniversity of the Sunshine CoastPetrieQLDAustralia
| | - Emily S Dorey
- Mater ResearchThe University of QueenslandSouth BrisbaneQLDAustralia
| | - Helen L Barrett
- Mater ResearchThe University of QueenslandSouth BrisbaneQLDAustralia
- University of New South Wales MedicineKensingtonNSWAustralia
- Obstetric MedicineRoyal Hospital for WomenRandwickNSWAustralia
| | - Stephanie Gras
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVICAustralia
- Department of Biochemistry and ChemistryLa Trobe Institute for Molecular Science, La Trobe UniversityBundooraVICAustralia
| | - Corey Smith
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Infection and Inflammation ProgramQIMR Berghofer Medical Research InstituteHerstonQLDAustralia
| | - Kim Good‐Jacobson
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVICAustralia
- Immunity Program, Biomedicine Discovery InstituteMonash UniversityClaytonVICAustralia
| | - Kirsty R Short
- School of Chemistry and Molecular BiosciencesThe University of QueenslandSt LuciaQLDAustralia
- Australian Infectious Diseases Research CentreThe University of QueenslandSt LuciaQLDAustralia
| |
Collapse
|
37
|
Buhler S, Sollet ZC, Bettens F, Schäfer A, Ansari M, Ferrari-Lacraz S, Villard J. HLA variants and TCR diversity against SARS-CoV-2 in the pre-COVID-19 era. HLA 2023; 102:720-730. [PMID: 37461808 DOI: 10.1111/tan.15158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 11/11/2023]
Abstract
HLA antigen presentation and T-cell mediated immunity are critical to control acute viral infection such as COVID-19 caused by SARS-CoV-2. Recent data suggest that both the depth of peptide presentation and the breadth of the T-cell repertoire are associated with disease outcome. It has also been shown that unexposed subjects can develop strong T-cell responses against SARS-CoV-2 due to heterologous immunity. In this study, we explored the anti-SARS-CoV-2 T-cell repertoire by analyzing previously published T-cell receptor (TCR) CDR3β immunosequencing data in a cohort of 116 healthy donors and in the context of immune reconstitution after allogeneic hematopoietic stem cell transplantation in 116 recipients collected during the pre-COVID-19 era. For this, 143,310 publicly available SARS-CoV-2 specific T-cell sequences were investigated among the 3.5 million clonotypes in the cohort. We also performed HLA class I peptide binding predictions using the reference proteome of the virus and high resolution genotyping data in these patients. We could demonstrate that individuals are fully equipped at the genetic level to recognize SARS-CoV-2. This is evidenced by the 5% median cumulative frequency of clonotypes having their sequence matched to a SARS-CoV-2 specific T-cell. In addition, any combination of HLA class I variants in this cohort is associated with a broad capacity of presenting hundreds of SARS-CoV-2 derived peptides. These results could be explained by heterologous immunity and random somatic TCR recombination. We speculate that these observations could explain the efficacy of the specific immune response against SARS-CoV-2 in individuals without risk factors of immunodeficiency and infected prior to vaccination.
Collapse
Affiliation(s)
- Stéphane Buhler
- Transplantation Immunology Unit and National Reference Laboratory for Histocompatibility, Department of Diagnostic, Geneva University Hospitals, Geneva, Switzerland
| | - Zuleika Calderin Sollet
- Transplantation Immunology Unit and National Reference Laboratory for Histocompatibility, Department of Diagnostic, Geneva University Hospitals, Geneva, Switzerland
| | - Florence Bettens
- Transplantation Immunology Unit and National Reference Laboratory for Histocompatibility, Department of Diagnostic, Geneva University Hospitals, Geneva, Switzerland
| | - Antonia Schäfer
- Transplantation Immunology Unit and National Reference Laboratory for Histocompatibility, Department of Diagnostic, Geneva University Hospitals, Geneva, Switzerland
| | - Marc Ansari
- CANSEARCH Research Platform for Pediatric Oncology and Hematology, Faculty of Medicine, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva, Geneva, Switzerland
- Division of Pediatric Oncology and Hematology, Department of Women, Child and Adolescent, University Geneva Hospitals, Geneva, Switzerland
| | - Sylvie Ferrari-Lacraz
- Transplantation Immunology Unit and National Reference Laboratory for Histocompatibility, Department of Diagnostic, Geneva University Hospitals, Geneva, Switzerland
| | - Jean Villard
- Transplantation Immunology Unit and National Reference Laboratory for Histocompatibility, Department of Diagnostic, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
38
|
Yu H, Guan F, Miller H, Lei J, Liu C. The role of SARS-CoV-2 nucleocapsid protein in antiviral immunity and vaccine development. Emerg Microbes Infect 2023; 12:e2164219. [PMID: 36583642 PMCID: PMC9980416 DOI: 10.1080/22221751.2022.2164219] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
ABSTRACTThe coronavirus disease 2019 (COVID-19) has caused enormous health risks and global economic disruption. This disease is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The SARS-CoV-2 nucleocapsid protein is a structural protein involved in viral replication and assembly. There is accumulating evidence indicating that the nucleocapsid protein is multi-functional, playing a key role in the pathogenesis of COVID-19 and antiviral immunity against SARS-CoV-2. Here, we summarize its potential application in the prevention of COVID-19, which is based on its role in inflammation, cell death, antiviral innate immunity, and antiviral adaptive immunity.
Collapse
Affiliation(s)
- Haiyun Yu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Fei Guan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Heather Miller
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Jiahui Lei
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China, Chaohong Liu
| |
Collapse
|
39
|
Wang L, Nicols A, Turtle L, Richter A, Duncan CJA, Dunachie SJ, Klenerman P, Payne RP. T cell immune memory after covid-19 and vaccination. BMJ MEDICINE 2023; 2:e000468. [PMID: 38027416 PMCID: PMC10668147 DOI: 10.1136/bmjmed-2022-000468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023]
Abstract
The T cell memory response is a crucial component of adaptive immunity responsible for limiting or preventing viral reinfection. T cell memory after infection with the SARS-CoV-2 virus or vaccination is broad, and spans multiple viral proteins and epitopes, about 20 in each individual. So far the T cell memory response is long lasting and provides a high level of cross reactivity and hence resistance to viral escape by variants of the SARS-CoV-2 virus, such as the omicron variant. All current vaccine regimens tested produce robust T cell memory responses, and heterologous regimens will probably enhance protective responses through increased breadth. T cell memory could have a major role in protecting against severe covid-19 disease through rapid viral clearance and early presentation of epitopes, and the presence of cross reactive T cells might enhance this protection. T cell memory is likely to provide ongoing protection against admission to hospital and death, and the development of a pan-coronovirus vaccine might future proof against new pandemic strains.
Collapse
Affiliation(s)
- Lulu Wang
- Translational and Clinical Research Institute, Immunity and Inflammation Theme, Newcastle University, Newcastle upon Tyne, UK
| | - Alex Nicols
- Translational and Clinical Research Institute, Immunity and Inflammation Theme, Newcastle University, Newcastle upon Tyne, UK
| | - Lance Turtle
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Tropical and Infectious Disease Unit, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Alex Richter
- Institute of Immunology and Immunotherapy, College of Medical and Dental Science, University of Birmingham, Birmingham, UK
| | - Christopher JA Duncan
- Translational and Clinical Research Institute, Immunity and Inflammation Theme, Newcastle University, Newcastle upon Tyne, UK
- Department of Infection and Tropical Medicine, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Susanna J Dunachie
- NDM Centre For Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University Faculty of Science, Bangkok, Thailand
| | - Paul Klenerman
- Oxford University Hospitals NHS Foundation Trust, Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, Oxfordshire, UK
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Rebecca P Payne
- Translational and Clinical Research Institute, Immunity and Inflammation Theme, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
40
|
Diniz MO, Maini MK, Swadling L. T cell control of SARS-CoV-2: When, which, and where? Semin Immunol 2023; 70:101828. [PMID: 37651850 DOI: 10.1016/j.smim.2023.101828] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/13/2023] [Indexed: 09/02/2023]
Abstract
Efficient immune protection against viruses such as SARS-CoV-2 requires the coordinated activity of innate immunity, B and T cells. Accumulating data point to a critical role for T cells not only in the clearance of established infection, but also for aborting viral replication independently of humoral immunity. Here we review the evidence supporting the contribution of antiviral T cells and consider which of their qualitative features favour efficient control of infection. We highlight how studies of SARS-CoV-2 and other coronaviridae in animals and humans have provided important lessons on the optimal timing (When), functionality and specificity (Which), and location (Where) of antiviral T cells. We discuss the clinical implications, particularly for the development of next-generation vaccines, and emphasise areas requiring further study.
Collapse
Affiliation(s)
- Mariana O Diniz
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, Pears Building, London WC1E 6BT, UK
| | - Mala K Maini
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, Pears Building, London WC1E 6BT, UK.
| | - Leo Swadling
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, Pears Building, London WC1E 6BT, UK.
| |
Collapse
|
41
|
Choy C, Chen J, Li J, Gallagher DT, Lu J, Wu D, Zou A, Hemani H, Baptiste BA, Wichmann E, Yang Q, Ciffelo J, Yin R, McKelvy J, Melvin D, Wallace T, Dunn C, Nguyen C, Chia CW, Fan J, Ruffolo J, Zukley L, Shi G, Amano T, An Y, Meirelles O, Wu WW, Chou CK, Shen RF, Willis RA, Ko MSH, Liu YT, De S, Pierce BG, Ferrucci L, Egan J, Mariuzza R, Weng NP. SARS-CoV-2 infection establishes a stable and age-independent CD8 + T cell response against a dominant nucleocapsid epitope using restricted T cell receptors. Nat Commun 2023; 14:6725. [PMID: 37872153 PMCID: PMC10593757 DOI: 10.1038/s41467-023-42430-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023] Open
Abstract
The resolution of SARS-CoV-2 replication hinges on cell-mediated immunity, wherein CD8+ T cells play a vital role. Nonetheless, the characterization of the specificity and TCR composition of CD8+ T cells targeting non-spike protein of SARS-CoV-2 before and after infection remains incomplete. Here, we analyzed CD8+ T cells recognizing six epitopes from the SARS-CoV-2 nucleocapsid (N) protein and found that SARS-CoV-2 infection slightly increased the frequencies of N-recognizing CD8+ T cells but significantly enhanced activation-induced proliferation compared to that of the uninfected donors. The frequencies of N-specific CD8+ T cells and their proliferative response to stimulation did not decrease over one year. We identified the N222-230 peptide (LLLDRLNQL, referred to as LLL thereafter) as a dominant epitope that elicited the greatest proliferative response from both convalescent and uninfected donors. Single-cell sequencing of T cell receptors (TCR) from LLL-specific CD8+ T cells revealed highly restricted Vα gene usage (TRAV12-2) with limited CDR3α motifs, supported by structural characterization of the TCR-LLL-HLA-A2 complex. Lastly, transcriptome analysis of LLL-specific CD8+ T cells from donors who had expansion (expanders) or no expansion (non-expanders) after in vitro stimulation identified increased chromatin modification and innate immune functions of CD8+ T cells in non-expanders. These results suggests that SARS-CoV-2 infection induces LLL-specific CD8+ T cell responses with a restricted TCR repertoire.
Collapse
Affiliation(s)
- Cecily Choy
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Joseph Chen
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Jiangyuan Li
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - D Travis Gallagher
- National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA
| | - Jian Lu
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Daichao Wu
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, USA
| | - Ainslee Zou
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Humza Hemani
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Beverly A Baptiste
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Emily Wichmann
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Qian Yang
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Jeffrey Ciffelo
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Rui Yin
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, USA
| | - Julia McKelvy
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Denise Melvin
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Tonya Wallace
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Christopher Dunn
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Cuong Nguyen
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Chee W Chia
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Jinshui Fan
- Computational Biology and Genomics Core, Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Jeannie Ruffolo
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Linda Zukley
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, USA
| | | | | | - Yang An
- Laboratory of Behavioral Neuroscience, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Osorio Meirelles
- Laboratory of Epidemiology & Population Sciences, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Wells W Wu
- Facility for Biotechnology Resources, CBER, Food and Drug Administration, Silver Spring, MD, USA
| | - Chao-Kai Chou
- Facility for Biotechnology Resources, CBER, Food and Drug Administration, Silver Spring, MD, USA
| | - Rong-Fong Shen
- Facility for Biotechnology Resources, CBER, Food and Drug Administration, Silver Spring, MD, USA
| | - Richard A Willis
- NIH Tetramer Core Facility at Emory University, Atlanta, GA, USA
| | | | | | - Supriyo De
- Computational Biology and Genomics Core, Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Brian G Pierce
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, USA
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Josephine Egan
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Roy Mariuzza
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, USA
| | - Nan-Ping Weng
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD, USA.
| |
Collapse
|
42
|
Witney MJ, Purcell AW, Tscharke DC. Need to know which MHCs protect against COVID? There's an App for that! Immunol Cell Biol 2023; 101:789-792. [PMID: 37638731 DOI: 10.1111/imcb.12680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
In this article, we discuss the recent observation by Augusto et al. made using a novel mobile phone application-based COVID-19 Citizen Science Study that an HLA genetic variant, HLA-B*15:01, is associated with asymptomatic SARS-CoV-2 infection. To explain this association, Augusto et al. describe a cross-reactive memory CD8+ T-cell response in HLA-B*15:01+ SARS-CoV-2 unexposed individuals that retains high avidity for two structurally conserved epitopes found in SARS-CoV-2 and seasonal coronavirus strains. These observations provide an insight into potential molecular determinants that facilitate rapid, early clearance of virus.
Collapse
Affiliation(s)
- Matthew J Witney
- Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Anthony W Purcell
- Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - David C Tscharke
- John Curtin School of Medical Research, The Australian National University, Acton, ACT, Australia
| |
Collapse
|
43
|
Goswami A, Kumar M, Ullah S, Gore MM. De novo design of anti-variant COVID-19 vaccine. Biol Methods Protoc 2023; 8:bpad021. [PMID: 37854896 PMCID: PMC10580973 DOI: 10.1093/biomethods/bpad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/07/2023] [Accepted: 09/21/2023] [Indexed: 10/20/2023] Open
Abstract
Recent studies highlight the effectiveness of hybrid Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) vaccines combining wild-type nucleocapsid and Spike proteins. We have further enhanced this strategy by incorporating delta and omicron variants' spike protein mutations. Both delta and omicron mark the shifts in viral transmissibility and severity in unvaccinated and vaccinated patients. So their mutations are highly crucial for future viral variants also. Omicron is particularly adept at immune evasion by mutating spike epitopes. The rapid adaptations of Omicron and sub-variants to spike-based vaccines and simultaneous transmissibility underline the urgency for new vaccines in the continuous battle against SARS-CoV-2. Therefore, we have added three persistent T-cell-stimulating nucleocapsid peptides similar to homologous sequences from seasonal Human Coronaviruses (HuCoV) and an envelope peptide that elicits a strong T-cell immune response. These peptides are clustered in the hybrid spike's cytoplasmic region with non-immunogenic linkers, enabling systematic arrangement. AlphaFold (Artificial intelligence-based model building) analysis suggests omitting the transmembrane domain enhances these cytoplasmic epitopes' folding efficiency which can ensure persistent immunity for CD4+ structural epitopes. Further molecular dynamics simulations validate the compact conformation of the modeled structures and a flexible C-terminus region. Overall, the structures show stability and less conformational fluctuation throughout the simulation. Also, the AlphaFold predicted structural epitopes maintained their folds during simulation to ensure the specificity of CD4+ T-cell response after vaccination. Our proposed approach may provide options for incorporating diverse anti-viral T-cell peptides, similar to HuCoV, into linker regions. This versatility can be promising to address outbreaks and challenges posed by various viruses for effective management in this era of innovative vaccines.
Collapse
Affiliation(s)
- Arpita Goswami
- Kshamalab, Leo’s Research Services and Suppliers, Mysuru 570016, India
| | - Madan Kumar
- Department of Chemistry-BMC Biochemistry, University of Uppsala, Uppsala 75237, Sweden
| | - Samee Ullah
- National Center for Bioinformatics (NCB), Islamabad 45320, Pakistan
| | - Milind M Gore
- 5/1B, Krutika Co-Op Housing Society, Kothrud, Pune 411039, India
| |
Collapse
|
44
|
Song W, Fang Z, Ma F, Li J, Huang Z, Zhang Y, Li J, Chen K. The role of SARS-CoV-2 N protein in diagnosis and vaccination in the context of emerging variants: present status and prospects. Front Microbiol 2023; 14:1217567. [PMID: 37675423 PMCID: PMC10478715 DOI: 10.3389/fmicb.2023.1217567] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/31/2023] [Indexed: 09/08/2023] Open
Abstract
Despite many countries rapidly revising their strategies to prevent contagions, the number of people infected with Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to surge. The emergent variants that can evade the immune response significantly affect the effectiveness of mainstream vaccines and diagnostic products based on the original spike protein. Therefore, it is essential to focus on the highly conserved nature of the nucleocapsid protein as a potential target in the field of vaccines and diagnostics. In this regard, our review initially discusses the structure, function, and mechanism of action of N protein. Based on this discussion, we summarize the relevant research on the in-depth development and application of diagnostic methods and vaccines based on N protein, such as serology and nucleic acid detection. Such valuable information can aid in designing more efficient diagnostic and vaccine tools that could help end the SARS-CoV-2 pandemic.
Collapse
Affiliation(s)
- Wanchen Song
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhongbiao Fang
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Feike Ma
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Jiaxuan Li
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Zhiwei Huang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yanjun Zhang
- Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Province, Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Jianhua Li
- Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Province, Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Keda Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| |
Collapse
|
45
|
Yue C, Wang P, Tian J, Gao GF, Liu K, Liu WJ. Seeing the T cell Immunity of SARS-CoV-2 and SARS-CoV: Believing the Epitope-Oriented Vaccines. Int J Biol Sci 2023; 19:4052-4060. [PMID: 37705735 PMCID: PMC10496500 DOI: 10.7150/ijbs.80468] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 07/07/2023] [Indexed: 09/15/2023] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at the end of 2019 stimulated vigorous research efforts in immunology and vaccinology. In addition to innate immune responses, both virus-specific humoral and cellular immune responses are of importance for viral clearance. T cell epitopes play a central role in T cell-based immune responses. Herein, we summarized the peptide/major histocompatibility complex (pMHC) structures of the SARS-CoV-2-derived T cell epitopes available in the Protein Data Bank (PDB) and proposed the challenge and opportunities for using of T cell epitopes in future vaccine development efforts. A total of 27 SARS-CoV-2 related pMHC structures and five complexes with T cell receptors were retrieved. The peptides are mainly distributed on spike (S), nucleocapsid (N), and ORF1ab proteins. Most peptides are conserved among variants of concerns (VOCs) for SARS-CoV-2, except for several mutated peptides located in the S protein. The structures of human leukocyte antigen (HLA) complexed with seven epitopes derived from SARS-CoV were also retrieved, which showed a potential cross T cell immunity with SARS-CoV-2. Structural studies of antigenic peptides from SARS-CoV-2 and SARS-CoV help to visualize the processes and the mechanisms of cross T cell immunity. T cell epitope-oriented vaccines are potential next-generation vaccines for SARS-CoV-2, which are worthy of further investigation.
Collapse
Affiliation(s)
- Can Yue
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences (CAS), Beijing, China
| | - Pengyan Wang
- Department of Pathogen Biology & Microbiology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jinmin Tian
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - George F. Gao
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Kefang Liu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - William J. Liu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| |
Collapse
|
46
|
Augusto DG, Murdolo LD, Chatzileontiadou DSM, Sabatino JJ, Yusufali T, Peyser ND, Butcher X, Kizer K, Guthrie K, Murray VW, Pae V, Sarvadhavabhatla S, Beltran F, Gill GS, Lynch KL, Yun C, Maguire CT, Peluso MJ, Hoh R, Henrich TJ, Deeks SG, Davidson M, Lu S, Goldberg SA, Kelly JD, Martin JN, Vierra-Green CA, Spellman SR, Langton DJ, Dewar-Oldis MJ, Smith C, Barnard PJ, Lee S, Marcus GM, Olgin JE, Pletcher MJ, Maiers M, Gras S, Hollenbach JA. A common allele of HLA is associated with asymptomatic SARS-CoV-2 infection. Nature 2023; 620:128-136. [PMID: 37468623 PMCID: PMC10396966 DOI: 10.1038/s41586-023-06331-x] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 06/15/2023] [Indexed: 07/21/2023]
Abstract
Studies have demonstrated that at least 20% of individuals infected with SARS-CoV-2 remain asymptomatic1-4. Although most global efforts have focused on severe illness in COVID-19, examining asymptomatic infection provides a unique opportunity to consider early immunological features that promote rapid viral clearance. Here, postulating that variation in the human leukocyte antigen (HLA) loci may underly processes mediating asymptomatic infection, we enrolled 29,947 individuals, for whom high-resolution HLA genotyping data were available, in a smartphone-based study designed to track COVID-19 symptoms and outcomes. Our discovery cohort (n = 1,428) comprised unvaccinated individuals who reported a positive test result for SARS-CoV-2. We tested for association of five HLA loci with disease course and identified a strong association between HLA-B*15:01 and asymptomatic infection, observed in two independent cohorts. Suggesting that this genetic association is due to pre-existing T cell immunity, we show that T cells from pre-pandemic samples from individuals carrying HLA-B*15:01 were reactive to the immunodominant SARS-CoV-2 S-derived peptide NQKLIANQF. The majority of the reactive T cells displayed a memory phenotype, were highly polyfunctional and were cross-reactive to a peptide derived from seasonal coronaviruses. The crystal structure of HLA-B*15:01-peptide complexes demonstrates that the peptides NQKLIANQF and NQKLIANAF (from OC43-CoV and HKU1-CoV) share a similar ability to be stabilized and presented by HLA-B*15:01. Finally, we show that the structural similarity of the peptides underpins T cell cross-reactivity of high-affinity public T cell receptors, providing the molecular basis for HLA-B*15:01-mediated pre-existing immunity.
Collapse
Affiliation(s)
- Danillo G Augusto
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC, USA
- Programa de Pós-Graduação em Genética, Universidade Federal do Paraná, Curitiba, Brazil
| | - Lawton D Murdolo
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Demetra S M Chatzileontiadou
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Joseph J Sabatino
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Tasneem Yusufali
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Noah D Peyser
- Division of Cardiology, Department of Medicine, University of California, San Francisco, CA, USA
| | - Xochitl Butcher
- Division of Cardiology, Department of Medicine, University of California, San Francisco, CA, USA
| | - Kerry Kizer
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Karoline Guthrie
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Victoria W Murray
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Vivian Pae
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Sannidhi Sarvadhavabhatla
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Fiona Beltran
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Gurjot S Gill
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Kara L Lynch
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Cassandra Yun
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Colin T Maguire
- Clinical and Translational Science Institute, University of Utah, Salt Lake City, UT, USA
| | - Michael J Peluso
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Rebecca Hoh
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Timothy J Henrich
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Steven G Deeks
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Michelle Davidson
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Scott Lu
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Sarah A Goldberg
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - J Daniel Kelly
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
- F.I. Proctor Foundation, University of California, San Francisco, CA, USA
| | - Jeffrey N Martin
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Cynthia A Vierra-Green
- CIBMTR (Center for International Blood and Marrow Transplant Research), National Marrow Donor Program/Be The Match, Minneapolis, MN, USA
| | - Stephen R Spellman
- CIBMTR (Center for International Blood and Marrow Transplant Research), National Marrow Donor Program/Be The Match, Minneapolis, MN, USA
| | | | - Michael J Dewar-Oldis
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Corey Smith
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development Brisbane, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Peter J Barnard
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Sulggi Lee
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Gregory M Marcus
- Division of Cardiology, Department of Medicine, University of California, San Francisco, CA, USA
| | - Jeffrey E Olgin
- Division of Cardiology, Department of Medicine, University of California, San Francisco, CA, USA
| | - Mark J Pletcher
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
- Division of General Internal Medicine, University of California, San Francisco, CA, USA
| | - Martin Maiers
- CIBMTR (Center for International Blood and Marrow Transplant Research), National Marrow Donor Program/Be The Match, Minneapolis, MN, USA
| | - Stephanie Gras
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jill A Hollenbach
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA.
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA.
| |
Collapse
|
47
|
Abdelaziz MO, Raftery MJ, Weihs J, Bielawski O, Edel R, Köppke J, Vladimirova D, Adler JM, Firsching T, Voß A, Gruber AD, Hummel LV, Fernandez Munoz I, Müller-Marquardt F, Willimsky G, Elleboudy NS, Trimpert J, Schönrich G. Early protective effect of a ("pan") coronavirus vaccine (PanCoVac) in Roborovski dwarf hamsters after single-low dose intranasal administration. Front Immunol 2023; 14:1166765. [PMID: 37520530 PMCID: PMC10372429 DOI: 10.3389/fimmu.2023.1166765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/19/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has highlighted the danger posed by human coronaviruses. Rapid emergence of immunoevasive variants and waning antiviral immunity decrease the effect of the currently available vaccines, which aim at induction of neutralizing antibodies. In contrast, T cells are marginally affected by antigen evolution although they represent the major mediators of virus control and vaccine protection against virus-induced disease. Materials and methods We generated a multi-epitope vaccine (PanCoVac) that encodes the conserved T cell epitopes from all structural proteins of coronaviruses. PanCoVac contains elements that facilitate efficient processing and presentation of PanCoVac-encoded T cell epitopes and can be uploaded to any available vaccine platform. For proof of principle, we cloned PanCoVac into a non-integrating lentivirus vector (NILV-PanCoVac). We chose Roborovski dwarf hamsters for a first step in evaluating PanCoVac in vivo. Unlike mice, they are naturally susceptible to SARS-CoV-2 infection. Moreover, Roborovski dwarf hamsters develop COVID-19-like disease after infection with SARS-CoV-2 enabling us to look at pathology and clinical symptoms. Results Using HLA-A*0201-restricted reporter T cells and U251 cells expressing a tagged version of PanCoVac, we confirmed in vitro that PanCoVac is processed and presented by HLA-A*0201. As mucosal immunity in the respiratory tract is crucial for protection against respiratory viruses such as SARS-CoV-2, we tested the protective effect of single-low dose of NILV-PanCoVac administered via the intranasal (i.n.) route in the Roborovski dwarf hamster model of COVID-19. After infection with ancestral SARS-CoV-2, animals immunized with a single-low dose of NILV-PanCoVac i.n. did not show symptoms and had significantly decreased viral loads in the lung tissue. This protective effect was observed in the early phase (2 days post infection) after challenge and was not dependent on neutralizing antibodies. Conclusion PanCoVac, a multi-epitope vaccine covering conserved T cell epitopes from all structural proteins of coronaviruses, might protect from severe disease caused by SARS-CoV-2 variants and future pathogenic coronaviruses. The use of (HLA-) humanized animal models will allow for further efficacy studies of PanCoVac-based vaccines in vivo.
Collapse
Affiliation(s)
- Mohammed O. Abdelaziz
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Martin J. Raftery
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Hematology, Oncology and Tumor Immunology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Julian Weihs
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Pediatrics, Division of Gastroenterology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Olivia Bielawski
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Richard Edel
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Julia Köppke
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Julia M. Adler
- Institute of Virology, Freie Universität Berlin, Berlin, Germany
| | - Theresa Firsching
- Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Anne Voß
- Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Achim D. Gruber
- Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Luca V. Hummel
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ivan Fernandez Munoz
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Francesca Müller-Marquardt
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Gerald Willimsky
- Institute of Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Research Center, Heidelberg, Germany
- German Cancer Consortium, Partner Site Berlin, Berlin, Germany
| | - Nooran S. Elleboudy
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Jakob Trimpert
- Institute of Virology, Freie Universität Berlin, Berlin, Germany
| | - Günther Schönrich
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
48
|
Becerra-Artiles A, Nanaware PP, Muneeruddin K, Weaver GC, Shaffer SA, Calvo-Calle JM, Stern LJ. Immunopeptidome profiling of human coronavirus OC43-infected cells identifies CD4 T-cell epitopes specific to seasonal coronaviruses or cross-reactive with SARS-CoV-2. PLoS Pathog 2023; 19:e1011032. [PMID: 37498934 PMCID: PMC10409285 DOI: 10.1371/journal.ppat.1011032] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 08/08/2023] [Accepted: 07/06/2023] [Indexed: 07/29/2023] Open
Abstract
Seasonal "common-cold" human coronaviruses are widely spread throughout the world and are mainly associated with mild upper respiratory tract infections. The emergence of highly pathogenic coronaviruses MERS-CoV, SARS-CoV, and most recently SARS-CoV-2 has prompted increased attention to coronavirus biology and immunopathology, but the T-cell response to seasonal coronaviruses remains largely uncharacterized. Here we report the repertoire of viral peptides that are naturally processed and presented upon infection of a model cell line with seasonal coronavirus OC43. We identified MHC-bound peptides derived from each of the viral structural proteins (spike, nucleoprotein, hemagglutinin-esterase, membrane, and envelope) as well as non-structural proteins nsp3, nsp5, nsp6, and nsp12. Eighty MHC-II bound peptides corresponding to 14 distinct OC43-derived epitopes were identified, including many at very high abundance within the overall MHC-II peptidome. Fewer and less abundant MHC-I bound OC43-derived peptides were observed, possibly due to MHC-I downregulation induced by OC43 infection. The MHC-II peptides elicited low-abundance recall T-cell responses in most donors tested. In vitro assays confirmed that the peptides were recognized by CD4+ T cells and identified the presenting HLA alleles. T-cell responses cross-reactive between OC43, SARS-CoV-2, and the other seasonal coronaviruses were confirmed in samples of peripheral blood and peptide-expanded T-cell lines. Among the validated epitopes, spike protein S903-917 presented by DPA1*01:03/DPB1*04:01 and S1085-1099 presented by DRB1*15:01 shared substantial homology to other human coronaviruses, including SARS-CoV-2, and were targeted by cross-reactive CD4 T cells. Nucleoprotein N54-68 and hemagglutinin-esterase HE128-142 presented by DRB1*15:01 and HE259-273 presented by DPA1*01:03/DPB1*04:01 are immunodominant epitopes with low coronavirus homology that are not cross-reactive with SARS-CoV-2. Overall, the set of naturally processed and presented OC43 epitopes comprise both OC43-specific and human coronavirus cross-reactive epitopes, which can be used to follow CD4 T-cell cross-reactivity after infection or vaccination, and to guide selection of epitopes for inclusion in pan-coronavirus vaccines.
Collapse
Affiliation(s)
- Aniuska Becerra-Artiles
- Department of Pathology, Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester Massachusetts, United States of America
| | - Padma P. Nanaware
- Department of Pathology, Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester Massachusetts, United States of America
| | - Khaja Muneeruddin
- Mass Spectrometry Facility, UMass Chan Medical School, Shrewsbury Massachusetts, United States of America
| | - Grant C. Weaver
- Department of Pathology, Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester Massachusetts, United States of America
| | - Scott A. Shaffer
- Mass Spectrometry Facility, UMass Chan Medical School, Shrewsbury Massachusetts, United States of America
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, Massachusetts, United States of America
| | - J. Mauricio Calvo-Calle
- Department of Pathology, Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester Massachusetts, United States of America
| | - Lawrence J. Stern
- Department of Pathology, Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester Massachusetts, United States of America
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
49
|
Chaudhary A, Madhavan R, Babji S, Raju R, Syed C, Kumar A, Saravanan P, Sharon Nikitha O, Leander Xavier JV, David Chelladurai JS, Deborah AA, George A, Kang G, Rose W. Characterization of immune responses to two and three doses of the adenoviral vectored vaccine ChAdOx1 nCov-19 and the whole virion inactivated vaccine BBV152 in a mix-and-match study in India. Vaccine 2023:S0264-410X(23)00744-2. [PMID: 37357073 PMCID: PMC10289125 DOI: 10.1016/j.vaccine.2023.06.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/27/2023]
Abstract
Infections with SARS-CoV-2 variants and declining immunity after primary vaccination, encouraged the use of booster doses. Some countries changed their immunization programmes to boost with vaccines different from the ones in their original schedule, based on results from immunogenicity and effectiveness studies. This study reports immunological analysis of samples collected in a phase 4 randomized trial, where participants who had previously received two primary doses of ChAdOx1 nCov-19 (ChAd) or inactivated BBV152 vaccine were randomized to receive either ChAd or BBV152 booster and further categorized as: Group 1 (two primary doses of ChAd - ChAd booster), Group 2 (two primary doses of ChAd - BBV152 booster), Group 3 (two primary doses of BBV152 - ChAd booster), and Group 4 (two primary doses of BBV152 - BBV152 booster). SARS-CoV-2 specific cellular and humoral responses at day 0 (pre-boost samples 12-36 weeks after the second primary dose), and at day 28 post booster, were measured in a subset of participants (ChAd recipients, n = 37 and BBV152 recipients, n = 36). Additionally, on day180 post-booster humoral responses were assessed for the entire cohort (N = 378). Primary vaccination with 2 doses of BBV152 generated higher memory-B cells (median% 0.41 vs 0.35) and cytokine producing CD8-Tcells (median% 0.09 vs 0.04) while lower anti-spike IgG levels (medianAU/ml: 12,433 vs 27,074) as compared to ChAd. Irrespective of the primary vaccine received, ChAd boosted individuals generated higher memory-B cell frequencies and anti-spike IgG levels as compared to BBV152 booster. The percentage ACE-2 inhibition against Omicron and its sub-variants was higher in Group 3 (median > 60 %) as compared to other groups (median < 25 %). At day180 post booster the hierarchy of the antibody amounts was Group 1 ∼ Group 2 ∼ Group 3 > Group 4. Sustained humoral and robust cellular immune response to SARS-CoV-2 can be obtained with ChAd booster irrespective of the primary vaccination regimen. The trial is registered with ISRTCN (CTRI/2021/08/035648).
Collapse
Affiliation(s)
- Anita Chaudhary
- The Wellcome Trust Research Laboratory, Christian Medical College, Vellore, India
| | - Ramya Madhavan
- The Wellcome Trust Research Laboratory, Christian Medical College, Vellore, India
| | - Sudhir Babji
- The Wellcome Trust Research Laboratory, Christian Medical College, Vellore, India
| | - Reshma Raju
- Department of Paediatrics, Christian Medical College, Vellore, India
| | - Chanduni Syed
- The Wellcome Trust Research Laboratory, Christian Medical College, Vellore, India
| | - Ajith Kumar
- The Wellcome Trust Research Laboratory, Christian Medical College, Vellore, India
| | - Poornima Saravanan
- The Wellcome Trust Research Laboratory, Christian Medical College, Vellore, India
| | | | | | | | | | - Anna George
- The Wellcome Trust Research Laboratory, Christian Medical College, Vellore, India
| | - Gagandeep Kang
- The Wellcome Trust Research Laboratory, Christian Medical College, Vellore, India
| | - Winsley Rose
- Department of Paediatrics, Christian Medical College, Vellore, India.
| |
Collapse
|
50
|
Tarke A, Zhang Y, Methot N, Narowski TM, Phillips E, Mallal S, Frazier A, Filaci G, Weiskopf D, Dan JM, Premkumar L, Scheuermann RH, Sette A, Grifoni A. Targets and cross-reactivity of human T cell recognition of common cold coronaviruses. Cell Rep Med 2023; 4:101088. [PMID: 37295422 PMCID: PMC10242702 DOI: 10.1016/j.xcrm.2023.101088] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/17/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023]
Abstract
The coronavirus (CoV) family includes several viruses infecting humans, highlighting the importance of exploring pan-CoV vaccine strategies to provide broad adaptive immune protection. We analyze T cell reactivity against representative Alpha (NL63) and Beta (OC43) common cold CoVs (CCCs) in pre-pandemic samples. S, N, M, and nsp3 antigens are immunodominant, as shown for severe acute respiratory syndrome 2 (SARS2), while nsp2 and nsp12 are Alpha or Beta specific. We further identify 78 OC43- and 87 NL63-specific epitopes, and, for a subset of those, we assess the T cell capability to cross-recognize sequences from representative viruses belonging to AlphaCoV, sarbecoCoV, and Beta-non-sarbecoCoV groups. We find T cell cross-reactivity within the Alpha and Beta groups, in 89% of the instances associated with sequence conservation >67%. However, despite conservation, limited cross-reactivity is observed for sarbecoCoV, indicating that previous CoV exposure is a contributing factor in determining cross-reactivity. Overall, these results provide critical insights in developing future pan-CoV vaccines.
Collapse
Affiliation(s)
- Alison Tarke
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Department of Experimental Medicine and Center of Excellence for Biomedical Research (CEBR), University of Genoa, 16132 Genoa, Italy
| | - Yun Zhang
- J. Craig Venter Institute, La Jolla, CA 92037, USA
| | - Nils Methot
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Tara M Narowski
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7290, USA
| | - Elizabeth Phillips
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA 6150, Australia
| | - Simon Mallal
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA 6150, Australia
| | - April Frazier
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Gilberto Filaci
- Center of Excellence for Biomedical Research, Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy; Biotherapy Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Jennifer M Dan
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Lakshmanane Premkumar
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7290, USA
| | - Richard H Scheuermann
- J. Craig Venter Institute, La Jolla, CA 92037, USA; Department of Pathology, University of California, San Diego (UCSD), La Jolla, CA 92037, USA.
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA.
| | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA.
| |
Collapse
|