1
|
Monsalve DM, Acosta-Ampudia Y, Acosta NG, Celis-Andrade M, Şahin A, Yilmaz AM, Shoenfeld Y, Ramírez-Santana C. NETosis: A key player in autoimmunity, COVID-19, and long COVID. J Transl Autoimmun 2025; 10:100280. [PMID: 40071133 PMCID: PMC11894324 DOI: 10.1016/j.jtauto.2025.100280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
NETosis, the process through which neutrophils release neutrophil extracellular traps (NETs), has emerged as a crucial mechanism in host defense and the pathogenesis of autoimmune responses. During the SARS-CoV-2 pandemic, this process received significant attention due to the central role of neutrophil recruitment and activation in infection control. However, elevated neutrophil levels and dysregulated NET formation have been linked to coagulopathy and endothelial damage, correlating with disease severity and poor prognosis in COVID-19. Moreover, it is known that SARS-CoV-2 can induce persistent low-grade systemic inflammation, known as long COVID, although the underlying causes remain unclear. It has been increasingly acknowledged that excessive NETosis and NET generation contribute to further pathophysiological abnormalities following SARS-CoV-2 infection. This review provides an updated overview of the role of NETosis in autoimmune diseases, but also the relationship between COVID-19 and long COVID with autoimmunity (e.g., latent and overt autoimmunity, molecular mimicry, epitope spreading) and NETosis (e.g., immune responses, NET markers). Finally, we discuss potential therapeutic strategies targeting dysregulated NETosis to mitigate the severe complications of COVID-19 and long COVID.
Collapse
Affiliation(s)
- Diana M. Monsalve
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Yeny Acosta-Ampudia
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Nicolás Guerrero Acosta
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Mariana Celis-Andrade
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Ali Şahin
- Selcuk University, Faculty of Medicine, Konya, Turkiye
| | - Ahsen Morva Yilmaz
- TUBITAK Marmara Research Center (TUBITAK-MAM), Life Sciences, Medical Biotechnology Unit, Kocaeli, Turkiye
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Reichman University, Herzelia, Israel
| | - Carolina Ramírez-Santana
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
2
|
Shen J, Lin H, Mo K, Liang Z, Zhang Y, Quan H, Wang X, Zhang C, Chen C. Bidirectional roles of neutrophil extracellular traps in oral microbiota carcinogenesis: A systematic review. Transl Oncol 2025; 56:102361. [PMID: 40239243 PMCID: PMC12022684 DOI: 10.1016/j.tranon.2025.102361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 03/12/2025] [Accepted: 03/16/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Neutrophil extracellular traps (NETs) are network structures composed of DNA, histones, and antimicrobial proteins,released by activated neutrophils to trap and eliminate extracellular pathogens. Recent research has demonstrated a strong correlation between NETs and various diseases, including immune dysregulation, thrombosis, and malignancies. This review synthesizes current research on NETs, focusing on its biological role in oral squamous cell carcinoma (OSCC) and explores its potential in treating. METHODS A literature review in the PubMed database was conducted to examine the impact of NETs on the homeostasis of oral microbiota and the involvement in the development of oral microbiota-related carcinogenesis. RESULTS Various microorganisms, including Porphyromonas gingivalis, Fusobacterium nucleatum, Streptococcus spp., along with Candida albicans, as well as certain viruses such as Human papillomavirus (HPV), Human herpes virus 8 (HHV-8), and Herpes simplex virus-1 (HSV-1)are regulated by NETs during oral colonization and proliferation and have been identified as contributors to the pathogenesis of oral squamous cell carcinoma. NETs have been shown to play a dual role in the carcinogenic process of oral microbiota in humans. At the initial stage of tumor formation, NETs inhibit tumorigenesis by eliminating tumorigenic bacteria that infiltrated the tumor; however, following tumor establishment, various cytokines and chemokines that promote tumor progression are released by neutrophils during the NETs formation. CONCLUSION This article reviews the oncogenic mechanisms of NETs in the oral microbiota, with potential implications for early tumor detection and the development of microbe-targeted therapies.
Collapse
Affiliation(s)
- Jie Shen
- Department of Head and Neck Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| | - Haitao Lin
- Department of Head and Neck Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Postgraduate training base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, 310022, China
| | - Kangnan Mo
- Department of Head and Neck Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| | - Zhong Liang
- Department of Head and Neck Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Yan Zhang
- Department of Head and Neck Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Huatao Quan
- Department of Head and Neck Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| | - Xing Wang
- Department of Head and Neck Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Chenping Zhang
- Department of Head and Neck Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| | - Chao Chen
- Department of Head and Neck Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| |
Collapse
|
3
|
Ye S, Ma L, Chi Y, Liu N, Liu Y, Wei W, Niu Y, Zheng P, Yu J, Hai D. Targeting neutrophil dysfunction in acute lung injury: Insights from active components of Chinese medicine. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156664. [PMID: 40121883 DOI: 10.1016/j.phymed.2025.156664] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/06/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUNDS Acute lung injury (ALI) is a lethal condition characterized by uncontrolled pulmonary inflammatory responses, with high morbidity and mortality rates that pose a significant threat to patient health. The persistent retention of neutrophils in lung tissue and subsequent inflammatory damage represents a primary mechanism underlying the early onset of ALI disorders. In recent years, pharmaceutical research targeting these pathological processes has garnered considerable attention. Traditional Chinese medicines (TCM) and their active ingredients, known for their safety and stability, show promising potential in treating ALI through their ability to modulate neutrophil function via multiple pathways. PURPOSE This review examines the mechanisms of neutrophil involvement in the pathogenesis of ALI, investigates potential therapeutic targets and pathways through which Chinese medicines and their active ingredients regulate neutrophil function, and provides a theoretical foundation for developing novel clinical treatment strategies. METHODS A comprehensive literature search was conducted using multiple databases, including Science Direct, PubMed, Google Scholar, and Web of Science. Search terms included 'lung injury,' 'acute lung injury,' 'inflammatory lung injury,' 'inflammation,' 'active ingredient,' 'herbal,' 'traditional Chinese medicine,' 'mechanism,' 'drug,' and 'neutrophils.' The selected literature was systematically categorized and analyzed. RESULTS Our review reveals that TCM and active ingredients influence neutrophil function through four primary mechanisms to impede ALI progression: 1) reduction of neutrophil-mediated uncontrolled inflammatory responses by suppressing neutrophil hyperactivation and inhibiting neutrophil migration and infiltration; 2) attenuation of lung tissue inflammatory damage by inhibiting neutrophil-produced cytotoxic substances, including elastase granules, neutrophil extracellular traps (NETs), and reactive oxygen species (ROS); 3) suppression of inflammatory responses by decreasing the secretion of neutrophil-derived cytokines, such as interleukin (IL) -1β, IL-6 and tumor necrosis factor-alpha (TNF-α); and 4) enhancement of neutrophil phagocytosis and accelerate the removal of apoptotic neutrophils to eliminate harmful pathogens and promote late-stage tissue repair. These findings demonstrate that Chinese medicines and their active ingredients exhibit significant therapeutic potential in ALI disorders through the modulation of neutrophil function, providing a robust theoretical framework for their clinical applications. CONCLUSION Traditional Chinese medicines and their active ingredients demonstrate significant anti-inflammatory efficacy through multiple mechanisms of neutrophil function regulation, showing considerable promise for the treatment of ALI with broad clinical applications.
Collapse
Affiliation(s)
- Saiya Ye
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Lin Ma
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Yinchuan 750004, China; Colaborative Innovation Center for Ningxia Characteristic Traditional Chinese Medicine by Ningxia Hui Autonomous Region & Education Ministry of P.R. China, Yinchuan 750004, China; Ningxia Characteristic Traditional Chinese Medicine Moder Engineering and Technique Research Center, Yinchuan 750004, China
| | - Yannan Chi
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Ning Liu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Yinchuan 750004, China; Colaborative Innovation Center for Ningxia Characteristic Traditional Chinese Medicine by Ningxia Hui Autonomous Region & Education Ministry of P.R. China, Yinchuan 750004, China; Ningxia Characteristic Traditional Chinese Medicine Moder Engineering and Technique Research Center, Yinchuan 750004, China; Ningxia Key Laboratory of Drug Development and Generic Drug Research, Yinchuan 750004, China
| | - Yue Liu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Yinchuan 750004, China; Colaborative Innovation Center for Ningxia Characteristic Traditional Chinese Medicine by Ningxia Hui Autonomous Region & Education Ministry of P.R. China, Yinchuan 750004, China; Ningxia Characteristic Traditional Chinese Medicine Moder Engineering and Technique Research Center, Yinchuan 750004, China
| | - Wei Wei
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Yinchuan 750004, China; Colaborative Innovation Center for Ningxia Characteristic Traditional Chinese Medicine by Ningxia Hui Autonomous Region & Education Ministry of P.R. China, Yinchuan 750004, China; Ningxia Characteristic Traditional Chinese Medicine Moder Engineering and Technique Research Center, Yinchuan 750004, China
| | - Yang Niu
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Ping Zheng
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Yinchuan 750004, China.
| | - Jianqiang Yu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Yinchuan 750004, China; Colaborative Innovation Center for Ningxia Characteristic Traditional Chinese Medicine by Ningxia Hui Autonomous Region & Education Ministry of P.R. China, Yinchuan 750004, China; Ningxia Characteristic Traditional Chinese Medicine Moder Engineering and Technique Research Center, Yinchuan 750004, China; Ningxia Key Laboratory of Drug Development and Generic Drug Research, Yinchuan 750004, China.
| | - Dongmei Hai
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Yinchuan 750004, China; Colaborative Innovation Center for Ningxia Characteristic Traditional Chinese Medicine by Ningxia Hui Autonomous Region & Education Ministry of P.R. China, Yinchuan 750004, China; Ningxia Characteristic Traditional Chinese Medicine Moder Engineering and Technique Research Center, Yinchuan 750004, China.
| |
Collapse
|
4
|
Yeung ST, Damani-Yokota P, Thannickal SA, Bartnicki E, Bernier ED, Barnett CR, Khairallah C, Duerr R, Noval MG, Segal LN, Stapleford KA, Khanna KM. Nerve- and airway-associated interstitial macrophages mitigate SARS-CoV-2 pathogenesis via type I interferon signaling. Immunity 2025; 58:1327-1342.e5. [PMID: 40286790 DOI: 10.1016/j.immuni.2025.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/27/2024] [Accepted: 04/02/2025] [Indexed: 04/29/2025]
Abstract
Despite vaccines, rapidly mutating viruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continue to threaten human health due to an impaired immunoregulatory pathway and a hyperactive immune response. Our understanding of the local immune mechanisms used by tissue-resident macrophages to safeguard the host from excessive inflammation during SARS-CoV-2 infection remains limited. Here, we found that nerve- and airway-associated interstitial macrophages (NAMs) are required to control mouse-adapted SARS-CoV-2 (MA-10) infection. Control mice restricted lung viral distribution and survived infection, whereas NAM depletion enhanced viral spread and inflammation and led to 100% mortality. Mechanistically, type I interferon receptor (IFNAR) signaling by NAMs was critical for limiting inflammation and viral spread, and IFNAR deficiency in CD169+ macrophages mirrored NAM-depleted outcomes and abrogated their expansion. These findings highlight the essential protective role of NAMs in regulating viral spread and inflammation, offering insights into SARS-CoV-2 pathogenesis and underscoring the importance of NAMs in mediating host immunity and disease tolerance.
Collapse
Affiliation(s)
- Stephen T Yeung
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Payal Damani-Yokota
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Sara A Thannickal
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Eric Bartnicki
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Eduardo D Bernier
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Clea R Barnett
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Camille Khairallah
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ralf Duerr
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Medicine, Vaccine Center, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Maria G Noval
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Leopoldo N Segal
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA; Department of Medicine, Division of Pulmonary and Critical Care Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Kenneth A Stapleford
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Kamal M Khanna
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA.
| |
Collapse
|
5
|
More KR, Devaraj A, Robledo-Avila FH, Partida-Sanchez S, Bakaletz LO, Goodman SD. High-mobility group protein B1 derived mutant peptide mB Box-97 inhibits the formation of neutrophil extracellular traps. Front Immunol 2025; 16:1565252. [PMID: 40342425 PMCID: PMC12059481 DOI: 10.3389/fimmu.2025.1565252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/31/2025] [Indexed: 05/11/2025] Open
Abstract
Introduction Neutrophil Extracellular Traps (NETs) are vital for innate immunity, playing a key role in controlling pathogen and biofilm proliferation. However, excessive NETosis is implicated in autoimmunity, inflammatory and neoplastic diseases, as well as thrombosis, stroke, and post-COVID-19 complications. Managing NETosis, therefore is a significant area of ongoing research. Herein, we have identified a peptide derived from HMGB1 that we have modified via a point mutation that is referred to as mB Box-97. In our recent study in a murine lung infection model, mB Box-97 was shown to be safe and effective at disrupting biofilms without eliciting an inflammatory response typically associated with HMGB1. Here we show that the lack of an inflammatory response of mB Box-97 is in part due to the inhibition of NETosis of which we investigated the mechanism of action. Methods mB Box-97's anti-NETosis activity was assessed using human neutrophils with known NET inducers PMA, LPS, or Ionomycin. Additionally, mB Box-97's binding to Protein Kinase C (PKC), in addition to downstream effects on NADPH oxidase (NOX) activation, Reactive Oxygen Species (ROS) generation and thereby NETosis were assessed. Results mB Box-97 significantly inhibited NETosis regardless of the type of induction pathway. Mechanistically, mB Box-97 inhibits PKC activity likely through direct binding and thereby reduced downstream activities including NOX activation, ROS production and NETosis. Conclusions mB Box-97 is a promising dual acting therapeutic candidate for managing NET-mediated pathologies and resolving biofilm infections. Our results reveal that PKC is a viable target for NETosis inhibition independent of NET inducer and worthy of further study. These findings pave the way for a novel class of therapeutics aimed at controlling excessive NETosis, potentially offering new treatments for a range of inflammatory and immune-related diseases.
Collapse
Affiliation(s)
- Kunal R. More
- Center for Microbe and Immunity Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Aishwarya Devaraj
- Center for Microbe and Immunity Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Frank H. Robledo-Avila
- Center for Microbe and Immunity Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Santiago Partida-Sanchez
- Center for Microbe and Immunity Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, College of Medicine, Ohio State University, Columbus, OH, United States
| | - Lauren O. Bakaletz
- Center for Microbe and Immunity Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, College of Medicine, Ohio State University, Columbus, OH, United States
| | - Steven D. Goodman
- Center for Microbe and Immunity Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, College of Medicine, Ohio State University, Columbus, OH, United States
| |
Collapse
|
6
|
Nie J, Zhou L, Tian W, Liu X, Yang L, Yang X, Zhang Y, Wei S, Wang DW, Wei J. Deep insight into cytokine storm: from pathogenesis to treatment. Signal Transduct Target Ther 2025; 10:112. [PMID: 40234407 PMCID: PMC12000524 DOI: 10.1038/s41392-025-02178-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/22/2024] [Accepted: 02/12/2025] [Indexed: 04/17/2025] Open
Abstract
Cytokine storm (CS) is a severe systemic inflammatory syndrome characterized by the excessive activation of immune cells and a significant increase in circulating levels of cytokines. This pathological process is implicated in the development of life-threatening conditions such as fulminant myocarditis (FM), acute respiratory distress syndrome (ARDS), primary or secondary hemophagocytic lymphohistiocytosis (HLH), cytokine release syndrome (CRS) associated with chimeric antigen receptor-modified T (CAR-T) therapy, and grade III to IV acute graft-versus-host disease following allogeneic hematopoietic stem cell transplantation. The significant involvement of the JAK-STAT pathway, Toll-like receptors, neutrophil extracellular traps, NLRP3 inflammasome, and other signaling pathways has been recognized in the pathogenesis of CS. Therapies targeting these pathways have been developed or are currently being investigated. While novel drugs have demonstrated promising therapeutic efficacy in mitigating CS, the overall mortality rate of CS resulting from underlying diseases remains high. In the clinical setting, the management of CS typically necessitates a multidisciplinary team strategy encompassing the removal of abnormal inflammatory or immune system activation, the preservation of vital organ function, the treatment of the underlying disease, and the provision of life supportive therapy. This review provides a comprehensive overview of the key signaling pathways and associated cytokines implicated in CS, elucidates the impact of dysregulated immune cell activation, and delineates the resultant organ injury associated with CS. In addition, we offer insights and current literature on the management of CS in cases of FM, ARDS, systemic inflammatory response syndrome, treatment-induced CRS, HLH, and other related conditions.
Collapse
Grants
- 82070217, 81873427 National Natural Science Foundation of China (National Science Foundation of China)
- 82100401 National Natural Science Foundation of China (National Science Foundation of China)
- 81772477, 81201848, 82473220 National Natural Science Foundation of China (National Science Foundation of China)
- 82330010,81630010,81790624 National Natural Science Foundation of China (National Science Foundation of China)
- National High Technology Research and Development Program of China, Grant number: 2021YFA1101500.
- The Hubei Provincial Natural Science Foundation (No.2024AFB050)
- Project of Shanxi Bethune Hospital, Grant Numbber: 2023xg02); Fundamental Research Program of Shanxi Province, Grant Numbber: 202303021211224
- The Key Scientific Research Project of COVID-19 Infection Emergency Treatment of Shanxi Bethune Hospital (2023xg01), 2023 COVID-19 Research Project of Shanxi Provincial Health Commission (No.2023XG001, No. 2023XG005), Four “Batches” Innovation Project of Invigorating Medical through Science and Technology of Shanxi Province (2023XM003), Cancer special Fund research project of Shanxi Bethune Hospital (No. 2020-ZL04), and External Expert Workshop Fund Program of Shanxi Provincial Health Commission(Proteomics Shanxi studio for Huanghe professor)
- Fundamental Research Program of Shanxi Province(No.202303021221192); 2023 COVID-19 Emergency Project of Shanxi Health Commission (Nos.2023XG001,2023XG005)
Collapse
Affiliation(s)
- Jiali Nie
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Ling Zhou
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Branch of National Clinical Research Center for Infectious Diseases, Wuhan Pulmonary Hospital (Wuhan Tuberculosis Prevention and Control Institute), Wuhan, China
| | - Weiwei Tian
- Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Xiansheng Liu
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Branch of National Clinical Research Center for Infectious Diseases, Wuhan Pulmonary Hospital (Wuhan Tuberculosis Prevention and Control Institute), Wuhan, China
- Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Liping Yang
- Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Xingcheng Yang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yicheng Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuang Wei
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Branch of National Clinical Research Center for Infectious Diseases, Wuhan Pulmonary Hospital (Wuhan Tuberculosis Prevention and Control Institute), Wuhan, China.
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China.
| | - Jia Wei
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
7
|
Tian Q, Guo H, Zhang M, Jiang K, Hu F, Xu Y, Wan L, Zhou X, Pan Y, Liu W, Jiang CY. NETs activate the GAS6-AXL-NLRP3 axis in macrophages to drive morphine tolerance. Cell Commun Signal 2025; 23:181. [PMID: 40217343 PMCID: PMC11992818 DOI: 10.1186/s12964-025-02181-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 03/28/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND The development of morphine tolerance presents a major clinical challenge in the effective management of severe pain. This study aims to explore the mechanisms underlying morphine tolerance from a novel perspective, with the ultimate goal of uncovering new insights and identifying promising therapeutic targets for its treatment. METHODS C57BL/6J mice were used in the tail-flick test to evaluate morphine tolerance. Neutrophils derived from mouse bone marrow were employed to investigate the mechanisms underlying morphine-induced NETs formation. Bone marrow-derived macrophages (BMDMs) were harvested from the femur and tibia to study the role of NETs-induced inflammation in analgesic tolerance. Proinflammatory cytokines were measured using Western blotting and real-time PCR. The levels of NETs and the TLR7/9-NLRP3-related signaling pathway were assessed through Western blotting, real-time PCR, and ELISA. Confocal laser scanning microscopy was utilized to visualize NETs in the dorsal root ganglion (DRG) and in cells. RESULTS Our experiments demonstrated that the levels of NETs in the plasma of patients using morphine for analgesia, as well as in morphine-tolerant animals, were significantly elevated. Genetic elimination of Pad4, neutrophil depletion, and treatment with DNase 1 and RNase A to disrupt NETs formation all effectively alleviated morphine tolerance. These findings indicate that NETs play a critical role in the development of morphine tolerance. Mechanistically, we discovered that morphine-induced NETs can be engulfed by macrophages through the GAS6-AXL axis, which subsequently triggers the activation of the TLR7/TLR9-mediated NLRP3 inflammasome, leading to significantly increased levels of IL-1β and IL-18, and ultimately contributing to tolerance. Deletion of Axl, Gas6, or Nlrp3 each significantly improved morphine tolerance. Furthermore, in the murine model, treatment with the IL-1 receptor antagonist anakinra and the IL-18 decoy receptor IL-18BP prevented the development of morphine tolerance. CONCLUSIONS This study identifies morphine-induced NETs as a key contributor to morphine tolerance, with the GAS6-AXL-TLR7/9 axis emerging as a potential therapeutic target. Strategies focused on disrupting NETs and modulating this axis may offer a promising approach to combat morphine tolerance.
Collapse
Affiliation(s)
- Qingyan Tian
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Haiyue Guo
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Mengyao Zhang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Kunmao Jiang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Fan Hu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Yan Xu
- Department of Pain, The First People's Hospital of Changzhou, Soochow University, Changzhou, Jiangsu, China
| | - Li Wan
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Xiaokai Zhou
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Jiangning District, Nanjing, Jiangsu, 210029, China
| | - Yinbing Pan
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Jiangning District, Nanjing, Jiangsu, 210029, China.
| | - Wentao Liu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| | - Chun-Yi Jiang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| |
Collapse
|
8
|
Chen Y, Mao R, Chang Q, Yuan Y, Zhang H, Li F. A causal effects of neutrophil extracellular traps and its biomarkers on acute respiratory distress syndrome: a two-sample Mendelian randomization study. Sci Rep 2025; 15:11995. [PMID: 40199908 PMCID: PMC11978891 DOI: 10.1038/s41598-025-95676-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 03/24/2025] [Indexed: 04/10/2025] Open
Abstract
Previous studies have indicated an association between neutrophil extracellular traps (NETs) and acute respiratory distress syndrome (ARDS). This study aimed to investigate the potential causal effects of NETs and NETs-related biomarkers on ARDS or vice-versa. A two-sample Mendelian randomization (MR) utilizing genome-wide association studies (GWAS) data was employed to analyze the causality. The primary analysis was conducted using inverse-variance weighted (IVW) methods; weighted median, MR-Egger, and weighted model methods were used to validate the results. Horizontal pleiotropy and outlier detection were assessed via MR-Egger and MR pleiotropy residual sum and outlier (MR-PRESSO), respectively; Cochran's Q test evaluated heterogeneity, while Leave-one-out analyses were used to evaluate the presence of predominant instrumental variables (IVs). IVW method suggested causal associations between genetically predicted IL-13 and a higher risk of ARDS [OR (95%CI) = 1.52 (1.03-2.23), P = 0.047], while there was no causal effect of other factors on ARDS (all P > 0.05). Also, ARDS had no effect on NETs and NETs-related biomarkers (all P > 0.05). Cochran's Q confirmed no significant heterogeneity. MR-Egger regression ruled out horizontal pleiotropy's influence, and MR-PRESSO analysis identified no outliers, reinforcing the study's findings. This MR study established a causal relationship between IL-13 and ARDS, suggesting its potential role as a therapeutic target and biomarker of ARDS. Future work should delve into the underlying mechanisms and clinical applications.
Collapse
Affiliation(s)
- Yuqing Chen
- Department of Respiratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Ruolin Mao
- Department of Respiratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Qing Chang
- Department of Respiratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Yueyang Yuan
- School of Mechanical and Electrical Engineering, Hu Nan City University, Yiyang, 413099, China
| | - Hai Zhang
- Department of Respiratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Feng Li
- Department of Respiratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| |
Collapse
|
9
|
Smykiewicz J, Tomasiuk R, Cemaga R, Buczkowski J, Maciejczyk M. Association of inflammation and protein carbamylation in patients with COVID-19. Front Med (Lausanne) 2025; 12:1561670. [PMID: 40241896 PMCID: PMC11999942 DOI: 10.3389/fmed.2025.1561670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 03/18/2025] [Indexed: 04/18/2025] Open
Abstract
Introduction Carbamylation involves the non-enzymatic binding of isocyanic acid to the amino groups of proteins, making it associated with many pathological conditions, including inflammation, aging, arteriosclerosis, and renal failure. However, there are no data on protein carbamylation in patients with COVID-19. Our study is the first to evaluate the association between blood inflammation and protein carbamylation in patients who died from COVID-19 compared to COVID-19 survivors. Methods The study included 50 patients admitted to Dr. Tytus Chałubiński Specialist Hospital in Radom, Poland. Twenty-five of them were COVID-19 survivors (15 men, 10 women), and 25 were COVID-19 deceased patients (15 men, 10 women). The number of subjects was based on a pilot study assuming a significance level of 0.05 and a test power of 0.8. Plasma/serum samples were assayed for carbamyl-lysine (CBL) and inflammatory biomarkers (CRP, procalcitonin, D-dimer, IL-6, and WBC). The concentration of CBL was measured using an enzyme-linked immunosorbent assay (ELISA). Statistical analysis was performed using the Mann-Whitney U test and Spearman rank correlation. Receiver Operating Characteristic (ROC) analysis was used to assess the diagnostic utility of serum CBL. Results Serum CBL levels were significantly higher in patients who died from COVID-19 compared to COVID-19 survivors (p = 0.0011). There was a positive correlation of serum CBL with IL-6, D-dimer, and WBC. Serum CBL levels >101 ng/mL, with moderate sensitivity and specificity, differentiate COVID-19 deceased from recovered patients (area under the curve 0.76). Discussion In conclusion, COVID-19 is associated with excessive protein carbamylation. Inflammation may be a source of higher CBL production in COVID-19. A thorough understanding of the consequences of increased protein carbamylation may clarify the consequences of COVID-19 complications.
Collapse
Affiliation(s)
| | - Ryszard Tomasiuk
- Faculty of Medical Sciences and Health Sciences, Casimir Pulaski University of Radom, Radom, Poland
| | - Roman Cemaga
- Students’ Scientific Club “Biochemistry of Civilization Diseases” at the Department of Hygiene, Epidemiology and Ergonomics, Medical University of Białystok, Białystok, Poland
| | - Jakub Buczkowski
- Faculty of Medical Sciences and Health Sciences, Casimir Pulaski University of Radom, Radom, Poland
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
10
|
Khan MAS, Song BJ, Wang X, Iqbal S, Szabo G, Chang SL. Neutrophil extracellular traps (NETs) and NETosis in alcohol-associated diseases: A systematic review. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2025; 49:697-711. [PMID: 40091149 DOI: 10.1111/acer.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/03/2025] [Indexed: 03/19/2025]
Abstract
Heavy alcohol consumption is implicated in the alteration of the antimicrobial function of neutrophils, such as phagocytosis, chemotaxis, the formation of neutrophil extracellular traps (NETs), and the occurrence of NETosis. NETosis is an endogenous process of elimination of invading microbes, autoantibodies, and inflammatory elements such as danger-associated molecular patterns (DAMPs) and pathogen-associated patterns (PAMPs). However, both exaggeration and suppression of NETosis modulate normal physiological and metabolic processes by influencing events at the molecular and cellular levels. Recent research shows that binge alcohol consumption induces NETosis, leading to tissue damage and inflammation. Binge alcohol consumption, chronic alcohol intake, and alcohol use disorder (AUD) can affect immunity and often lead to alcohol-associated liver disease (ALD) and/or other organ damage. Alcohol can lead to detrimental consequences in multiple organs, including the brain, liver, pancreas, and gut. Gut-derived microbial substances, such as endotoxins in the circulation, induce systemic inflammation. Sterile danger signals from damaged cells, cytokines, and prostaglandins act as proinflammatory stimuli and are involved in multiple signaling pathways. The alcohol-induced proinflammatory cytokines chemoattract neutrophils, which interact and coordinate with other immune cells to exaggerate or suppress inflammation within the inflammatory milieu, depending on the alcohol effects. Several proteins, including different receptors, play important roles in the activation and formation of NETs as well as the initiation and execution of NETosis. This review article specifically gathers the current information on NETosis, its biological components, and signaling pathways relating to the formation of NETs and the occurrence of NETosis associated with ALD and AUD in multiorgans, specifically in the brain, liver, and gut. We also briefly describe various therapeutic strategies against AUD-associated NETosis in experimental models and human disease states.
Collapse
Affiliation(s)
- Mohammed A S Khan
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Institute of NeuroImmune Pharmacology and Department of Biological Sciences, Seton Hall University, South Orange, New Jersey, USA
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Shams Iqbal
- Department of Interventional Radiology and Center for System Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Gyongyi Szabo
- Department of Medicine, Harvard Medical School, Beth Israel Lahey Health and Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Sulie L Chang
- Institute of NeuroImmune Pharmacology and Department of Biological Sciences, Seton Hall University, South Orange, New Jersey, USA
| |
Collapse
|
11
|
Shin Y, Bae H, Lee C, Rhee I. The dynamic roles of macrophages extracellular traps (METs) in immune regulation. Arch Pharm Res 2025; 48:293-304. [PMID: 40186802 DOI: 10.1007/s12272-025-01540-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/27/2025] [Indexed: 04/07/2025]
Abstract
Macrophages are crucial to innate immunity, eliminating pathogens and damaged tissues through phagocytosis and modulating immune responses. Recently, macrophage extracellular traps (METs) have been identified as chromatin-based structures composed of DNA and various immune-related proteins. While METs play a defensive role in trapping and neutralizing pathogens, they are also implicated in disease pathology, contributing to chronic inflammation, tissue damage, and immune dysregulation. The precise mechanisms regulating MET formation are still under investigation, but emerging evidence indicates the involvement of various regulatory factors. Dysregulated MET activity has been associated with various diseases, including autoimmune disorders, cancer, and neurological conditions. A deeper understanding of MET mechanisms and their pathological impact may offer novel therapeutic strategies. Given the limited number of reviews and articles on METs, this review provides valuable insights into MET formation, regulatory pathways, and their role in disease progression.
Collapse
Affiliation(s)
- Yunjin Shin
- Department of Bioscience and Biotechnology, Sejong University, Seoul, Korea
| | - Hanyoung Bae
- Department of Bioscience and Biotechnology, Sejong University, Seoul, Korea
| | - Chaelin Lee
- Department of Bioscience and Biotechnology, Sejong University, Seoul, Korea
| | - Inmoo Rhee
- Department of Bioscience and Biotechnology, Sejong University, Seoul, Korea.
| |
Collapse
|
12
|
Hiti L, Markovič T, Lainscak M, Farkaš Lainščak J, Pal E, Mlinarič-Raščan I. The immunopathogenesis of a cytokine storm: The key mechanisms underlying severe COVID-19. Cytokine Growth Factor Rev 2025; 82:1-17. [PMID: 39884914 DOI: 10.1016/j.cytogfr.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/18/2024] [Accepted: 12/26/2024] [Indexed: 02/01/2025]
Abstract
A cytokine storm is marked by excessive pro-inflammatory cytokine release, and has emerged as a key factor in severe COVID-19 cases - making it a critical therapeutic target. However, its pathophysiology was poorly understood, which hindered effective treatment. SARS-CoV-2 initially disrupts angiotensin signalling, promoting inflammation through ACE-2 downregulation. Some patients' immune systems then fail to shift from innate to adaptive immunity, suppressing interferon responses and leading to excessive pyroptosis and neutrophil activation. This amplifies tissue damage and inflammation, creating a pro-inflammatory loop. The result is the disruption of Th1/Th2 and Th17/Treg balances, lymphocyte exhaustion, and extensive blood clotting. Cytokine storm treatments include glucocorticoids to suppress the immune system, monoclonal antibodies to neutralize specific cytokines, and JAK inhibitors to block cytokine receptor signalling. However, the most effective treatment options for mitigating SARS-CoV-2 infection remain vaccines as a preventive measure and antiviral drugs for the early stages of infection. This article synthesizes insights into immune dysregulation in COVID-19, offering a framework to better understand cytokine storms and to improve monitoring, biomarker discovery, and treatment strategies for COVID-19 and other conditions involving cytokine storms.
Collapse
Affiliation(s)
- Luka Hiti
- Faculty of Pharmacy, University of Ljubljana, Slovenia
| | | | - Mitja Lainscak
- General Hospital Murska Sobota, Slovenia; Faculty of Medicine, University of Ljubljana, Slovenia
| | | | - Emil Pal
- General Hospital Murska Sobota, Slovenia
| | | |
Collapse
|
13
|
Li Y, Jiao J, Qiao H, Wang C, Li L, Jin F, Ye D, Chen Y, Zhang Q, Li M, Zhao Z, Zhang J, Wang L. Aromatic Molecular Compatibility Attenuates Influenza Virus-Induced Acute Lung Injury via the Lung-Gut Axis and Lipid Droplet Modulation. Pharmaceuticals (Basel) 2025; 18:468. [PMID: 40283905 PMCID: PMC12030469 DOI: 10.3390/ph18040468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 03/19/2025] [Accepted: 03/24/2025] [Indexed: 04/29/2025] Open
Abstract
Background: Acute lung injury (ALI) is a major cause of death in patients with various viral pneumonias. Our team previously identified four volatile compounds from aromatic Chinese medicines. Based on molecular compatibility theory, we defined their combination as aromatic molecular compatibility (AC), though its therapeutic effects and underlying mechanisms remain unclear. Methods: This study used influenza A virus (IAV) A/PR/8/34 to construct cell and mouse models of ALI to explore AC's protective effects against viral infection. The therapeutic effect of AC was verified by evaluating the antiviral efficacy in the mouse models, including improvements in their lung and colon inflammation, oxidative stress, and the suppression of the NLRP3 inflammasome. In addition, 16S rDNA and lipid metabolomics were used to analyze the potential therapeutic mechanisms of AC. Results: Our in vitro and in vivo studies demonstrated that AC increased the survival of the IAV-infected cells and mice, inhibited influenza virus replication and the expression of proinflammatory factors in the lung tissues, and ameliorated barrier damage in the colonic tissues. In addition, AC inhibited the expression of ROS and the NLRP3 inflammasome and improved the inflammatory cell infiltration into the lung tissues. Finally, AC effectively regulated intestinal flora disorders and lipid metabolism in the model mice, significantly reduced cholesterol and triglyceride expression, and thus reduced the abnormal accumulation of lipid droplets (LDs) after IAV infection. Conclusions: In this study, we demonstrated that AC could treat IAV-induced ALIs through multiple pathways, including antiviral and anti-inflammatory pathways and modulation of the intestinal flora and the accumulation of LDs.
Collapse
Affiliation(s)
- Yi Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (Y.L.)
| | - Jiakang Jiao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102401, China
| | - Haoyi Qiao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (Y.L.)
| | - Conghui Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (Y.L.)
| | - Linze Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (Y.L.)
| | - Fengyu Jin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (Y.L.)
| | - Danni Ye
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (Y.L.)
| | - Yawen Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (Y.L.)
| | - Qi Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (Y.L.)
| | - Min Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Zhongpeng Zhao
- Beijing Minhai Biotechnology Co., Ltd., Beijing 102600, China
| | - Jianjun Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102401, China
| | - Linyuan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (Y.L.)
| |
Collapse
|
14
|
Šutković J. Neutrophils and COVID-19. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2025; 213:347-384. [PMID: 40246349 DOI: 10.1016/bs.pmbts.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
Neutrophils are the first line of defense against pathogens, most effectively by forming Neutrophil Extracellular Traps (NETs). Neutrophiles are further classified into several subpopulations during their development, eliminating pathogens through various mechanisms. However, due to the chaotic and uncontrolled immune response, NETs are often severely resulting in tissue damage and lung infections. The uncontrolled and poorly acknowledged host response regarding the cytokine storm is one of the major causes of severe COVID-19 conditions. Specifically, the increased formation of low-density neutrophils (LDNs), together with neutrophil extracellular traps (NETs) is closely linked with the severity and poor prognosis in patients with COVID-19. In this review, we discuss in detail the ontogeny of neutrophils at different stages and their recruitment and activation after infections, focusing on SARS-CoV-2. In addition, this chapter summarized the research progress on potential targeted drugs (NETs and Cytokine inhibitors) for neutrophil medical therapy and hoped to provide reference for the development of related therapeutic drugs for critically ill COVID-19 patients.
Collapse
Affiliation(s)
- Jasmin Šutković
- Department Genetics and Bioegnineering, International University of Sarajevo, Hrasnička cesta, Bosnia & Herzegovina.
| |
Collapse
|
15
|
Serrano-Gonzalo I, Menéndez-Jandula B, Franco-García E, Arévalo-Vargas I, Lahoz-Gil C, Latre P, Roca-Esteve S, Köhler R, López de Frutos L, Giraldo P. Neutrophil extracellular traps and macrophage activation contibute to thrombosis and post-covid syndrome in SARS-CoV-2 infection. Front Immunol 2025; 16:1507167. [PMID: 40066452 PMCID: PMC11891236 DOI: 10.3389/fimmu.2025.1507167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 02/04/2025] [Indexed: 05/13/2025] Open
Abstract
Background SARS-CoV-2 infection activates macrophages and induces the release of neutrophil extracellular traps (NETs). Excess NETs is linked to inflammatory and thrombotic complications observed in COVID-19. Aim To explore the impact of NETs and macrophage activation on SARS-CoV-2-infected patients who developed complications. Methods We included 30 patients from the first (March 2020) and 30 from the second wave (July 2021), collecting two plasma samples at diagnosis and seven days later. Data on demographics, comorbidities, and basic analytical data were compiled. NETs markers (myeloperoxidase (MPO), neutrophil elastase (NE), p-selectin (P-SEL) and S100A8/S100A9 heterodimer (MRP)) and macrophage activation markers (Chitotriosidase activity (ChT), CCL18/PARC and YKL-40) were measured. Results The first wave had higher incidences of post-COVID syndrome, ICU admissions, and mortality. Patients of each wave showed elevated blood cells, liver enzymes, and coagulation markers at the time of diagnosis, with fibrinogen and D-Dimer differing between waves. NET and macrophage markers, NE, MPO, MRP, DNAse, ChT, and CCL18 were elevated, while P-SEL, cfDNA, and YKL-40 were decreased if compared to controls. A decrease in NE and DNAse is a link to lower levels of these two markers in complications versus without complications. Conclusions This study emonstrates alterations in NETs and macrophage activation markers in COVID-19 patients, indicating an imbalance in inflammatory response regulation.
Collapse
Affiliation(s)
- Irene Serrano-Gonzalo
- Fundación Española para el Estudio y Terapéutica de la Enfermedad de Gaucher y otras lisosomales (FEETEG), Zaragoza, Spain
- Grupo de Investigación Mecanismos de Enfermedad Crónica e Investigación Traslacional (MECIT), Zaragoza, Spain
- Grupo Estudio de Enfermedades de Depósito Lisosomal (GEEDL), Sociedad Española de Hematología y Hemoterapia (SEHH), Zaragoza, Spain
- Grupo de Investigación en Enfermedad de Gaucher (GIIS-012), Instituto de Investigación Sanitaria Aragón, Zaragoza, Spain
| | | | - Esther Franco-García
- Grupo de Investigación Mecanismos de Enfermedad Crónica e Investigación Traslacional (MECIT), Zaragoza, Spain
- Grupo Estudio de Enfermedades de Depósito Lisosomal (GEEDL), Sociedad Española de Hematología y Hemoterapia (SEHH), Zaragoza, Spain
- Servicio de Hematología, Hospital Ntra Sra de Gracia, Zaragoza, Spain
| | - Isidro Arévalo-Vargas
- Fundación Española para el Estudio y Terapéutica de la Enfermedad de Gaucher y otras lisosomales (FEETEG), Zaragoza, Spain
- Grupo de Investigación Mecanismos de Enfermedad Crónica e Investigación Traslacional (MECIT), Zaragoza, Spain
- Grupo de Investigación en Enfermedad de Gaucher (GIIS-012), Instituto de Investigación Sanitaria Aragón, Zaragoza, Spain
| | - Calos Lahoz-Gil
- Fundación Española para el Estudio y Terapéutica de la Enfermedad de Gaucher y otras lisosomales (FEETEG), Zaragoza, Spain
| | - Paz Latre
- Fundación Española para el Estudio y Terapéutica de la Enfermedad de Gaucher y otras lisosomales (FEETEG), Zaragoza, Spain
- Medicina de Familia, Servicio de Atención primaria., Zaragoza, Spain
| | - Sonia Roca-Esteve
- Fundación Española para el Estudio y Terapéutica de la Enfermedad de Gaucher y otras lisosomales (FEETEG), Zaragoza, Spain
| | - Ralf Köhler
- Grupo de Investigación Mecanismos de Enfermedad Crónica e Investigación Traslacional (MECIT), Zaragoza, Spain
- Grupo de Investigación en Enfermedad de Gaucher (GIIS-012), Instituto de Investigación Sanitaria Aragón, Zaragoza, Spain
- Fundación Aragonesa para la Investigación y el Desarrollo (ARAID), Zaragoza, Spain
| | - Laura López de Frutos
- Fundación Española para el Estudio y Terapéutica de la Enfermedad de Gaucher y otras lisosomales (FEETEG), Zaragoza, Spain
- Grupo Estudio de Enfermedades de Depósito Lisosomal (GEEDL), Sociedad Española de Hematología y Hemoterapia (SEHH), Zaragoza, Spain
| | - Pilar Giraldo
- Fundación Española para el Estudio y Terapéutica de la Enfermedad de Gaucher y otras lisosomales (FEETEG), Zaragoza, Spain
- Grupo de Investigación Mecanismos de Enfermedad Crónica e Investigación Traslacional (MECIT), Zaragoza, Spain
- Grupo Estudio de Enfermedades de Depósito Lisosomal (GEEDL), Sociedad Española de Hematología y Hemoterapia (SEHH), Zaragoza, Spain
- Grupo de Investigación en Enfermedad de Gaucher (GIIS-012), Instituto de Investigación Sanitaria Aragón, Zaragoza, Spain
- Servicio de Hematología, Hospital QuironSalud, Zaragoza, Spain
| |
Collapse
|
16
|
Fraser DD, Roy S, Kuruc M, Quintero M, Van Nynatten LR, Cepinskas G, Zheng H, Soherwardy A, Roy D. Functional mass spectrometry indicates anti-protease and complement activity increase with COVID-19 severity. Exp Biol Med (Maywood) 2025; 250:10308. [PMID: 39949890 PMCID: PMC11813650 DOI: 10.3389/ebm.2025.10308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 01/14/2025] [Indexed: 02/16/2025] Open
Abstract
Investigations on some innate immunity proteins can yield misleading information, as investigators often rely on static measurements and assume a direct correlation to function. As protein function is often not directly proportional to protein abundance, and mechanistic pathways are interconnected and under constant feedback regulatory control, functional analysis is required. In this study, we used functional mass spectrometry to measure anti-protease and complement activity in plasma obtained from coronavirus disease 2019 (COVID-19) patients. Our data suggests that within 48 h of hospital admission, COVID-19 patients undergo a protease storm with significantly elevated neutrophil elastase (p < 0.001) and lymphocyte granzyme B (p < 0.01), while, anti-protease activity is significantly increased, including alpha-1 antitrypsin (AAT; p < 0.001) and alpha-1-antichymotrypsin (ACT; p < 0.001). Concurrently, the ratio of C3a to C3beta activity significantly decreased with increasing COVID-19 severity, suggesting more complement activation (Mild COVID-19 p < 0.05; Severe COVID-19 p < 0.001). Activity levels of AAT, ACT and C3a/C3beta remained unchanged over 10 hospital days. Our data suggests that COVID-19 is associated with both a protease storm and complement activation, with the former somewhat balanced with increased anti-protease activity. Evaluation of the AAT/ACT ratio and C3a/C3beta ratio indicated that COVID-19 severity is associated with both neutrophil elastase neutralization and complement activation.
Collapse
Affiliation(s)
- Douglas D. Fraser
- London Health Sciences Centre Research Institute, London, ON, Canada
- Pediatrics, Western University, London, ON, Canada
| | - Swapan Roy
- Biotech Support Group LLC, Monmouth Junction, NJ, United States
| | - Matt Kuruc
- Biotech Support Group LLC, Monmouth Junction, NJ, United States
| | | | | | - Gediminas Cepinskas
- London Health Sciences Centre Research Institute, London, ON, Canada
- Medical Biophysics, Western University, London, ON, Canada
| | - Haiyan Zheng
- Rutgers Center for Integrative Proteomics, Rutgers University, Piscataway, NJ, United States
| | - Amenah Soherwardy
- Rutgers Center for Integrative Proteomics, Rutgers University, Piscataway, NJ, United States
| | - Devjit Roy
- Nathan Littauer Hospital, Gloversville, NY, United States
| |
Collapse
|
17
|
Li Y, Zhao J, Wei J, Zhang Y, Zhang H, Li Y, Liao T, Hu Y, Yuan B, Zhang X, Liu W, Liu C, Cui Q, Wu S, Jiang H, Liu W, Liu W, Xu H, Li G, Cai Y, Chen L, Chen B, Zhang D. Neutrophil elastase inhibitor (Sivelestat) in the treatment of acute respiratory distress syndrome induced by COVID-19: a multicenter retrospective cohort study. Respir Res 2025; 26:28. [PMID: 39827089 PMCID: PMC11743030 DOI: 10.1186/s12931-025-03100-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 01/04/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Recent studies suggest that neutrophil elastase inhibitor (Sivelestat) may improve pulmonary function and reduce mortality in patients with acute respiratory distress syndrome. We examined the association between receipt of sivelestat and improvement in oxygenation among patients with acute respiratory distress syndrome (ARDS) induced by COVID-19. METHODS A large multicentre cohort study of patients with ARDS induced by COVID-19 who had been admitted to intensive care units (ICUs). We used propensity score matching to compare the outcomes of patients treated with sivelestat to those who were not. The differences in continuous outcomes were assessed with the Wilcoxon signed-rank test. Kaplan-Meier method was used to show the 28-day survival curves in the matched cohorts. A log-rank P-test stratified on the matched pairs was used to test the equality of the estimated survival curves. A Cox proportional hazards model that incorporated a robust sandwich-type variance estimator to account for the matched nature of the data was used to estimate hazard ratios (HR). All statistical analyses were performed with SPSS 26.0 and R 4.2.3. A two-sided p-value of < 0.05 was considered statistically significant. RESULTS A total of 387 patients met inclusion criteria, including 259 patients (66.9%) who were treated with sivelestat. In 158 patients matched on the propensity for treatment, receipt of sivelestat was associated with improved oxygenation, decreased Murray lung injury score, increased non-mechanical ventilation time within 28 days, increased alive and ICU-free days within 28 days (HR, 1.85; 95% CI 1.29 to 2.64; log-rank p < 0.001), shortened ICU stay and ultimately improved survival (HR, 2.78; 95% CI 1.32 to 5.88; log-rank p = 0.0074). CONCLUSIONS Among patients with ARDS induce by COVID-19, sivelestat administration is associated with improved clinical outcomes.
Collapse
Affiliation(s)
- Yuting Li
- Department of Critical Care Medicine, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Jianjun Zhao
- Respiratory Intensive Care Unit, Sino-Japanese Friendship Hospital of Jilin Province, Changchun, 130033, Jilin, China
| | - Jiahui Wei
- Respiratory Intensive Care Unit, Sino-Japanese Friendship Hospital of Jilin Province, Changchun, 130033, Jilin, China
| | - Yanhong Zhang
- Emergency Department, Jilin Province People's Hospital, Changchun, 130021, Jilin, China
| | - Haitao Zhang
- Department of Critical Care Medicine, Jilin Province People's Hospital, Changchun, 130021, Jilin, China
| | - Ying Li
- Department of Critical Care Medicine, Tonghua People's Hospital, Tonghua, 134001, Jilin, China
| | - Ting Liao
- Department of Critical Care Medicine, Tonghua People's Hospital, Tonghua, 134001, Jilin, China
| | - Yang Hu
- Department of Critical Care Medicine, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130118, Jilin, China
| | - Bo Yuan
- Respiratory Intensive Care Unit, Siping City Central People's Hospital, Siping, 136099, Jilin, China
| | - Xinmei Zhang
- Department of Critical Care Medicine, Siping City Central People's Hospital, Siping, 136099, Jilin, China
| | - Wanyan Liu
- Department of Critical Care Medicine, Jilin Hospital of Integrative Chinese and Western Medicine, Jilin, 132012, Jilin, China
| | - Changgang Liu
- Department of Critical Care Medicine, Tonghua Central Hospital, Tonghua, 134099, Jilin, China
| | - Qingsong Cui
- Department of Critical Care Medicine, Yanbian University Affiliated Hospital, Yanji, 133099, Jilin, China
| | - Shunzi Wu
- Department of Critical Care Medicine, People's Hospital of Hunchun City, Hunchun, 133399, Jilin, China
| | - Hongmei Jiang
- Department of Critical Care Medicine, Baicheng City Hospital, Baicheng, 137099, Jilin, China
| | - Wenge Liu
- Department of Critical Care Medicine, Jilin City Central Hospital, Jilin, 132011, Jilin, China
| | - Weiheng Liu
- Department of Critical Care Medicine, Jilin City Central Hospital, Jilin, 132011, Jilin, China
| | - Hongguang Xu
- Department of Critical Care Medicine, Jilin City Central Hospital, Jilin, 132011, Jilin, China
| | - Gang Li
- Department of Critical Care Medicine, Changchun Central Hospital, Changchun, 130041, Jilin, China
| | - Yuyan Cai
- Department of Critical Care Medicine, Jilin City People's Hospital, Jilin, 132001, Jilin, China
| | - Liting Chen
- Respiratory Intensive Care Unit, Jilin City People's Hospital, Jilin, 132001, Jilin, China
| | - Bingwei Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Dong Zhang
- Department of Critical Care Medicine, The First Hospital of Jilin University, Changchun, 130021, Jilin, China.
| |
Collapse
|
18
|
Jarzebska N, Rodionov RN, Voit-Bak K, Straube R, Mücke A, Tselmin S, Rettig R, Julius U, Siow R, Gräßler J, Passauer J, Kok Y, Mavberg P, Weiss N, Bornstein SR, Aswani A. Neutrophil Extracellular Traps (NETs) as a Potential Target for Anti-Aging: Role of Therapeutic Apheresis. Horm Metab Res 2025. [PMID: 39788160 DOI: 10.1055/a-2444-3422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Neutrophil extracellular traps (NETs) are large structures composed of chromatin, histones and granule-derived proteins released extracellularly by neutrophils. They are generally considered to be a part of the antimicrobial defense strategy, preventing the dissemination of pathogens. However, overproduction of NETs or their ineffective clearance can drive various pathologies, many of which are associated with advanced age and involve uncontrolled inflammation, oxidative, cardiovascular and neurodegenerative stress as underlying mechanisms. Targeting NETs in the elderly as an anti-aging therapy seems to be a very attractive therapeutic approach. Therapeutic apheresis with a specific filter to remove NETs could be a promising strategy worth considering.
Collapse
Affiliation(s)
- Natalia Jarzebska
- Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Roman N Rodionov
- Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- Department of Clinical Pharmacology, College of Medicine and Public Health, Flinders University and Flinders Medical Centre, Adelaide, Australia
| | - Karin Voit-Bak
- Zentrum für Apherese- und Hämofiltration, INUS Tagesklinikum, Cham, Germany
| | - Richard Straube
- Zentrum für Apherese- und Hämofiltration, INUS Tagesklinikum, Cham, Germany
| | - Anna Mücke
- INUSpheresis Center Basel, Ayus Medical Group, Basel, Switzerland
| | - Sergey Tselmin
- Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Ronny Rettig
- Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Ulrich Julius
- Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Richard Siow
- School of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom of Great Britain and Northern Ireland
- Ageing Research at King's (ARK), King's College London, London, United Kingdom of Great Britain and Northern Ireland
- Department of Physiology, Anatomy and Genetics, Medical Sciences Division, University of Oxford, Oxford, United Kingdom of Great Britain and Northern Ireland
| | - Jürgen Gräßler
- Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Jens Passauer
- Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | | | - Philip Mavberg
- INUSpheresis Center Basel, Ayus Medical Group, Basel, Switzerland
| | - Norbert Weiss
- Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Stefan R Bornstein
- Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- School of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom of Great Britain and Northern Ireland
| | - Andrew Aswani
- Department of Intensive Care Medicine, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom of Great Britain and Northern Ireland
- Santersus AG, Zurich, Switzerland
| |
Collapse
|
19
|
Gadelha FAAF, Cavalcanti RFP, Vieira CID, De Oliveira JB, De Lima LM, Alves AF, Pessoa MMB, Batista LM, Dejani NN, Piuvezam MR. Musa paradisiaca L. Inflorescence Abrogates Neutrophil Activation by Downregulating TLR4/NF-KB Signaling Pathway in LPS-Induced Acute Lung Injury Model. Pharmaceuticals (Basel) 2024; 18:8. [PMID: 39861071 PMCID: PMC11768301 DOI: 10.3390/ph18010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/14/2024] [Accepted: 10/18/2024] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Acute lung injury (ALI) is an inflammatory disorder affecting patients in intensive care with high mortality. No specific pharmacological treatment is available. Musa paradisiaca L. (banana) is a cosmopolitan plant, and homemade syrup from its inflorescence is used in many countries to treat pulmonary inflammation. Therefore, this study analyzed the hydroalcoholic extract (HEM) of the inflorescence on the ALI experimental model. Methods: Swiss mice were challenged with lipopolysaccharide and treated with HEM after 1, 24, and 48 h (five animals/group, three times). Results: The HEM-treated ALI mice presented a decrease in neutrophil migration in the bronchoalveolar lavage fluid (BALF), in the alveolar region, and in the blood, correlating to downregulation of CD18 expression. The HEM treatment also reduced the protein concentration in the BALF, caused lung edema formation, impaired NF-κB activation via inhibition of TLR4 signaling pathway, and decreased IL-1β, TNF-α production, free DNA release, and myeloperoxidase (MPO) activity. However, the extract induced an increased IL-10 in the BALF. Conclusions: Therefore, HEM's anti-inflammatory and immunomodulatory activities in ALI mice are by deactivating neutrophils by decreasing CD18 receptor, free DNA release, and MPO activity and inducing IL-10 production. Thus, this study supports the use of banana inflorescence in folk medicine and suggests its rational use to develop a phytomedicine to treat pulmonary inflammation.
Collapse
Affiliation(s)
- Francisco Allysson Assis Ferreira Gadelha
- Laboratory of Immunopharmacology, Research Institute for Drugs and Medicines, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil;
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (R.F.P.C.); (C.I.D.V.); (J.B.D.O.); (L.M.D.L.); (M.M.B.P.); (L.M.B.)
| | - Raquel Fragoso Pereira Cavalcanti
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (R.F.P.C.); (C.I.D.V.); (J.B.D.O.); (L.M.D.L.); (M.M.B.P.); (L.M.B.)
| | - Cosmo Isaias Duvirgens Vieira
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (R.F.P.C.); (C.I.D.V.); (J.B.D.O.); (L.M.D.L.); (M.M.B.P.); (L.M.B.)
| | - Joao Batista De Oliveira
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (R.F.P.C.); (C.I.D.V.); (J.B.D.O.); (L.M.D.L.); (M.M.B.P.); (L.M.B.)
| | - Louíse Mangueira De Lima
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (R.F.P.C.); (C.I.D.V.); (J.B.D.O.); (L.M.D.L.); (M.M.B.P.); (L.M.B.)
| | - Adriano Francisco Alves
- Department of Phisiology and Phatology, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (A.F.A.); (N.N.D.)
| | - Matheus Marley Bezerra Pessoa
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (R.F.P.C.); (C.I.D.V.); (J.B.D.O.); (L.M.D.L.); (M.M.B.P.); (L.M.B.)
| | - Leônia Maria Batista
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (R.F.P.C.); (C.I.D.V.); (J.B.D.O.); (L.M.D.L.); (M.M.B.P.); (L.M.B.)
| | - Naiara Naiana Dejani
- Department of Phisiology and Phatology, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (A.F.A.); (N.N.D.)
| | - Marcia Regina Piuvezam
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (R.F.P.C.); (C.I.D.V.); (J.B.D.O.); (L.M.D.L.); (M.M.B.P.); (L.M.B.)
- Department of Phisiology and Phatology, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (A.F.A.); (N.N.D.)
| |
Collapse
|
20
|
Jorge-Rosas F, Díaz-Godínez C, García-Aguirre S, Martínez-Calvillo S, Carrero JC. Entamoeba histolytica-induced NETs are highly cytotoxic on hepatic and colonic cells due to serine proteases and myeloperoxidase activities. Front Immunol 2024; 15:1493946. [PMID: 39687618 PMCID: PMC11646992 DOI: 10.3389/fimmu.2024.1493946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/14/2024] [Indexed: 12/18/2024] Open
Abstract
During intestinal and liver invasion by the protozoan parasite Entamoeba histolytica, extensive tissue destruction linked to large neutrophil infiltrates is observed. It has been proposed that microbicidal components of neutrophils are responsible for the damage, however, the mechanism by which they are released and act in the extracellular space remains unknown. In previous studies, we have shown that E. histolytica trophozoites induce NET formation, leading to the release of neutrophil granule content into extruded DNA. In this work, we evaluate the possible participation of NETs in the development of amoeba-associated pathology and analyze the contribution of anti-microbial components of the associated granules. E. histolytica-induced NETs were isolated and their effect on the viability and integrity of HCT 116 colonic and Hep G2 liver cultures were evaluated. The results showed that simple incubation of cell monolayers with purified NETs for 24 h resulted in cell detachment and death in a dose-dependent manner. The effect was thermolabile and correlated with the amount of DNA and protein present in NETs. Pretreatment of NETs with specific inhibitors of some microbicidal components suggested that serine proteases, are mostly responsible for the damage caused by NETs on HCT 116 cells, while the MPO activity was the most related to Hep G2 cells damage. Our study also points to a very important role of DNA as a scaffold for the activity of these proteins. We show evidence of the development of NETs in amoebic liver abscesses in hamsters as a preamble to evaluate their participation in tissue damage. In conclusion, these studies demonstrate that amoebic-induced NETs have potent cytotoxic effects on target cells and, therefore, may be responsible for the intense damage associated with tissue invasion by this parasite.
Collapse
Affiliation(s)
- Fabian Jorge-Rosas
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - César Díaz-Godínez
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Samuel García-Aguirre
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Santiago Martínez-Calvillo
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, EM, Mexico
| | - Julio César Carrero
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| |
Collapse
|
21
|
Al-Kuraishy HM, Al-Gareeb AI, Alexiou A, Mukerjee N, Al-Hamash SMJ, Al-Maiahy TJ, Batiha GES. 5-HT/CGRP pathway and Sumatriptan role in Covid-19. Biotechnol Genet Eng Rev 2024; 40:3148-3173. [PMID: 36042570 DOI: 10.1080/02648725.2022.2108996] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/21/2022] [Indexed: 12/27/2022]
Abstract
Coronavirus disease 2019 (Covid-19) is a pandemic caused by severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). In Covid-19, there is uncontrolled activation of immune cells with a massive release of pro-inflammatory cytokines and the development of cytokine storm. These inflammatory changes induce impairment of different organ functions, including the central nervous system (CNS), leading to acute brain injury and substantial changes in the neurotransmitters, including serotonin (5-HT) and calcitonin gene-related peptide (CGRP), which have immunomodulatory properties through modulation of central and peripheral immune responses. In Covid-19, 5-HT neurotransmitters and CGRP could contribute to abnormal and atypical vascular reactivity. Sumatriptan is a pre-synaptic 5-HT (5-HT1D and 5-HT1B) agonist and inhibits the release of CGRP. Both 5-HT and CGRP seem to be augmented in Covid-19 due to underlying activation of inflammatory signaling pathways and hyperinflammation. In virtue of its anti-inflammatory and antioxidant properties with inhibition release of 5-HT and CGRP, Sumatriptan may reduce Covid-19 hyperinflammation. Therefore, Sumatriptan might be a novel potential therapeutic strategy in managing Covid-19. In conclusion, Sumatriptan could be an effective therapeutic strategy in managing Covid-19 through modulation of 5-HT neurotransmitters and inhibiting CGRP.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, AL-Mustansiriyah University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, AL-Mustansiriyah University, Baghdad, Iraq
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, Australia
- AFNP Med, Wien, Austria
| | - Nobendu Mukerjee
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, Kolkata, India
- Department of Health Sciences, Novel Global Community Educational Foundation, Hebersham, NSW, Australia
| | | | - Thabat J Al-Maiahy
- Department of Gynecology and Obstetrics, College of Medicine, Al-Mustansiriyah University, Baghdad, Iraq
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| |
Collapse
|
22
|
Al-Kuraishy HM, Al-Gareeb AI, Al-Maiahy TJ, Alexiou A, Mukerjee N, Batiha GES. An insight into the placental growth factor (PlGf)/angii axis in Covid-19: a detrimental intersection. Biotechnol Genet Eng Rev 2024; 40:3326-3345. [PMID: 36096720 DOI: 10.1080/02648725.2022.2122291] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/29/2022] [Indexed: 11/02/2022]
Abstract
Coronavirus disease 2019 (Covid-19) is a recent and current infectious pandemic caused by severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). Covid-19 may lead to the development of acute lung injury (ALI), acute respiratory distress syndrome (ARDS), and extrapulmonary manifestations in severe cases. Down-regulation of angiotensin-converting enzyme (ACE2) by the SARS-CoV-2 increases the production of angiotensin II (AngII), which increases the release of pro-inflammatory cytokines and placental growth factor (PlGF). PlGF is a critical molecule involved in vasculogenesis and angiogenesis. PlGF is stimulated by AngII in different inflammatory diseases through a variety of signaling pathways. PlGF and AngII are interacted in SARS-CoV-2 infection resulting in the production of pro-inflammatory cytokines and the development of Covid-19 complications. Both AngII and PlGF are interacted and are involved in the progression of inflammatory disorders; therefore, we aimed in this review to highlight the potential role of the PlGF/AngII axis in Covid-19.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Thabat J Al-Maiahy
- Department Of Gynecology and Obstetrics, College of Medicine, Al-Mustansiriyah University, Baghdad, Iraq
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
- AFNP Med, Austria, Wien, Austria
| | - Nobendu Mukerjee
- Department of Microbiology; Ramakrishna Mission Vivekananda Centenary College, Kolkata, WestBengal, India
- Department of Health Sciences, Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira, Egypt
| |
Collapse
|
23
|
da Silva Pinto L, Junior RSA, Lopes BRP, da Silva GS, de Lima Menezes G, Moreira P, de Oliveira J, da Silva RA, Lousa D, Toledo KA. MPO interacts with hRSV particles, contributing to the virucidal effects of NETs against clinical and laboratory hRSV isolates. Int J Biol Macromol 2024; 283:137423. [PMID: 39537074 DOI: 10.1016/j.ijbiomac.2024.137423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 10/20/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Human Respiratory syncytial virus (hRSV) mainly affects immunosuppressed patients requiring hospitalization. No specific treatment is financially accessible, and available vaccines do not cover all risk groups. During hRSV infection, there is a robust neutrophilic influx into the airways. hRSV-activated neutrophils release substantial neutrophil extracellular traps (NETs) in lung tissue, comprising DNA, histones, cytosolic, and granular proteins. NETs form mucus buildup in the lungs, compromising respiratory capacity and neutralizing viral particles. Understanding responsible NETs molecules requires improvement. We evaluated NETs interacting with hRSV particles and their contribution to anti-hRSV NET effects. Immunoblotting, immunoprecipitation, and peptide sequencing assays confirmed hRSV binding to a 50-75 kDa NET protein, Myeloperoxidase (MPO). MPO, a microbicide enzyme in NETs, interacts with hRSV, likely at F0 protein (site IV) on the viral surface. Additionally, MPO (32 μM) and NETs (0.4 μg/mL) reduced in vitro replication of clinical (hRSV A and B) and laboratory (Long) hRSV isolates by approximately 30 %, reversible by selective MPO inhibitor (PF-06281355; 48 μM). Thus, MPO contributes to virucidal NET effects on diverse hRSV strains, enhancing comprehension of NETs' role in infection and aiding treatment strategies for respiratory diseases.
Collapse
Affiliation(s)
- Leonardo da Silva Pinto
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, Brazil
| | - Ronaldo Silva Alves Junior
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, Brazil; São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences, São José do Rio Preto, SP, Brazil
| | - Bruno Rafael Pereira Lopes
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, Brazil; São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences, São José do Rio Preto, SP, Brazil
| | - Gabriel Soares da Silva
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, Brazil
| | - Gabriela de Lima Menezes
- Biosystems Collaborative Nucleus, Institute of Exact Sciences, Federal University of Jatai, Jatai-GO, Brazil
| | - Pedro Moreira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal; Centro de Engenharia Biológica, Escola de Engenharia da Universidade do Minho, Braga, Portugal
| | - Juliana de Oliveira
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, Brazil; Graduate Program in Applied and Computational Mathematics - PGMAC - State University of Londrina, Londrina, PR, Brazil
| | - Roosevelt Alves da Silva
- Biosystems Collaborative Nucleus, Institute of Exact Sciences, Federal University of Jatai, Jatai-GO, Brazil
| | - Diana Lousa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Karina Alves Toledo
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, Brazil; São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences, São José do Rio Preto, SP, Brazil.
| |
Collapse
|
24
|
Al-Kuraishy HM, Al-Gareeb AI, Al-Maiahy TJ, Alexiou A, Mukerjee N, Batiha GES. Prostaglandins and non-steroidal anti-inflammatory drugs in Covid-19. Biotechnol Genet Eng Rev 2024; 40:3305-3325. [PMID: 36098621 DOI: 10.1080/02648725.2022.2122290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/29/2022] [Indexed: 11/02/2022]
Abstract
In response to different viral infections, including SARS-CoV-2 infection, pro-inflammatory, anti-inflammatory cytokines, and bioactive lipids are released from infected and immune cells. One of the most critical bioactive lipids is prostaglandins (PGs) which favor perseverance of inflammation leading to chronic inflammation as PGs act as cytokine amplifiers. PGs trigger the release of pro-inflammatory cytokines, activate Th cells, recruit immune cells, and increase the expression of pro-inflammatory genes. Therefore, PGs may induce acute and chronic inflammations in various inflammatory disorders and viral infections like SARS-CoV-2. PGs are mainly inhibited by non-steroidal anti-inflammatory drugs (NSAIDs) by blocking cyclooxygenase enzymes (COXs), which involve PG synthesis. NSAIDs reduce inflammation by selective or non-selective blocking activity of COX2 or COX1/2, respectively. In the Covid-19 era, there is a tremendous controversy regarding the use of NSAIDs in the management of SARS-CoV-2 infection. As well, the possible role of PGs in the pathogenesis of SARS-CoV-2 infection is not well-defined. Thus, the objective of the present study is to review the potential role of PGs and NSAIDs in Covid-19 in a narrative review regarding the preponderance of assorted views.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Thabat J Al-Maiahy
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira
| | - Athanasios Alexiou
- Department Of Gynecology and Obstetrics, College of Medicine, Al-Mustansiriyah University, aghdad, Iraq
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, Australia
| | - Nobendu Mukerjee
- AFNP Med, Wien, Austria
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, West Bengal, India
| | - Gaber El-Saber Batiha
- Department of Health Sciences, Novel Global Community Educational Foundation, Heber-sham, Australia
| |
Collapse
|
25
|
Cui X, Li T, Yang J, Li X, Xuan P, Wang H. Predictive Value of dsDNA and Nucleosomes as Neutrophil Extracellular Traps-Related Biomarkers for COVID-19 in Older Patients. J Inflamm Res 2024; 17:8831-8838. [PMID: 39564546 PMCID: PMC11575441 DOI: 10.2147/jir.s414688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/06/2024] [Indexed: 11/21/2024] Open
Abstract
Background Previous studies have demonstrated that neutrophil extracellular traps (NETs) are crucial in infectious diseases. This study aims to evaluate the clinical value of NET-related biomarkers in identifying the risk of COVID-19 and diagnosing the disease. Methods This study involved 32 patients who tested positive for COVID-19 via polymerase chain reaction (PCR) between April and August 2023. During the same period, 30 healthy volunteers were enrolled as a control group. The principal biomarkers related to NETs are citrullinated histone H3 (CitH3), double-stranded DNA (dsDNA), myeloperoxidase-DNA complex (MPO-DNA), and Nucleosome. Elevated levels in two or more of these biomarkers indicate raised NET concentrations. Multivariable logistic regression analysis was employed to assess whether NET-related biomarkers were the independent risk factor of COVID-19. The diagnostic value of NET-related biomarkers in COVID-19 was further evaluated using receiver operating characteristic (ROC) curve analysis. Statistical procedures were executed in SPSS software (version 24.0, USA). Results Compared with the control group, patients infected with COVID-19 had higher levels of dsDNA and nucleosomes (P < 0.001). Correlation analysis revealed a positive correlation between dsDNA levels and neutrophil count (r = 0.309, P = 0.015) as well as between nucleosome levels and neutrophil count (r = 0.446, P < 0.001). Further analysis showed that dsDNA and nucleosomes were independent risk factors for COVID-19 infection. ROC curve analysis showed that dsDNA area under the curve (AUC) = 0.777, 95% confidence interval (CI), 0.661-0.893, P < 0.001, and nucleosomes (AUC = 0.884, 95% CI, 0.778-0.991, P < 0.001) had well diagnostic value in the diagnosing COVID-19 infection. Conclusion NET-related biomarkers, dsDNA and nucleosomes, were independent risk factors of COVID-19 infection and potentially useful biomarkers in diagnosing COVID-19 infection in older patients.
Collapse
Affiliation(s)
- Xudong Cui
- Respiratory and Critical Care Medicine Department, Inner Mongolia Baogang Hospital, Inner Mongolia Medical University, Hohhot, People's Republic of China
| | - Tiewei Li
- Department of Clinical Laboratory, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou Key Laboratory of Children's Infection and Immunity, Zhengzhou, People's Republic of China
| | - Jingping Yang
- Respiratory and Critical Care Medicine Department, Inner Mongolia Baogang Hospital, The Third Affiliated Hospital of Inner Mongolia Medical University, Baotou, People's Republic of China
| | - Xiaojuan Li
- Department of Clinical Laboratory, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou Key Laboratory of Children's Infection and Immunity, Zhengzhou, People's Republic of China
| | - Pengfei Xuan
- Respiratory and Critical Care Medicine Department, Inner Mongolia Baogang Hospital, The Third Affiliated Hospital of Inner Mongolia Medical University, Baotou, People's Republic of China
| | - Hongyan Wang
- Respiratory and Critical Care Medicine Department, Inner Mongolia Baogang Hospital, The Third Affiliated Hospital of Inner Mongolia Medical University, Baotou, People's Republic of China
| |
Collapse
|
26
|
Zhang S, Liu Y, Jin S, Xia T, Song H, Cao C, Liao Y, Pan R, Yan M, Chang Q. Exploration of novel human neutrophil elastase inhibitors from natural compounds: Virtual screening, in vitro, molecular dynamics simulation and in vivo study. Eur J Pharmacol 2024; 982:176825. [PMID: 39159715 DOI: 10.1016/j.ejphar.2024.176825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 07/02/2024] [Accepted: 07/18/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND Human neutrophil elastase (HNE) is an important contributor to lung diseases such as acute lung injury (ALI) or acute respiratory distress syndrome. Therefore, this study aimed to identify natural HNE inhibitors with anti-inflammatory activity through machine learning algorithms, in vitro assays, molecular dynamic simulation, and an in vivo ALI assay. METHODS Based on the optimized Discovery Studio two-dimensional molecular descriptors, combined with different molecular fingerprints, six machine learning models were established using the Naïve Bayesian (NB) method to identify HNE inhibitors. Subsequently, the optimal model was utilized to screen 6925 drug-like compounds obtained from the Traditional Chinese Medicine Systems Pharmacy Database and Analysis Platform (TCMSP), followed by ADMET analysis. Finally, 10 compounds with reported anti-inflammatory activity were selected to determine their inhibitory activities against HNE in vitro, and the compounds with the best activity were selected for a 100 ns molecular dynamics simulation and its anti-inflammatory effect was evaluated using Poly (I:C)-induced ALI model. RESULTS The evaluation of the in vitro HNE inhibition efficiency of the 10 selected compounds showed that the flavonoid tricetin had the strongest inhibitory effect on HNE. The molecular dynamics simulation indicated that the binding of tricetin to HNE was relatively stable throughout the simulation. Importantly, in vivo experiments indicated that tricetin treatment substantially improved the Poly (I:C)-induced ALI. CONCLUSION The proposed NB model was proved valuable for exploring novel HNE inhibitors, and natural tricetin was screened out as a novel HNE inhibitor, which was confirmed by in vitro and in vivo assays for its inhibitory activities.
Collapse
Affiliation(s)
- Shanshan Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Yongguang Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Suwei Jin
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Tianji Xia
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Hongbin Song
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Chenxi Cao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Yonghong Liao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Ruile Pan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Mingzhu Yan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Qi Chang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
27
|
Thangavelu L, Goyal A, Afzal M, Moglad E, Rawat S, Kazmi I, Alzarea SI, Almalki WH, Rani R, Madhubabu P, Rajput P, Bansal P. Pyroptosis in lung cancer: The emerging role of non-coding RNAs. Pathol Res Pract 2024; 263:155619. [PMID: 39357188 DOI: 10.1016/j.prp.2024.155619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/12/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
Lung cancer remains an intractable malignancy worldwide, prompting novel therapeutic modalities. Pyroptosis, a lethal form of programmed cell death featured by inflammation, has been involved in cancer progression and treatment response. Simultaneously, non-coding RNA has been shown to have important roles in coordinating pattern formation and oncogenic pathways, including long non-coding RNA (lncRNAs), microRNA (miRNAs), circular RNA (circRNAs), and small interfering RNA (siRNAs). Recent studies have revealed that ncRNAs can promote or inhibit pyroptosis by interacting with key molecular players such as NLRP3, GSDMD, and various transcription factors. This dual role of ncRNAs offers a unique therapeutic potential to manipulate pyroptosis pathways, providing opportunities for innovative cancer treatments. In this review, we integrate current research findings to propose novel strategies for leveraging ncRNA-mediated pyroptosis as a therapeutic intervention in lung cancer. We explore the potential of ncRNAs as biomarkers for predicting patient response to treatment and as targets for overcoming resistance to conventional therapies.
Collapse
Affiliation(s)
- Lakshmi Thangavelu
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, UP, India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Sushama Rawat
- Graphic Era (Deemed to be University), Clement Town, 248002, Dehradun, India
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf 72341, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Richa Rani
- University Centre for Research and Development, Chandigarh University, Mohali, Punjab 140413, India
| | | | - Pranchal Rajput
- Uttaranchal Institute of Pharmaceutical Sciences, Division of Research and Innovation, Uttaranchal University, India
| | - Pooja Bansal
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges, Jhanjeri, Mohali 140307, Punjab, India
| |
Collapse
|
28
|
Sedighi M, Shahabi MH, Akbarpour M, Amanollahi A, Tavakoli N, Mohammad Valipour A, Basir Ghafouri H. Baseline level of interleukin-6 is associated with the risk of acute coronary syndrome development in SARS-CoV-2 infection. BMC Cardiovasc Disord 2024; 24:550. [PMID: 39395941 PMCID: PMC11470654 DOI: 10.1186/s12872-024-04234-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024] Open
Abstract
BACKGROUND Acute coronary syndrome (ACS) is frequently reported in patients with coronavirus disease 2019 (COVID-19). Cytokine storm induced by interleukin-6 (IL-6) has been suggested to potentially cause myocardial injury in COVID-19. We investigated the association between baseline level of IL-6 and development of ACS in COVID-19 patients. METHODS Demographic and clinical data of hospitalized COVID-19 patients from 2020 to 2022 were reviewed. Extracted data including patient characteristics, laboratory biomarkers, and systemic inflammation indexes in patients with or without ACS were reviewed and analyzed. Logistic regression models were applied to analyze predictors of ACS development and receiver-operating characteristic (ROC) curves were used to assess discriminatory power of IL-6 and other risk factors for predicting ACS development. RESULTS Among 1,753 COVID-19 patients, 37 cases experienced ACS and 159 patients without main COVID-19 complications were randomly selected as controls. ACS patients were older (p = 0.001) and suffered from more comorbidities including diabetes (43% vs. 18%, p = 0.001), hypertension (40.5% vs. 24.5%, p = 0.050), ischemic heart disease (49% vs. 9%, p = 0.001), and hyperlipidemia (19% vs. 5%, p = 0.010). Also, decreased level of consciousness (31.6% vs. 2.5%, p = 0.001), ICU admission (65% vs. 2%, p = 0.001), and mortality events (70% vs. 0.6%, p = 0.001) were more prevalent in the ACS group. Baseline levels of IL-6 (p = 0.001), D-dimer (p = 0.026), troponin (p = 0.001), blood urea nitrogen (p = 0.002), and creatinine (p = 0.008) were higher in ACS patients but erythrocyte sedimentation rate (p = 0.013), hemoglobin (p = 0.033), and red blood cells (p = 0.028) were lower compared with controls. Also, age (OR: 1.06, p = 0.019), IL-6 (OR: 1.44, p = 0.047), and cardiovascular disease (CVD) (OR: 3.66, p = 0.043) were associated with ACS development. The area under the curve (AUC) of IL-6 and combined predictors respectively was 0.661 (p = 0.002) and 0.829 (p = 0.001). CONCLUSIONS High IL-6 concentration at baseline is a strong predictor for ACS development in COVID-19 patients. Also, elderly and concurrent CVD are significantly associated with ACS development.
Collapse
Affiliation(s)
- Mohsen Sedighi
- Trauma and Injury Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Maryam Akbarpour
- Trauma and Injury Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Amanollahi
- Trauma and Injury Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Nader Tavakoli
- Trauma and Injury Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Hamed Basir Ghafouri
- Trauma and Injury Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Trauma and Injury Research Center, Rasoul Akram Hospital, Niayesh St, Satarkhan St, Tehran, 14456, Iran.
| |
Collapse
|
29
|
Mei W, Zhu Y, Nie Z, Fang C, Zhang Z, Qiu H, Bai X, Pan L. Retrospective analysis of venous thromboembolism, arterial thromboembolism, and microthrombosis incidence at a single center during the COVID-19 pandemic. Medicine (Baltimore) 2024; 103:e39915. [PMID: 39465786 PMCID: PMC11479453 DOI: 10.1097/md.0000000000039915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/13/2024] [Indexed: 10/29/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) pneumonia caused by severe acute respiratory syndrome coronavirus 2 has posed a significant threat to global health since its outbreak in early 2020. Various thrombotic complications have been reported in COVID-19 cases. This study aims to investigate the incidence of various types of thromboses during the COVID-19 pandemic, and explore the potential correlation between the number of COVID-19 infections and occurrence of thrombosis. The present retrospective, single-center study recorded the number of new cases with various types of thromboembolism among all hospital admissions between 2019 and 2023 in a single center. The correlation between the number of total thromboembolism cases and number of inpatients who tested positive for COVID-19 was assessed using Spearman rank correlation coefficient. A total of 3926 thromboembolism cases were recorded in men, while 3657 cases were reported in women. The total number of new thromboembolism cases among all inpatients annually increased from 2019 to 2022, and reached a peak during the "full liberalization" period from December 2022 to January 2023. The most substantial increase was observed in microthrombosis cases, followed by venous and arterial thrombosis cases. In addition, thromboembolism primarily occurred in the lower extremities, followed by the abdomen. The fewest cases were observed in the upper extremities. Furthermore, the correlation coefficient between the total number of thromboembolism cases and number of COVID-19-positive patients between January 2020 and June 2023 was 0.501 (P = .001). The number of thromboembolism cases among all inpatients was correlated to the number of COVID-19-positive patients during the pandemic. Early thromboembolism prophylaxis and thrombotic complications monitoring should be considered for hospitalized patients, when necessary.
Collapse
Affiliation(s)
- Wenjun Mei
- Anqing Municipal Hospital, Anqing City, Anhui Province, China
| | - Yuefeng Zhu
- Sir Run Run Shaw Hospital, Hangzhou, Zhejiang Province, China
| | - Zongjie Nie
- Anqing Municipal Hospital, Anqing City, Anhui Province, China
| | - Canjun Fang
- Anqing Municipal Hospital, Anqing City, Anhui Province, China
| | - Zheng Zhang
- Anqing Municipal Hospital, Anqing City, Anhui Province, China
| | - Haijun Qiu
- Anqing Municipal Hospital, Anqing City, Anhui Province, China
| | - Xia Bai
- Anqing Municipal Hospital, Anqing City, Anhui Province, China
| | - Lisheng Pan
- Anqing Municipal Hospital, Anqing City, Anhui Province, China
| |
Collapse
|
30
|
Babkina AS, Pisarev MV, Grechko AV, Golubev AM. Arterial Thrombosis in Acute Respiratory Infections: An Underestimated but Clinically Relevant Problem. J Clin Med 2024; 13:6007. [PMID: 39408067 PMCID: PMC11477565 DOI: 10.3390/jcm13196007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 10/20/2024] Open
Abstract
During the COVID-19 pandemic, there was increased interest in the issue of thrombotic complications of acute respiratory infections. Clinical reports and pathological studies have revealed that thrombus formation in COVID-19 may involve the venous and arterial vasculature. As thrombotic complications of infectious respiratory diseases are increasingly considered in the context of COVID-19, the fact that thrombosis in lung diseases of viral and bacterial etiology was described long before the pandemic is overlooked. Pre-pandemic studies show that bacterial and viral respiratory infections are associated with an increased risk of thrombotic complications such as myocardial infarction, ischemic stroke, pulmonary embolism, and other critical illnesses caused by arterial and venous thrombosis. This narrative review article aims to summarize the current evidence regarding thrombotic complications and their pathogenesis in acute lower respiratory tract infections.
Collapse
Affiliation(s)
- Anastasiya S. Babkina
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia; (M.V.P.); (A.V.G.); (A.M.G.)
| | | | | | | |
Collapse
|
31
|
Wang H, Kim SJ, Lei Y, Wang S, Wang H, Huang H, Zhang H, Tsung A. Neutrophil extracellular traps in homeostasis and disease. Signal Transduct Target Ther 2024; 9:235. [PMID: 39300084 PMCID: PMC11415080 DOI: 10.1038/s41392-024-01933-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/25/2024] [Accepted: 07/16/2024] [Indexed: 09/22/2024] Open
Abstract
Neutrophil extracellular traps (NETs), crucial in immune defense mechanisms, are renowned for their propensity to expel decondensed chromatin embedded with inflammatory proteins. Our comprehension of NETs in pathogen clearance, immune regulation and disease pathogenesis, has grown significantly in recent years. NETs are not only pivotal in the context of infections but also exhibit significant involvement in sterile inflammation. Evidence suggests that excessive accumulation of NETs can result in vessel occlusion, tissue damage, and prolonged inflammatory responses, thereby contributing to the progression and exacerbation of various pathological states. Nevertheless, NETs exhibit dual functionalities in certain pathological contexts. While NETs may act as autoantigens, aggregated NET complexes can function as inflammatory mediators by degrading proinflammatory cytokines and chemokines. The delineation of molecules and signaling pathways governing NET formation aids in refining our appreciation of NETs' role in immune homeostasis, inflammation, autoimmune diseases, metabolic dysregulation, and cancer. In this comprehensive review, we delve into the multifaceted roles of NETs in both homeostasis and disease, whilst discussing their potential as therapeutic targets. Our aim is to enhance the understanding of the intricate functions of NETs across the spectrum from physiology to pathology.
Collapse
Affiliation(s)
- Han Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Susan J Kim
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Yu Lei
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuhui Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui Wang
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hai Huang
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Hongji Zhang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| | - Allan Tsung
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
32
|
Song Y, Wu Y, Ding F, Li S, Shen Y, Yang B, Tang X, Ren L, Deng L, Jin X, Yan Y. The Preventive and Therapeutic Effects of Acute and Severe Inflammatory Disorders with Heparin and Heparinoid. Biomolecules 2024; 14:1078. [PMID: 39334845 PMCID: PMC11430252 DOI: 10.3390/biom14091078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/18/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Systematic inflammatory response syndrome (SIRS) and the accompanying sepsis pose a huge threat to human health worldwide. Heparin is a part of the standard supportive care for the disease. However, the molecular mechanism is not fully understood yet, and the potential signaling pathways that play key roles have not yet been elucidated. In this paper, the main findings regarding the molecular mechanisms associated with the beneficial effects of heparin, including inhibiting HMGB-1-driven inflammation reactions, histone-induced toxicity, thrombo-inflammatory response control and the new emerging mechanisms are concluded. To set up the link between the preclinical research and the clinical effects, the outcomes of the clinical trials are summarized. Then, the structure and function relationship of heparin is discussed. By providing an updated analysis of the above results, the paper highlights the feasibility of heparin as a possible alternative for sepsis prophylaxis and therapy.
Collapse
Affiliation(s)
- Ying Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Yuxiang Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Fangfang Ding
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Shuo Li
- Medi-X Pingshan, Southern University of Science and Technology, Shenzhen 518118, China
| | - Yaojia Shen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Bingyan Yang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Xinran Tang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Lige Ren
- Shenzhen Hepalink Pharmaceutical Group Co., Ltd., Shenzhen 518057, China
| | - Lirong Deng
- Shenzhen Hepalink Pharmaceutical Group Co., Ltd., Shenzhen 518057, China
| | - Xuewen Jin
- Shenzhen Hepalink Pharmaceutical Group Co., Ltd., Shenzhen 518057, China
| | - Yishu Yan
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
33
|
Fujimoto K, Kameda Y, Nagano Y, Deguchi S, Yamamoto T, Krol RP, Gee P, Matsumura Y, Okamoto T, Nagao M, Takayama K, Yokokawa R. SARS-CoV-2-induced disruption of a vascular bed in a microphysiological system caused by type-I interferon from bronchial organoids. LAB ON A CHIP 2024; 24:3863-3879. [PMID: 38252025 DOI: 10.1039/d3lc00768e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Blood vessels show various COVID-19-related conditions including thrombosis and cytokine propagation. Existing in vitro blood vessel models cannot represent the consequent changes in the vascular structure or determine the initial infection site, making it difficult to evaluate how epithelial and endothelial tissues are damaged. Here, we developed a microphysiological system (MPS) that co-culture the bronchial organoids and the vascular bed to analyze infection site and interactions. In this system, virus-infected organoids caused damage in vascular structure. However, vasculature was not damaged or infected when the virus was directly introduced to vascular bed. The knockout of interferon-related genes and inhibition of the JAK/STAT pathway reduced the vascular damage, indicating the protective effect of interferon response suppression. The results demonstrate selective infection of bronchial epithelial cells and vascular damage by cytokines and also indicate the applicability of MPS to investigate how the infection influences vascular structure and functions.
Collapse
Affiliation(s)
- Kazuya Fujimoto
- Department of Micro Engineering, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan.
| | - Yoshikazu Kameda
- Department of Micro Engineering, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan.
| | - Yuta Nagano
- Department of Micro Engineering, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan.
| | - Sayaka Deguchi
- Center for iPS cell Research and Application (CiRA), Kyoto University, Shogoin-Kawahara-cho 53, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Takuya Yamamoto
- Center for iPS cell Research and Application (CiRA), Kyoto University, Shogoin-Kawahara-cho 53, Sakyo-ku, Kyoto, 606-8507, Japan.
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
- Medical-risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Shogoin-Kawahara-cho 53, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Rafal P Krol
- Research and Development Center, CiRA Foundation, Shogoin-Kawahara-cho 53, Sakyo-ku, Kyoto, 606-8397, Japan
| | - Peter Gee
- MaxCyte Inc., Gaithersburg, MD 20878, USA
| | - Yasufumi Matsumura
- Department of Clinical Laboratory medicine, Kyoto University Graduate School of Medicine, Shogoin-Kawahara-cho 53, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Toru Okamoto
- Department of Microbiology, School of Medicine, Juntendo University, Hongo 2-1-1, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Miki Nagao
- Department of Clinical Laboratory medicine, Kyoto University Graduate School of Medicine, Shogoin-Kawahara-cho 53, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kazuo Takayama
- Center for iPS cell Research and Application (CiRA), Kyoto University, Shogoin-Kawahara-cho 53, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Ryuji Yokokawa
- Department of Micro Engineering, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan.
| |
Collapse
|
34
|
Lou J, Zhang J, Deng Q, Chen X. Neutrophil extracellular traps mediate neuro-immunothrombosis. Neural Regen Res 2024; 19:1734-1740. [PMID: 38103239 PMCID: PMC10960287 DOI: 10.4103/1673-5374.389625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/29/2023] [Accepted: 10/14/2023] [Indexed: 12/18/2023] Open
Abstract
Neutrophil extracellular traps are primarily composed of DNA and histones and are released by neutrophils to promote inflammation and thrombosis when stimulated by various inflammatory reactions. Neutrophil extracellular trap formation occurs through lytic and non-lytic pathways that can be further classified by formation mechanisms. Histones, von Willebrand factor, fibrin, and many other factors participate in the interplay between inflammation and thrombosis. Neuro-immunothrombosis summarizes the intricate interplay between inflammation and thrombosis during neural development and the pathogenesis of neurological diseases, providing cutting-edge insights into post-neurotrauma thrombotic events. The blood-brain barrier defends the brain and spinal cord against external assaults, and neutrophil extracellular trap involvement in blood-brain barrier disruption and immunothrombosis contributes substantially to secondary injuries in neurological diseases. Further research is needed to understand how neutrophil extracellular traps promote blood-brain barrier disruption and immunothrombosis, but recent studies have demonstrated that neutrophil extracellular traps play a crucial role in immunothrombosis, and identified modulators of neuro-immunothrombosis. However, these neurological diseases occur in blood vessels, and the mechanisms are unclear by which neutrophil extracellular traps penetrate the blood-brain barrier to participate in immunothrombosis in traumatic brain injury. This review discusses the role of neutrophil extracellular traps in neuro-immunothrombosis and explores potential therapeutic interventions to modulate neutrophil extracellular traps that may reduce immunothrombosis and improve traumatic brain injury outcomes.
Collapse
Affiliation(s)
- Jianbo Lou
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Quanjun Deng
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Xin Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| |
Collapse
|
35
|
Turkistani A, Al‐Kuraishy HM, Al‐Gareeb AI, Alexiou A, Papadakis M, Bahaa MM, Al‐Windy S, Batiha GE. Pharmacological characterization of the antidiabetic drug metformin in atherosclerosis inhibition: A comprehensive insight. Immun Inflamm Dis 2024; 12:e1346. [PMID: 39092773 PMCID: PMC11295104 DOI: 10.1002/iid3.1346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/05/2024] [Accepted: 07/06/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Atherosclerosis (AS) is a progressive disease that interferes with blood flow, leading to cardiovascular complications such as hypertension, ischemic heart disease, ischemic stroke, and vascular ischemia. The progression of AS is correlated with inflammation, oxidative stress, and endothelial dysfunction. Various signaling pathways, like nuclear erythroid-related factor 2 (Nrf2) and Kruppel-like factor 2 (KLF2), are involved in the pathogenesis of AS. Nrf2 and KLF2 have anti-inflammatory and antioxidant properties. Thus, activation of these pathways may reduce the development of AS. Metformin, an insulin-sensitizing drug used in the management of type 2 diabetes mellitus (T2DM), increases the expression of Nrf2 and KLF2. AS is a common long-term macrovascular complication of T2DM. Thus, metformin, through its pleiotropic anti-inflammatory effect, may attenuate the development and progression of AS. AIMS Therefore, this review aims to investigate the possible role of metformin in AS concerning its effect on Nrf2 and KLF2 and inhibition of reactive oxygen species (ROS) formation. In addition to its antidiabetic effect, metformin can reduce cardiovascular morbidities and mortalities compared to other antidiabetic agents, even with similar blood glucose control by the Nrf2/KLF2 pathway activation. CONCLUSION In conclusion, metformin is an effective therapeutic strategy against the development and progression of AS, mainly through activation of the KLF2/Nrf2 axis.
Collapse
Affiliation(s)
- Areej Turkistani
- Department of Pharmacology and Toxicology, College of MedicineTaif UniversityTaifSaudi Arabia
| | - Haydar M. Al‐Kuraishy
- Department of Clinical Pharmacology and Medicine, College of MedicineMustansiriyah UniversityBaghdadIraq
| | - Ali I. Al‐Gareeb
- Department of Clinical Pharmacology and Medicine, College of MedicineMustansiriyah UniversityBaghdadIraq
- Department of Clinical Pharmacology and MedicineJabir ibn Hayyan Medical UniversityKufaIraq
| | - Athanasios Alexiou
- Department of Science and EngineeringNovel Global Community Educational FoundationHebershamNew South WalesAustralia
- AFNP MedWienAustria
- Department of Research & DevelopmentFunogenAthensGreece
- University Centre for Research & DevelopmentChandigarh UniversityPunjabIndia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten‐HerdeckeUniversity of Witten‐HerdeckeWuppertalGermany
| | - Mostafa M. Bahaa
- Pharmacy Practice Department, Faculty of PharmacyHorus UniversityNew DamiettaEgypt
| | - Salah Al‐Windy
- Department of Biology, College of ScienceBaghdad UniversityBaghdadIraq
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhour UniversityDamanhourEgypt
| |
Collapse
|
36
|
Al-Kuraishy HM, Al-Gareeb AI, Elekhnawy E, Batiha GES. Possible role of LCZ696 in atherosclerosis: new inroads and perspective. Mol Cell Biochem 2024; 479:1895-1908. [PMID: 37526794 DOI: 10.1007/s11010-023-04816-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/15/2023] [Indexed: 08/02/2023]
Abstract
LCZ696 blocks both angiotensin receptor type 1 (ATR1) and neprilysin (NEP), which are intricate in the degradation of natriuretic peptides (NPs) and other endogenous peptides. It has been shown NEP inhibitors and LCZ696 could be effectively in the management of atherosclerosis (AS). However, the underlying mechanism of LCZ696 in AS is needed to be clarified entirely. Hence, this review is directed to reconnoiter the mechanistic role of LCZ696 in AS. The anti-inflammatory role of LCZ696 is related to the inhibition of transforming growth factor beta (TGF-β)-activated kinase 1 (TAK) and nod-like receptor pyrin 3 receptor (NLRP3) inflammasome. Moreover, LCZ696, via inhibition of pro-inflammatory cytokines, oxidative stress, apoptosis and endothelial dysfunction can attenuate the development and progression of AS. In conclusion, LCZ696 could be effective in the management of AS through modulation of inflammatory and oxidative signaling. Preclinical and clinical studies are recommended in this regard.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, AL-Mustansiriyia University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, AL-Mustansiriyia University, Baghdad, Iraq
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AL Beheira, Egypt.
| |
Collapse
|
37
|
Aji N, Wang L, Wang S, Pan T, Song J, Chen C, Wang L, Feng N, Tang X, Song Y. PAI-1 Deficiency Promotes NET-mediated Pyroptosis and Ferroptosis during Pseudomonas Aeruginosa-induced Acute Lung Injury by Regulating the PI3K/MAPK/AKT Axis. Inflammation 2024:10.1007/s10753-024-02102-6. [PMID: 39060815 DOI: 10.1007/s10753-024-02102-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/23/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024]
Abstract
Circulating neutrophil extracellular trap (NET) formation is an adaptive process during acute lung injury (ALI). The important role of plasminogen activator inhibitor (PAI)-1 in NET formation during ALI remains unclear. This research intends to examine the impacts of the decrease in PAI-1 levels on NET formation and the underlying mechanism. We found a relative association between the increase in plasma NET levels and thromboinflammation-induced lung damage in patients with ARDS. PAI-1 knockout (KO) mice exhibited significant increases in Pseudomonas aeruginosa (PAO1 strain)-induced ALI, inflammation, inflammatory cell accumulation, and proinflammatory cytokine secretion, and wild-type mice exhibited the opposite changes. During PAO1-induced ALI, PAI-1 KO increased NET release and the levels of prothrombotic markers in mice. PAI-1 deficiency also promoted NET formation and NET-mediated pyroptosis and ferroptosis by activating the PI3K/MAPK/AKT pathway in a PAO1-induced ALI mouse model. In conclusion, PAI-1 KO exacerbated PAO1-induced pneumonia-associated injury and contributed to NET-mediated pyroptosis and ferroptosis through PI3K/MAPK/AKT pathway activation. Thus, targeting PAI-1 and NETs may be a promising therapeutic approach for ameliorating pneumonia and thromboinflammation-associated ALI.
Collapse
Affiliation(s)
- Nurbiya Aji
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary and Critical Medicine Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Linlin Wang
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary and Critical Medicine Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Sijiao Wang
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary and Critical Medicine Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Ting Pan
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary and Critical Medicine Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Juan Song
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary and Critical Medicine Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, 200032, China
- Shanghai Respiratory Research Institute, Shanghai, 200032, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200032, China
- Department of Pulmonary Medicine, Jinshan Hospital of Fudan University, Shanghai, 201508, China
- Department of Respiratory and Critical Medicine, Shanghai Eighth People's Hospital Affiliated to Jiangsu University, Shanghai, China
| | - Cuicui Chen
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary and Critical Medicine Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | | | - Nana Feng
- Department of Respiratory and Critical Medicine, Shanghai Eighth People's Hospital Affiliated to Jiangsu University, Shanghai, China.
| | - Xinjun Tang
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary and Critical Medicine Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Yuanlin Song
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary and Critical Medicine Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, 200032, China.
- Shanghai Respiratory Research Institute, Shanghai, 200032, China.
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200032, China.
- Department of Pulmonary Medicine, Jinshan Hospital of Fudan University, Shanghai, 201508, China.
| |
Collapse
|
38
|
Li Y, Zhang P, Huang Y, Yu J, Liu Y, Li S, Sun Q, Fu Q. SzM protein of Streptococcus equi ssp. zooepidemicus triggers the release of neutrophil extracellular traps depending on GSDMD. Microb Pathog 2024; 192:106703. [PMID: 38763315 DOI: 10.1016/j.micpath.2024.106703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/05/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
Streptococcus equissp.zooepidemicus (SEZ) is a crucial pathogen and contributes to various infections in numerous animal species. Swine streptococcicosis outbreak caused by SEZ has been reported in several countries in recent years. SzM protein is a cell membrane-anchored protein, which exhibits as an important virulence factor of SEZ. Effects of SzM protein on host innate immune need further study. Here, recombinant SzM (rSzM) protein of the SEZ was obtained, and mice were intraperitoneally injected with rSzM protein. We discovered that rSzM protein can recruit neutrophils into the injected site. In further study, neutrophils were isolated and treated with rSzM protein, NETs release were triggered by rSzM protein independently, and GSDMD protein was promoted-expressed and activated. In order to investigate the role of GSDMD in NETs formation, neutrophils isolated from WT mice and GSDMD-/- mice were treated with rSzM protein. The results showed that GSDMD deficiency suppressed the NETs release. In conclusion, SzM protein of SEZ can trigger the NETs release in a GSDMD-depending manner.
Collapse
Affiliation(s)
- Yajuan Li
- School of Life Science and Engineering, Foshan University, Guangdong, 528225, China; Foshan University Veterinary Teaching Hospital, Foshan University, Guangdong, 528225, China
| | - Pengju Zhang
- School of Life Science and Engineering, Foshan University, Guangdong, 528225, China
| | - Yunfei Huang
- School of Life Science and Engineering, Foshan University, Guangdong, 528225, China; Foshan University Veterinary Teaching Hospital, Foshan University, Guangdong, 528225, China
| | - Jingyu Yu
- School of Life Science and Engineering, Foshan University, Guangdong, 528225, China
| | - Yuxuan Liu
- School of Life Science and Engineering, Foshan University, Guangdong, 528225, China
| | - Shun Li
- School of Life Science and Engineering, Foshan University, Guangdong, 528225, China; Foshan University Veterinary Teaching Hospital, Foshan University, Guangdong, 528225, China
| | - Qinqin Sun
- School of Life Science and Engineering, Foshan University, Guangdong, 528225, China; Foshan University Veterinary Teaching Hospital, Foshan University, Guangdong, 528225, China
| | - Qiang Fu
- School of Life Science and Engineering, Foshan University, Guangdong, 528225, China; Foshan University Veterinary Teaching Hospital, Foshan University, Guangdong, 528225, China.
| |
Collapse
|
39
|
Lu Y, Elrod J, Herrmann M, Knopf J, Boettcher M. Neutrophil Extracellular Traps: A Crucial Factor in Post-Surgical Abdominal Adhesion Formation. Cells 2024; 13:991. [PMID: 38891123 PMCID: PMC11171752 DOI: 10.3390/cells13110991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/27/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024] Open
Abstract
Post-surgical abdominal adhesions, although poorly understood, are highly prevalent. The molecular processes underlying their formation remain elusive. This review aims to assess the relationship between neutrophil extracellular traps (NETs) and the generation of postoperative peritoneal adhesions and to discuss methods for mitigating peritoneal adhesions. A keyword or medical subject heading (MeSH) search for all original articles and reviews was performed in PubMed and Google Scholar. It included studies assessing peritoneal adhesion reformation after abdominal surgery from 2003 to 2023. After assessing for eligibility, the selected articles were evaluated using the Critical Appraisal Skills Programme checklist for qualitative research. The search yielded 127 full-text articles for assessment of eligibility, of which 7 studies met our criteria and were subjected to a detailed quality review using the Critical Appraisal Skills Programme (CASP) checklist. The selected studies offer a comprehensive analysis of adhesion pathogenesis with a special focus on the role of neutrophil extracellular traps (NETs) in the development of peritoneal adhesions. Current interventional strategies are examined, including the use of mechanical barriers, advances in regenerative medicine, and targeted molecular therapies. In particular, this review emphasizes the potential of NET-targeted interventions as promising strategies to mitigate postoperative adhesion development. Evidence suggests that in addition to their role in innate defense against infections and autoimmune diseases, NETs also play a crucial role in the formation of peritoneal adhesions after surgery. Therefore, therapeutic strategies that target NETs are emerging as significant considerations for researchers. Continued research is vital to fully elucidate the relationship between NETs and post-surgical adhesion formation to develop effective treatments.
Collapse
Affiliation(s)
- Yuqing Lu
- Department of Pediatric Surgery, University Medical Center Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Julia Elrod
- Department of Pediatric Surgery, University Medical Center Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Martin Herrmann
- Department of Pediatric Surgery, University Medical Center Mannheim, University of Heidelberg, 68167 Mannheim, Germany
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Jasmin Knopf
- Department of Pediatric Surgery, University Medical Center Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Michael Boettcher
- Department of Pediatric Surgery, University Medical Center Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| |
Collapse
|
40
|
Gorji M, Farsani MA, Kargar M, Garavand J, Mohammadi MH. Investigating the multifaceted cooperation of autophagy, PI3K/AKT signaling pathways, and INPP4B gene in de novo acute myeloid leukemia patients. Curr Res Transl Med 2024; 72:103429. [PMID: 38246071 DOI: 10.1016/j.retram.2023.103429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 10/20/2023] [Accepted: 10/30/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND Acute myeloid leukemia (AML) has been the most prevalent form of acute leukemia among adults, and it has been associated with poor survival rates over the last four decades. Understanding the processes involved in leukemogenesis, particularly autophagy and signaling pathways, can provide critical insights into their roles in disease development, risk assessment, and potential therapeutic interventions. This study investigated gene expression changes, focusing on MAP1LC3B and BECN1, related to autophagy, as well as PI3KCA and AKT1 in the PI3K-AKT pathway, and INPP4B, which regulates this signaling cascade. METHODS We collected blood samples from 21 AML patients and 9 healthy volunteers. Gene expression was analyzed through qPCR following RNA extraction and cDNA synthesis. Statistical analysis encompassed t-tests, ANOVA, and correlation coefficients. RESULTS AML patients exhibited significantly increased MAP1LC3B gene expression (****P < 0.0001; fold change = 11.9) and significantly reduced levels of INPP4B (****P < 0.0001; fold change = 0.026), AKT1 (*P < 0.05; fold change = 0.59), and PI3KCA (****P < 0.0001; fold change = 0.16) compared to healthy controls. However, BECN1 gene expression did not significantly differ between the two groups. Additionally, noteworthy correlations were observed between INPP4B and BECN1 (r = 0.57; P = 0.006) and BECN1 and PI3KCA (r = 0.61; P = 0.003) in AML patients. CONCLUSIONS This study highlights variations in leukemogenesis pathways, exemplified by increased MAP1LC3B expression and diminished expression of regulatory genes in specific AML cases. These findings contribute to our comprehension of the molecular mechanisms underlying AML and may inform future diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Mahnaz Gorji
- Department of Laboratory Hematology and Blood Bank, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Allahbakhshian Farsani
- Department of Laboratory Hematology and Blood Bank, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran; HSCT Research Center, Laboratory Hematology and Blood Banking Department, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Kargar
- Department of Laboratory Hematology and Blood Bank, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Garavand
- Department of Laboratory Sciences, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Hossein Mohammadi
- HSCT Research Center, Laboratory Hematology and Blood Banking Department, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
41
|
Wu X, Yang Y. Neutrophil extracellular traps (NETs) and fibrotic diseases. Int Immunopharmacol 2024; 133:112085. [PMID: 38626550 DOI: 10.1016/j.intimp.2024.112085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/18/2024]
Abstract
Fibrosis, a common cause and serious outcome of organ failure that can affect any organ, is responsible for up to 45% of all deaths in various clinical settings. Both preclinical models and clinical trials investigating various organ systems have shown that fibrosis is a highly dynamic process. Although many studies have sought to gain understanding of the mechanism of fibrosis progression, their findings have been mixed. In recent years, increasing evidence indicates that neutrophil extracellular traps (NETs) are involved in many inflammatory and autoimmune disorders and participate in the regulation of fibrotic processes in various organs and systems. In this review, we summarize the current understanding of the role of NETs in fibrosis development and progression and their possibility as therapeutic targets.
Collapse
Affiliation(s)
- Xiaojiao Wu
- School of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Yang Yang
- Department of Gastroenterology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
42
|
AlRuwaili R, Al-Kuraishy HM, Alruwaili M, Khalifa AK, Alexiou A, Papadakis M, Saad HM, Batiha GES. The potential therapeutic effect of phosphodiesterase 5 inhibitors in the acute ischemic stroke (AIS). Mol Cell Biochem 2024; 479:1267-1278. [PMID: 37395897 PMCID: PMC11116240 DOI: 10.1007/s11010-023-04793-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/16/2023] [Indexed: 07/04/2023]
Abstract
Acute ischemic stroke (AIS) is a focal neurological disorder that accounts for 85% of all stroke types, due to occlusion of cerebral arteries by thrombosis and emboli. AIS is also developed due to cerebral hemodynamic abnormality. AIS is associated with the development of neuroinflammation which increases the severity of AIS. Phosphodiesterase enzyme (PDEs) inhibitors have neuro-restorative and neuroprotective effects against the development of AIS through modulation of the cerebral cyclic adenosine monophosphate (cAMP)/cyclic guanosine monophosphate (cGMP)/nitric oxide (NO) pathway. PDE5 inhibitors through mitigation of neuroinflammation may decrease the risk of long-term AIS-induced complications. PDE5 inhibitors may affect the hemodynamic properties and coagulation pathway which are associated with thrombotic complications in AIS. PDE5 inhibitors reduce activation of the pro-coagulant pathway and improve the microcirculatory level in patients with hemodynamic disturbances in AIS. PDE5 inhibitors mainly tadalafil and sildenafil improve clinical outcomes in AIS patients through the regulation of cerebral perfusion and cerebral blood flow (CBF). PDE5 inhibitors reduced thrombomodulin, P-selectin, and tissue plasminogen activator. Herein, PDE5 inhibitors may reduce activation of the pro-coagulant pathway and improve the microcirculatory level in patients with hemodynamic disturbances in AIS. In conclusion, PDE5 inhibitors may have potential roles in the management of AIS through modulation of CBF, cAMP/cGMP/NO pathway, neuroinflammation, and inflammatory signaling pathways. Preclinical and clinical studies are recommended in this regard.
Collapse
Affiliation(s)
- Raed AlRuwaili
- Department of Internal Medicine, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Mubarak Alruwaili
- Department of Internal Medicine, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Amira Karam Khalifa
- Department of Medical Pharmacology, Kasr El-Ainy School of Medicine, Cairo University, El Manial, Cairo, 11562, Egypt
- Lecturer of Medical Pharmacology, Nahda Faculty of Medicine, Beni Suef, Egypt
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
- AFNP Med, 1030, Vienna, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matrouh, 51744, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt
| |
Collapse
|
43
|
Kim TS, Moutsopoulos NM. Neutrophils and neutrophil extracellular traps in oral health and disease. Exp Mol Med 2024; 56:1055-1065. [PMID: 38689085 PMCID: PMC11148164 DOI: 10.1038/s12276-024-01219-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 05/02/2024] Open
Abstract
Neutrophils perform essential functions in antimicrobial defense and tissue maintenance at mucosal barriers. However, a dysregulated neutrophil response and, in particular, the excessive release of neutrophil extracellular traps (NETs) are implicated in the pathology of various diseases. In this review, we provide an overview of the basic concepts related to neutrophil functions, including NET formation, and discuss the mechanisms associated with NET activation and function in the context of the prevalent oral disease periodontitis.
Collapse
Affiliation(s)
- Tae Sung Kim
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Niki M Moutsopoulos
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
44
|
Crocetti L, Catarzi F, Giovannoni MP, Vergelli C, Bartolucci G, Pallecchi M, Paoli P, Rossi P, Lippi M, Schepetkin IA, Quinn MT, Guerrini G. Ebselen analogues with dual human neutrophil elastase (HNE) inhibitory and antiradical activity. RSC Med Chem 2024; 15:1247-1257. [PMID: 38665832 PMCID: PMC11042244 DOI: 10.1039/d3md00736g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/29/2024] [Indexed: 04/28/2024] Open
Abstract
Human neutrophil elastase (HNE) plays an essential role in host defense against bacteria but is also involved in several respiratory diseases. Recent reports suggest that compounds exhibiting a combination of HNE inhibitory activity with antiradical properties may be therapeutically beneficial for the treatment of respiratory diseases involving inflammation and oxidative stress. We report here the synthesis and biological evaluation of novel ebselen analogues exhibiting HNE inhibitory and antiradical activities. HNE inhibition was evaluated in an enzymatic system using human HNE, whereas antiradical activity was evaluated in a cell-based assay system using phorbol 12-myristate 13-acetate (PMA)-stimulated murine bone marrow leukocytes as the source of reactive oxygen species (ROS). HNE inhibition was due to the N-CO group targeting Ser195-OH at position 2 of the scaffold, while antiradical activity was due to the presence of the selenium atom. The most active compounds 4d, 4f, and 4j exhibited a good balance between anti-HNE (IC50 = 0.9-1.4 μM) and antiradical activity (IC50 = 0.05-0.7 μM). Additionally, the solid-state structure of 4d was determined and compared to that of the similar compound N-propionyl-1,2-benzisoselenazol-3(2H)-one.
Collapse
Affiliation(s)
- Letizia Crocetti
- NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence Via Ugo Schiff 6 50019 Sesto Fiorentino Italy +39 055 4573683
| | - Francesca Catarzi
- NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence Via Ugo Schiff 6 50019 Sesto Fiorentino Italy +39 055 4573683
| | - Maria Paola Giovannoni
- NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence Via Ugo Schiff 6 50019 Sesto Fiorentino Italy +39 055 4573683
| | - Claudia Vergelli
- NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence Via Ugo Schiff 6 50019 Sesto Fiorentino Italy +39 055 4573683
| | - Gianluca Bartolucci
- NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence Via Ugo Schiff 6 50019 Sesto Fiorentino Italy +39 055 4573683
| | - Marco Pallecchi
- NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence Via Ugo Schiff 6 50019 Sesto Fiorentino Italy +39 055 4573683
| | - Paola Paoli
- Department of Industrial Engineering, University of Florence Via Santa Marta 3 50139 Florence Italy
| | - Patrizia Rossi
- Department of Industrial Engineering, University of Florence Via Santa Marta 3 50139 Florence Italy
| | - Martina Lippi
- Department of Industrial Engineering, University of Florence Via Santa Marta 3 50139 Florence Italy
| | - Igor A Schepetkin
- Department of Microbiology and Cell Biology, Montana State University Bozeman MT 59717 USA
| | - Mark T Quinn
- Department of Microbiology and Cell Biology, Montana State University Bozeman MT 59717 USA
| | - Gabriella Guerrini
- NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence Via Ugo Schiff 6 50019 Sesto Fiorentino Italy +39 055 4573683
| |
Collapse
|
45
|
King PT, Dousha L. Neutrophil Extracellular Traps and Respiratory Disease. J Clin Med 2024; 13:2390. [PMID: 38673662 PMCID: PMC11051312 DOI: 10.3390/jcm13082390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/26/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Extracellular traps made by neutrophils (NETs) and other leukocytes such as macrophages and eosinophils have a key role in the initial immune response to infection but are highly inflammatory and may contribute to tissue damage. They are particularly relevant to lung disease, with the pulmonary anatomy facilitating their ability to fully extend into the airways/alveolar space. There has been a rapid expansion in the number of published studies demonstrating their role in a variety of important respiratory diseases including chronic obstructive pulmonary disease, cystic fibrosis, bronchiectasis, asthma, pneumonia, COVID-19, rhinosinusitis, interstitial lung disease and lung cancer. The expression of NETs and other traps is a specific process, and diagnostic tests need to differentiate them from other inflammatory pathways/causes of cell death that are also characterised by the presence of extracellular DNA. The specific targeting of this pathway by relevant therapeutics may have significant clinical benefit; however, current clinical trials/evidence are at a very early stage. This review will provide a broad overview of the role of NETs and their possible treatment in respiratory disease.
Collapse
Affiliation(s)
- Paul T. King
- Monash Lung, Sleep, Allergy and Immunology, Monash Medical Centre, 246 Clayton Rd, Clayton, Melbourne, VIC 3168, Australia;
- Department of Medicine, Monash University, Clayton, Melbourne, VIC 3168, Australia
| | - Lovisa Dousha
- Monash Lung, Sleep, Allergy and Immunology, Monash Medical Centre, 246 Clayton Rd, Clayton, Melbourne, VIC 3168, Australia;
- Department of Medicine, Monash University, Clayton, Melbourne, VIC 3168, Australia
| |
Collapse
|
46
|
Zhou Z, Zeng X, Liao J, Dong X, Deng Y, Wang Y, Zhou M. Immune Characteristic Genes and Neutrophil Immune Transformation Studies in Severe COVID-19. Microorganisms 2024; 12:737. [PMID: 38674681 PMCID: PMC11052247 DOI: 10.3390/microorganisms12040737] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/26/2024] [Accepted: 03/31/2024] [Indexed: 04/28/2024] Open
Abstract
As a disease causing a global pandemic, the progression of symptoms to severe disease in patients with COVID-19 often has adverse outcomes, but research on the immunopathology of COVID-19 severe disease remains limited. In this study, we used mRNA-seq data from the peripheral blood of COVID-19 patients to identify six COVID-19 severe immune characteristic genes (FPR1, FCGR2A, TLR4, S100A12, CXCL1, and L TF), and found neutrophils to be the critical immune cells in COVID-19 severe disease. Subsequently, using scRNA-seq data from bronchoalveolar lavage fluid from COVID-19 patients, neutrophil subtypes highly expressing the S100A family were found to be located at the end of cellular differentiation and tended to release neutrophil extracellular traps. Finally, it was also found that alveolar macrophages, macrophages, and monocytes with a high expression of COVID-19 severe disease immune characteristic genes may influence neutrophils through intercellular ligand-receptor pairs to promote neutrophil extracellular trap release. This study provides immune characteristic genes, critical immune pathways, and immune cells in COVID-19 severe disease, explores intracellular immune transitions of critical immune cells and pit-induced intercellular communication of immune transitions, and provides new biomarkers and potential drug targets for the treatment of patients with COVID-19 severe disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Yinghui Wang
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China; (Z.Z.); (X.Z.); (J.L.); (X.D.); (Y.D.)
| | - Meijuan Zhou
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China; (Z.Z.); (X.Z.); (J.L.); (X.D.); (Y.D.)
| |
Collapse
|
47
|
Rai P, Marano JM, Kang L, Coutermarsh-Ott S, Daamen AR, Lipsky PE, Weger-Lucarelli J. Obesity fosters severe disease outcomes in a mouse model of coronavirus infection associated with transcriptomic abnormalities. J Med Virol 2024; 96:e29587. [PMID: 38587204 DOI: 10.1002/jmv.29587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/15/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024]
Abstract
Obesity has been identified as an independent risk factor for severe outcomes in humans with coronavirus disease 2019 (COVID-19) and other infectious diseases. Here, we established a mouse model of COVID-19 using the murine betacoronavirus, mouse hepatitis virus 1 (MHV-1). C57BL/6 and C3H/HeJ mice exposed to MHV-1 developed mild and severe disease, respectively. Obese C57BL/6 mice developed clinical manifestations similar to those of lean controls. In contrast, all obese C3H/HeJ mice succumbed by 8 days postinfection, compared to a 50% mortality rate in lean controls. Notably, both lean and obese C3H/HeJ mice exposed to MHV-1 developed lung lesions consistent with severe human COVID-19, with marked evidence of diffuse alveolar damage (DAD). To identify early predictive biomarkers of worsened disease outcomes in obese C3H/HeJ mice, we sequenced RNA from whole blood 2 days postinfection and assessed changes in gene and pathway expression. Many pathways uniquely altered in obese C3H/HeJ mice postinfection aligned with those found in humans with severe COVID-19. Furthermore, we observed altered gene expression related to the unfolded protein response and lipid metabolism in infected obese mice compared to their lean counterparts, suggesting a role in the severity of disease outcomes. This study presents a novel model for studying COVID-19 and elucidating the mechanisms underlying severe disease outcomes in obese and other hosts.
Collapse
Affiliation(s)
- Pallavi Rai
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, VA-MD College of Veterinary Medicine, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, Virginia, USA
| | - Jeffrey M Marano
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, Virginia, USA
- Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Blacksburg, Virginia, USA
| | - Lin Kang
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, VA-MD College of Veterinary Medicine, Blacksburg, Virginia, USA
- Biomedical Affairs and Research, Edward Via College of Osteopathic Medicine, Monroe, Louisiana, USA
- College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana, USA
| | - Sheryl Coutermarsh-Ott
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, VA-MD College of Veterinary Medicine, Blacksburg, Virginia, USA
| | | | | | - James Weger-Lucarelli
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, VA-MD College of Veterinary Medicine, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
48
|
Cheng HP, Bao XW, Luo YY, Li YH, Zhou Y, Hua QZ, Qiu YJ, Liang XY, Huang YH, Liu W, Tang SY, Feng DD, Li C, Luo ZQ. Sulfasalazine ameliorates lipopolysaccharide-induced acute lung injury by inhibiting oxidative stress and nuclear factor-kappaB pathways. Int J Biochem Cell Biol 2024; 169:106530. [PMID: 38246263 DOI: 10.1016/j.biocel.2024.106530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/23/2024]
Abstract
Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) has a high mortality rate and incidence of complications. The pathophysiology of ALI/ARDS is still not fully understood. The lipopolysaccharide (LPS)-induced mouse model of ALI has been widely used to study human ALI/ARDS. Sulfasalazine (SASP) has antibacterial and anti-inflammatory effects and is used for treating inflammatory bowel and rheumatic diseases. However, the effect of SASP on LPS-induced ALI in mice has not yet been reported. Therefore, we aimed to investigate the effect of SASP on LPS-induced ALI in mice. Mice were intraperitoneally injected with SASP 2 h before or 4 h after LPS modeling. Pulmonary pathological damage was measured based on inflammatory factor expression (malondialdehyde and superoxide dismutase levels) in the lung tissue homogenate and alveolar lavage fluid. The production of inflammatory cytokines and occurrence of oxidative stress in the lungs induced by LPS were significantly mitigated after the prophylactic and long-term therapeutic administration of SASP, which ameliorated ALI caused by LPS. SASP reduced both the production of inflammatory cytokines and occurrence of oxidative stress in RAW264.7 cells, which respond to LPS. Moreover, its mechanism contributed to the suppression of NF-κB and nuclear translocation. In summary, SASP treatment ameliorates LPS-induced ALI by mediating anti-inflammatory and antioxidant effects, which may be attributed to the inhibition of NF-κB activation and promotion of antioxidant defenses. Thus, SASP may be a promising pharmacologic agent for ALI therapy.
Collapse
Affiliation(s)
- Hai-Peng Cheng
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xing-Wen Bao
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yong-Yu Luo
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yang-Hang Li
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yan Zhou
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Qing-Zhong Hua
- Xiangya Nursing School, Central South University, Changsha, Hunan, China
| | - Yu-Jia Qiu
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xin-Yue Liang
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yan-Hong Huang
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Wei Liu
- Xiangya Nursing School, Central South University, Changsha, Hunan, China
| | - Si-Yuan Tang
- Xiangya Nursing School, Central South University, Changsha, Hunan, China
| | - Dan-Dan Feng
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Chen Li
- Department of Physiology, Changzhi Medical College, Changzhi, Shanxi, China.
| | - Zi-Qiang Luo
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, Hunan, China.
| |
Collapse
|
49
|
Weber L, Torres A, Realini O, Bendek MJ, Mizgier ML, Brizuela C, Herrera D, González FE, Chaparro A. Proteomic Analysis of Salivary Extracellular Vesicles from COVID-19 Patients Reveals a Specific Anti-COVID-19 Response Protein Signature. Int J Mol Sci 2024; 25:3704. [PMID: 38612515 PMCID: PMC11011897 DOI: 10.3390/ijms25073704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 04/14/2024] Open
Abstract
Despite the understanding of the coronavirus disease-19 (COVID-19), the role of salivary extracellular vesicles (sEVs) in COVID-19 remains unclear. Exploring the proteomic cargo of sEVs could prove valuable for diagnostic and prognostic purposes in assessing COVID-19. The proteomic cargo of sEVs from COVID-19(+) subjects and their healthy close contacts (HCC) was explored. sEVs were isolated by ultracentrifugation from unstimulated saliva samples, and subsequently characterized through nanoparticle tracking, transmission electron microscopy, and Western blot analyses. The proteomic cargo of sEVs was processed by LC-MS/MS. sEVs were morphologically compatible with EVs, with the presence of Syntenin-1 and CD81 EV markers. The sEV pellet showed 1417 proteins: 1288 in COVID-19(+) cases and 1382 in HCC. In total, 124 proteins were differentially expressed in sEVs from COVID-19(+) subjects. "Coronavirus-disease response", "complement and coagulation cascades", and "PMN extracellular trap formation" were the most enriched KEGG pathways in COVID-19(+) cases. The most represented biological processes were "Hemoglobin and haptoglobin binding" and "oxygen carrier activity", and the best-denoted molecular functions were "regulated exocytosis and secretion" and "leucocyte and PMN mediated immunity". sEV proteomic cargo in COVID-19(+) suggests activity related to immune response processes, oxygen transport, and antioxidant mechanisms. In contrast, in HCC, sEV signature profiles are mainly associated with epithelial homeostasis.
Collapse
Affiliation(s)
- Laura Weber
- Department of Pathology and Conservative Dentistry, Faculty of Dentistry, Universidad de los Andes, Santiago 7620060, Chile; (L.W.); (M.J.B.); (M.L.M.); (C.B.)
| | - Alfredo Torres
- Laboratory of Experimental Immunology & Cancer, Faculty of Dentistry, Universidad de Chile, Santiago 8380492, Chile;
- Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago 8380492, Chile
| | - Ornella Realini
- Centre for Biomedical Research and Innovation (CIIB), Periodontal Research Laboratory, Universidad de los Andes, Santiago 7620060, Chile;
| | - María José Bendek
- Department of Pathology and Conservative Dentistry, Faculty of Dentistry, Universidad de los Andes, Santiago 7620060, Chile; (L.W.); (M.J.B.); (M.L.M.); (C.B.)
- Centre for Biomedical Research and Innovation (CIIB), Periodontal Research Laboratory, Universidad de los Andes, Santiago 7620060, Chile;
| | - María Luisa Mizgier
- Department of Pathology and Conservative Dentistry, Faculty of Dentistry, Universidad de los Andes, Santiago 7620060, Chile; (L.W.); (M.J.B.); (M.L.M.); (C.B.)
- Centre for Biomedical Research and Innovation (CIIB), Periodontal Research Laboratory, Universidad de los Andes, Santiago 7620060, Chile;
| | - Claudia Brizuela
- Department of Pathology and Conservative Dentistry, Faculty of Dentistry, Universidad de los Andes, Santiago 7620060, Chile; (L.W.); (M.J.B.); (M.L.M.); (C.B.)
| | - David Herrera
- Department of Periodontology, Faculty of Dentistry, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| | - Fermín E. González
- Laboratory of Experimental Immunology & Cancer, Faculty of Dentistry, Universidad de Chile, Santiago 8380492, Chile;
- Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago 8380492, Chile
| | - Alejandra Chaparro
- Department of Pathology and Conservative Dentistry, Faculty of Dentistry, Universidad de los Andes, Santiago 7620060, Chile; (L.W.); (M.J.B.); (M.L.M.); (C.B.)
- Centre for Biomedical Research and Innovation (CIIB), Periodontal Research Laboratory, Universidad de los Andes, Santiago 7620060, Chile;
| |
Collapse
|
50
|
Flora C, Olesnavich M, Zuo Y, Sandford E, Madhukar R, Rozwadowski M, Sugur K, Ly A, Canbaz AA, Shedeck A, Li G, Geer MJ, Yanik GA, Ghosh M, Frame DG, Bonifant CL, Jain T, Knight JS, Choi SW, Tewari M. Longitudinal plasma proteomics in CAR T-cell therapy patients implicates neutrophils and NETosis in the genesis of CRS. Blood Adv 2024; 8:1422-1426. [PMID: 38266157 PMCID: PMC10950819 DOI: 10.1182/bloodadvances.2023010728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/26/2024] Open
Affiliation(s)
- Christopher Flora
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, MI
| | - Mary Olesnavich
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, MI
| | - Yu Zuo
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, Ann Arbor, MI
| | - Erin Sandford
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, MI
| | - Rashmi Madhukar
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, MI
| | - Michelle Rozwadowski
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Michigan, Ann Arbor, MI
| | - Kavya Sugur
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, Ann Arbor, MI
| | - Andrew Ly
- Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ata Alpay Canbaz
- Division of Hematological Malignancies and Bone Marrow Transplantation, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Audra Shedeck
- Division of Hematological Malignancies and Bone Marrow Transplantation, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Gen Li
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI
| | - Marcus J. Geer
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, MI
| | - Gregory A. Yanik
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Michigan, Ann Arbor, MI
| | - Monalisa Ghosh
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, MI
| | - David G. Frame
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI
| | - Challice L. Bonifant
- Division of Hematological Malignancies and Bone Marrow Transplantation, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Tania Jain
- Johns Hopkins University School of Medicine, Baltimore, MD
- Division of Hematological Malignancies and Bone Marrow Transplantation, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jason S. Knight
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, Ann Arbor, MI
| | - Sung Won Choi
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Michigan, Ann Arbor, MI
- Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI
| | - Muneesh Tewari
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, MI
- Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI
- Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI
- VA Ann Arbor Healthcare System, Ann Arbor, MI
| |
Collapse
|