1
|
Gilbert KM, LeCates RF, Galbraith AA, Maglione PJ, Argetsinger S, Rider NL, Farmer JR, Ong MS. Diagnostic disparities in inborn errors of immunity: From clinical suspicion to diagnosis. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2025; 4:100407. [PMID: 39991621 PMCID: PMC11847075 DOI: 10.1016/j.jacig.2025.100407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/23/2024] [Accepted: 11/16/2024] [Indexed: 02/25/2025]
Abstract
Background Emerging evidence suggests that inborn errors of immunity (IEI) are underdiagnosed among underserved populations. However, there remains a lack of national studies evaluating diagnostic disparities in IEI. Objective We examined disparities in the timely IEI diagnosis and related health outcomes. Methods A retrospective analysis was performed of a US national claims database (years 2007 to 2021). Participants included patients diagnosed with an "unspecified immune deficiency" (uID) and presented with IEI-related symptoms, who later received an IEI diagnosis (n = 1429). We quantified the diagnostic interval from clinical suspicion (uID) to IEI diagnosis and examined its association with sociodemographic factors and related health outcomes. Results The median (interquartile range) diagnostic interval was 369 (126-808) days. Diagnostic interval was 14% longer among patients residing in predominantly non-White neighborhoods, compared with those in predominantly White neighborhoods (P = .04), despite having more severe IEI-related symptoms at uID diagnosis and significantly more health care encounters for pneumonia (incidence rate ratio, 2.24; 95% confidence interval, 1.40-3.70) and sepsis (incidence rate ratio, 2.15; 95% confidence interval, 1.21-3.99) in the year after uID diagnosis. Residence in neighborhoods with greater deprivation was also associated with more severe IEI-related symptoms and greater health care utilization in the year after uID diagnosis. Older age was associated with longer diagnostic interval (P < .001). Longer diagnostic interval was associated with a longer interval to receiving IgR therapy (hazard ratio, 0.64; 95% confidence interval, 0.49-0.83). Conclusion We observed significant racial and socioeconomic disparities in the timeliness of IEI diagnosis and IEI-related outcomes. Further studies are needed to address the underlying factors contributing to diagnostic inequity.
Collapse
Affiliation(s)
- Karen M. Gilbert
- Department of Population Medicine, Harvard Pilgrim Health Care Institute, Boston, Mass
| | - Robert F. LeCates
- Department of Population Medicine, Harvard Pilgrim Health Care Institute, Boston, Mass
| | - Alison A. Galbraith
- Pulmonary Center and Section of Pulmonary, Allergy, Sleep and Critical Care, Boston, Mass
| | - Paul J. Maglione
- Boston University Chobanian and Avedisian School of Medicine and Boston Medical Center, Boston, Mass
| | - Stephanie Argetsinger
- Department of Population Medicine, Harvard Pilgrim Health Care Institute, Boston, Mass
| | - Nicholas L. Rider
- Department of Health Systems & Implementation Science, Virginia Tech Carilion School of Medicine, Roanoke, Va
| | - Jocelyn R. Farmer
- Program in Clinical Immunodeficiency, Division of Allergy & Immunology, Beth Israel Lahey Health, Burlington, Mass
| | - Mei-Sing Ong
- Department of Population Medicine, Harvard Pilgrim Health Care Institute, Boston, Mass
- Harvard Medical School, Boston, Mass
| |
Collapse
|
2
|
Sertori R, Truong B, Singh MK, Shinton S, Price R, Sharo A, Shultes P, Sunderam U, Rana S, Srinivasan R, Datta S, Font-Burgada J, Brenner SE, Puck JM, Wiest DL. Disruption of the moonlighting function of CTF18 in a patient with T-lymphopenia. Front Immunol 2025; 16:1539848. [PMID: 40028343 PMCID: PMC11868726 DOI: 10.3389/fimmu.2025.1539848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 01/22/2025] [Indexed: 03/05/2025] Open
Abstract
Introduction Newborn screening for immunodeficiency has led to the identification of numerous cases for which the causal etiology is unknown. Methods Here we report the diagnosis of T lymphopenia of unknown etiology in a male proband. Whole exome sequencing (WES) was employed to nominate candidate variants, which were then analyzed functionally in zebrafish and in mice bearing orthologous mutations. Results WES revealed missense mutations in CHTF18 that were inherited in an autosomal recessive manner. CTF18, encoded by the CHTF18 gene, is a component of a secondary clamp loader, which is primarily thought to function by promoting DNA replication. We determined that the patient's variants in CHTF18 (CTF18 R751W and E851Q) were damaging to function and severely attenuated the capacity of CTF18 to support hematopoiesis and lymphoid development, strongly suggesting that they were responsible for his T lymphopenia; however, the function of CTF18 appeared to be unrelated to its role as a clamp loader. DNA-damage, expected when replication is impaired, was not evident by expression profiling in murine Chtf18 mutant hematopoietic stem and progenitor cells (HSPC), nor was development of Ctf18-deficient progenitors rescued by p53 loss. Instead, we observed an expression signature suggesting disruption of HSPC positioning and migration. Indeed, the positioning of HSPC in ctf18 morphant zebrafish embryos was perturbed, suggesting that HSPC function was impaired through disrupted positioning in hematopoietic organs. Discussion Accordingly, we propose that T lymphopenia in our patient resulted from disturbed cell-cell contacts and migration of HSPC, caused by a non-canonical function of CHTF18 in regulating gene expression.
Collapse
Affiliation(s)
- Robert Sertori
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Billy Truong
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Manoj K. Singh
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Susan Shinton
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Rachael Price
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Andrew Sharo
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Paulameena Shultes
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Uma Sunderam
- Innovation Labs, Tata Consultancy Services, Hyderabad, India
| | - Sadhna Rana
- Innovation Labs, Tata Consultancy Services, Hyderabad, India
| | | | - Sutapa Datta
- Innovation Labs, Tata Consultancy Services, Hyderabad, India
| | - Joan Font-Burgada
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Steven E. Brenner
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Jennifer M. Puck
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
- Department of Pediatrics, University of California, San Francisco (UCSF) and UCSF Benioff Children’s Hospital, San Francisco, CA, United States
| | - David L. Wiest
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA, United States
| |
Collapse
|
3
|
Gilbert KM, McLaughlin HM, Farmer JR, Ong MS. Disparities in Genetic Testing for Inborn Errors of Immunity. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2025; 13:388-395.e3. [PMID: 39579980 PMCID: PMC11807750 DOI: 10.1016/j.jaip.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/30/2024] [Accepted: 11/13/2024] [Indexed: 11/25/2024]
Abstract
BACKGROUND Inequities in genetic testing have been documented in a range of diseases, and no-charge genetic testing programs have been proposed as a means to enhance access. However, no studies have examined disparities in genetic testing for inborn errors of immunity (IEI) and the impact of no-charge programs on testing equity. OBJECTIVE To examine socioeconomic, geographic, and racial disparities in the uptake of genetic testing for IEI in the United States and the impact of a no-charge sponsored program on testing equity. METHODS This was a retrospective cohort analysis of (1) a national claims database capturing individuals with IEI (n = 18,603), and (2) data from a clinical genetic testing laboratory capturing patients with IEI participating in a no-charge sponsored program (n = 6,681) and a non-sponsored program (n = 29,579) for IEI genetic testing. RESULTS Among patients with IEI captured in the claims database, those residing in areas of greater deprivation (odds ratio [OR] = 0.95; 95% CI, 0.92-0.98), rural areas (OR = 0.82; 95% CI, 0.71-0.96), and non-White neighborhoods (OR = 0.89, 95% CI 0.81-0.98) were less likely to undergo genetic testing. Participants in the sponsored IEI genetic testing program lived in areas of greater deprivation compared with the non-sponsored program (median, 46 vs 42; P < .001). However, historically excluded racial groups were underrepresented in both the sponsored and non-sponsored programs relative to disease burden. CONCLUSIONS We found significant disparities in genetic testing for IEI. Although eliminating the financial barriers to testing reduced socioeconomic disparities in genetic testing for IEI, racial disparities persisted. Further research is needed to address barriers to testing among underserved populations.
Collapse
Affiliation(s)
- Karen M Gilbert
- Department of Population Medicine, Harvard Pilgrim Health Care Institute, Boston, Mass.
| | | | - Jocelyn R Farmer
- Clinical Immunodeficiency Program of Beth Israel Lahey Health, Division of Allergy and Immunology, Lahey Hospital and Medical Center, Burlington, Mass
| | - Mei-Sing Ong
- Department of Population Medicine, Harvard Pilgrim Health Care Institute and Harvard Medical School, Boston, Mass
| |
Collapse
|
4
|
Hiroki H, Moriya K, Uchiyama T, Hirose F, Endo A, Sato I, Tomaru Y, Sawakami K, Shimizu N, Ohnishi H, Morio T, Imai K. A high-throughput TREC- and KREC-based newborn screening for severe inborn errors of immunity. Pediatr Int 2025; 67:e15872. [PMID: 40121561 DOI: 10.1111/ped.15872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/05/2024] [Accepted: 09/16/2024] [Indexed: 03/25/2025]
Abstract
INTRODUCTION Severe combined immunodeficiency (SCID) due to T-cell deficiency is the most severe form of inborn error of immunity (IEI). It frequently leads to severe and recurrent infections and the first infection or live vaccines can sometimes be fatal. Patients with B-cell deficiency (BCD), such as X-linked agammaglobulinaemia (XLA), also suffer from severe or recurrent infections. Thus, early diagnosis via newborn screening (NBS) is suitable for these types of diseases. We developed a lyophylized TaqMan-based quantitative polymerase chain reaction (qPCR) kit with primers and probes for the simultaneous detection of T-cell receptor excision circles (TREC) and κ-deleting recombination excision circles (KREC). We also developed a fully automated DNA extraction and purification process using Magtration technology from dried blood spots (DBS), enabling high-throughput analysis METHODS: We examined 15,258 stored DBS collected from 2014 to 2015 by this method. Newborn screening samples from children with a known SCID, XLA or ataxia-telangiectasia (AT) were also examined as positive controls. RESULTS RPPH1 (internal control), TREC, and KREC all had near-normal distributions. One specimen was below the cut-off for TREC (0.00657%) after exclusion of 36 specimens due to the failure of DNA extraction (0.23%). The TREC levels in the patients with AT and SCID, and KREC levels in the patients with AT and XLA were all below cut-off or absent. CONCLUSIONS This assay would allow the establishment of qPCR-based NBS in unfamiliar laboratories leading to the early diagnosis of SCID and BCD.
Collapse
Affiliation(s)
- Haruka Hiroki
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kunihiko Moriya
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
| | - Toru Uchiyama
- Department of Human Genetics, National Center for Child Health and Development, Tokyo, Japan
| | - Fumi Hirose
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
| | - Akifumi Endo
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Iori Sato
- Shimadzu Diagnostics Co., Ltd., Yuki-shi, Ibaraki, Japan
| | - Yasuhiro Tomaru
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Tsukuba Oligo Service Co., Ltd, Ushiku, Ibaraki, Japan
| | | | - Norio Shimizu
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hidenori Ohnishi
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu-Shi, Gifu, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kohsuke Imai
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
| |
Collapse
|
5
|
Gharagozlou S, Wright NM, Murguia-Favela L, Eshleman J, Midgley J, Saygili S, Mathew G, Lesmana H, Makkoukdji N, Gans M, Saba JD. Sphingosine phosphate lyase insufficiency syndrome as a primary immunodeficiency state. Adv Biol Regul 2024; 94:101058. [PMID: 39454238 DOI: 10.1016/j.jbior.2024.101058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
Sphingosine phosphate lyase insufficiency syndrome (SPLIS) is a genetic disease associated with renal, endocrine, neurological, skin and immune defects. SPLIS is caused by inactivating mutations in SGPL1, which encodes sphingosine phosphate lyase (SPL). SPL catalyzes the irreversible degradation of the bioactive sphingolipid sphingosine-1-phosphate (S1P), a key regulator of lymphocyte egress. The SPL reaction represents the only exit point of sphingolipid metabolism, and SPL insufficiency causes widespread sphingolipid derangements that could additionally contribute to immunodeficiency. Herein, we review SPLIS, the sphingolipid metabolic pathway, and various roles sphingolipids play in immunity. We then explore SPLIS-related immunodeficiency by analyzing data available in the published literature supplemented by medical record reviews in ten SPLIS children. We found 93% of evaluable SPLIS patients had documented evidence of immunodeficiency. Many of the remainder of cases were unevaluable due to lack of available immunological data. Most commonly, SPLIS patients exhibited lymphopenia and T cell-specific lymphopenia, consistent with the established role of the S1P/S1P1/SPL axis in lymphocyte egress. However, low B and NK cell counts, hypogammaglobulinemia, and opportunistic infections with bacterial, viral and fungal pathogens were observed. Diminished responses to childhood vaccinations were less frequently observed. Screening blood tests quantifying recent thymic emigrants identified some lymphopenic SPLIS patients in the newborn period. Lymphopenia has been reported to improve after cofactor supplementation in some SPLIS patients, indicating upregulation of SPL activity. A variety of treatments including immunoglobulin replacement, prophylactic antimicrobials and special preparation of blood products prior to transfusion have been employed in SPLIS. The diverse immune consequences in SPLIS patients suggest that aberrant S1P signaling may not fully explain the extent of immunodeficiency. Further study will be required to fully elucidate the complex mechanisms underlying SPLIS immunodeficiency and determine the most effective prophylaxis against infection.
Collapse
Affiliation(s)
- Saber Gharagozlou
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA.
| | - NicolaA M Wright
- Department of Pediatrics, Cummings School of Medicine, University of Calgary, Alberta, Canada.
| | - Luis Murguia-Favela
- Department of Pediatrics, Cummings School of Medicine, University of Calgary, Alberta, Canada.
| | - Juliette Eshleman
- Department of Pediatrics, Cummings School of Medicine, University of Calgary, Alberta, Canada.
| | - Julian Midgley
- Department of Pediatrics, Cummings School of Medicine, University of Calgary, Alberta, Canada.
| | - Seha Saygili
- Department of Pediatric Nephrology, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Turkey.
| | - Georgie Mathew
- Division of Pediatric Nephrology, Christian Medical College, Vellore, India.
| | - Harry Lesmana
- Department of Medical Genetics and Genomics, Department of Pediatric Hematology/Oncology and BMT, Cleveland Clinic, Cleveland, OH, USA.
| | - Nadia Makkoukdji
- Department of Pediatrics, Division of Allergy & Immunology University of Miami Miller School of Medicine/Jackson Memorial Hospital, Miami, FL, USA.
| | - Melissa Gans
- Department of Pediatrics, Division of Allergy & Immunology University of Miami Miller School of Medicine/Jackson Memorial Hospital, Miami, FL, USA.
| | - Julie D Saba
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
6
|
Bzdok J, Czibere L, Burggraf S, Pauly N, Maier EM, Röschinger W, Becker M, Durner J. A Modular Genetic Approach to Newborn Screening from Spinal Muscular Atrophy to Sickle Cell Disease-Results from Six Years of Genetic Newborn Screening. Genes (Basel) 2024; 15:1467. [PMID: 39596667 PMCID: PMC11593867 DOI: 10.3390/genes15111467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES Genetic newborn screening (NBS) has already entered the phase of common practice in many countries. In Germany, spinal muscular atrophy (SMA), severe combined immunodeficiency (SCID) and sickle cell disease (SCD) are currently a mandatory part of NBS. Here, we describe the experience of six years of genetic NBS including the prevalence of those three diseases in Germany. METHODS Samples and nucleic acids were extracted from dried blood spot cards, commonly used for NBS. A qPCR assay was used to detect disease-causing variants for SMA and SCD, and the detection of T-cell receptor excision circles (TRECs) was performed for SCID screening. RESULTS The results of the NBS of over 1 million newborns for SMA, approximately 770,000 for SCID and over 410,000 for SCD are discussed in detail. In these newborns, we have identified 121 cases of SMA, 15 cases of SCID and syndrome-based immunodeficiencies and 77 cases of SCD or β-thalassemia. CONCLUSIONS The flexibility of multiplex qPCR is assessed as an effective tool for incorporating different molecular genetic markers for screening. The processing of dried blood spot (DBS) filter cards for molecular genetic assays and the assays are described in detail; turn-around times and cost estimations are included to give an insight into the processes and discuss further options for optimization. The identified cases are in the range expected for the total number of screened newborns, but present a more exact view on the actual prevalences for Germany.
Collapse
Affiliation(s)
- Jessica Bzdok
- Department of Operative/Restorative Dentistry, Periodontology and Pedodontics, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
- Laboratory Labor Becker MVZ eGbR, 81671 Munich, Germany
| | | | | | - Natalie Pauly
- TIB Molbiol Syntheselabor GmbH, 12103 Berlin, Germany
| | | | | | - Marc Becker
- Department of Operative/Restorative Dentistry, Periodontology and Pedodontics, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
- Laboratory Labor Becker MVZ eGbR, 81671 Munich, Germany
| | - Jürgen Durner
- Department of Operative/Restorative Dentistry, Periodontology and Pedodontics, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
- Laboratory Labor Becker MVZ eGbR, 81671 Munich, Germany
| |
Collapse
|
7
|
Bremer SJ, Boxnick A, Glau L, Biermann D, Joosse SA, Thiele F, Billeb E, May J, Kolster M, Hackbusch R, Fortmann MI, Kozlik-Feldmann R, Hübler M, Tolosa E, Sachweh JS, Gieras A. Thymic Atrophy and Immune Dysregulation in Infants with Complex Congenital Heart Disease. J Clin Immunol 2024; 44:69. [PMID: 38393459 PMCID: PMC10891212 DOI: 10.1007/s10875-024-01662-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
Congenital heart disease (CHD) is the most common birth defect, and up to 50% of infants with CHD require cardiovascular surgery early in life. Current clinical practice often involves thymus resection during cardiac surgery, detrimentally affecting T-cell immunity. However, epidemiological data indicate that CHD patients face an elevated risk for infections and immune-mediated diseases, independent of thymectomy. Hence, we examined whether the cardiac defect impacts thymus function in individuals with CHD. We investigated thymocyte development in 58 infants categorized by CHD complexity. To assess the relationship between CHD complexity and thymic function, we analyzed T-cell development, thymic output, and biomarkers linked to cardiac defects, stress, or inflammation. Patients with highly complex CHD exhibit thymic atrophy, resulting in low frequencies of recent thymic emigrants in peripheral blood, even prior to thymectomy. Elevated plasma cortisol levels were detected in all CHD patients, while high NT-proBNP and IL-6 levels were associated with thymic atrophy. Our findings reveal an association between complex CHD and thymic atrophy, resulting in reduced thymic output. Consequently, thymus preservation during cardiovascular surgery could significantly enhance immune function and the long-term health of CHD patients.
Collapse
Affiliation(s)
- Sarah-Jolan Bremer
- Department of Immunology, University Medical Center Hamburg-Eppendorf, N27, Martinistraße 52, 20246, Hamburg, Germany
- University Children's Research, UCR@Kinder-UKE, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Annika Boxnick
- Department of Immunology, University Medical Center Hamburg-Eppendorf, N27, Martinistraße 52, 20246, Hamburg, Germany
| | - Laura Glau
- Department of Immunology, University Medical Center Hamburg-Eppendorf, N27, Martinistraße 52, 20246, Hamburg, Germany
| | - Daniel Biermann
- Congenital and Pediatric Heart Surgery, Children's Heart Clinic, University Heart & Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Simon A Joosse
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University, Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friederike Thiele
- Department of Immunology, University Medical Center Hamburg-Eppendorf, N27, Martinistraße 52, 20246, Hamburg, Germany
| | - Elena Billeb
- Department of Immunology, University Medical Center Hamburg-Eppendorf, N27, Martinistraße 52, 20246, Hamburg, Germany
- University Children's Research, UCR@Kinder-UKE, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jonathan May
- Department of Immunology, University Medical Center Hamburg-Eppendorf, N27, Martinistraße 52, 20246, Hamburg, Germany
| | - Manuela Kolster
- Department of Immunology, University Medical Center Hamburg-Eppendorf, N27, Martinistraße 52, 20246, Hamburg, Germany
| | - Romy Hackbusch
- Department of Immunology, University Medical Center Hamburg-Eppendorf, N27, Martinistraße 52, 20246, Hamburg, Germany
| | | | - Rainer Kozlik-Feldmann
- Department of Pediatric Cardiology, University Heart & Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Hübler
- Congenital and Pediatric Heart Surgery, Children's Heart Clinic, University Heart & Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Eva Tolosa
- Department of Immunology, University Medical Center Hamburg-Eppendorf, N27, Martinistraße 52, 20246, Hamburg, Germany
| | - Jörg Siegmar Sachweh
- Congenital and Pediatric Heart Surgery, Children's Heart Clinic, University Heart & Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Anna Gieras
- Department of Immunology, University Medical Center Hamburg-Eppendorf, N27, Martinistraße 52, 20246, Hamburg, Germany.
| |
Collapse
|
8
|
Ong MS, Rider NL, Stein S, Maglione PJ, Galbraith A, DiGiacomo DV, Farmer JR. Racial and ethnic disparities in early mortality among patients with inborn errors of immunity. J Allergy Clin Immunol 2024; 153:335-340.e1. [PMID: 37802474 PMCID: PMC10872997 DOI: 10.1016/j.jaci.2023.09.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/08/2023] [Accepted: 09/28/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND Racial and ethnic disparities in life expectancy in the United States have been widely documented. To date, there remains a paucity of similar data in patients with inborn errors of immunity (IEIs). OBJECTIVE Our aim was to examine racial and ethnic differences in mortality due to an IEI in the United States. METHODS We analyzed National Center for Health Statistics national mortality data from 2003 to 2018. We quantified age-adjusted death rate and age-specific death rate as a result of an IEI for each major racial and ethnic group in the United States and examined the association of race and ethnicity with death at a younger age. RESULTS From 2003 to 2018, IEIs were reported as the underlying or contributing cause of death in 14,970 individuals nationwide. The age-adjusted death rate was highest among Black patients (4.25 per 1,000,000 person years), compared with 2.01, 1.71, 1.50, and 0.92 per 1,000,000 person years for White, American Indian/Alaska Native, Hispanic, and Asian/Pacific Islander patients, respectively. The odds of death before age 65 years were greatest among Black patients (odds ratio [OR] = 5.15 [95% CI = 4.61-5.76]), followed by American Indian/Alaska Native patients (OR = 3.58 [95% CI = 2.30-5.82]), compared with White patients. The odds of death before age 24 years were greater among Hispanic patients than among non-Hispanic patients (OR = 3.60 [95% CI = 3.08-4.18]). CONCLUSION Our study highlights racial and ethnic disparities in mortality due to an IEI and the urgent need to further identify and systematically remove barriers in care for historically marginalized patients with IEIs.
Collapse
Affiliation(s)
- Mei-Sing Ong
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Mass.
| | - Nicholas L Rider
- Division of Clinical Informatics, Pediatrics, Allergy and Immunology, Liberty University College of Osteopathic Medicine and Collaborative Health Partners, Lynchburg, Va
| | - Sarah Stein
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Mass
| | - Paul J Maglione
- Pulmonary Center and Section of Pulmonary, Allergy, Sleep and Critical Care, Boston University Chobanian and Avedisian School of Medicine and Boston Medical Center, Boston, Mass
| | - Alison Galbraith
- Department of Pediatrics, Boston University Chobanian and Avedisian School of Medicine and Boston Medical Center, Boston, Mass
| | - Daniel V DiGiacomo
- Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Massachusetts General Hospital, Boston, Mass
| | - Jocelyn R Farmer
- Beth Israel Lahey Health, Division of Allergy and Inflammation, Harvard Medical School, Boston, Mass
| |
Collapse
|
9
|
Camici M, Garcia-Gil M, Allegrini S, Pesi R, Bernardini G, Micheli V, Tozzi MG. Inborn Errors of Purine Salvage and Catabolism. Metabolites 2023; 13:787. [PMID: 37512494 PMCID: PMC10383617 DOI: 10.3390/metabo13070787] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Cellular purine nucleotides derive mainly from de novo synthesis or nucleic acid turnover and, only marginally, from dietary intake. They are subjected to catabolism, eventually forming uric acid in humans, while bases and nucleosides may be converted back to nucleotides through the salvage pathways. Inborn errors of the purine salvage pathway and catabolism have been described by several researchers and are usually referred to as rare diseases. Since purine compounds play a fundamental role, it is not surprising that their dysmetabolism is accompanied by devastating symptoms. Nevertheless, some of these manifestations are unexpected and, so far, have no explanation or therapy. Herein, we describe several known inborn errors of purine metabolism, highlighting their unexplained pathological aspects. Our intent is to offer new points of view on this topic and suggest diagnostic tools that may possibly indicate to clinicians that the inborn errors of purine metabolism may not be very rare diseases after all.
Collapse
Affiliation(s)
- Marcella Camici
- Unità di Biochimica, Dipartimento di Biologia, Università di Pisa, Via San Zeno 51, 56127 Pisa, Italy
| | - Mercedes Garcia-Gil
- Unità di Fisiologia Generale, Dipartimento di Biologia, Università di Pisa, Via San Zeno 31, 56127 Pisa, Italy
- CISUP, Centro per l'Integrazione Della Strumentazione Dell'Università di Pisa, 56127 Pisa, Italy
- Centro di Ricerca Interdipartimentale Nutrafood "Nutraceuticals and Food for Health", Università di Pisa, 56126 Pisa, Italy
| | - Simone Allegrini
- Unità di Biochimica, Dipartimento di Biologia, Università di Pisa, Via San Zeno 51, 56127 Pisa, Italy
- CISUP, Centro per l'Integrazione Della Strumentazione Dell'Università di Pisa, 56127 Pisa, Italy
- Centro di Ricerca Interdipartimentale Nutrafood "Nutraceuticals and Food for Health", Università di Pisa, 56126 Pisa, Italy
| | - Rossana Pesi
- Unità di Biochimica, Dipartimento di Biologia, Università di Pisa, Via San Zeno 51, 56127 Pisa, Italy
| | - Giulia Bernardini
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Vanna Micheli
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
- LND Famiglie Italiane ODV-Via Giovanetti 15-20, 16149 Genova, Italy
| | - Maria Grazia Tozzi
- Unità di Biochimica, Dipartimento di Biologia, Università di Pisa, Via San Zeno 51, 56127 Pisa, Italy
| |
Collapse
|
10
|
Slatter M, Lum SH. Personalized hematopoietic stem cell transplantation for inborn errors of immunity. Front Immunol 2023; 14:1162605. [PMID: 37090739 PMCID: PMC10113466 DOI: 10.3389/fimmu.2023.1162605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/20/2023] [Indexed: 04/08/2023] Open
Abstract
Patients with inborn errors of immunity (IEI) have been transplanted for more than 50 years. Many long-term survivors have ongoing medical issues showing the need for further improvements in how hematopoietic stem cell transplantation (HSCT) is performed if patients in the future are to have a normal quality of life. Precise genetic diagnosis enables early treatment before recurrent infection, autoimmunity and organ impairment occur. Newborn screening for severe combined immunodeficiency (SCID) is established in many countries. For newly described disorders the decision to transplant is not straight-forward. Specific biologic therapies are effective for some diseases and can be used as a bridge to HSCT to improve outcome. Developments in reduced toxicity conditioning and methods of T-cell depletion for mismatched donors have made transplant an option for all eligible patients. Further refinements in conditioning plus precise graft composition and additional cellular therapy are emerging as techniques to personalize the approach to HSCT for each patient.
Collapse
Affiliation(s)
- Mary Slatter
- Paediatric Immunology and HSCT, Newcastle University, Newcastle upon Tyne, United Kingdom
- Translational and Clinical Research Institute, Great North Children’s Hospital, Newcastle upon Tyne, United Kingdom
| | - Su Han Lum
- Paediatric Immunology and HSCT, Newcastle University, Newcastle upon Tyne, United Kingdom
- Translational and Clinical Research Institute, Great North Children’s Hospital, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
11
|
Pavel-Dinu M, Borna S, Bacchetta R. Rare immune diseases paving the road for genome editing-based precision medicine. Front Genome Ed 2023; 5:1114996. [PMID: 36846437 PMCID: PMC9945114 DOI: 10.3389/fgeed.2023.1114996] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) genome editing platform heralds a new era of gene therapy. Innovative treatments for life-threatening monogenic diseases of the blood and immune system are transitioning from semi-random gene addition to precise modification of defective genes. As these therapies enter first-in-human clinical trials, their long-term safety and efficacy will inform the future generation of genome editing-based medicine. Here we discuss the significance of Inborn Errors of Immunity as disease prototypes for establishing and advancing precision medicine. We will review the feasibility of clustered regularly interspaced short palindromic repeats-based genome editing platforms to modify the DNA sequence of primary cells and describe two emerging genome editing approaches to treat RAG2 deficiency, a primary immunodeficiency, and FOXP3 deficiency, a primary immune regulatory disorder.
Collapse
Affiliation(s)
- Mara Pavel-Dinu
- Division of Hematology-Oncology-Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford Medical School, Palo Alto, CA, United States
| | - Simon Borna
- Division of Hematology-Oncology-Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford Medical School, Palo Alto, CA, United States
| | - Rosa Bacchetta
- Division of Hematology-Oncology-Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford Medical School, Palo Alto, CA, United States
- Center for Definitive and Curative Medicine, Stanford University School of Medicine, Palo Alto, CA, United States
| |
Collapse
|
12
|
Cooper MA. Early Is the Key for Treatment of Severe Combined Immunodeficiency. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:219-220. [PMID: 36649581 DOI: 10.4049/jimmunol.2200840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Abstract
This Pillars of Immunology article is a commentary on “Hematopoietic stem cell transplantation for severe combined immunodeficiency in the neonatal period leads to superior thymic output and improved survival,” a pivotal article written by L. A. Myers, D. D. Patel, J. M. Puck, and R. H. Buckley, and published in Blood, in 2002. https://pubmed.ncbi.nlm.nih.gov/11806989/.
Collapse
Affiliation(s)
- Megan A Cooper
- Department of Pediatrics, Division of Rheumatology & Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO; and Department of Pathology & Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO
| |
Collapse
|
13
|
Dvorak CC, Haddad E, Heimall J, Dunn E, Buckley RH, Kohn DB, Cowan MJ, Pai SY, Griffith LM, Cuvelier GDE, Eissa H, Shah AJ, O'Reilly RJ, Pulsipher MA, Wright NAM, Abraham RS, Satter LF, Notarangelo LD, Puck JM. The diagnosis of severe combined immunodeficiency (SCID): The Primary Immune Deficiency Treatment Consortium (PIDTC) 2022 Definitions. J Allergy Clin Immunol 2023; 151:539-546. [PMID: 36456361 PMCID: PMC9905311 DOI: 10.1016/j.jaci.2022.10.022] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 11/29/2022]
Abstract
Severe combined immunodeficiency (SCID) results from defects in the differentiation of hematopoietic stem cells into mature T lymphocytes, with additional lymphoid lineages affected in particular genotypes. In 2014, the Primary Immune Deficiency Treatment Consortium published criteria for diagnosing SCID, which are now revised to incorporate contemporary approaches. Patients with typical SCID must have less than 0.05 × 109 autologous T cells/L on repetitive testing, with either pathogenic variant(s) in a SCID-associated gene, very low/undetectable T-cell receptor excision circles or less than 20% of CD4 T cells expressing naive markers, and/or transplacental maternally engrafted T cells. Patients with less profoundly impaired autologous T-cell differentiation are designated as having leaky/atypical SCID, with 2 or more of these: low T-cell numbers, oligoclonal T cells, low T-cell receptor excision circles, and less than 20% of CD4 T cells expressing naive markers. These patients must also have either pathogenic variant(s) in a SCID-associated gene or reduced T-cell proliferation to certain mitogens. Omenn syndrome requires a generalized erythematous rash, absent transplacentally acquired maternal engraftment, and 2 or more of these: eosinophilia, elevated IgE, lymphadenopathy, hepatosplenomegaly. Thymic stromal defects and other causes of secondary T-cell deficiency are excluded from the definition of SCID. Application of these revised Primary Immune Deficiency Treatment Consortium 2022 Definitions permits precise categorization of patients with T-cell defects but does not imply a preferred treatment strategy.
Collapse
Affiliation(s)
- Christopher C Dvorak
- Division of Pediatric Allergy, Immunology, and Bone Marrow Transplantation, University of California San Francisco, San Francisco, Calif.
| | - Elie Haddad
- Department of Pediatrics, University of Montreal, CHU Sainte-Justine, Montreal, Quebec, Canada
| | - Jennifer Heimall
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, and Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Elizabeth Dunn
- Division of Pediatric Allergy, Immunology, and Bone Marrow Transplantation, University of California San Francisco, San Francisco, Calif
| | - Rebecca H Buckley
- Division of Pediatric Allergy and Immunology, Duke University Medical Center, Durham, NC
| | - Donald B Kohn
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, Calif; Department of Pediatrics, University of California, Los Angeles, Los Angeles, Calif
| | - Morton J Cowan
- Division of Pediatric Allergy, Immunology, and Bone Marrow Transplantation, University of California San Francisco, San Francisco, Calif
| | - Sung-Yun Pai
- Immune Deficiency Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, Bethesda, Md
| | - Linda M Griffith
- Division of Allergy Immunology and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Geoffrey D E Cuvelier
- Manitoba Blood and Marrow Transplant Program, CancerCare Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Hesham Eissa
- Division of Pediatric Hematology-Oncology-BMT, University of Colorado, Aurora, Colo
| | - Ami J Shah
- Division of Pediatric Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford School of Medicine, Palo Alto, Calif
| | - Richard J O'Reilly
- Department of Pediatrics, Stem Cell Transplantation and Cellular Therapies Service, Memorial Sloan Kettering, New York, NY
| | - Michael A Pulsipher
- Division of Pediatric Hematology and Oncology, Intermountain Primary Childrens Hospital, Huntsman Cancer Institute at the University of Utah, Salt Lake City, Utah
| | - Nicola A M Wright
- Department of Pediatrics, Alberta Children's Hospital, University of Calgary, Calgary, Alberta, Canada
| | - Roshini S Abraham
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, Ohio
| | - Lisa Forbes Satter
- Pediatric Immunology Allergy and Retrovirology, Baylor College of Medicine, Houston, Tex
| | - Luigi D Notarangelo
- Division of Allergy Immunology and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Jennifer M Puck
- Division of Pediatric Allergy, Immunology, and Bone Marrow Transplantation, University of California San Francisco, San Francisco, Calif
| |
Collapse
|
14
|
Walter JE, Ziegler JB, Ballow M, Cunningham-Rundles C. Advances and Challenges of the Decade: The Ever-Changing Clinical and Genetic Landscape of Immunodeficiency. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:107-115. [PMID: 36610755 DOI: 10.1016/j.jaip.2022.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 01/06/2023]
Abstract
In the past 10 years, we have witnessed major advances in clinical immunology. Newborn screening for severe combined immunodeficiency has become universal in the United States and screening programs are being extended to severe combined immunodeficiency and other inborn errors of immunity globally. Early genetic testing is becoming the norm for many of our patients and allows for informed selection of targeted therapies including biologics repurposed from other specialties. During the COVID-19 pandemic, our understanding of essential immune responses expanded and the discovery of immune gene defects continued. Immunoglobulin products, the backbone of protection for antibody deficiency syndromes, came into use to minimize side effects. New polyclonal and monoclonal antibody products emerged with increasing options to manage respiratory viral agents such as SARS-CoV-2 and respiratory syncytial virus. Against these advances, we still face major challenges. Atypical is becoming typical as phenotypes of distinct genetic disease overlap whereas the clinical spectrum of the same genetic defect widens. Therefore, clinical judgment needs to be paired with repeated deep immune phenotyping and upfront genetic testing, as technologies rapidly evolve, and clinical disease often progresses with age. Managing patients with organ damage resulting from immune dysregulation poses a special major clinical challenge and management often lacks standardization, from autoimmune cytopenias, granulomatous interstitial lung disease, enteropathy, and liver disease to endocrine, rheumatologic, and neurologic complications. Clinical, translational, and basic science networks will continue to advance the field; however, cross-talk and education with practicing allergists/immunologists are essential to keep up with the ever-changing clinical and genetic landscape of inborn errors of immunity.
Collapse
Affiliation(s)
- Jolan E Walter
- Division of Pediatric Allergy and Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St Petersburg, Fla; Division of Allergy and Immunology, Massachusetts General Hospital for Children, Boston, Mass.
| | - John B Ziegler
- School of Women's and Children's Health, UNSW Sydney, Sydney, New South Wales, Australia; Department of Immunology and Infectious Diseases, Sydney Children's Hospital, Randwick, New South Wales, Australia
| | - Mark Ballow
- Department of Pediatrics, Division of Allergy and Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St Petersburg, Fla
| | | |
Collapse
|
15
|
A preliminary study of tracking B-cell kinetics in patients with lung transplantation by monitoring kappa-deleting recombination excision circles. TURK GOGUS KALP DAMAR CERRAHISI DERGISI 2022; 30:611-621. [PMID: 36605322 PMCID: PMC9801467 DOI: 10.5606/tgkdc.dergisi.2022.21672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 08/31/2021] [Indexed: 11/06/2022]
Abstract
Background This study aims to evaluate humoral immune system response by measuring copy numbers of kappa-deleting recombination excision circles (KREC) gene segment from B lymphocytes in patients with lung transplantation. Methods Between September 2015 and November 2016, a total of 11 patients (8 males, 3 females; mean age: 45.4±12.0 years; range, 23 to 59 years) who underwent lung transplantation with different primary indications were included. The copy numbers of KREC gene segment were quantified using real-time polymerase chain reaction method in peripheral blood samples collected pre- and post-transplantation. The samples of the patients were compared with the KREC l evels i n deoxyribonucleic acid extracted from blood samples of healthy children. Results There was no significant change in KREC levels between pre- and post-operation (p=0.594 and p=0.657), although the median values indicated that the highest increase in the KREC levels (7x105- 12x105; 85-170) was on Day 7 of transplantation. There was a positive correlation between the KREC levels (mL in blood) and lymphocytes at 24 h after transplantation (p=0.043) and between KREC copies per 106 of blood and age on Day 7. Conclusion Our preliminary results suggest that KREC l evels a s an indicator of B lymphocyte production are elevated after lung transplantation. A prognostic algorithm by tracking B cell kinetics after post-transplantation for long-term follow-up can be developed following the confirmation of these preliminary results with more patient samples.
Collapse
|
16
|
Booth NA, Freeman CM, Wright BL, Rukasin C, Badia P, Daines M, Bauer CS, Miller H. Severe Combined Immunodeficiency (SCID) Screening in Arizona: Lessons Learned from the First 2 Years. J Clin Immunol 2022; 42:1321-1329. [PMID: 35729475 DOI: 10.1007/s10875-022-01307-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 06/09/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE The incidence of severe combined immunodeficiency (SCID) in the USA was reported as 1 in 58,000 live births. In Arizona, it was anticipated that newborn screening would identify two to four cases of SCID per year. This estimate did not consider ethnic nuances in Arizona, with higher percentages of Native American and Hispanic populations compared to national percentages. The true incidence of SCID and non-SCID T cell lymphopenia has not previously been reported in Arizona. METHODS A retrospective chart review was performed on all abnormal SCID newborn screening (NBS) tests in Arizona from January 1, 2018, to December 31, 2019, using data from the Arizona Department of Health Services and the Phoenix Children's Hospital's electronic medical record [IRB# 20-025]. RESULTS Seven infants were diagnosed with SCID, yielding an incidence of 1 in 22,819 live births. Four of these infants had Artemis-type SCID. Thirteen infants were identified with an abnormal initial NBS which ultimately did not lead to a diagnosis of SCID. Four of these infants were diagnosed with congenital syndromes associated with T cell lymphopenia. Infants of Hispanic ethnicity were over-represented in this cohort. CONCLUSION Over 2 years, NBS in Arizona confirmed an incidence more than 2.5 times that reported nationally. This increased incidence is likely reflective of Arizona's unique population profile, with a higher percentage of Native American population. The findings in our non-SCID cohort are in alignment with previously published data, except for an increased percentage of infants of Hispanic/Latino ethnicity, possibly reflecting Arizona's increased percentage of Hispanic/Latino population compared to the general US population.
Collapse
Affiliation(s)
- Natalie A Booth
- Center for Cancer and Blood Disorders, Phoenix Children's Hospital, 1919 E. Thomas Road, Phoenix, AZ, 85016, USA.
- Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA.
| | - Catherine M Freeman
- Division of Allergy, Asthma, and Clinical Immunology, Mayo Clinic, Scottsdale, AZ, USA
- Division of Allergy and Immunology, Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Benjamin L Wright
- Division of Allergy, Asthma, and Clinical Immunology, Mayo Clinic, Scottsdale, AZ, USA
- Division of Allergy and Immunology, Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Christine Rukasin
- Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
- Division of Allergy, Asthma, and Clinical Immunology, Mayo Clinic, Scottsdale, AZ, USA
- Division of Allergy and Immunology, Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Priscila Badia
- Center for Cancer and Blood Disorders, Phoenix Children's Hospital, 1919 E. Thomas Road, Phoenix, AZ, 85016, USA
- Division of Hematology and Oncology, Mayo Clinic, Scottsdale, AZ, USA
| | - Michael Daines
- Department of Pediatrics, University of Arizona College of Medicine - Tucson, Tucson, AZ, USA
| | - Cindy S Bauer
- Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
- Division of Allergy, Asthma, and Clinical Immunology, Mayo Clinic, Scottsdale, AZ, USA
- Division of Allergy and Immunology, Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Holly Miller
- Center for Cancer and Blood Disorders, Phoenix Children's Hospital, 1919 E. Thomas Road, Phoenix, AZ, 85016, USA
- Division of Hematology and Oncology, Mayo Clinic, Scottsdale, AZ, USA
| |
Collapse
|
17
|
Yilmaz M, Potts DE, Geier C, Walter JE. Can we identify WHIM in infancy? Opportunities with the public newborn screening process. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2022; 190:215-221. [PMID: 36210583 DOI: 10.1002/ajmg.c.32002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
Newborn screening (NBS) for severe combined immunodeficiency (SCID) utilizing T-cell receptor excision circles (TRECs) has been implemented in all 50 states as of December 2018 and has been transformative for the clinical care of SCID patients. Though having high sensitivity for SCID, NBS-SCID has low specificity, therefore is able to detect other causes of lymphopenia in newborns including many inborn errors of immunity (IEIs). In a recent study, three of six newborns later diagnosed with Warts, Hypogammaglobulinemia, Infections, and Myelokathexis (WHIM) syndrome were found to have a low TRECs and lymphopenia at birth. This presents an opportunity to increase the detection and diagnosis of WHIM syndrome by NBS-SCID with immunological follow-up along with a combination of flow cytometry for immune cell subsets, absolute neutrophil count, and genetic testing, extending beyond the conventional bone marrow studies. Coupled with emerging technologies such as next-generation sequencing, transcriptomics and proteomics, dried blood spots used in NBS-SCID will promote earlier detection, diagnosis, and therefore treatment of IEIs such as WHIM syndrome.
Collapse
Affiliation(s)
- Melis Yilmaz
- Division of Allergy and Immunology, Department of Pediatrics and Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
- Division of Allergy and Immunology, Department of Pediatrics, Johns Hopkins All Children's Hospital, St Petersburg, Florida, USA
| | - David Evan Potts
- Division of Allergy and Immunology, Department of Pediatrics and Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
- Division of Allergy and Immunology, Department of Pediatrics, Johns Hopkins All Children's Hospital, St Petersburg, Florida, USA
| | - Christoph Geier
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), University Medical Center Freiburg, Freiburg, Germany
| | - Jolan E Walter
- Division of Allergy and Immunology, Department of Pediatrics and Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
- Division of Allergy and Immunology, Department of Pediatrics, Johns Hopkins All Children's Hospital, St Petersburg, Florida, USA
- Division of Allergy and Immunology, Massachusetts General Hospital for Children, Boston, Massachusetts, USA
| |
Collapse
|
18
|
Hauck F, Albert MH, Ghosh S, Hönig M, Nennstiel U, Schütz C, Gramer G, Schulz A, Speckmann C. Neugeborenenscreening auf schweren kombinierten Immundefekt. Monatsschr Kinderheilkd 2022. [DOI: 10.1007/s00112-022-01426-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Gordon SM, O'Connell AE. Inborn Errors of Immunity in the Premature Infant: Challenges in Recognition and Diagnosis. Front Immunol 2022; 12:758373. [PMID: 35003071 PMCID: PMC8738084 DOI: 10.3389/fimmu.2021.758373] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/07/2021] [Indexed: 12/14/2022] Open
Abstract
Due to heightened awareness and advanced genetic tools, inborn errors of immunity (IEI) are increasingly recognized in children. However, diagnosing of IEI in premature infants is challenging and, subsequently, reports of IEI in premature infants remain rare. This review focuses on how common disorders of prematurity, such as sepsis, necrotizing enterocolitis, and bronchopulmonary dysplasia, can clinically overlap with presenting signs of IEI. We present four recent cases from a single neonatal intensive care unit that highlight diagnostic dilemmas facing neonatologists and clinical immunologists when considering IEI in preterm infants. Finally, we present a conceptual framework for when to consider IEI in premature infants and a guide to initial workup of premature infants suspected of having IEI.
Collapse
Affiliation(s)
- Scott M Gordon
- Division of Neonatology, Children's Hospital of Philadelphia, and Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Amy E O'Connell
- Division of Newborn Medicine, Boston Children's Hospital, and Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
20
|
Taki M, Miah T, Secord E. Newborn Screening for Severe Combined Immunodeficiency. Immunol Allergy Clin North Am 2021; 41:543-553. [PMID: 34602227 DOI: 10.1016/j.iac.2021.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The T-cell receptor excision circle (TREC) assay is an effective screening tool for severe combined immunodeficiency (SCID). The TREC assay was designed to detect typical SCID and leaky SCID, but any condition causing low naïve T-cell counts will also be detected. Newborn screening for SCID using the TREC assay has proven itself to be highly sensitive and cost-efficient. This review covers the history of SCID newborn screening, elaborates on the SCID subtypes and TREC assay limitations, and discusses diagnostic and management considerations for infants with a positive screen.
Collapse
Affiliation(s)
- Mohammed Taki
- Department of Pediatrics, Children's Hospital of Michigan, 3901 Beaubien Street, Detroit, MI 48201, USA
| | - Tayaba Miah
- Department of Pediatrics, Children's Hospital of Michigan, 3901 Beaubien Street, Detroit, MI 48201, USA
| | - Elizabeth Secord
- Department of Allergy and Immunology, Children's Hospital of Michigan, 3901 Beaubien Street, Detroit, MI 48201, USA.
| |
Collapse
|
21
|
Khalturina EO, Degtyareva ND, Bairashevskaia AV, Mulenkova AV, Degtyareva AV. Modern diagnostic capabilities of neonatal screening for primary immunodeficiencies in newborns. Clin Exp Pediatr 2021; 64:504-510. [PMID: 33781055 PMCID: PMC8498015 DOI: 10.3345/cep.2020.01270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 02/05/2021] [Indexed: 11/27/2022] Open
Abstract
Population screening of newborns is an extremely important and informative diagnostic approach that allows early identification of babies who are predisposed to the development of a number of serious diseases. Some of these diseases are known and have effective treatment methods. Neonatal screening enables the early diagnosis and subsequent timely initiation of therapy. This helps to prevent serious complications and reduce the percentage of disability and deaths among newborns and young children. Primary immunodeficiency diseases and primary immunodeficiency syndrome (PIDS) are a heterogeneous group of diseases and conditions based on impaired immune system function associated with developmental defects and characterized by various combinations of recurrent infections, development of autoimmune and lymphoproliferative syndromes (genetic defects in apoptosis, gene mutation Fas receptor or ligand), granulomatous process, and malignant neoplasms. Most of these diseases manifest in infancy and lead to serious illness, disability, and high mortality rates. Until recently, it was impossible to identify children with PIDS before the onset of the first clinical symptoms, which are usually accompanied by complications in the form of severe coinfections of a viral-bacterial-fungal etiology. Modern advances in medical laboratory technology have allowed the identification of children with severe PIDS, manifested by T- and/or B-cell lymphopenia and other disorders of the immune system. This review discusses the main existing strategies and directions used in PIDS screening programs for newborns, including approaches to screening based on excision of T-cell receptors and kappa-recombination excision circles, as well as the potential role and place of next-generation sequencing technology to increase the diagnostic accuracy of these diseases.
Collapse
Affiliation(s)
- Evgenia Olegovna Khalturina
- Federal State Autonomous Educational Institution of Higher Education, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia.,National Medical Research Center for Obstetrics, Gynecology, and Perinatology named after Academician V.I. Kulakov of the Ministry of Health of the Russian Federation; Department of Pediatrics and Neonatology, Moscow, Russia
| | - Natalia Dmitrievna Degtyareva
- Federal State Autonomous Educational Institution of Higher Education, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Anastasiia Vasi'evna Bairashevskaia
- Federal State Autonomous Educational Institution of Higher Education, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Alena Valerievna Mulenkova
- Federal State Autonomous Educational Institution of Higher Education, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Anna Vladimirovna Degtyareva
- Federal State Autonomous Educational Institution of Higher Education, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia.,National Medical Research Center for Obstetrics, Gynecology, and Perinatology named after Academician V.I. Kulakov of the Ministry of Health of the Russian Federation; Department of Pediatrics and Neonatology, Moscow, Russia
| |
Collapse
|
22
|
Blom M, Zetterström RH, Stray-Pedersen A, Gilmour K, Gennery AR, Puck JM, van der Burg M. Recommendations for uniform definitions used in newborn screening for severe combined immunodeficiency. J Allergy Clin Immunol 2021; 149:1428-1436. [PMID: 34537207 DOI: 10.1016/j.jaci.2021.08.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/06/2021] [Accepted: 08/23/2021] [Indexed: 01/31/2023]
Abstract
BACKGROUND Public health newborn screening (NBS) programs continuously evolve, taking advantage of international shared learning. NBS for severe combined immunodeficiency (SCID) has recently been introduced in many countries. However, comparison of screening outcomes has been hampered by use of disparate terminology and imprecise or variable case definitions for non-SCID conditions with T-cell lymphopenia. OBJECTIVES This study sought to determine whether standardized screening terminology could overcome a Babylonian confusion and whether improved case definitions would promote international exchange of knowledge. METHODS A systematic literature review highlighted the diverse terminology in SCID NBS programs internationally. While, as expected, individual screening strategies and tests were tailored to each program, we found uniform terminology to be lacking in definitions of disease targets, sensitivity, and specificity required for comparisons across programs. RESULTS The study's recommendations reflect current evidence from literature and existing guidelines coupled with opinion of experts in public health screening and immunology. Terminologies were aligned. The distinction between actionable and nonactionable T-cell lymphopenia among non-SCID cases was clarified, the former being infants with T-cell lymphopenia who could benefit from interventions such as protection from infections, antibiotic prophylaxis, and live-attenuated vaccine avoidance. CONCLUSIONS By bringing together the previously unconnected public health screening community and clinical immunology community, these SCID NBS deliberations bridged the gaps in language and perspective between these disciplines. This study proposes that international specialists in each disorder for which NBS is performed join forces to hone their definitions and recommend uniform registration of outcomes of NBS. Standardization of terminology will promote international exchange of knowledge and optimize each phase of NBS and follow-up care, advancing health outcomes for children worldwide.
Collapse
Affiliation(s)
- Maartje Blom
- Department of Pediatrics, Laboratory for Pediatric Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Rolf H Zetterström
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden; Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Asbjørg Stray-Pedersen
- Norwegian National Unit for Newborn Screening, Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway; Department of Pediatrics, Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Kimberly Gilmour
- University College London Great Ormond Street Institute of Child Health, London, United Kingdom; Great Ormond Street Hospital for Children National Health Service Foundation Trust, London, United Kingdom; National Institute for Health Research-Great Ormond Street Hospital Biomedical Research Center, London, United Kingdom
| | - Andrew R Gennery
- Children's Bone Marrow Transplant Unit, Great North Children's Hospital, Newcastle upon Tyne, United Kingdom; Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jennifer M Puck
- Division of Allergy, Immunology, and Blood and Marrow Transplantation, Department of Pediatrics, University of California, San Francisco School of Medicine, San Francisco, Calif; University of California, San Francisco Benioff Children's Hospital San Francisco, San Francisco, Calif
| | - Mirjam van der Burg
- Department of Pediatrics, Laboratory for Pediatric Immunology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
23
|
McCandless SE, Wright EJ. Mandatory newborn screening in the United States: History, current status, and existential challenges. Birth Defects Res 2021; 112:350-366. [PMID: 32115905 DOI: 10.1002/bdr2.1653] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/12/2020] [Accepted: 01/17/2020] [Indexed: 01/09/2023]
Abstract
Beginning in the 1960s, mandatory newborn screening (NBS) of essentially all infants has been a major public health success story. NBS is not just a blood test, rather, it is a complex, integrated system that begins with timely testing, scrupulous follow up of patients, tracking of outcomes, quality improvement of all aspects of the process, and education of providers, staff, and parents. In the past, expansion of NBS programs has been driven by new testing technology, but now is increasingly driven by the development of novel therapeutics and political advocacy. Each state determines how the NBS system will be structured in that state, but there is increasing oversight and support for harmonization at a federal level. Several recent initiatives, together with the increased number of conditions screened and the concomitant increase in burdensome false-positive tests, are creating new scrutiny of NBS systems, and potentially pose an existential risk to the public acceptance of mandatory NBS. The history, current state and challenges for NBS are explored in this issue, with some suggestions as to how to address them.
Collapse
Affiliation(s)
- Shawn E McCandless
- Department of Pediatrics, Section of Genetics and Metabolism, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Erica J Wright
- Department of Pediatrics, Section of Genetics and Metabolism, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
24
|
Newborn Screening for Severe Combined Immunodeficiency: Do Preterm Infants Require Special Consideration? Int J Neonatal Screen 2021; 7:ijns7030040. [PMID: 34287233 PMCID: PMC8293075 DOI: 10.3390/ijns7030040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 11/17/2022] Open
Abstract
The Wisconsin Newborn Screening (NBS) Program began screening for severe combined immunodeficiency (SCID) in 2008, using real-time PCR to quantitate T-cell receptor excision circles (TRECs) in DNA isolated from dried blood NBS specimens. Prompted by the observation that there were disproportionately more screening-positive cases in premature infants, we performed a study to assess whether there is a difference in TRECs between full-term and preterm newborns. Based on de-identified SCID data from 1 January to 30 June 2008, we evaluated the TRECs from 2510 preterm newborns (gestational age, 23-36 weeks) whose specimens were collected ≤72 h after birth. The TRECs from 5020 full-term newborns were included as controls. The relationship between TRECs and gestational age in weeks was estimated using linear regression analysis. The estimated increase in TRECs for every additional week of gestation is 9.60%. The 95% confidence interval is 8.95% to 10.25% (p ≤ 0.0001). Our data suggest that TRECs increase at a steady rate as gestational age increases. These results provide rationale for Wisconsin's existing premature infant screening procedure of recommending repeat NBS following an SCID screening positive in a premature infant instead of the flow cytometry confirmatory testing for SCID screening positives in full-term infants.
Collapse
|
25
|
Poyraz A, Cansever M, Muderris I, Patiroglu T. Neonatal Lymphopenia Screening Is Important For Early Diagnosis of Severe Combined Immunodeficiency. Am J Perinatol 2021; 40:748-752. [PMID: 34116583 DOI: 10.1055/s-0041-1731044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE T-cell receptor excision circles are expensive for neonatal severe combined immunodeficiency screening in developing countries. We aimed to detect immunodeficiencies presenting with lymphopenia to enable screening in the general population and to improve awareness regarding lymphopenia among clinicians. STUDY DESIGN This study was conducted prospectively. In all newborns included, complete blood count from umbilical cord blood samples was recorded. Absolute lymphopenia was defined as absolute lymphocyte count <3,000/mm3 in umbilical cord blood sample. Complete blood count was repeated at month 1 in cases found to have lymphopenia. RESULTS Overall, 2,000 newborns were included in the study. Absolute lymphopenia was detected in 42 newborns (2.1%), while lymphocyte count was >3,000/mm3 in 1,958 newborns (97.9%). Two infants with persisted lymphopenia at the end of the first month; therefore, further evaluations such as lymphocyte subsets for severe combined immunodeficiency (SCID) were done. In the first infant, the lymphocyte subgroups were detected as compatible with T (-), B (-), natural killer cells (NK) (+) SCID phenotype RAG defect. Sanger sequencing revealed that NM_000448 c.2209C > T (p.R737C) homozygous mutation of RAG1 gene. In the other infant, the lymphocyte subgroups were found as considered with T (-), B (+) NK (-) SCID phenotype JAK3 defect. Both patients underwent hematopoietic stem cell transplantation from human leukocyte antigen-matched family member. CONCLUSION Absolute lymphopenia by complete blood count is a more simpler, relatively noninvasive and inexpensive screening methodfor detection of SCID in newborns compared with T-cell receptor excision circles technique. KEY POINTS · Our study was conducted with a much smaller number of study groups compared with the previous ones.. · However, SCID was found at a higher rate compared with other studies.. · Our study for this disease that is common in our country where consanguineous marriages are common.
Collapse
Affiliation(s)
- Aykut Poyraz
- Department of Pediatrics, Erciyes University, School of Medicine, Kayseri, Turkey
| | - Murat Cansever
- Division of Allergy and Immunology, Department of Pediatrics, Erciyes University, School of Medicine, Kayseri, Turkey
| | - Ipek Muderris
- Department of Gynecology and Obstetrics, Erciyes University, School of Medicine, Kayseri, Turkey
| | - Turkan Patiroglu
- Division of Hematology and Oncology, Immunology, Department of Pediatrics, Erciyes University, School of Medicine, Kayseri, Turkey
| |
Collapse
|
26
|
Chen C, Sun MA, Warzecha C, Bachu M, Dey A, Wu T, Adams PD, Macfarlan T, Love P, Ozato K. HIRA, a DiGeorge Syndrome Candidate Gene, Confers Proper Chromatin Accessibility on HSCs and Supports All Stages of Hematopoiesis. Cell Rep 2021; 30:2136-2149.e4. [PMID: 32075733 DOI: 10.1016/j.celrep.2020.01.062] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 12/05/2019] [Accepted: 01/21/2020] [Indexed: 01/22/2023] Open
Abstract
HIRA is a histone chaperone that deposits the histone variant H3.3 in transcriptionally active genes. In DiGeorge syndromes, a DNA stretch encompassing HIRA is deleted. The syndromes manifest varied abnormalities, including immunodeficiency and thrombocytopenia. HIRA is essential in mice, as total knockout (KO) results in early embryonic death. However, the role of HIRA in hematopoiesis is poorly understood. We investigate hematopoietic cell-specific Hira deletion in mice and show that it dramatically reduces bone marrow hematopoietic stem cells (HSCs), resulting in anemia, thrombocytopenia, and lymphocytopenia. In contrast, fetal hematopoiesis is normal in Hira-KO mice, although fetal HSCs lack the reconstitution capacity. Transcriptome analysis reveals that HIRA is required for expression of many transcription factors and signaling molecules critical for HSCs. ATAC-seq analysis demonstrates that HIRA establishes HSC-specific DNA accessibility, including the SPIB/PU.1 sites. Together, HIRA provides a chromatin environment essential for HSCs, thereby steering their development and survival.
Collapse
Affiliation(s)
- Chao Chen
- Molecular Genetics of Immunity Section, Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ming-An Sun
- Mammalian Epigenome Reprogramming Section, Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Claude Warzecha
- Hematopoiesis and Lymphocyte Biology Section, Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mahesh Bachu
- Molecular Genetics of Immunity Section, Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anup Dey
- Molecular Genetics of Immunity Section, Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tiyun Wu
- Molecular Genetics of Immunity Section, Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter D Adams
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Todd Macfarlan
- Mammalian Epigenome Reprogramming Section, Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paul Love
- Hematopoiesis and Lymphocyte Biology Section, Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Keiko Ozato
- Molecular Genetics of Immunity Section, Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
27
|
Hale JE, Platt CD, Bonilla FA, Hay BN, Sullivan JL, Johnston AM, Pasternack MS, Hesterberg PE, Meissner HC, Cooper ER, Barmettler S, Farmer JR, Fisher D, Walter JE, Yang NJ, Sahai I, Eaton RB, DeMaria A, Notarangelo LD, Pai SY, Comeau AM. Ten Years of Newborn Screening for Severe Combined Immunodeficiency (SCID) in Massachusetts. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 9:2060-2067.e2. [PMID: 33607339 DOI: 10.1016/j.jaip.2021.02.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 01/28/2021] [Accepted: 02/02/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Massachusetts began newborn screening (NBS) for severe combined immunodeficiency (SCID) using measurement of T-cell receptor excision circles (TRECs) from dried blood spots. OBJECTIVE We describe developments and outcomes from the first 10 years of this program (February 1, 2009, to January 31, 2019). METHODS TREC values, diagnostic, and outcome data from all patients screened for SCID were evaluated. RESULTS NBS of 720,038 infants prompted immunologic evaluation of 237 (0.03%). Of 237, 9 were diagnosed with SCID/leaky SCID (4% of referrals vs 0.001% general population). Another 7 were diagnosed with other combined immunodeficiencies, and 3 with athymia. SCID/leaky SCID incidence was approximately 1 in 80,000, whereas approximately 1 in 51,000 had severe T-cell lymphopenia for which definitive treatment was indicated. All patients with SCID/leaky SCID underwent hematopoietic cell transplant or gene therapy with 100% survival. One patient with athymia underwent successful thymus transplant. No known cases of SCID were missed. Compared with outcomes from the 10 years before SCID NBS, survival trended higher (9 of 9 vs 4 of 7), likely due to a lower rate of infection before treatment. CONCLUSIONS Our data support a single NBS testing-and-referral algorithm for all gestational ages. Despite lower median TREC values in premature infants, the majority for all ages are well above the TREC cutoff and the algorithm, which selects urgent (undetectable TREC) and repeatedly abnormal TREC values, minimizes referral. We also found that low naïve T-cell percentage is associated with a higher risk of SCID/CID, demonstrating the utility of memory/naïve T-cell phenotyping as part of follow-up flow cytometry.
Collapse
Affiliation(s)
- Jaime E Hale
- New England Newborn Screening Program, Commonwealth Medicine, University of Massachusetts Medical School, Worcester, Mass
| | - Craig D Platt
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Harvard Medical School, Boston, Mass
| | - Francisco A Bonilla
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Harvard Medical School, Boston, Mass; Northeast Allergy, Asthma & Immunology, Leominster, Mass
| | - Beverly N Hay
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, Mass
| | - John L Sullivan
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Mass
| | - Alicia M Johnston
- Harvard Medical School, Boston, Mass; Division of Infectious Disease, Boston Children's Hospital, Boston, Mass
| | - Mark S Pasternack
- Harvard Medical School, Boston, Mass; Pediatric Infectious Disease Unit, MassGeneral Hospital for Children, Boston, Mass
| | - Paul E Hesterberg
- Division of Allergy and Immunology, MassGeneral Hospital for Children, Boston, Mass
| | - H Cody Meissner
- Department of Pediatrics, Tufts Children's Hospital, Tufts University School of Medicine, Boston, Mass
| | - Ellen R Cooper
- Division of Pediatric Infectious Diseases, Boston Medical Center, Boston University School of Medicine, Boston, Mass
| | - Sara Barmettler
- Division of Rheumatology, Allergy & Immunology, Massachusetts General Hospital, Boston, Mass
| | - Jocelyn R Farmer
- Division of Rheumatology, Allergy & Immunology, Massachusetts General Hospital, Boston, Mass
| | - Donna Fisher
- Division of Pediatric Infectious Diseases, Baystate Children's Hospital, University of Massachusetts Medical School-Baystate, Springfield, Mass
| | - Jolan E Walter
- Division of Allergy and Immunology, MassGeneral Hospital for Children, Boston, Mass; Division of Allergy & Immunology, Department of Pediatrics, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, Fla
| | - Nancy J Yang
- Division of Rheumatology, Allergy & Immunology, Massachusetts General Hospital, Boston, Mass
| | - Inderneel Sahai
- New England Newborn Screening Program, Commonwealth Medicine, University of Massachusetts Medical School, Worcester, Mass; Department of Pediatrics, University of Massachusetts Medical School, Worcester, Mass
| | - Roger B Eaton
- New England Newborn Screening Program, Commonwealth Medicine, University of Massachusetts Medical School, Worcester, Mass; Department of Pediatrics, University of Massachusetts Medical School, Worcester, Mass
| | - Alfred DeMaria
- Bureau of Infectious Disease and Laboratory Sciences, Massachusetts Department of Public Health, Boston, Mass
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | - Sung-Yun Pai
- Harvard Medical School, Boston, Mass; Division of Hematology-Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Mass; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Mass.
| | - Anne Marie Comeau
- New England Newborn Screening Program, Commonwealth Medicine, University of Massachusetts Medical School, Worcester, Mass; Department of Pediatrics, University of Massachusetts Medical School, Worcester, Mass.
| |
Collapse
|
28
|
Frazer LC, O’Connell AE. Primary immunodeficiency testing in a Massachusetts tertiary care NICU: persistent challenges in the extremely premature population. Pediatr Res 2021; 89:549-553. [PMID: 32268342 PMCID: PMC8287644 DOI: 10.1038/s41390-020-0886-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/01/2020] [Accepted: 03/24/2020] [Indexed: 12/02/2022]
Abstract
BACKGROUND Prematurity presents a diagnostic challenge in interpreting primary immunodeficiency (PID) testing. METHODS We retrospectively reviewed the charts of all infants in our level IV referral neonatal intensive care unit (NICU) in Massachusetts, with immunologic testing performed from 2006 to 2018. RESULTS The overall rate of PID testing was enriched in our population, with 1% of admitted patients having extended immunologic testing. The addition of TREC (T cell receptor excision circle) newborn screening in Massachusetts in 2009 increased the proportion of infants tested for PID in our NICU by 3-fold (1.21% post-newborn screening (NBS) vs. 0.46% pre-NBS). A majority of the term and late preterm (≥34 weeks) infants (31 of 41, 76%), as well as very premature (29-33 weeks) infants (12 of 17, 71%), who had immune testing, had a genetic diagnosis associated with secondary immunodeficiency or a PID. Most infants who were born extremely premature (EP, <29 weeks) (25 of 29, 86%) had no identifiable cause of immunodeficiency besides prematurity, despite a mean postmenstrual age of 40.1 weeks at the time of testing. CONCLUSIONS Persistent immune derangements were present within a subgroup of the EP population through term postmenstrual age. EP infants with significant infectious history and abnormal immune testing at term-corrected age should be considered for genetic testing. IMPACT The role of immunologic testing in the premature population is unclear, we therefore reviewed the records of all infants in our NICU who had immunologic testing, to rule out immunodeficiency, done from 2006 to 2018. The addition of newborn screening for SCID in 2009 doubled the number of infants who had immune investigations. The extremely premature cohort included many infants with persistent immune derangements through term-corrected gestational age, suggesting a persistent effect of prematurity on immune development and potential function. We propose that former premature infants with clinical evidence of immunodeficiency and sustained immune abnormalities by term-corrected age undergo genetic testing for immunodeficiency.
Collapse
Affiliation(s)
- Lauren C. Frazer
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA,Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Amy E. O’Connell
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA,Department of Pediatrics, Harvard Medical School, Boston, MA,corresponding author: Address: 300 Longwood Ave, BCH 3036, Boston, MA 02115, Ph: 617-919-1807, Fax: 617-730-0260,
| |
Collapse
|
29
|
Quinn J, Orange JS, Modell V, Modell F. The case for severe combined immunodeficiency (SCID) and T cell lymphopenia newborn screening: saving lives…one at a time. Immunol Res 2020; 68:48-53. [PMID: 32128663 DOI: 10.1007/s12026-020-09117-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Severe combined immunodeficiency (SCID) is a group of syndromes resulting from genetic defects causing severe deficiency in T cell and B cell function. These conditions are life-threatening and result in susceptibility to serious infections. SCID is often fatal in the first year of life if not detected and properly treated. SCID and related T cell lymphopenias can be detected in newborns by a simple screening test, the T cell receptor excision circle (TREC) assay, using the same dried blood spot samples already collected from newborns to screen for other genetic disorders. The TREC assay facilitates the earliest possible identification of cases of SCID before opportunistic infections, irreversible organ damage, or death, thus allowing for the possibility of curative treatment through hematopoietic stem cell transplant and gene therapy. Infants receiving hematopoietic stem cell transplant in the first few months of life, after being identified through screening, have a high probability of survival (95-100%), along with lower morbidity. The TREC assay has proven to have outstanding specificity and sensitivity to accurately identify almost all infants with SCID (the primary targets) as well as additional infants having other select immunologic abnormalities (secondary targets). The TREC assay is inexpensive and has been effectively integrated into many public health programs. Without timely treatment, SCID is a fatal disease that causes accrual of exorbitant healthcare costs even in just 1 year of life. The cost of care for just one infant with SCID, not diagnosed through newborn screening, could be more than the cost of screening for an entire state or regional population. Continued implementation of TREC screening will undoubtedly enhance early diagnosis, application of treatment, and healthcare cost savings. The Jeffrey Modell Foundation helped initiate newborn screening for SCID in the USA in 2008 and continues its efforts to advocate for SCID screening worldwide. Today, all 50 states and Puerto Rico are screening for SCID and T cell lymphopenia, with 27 million newborns screened to date, and hundreds diagnosed and treated. Additionally, there are at least 20 countries around the world currently conducting screening for SCID at various stages. Newborn screening for SCID and related T cell lymphopenia is cost-effective, and most importantly, it is lifesaving and allows children with SCID the opportunity to live a healthy life.
Collapse
Affiliation(s)
- Jessica Quinn
- Jeffrey Modell Foundation, 780 Third Avenue, 47th Floor, New York City, NY, 10017, USA
| | - Jordan S Orange
- Jeffrey Modell Foundation, 780 Third Avenue, 47th Floor, New York City, NY, 10017, USA
| | - Vicki Modell
- Jeffrey Modell Foundation, 780 Third Avenue, 47th Floor, New York City, NY, 10017, USA
| | - Fred Modell
- Jeffrey Modell Foundation, 780 Third Avenue, 47th Floor, New York City, NY, 10017, USA.
| |
Collapse
|
30
|
Tavakol M, Jamee M, Azizi G, Sadri H, Bagheri Y, Zaki-Dizaji M, Mahdavi FS, Jadidi-Niaragh F, Tajfirooz S, Kamali AN, Aghamahdi F, Noorian S, Kojidi HT, Mosavian M, Matani R, Dolatshahi E, Porrostami K, Elahimehr N, Fatemi-Abhari M, Sharifi L, Arjmand R, Haghi S, Zainaldain H, Yazdani R, Shaghaghi M, Abolhassani H, Aghamohammadi A. Diagnostic Approach to the Patients with Suspected Primary Immunodeficiency. Endocr Metab Immune Disord Drug Targets 2020; 20:157-171. [PMID: 31456526 DOI: 10.2174/1871530319666190828125316] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/16/2019] [Accepted: 08/04/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND OBJECTIVE Primary immunodeficiency diseases (PIDs) are a group of more than 350 disorders affecting distinct components of the innate and adaptive immune systems. In this review, the classic and advanced stepwise approach towards the diagnosis of PIDs are simplified and explained in detail. RESULTS Susceptibility to recurrent infections is the main hallmark of almost all PIDs. However, noninfectious complications attributable to immune dysregulation presenting with lymphoproliferative and/or autoimmune disorders are not uncommon. Moreover, PIDs could be associated with misleading presentations including allergic manifestations, enteropathies, and malignancies. CONCLUSION Timely diagnosis is the most essential element in improving outcome and reducing the morbidity and mortality in PIDs. This wouldn't be possible unless the physicians keep the diagnosis of PID in mind and be sufficiently aware of the approach to these patients.
Collapse
Affiliation(s)
- Marzieh Tavakol
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.,Department of Allergy and Clinical Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Mahnaz Jamee
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Gholamreza Azizi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Homa Sadri
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.,Department of Allergy and Clinical Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Yasser Bagheri
- Clinical Research Development Unit (CRDU), 5 azar Hospital, Golestan University of Medical Sciences, Gorgan, Iran
| | - Majid Zaki-Dizaji
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| | | | | | - Sanaz Tajfirooz
- Department of Pediatrics, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Ali N Kamali
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Fatemeh Aghamahdi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.,Department of Pediatric Endocrinology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Shahab Noorian
- Department of Pediatric Endocrinology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Habibeh Taghavi Kojidi
- Department of Pediatric Endocrinology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Mehdi Mosavian
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.,Department of Gastroenterology and Hepatology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Rahman Matani
- Department of Gastroenterology and Hepatology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Elahe Dolatshahi
- Department of Rheumatology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Kumars Porrostami
- Department of Pediatrics, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Nasrin Elahimehr
- Department of Pediatrics, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Marzie Fatemi-Abhari
- Department of Pediatrics, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Laleh Sharifi
- Uro- Oncology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Arjmand
- Department of Infectious Disease, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Sabahat Haghi
- Department of Hematology & Oncology, School of Medicine, Alborz university of medical sciences, Karaj, Iran
| | - Hamed Zainaldain
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Shaghaghi
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins Hospital, Baltimore, MD, United States
| | - Hassan Abolhassani
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Giżewska M, Durda K, Winter T, Ostrowska I, Ołtarzewski M, Klein J, Blankenstein O, Romanowska H, Krzywińska-Zdeb E, Patalan MF, Bartkowiak E, Szczerba N, Seiberling S, Birkenfeld B, Nauck M, von Bernuth H, Meisel C, Bernatowska EA, Walczak M, Pac M. Newborn Screening for SCID and Other Severe Primary Immunodeficiency in the Polish-German Transborder Area: Experience From the First 14 Months of Collaboration. Front Immunol 2020; 11:1948. [PMID: 33178177 PMCID: PMC7596351 DOI: 10.3389/fimmu.2020.01948] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/20/2020] [Indexed: 12/22/2022] Open
Abstract
In 2017, in the Polish-German transborder area of West Pomerania, Mecklenburg-Western Pomerania, and Brandenburg, in collaboration with two centers in Warsaw, a partnership in the field of newborn screening (NBS) for severe primary immunodeficiency diseases (PID), mainly severe combined immunodeficiency (SCID), was initiated. SCID, but also some other severe PID, is a group of disorders characterized by the absence of T and/or B and NK cells. Affected infants are susceptible to life-threatening infections, but early detection gives a chance for effective treatment. The prevalence of SCID in the Polish and German populations is unknown but can be comparable to other countries (1:50,000–100,000). SCID NBS tests are based on real-time polymerase chain reaction (qPCR) and the measurement of a number of T cell receptor excision circles (TREC), kappa-deleting recombination excision circles (KREC), and beta-actin (ACTB) as a quality marker of DNA. This method can also be effective in NBS for other severe PID with T- and/or B-cell lymphopenia, including combined immunodeficiency (CID) or agammaglobulinemia. During the 14 months of collaboration, 44,287 newborns were screened according to the ImmunoIVD protocol. Within 65 positive samples, seven were classified to immediate recall and 58 requested a second sample. Examination of the 58 second samples resulted in recalling one newborn. Confirmatory tests included immunophenotyping of lymphocyte subsets with extension to TCR repertoire, lymphoproliferation tests, radiosensitivity tests, maternal engraftment assays, and molecular tests. Final diagnosis included: one case of T-BlowNK+ SCID, one case of atypical Tlow BlowNK+ CID, one case of autosomal recessive agammaglobulinemia, and one case of Nijmegen breakage syndrome. Among four other positive results, three infants presented with T- and/or B-cell lymphopenia due to either the mother's immunosuppression, prematurity, or unknown reasons, which resolved or almost normalized in the first months of life. One newborn was classified as truly false positive. The overall positive predictive value (PPV) for the diagnosis of severe PID was 50.0%. This is the first population screening study that allowed identification of newborns with T and/or B immunodeficiency in Central and Eastern Europe.
Collapse
Affiliation(s)
- Maria Giżewska
- Department of Pediatrics, Endocrinology, Diabetology, Metabolic Diseases and Cardiology, Pomeranian Medical University, Szczecin, Poland.,Independent Public Clinical Hospital nr 1 PUM, Szczecin, Poland
| | - Katarzyna Durda
- Independent Public Clinical Hospital nr 1 PUM, Szczecin, Poland
| | - Theresa Winter
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany.,Integrated Research Biobank (IRB), University Medicine Greifswald, Greifswald, Germany
| | - Iwona Ostrowska
- Independent Public Clinical Hospital nr 1 PUM, Szczecin, Poland
| | - Mariusz Ołtarzewski
- Department of Screening and Metabolic Diagnostics, Institute of Mother and Child, Warsaw, Poland
| | - Jeannette Klein
- Newbornscreening Laboratory, Charité Universitaetsmedizin, Berlin, Germany
| | | | - Hanna Romanowska
- Department of Pediatrics, Endocrinology, Diabetology, Metabolic Diseases and Cardiology, Pomeranian Medical University, Szczecin, Poland.,Independent Public Clinical Hospital nr 1 PUM, Szczecin, Poland
| | - Elżbieta Krzywińska-Zdeb
- Department of Pediatrics, Endocrinology, Diabetology, Metabolic Diseases and Cardiology, Pomeranian Medical University, Szczecin, Poland.,Independent Public Clinical Hospital nr 1 PUM, Szczecin, Poland
| | - Michał Filip Patalan
- Department of Pediatrics, Endocrinology, Diabetology, Metabolic Diseases and Cardiology, Pomeranian Medical University, Szczecin, Poland.,Independent Public Clinical Hospital nr 1 PUM, Szczecin, Poland
| | | | | | - Stefan Seiberling
- Research Support Center, University of Greifswald, Greifswald, Germany
| | - Bożena Birkenfeld
- Independent Public Clinical Hospital nr 1 PUM, Szczecin, Poland.,Department of Nuclear Medicine, Pomeranian Medical University, Szczecin, Poland
| | - Matthias Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, University Medicine Greifswald, Greifswald, Germany
| | - Horst von Bernuth
- Department of Pediatric Pulmonology, Immunology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Labor Berlin - Charité Vivantes Services GmbH, Berlin, Germany.,BIH Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christian Meisel
- Labor Berlin - Charité Vivantes Services GmbH, Berlin, Germany.,Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ewa Anna Bernatowska
- Department of Immunology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Mieczysław Walczak
- Department of Pediatrics, Endocrinology, Diabetology, Metabolic Diseases and Cardiology, Pomeranian Medical University, Szczecin, Poland.,Independent Public Clinical Hospital nr 1 PUM, Szczecin, Poland
| | - Małgorzata Pac
- Department of Immunology, The Children's Memorial Health Institute, Warsaw, Poland
| |
Collapse
|
32
|
Dorsey MJ, Wright NAM, Chaimowitz NS, Dávila Saldaña BJ, Miller H, Keller MD, Thakar MS, Shah AJ, Abu-Arja R, Andolina J, Aquino V, Barnum JL, Bednarski JJ, Bhatia M, Bonilla FA, Butte MJ, Bunin NJ, Chandra S, Chaudhury S, Chen K, Chong H, Cuvelier GDE, Dalal J, DeFelice ML, DeSantes KB, Forbes LR, Gillio A, Goldman F, Joshi AY, Kapoor N, Knutsen AP, Kobrynski L, Lieberman JA, Leiding JW, Oshrine B, Patel KP, Prockop S, Quigg TC, Quinones R, Schultz KR, Seroogy C, Shyr D, Siegel S, Smith AR, Torgerson TR, Vander Lugt MT, Yu LC, Cowan MJ, Buckley RH, Dvorak CC, Griffith LM, Haddad E, Kohn DB, Logan B, Notarangelo LD, Pai SY, Puck J, Pulsipher MA, Heimall J. Infections in Infants with SCID: Isolation, Infection Screening, and Prophylaxis in PIDTC Centers. J Clin Immunol 2020; 41:38-50. [PMID: 33006109 DOI: 10.1007/s10875-020-00865-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/07/2020] [Indexed: 01/12/2023]
Abstract
PURPOSE The Primary Immune Deficiency Treatment Consortium (PIDTC) enrolled children with severe combined immunodeficiency (SCID) in a prospective natural history study of hematopoietic stem cell transplant (HSCT) outcomes over the last decade. Despite newborn screening (NBS) for SCID, infections occurred prior to HSCT. This study's objectives were to define the types and timing of infection prior to HSCT in patients diagnosed via NBS or by family history (FH) and to understand the breadth of strategies employed at PIDTC centers for infection prevention. METHODS We analyzed retrospective data on infections and pre-transplant management in patients with SCID diagnosed by NBS and/or FH and treated with HSCT between 2010 and 2014. PIDTC centers were surveyed in 2018 to understand their practices and protocols for pre-HSCT management. RESULTS Infections were more common in patients diagnosed via NBS (55%) versus those diagnosed via FH (19%) (p = 0.012). Outpatient versus inpatient management did not impact infections (47% vs 35%, respectively; p = 0.423). There was no consensus among PIDTC survey respondents as to the best setting (inpatient vs outpatient) for pre-HSCT management. While isolation practices varied, immunoglobulin replacement and antimicrobial prophylaxis were more uniformly implemented. CONCLUSION Infants with SCID diagnosed due to FH had lower rates of infection and proceeded to HSCT more quickly than did those diagnosed via NBS. Pre-HSCT management practices were highly variable between centers, although uses of prophylaxis and immunoglobulin support were more consistent. This study demonstrates a critical need for development of evidence-based guidelines for the pre-HSCT management of infants with SCID following an abnormal NBS. TRIAL REGISTRATION NCT01186913.
Collapse
Affiliation(s)
- Morna J Dorsey
- Division of Pediatric Allergy, Immunology, & Bone Marrow Transplant, Benioff Children's Hospital, University of California San Francisco, San Francisco, CA, USA
| | - Nicola A M Wright
- Division of Hematology/Immunology, Department of Pediatrics, Alberta Children's Hospital, University of Calgary, Calgary, AB, Canada
| | - Natalia S Chaimowitz
- Section of Immunology, Allergy and Retrovirology, Department of Pediatrics, William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Blachy J Dávila Saldaña
- Division of Blood and Marrow Transplantation, Children's National Medical Center, Washington, DC, USA.,Department of Pediatrics, George Washington University, Washington, DC, USA
| | - Holly Miller
- Center for Cancer and Blood Disorders, Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Michael D Keller
- Division of Allergy & Immunology, Children's National Health System, and Division of Pediatrics, George Washington University, Washington, DC, USA
| | - Monica S Thakar
- Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA, USA
| | - Ami J Shah
- Division of Stem Cell Transplantation and Regenerative Medicine, Lucille Packard Children's Hospital, Stanford School of Medicine, Stanford, CA, USA
| | | | - Jeffrey Andolina
- Department of Pediatrics, Golisano Children's Hospital, University of Rochester Medical Center, Rochester, NY, USA
| | | | - J L Barnum
- UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Jeffrey J Bednarski
- Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Monica Bhatia
- Pediatric Stem Cell Transplant Columbia, University Irving Medical Center, New York, NY, USA
| | - Francisco A Bonilla
- Northeast Allergy, Asthma & Immunology (private practice), Leominster, MA, USA
| | - Manish J Butte
- Division of Immunology, Allergy, and Rheumatology, Department of Pediatrics, University of California Los Angeles, Los Angeles, CA, USA
| | - Nancy J Bunin
- Cellular Therapy and Transplant Section, Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sharat Chandra
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Sonali Chaudhury
- Division of Pediatric Hematology, Oncology, Stem Cell Transplantation, Ann & Robert H Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Karin Chen
- Division of Allergy and Immunology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Hey Chong
- UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Geoffrey D E Cuvelier
- Pediatric Blood and Marrow Transplant Program, CancerCare Manitoba, Department of Pediatrics and Child Health, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Jignesh Dalal
- Pediatric Bone Marrow Transplant, Rainbow Babies and Children's Hospital, Cleveland, OH, USA
| | - Magee L DeFelice
- Division of Allergy and Immunology, Nemours/AI duPont Hospital for Children, Wilmington, DE, USA
| | - Kenneth B DeSantes
- Division of Hematology, Oncology and Bone Marrow Transplant, Department of Pediatrics, University of Wisconsin School of Medicine, Madison, WI, USA
| | - Lisa R Forbes
- William T Shearer Center for Human Immunobiology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Alfred Gillio
- Joseph M Sanzari's Childrens Hospital, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Fred Goldman
- Department of Pediatrics, Division of Hematology Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Avni Y Joshi
- Pediatric and Adult Allergy/Immunology, Mayo Clinic, Rochester, MN, USA
| | - Neena Kapoor
- Section of Transplantation and Cellular Therapy, Children's Hospital Los Angeles Cancer and Blood Diseases Institute, USC Keck School of Medicine, Los Angeles, CA, USA
| | - Alan P Knutsen
- Pediatric Allergy and Immunology, Cardinal Glennon Children's Hospital, St. Louis, MO, USA
| | - Lisa Kobrynski
- Children's Healthcare of Atlanta, Emory University Department of Pediatrics, Allergy and Immunology, Atlanta, GA, USA
| | - Jay A Lieberman
- Department of Pediatrics, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jennifer W Leiding
- Division of Allergy and Immunology, Department of Pediatrics, University of South Florida, St. Petersburg, FL, USA.,Johns Hopkins All Children's Hospital, Cancer and Blood Disorders Institute, St. Petersburg, FL, USA
| | - Benjamin Oshrine
- Johns Hopkins All Children's Hospital, Cancer and Blood Disorders Institute, St. Petersburg, FL, USA
| | | | - Susan Prockop
- Department of Pediatrics, Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Troy C Quigg
- Pediatric Blood and Marrow Transplantation Program, Methodist Children's Hospital, San Antonio, TX, USA
| | - Ralph Quinones
- Pediatric Hematology, Oncology and Bone Marrow Transplant, Children's Hospital Colorado, Aurora, CO, USA
| | - Kirk R Schultz
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital and Research Institute, Vancouver, British Columbia, Canada
| | - Christine Seroogy
- University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - David Shyr
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Utah School of Medicine, Primary Children's Hospital, Salt Lake City, UT, USA.,Division of Stem Cell Transplant, Department of Pediatrics, Stanford Medicine, Lucile Packard Children's Hospital, Palo Alto, CA, USA
| | - Subhadra Siegel
- Division of Pediatric Pulmonology, Allergy and Immunology and Sleep Medicine, Westchester Medical Center, Valhalla, NY, USA
| | - Angela R Smith
- Pediatric Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Troy R Torgerson
- Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA, USA
| | - Mark T Vander Lugt
- Blood and Marrow Transplant Program, University of Michigan, Ann Arbor, MI, USA
| | - Lolie C Yu
- Division of Heme-Onc/HSCT, Children's Hospital/LSUHSC, New Orleans, LA, USA
| | - Morton J Cowan
- Division of Pediatric Allergy, Immunology, & Bone Marrow Transplant, Benioff Children's Hospital, University of California San Francisco, San Francisco, CA, USA
| | - Rebecca H Buckley
- Division of Allergy and Immunology, Department of Pediatrics and Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Christopher C Dvorak
- Division of Pediatric Allergy, Immunology, & Bone Marrow Transplant, Benioff Children's Hospital, University of California San Francisco, San Francisco, CA, USA
| | - Linda M Griffith
- Division of Allergy, Immunology and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Elie Haddad
- Pediatric Immunology and Rheumatology Division, CHU Sainte-Justine, Department of Pediatrics, Department of Microbiology, Immunology and Infectious Disease, University of Montreal, Montreal, QC, Canada
| | - Donald B Kohn
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Brent Logan
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sung-Yun Pai
- Division of Hematology-Oncology, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jennifer Puck
- Division of Pediatric Allergy, Immunology, & Bone Marrow Transplant, Benioff Children's Hospital, University of California San Francisco, San Francisco, CA, USA
| | - Michael A Pulsipher
- Section of Transplantation and Cellular Therapy, Children's Hospital Los Angeles Cancer and Blood Diseases Institute, USC Keck School of Medicine, Los Angeles, CA, USA
| | - Jennifer Heimall
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Wood 3301, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA.
| |
Collapse
|
33
|
Ford J, Pena JM, Rainey SC. Hypocalcemia and a Positive Metabolic Screen for Severe Combined Immunodeficiency in an 11-Day-Old Male With DiGeorge Syndrome. Cureus 2020; 12:e10625. [PMID: 33123438 PMCID: PMC7584303 DOI: 10.7759/cureus.10625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
22q11 deletion syndrome (22q11DS), also known as DiGeorge syndrome or velocardiofacial syndrome, is the most common human genetic microdeletion. Hypocalcemia secondary to hypoparathyroidism is a common finding in this condition and may present with seizures. We describe a case of an 11-day-old male presenting with hypocalcemic seizures and a positive newborn screen for severe combined immunodeficiency as the primary manifestations of 22q11DS. Given the potential for wide phenotypic variability, clinicians should maintain a high index of suspicion for this syndrome, especially in the neonate presenting with hypocalcemia.
Collapse
|
34
|
Goldberg L, Simon AJ, Lev A, Barel O, Stauber T, Kunik V, Rechavi G, Somech R. Atypical immune phenotype in severe combined immunodeficiency patients with novel mutations in IL2RG and JAK3. Genes Immun 2020; 21:326-334. [PMID: 32921793 DOI: 10.1038/s41435-020-00111-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/14/2020] [Accepted: 09/02/2020] [Indexed: 11/09/2022]
Abstract
Mutations in the common gamma chain of the interleukin 2 receptor (IL2RG) or the associated downstream signaling enzyme Janus kinase 3 (JAK3) genes are typically characterized by a T cell-negative, B cell-positive, natural killer (NK) cell-negative (T-B+NK-) severe combined immunodeficiency (SCID) immune phenotype. We report clinical course, immunological, genetic and proteomic work-up of two patients with different novel mutations in the IL-2-JAK3 pathway with a rare atypical presentation of T-B+NK- SCID. Lymphocyte subpopulation revealed significant T cells lymphopenia, normal B cells, and NK cells counts (T-B+NK+SCID). Despite the presence of B cells, IgG levels were low and IgA and IgM levels were undetectable. T-cell proliferation in response to mitogens in patient 1 was very low and T-cell receptor V-beta chain repertoire in patient 2 was polyclonal. Whole-exome sequencing revealed novel mutations in both patients (patient 1-c.923delC frame-shift mutation in the IL2RG gene, patient 2-c.G172A a homozygous missense mutation in the JAK3 gene). Bioinformatic analysis of the JAK3 mutation indicated deleterious effect and 3D protein modeling located the mutation to a surface exposed alpha-helix structure. Our findings help to link between genotype and phenotype, which is a key factor for the diagnosis and treatment of SCID patients.
Collapse
Affiliation(s)
- Lior Goldberg
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Pediatric Department A, Pediatric Immunology Service, Jeffrey Modell Foundation (JMF) Center, Sheba Medical Center, Tel HaShomer, Israel
| | - Amos J Simon
- Pediatric Department A, Pediatric Immunology Service, Jeffrey Modell Foundation (JMF) Center, Sheba Medical Center, Tel HaShomer, Israel.,Sheba Cancer Research Center, Sheba Medical Center, Tel HaShomer, Israel
| | - Atar Lev
- Pediatric Department A, Pediatric Immunology Service, Jeffrey Modell Foundation (JMF) Center, Sheba Medical Center, Tel HaShomer, Israel
| | - Ortal Barel
- Sheba Cancer Research Center, Sheba Medical Center, Tel HaShomer, Israel.,The Wohl Institute for Translational Medicine, Sheba Medical Center, Tel HaShomer, Israel
| | - Tali Stauber
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Pediatric Department A, Pediatric Immunology Service, Jeffrey Modell Foundation (JMF) Center, Sheba Medical Center, Tel HaShomer, Israel
| | - Vered Kunik
- Bioinformatics Consulting, Gat Rimon, Israel
| | - Gideon Rechavi
- Sheba Cancer Research Center, Sheba Medical Center, Tel HaShomer, Israel.,The Wohl Institute for Translational Medicine, Sheba Medical Center, Tel HaShomer, Israel
| | - Raz Somech
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel. .,Pediatric Department A, Pediatric Immunology Service, Jeffrey Modell Foundation (JMF) Center, Sheba Medical Center, Tel HaShomer, Israel.
| |
Collapse
|
35
|
Shinwari K, Bolkov M, Tuzankina IA, Chereshnev VA. Newborn Screening through TREC, TREC/KREC System for Primary Immunodeficiency with limitation of TREC/KREC. Comprehensive Review. Antiinflamm Antiallergy Agents Med Chem 2020; 20:132-149. [PMID: 32748762 DOI: 10.2174/1871523019999200730171600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 06/11/2020] [Accepted: 06/21/2020] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Newborn screening (NBS) by quantifying T cell receptor excision circles (TRECs) and Kappa receptor excision circles in neonatal dried blood spots (DBS) enables early diagnosis of different types of primary immune deficiencies. Global newborn screening for PID, using an assay to detect T-cell receptor excision circles (TREC) in dried blood spots (DBS), is now being performed in all states in the United States. In this review, we discuss the development and outcomes of TREC, TREC/KREC combines screening, and continued challenges to implementation. OBJECTIVE To review the diagnostic performance of published articles for TREC and TREC/ KREC based NBS for PID and its different types. METHODS Different research resources were used to get an approach for the published data of TREС and KREC based NBS for PID like PubMed, Scopus, Google Scholar, Research gate EMBASE. We extracted TREC and KREC screening Publisher with years of publication, content and cut-off values, and a number of retests, repeat DBS, and referrals from the different published pilot, pilot cohort, Case series, and cohort studies. RESULTS We included the results of TREC, combined TREC/KREC system based NBS screening from different research articles, and divided these results between the Pilot studies, case series, and cohort. For each of these studies, different parameter data are excluded from different articles. Thirteen studies were included, re-confirming 89 known SCID cases in case series and reporting 53 new SCID cases in 3.15 million newborns. Individual TREC contents in all SCID patients were <25 TRECs/μl (except in those evaluated with the New York State assay). CONCLUSION TREC and KREC sensitivity for typical SCID and other types of PID was 100 %. It shows its importance and anticipating the significance of implementation in different undeveloped and developed countries in the NBS program in upcoming years. Data adapting the screening algorithm for pre-term/ill infants reduce the amount of false-positive test results.
Collapse
Affiliation(s)
- Khyber Shinwari
- Department of Immunochemistry, Institute of Chemical Engineering, Ural Federal University, Yekaterinburg, Russian Federation
| | - Mikhail Bolkov
- Department of Immunochemistry, Institute of Chemical Engineering, Ural Federal University, Yekaterinburg, Russian Federation
| | - Irina A Tuzankina
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russian Federation
| | - Valery A Chereshnev
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russian Federation
| |
Collapse
|
36
|
Strand J, Gul KA, Erichsen HC, Lundman E, Berge MC, Trømborg AK, Sørgjerd LK, Ytre-Arne M, Hogner S, Halsne R, Gaup HJ, Osnes LT, Kro GAB, Sorte HS, Mørkrid L, Rowe AD, Tangeraas T, Jørgensen JV, Alme C, Bjørndalen TEH, Rønnestad AE, Lang AM, Rootwelt T, Buechner J, Øverland T, Abrahamsen TG, Pettersen RD, Stray-Pedersen A. Second-Tier Next Generation Sequencing Integrated in Nationwide Newborn Screening Provides Rapid Molecular Diagnostics of Severe Combined Immunodeficiency. Front Immunol 2020; 11:1417. [PMID: 32754152 PMCID: PMC7381310 DOI: 10.3389/fimmu.2020.01417] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/02/2020] [Indexed: 12/15/2022] Open
Abstract
Severe combined immunodeficiency (SCID) and other T cell lymphopenias can be detected during newborn screening (NBS) by measuring T cell receptor excision circles (TRECs) in dried blood spot (DBS) DNA. Second tier next generation sequencing (NGS) with an amplicon based targeted gene panel using the same DBS DNA was introduced as part of our prospective pilot research project in 2015. With written parental consent, 21 000 newborns were TREC-tested in the pilot. Three newborns were identified with SCID, and disease-causing variants in IL2RG, RAG2, and RMRP were confirmed by NGS on the initial DBS DNA. The molecular findings directed follow-up and therapy: the IL2RG-SCID underwent early hematopoietic stem cell transplantation (HSCT) without any complications; the leaky RAG2-SCID received prophylactic antibiotics, antifungals, and immunoglobulin infusions, and underwent HSCT at 1 year of age. The child with RMRP-SCID had complete Hirschsprung disease and died at 1 month of age. Since January 2018, all newborns in Norway have been offered NBS for SCID using 1st tier TRECs and 2nd tier gene panel NGS on DBS DNA. During the first 20 months of nationwide SCID screening an additional 88 000 newborns were TREC tested, and four new SCID cases were identified. Disease-causing variants in DCLRE1C, JAK3, NBN, and IL2RG were molecularly confirmed on day 8, 15, 8 and 6, respectively after birth, using the initial NBS blood spot. Targeted gene panel NGS integrated into the NBS algorithm rapidly delineated the specific molecular diagnoses and provided information useful for management, targeted therapy and follow-up i.e., X rays and CT scans were avoided in the radiosensitive SCID. Second tier targeted NGS on the same DBS DNA as the TREC test provided instant confirmation or exclusion of SCID, and made it possible to use a less stringent TREC cut-off value. This allowed for the detection of leaky SCIDs, and simultaneously reduced the number of control samples, recalls and false positives. Mothers were instructed to stop breastfeeding until maternal cytomegalovirus (CMV) status was determined. Our limited data suggest that shorter time-interval from birth to intervention, may prevent breast milk transmitted CMV infection in classical SCID.
Collapse
Affiliation(s)
- Janne Strand
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Kiran Aftab Gul
- Paediatric Research Institute, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Hans Christian Erichsen
- Department of Paediatrics, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
- Division of Paediatric and Adolescent Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Emma Lundman
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Mona C. Berge
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Anette K. Trømborg
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Linda K. Sørgjerd
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Mari Ytre-Arne
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Silje Hogner
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Ruth Halsne
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
- Department of Forensic Biology, Oslo University Hospital, Oslo, Norway
| | - Hege Junita Gaup
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Liv T. Osnes
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, Oslo, Norway
| | - Grete A. B. Kro
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Hanne S. Sorte
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Lars Mørkrid
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Alexander D. Rowe
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Trine Tangeraas
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
- Department of Paediatrics, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Jens V. Jørgensen
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
- Department of Paediatrics, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Charlotte Alme
- Department of Paediatric Haematology, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | | | - Arild E. Rønnestad
- Department of Paediatrics, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Astri M. Lang
- Department of Paediatrics, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Terje Rootwelt
- Department of Paediatrics, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
- Division of Paediatric and Adolescent Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Jochen Buechner
- Department of Paediatric Haematology, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Torstein Øverland
- Department of Paediatrics, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Tore G. Abrahamsen
- Department of Paediatrics, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
- Division of Paediatric and Adolescent Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Rolf D. Pettersen
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Asbjørg Stray-Pedersen
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
- Department of Paediatrics, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
37
|
Verstegen RHJ, Kusters MAA. Inborn Errors of Adaptive Immunity in Down Syndrome. J Clin Immunol 2020; 40:791-806. [PMID: 32638194 DOI: 10.1007/s10875-020-00805-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 06/10/2020] [Indexed: 12/15/2022]
Abstract
Down syndrome fits an immunophenotype of combined immunodeficiency with immunodysregulation, manifesting with increased susceptibility to infections, autoimmunity, autoinflammatory diseases, and hematologic malignancies. Qualitative and quantitative alterations in innate and adaptive immunity are found in most individuals with Down syndrome. However, there is substantial heterogeneity and no correlation between immunophenotype and clinical presentation. Previously, it was thought that the immunological changes in Down syndrome were caused by precocious aging. We emphasize in this review that the immune system in Down syndrome is intrinsically different from the very beginning. The overexpression of specific genes located on chromosome 21 contributes to immunodeficiency and immunodysregulation, but gene expression differs between genes located on chromosome 21 and depends on tissue and cell type. In addition, trisomy 21 results in gene dysregulation of the whole genome, reflecting the complex nature of this syndrome in comparison to well-known inborn errors of immunity that result from monogenic germline mutations. In this review, we provide an updated overview focusing on inborn errors of adaptive immunity in Down syndrome.
Collapse
Affiliation(s)
- Ruud H J Verstegen
- Division of Clinical Pharmacology and Toxicology, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada. .,Division of Rheumatology, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada.
| | - Maaike A A Kusters
- Department of Immunology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.,University College London Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
38
|
Knight V, Heimall JR, Wright N, Dutmer CM, Boyce TG, Torgerson TR, Abraham RS. Follow-Up for an Abnormal Newborn Screen for Severe Combined Immunodeficiencies (NBS SCID): A Clinical Immunology Society (CIS) Survey of Current Practices. Int J Neonatal Screen 2020; 6:ijns6030052. [PMID: 33239578 PMCID: PMC7569936 DOI: 10.3390/ijns6030052] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/15/2020] [Accepted: 06/26/2020] [Indexed: 12/20/2022] Open
Abstract
Severe combined immunodeficiency (SCID) includes a group of monogenic disorders presenting with severe T cell lymphopenia (TCL) and high mortality, if untreated. The newborn screen (NBS) for SCID, included in the recommended universal screening panel (RUSP), has been widely adopted across the US and in many other countries. However, there is a lack of consensus regarding follow-up testing to confirm an abnormal result. The Clinical Immunology Society (CIS) membership was surveyed for confirmatory testing practices for an abnormal NBS SCID result, which included consideration of gestational age and birth weight, as well as flow cytometry panels. Considerable variability was observed in follow-up practices for an abnormal NBS SCID with 49% confirming by flow cytometry, 39% repeating TREC analysis, and the remainder either taking prematurity into consideration for subsequent testing or proceeding directly to genetic analysis. More than 50% of respondents did not take prematurity into consideration when determining follow-up. Confirmation of abnormal NBS SCID in premature infants continues to be challenging and is handled variably across centers, with some choosing to repeat NBS SCID testing until normal or until the infant reaches an adjusted gestational age of 37 weeks. A substantial proportion of respondents included naïve and memory T cell analysis with T, B, and NK lymphocyte subset quantitation in the initial confirmatory panel. These results have the potential to influence the diagnosis and management of an infant with TCL as illustrated by the clinical cases presented herein. Our data indicate that there is clearly a strong need for harmonization of follow-up testing for an abnormal NBS SCID result.
Collapse
Affiliation(s)
- Vijaya Knight
- Division of Allergy and Immunology, Department of Pediatrics, University of Colorado School of Medicine, Children’s Hospital Colorado, Aurora, CO 80045, USA;
- Correspondence:
| | - Jennifer R. Heimall
- Division of Allergy and Immunology, Children’s Hospital of Philadelphia, Perlman School of Medicine at University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Nicola Wright
- Department of Pediatrics, Alberta Children’s Hospital, University of Calgary, Calgary, AB T3B 6A8, Canada;
| | - Cullen M. Dutmer
- Division of Allergy and Immunology, Department of Pediatrics, University of Colorado School of Medicine, Children’s Hospital Colorado, Aurora, CO 80045, USA;
| | - Thomas G. Boyce
- Division of Pediatric Infectious Diseases, Marshfield Clinic, WI 54449, USA;
| | | | - Roshini S. Abraham
- Department of Pathology and Laboratory Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA;
| |
Collapse
|
39
|
Sharapova SO, Skomska-Pawliszak M, Rodina YA, Wolska-Kuśnierz B, Dabrowska-Leonik N, Mikołuć B, Pashchenko OE, Pasic S, Freiberger T, Milota T, Formánková R, Szaflarska A, Siedlar M, Avčin T, Markelj G, Ciznar P, Kalwak K, Kołtan S, Jackowska T, Drabko K, Gagro A, Pac M, Naumova E, Kandilarova S, Babol-Pokora K, Varabyou DS, Barendregt BH, Raykina EV, Varlamova TV, Pavlova AV, Grombirikova H, Debeljak M, Mersiyanova IV, Bondarenko AV, Chernyshova LI, Kostyuchenko LV, Guseva MN, Rascon J, Muleviciene A, Preiksaitiene E, Geier CB, Leiss-Piller A, Yamazaki Y, Kawai T, Walter JE, Kondratenko IV, Šedivá A, van der Burg M, Kuzmenko NB, Notarangelo LD, Bernatowska E, Aleinikova OV. The Clinical and Genetic Spectrum of 82 Patients With RAG Deficiency Including a c.256_257delAA Founder Variant in Slavic Countries. Front Immunol 2020; 11:900. [PMID: 32655540 PMCID: PMC7325958 DOI: 10.3389/fimmu.2020.00900] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/20/2020] [Indexed: 11/13/2022] Open
Abstract
Background: Variants in recombination-activating genes (RAG) are common genetic causes of autosomal recessive forms of combined immunodeficiencies (CID) ranging from severe combined immunodeficiency (SCID), Omenn syndrome (OS), leaky SCID, and CID with granulomas and/or autoimmunity (CID-G/AI), and even milder presentation with antibody deficiency. Objective: We aim to estimate the incidence, clinical presentation, genetic variability, and treatment outcome with geographic distribution of patients with the RAG defects in populations inhabiting South, West, and East Slavic countries. Methods: Demographic, clinical, and laboratory data were collected from RAG-deficient patients of Slavic origin via chart review, retrospectively. Recombinase activity was determined in vitro by flow cytometry-based assay. Results: Based on the clinical and immunologic phenotype, our cohort of 82 patients from 68 families represented a wide spectrum of RAG deficiencies, including SCID (n = 20), OS (n = 37), and LS/CID (n = 25) phenotypes. Sixty-seven (81.7%) patients carried RAG1 and 15 patients (18.3%) carried RAG2 biallelic variants. We estimate that the minimal annual incidence of RAG deficiency in Slavic countries varies between 1 in 180,000 and 1 in 300,000 live births, and it may vary secondary to health care disparities in these regions. In our cohort, 70% (n = 47) of patients with RAG1 variants carried p.K86Vfs*33 (c.256_257delAA) allele, either in homozygous (n = 18, 27%) or in compound heterozygous (n = 29, 43%) form. The majority (77%) of patients with homozygous RAG1 p.K86Vfs*33 variant originated from Vistula watershed area in Central and Eastern Poland, and compound heterozygote cases were distributed among all Slavic countries except Bulgaria. Clinical and immunological presentation of homozygous RAG1 p.K86Vfs*33 cases was highly diverse (SCID, OS, and AS/CID) suggestive of strong influence of additional genetic and/or epigenetic factors in shaping the final phenotype. Conclusion: We propose that RAG1 p.K86Vfs*33 is a founder variant originating from the Vistula watershed region in Poland, which may explain a high proportion of homozygous cases from Central and Eastern Poland and the presence of the variant in all Slavs. Our studies in this cohort of RAG1 founder variants confirm that clinical and immunological phenotypes only partially depend on the underlying genetic defect. As access to HSCT is improving among RAG-deficient patients in Eastern Europe, we anticipate improvements in survival.
Collapse
Affiliation(s)
- Svetlana O. Sharapova
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk Region, Belarus
| | | | - Yulia A. Rodina
- Department of Immunology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | | | | | - Bozena Mikołuć
- Department of Pediatrics, Rheumatology, Immunology and Metabolic Bone Diseases, Medical University of Bialystok, Bialystok, Poland
| | - Olga E. Pashchenko
- Immunology Department, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Srdjan Pasic
- Pediatric Immunology, Medical Faculty, Mother and Child Health Institute, University of Belgrade, Belgrade, Serbia
| | - Tomáš Freiberger
- Centre for Cardiovascular Surgery and Transplantation, Brno, Czechia
- Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Tomáš Milota
- Department of Immunology, University Hospital Motol, Prague, Czechia
- Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Renata Formánková
- Department of Pediatric Hematology and Oncology, University Hospital Motol, Prague, Czechia
- Faculty of Medicine, Charles University, Prague, Czechia
| | - Anna Szaflarska
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Maciej Siedlar
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
- Department of Clinical Immunology, University Children's Hospital, Krakow, Poland
| | - Tadej Avčin
- University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Gašper Markelj
- University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Peter Ciznar
- Pediatric Department, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Krzysztof Kalwak
- Department of Pediatric Hematology/Oncology and BMT, Wroclaw Medical University, Wroclaw, Poland
| | - Sylwia Kołtan
- Department of Pediatrics, Hematology and Oncology Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
- Nicolaus Copernicus University in Torun, Torun, Poland
| | - Teresa Jackowska
- Department of Pediatrics, Medical Center of Postgraduate Education, Warsaw, Poland
| | - Katarzyna Drabko
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, Lublin, Poland
| | - Alenka Gagro
- Department of Pediatrics, School of Medicine, Zagreb Children's Hospital, University of Zagreb, Zagreb, Croatia
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Małgorzata Pac
- Department of Immunology, Children's Memorial Health Institute, Warsaw, Poland
| | - Elissaveta Naumova
- Department of Clinical Immunology, University Hospital Alexandrovska, Sofia, Bulgaria
| | - Snezhina Kandilarova
- Department of Clinical Immunology, University Hospital Alexandrovska, Sofia, Bulgaria
| | - Katarzyna Babol-Pokora
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Dzmitry S. Varabyou
- Department of Geographical Ecology, Belarusian State University, Minsk, Belarus
| | - Barbara H. Barendregt
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Elena V. Raykina
- Laboratory of Molecular Biology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Tatiana V. Varlamova
- Laboratory of Molecular Biology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Anna V. Pavlova
- Laboratory of Molecular Biology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Hana Grombirikova
- Centre for Cardiovascular Surgery and Transplantation, Brno, Czechia
- Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Maruša Debeljak
- University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Irina V. Mersiyanova
- Laboratory of Molecular Biology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Anastasiia V. Bondarenko
- Department of Pediatric Infectious Diseases and Pediatric Immunology, Shupyk National Medical Academy for Postgraduate Education, Kiev, Ukraine
| | - Liudmyla I. Chernyshova
- Department of Pediatric Infectious Diseases and Pediatric Immunology, Shupyk National Medical Academy for Postgraduate Education, Kiev, Ukraine
| | - Larysa V. Kostyuchenko
- Pediatric Department, West-Ukrainian Specialized Children's Medical Center, Lviv, Ukraine
| | - Marina N. Guseva
- Consulting Center of Pediatric Medical Academy, St. Petersburg, Russia
| | - Jelena Rascon
- Center for Pediatric Oncology and Hematology, Vilnius University, Vilnius, Lithuania
| | - Audrone Muleviciene
- Center for Pediatric Oncology and Hematology, Vilnius University, Vilnius, Lithuania
| | - Egle Preiksaitiene
- Hematology, Oncology and Transfusion Medicine Center, Vilnius University, Vilnius, Lithuania
| | | | | | - Yasuhiro Yamazaki
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Tomoki Kawai
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Jolan E. Walter
- University of South Florida at Johns Hopkins All Children's Hospital, Saint Petersburg, FL, United States
- Massachusetts General Hospital for Children, Boston, MA, United States
| | - Irina V. Kondratenko
- Department of Clinical Immunology, Russian Clinical Children's Hospital by Pirogov Russian National Research Medical University, Moscow, Russia
| | - Anna Šedivá
- Department of Immunology, University Hospital Motol, Prague, Czechia
- Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Mirjam van der Burg
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Pediatric, Laboratory for Pediatric Immunology, Willem Alexander Children's Hospital, LUMC, Leiden, Netherlands
| | - Natalia B. Kuzmenko
- Department of Epidemiology and Monitoring of Primary Immunodeficiencies, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Luigi D. Notarangelo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Ewa Bernatowska
- Department of Immunology, Children's Memorial Health Institute, Warsaw, Poland
| | - Olga V. Aleinikova
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk Region, Belarus
| |
Collapse
|
40
|
Kalina T, Bakardjieva M, Blom M, Perez-Andres M, Barendregt B, Kanderová V, Bonroy C, Philippé J, Blanco E, Pico-Knijnenburg I, Paping JHMP, Wolska-Kuśnierz B, Pac M, Tkazcyk J, Haerynck F, Akar HH, Formánková R, Freiberger T, Svatoň M, Šedivá A, Arriba-Méndez S, Orfao A, van Dongen JJM, van der Burg M. EuroFlow Standardized Approach to Diagnostic Immunopheneotyping of Severe PID in Newborns and Young Children. Front Immunol 2020; 11:371. [PMID: 32265901 PMCID: PMC7096355 DOI: 10.3389/fimmu.2020.00371] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/17/2020] [Indexed: 12/13/2022] Open
Abstract
The EuroFlow PID consortium developed a set of flow cytometry tests for evaluation of patients with suspicion of primary immunodeficiency (PID). In this technical report we evaluate the performance of the SCID-RTE tube that explores the presence of recent thymic emigrants (RTE) together with T-cell activation status and maturation stages and discuss its applicability in the context of the broader EuroFlow PID flow cytometry testing algorithm for diagnostic orientation of PID of the lymphoid system. We have analyzed peripheral blood cells of 26 patients diagnosed between birth and 2 years of age with a genetically defined primary immunodeficiency disorder: 15 severe combined immunodeficiency (SCID) patients had disease-causing mutations in RAG1 or RAG2 (n = 4, two of them presented with Omenn syndrome), IL2RG (n = 4, one of them with confirmed maternal engraftment), NHEJ1 (n = 1), CD3E (n = 1), ADA (n = 1), JAK3 (n = 3, two of them with maternal engraftment) and DCLRE1C (n = 1) and 11 other PID patients had diverse molecular defects [ZAP70 (n = 1), WAS (n = 2), PNP (n = 1), FOXP3 (n = 1), del22q11.2 (DiGeorge n = 4), CDC42 (n = 1) and FAS (n = 1)]. In addition, 44 healthy controls in the same age group were analyzed using the SCID-RTE tube in four EuroFlow laboratories using a standardized 8-color approach. RTE were defined as CD62L+CD45RO-HLA-DR-CD31+ and the activation status was assessed by the expression of HLA-DR+. Naïve CD8+ T-lymphocytes and naïve CD4+ T-lymphocytes were defined as CD62L+CD45RO-HLA-DR-. With the SCID-RTE tube, we identified patients with PID by low levels or absence of RTE in comparison to controls as well as low levels of naïve CD4+ and naïve CD8+ lymphocytes. These parameters yielded 100% sensitivity for SCID. All SCID patients had absence of RTE, including the patients with confirmed maternal engraftment or oligoclonally expanded T-cells characteristic for Omenn syndrome. Another dominant finding was the increased numbers of activated CD4+HLA-DR+ and CD8+HLA-DR+ lymphocytes. Therefore, the EuroFlow SCID-RTE tube together with the previously published PIDOT tube form a sensitive and complete cytometric diagnostic test suitable for patients suspected of severe PID (SCID or CID) as well as for children identified via newborn screening programs for SCID with low or absent T-cell receptor excision circles (TRECs).
Collapse
Affiliation(s)
- Tomas Kalina
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Marina Bakardjieva
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Maartje Blom
- Laboratory for Immunology, Department of Pediatrics, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Martin Perez-Andres
- Department of Medicine-Serv. Cytometry, Cancer Research Center (IBMCC-CSIC/USAL), University of Salamanca, Salamanca, Spain
| | - Barbara Barendregt
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Veronika Kanderová
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Carolien Bonroy
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium.,Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Jan Philippé
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium.,Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Elena Blanco
- Department of Medicine-Serv. Cytometry, Cancer Research Center (IBMCC-CSIC/USAL), University of Salamanca, Salamanca, Spain
| | - Ingrid Pico-Knijnenburg
- Laboratory for Immunology, Department of Pediatrics, Leiden University Medical Center (LUMC), Leiden, Netherlands.,Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Jitse H M P Paping
- Laboratory for Immunology, Department of Pediatrics, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | | | - Malgorzata Pac
- Department of Immunology, Children's Memorial Health Institute, Warsaw, Poland
| | - Jakub Tkazcyk
- Department of Pediatrics, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Filomeen Haerynck
- PID Research Lab, Department of Pediatric Pulmonology and Immunology, Ghent University Hospital, Ghent, Belgium
| | - Himmet Haluk Akar
- Department of Pediatric Immunology and Allergy, Kanuni Sultan Süleyman Training and Research Hospital, Istanbul Health Sciences University, Istanbul, Turkey
| | - Renata Formánková
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Tomáš Freiberger
- Centre for Cardiovascular Surgery and Transplantation, Brno, Czechia.,Medical Faculty, Masaryk University, Brno, Czechia
| | - Michael Svatoň
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Anna Šedivá
- Department of Immunology, University Hospital Motol, Prague, Czechia
| | - Sonia Arriba-Méndez
- Servicio de Pediatría, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Alberto Orfao
- Department of Medicine-Serv. Cytometry, Cancer Research Center (IBMCC-CSIC/USAL), University of Salamanca, Salamanca, Spain
| | - Jacques J M van Dongen
- Department of Immunohematology and Blood Transfusion (IHB), Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Mirjam van der Burg
- Laboratory for Immunology, Department of Pediatrics, Leiden University Medical Center (LUMC), Leiden, Netherlands.,Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
41
|
Abstract
In the fetus, the cardiac neural crest gives rise to both the thymus and the conotruncus of the heart. In newborn screening for severe T-cell lymphopenia neonates with congenital heart defects may be detected. In this study, we investigated the occurrence of T-cell lymphopenia in neonates with or without 22q11.2 deletion syndrome (del) suffering from heart defects. This retrospective cohort study included 125 patients with heart defects. T-cell receptor excision circles (TRECs), a measure for T-cell lymphopenia, were quantified by RT-PCR using stored newborn screening blood spots. Three patient groups were compared: non-conotruncal defects (n = 57), conotruncal defects (n = 42), and 22q11.2 del with conotruncal defects (n = 26). Significantly lower TREC values were detected in patients with 22q11.2 del and conotruncal heart defects compared to those with non-syndromic conotruncal (p < 0.001) and non-conotruncal (p < 0.001) defects. In contrast, no significant difference was found between patients with non-syndromic conotruncal and non-conotruncal heart defects (p = 0.152). Low TREC levels were obtained in neonates treated with heart surgery/intervention within 2 weeks after birth and in those with a fatal outcome (p = 0.02) independent of patient group. A correlation was found between low TREC numbers and oxygen saturation, SpO2 below 95% (p = 0.017). The SpO2 was significantly lower in the non-syndromic conotruncal group compared to non-conotruncal (p < 0.001) and 22q11.2 del group (p = 0.015). No correlation was found between low neonatal TRECs and infections needing hospitalization later in life (p = 0.135). Patients with 22q11.2 del and conotruncal defects have significantly lower TREC levels compared to patients with heart defects without this syndrome.
Collapse
|
42
|
Amatuni GS, Sciortino S, Currier RJ, Naides SJ, Church JA, Puck JM. Reference intervals for lymphocyte subsets in preterm and term neonates without immune defects. J Allergy Clin Immunol 2019; 144:1674-1683. [PMID: 31220471 PMCID: PMC6900445 DOI: 10.1016/j.jaci.2019.05.038] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/28/2019] [Accepted: 05/31/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND In 6.5 years of newborn screening for severe combined immunodeficiency in California, 3,252,156 infants had DNA from dried blood spots (DBSs) assayed for T-cell receptor excision circles. Infants with T-cell receptor excision circle values of less than a designated cutoff on a single DBS, 2 DBS samples with insufficient PCR amplification, or known genetic risk of immunodeficiency had peripheral blood complete blood counts and lymphocyte subsets assayed in a single flow cytometry laboratory. Cases in which immune defects were ruled out were available for analysis. OBJECTIVE We sought to determine reference intervals for lymphocyte subsets in racially/ethnically diverse preterm and term newborns who proved to be unaffected by any T-lymphopenic immune disorder. METHODS Effective gestational age (GA) was defined as GA at birth plus postnatal age at the time of sample collection. After determining exclusion criteria, we analyzed demographic and clinical information, complete and differential white blood cell counts, and lymphocyte subsets for 301 infants, with serial measurements for 33 infants. Lymphocyte subset measurements included total T cells, helper and cytotoxic T-cell subsets, naive and memory phenotype of each T-cell subset, B cells, and natural killer cells. RESULTS Reference intervals were generated for absolute numbers and lymphocyte subsets from infants with effective GAs of 22 to 52 weeks. Sex and ethnicity were not significant determinants of lymphocyte subset counts in this population. Lymphocyte counts increased postnatally. CONCLUSION This study provides a baseline for interpreting comprehensive lymphocyte data in preterm and term infants, aiding clinicians to determine which newborns require further evaluations for immunodeficiency.
Collapse
MESH Headings
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- B-Lymphocytes/pathology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/pathology
- Dried Blood Spot Testing
- Female
- Gestational Age
- Humans
- Infant, Newborn
- Infant, Premature/blood
- Infant, Premature/immunology
- Lymphocyte Count
- Male
- Polymerase Chain Reaction
- Receptors, Antigen, T-Cell/blood
- Receptors, Antigen, T-Cell/immunology
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/metabolism
- T-Lymphocytes, Helper-Inducer/pathology
Collapse
Affiliation(s)
- George S Amatuni
- Department of Pediatrics, University of California San Francisco School of Medicine, San Francisco, Calif; Stem Cell Institute, Department of Cell Biology, Einstein College of Medicine, Bronx, NY
| | - Stanley Sciortino
- Genetic Disease Screening Program, California Department of Public Health, Richmond, Calif
| | - Robert J Currier
- Department of Pediatrics, University of California San Francisco School of Medicine, San Francisco, Calif
| | - Stanley J Naides
- Immunology Department, Quest Diagnostics Nichols Institute, San Juan Capistrano, Calif
| | - Joseph A Church
- Department of Pediatrics, University of Southern California Keck School of Medicine, Los Angeles, Calif; Children's Hospital Los Angeles, Los Angeles, Calif
| | - Jennifer M Puck
- Department of Pediatrics, University of California San Francisco School of Medicine, San Francisco, Calif; Institute for Human Genetics, University of California San Francisco, San Francisco, Calif; Smith Cardiovascular Research Institute, University of California San Francisco, San Francisco, Calif; Benioff Children's Hospital, University of California San Francisco, San Francisco, Calif.
| |
Collapse
|
43
|
Schütz C, Hauck F, Albert MH, Hönig M, Borte S, Wahn V, Schulz A, Nennstiel U, Speckmann C. Neugeborenenscreening auf schwere kombinierte Immundefekte. Monatsschr Kinderheilkd 2019. [DOI: 10.1007/s00112-019-0743-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
44
|
Davey BT, Elder RW, Cloutier MM, Bennett N, Lee JH, Wang Z, Manning A, Doan T, Griffiths M, Perez M, Ahluwalia N, Toro-Salazar OH. T-Cell Receptor Excision Circles in Newborns with Congenital Heart Disease. J Pediatr 2019; 213:96-102.e2. [PMID: 31277900 DOI: 10.1016/j.jpeds.2019.05.061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/23/2019] [Accepted: 05/28/2019] [Indexed: 01/27/2023]
Abstract
OBJECTIVES To determine if children with congenital heart disease (CHD) have lower newborn T-cell receptor excision circles (TREC) levels than the general population and to evaluate if low TREC levels in newborns with CHD are associated with clinical complications such as hospitalization for infection. STUDY DESIGN The Connecticut Newborn Screening Program reported TREC levels for newborns with CHD delivered between October 2011 and September 2016 at 2 major Connecticut children's hospitals. TREC levels for children with CHD were compared with the general population. TREC levels and outcome measures, including hospitalization for infection, were compared. RESULTS We enrolled 575 participants with CHD in the study. The median TREC level for newborns with CHD was lower than the general population (180.1 copies/μL vs 312.5 copies/μL; P < .01). patients with CHD requiring hospitalization for infection had lower median TREC levels than their counterparts (143.0 copies/μL vs 186.7 copies/μL; P < .01). The combination of prematurity and low TREC level had a strong relationship to hospitalization for infection (area under the receiver operative characteristic curve of 0.89). There was no association between TREC level and CHD severity. CONCLUSIONS Newborns with CHD demonstrated lower TREC levels than the general population. Low TREC levels were associated with hospitalization for infection in preterm children with CHD. Study limitations include that this was a retrospective chart review. These findings may help to identify newborns with CHD at highest risk for infection, allowing for potential opportunities for intervention.
Collapse
Affiliation(s)
- Brooke T Davey
- Department of Pediatrics at Connecticut Children's Medical Center, Hartford, CT.
| | - Robert W Elder
- Department of Pediatrics at Yale-New Haven Children's Hospital, New Haven, CT
| | - Michelle M Cloutier
- Department of Pediatrics at Connecticut Children's Medical Center, Hartford, CT
| | - Nicholas Bennett
- Department of Pediatrics at Connecticut Children's Medical Center, Hartford, CT
| | - Ji Hyun Lee
- Department of Pediatrics at Connecticut Children's Medical Center, Hartford, CT
| | - Zhu Wang
- Department of Pediatrics at Connecticut Children's Medical Center, Hartford, CT
| | - Adrienne Manning
- Connecticut Department of Public Health Newborn Screening Program, Rocky Hill, CT
| | - Tam Doan
- Department of Pediatrics at Connecticut Children's Medical Center, Hartford, CT
| | - Megan Griffiths
- Department of Pediatrics at Connecticut Children's Medical Center, Hartford, CT
| | - Maria Perez
- Department of Pediatrics at Yale-New Haven Children's Hospital, New Haven, CT
| | - Neha Ahluwalia
- Department of Pediatrics at Yale-New Haven Children's Hospital, New Haven, CT
| | - Olga H Toro-Salazar
- Department of Pediatrics at Connecticut Children's Medical Center, Hartford, CT
| |
Collapse
|
45
|
Abstract
The T-cell receptor excision circle (TREC) assay is an effective screening tool for severe combined immunodeficiency (SCID). The TREC assay was designed to detect typical SCID and leaky SCID, but any condition causing low naïve T-cell counts will also be detected. Newborn screening for SCID using the TREC assay has proven itself to be highly sensitive and cost-efficient. This review covers the history of SCID newborn screening, elaborates on the SCID subtypes and TREC assay limitations, and discusses diagnostic and management considerations for infants with a positive screen.
Collapse
Affiliation(s)
- Mohammed Taki
- Department of Pediatrics, Children's Hospital of Michigan, 3901 Beaubien Street, Detroit, MI 48201, USA
| | - Tayaba Miah
- Department of Pediatrics, Children's Hospital of Michigan, 3901 Beaubien Street, Detroit, MI 48201, USA
| | - Elizabeth Secord
- Department of Allergy and Immunology, Children's Hospital of Michigan, 3901 Beaubien Street, Detroit, MI 48201, USA.
| |
Collapse
|
46
|
Puck JM. Lessons for Sequencing from the Addition of Severe Combined Immunodeficiency to Newborn Screening Panels. Hastings Cent Rep 2019; 48 Suppl 2:S7-S9. [PMID: 30133735 DOI: 10.1002/hast.875] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Now widely adopted, SCID newborn screening has proven effective for early identification and treatment of SCID. In addition, screening has improved our understanding of SCID and related disorders, which are more diverse than originally believed. Newborn screening for SCID illustrates how adding new disorders to newborn screening panels can be enormously beneficial if evidence-based guidelines are adhered to and if mechanisms are in place to track outcomes and learn along the way. These lessons should guide all additions to newborn screening, including those involving sequencing.
Collapse
|
47
|
Seth D, Ruehle M, Kamat D. Severe Combined Immunodeficiency: A Guide for Primary Care Givers. Clin Pediatr (Phila) 2019; 58:1124-1127. [PMID: 31282184 DOI: 10.1177/0009922819859867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Divya Seth
- 1 Wayne State University, Detroit, MI, USA
| | - Mary Ruehle
- 2 Children's Hospital of Michigan, Detroit, MI, USA
| | - Deepak Kamat
- 3 UT Health Sciences Center San Antonio, San Antonio, TX, USA
| |
Collapse
|
48
|
Bessey A, Chilcott J, Leaviss J, de la Cruz C, Wong R. A Cost-Effectiveness Analysis of Newborn Screening for Severe Combined Immunodeficiency in the UK. Int J Neonatal Screen 2019; 5:28. [PMID: 33072987 PMCID: PMC7510246 DOI: 10.3390/ijns5030028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/27/2019] [Indexed: 01/05/2023] Open
Abstract
Severe combined immunodeficiency (SCID) can be detected through newborn bloodspot screening. In the UK, the National Screening Committee (NSC) requires screening programmes to be cost-effective at standard UK thresholds. To assess the cost-effectiveness of SCID screening for the NSC, a decision-tree model with lifetable estimates of outcomes was built. Model structure and parameterisation were informed by systematic review and expert clinical judgment. A public service perspective was used and lifetime costs and quality-adjusted life years (QALYs) were discounted at 3.5%. Probabilistic, one-way sensitivity analyses and an exploratory disbenefit analysis for the identification of non-SCID patients were conducted. Screening for SCID was estimated to result in an incremental cost-effectiveness ratio (ICER) of £18,222 with a reduction in SCID mortality from 8.1 (5-12) to 1.7 (0.6-4.0) cases per year of screening. Results were sensitive to a number of parameters, including the cost of the screening test, the incidence of SCID and the disbenefit to the healthy at birth and false-positive cases. Screening for SCID is likely to be cost-effective at £20,000 per QALY, key uncertainties relate to the impact on false positives and the impact on the identification of children with non-SCID T Cell lymphopenia.
Collapse
|
49
|
Marcus N, Stauber T, Lev A, Simon AJ, Stein J, Broides A, Somekh I, Almashanu S, Somech R. MHC II deficient infant identified by newborn screening program for SCID. Immunol Res 2019; 66:537-542. [PMID: 30084052 DOI: 10.1007/s12026-018-9019-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Newborn screening (NBS) programs for severe combined immunodeficiency (SCID), using the TREC-based assay, have enabled early diagnosis, prompt treatment, and eventually changed the natural history of affected infants. Nevertheless, it was believed that some affected infants with residual T cell, such as patients with MHC II deficiency, will be misdiagnosed by this assay. A full immune workup and genetic analysis using direct Sanger sequencing and whole exome sequencing have been performed to a patient that was identified by the Israeli NBS program for SCID. The patient was found to have severe CD4 lymphopenia with an inverted CD4/CD8 ratio, low TREC levels in peripheral blood, abnormal response to mitogen stimulation, and a skewed T cell receptor repertoire. HLA-DR expression on peripheral blood lymphocytes was undetectable suggesting a diagnosis of MHC II deficiency. Direct sequencing of the RFX5 gene revealed a stop codon change (p. R239X, c. C715T), which could cause the patient's immune phenotype. His parents were found to be heterozygote carriers for the mutation. Whole exome sequencing could not identify other potential mutations to explain his immunodeficiency. The patient underwent successful conditioned hematopoietic stem cell transplantation from healthy matched unrelated donor and is currently well and alive with full chimerism. Infants with MHC class II deficiency can potentially be identified by the TREC-based assay NBS for SCID. Therefore, MHC II molecules (e.g., HLA-DR) measurement should be part of the confirmatory immune-phenotyping for patients with positive screening results. This will make the diagnosis of such patients straightforward.
Collapse
Affiliation(s)
- Nufar Marcus
- Allergy and Immunology Unit, Felsenstein Medical Research Center, Kipper Institute of Immunology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tali Stauber
- Pediatric Department A, Pediatric Immunology Service, Jeffrey Modell Foundation Center, 52621, Tel Hashomer, Israel
- Edmond and Lily Safra Children's Hospital, Sheba Medical Center, 52621, Tel Hashomer, Israel
| | - Atar Lev
- Pediatric Department A, Pediatric Immunology Service, Jeffrey Modell Foundation Center, 52621, Tel Hashomer, Israel
- Edmond and Lily Safra Children's Hospital, Sheba Medical Center, 52621, Tel Hashomer, Israel
| | - Amos J Simon
- Pediatric Department A, Pediatric Immunology Service, Jeffrey Modell Foundation Center, 52621, Tel Hashomer, Israel
- Edmond and Lily Safra Children's Hospital, Sheba Medical Center, 52621, Tel Hashomer, Israel
| | - Jerry Stein
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department for Hemato-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Arnon Broides
- Pediatric Immunology Clinic, Faculty of Health Sciences, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ido Somekh
- Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Shlomo Almashanu
- The National Center for Newborn Screening, Ministry of Health, 52621, Tel HaShomer, Israel
| | - Raz Somech
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
- Pediatric Department A, Pediatric Immunology Service, Jeffrey Modell Foundation Center, 52621, Tel Hashomer, Israel.
- Edmond and Lily Safra Children's Hospital, Sheba Medical Center, 52621, Tel Hashomer, Israel.
- The National Lab for Confirming Primary Immunodeficiency in Newborn Screening Center for Newborn Screening, Ministry of Health, Tel HaShomer, Israel.
| |
Collapse
|
50
|
Van der Ploeg CPB, Blom M, Bredius RGM, van der Burg M, Schielen PCJI, Verkerk PH, Van den Akker-van Marle ME. Cost-effectiveness of newborn screening for severe combined immunodeficiency. Eur J Pediatr 2019; 178:721-729. [PMID: 30805731 DOI: 10.1007/s00431-019-03346-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/28/2019] [Accepted: 02/12/2019] [Indexed: 02/04/2023]
Abstract
Severe combined immunodeficiency (SCID) is a condition that often results in severe infections and death at young age. Early detection shortly after birth, followed by treatment before infections occur, largely increases the chances of survival. As the incidence of SCID is low, assessing cost-effectiveness of adding screening for SCID to the newborn screening program is relevant for decision making. Lifetime costs and effects of newborn screening for SCID were compared to a situation without screening in the Netherlands in a decision analysis model. Model parameters were based on literature and expert opinions. Sensitivity analyses were performed. Due to earlier detection, the number of deaths due to SCID per 100,000 children was assessed to decrease from 0.57 to 0.23 and a number of 11.7 quality adjusted life-years (QALYs) gained was expected. Total yearly healthcare costs, including costs of screening, diagnostics, and treatment, were €390,800 higher in a situation with screening compared to a situation without screening, resulting in a cost-utility ratio of €33,400 per QALY gained.Conclusion: Newborn screening for SCID might be cost-effective. However, there is still a lot of uncertainty around the cost-effectiveness estimate. Pilot screening projects are warranted to obtain more accurate estimates for the European situation. What is Known: • Severe combined immunodeficiency (SCID) is a condition that often results in severe infections and death at a young age. • As the incidence of SCID is low, assessing cost-effectiveness of adding screening for SCID to the newborn screening program is needed. What is New: • Newborn screening for SCID is expected to reduce mortality from 0.57 to 0.23 per 100,000 children at additional healthcare costs of €390,800. The cost-utility ratio is €33,400 per QALY gained. • Due to large uncertainty around cost-effectiveness estimates, pilot screening projects are warranted for Europe.
Collapse
Affiliation(s)
| | - Maartje Blom
- Department of Pediatrics, Leiden University Medical Center, PO box 9600, 2300 RC, Leiden, The Netherlands
| | - Robbert G M Bredius
- Department of Pediatrics, Leiden University Medical Center, PO box 9600, 2300 RC, Leiden, The Netherlands
| | - Mirjam van der Burg
- Department of Pediatrics, Leiden University Medical Center, PO box 9600, 2300 RC, Leiden, The Netherlands
| | - Peter C J I Schielen
- RIVM, Department Biologicals, Screening and Innovation, PO box 1, 3720 BA, Bilthoven, The Netherlands
| | - Paul H Verkerk
- TNO - Child Health, PO box 3005, 2301 DA, Leiden, The Netherlands
| | | |
Collapse
|