1
|
Ma H, Li R, Qu B, Liu Y, Li P, Zhao J. The Role of Bile Acid in Immune-Mediated Skin Diseases. Exp Dermatol 2025; 34:e70108. [PMID: 40302108 DOI: 10.1111/exd.70108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 04/07/2025] [Accepted: 04/19/2025] [Indexed: 05/01/2025]
Abstract
Immune-mediated skin disorders arise from dysfunctional immune responses, instigating inflammatory dermatoses and a reduced quality of life. The complex pathogenesis likely involves genetic risks, environmental triggers and aberrant immune activation. An emerging body of evidence suggests that bile acid disturbances may critically promote immune pathology in certain skin conditions. Bile acids synthesised from cholesterol regulate nutrient metabolism and immune cell function via nuclear receptors and G protein-coupled receptors (GPCRs). Altered bile acid profiles and receptor expression have been identified in psoriasis, atopic dermatitis (AD) and autoimmune blistering diseases. Disruptions in bile acid signalling affect the inflammatory and metabolic pathways linked to these disorders. Targeting components of the bile acid axis represents a promising therapeutic strategy. This review elucidates the intricate links between bile acid homeostasis and immune dysfunction in inflammatory skin diseases, synthesising evidence that targeting bile acid pathways may unlock innovative therapeutic avenues. This study compiles clinical and experimental data revealing disrupted bile acid signalling and composition in various immune-mediated dermatoses, highlighting the emerging significance of bile acids in cutaneous immune regulation.
Collapse
Affiliation(s)
- Huike Ma
- Beijing Hospital of Traditional Chinese Medicine, Beijing Institute of Chinese Medicine, Capital Medical University, Beijing, China
| | - Ruonan Li
- Beijing Hospital of Traditional Chinese Medicine, Beijing Institute of Chinese Medicine, Capital Medical University, Beijing, China
| | - Baoquan Qu
- Beijing Hospital of Traditional Chinese Medicine, Beijing Institute of Chinese Medicine, Capital Medical University, Beijing, China
| | - Yuchen Liu
- Beijing Hospital of Traditional Chinese Medicine, Beijing Institute of Chinese Medicine, Capital Medical University, Beijing, China
| | - Ping Li
- Beijing Hospital of Traditional Chinese Medicine, Beijing Institute of Chinese Medicine, Capital Medical University, Beijing, China
| | - Jingxia Zhao
- Beijing Hospital of Traditional Chinese Medicine, Beijing Institute of Chinese Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Radhouani M, Farhat A, Hakobyan A, Zahalka S, Pimenov L, Fokina A, Hladik A, Lakovits K, Brösamlen J, Dvorak V, Nunes N, Zech A, Idzko M, Krausgruber T, Köhl J, Uluckan O, Kovarik J, Hoehlig K, Vater A, Eckhard M, Sombke A, Fortelny N, Menche J, Knapp S, Starkl P. Eosinophil innate immune memory after bacterial skin infection promotes allergic lung inflammation. Sci Immunol 2025; 10:eadp6231. [PMID: 40184438 DOI: 10.1126/sciimmunol.adp6231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 11/22/2024] [Accepted: 02/27/2025] [Indexed: 04/06/2025]
Abstract
Microbial exposure at barrier interfaces drives development and balance of the immune system, but the consequences of local infections for systemic immunity and secondary inflammation are unclear. Here, we show that skin exposure to the bacterium Staphylococcus aureus persistently shapes the immune system of mice with specific impact on progenitor and mature bone marrow neutrophil and eosinophil populations. The infection-imposed changes in eosinophils were long-lasting and associated with functional as well as imprinted epigenetic and metabolic changes. Bacterial exposure enhanced cutaneous allergic sensitization and resulted in exacerbated allergen-induced lung inflammation. Functional bone marrow eosinophil reprogramming and pulmonary allergen responses were driven by the alarmin interleukin-33 and the complement cleavage fragment C5a. Our study highlights the systemic impact of skin inflammation and reveals mechanisms of eosinophil innate immune memory and organ cross-talk that modulate systemic responses to allergens.
Collapse
Affiliation(s)
- Mariem Radhouani
- Department of Medicine I, Research Division Infection Biology, Medical University of Vienna, Vienna, Austria
- CeMM-Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Asma Farhat
- Department of Medicine I, Research Division Infection Biology, Medical University of Vienna, Vienna, Austria
- CeMM-Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Anna Hakobyan
- CeMM-Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Department of Structural and Computational Biology, Center for Molecular Biology, University of Vienna, Vienna, Austria
| | - Sophie Zahalka
- Department of Medicine I, Research Division Infection Biology, Medical University of Vienna, Vienna, Austria
- CeMM-Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Lisabeth Pimenov
- Department of Medicine I, Research Division Infection Biology, Medical University of Vienna, Vienna, Austria
| | - Alina Fokina
- Department of Medicine I, Research Division Infection Biology, Medical University of Vienna, Vienna, Austria
| | - Anastasiya Hladik
- Department of Medicine I, Research Division Infection Biology, Medical University of Vienna, Vienna, Austria
| | - Karin Lakovits
- Department of Medicine I, Research Division Infection Biology, Medical University of Vienna, Vienna, Austria
| | - Jessica Brösamlen
- Department of Medicine I, Research Division Infection Biology, Medical University of Vienna, Vienna, Austria
| | | | - Natalia Nunes
- Center for Tumor Biology and Immunology, Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Salzburg, Austria
| | - Andreas Zech
- Department of Medicine II, Department of Pulmonology, Medical University of Vienna, Vienna, Austria
| | - Marco Idzko
- Department of Medicine II, Department of Pulmonology, Medical University of Vienna, Vienna, Austria
| | - Thomas Krausgruber
- CeMM-Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Institute of Artificial Intelligence, Center for Medical Data Science, Medical University of Vienna, Vienna, Austria
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ozge Uluckan
- Novartis Biomedical Research, Basel, Switzerland
| | - Jiri Kovarik
- Novartis Biomedical Research, Basel, Switzerland
| | | | | | - Margret Eckhard
- Center for Anatomy and Cell Biology, Cell and Developmental Biology, Medical University of Vienna, Vienna, Austria
| | - Andy Sombke
- Center for Anatomy and Cell Biology, Cell and Developmental Biology, Medical University of Vienna, Vienna, Austria
| | - Nikolaus Fortelny
- Center for Tumor Biology and Immunology, Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Salzburg, Austria
| | - Jörg Menche
- CeMM-Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Department of Structural and Computational Biology, Center for Molecular Biology, University of Vienna, Vienna, Austria
- Faculty of Mathematics, University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Network Medicine at the University of Vienna, Vienna, Austria
| | - Sylvia Knapp
- Department of Medicine I, Research Division Infection Biology, Medical University of Vienna, Vienna, Austria
- Ignaz Semmelweis Institute, Interuniversity Institute for Infection Research, Vienna, Austria
| | - Philipp Starkl
- Department of Medicine I, Research Division Infection Biology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Günal-Köroğlu D, Karabulut G, Ozkan G, Yılmaz H, Gültekin-Subaşı B, Capanoglu E. Allergenicity of Alternative Proteins: Reduction Mechanisms and Processing Strategies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7522-7546. [PMID: 40105205 PMCID: PMC11969658 DOI: 10.1021/acs.jafc.5c00948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 03/20/2025]
Abstract
The increasing popularity of alternative proteins has raised concerns about allergenic potential, especially for plant-, insect-, fungal-, and algae-based proteins. Allergies arise when the immune system misidentifies proteins as harmful, triggering IgE-mediated reactions that range from mild to severe. Main factors influencing allergenicity include protein structure, cross-reactivity, processing methods, and gut microbiota. Disruptions in gut health or microbiota balance heighten risks. Common allergens in legumes, cereals, nuts, oilseeds, single-cell proteins, and insect-based proteins are particularly challenging, as they often remain stable and resistant to heat and digestion despite various processing techniques. Processing methods, such as roasting, enzymatic hydrolysis, and fermentation, show promise in reducing allergenicity by altering protein structures and breaking down epitopes that trigger immune responses. Future research should focus on optimizing these methods to ensure that they effectively reduce allergenic risks while maintaining the nutritional quality and safety of alternative protein products.
Collapse
Affiliation(s)
- Deniz Günal-Köroğlu
- Department
of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Türkiye
| | - Gulsah Karabulut
- Department
of Food Engineering, Faculty of Engineering, Sakarya University, 54050 Sakarya, Türkiye
| | - Gulay Ozkan
- Department
of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Türkiye
| | - Hilal Yılmaz
- Department
of Biotechnology, Faculty of Science, Bartın
University, 74100 Kutlubey Campus, Bartın, Türkiye
| | - Büşra Gültekin-Subaşı
- Center
for Innovative Food (CiFOOD), Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus N 8200, Denmark
| | - Esra Capanoglu
- Department
of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Türkiye
| |
Collapse
|
4
|
Hui-Beckman JW, Kim BE, Lyubchenko T, Hall CF, Xiao O, Gallik K, Baraghoshi D, Strand M, Paik SA, Goleva E, Leung DYM. Repeated Temperature Fluctuation Exposure Causes Prolonged Skin Barrier Dysfunction. J Invest Dermatol 2025:S0022-202X(25)00373-2. [PMID: 40158771 DOI: 10.1016/j.jid.2025.02.154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/11/2025] [Accepted: 02/22/2025] [Indexed: 04/02/2025]
Affiliation(s)
| | - Byung Eui Kim
- Department of Pediatrics, National Jewish Health, Denver, CO, 80206, USA
| | - Taras Lyubchenko
- Department of Pediatrics, National Jewish Health, Denver, CO, 80206, USA
| | - Clifton F Hall
- Department of Pediatrics, National Jewish Health, Denver, CO, 80206, USA
| | - Olivia Xiao
- Department of Pediatrics, National Jewish Health, Denver, CO, 80206, USA
| | - Kyle Gallik
- Department of Pediatrics, National Jewish Health, Denver, CO, 80206, USA
| | - David Baraghoshi
- Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, CO, 80206, USA
| | - Matthew Strand
- Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, CO, 80206, USA
| | | | - Elena Goleva
- Department of Pediatrics, National Jewish Health, Denver, CO, 80206, USA
| | - Donald Y M Leung
- Department of Pediatrics, National Jewish Health, Denver, CO, 80206, USA.
| |
Collapse
|
5
|
Shi H, Liu X, Zhao P, Huang W, Wang H, Jin H, Zhu J, Wang J, Li T. Possibility and Potenzial Intervention Targets of Saffron Extract in the Treatment of Atopic Dermatitis: A Review. PLANTA MEDICA 2025. [PMID: 39947646 DOI: 10.1055/a-2538-5769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Atopic dermatitis (AD) is a chronic, recurrent inflammatory skin disorder characterized by dry skin, eczema-like lesions, and severe itching. The multifaceted etiology of AD, which is not yet fully understood, includes genetic predispositions, immune dysfunctions(such as an impaired skin barrier and abnormal immune regulation), imbalances in the skin microbiota, and environmental factors, among others. In the field of AD treatment, the combination of traditional Chinese medicine and modern medicine is becoming an emerging trend. Given the potenzial side effects and reduced efficacy of conventional therapeutic drugs, Chinese herbal medicines offer patients new treatment options because of their unique efficacy and low toxicity. Some saffron extracts derived from saffron and gardenia, such as crocin, crocetin, and safranal, have shown promising potenzial in the treatment of AD. These natural ingredients not only possess anti-inflammatory and immunomodulatory properties similar to those of traditional Chinese medicines but also demonstrate excellent effects in promoting the repair of damaged skin barriers. Therefore, this article reviews the therapeutic potenzial of saffron extract in the treatment of AD, with a special focus on its mechanisms and potenzial interventions, while emphasizing the importance of herbal medicines as alternatives to traditional treatments, providing AD patients with safer and more effective treatment options.
Collapse
Affiliation(s)
- Huiyang Shi
- Xiangya School of Medicine, Central South University, Changsha, P. R. China
| | - Xuan Liu
- Xiangya School of Public Health, Central South University, Changsha, P. R. China
| | - Peiyi Zhao
- Xiangya School of Medicine, Central South University, Changsha, P. R. China
| | - Wei Huang
- Xiangya School of Medicine, Central South University, Changsha, P. R. China
| | - Hebin Wang
- Xiangya School of Medicine, Central South University, Changsha, P. R. China
| | - Heying Jin
- Xiangya School of Medicine, Central South University, Changsha, P. R. China
| | - Junyou Zhu
- Department of Burn, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Jianwu Wang
- Xiangya School of Public Health, Central South University, Changsha, P. R. China
| | - Tianjiao Li
- Xiangya School of Public Health, Central South University, Changsha, P. R. China
| |
Collapse
|
6
|
Sargen M, Sasaki A, Maskey AR, Li XM. Biomarkers to aid in diagnosis of allergic contact dermatitis. FRONTIERS IN ALLERGY 2025; 6:1564588. [PMID: 40078968 PMCID: PMC11897272 DOI: 10.3389/falgy.2025.1564588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 02/13/2025] [Indexed: 03/14/2025] Open
Abstract
Allergic contact dermatitis (ACD) is an increasingly common skin condition characterized by itchy rashes in response to allergens. The most common diagnostic test involves patch testing (PT), but despite the efficacy of PT for identifying and guiding patients toward avoidance of allergens, PT alone does not elucidate the underlying biomechanistic changes which may be useful for sub-categorizing ACD further. In addition, some patients may never be able to identify their causative allergens unless they go to highly specialized ACD centers. Accordingly, this mini review attempts to summarize biomarkers that may help with identifying and sub-categorizing cases of ACD for appropriate diagnosis, especially in patients with difficult-to-identify allergens.
Collapse
Affiliation(s)
- Manuel Sargen
- Department of Pathology, Microbiology, & Immunology, New York Medical College, Valhalla, NY, United States
| | - Akimi Sasaki
- Department of Pathology, Microbiology, & Immunology, New York Medical College, Valhalla, NY, United States
| | - Anish R. Maskey
- Department of Pathology, Microbiology, & Immunology, New York Medical College, Valhalla, NY, United States
| | - Xiu-Min Li
- Department of Pathology, Microbiology, & Immunology, New York Medical College, Valhalla, NY, United States
- Department of Otolaryngology, New York Medical College, Valhalla, NY, United States
- Department of Dermatology, New York Medical College, Valhalla, NY, United States
| |
Collapse
|
7
|
Altaş U, Taşar S, Başdoğan N, Alkaya H, Çevik S, Altaş ZM, Özkars MY. The effect of house dust mite sensitization on skin dermis thickness in children with allergic respiratory diseases. Postepy Dermatol Alergol 2025; 42:105-109. [PMID: 40114769 PMCID: PMC11921919 DOI: 10.5114/ada.2025.147855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/15/2025] [Indexed: 03/22/2025] Open
Abstract
Introduction An impaired skin barrier has been reported in allergic diseases. Aim In this study, we aimed to evaluate dermis thickness in children with house dust allergy without skin symptoms. Material and methods This cross-sectional study included children aged 4-18 years with asthma and/or allergic rhinitis. Participants were divided into three groups: healthy controls (n = 50), patients sensitized to house dust mites (n = 60), and patients with negative house dust mite tests (n = 48). The thickness of the dermis layers of the skin was measured at the cubital fossa using an ultrasound. Results The median age and gender distribution were similar across the house dust mite-positive and -negative groups and the healthy control group. There was no significant difference between the groups in terms of dermis thickness (p = 0.053). Absolute eosinophils and eosinophil percentage were significantly negatively correlated with dermis (p < 0.05). There was no significant correlation between total IgE, house dust mite specific IgE and skin test values and skin thickness (p > 0.05). Conclusions The findings of this study highlight the impact of house dust mite sensitization on skin thickness, offering potential contributions to the management and treatment strategies of allergic diseases.
Collapse
Affiliation(s)
- Uğur Altaş
- Department of Pediatric Allergy and Immunology, Umraniye Training and Research Hospital, Istanbul, Türkiye
| | - Sevinç Taşar
- Department of Paediatric Radiology, University of Health Sciences, Umraniye Training and Research Hospital, Umraniye, Istanbul, Türkiye
| | - Nurbanu Başdoğan
- Department of Paediatric Radiology, University of Health Sciences, Umraniye Training and Research Hospital, Umraniye, Istanbul, Türkiye
| | - Halil Alkaya
- Department of Pediatric Allergy and Immunology, Umraniye Training and Research Hospital, Istanbul, Türkiye
| | - Seda Çevik
- Department of Pediatric Allergy and Immunology, Umraniye Training and Research Hospital, Istanbul, Türkiye
| | - Zeynep M Altaş
- Maltepe District Health Directorate, Istanbul, Türkiye
- Department of Public Health, International School of Medicine, Istanbul Medipol University, Istanbul, Türkiye
| | - Mehmet Yaşar Özkars
- Department of Pediatric Allergy and Immunology, Umraniye Training and Research Hospital, Istanbul, Türkiye
| |
Collapse
|
8
|
Goleva E, Berdyshev E, Kreimer S, Reisz JA, D'Alessandro A, Bronova I, Lyubchenko T, Richers BN, Hall CF, Xiao O, Bronoff AS, Bafna S, Agueusop I, Gloaguen E, Zahn J, Bissonnette R, Zhang A, Leung DYM. Longitudinal integrated proteomic and metabolomic skin changes in patients with atopic dermatitis treated with dupilumab. J Allergy Clin Immunol 2025:S0091-6749(25)00071-5. [PMID: 39863059 DOI: 10.1016/j.jaci.2025.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/26/2024] [Accepted: 01/17/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND Inhibition of IL-4/IL-13-driven inflammation by dupilumab has shown significant clinical benefits in treatment of atopic dermatitis (AD). OBJECTIVE Our aim was to assess longitudinal protein and metabolite composition in AD skin during dupilumab treatment. METHODS Skin tape strips (STSs) were collected from lesional/nonlesional skin of 20 patients with AD during a 16-week dupilumab treatment course and from 20 healthy volunteers (HVs) followed for 16 weeks. STS extracts were examined by liquid chromatography-mass spectrometry proteomic analysis and targeted metabolomics. RESULTS Approximately 2500 individual proteins were identified in the STS extracts. Of those proteins, 490 were present in at least 80% of the AD and HV skin samples and differentially expressed in the AD skin; the levels of 249 proteins were significantly reduced (cluster 1), and the levels of 136 were significantly increased (cluster 2) in the AD skin versus in the HV skin (both P < .0001). Functionally, cluster 1 included proteins involved in epidermal barrier formation, lysosomal enzymes required for lamellae assembly, and oxidative response. Cluster 2 was enriched for markers of epidermal hyperplasia, glycolytic enzymes, and actin filament proteins. A significant increase in cluster 1 and a significant inhibition of cluster 2 proteins expression were achieved in AD skin by 16 weeks of dupilumab treatment (P < .0001 for both vs baseline), approaching the levels in HV skin. These improvements were also revealed in differential metabolite changes in the STS extracts, including amino acids, nucleotide breakdown products, and antioxidants. CONCLUSION Longitudinal integrated assessment of the skin proteome and metabolome in patients with AD who were treated with dupilumab established significant inhibition of epidermal hyperplasia and improvement in epidermal differentiation. The identified changes were linked to improvements in clinical AD skin assessments, including improvements in transepidermal water loss and disease severity.
Collapse
Affiliation(s)
| | | | - Simion Kreimer
- Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, Calif
| | - Julie A Reisz
- University of Colorado School of Medicine Metabolomics Core, Aurora, Colo
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Carr S, Pratt R, White F, Watson W. Atopic dermatitis. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2024; 20:63. [PMID: 39654051 PMCID: PMC11629513 DOI: 10.1186/s13223-024-00927-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024]
Abstract
Atopic dermatitis (AD) is a common, chronic skin disorder that can significantly impact the quality of life (QoL) of affected individuals as well as their families. Although the pathogenesis of the disorder is not yet completely understood, it appears to result from the complex interplay between defects in skin barrier function, environmental and infectious agents, and immune dysregulation. There are no diagnostic tests for AD; therefore, the diagnosis is based on specific clinical criteria that take into account the patient's history and clinical manifestations. Successful management of the disorder requires a multifaceted approach that involves education, optimal skin care practices, anti-inflammatory treatment with topical corticosteroids, topical calcineurin inhibitors (TCIs) and/or phosphodiesterase-4 (PDE-4) inhibitors, the management of pruritus, and the treatment of skin infections. Systemic immunosuppressive agents may also be used, but are generally reserved for severe flare-ups or more difficult-to-control disease. Newer systemic agents, such as Janus Kinase (JAK) inhibitors and biologics, have a more favourable safety and efficacy profile than the older, traditional systemic immunosuppressives. Topical corticosteroids are the first-line pharmacologic treatments for AD, and evidence suggests that these agents may also be beneficial for the prophylaxis of disease flare-ups. Although the prognosis for patients with AD is generally favourable, those patients with severe, widespread disease and concomitant atopic conditions, such as asthma and allergic rhinitis, are likely to experience poorer outcomes. Newer systemic agents have been approved which are greatly improving the QoL of these patients.
Collapse
Affiliation(s)
- Stuart Carr
- Snö Asthma & Allergy, Abu Dhabi, United Arab Emirates.
| | - Rebecca Pratt
- Division of Allergy and Immunology, McMaster University, Hamilton, Ontario, Aviva Medical Specialist Clinic, St. Catharines, Ontario, Canada
| | - Fred White
- Division of Allergy and Immunology, Western University, London, Ontario, Canada
| | - Wade Watson
- Division of Allergy, IWK Health Centre, Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
10
|
Song GB, Nam J, Ji S, Woo G, Park S, Kim B, Hong J, Choi MG, Kim S, Lee C, Lim W, Yoon S, Kim JM, Choi WJ, Choi MJ, Koh HR, Lim TG, Hong S. Deciphering the links: Fragmented polystyrene as a driver of skin inflammation. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135815. [PMID: 39278036 DOI: 10.1016/j.jhazmat.2024.135815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/25/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
Nano- and microplastics (NMPs), ubiquitous in the environment, pose significant health risks. We report for the first time a comprehensive study using in-vitro, in-vivo, and ex-vivo models to investigate the penetration and inflammatory effects of fragmented polystyrene (fPS) on human skin, including the analysis of both penetration depth and fPS amounts that penetrate the skin. Human keratinocyte (HaCaT) and human dermal fibroblast (HDF) cells exposed to fPS exhibited notable internalization and cytotoxicity. In a 3D human skin model, fPS particles penetrated the dermal layer within one hour, with an average maximum penetration of 4.7 μg for particles smaller than 2 µm. Similarly, mouse dorsal skin and human abdominal skin models confirmed fPS penetration. RNA sequencing revealed substantial upregulation of inflammatory genes, including IL-1α, IL-1β, IL-18, IL-6, IL-8, ICAM-1, FOS, and JUN, following fPS exposure. These findings were validated at both the mRNA and protein levels, indicating a robust inflammatory response. Notably, the inflammatory response in both the 3D human skin and mouse models increased in a dose-dependent manner, underscoring the toxicological impact of fPS on skin health. This study provides crucial insights into the mechanisms through which NMPs affect human health and underscores the need for further research to develop effective mitigation strategies.
Collapse
Affiliation(s)
- Gyeong Bae Song
- Department of Chemistry, Chung-Ang University, Seoul, Republic of Korea
| | - Jisoo Nam
- Department of Food Science and Biotechnology, Sejong University, Seoul, Republic of Korea
| | - Sangmin Ji
- Department of Chemistry, Chung-Ang University, Seoul, Republic of Korea
| | - Gijeong Woo
- Korea Testing Certification Institute, Gunpo-si, Gyeonggi-do, Republic of Korea
| | - Soojeong Park
- Department of Electrical and Electronics Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Bokyung Kim
- Department of Chemistry, Chung-Ang University, Seoul, Republic of Korea
| | - Jeein Hong
- Department of Chemistry, Chung-Ang University, Seoul, Republic of Korea
| | - Myung Gil Choi
- Department of Chemistry, Chung-Ang University, Seoul, Republic of Korea
| | - Seokheon Kim
- Department of Chemistry, Chung-Ang University, Seoul, Republic of Korea
| | - Chaerin Lee
- Department of Food Science and Biotechnology, Sejong University, Seoul, Republic of Korea
| | - Wonchul Lim
- Department of Food Science & Biotechnology, and Carbohydrate Bioproduct Research Center, Sejong University, Seoul, Republic of Korea
| | - Sangwoon Yoon
- Department of Chemistry, Chung-Ang University, Seoul, Republic of Korea
| | - Jeong-Min Kim
- Department of Neurology, Seoul National University Hospital, Jongno-gu, Seoul, Republic of Korea
| | - Woo June Choi
- Department of Electrical and Electronics Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Mi Jung Choi
- Korea Testing Certification Institute, Gunpo-si, Gyeonggi-do, Republic of Korea
| | - Hye Ran Koh
- Department of Chemistry, Chung-Ang University, Seoul, Republic of Korea
| | - Tae-Gyu Lim
- Department of Food Science and Biotechnology, Sejong University, Seoul, Republic of Korea.
| | - Sungguan Hong
- Department of Chemistry, Chung-Ang University, Seoul, Republic of Korea.
| |
Collapse
|
11
|
Lei Y, Lei TH, Lu C, Zhang X, Wang F. Wildfire Smoke: Health Effects, Mechanisms, and Mitigation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:21097-21119. [PMID: 39516728 DOI: 10.1021/acs.est.4c06653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Wildfires are becoming more frequent and intense on a global scale, raising concerns about their acute and long-term effects on human health. We conducted a systematic review of the current epidemiological evidence on wildfire health risks and a meta-analysis to investigate the association between wildfire smoke exposure and various health outcomes. We discovered that wildfire smoke increases the risk of premature deaths and respiratory morbidity in the general population. Meta-analysis of cause-specific mortality and morbidity revealed that wildfire smoke had the strongest associations with cardiovascular mortality (RR: 1.018, 95% CI: 1.014-1.021), asthma hospitalization (RR: 1.054, 95% CI: 1.026-1.082), and asthma emergency department visits (RR: 1.117, 95% CI: 1.035-1.204) in the general population. Subgroup analyses of age found that adults and elderly adults were more susceptible to the cardiopulmonary effects of wildfire smoke. Next, we systematically addressed the toxicological mechanisms of wildfire smoke, including direct toxicity, oxidative stress, inflammatory reactions, immune dysregulation, genotoxicity and mutations, skin allergies, inflammation, and others. We discuss wildfire smoke risk mitigation strategies including public health interventions, regulatory measures, and personal actions. We conclude by highlighting current research limitations and future directions for wildfire research, such as elucidating the complex interactions of wildfire smoke components on human health, developing personalized risk assessment tools, and improving resilience and adaptation strategies to mitigate the health effects of wildfires in changing climate.
Collapse
Affiliation(s)
- Ying Lei
- Centre for Molecular Biosciences and Non-Communicable Diseases, School of Safety Science and Technology, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Tze-Huan Lei
- Centre for Molecular Biosciences and Non-Communicable Diseases, School of Safety Science and Technology, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Chan Lu
- XiangYa School of Public Health, Central South University, Changsha 410008, China
| | - Xue Zhang
- Centre for Molecular Biosciences and Non-Communicable Diseases, School of Safety Science and Technology, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Faming Wang
- Centre for Molecular Biosciences and Non-Communicable Diseases, School of Safety Science and Technology, Xi'an University of Science and Technology, Xi'an 710054, China
- Division of Animal and Human Health Engineering, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 30, Leuven 3001, Belgium
| |
Collapse
|
12
|
Ziadlou R, Pandian GN, Hafner J, Akdis CA, Stingl G, Maverakis E, Brüggen M. Subcutaneous adipose tissue: Implications in dermatological diseases and beyond. Allergy 2024; 79:3310-3325. [PMID: 39206504 PMCID: PMC11657049 DOI: 10.1111/all.16295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/19/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Subcutaneous adipose tissue (SAT) is the deepest component of the three-layered cutaneous integument. While mesenteric adipose tissue-based immune processes have gained recognition in the context of the metabolic syndrome, SAT has been traditionally considered primarily for energy storage, with less attention to its immune functions. SAT harbors a reservoir of immune and stromal cells that significantly impact metabolic and immunologic processes not only in the skin, but even on a systemic level. These processes include wound healing, cutaneous and systemic infections, immunometabolic, and autoimmune diseases, inflammatory skin diseases, as well as neoplastic conditions. A better understanding of SAT immune functions in different processes, could open avenues for novel therapeutic interventions. Targeting SAT may not only address SAT-specific diseases but also offer potential treatments for cutaneous or even systemic conditions. This review aims to provide a comprehensive overview on SAT's structure and functions, highlight recent advancements in understanding its role in both homeostatic and pathological conditions within and beyond the skin, and discuss the main questions for future research in the field.
Collapse
Affiliation(s)
- Reihane Ziadlou
- Faculty of MedicineUniversity of ZurichZurichSwitzerland
- Department of DermatologyUniversity Hospital ZurichZurichSwitzerland
- Christine Kühne Center for Allergy Research and Education CK‐CAREDavosSwitzerland
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichZurichSwitzerland
| | - Ganesh N. Pandian
- Institute for Integrated Cell‐Material Science (WPI‐iCeMS)Kyoto UniversityKyotoJapan
| | - Jürg Hafner
- Faculty of MedicineUniversity of ZurichZurichSwitzerland
- Department of DermatologyUniversity Hospital ZurichZurichSwitzerland
| | - Cezmi A. Akdis
- Faculty of MedicineUniversity of ZurichZurichSwitzerland
- Christine Kühne Center for Allergy Research and Education CK‐CAREDavosSwitzerland
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichZurichSwitzerland
| | - Georg Stingl
- Department of DermatologyMedical University of ViennaViennaAustria
| | | | - Marie‐Charlotte Brüggen
- Faculty of MedicineUniversity of ZurichZurichSwitzerland
- Department of DermatologyUniversity Hospital ZurichZurichSwitzerland
- Christine Kühne Center for Allergy Research and Education CK‐CAREDavosSwitzerland
| |
Collapse
|
13
|
Sun N, Ogulur I, Mitamura Y, Yazici D, Pat Y, Bu X, Li M, Zhu X, Babayev H, Ardicli S, Ardicli O, D'Avino P, Kiykim A, Sokolowska M, van de Veen W, Weidmann L, Akdis D, Ozdemir BG, Brüggen MC, Biedermann L, Straumann A, Kreienbühl A, Guttman-Yassky E, Santos AF, Del Giacco S, Traidl-Hoffmann C, Jackson DJ, Wang DY, Lauerma A, Breiteneder H, Zhang L, O'Mahony L, Pfaar O, O'Hehir R, Eiwegger T, Fokkens WJ, Cabanillas B, Ozdemir C, Kistler W, Bayik M, Nadeau KC, Torres MJ, Akdis M, Jutel M, Agache I, Akdis CA. The epithelial barrier theory and its associated diseases. Allergy 2024; 79:3192-3237. [PMID: 39370939 DOI: 10.1111/all.16318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 10/08/2024]
Abstract
The prevalence of many chronic noncommunicable diseases has been steadily rising over the past six decades. During this time, over 350,000 new chemical substances have been introduced to the lives of humans. In recent years, the epithelial barrier theory came to light explaining the growing prevalence and exacerbations of these diseases worldwide. It attributes their onset to a functionally impaired epithelial barrier triggered by the toxicity of the exposed substances, associated with microbial dysbiosis, immune system activation, and inflammation. Diseases encompassed by the epithelial barrier theory share common features such as an increased prevalence after the 1960s or 2000s that cannot (solely) be accounted for by the emergence of improved diagnostic methods. Other common traits include epithelial barrier defects, microbial dysbiosis with loss of commensals and colonization of opportunistic pathogens, and circulating inflammatory cells and cytokines. In addition, practically unrelated diseases that fulfill these criteria have started to emerge as multimorbidities during the last decades. Here, we provide a comprehensive overview of diseases encompassed by the epithelial barrier theory and discuss evidence and similarities for their epidemiology, genetic susceptibility, epithelial barrier dysfunction, microbial dysbiosis, and tissue inflammation.
Collapse
Affiliation(s)
- Na Sun
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Ismail Ogulur
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Yasutaka Mitamura
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Duygu Yazici
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Yagiz Pat
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Xiangting Bu
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Manru Li
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Xueyi Zhu
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Huseyn Babayev
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Sena Ardicli
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Department of Genetics, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, Turkey
| | - Ozge Ardicli
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Division of Food Processing, Milk and Dairy Products Technology Program, Karacabey Vocational School, Bursa Uludag University, Bursa, Turkey
| | - Paolo D'Avino
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Ayca Kiykim
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Department of Pediatrics, Division of Pediatric Allergy and Immunology, Cerrahpasa School of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Lukas Weidmann
- Department of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Deniz Akdis
- Department of Cardiology, University Hospital Zurich, Zurich, Switzerland
| | | | - Marie Charlotte Brüggen
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Luc Biedermann
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Alex Straumann
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Andrea Kreienbühl
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Emma Guttman-Yassky
- Department of Dermatology, and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexandra F Santos
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
- Children's Allergy Service, Evelina London Children's Hospital, Guy's and St. Thomas' Hospital, London, UK
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Stefano Del Giacco
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | | | - David J Jackson
- Guy's Severe Asthma Centre, Guy's Hospital, Guy's & St Thomas' NHS Trust, London, UK
- School of Immunology & Microbial Sciences, King's College London, London, UK
| | - De-Yun Wang
- Department of Otolaryngology, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore City, Singapore
| | - Antti Lauerma
- Department of Dermatology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Heimo Breiteneder
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Laboratory of Allergic Diseases and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Liam O'Mahony
- Department of Medicine and School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Oliver Pfaar
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Rhinology and Allergy, University Hospital Marburg, Philipps-Universität Marburg, Marburg, Germany
| | - Robyn O'Hehir
- Allergy, Asthma & Clinical Immunology, The Alfred Hospital, Melbourne, Victoria, Australia
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Thomas Eiwegger
- Translational Medicine Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
- Department of Pediatric and Adolescent Medicine, University Hospital St. Pölten, St. Pölten, Austria
| | - Wytske J Fokkens
- Department of Otorhinolaryngology & Head and Neck Surgery, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Beatriz Cabanillas
- Department of Allergy, Instituto de Investigación Biosanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Cevdet Ozdemir
- Department of Pediatric Basic Sciences, Institute of Child Health, Istanbul University, Istanbul, Turkey
- Istanbul Faculty of Medicine, Department of Pediatrics, Division of Pediatric Allergy and Immunology, Istanbul University, Istanbul, Turkey
| | - Walter Kistler
- Department of Sports Medicine, Davos Hospital, Davos, Switzerland
- Swiss Research Institute for Sports Medicine (SRISM), Davos, Switzerland
- Medical Committee International Ice Hockey Federation (IIHF), Zurich, Switzerland
| | - Mahmut Bayik
- Department of Internal Medicine and Hematology, Marmara University, Istanbul, Turkey
| | - Kari C Nadeau
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Maria J Torres
- Allergy Unit, IBIMA-Hospital Regional Universitario de Málaga-ARADyAL, UMA, Málaga, Spain
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Marek Jutel
- Department of Clinical Immunology, Wrocław Medical University, Wroclaw, Poland
| | - Ioana Agache
- Faculty of Medicine, Department of Allergy and Clinical Immunology, Transylvania University, Brasov, Romania
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| |
Collapse
|
14
|
Cui L, Song X, Peng Y, Shi M. Clinical Significance of Combined Detection of CCL22 and IL-1 as Potential New Bronchial Inflammatory Mediators in Children's Asthma. Immun Inflamm Dis 2024; 12:e70043. [PMID: 39508721 PMCID: PMC11542289 DOI: 10.1002/iid3.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 09/19/2024] [Accepted: 10/01/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUNDS Severe asthma is a significant health burden because children with severe asthma are vulnerable to medication-related side effects, life-threatening deterioration, and impaired quality of life. However, there is a lack of data to elucidate the role of inflammatory variables in asthma. This study aimed to compare the levels of inflammatory factors in serum and sputum in children with acute and stable asthma to those in healthy children and the ability to predict clinical response to azithromycin therapy. METHODS This study recruited 95 individuals aged 1-3 years old and collected data from January 2018 to 2020. We examined serum and sputum inflammatory factors and constructed the least absolute shrinkage and selection operator (LASSO) model. Predictive models were constructed through multifactor logistic regression and presented in the form of column-line plots. The performance of the column-line diagrams was measured by subject work characteristics (ROC) curves, calibration plots, and decision curve analysis (DCA). Then, filter-paper samples were collected from 45 children with acute asthma who were randomly assigned to receive either azithromycin (10 mg/kg, n = 22) or placebo (n = 23). Pretreatment levels of immune mediators were then analyzed and compared with clinical response to azithromycin therapy. RESULTS Of the 95 eligible participants, 21 (22.11%) were healthy controls, 29 (30.53%) had stable asthma, and 45 (47.37%) had acute asthma. The levels of interferon-γ (IFN-γ), tumor necrosis factor-a (TNF-α), chemokine CCL22 (CCL22), interleukin 12 (IL-12), chemokine CCL4 (CCL4), chemokine CCL2 (CCL2), and chemokine CCL13 (CCL13)were significantly higher in the acute asthma group than in the stable asthma group. A logistic regression analysis was performed using CCL22 and IL-1 as independent variables. Additionally, IFN-γ, TNF-α, IL-1, IL-13, and CCL22 were identified in the LASSO model. Finally, we found that CCL22 and IL-1 were more responsive in predicting the response to azithromycin treatment. CONCLUSION Our results show that CCL22 and IL-1 are both representative markers during asthma symptom exacerbations and an immune mediator that can predict response to azithromycin therapy.
Collapse
Affiliation(s)
- Lei Cui
- Department of PediatricsPeople's Hospital of Xiangxi Tujia and Miao Autonomous Prefecture, First Affliated Hospital of Jishou UniversityJishouChina
| | - Xiaozhen Song
- Department of PediatricsPeople's Hospital of Xiangxi Tujia and Miao Autonomous Prefecture, First Affliated Hospital of Jishou UniversityJishouChina
| | - Yanping Peng
- Department of PediatricsPeople's Hospital of Xiangxi Tujia and Miao Autonomous Prefecture, First Affliated Hospital of Jishou UniversityJishouChina
| | - Min Shi
- Department of PediatricsPeople's Hospital of Xiangxi Tujia and Miao Autonomous Prefecture, First Affliated Hospital of Jishou UniversityJishouChina
| |
Collapse
|
15
|
Hamelmann E, Csonka P, Roberts G, Vogelberg C, Cichocka-Jarosz E, Just J, Jeseňák M. High burden of respiratory allergy in children warrants early identification and treatment with allergen immunotherapy. Respir Med 2024; 234:107812. [PMID: 39326679 DOI: 10.1016/j.rmed.2024.107812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024]
Abstract
Respiratory allergy often begins in childhood and most commonly manifests as allergic rhinitis (upper airways) and/or asthma (lower airways). Children with upper respiratory allergy often suffer from coexisting asthma, and other comorbidities ranging from gastrointestinal disorders to emotional/mental health disorders. Consequently, the disease burden is considerable and profoundly impacts a child's daily life. Early identification and appropriate management are important to reduce disease burden, lower the risk of disease progression and additional comorbidities, and protect the child's future well-being. A window of opportunity for halting disease progression may open in the early stages of allergic disease and underlines the importance of early diagnosis and treatment of children at risk. This review offers advice on identifying children with a high disease burden who would benefit from early intervention. Allergen immunotherapy (AIT) modifies the cause of respiratory allergy and prevents disease progression. In clinical practice, AIT could be considered as an early treatment for eligible children, to achieve long-term symptom control and disease modification.
Collapse
Affiliation(s)
- Eckard Hamelmann
- Department of Paediatrics, Children's Center Bethel, University Bielefeld, Bielefeld, Germany.
| | - Péter Csonka
- Tampere Center for Child, Adolescent and Maternal Health Research, Tampere University and Tampere University Hospital, Tampere, Finland; Terveystalo Healthcare Oy, Tampere, Finland.
| | - Graham Roberts
- The David Hide Asthma and Allergy Research Centre, St Mary's Hospital, Newport, Isle of Wight, UK; NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK; University of Southampton Faculty of Medicine and University Hospital Southampton, Southampton, UK.
| | - Christian Vogelberg
- Department of Pediatrics, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| | - Ewa Cichocka-Jarosz
- Department of Pediatrics, Pulmonology, Allergology and Dermatology Clinic, Jagiellonian University Medical College, Kraków, Poland.
| | - Jocelyne Just
- Unité d'Allergologie, Hôpital Américain de Paris, Neuilly sur Seine, France; Sorbonne Université, Paris, France; CRESS, Inserm, INRAE, HERA Team, Université Paris Cité, France.
| | - Miloš Jeseňák
- Department of Pediatrics and Department of Clinical Immunology and Allergology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Hospital in Martin, Martin, Slovakia.
| |
Collapse
|
16
|
Khadka VD, Markey L, Boucher M, Lieberman TD. Commensal Skin Bacteria Exacerbate Inflammation and Delay Skin Barrier Repair. J Invest Dermatol 2024; 144:2541-2552.e10. [PMID: 38604402 DOI: 10.1016/j.jid.2024.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/04/2024] [Accepted: 03/16/2024] [Indexed: 04/13/2024]
Abstract
The skin microbiome can both trigger beneficial immune stimulation and pose a potential infection threat. Previous studies have shown that colonization of mouse skin with the model human skin commensal Staphylococcus epidermidis is protective against subsequent excisional wound or pathogen challenge. However, less is known about concurrent skin damage and exposure to commensal microbes, despite growing interest in interventional probiotic therapy. In this study, we address this open question by applying commensal skin bacteria at a high dose to abraded skin. Although depletion of the skin microbiome through antibiotics delayed repair from damage, probiotic-like application of commensals-including the mouse commensal Staphylococcus xylosus, 3 distinct isolates of S. epidermidis, and all other tested human skin commensals-also significantly delayed barrier repair. Increased inflammation was observed within 4 hours of S. epidermidis exposure and persisted through day 4, at which point the skin displayed a chronic wound-like inflammatory state with increased neutrophil infiltration, increased fibroblast activity, and decreased monocyte differentiation. Transcriptomic analysis suggested that the prolonged upregulation of early canonical proliferative pathways inhibited the progression of barrier repair. These results highlight the nuanced role of members of the skin microbiome in modulating barrier integrity and indicate the need for caution in their development as probiotics.
Collapse
Affiliation(s)
- Veda D Khadka
- Institute for Medical Engineering & Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA; Department of Civil and Environmental Engineering, School of Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Laura Markey
- Institute for Medical Engineering & Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA; Department of Civil and Environmental Engineering, School of Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Magalie Boucher
- The Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Tami D Lieberman
- Institute for Medical Engineering & Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA; Department of Civil and Environmental Engineering, School of Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA; Ragon Institute of Mass General, Massachusetts Institute of Technology, and Harvard, Cambridge, MA, USA.
| |
Collapse
|
17
|
Hua X, Ficaro MK, Wallace NL, Dai J. Epidermal RORα Maintains Barrier Integrity and Prevents Allergic Inflammation by Regulating Late Differentiation and Lipid Metabolism. Int J Mol Sci 2024; 25:10698. [PMID: 39409027 PMCID: PMC11476758 DOI: 10.3390/ijms251910698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
The skin epidermis provides a barrier that is imperative for preventing transepidermal water loss (TEWL) and protecting against environmental stimuli. The underlying molecular mechanisms for regulating barrier functions and sustaining its integrity remain unclear. RORα is a nuclear receptor highly expressed in the epidermis of normal skin. Clinical studies showed that the epidermal RORα expression is significantly reduced in the lesions of multiple inflammatory skin diseases. In this study, we investigate the central roles of RORα in stabilizing skin barrier function using mice with an epidermis-specific Rora gene deletion (RoraEKO). While lacking spontaneous skin lesions or dermatitis, RoraEKO mice exhibited an elevated TEWL rate and skin characteristics of barrier dysfunction. Immunostaining and Western blot analysis revealed low levels of cornified envelope proteins in the RoraEKO epidermis, suggesting disturbed late epidermal differentiation. In addition, an RNA-seq analysis showed the altered expression of genes related to "keratinization" and "lipid metabolism" in RORα deficient epidermis. A lipidomic analysis further uncovered an aberrant ceramide composition in the RoraEKO epidermis. Importantly, epidermal Rora ablation greatly exaggerated percutaneous allergic inflammatory responses to oxazolone in an allergic contact dermatitis (ACD) mouse model. Our results substantiate the essence of epidermal RORα in maintaining late keratinocyte differentiation and normal barrier function while suppressing cutaneous inflammation.
Collapse
Affiliation(s)
- Xiangmei Hua
- School of Pharmacy, The University of Wisconsin, Madison, WI 53705, USA; (X.H.); (M.K.F.); (N.L.W.)
| | - Maria K. Ficaro
- School of Pharmacy, The University of Wisconsin, Madison, WI 53705, USA; (X.H.); (M.K.F.); (N.L.W.)
| | - Nicole L. Wallace
- School of Pharmacy, The University of Wisconsin, Madison, WI 53705, USA; (X.H.); (M.K.F.); (N.L.W.)
| | - Jun Dai
- School of Pharmacy, The University of Wisconsin, Madison, WI 53705, USA; (X.H.); (M.K.F.); (N.L.W.)
- Carbone Cancer Center, The University of Wisconsin, Madison, WI 53705, USA
- Skin Disease Research Center, The University of Wisconsin, Madison, WI 53705, USA
| |
Collapse
|
18
|
Özdemіr E, Öksüz L. Effect of Staphylococcus aureus colonization and immune defects on the pathogenesis of atopic dermatitis. Arch Microbiol 2024; 206:410. [PMID: 39302484 DOI: 10.1007/s00203-024-04134-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/26/2024] [Accepted: 09/07/2024] [Indexed: 09/22/2024]
Abstract
Atopic dermatitis (AD) is a common and recurrent skin disease characterized by skin barrier dysfunction, inflammation and chronic pruritus, with wide heterogeneity in terms of age of onset, clinical course and persistence over the lifespan. Although the pathogenesis of the disease are unclear, epidermal barrier dysfunction, immune and microbial dysregulation, and environmental factors are known to be critical etiologies in AD pathology. The skin microbiota represents an ecosystem consisting of numerous microbial species that interact with each other as well as host epithelial cells and immune cells. Although the skin microbiota benefits the host by supporting the basic functions of the skin and preventing the colonization of pathogens, disruption of the microbial balance (dysbiosis) can cause skin diseases such as AD. Although AD is a dermatological disease, recent evidence has shown that changes in microbiota composition in the skin and intestine contribute to the pathogenesis of AD. Environmental factors that contribute to skin barrier dysfunction and microbial dysbiosis in AD include allergens, diet, irritants, air pollution, epigenetics and microbial exposure. Knowing the microbial combination of intestin, as well as the genetic and epigenetic determinants associated with the development of autoantibodies, may help elucidate the pathophysiology of the disease. The skin of patients with AD is characterized by microbial dysbiosis as a result of reduced microbial diversity and overgrowth of the pathogens such as Staphylococcus aureus. Recent studies have revealed the importance of building a strong immune response against microorganisms during childhood and new mechanisms of microbial community dynamics in modulating the skin microbiome. Numerous microorganisms are reported to modulate host response through communication with keratinocytes, specific immune cells and adipocytes to improve skin health and barrier function. This growing insight into bioactive substances in the skin microbiota has led to novel biotherapeutic approaches targeting the skin surface for the treatment of AD. This review will provide an updated overview of the skin microbiota in AD and its complex interaction with immune response mechanisms, as well as explore possible underlying mechanisms in the pathogenesis of AD and provide insights into new therapeutic developments for the treatment of AD. It also focuses on restoring skin microbial homeostasis, aiming to reduce inflammation by repairing the skin barrier.
Collapse
Affiliation(s)
- Evrim Özdemіr
- Department of Medical Microbiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.
- Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul, Turkey.
| | - Lütfiye Öksüz
- Department of Medical Microbiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
19
|
Xu X, Yuan J, Zhu M, Gao J, Meng X, Wu Y, Li X, Tong P, Chen H. The potential of orally exposed risk factors and constituents aggravating food allergy: Possible mechanism and target cells. Compr Rev Food Sci Food Saf 2024; 23:e70014. [PMID: 39230383 DOI: 10.1111/1541-4337.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/10/2024] [Accepted: 08/18/2024] [Indexed: 09/05/2024]
Abstract
Food allergy is a significant concern for the health of humans worldwide. In addition to dietary exposure of food allergens, genetic and environmental factors also play an important role in the development of food allergy. However, only the tip of the iceberg of risk factors in food allergy has been identified. The importance of food allergy caused by orally exposed risk factors and constituents, including veterinary drugs, pesticides, processed foods/derivatives, nanoparticles, microplastics, pathogens, toxins, food additives, dietary intake of salt/sugar/total fat, vitamin D, and therapeutic drugs, are highlighted and discussed in this review. Moreover, the epithelial barrier hypothesis, which is closely associated with the occurrence of food allergy, is also introduced. Additionally, several orally exposed risk factors and constituents that have been reported to disrupt the epithelial barrier are elucidated. Finally, the possible mechanisms and key immune cells of orally exposed risk factors and constituents in aggravating food allergy are overviewed. Further work should be conducted to define the specific mechanism by which these risk factors and constituents are driving food allergy, which will be of central importance to the targeted therapy of food allergy.
Collapse
Affiliation(s)
- Xiaoqian Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, P. R. China
- College of Food Science & Technology, Nanchang University, Nanchang, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, P. R. China
| | - Jin Yuan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, P. R. China
- College of Food Science & Technology, Nanchang University, Nanchang, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, P. R. China
| | - Mengting Zhu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, P. R. China
- College of Food Science & Technology, Nanchang University, Nanchang, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, P. R. China
| | - Jinyan Gao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, P. R. China
- College of Food Science & Technology, Nanchang University, Nanchang, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, P. R. China
| | - Xuanyi Meng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, P. R. China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, P. R. China
| | - Yong Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, P. R. China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, P. R. China
| | - Xin Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, P. R. China
- College of Food Science & Technology, Nanchang University, Nanchang, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, P. R. China
| | - Ping Tong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, P. R. China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, P. R. China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, P. R. China
| |
Collapse
|
20
|
Panganiban RA, Nadeau KC, Lu Q. Pyroptosis, gasdermins and allergic diseases. Allergy 2024; 79:2380-2395. [PMID: 39003568 PMCID: PMC11368650 DOI: 10.1111/all.16236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/15/2024]
Abstract
Pyroptosis is an inflammatory form of programmed cell death that is distinct from necrosis and apoptosis. Pyroptosis is primarily mediated by the gasdermin family of proteins (GSDMA-E and PVJK), which, when activated by proteolytic cleavage, form pores in the plasma membrane, leading to cell death. While much of the past research on pyroptosis has focused on its role in cancer, metabolic disorders, and infectious diseases, recent experimental and observational studies have begun to implicate pyroptosis in allergic diseases. These studies suggest that gasdermin-mediated pyroptosis contributes to the development of allergic conditions and could offer novel targets for therapy. Here, we review our current understanding of pyroptosis with an emphasis on the role of gasdermins as executioners of pyroptosis and potential mediators to allergic disease. We highlight new discoveries that establish a mechanistic link between the biochemical actions of gasdermins and the onset of allergic diseases. Additionally, we discuss how pyroptosis and gasdermins might contribute to the dysfunction of epithelial barrier, a key factor believed to initiate the progression of various allergic diseases.
Collapse
Affiliation(s)
- Ronald Allan Panganiban
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Kari C Nadeau
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Division of Allergy and Inflammation, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Quan Lu
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
21
|
Wang Y, Lu H, Cheng L, Guo W, Hu Y, Du X, Liu X, Xu M, Liu Y, Zhang Y, Xi R, Wang P, Liu X, Duan Y, Zhu J, Li F. Targeting mitochondrial dysfunction in atopic dermatitis with trilinolein: A triacylglycerol from the medicinal plant Cannabis fructus. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155856. [PMID: 39024674 DOI: 10.1016/j.phymed.2024.155856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/22/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Atopic dermatitis (AD) is a common skin condition that causes chronic and recurring eczema lesions. Prior research has indicated that Cannabis fructus, the mature fruit of Cannabis sativa, has an antioxidant effect. Historically, Cannabis fructus has been used in cosmetics and medicine. However, there is limited knowledge regarding its biological components and the mechanisms by which it prevents and treats AD. OBJECTIVES HPLC-ESI-MS/MS analysis was utilized to identify the main compounds of Cannabis fructus, and trilinolein was extracted using chromatographic techniques. The potential of trilinolein in the prevention of AD was assessed, and its underlying mechanisms of action were elucidated. METHODS The distribution of distinct cellular subpopulations and the principal biological processes implicated in the pathogenesis of AD were assessed through a comparative study involving chronic AD patients and healthy controls (HCs). Differential gene expression was validated in clinical samples from the lesions of AD patients and the healthy skin of controls. The pharmacodynamic activity of trilinolein was validated in dinitrochlorobenzene (DNCB)-induced BALB/c mice and in IL-4- and TNF-α-induced HaCaT cells. Proteomics analyse was employed to investigate its mechanisms. RESULTS Single-cell transcriptome analysis revealed that chronic AD is characterized by abnormal keratinocyte differentiation and oxidative stress damage. When topically applied, trilinolein can effectively improve AD-like skin lesions induced by DNCB. It increases the expression of terminal differentiation proteins and decreases the expression of NADPH oxidase 2 (NOX2), with a therapeutic effect comparable to that of the positive control drug crisaborole. Additionally, trilinolein reduced ROS fluorescence intensity, restored mitochondrial morphology and membrane potential, and decreased mitochondrial DNA (mtDNA) release in keratinocytes stimulated with IL-4 and TNF-α. Moreover, trilinolein increased the protein expression of AhR, CYP1A1, and Nrf2 in a dose-dependent manner. The effect of trilinolein on keratinocyte terminal differentiation proteins and ROS levels was blocked by the addition of an AhR inhibitor. CONCLUSION The study suggests that trilinolein from Cannabis fructus alleviates NOX2-dependent mitochondrial dysfunction and repair the skin barrier via AhR-Nrf2 pathway, making it a promising agent for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Yi Wang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Hanzhi Lu
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Linyan Cheng
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Wanjun Guo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yue Hu
- Department of Pharmacy Research, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Xinran Du
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Xin Liu
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Mingyuan Xu
- Department of Dermatopathology, Shanghai Skin Disease Hospital Affiliated to Tongji University, Shanghai 200443, China
| | - Yeqiang Liu
- Department of Dermatopathology, Shanghai Skin Disease Hospital Affiliated to Tongji University, Shanghai 200443, China
| | - Yanbin Zhang
- Department of TCM, Kong Jiang Hospital of Yangpu District, Shanghai, 200093, China
| | - Ruofan Xi
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Peiyao Wang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Xin Liu
- Beijing Transcend Vivoscope Bio-Technology Co., Ltd, Beijing 100085, China
| | - Yanjuan Duan
- Department of Dermatology, Seventh People's Hospital of Shanghai University of TCM, Shanghai 200437, China
| | - Jianyong Zhu
- Department of Pharmacy Research, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China.
| | - Fulun Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China.
| |
Collapse
|
22
|
Ruysseveldt E, Steelant B, Wils T, Cremer J, Bullens DMA, Hellings PW, Martens K. The nasal basal cell population shifts toward a diseased phenotype with impaired barrier formation capacity in allergic rhinitis. J Allergy Clin Immunol 2024; 154:631-643. [PMID: 38705259 DOI: 10.1016/j.jaci.2024.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/27/2024] [Accepted: 04/10/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND The integrity of the airway epithelium is guarded by the airway basal cells that serve as progenitor cells and restore wounds in case of injury. Basal cells are a heterogenous population, and specific changes in their behavior are associated with chronic barrier disruption-mechanisms that have not been studied in detail in allergic rhinitis (AR). OBJECTIVE We aimed to study basal cell subtypes in AR and healthy controls. METHODS Single-cell RNA sequencing (scRNA-Seq) of the nasal epithelium was performed on nonallergic and house dust mite-allergic AR patients to reveal basal cell diversity and to identify allergy-related alterations. Flow cytometry, immunofluorescence staining, and in vitro experiments using primary basal cells were performed to confirm phenotypic findings at the protein level and functionally. RESULTS The scRNA-Seq, flow cytometry, and immunofluorescence staining revealed that basal cells are abundantly and heterogeneously present in the nasal epithelium, suggesting specialized subtypes. The total basal cell fraction within the epithelium in AR is increased compared to controls. scRNA-Seq demonstrated that potentially beneficial basal cells are missing in AR epithelium, while an activated population of allergy-associated basal cells is more dominantly present. Furthermore, our in vitro proliferation, wound healing assay and air-liquid interface cultures show that AR-associated basal cells have altered progenitor capacity compared to nonallergic basal cells. CONCLUSIONS The nasal basal cell population is abundant and diverse, and it shifts toward a diseased state in AR. The absence of potentially protective subtypes and the rise of a proinflammatory population suggest that basal cells are important players in maintaining epithelial barrier defects in AR.
Collapse
Affiliation(s)
- Emma Ruysseveldt
- Department of Microbiology, Immunology, and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium.
| | - Brecht Steelant
- Department of Microbiology, Immunology, and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium
| | - Tine Wils
- Department of Microbiology, Immunology, and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium
| | - Jonathan Cremer
- Department of Microbiology, Immunology, and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium
| | - Dominique M A Bullens
- Department of Microbiology, Immunology, and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium; Clinical Department of Paediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Peter W Hellings
- Department of Microbiology, Immunology, and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium; Clinical Department of Otorhinolaryngology, Head and Neck Surgery, University Hospitals Leuven, Leuven, Belgium; Upper Airways Research Laboratory, University of Ghent, Ghent, Belgium
| | - Katleen Martens
- Department of Microbiology, Immunology, and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium; Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
23
|
Berdyshev E. Skin Lipid Barrier: Structure, Function and Metabolism. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2024; 16:445-461. [PMID: 39363765 PMCID: PMC11450438 DOI: 10.4168/aair.2024.16.5.445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 10/05/2024]
Abstract
Lipids are important skin components that provide, together with proteins, barrier function of the skin. Keratinocyte terminal differentiation launches unique metabolic changes to lipid metabolism that result in the predominance of ceramides within lipids of the stratum corneum (SC)-the very top portion of the skin. Differentiating keratinocytes form unique ceramides that can be found only in the skin, and generate specialized extracellular structures known as lamellae. Lamellae establish tight hydrophobic layers between dying keratinocytes to protect the body from water loss and also from penetration of allergens and bacteria. Genetic and immunological factors may lead to the failure of keratinocyte terminal differentiation and significantly alter the proportion between SC components. The consequence of such changes is loss or deterioration of skin barrier function that can lead to pathological changes in the skin. This review summarizes our current understanding of the role of lipids in skin barrier function. It also draws attention to the utility of testing SC for lipid and protein biomarkers to predict future onset of allergic skin diseases.
Collapse
Affiliation(s)
- Evgeny Berdyshev
- Department of Medicine, National Jewish Health, Denver, CO, USA.
| |
Collapse
|
24
|
Park J, Shin JY, Kim D, Jun SH, Jeong ET, Kang NG. Dihydroavenanthramide D Enhances Skin Barrier Function through Upregulation of Epidermal Tight Junction Expression. Curr Issues Mol Biol 2024; 46:9255-9268. [PMID: 39329899 PMCID: PMC11430283 DOI: 10.3390/cimb46090547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/28/2024] Open
Abstract
Skin barrier dysfunction and thin epidermis are hallmarks of sensitive skin and contribute to premature aging. Avenanthramides are the primary bioactive components of colloidal oatmeal, a commonly used treatment to enhance skin barrier function. This study investigated the relationship between skin barrier function and epidermal characteristics and explored the potential of dihydroavenanthramide D (dhAvD), a synthetic avenanthramide, to improve the skin barrier. We observed a significant correlation between impaired skin barrier function and decreased epidermal thickness, suggesting that a weakened barrier contributes to increased sensitivity. Our in vitro results in HaCaT cells demonstrated that dhAvD enhances keratinocyte proliferation, migration, and tight junction protein expression, thereby strengthening the skin barrier. To mimic skin barrier dysfunction, we treated keratinocytes and full-thickness skin equivalents with IL-4 and IL-13, cytokines that are implicated in atopic dermatitis, and confirmed the downregulation of tight junction and differentiation markers. Furthermore, dhAvD treatment restored the barrier function and normalized the expression of key epidermal components, such as tight junction proteins and natural moisturizing factors, in keratinocytes treated with inflammatory cytokines. In the reconstructed human skin model, dhAvD promoted both epidermal and dermal restoration. These findings suggest that dhAvD has the potential to alleviate skin sensitivity and improve skin barrier function.
Collapse
Affiliation(s)
- Jiye Park
- LG Household & Health Care (LG H&H) R&D Center, 70 Magokjoongang 10-ro, Gangseo-gu, Seoul 07795, Republic of Korea
| | - Jae Young Shin
- LG Household & Health Care (LG H&H) R&D Center, 70 Magokjoongang 10-ro, Gangseo-gu, Seoul 07795, Republic of Korea
| | - Daehyun Kim
- LG Household & Health Care (LG H&H) R&D Center, 70 Magokjoongang 10-ro, Gangseo-gu, Seoul 07795, Republic of Korea
| | - Seung-Hyun Jun
- LG Household & Health Care (LG H&H) R&D Center, 70 Magokjoongang 10-ro, Gangseo-gu, Seoul 07795, Republic of Korea
| | - Eui Taek Jeong
- LG Household & Health Care (LG H&H) R&D Center, 70 Magokjoongang 10-ro, Gangseo-gu, Seoul 07795, Republic of Korea
| | - Nae-Gyu Kang
- LG Household & Health Care (LG H&H) R&D Center, 70 Magokjoongang 10-ro, Gangseo-gu, Seoul 07795, Republic of Korea
| |
Collapse
|
25
|
Tiligada E, Levi-Schaffer F. Infiltrating Basophils Tune Injured Skin Barrier Recovery. J Invest Dermatol 2024; 144:1673-1675. [PMID: 38878050 DOI: 10.1016/j.jid.2024.02.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 07/23/2024]
Affiliation(s)
- Ekaterini Tiligada
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Francesca Levi-Schaffer
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
26
|
Marques-Mejias A, Bartha I, Ciaccio CE, Chinthrajah RS, Chan S, Hershey GKK, Hui-Beckman JW, Kost L, Lack G, Layhadi JA, Leung DYM, Marshall HF, Nadeau KC, Radulovic S, Rajcoomar R, Shamji MH, Sindher S, Brough HA. Skin as the target for allergy prevention and treatment. Ann Allergy Asthma Immunol 2024; 133:133-143. [PMID: 38253125 DOI: 10.1016/j.anai.2023.12.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/27/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024]
Abstract
The fact that genetic and environmental factors could trigger disruption of the epithelial barrier and subsequently initiate a TH2 inflammatory cascade conversely proposes that protecting the same barrier and promoting adequate interactions with other organs, such as the gut, may be crucial for lowering the risk and preventing atopic diseases, particularly, food allergies. In this review, we provide an overview of structural characteristics that support the epithelial barrier hypothesis in patients with atopic dermatitis, including the most relevant filaggrin gene mutations, the recent discovery of the role of the transient receptor potential vanilloid 1, and the role involvement of the microbiome in healthy and damaged skin. We present experimental and human studies that support the mechanisms of allergen penetration, particularly the dual allergen exposure and the outside-in, inside-out, and outside-inside-outside hypotheses. We discuss classic skin-targeted therapies for food allergy prevention, including moisturizers, steroids, and topical calcineurin inhibitors, along with pioneering trials proposed to change their current use (Prevention of Allergy via Cutaneous Intervention and Stopping Eczema and ALlergy). We provide an overview of the novel therapies that enhance the skin barrier, such as probiotics and prebiotics topical application, read-through drugs, direct and indirect FLG replacement, and interleukin and janus kinases inhibitors. Last, we discuss the newer strategies for preventing and treating food allergies in the form of epicutaneous immunotherapy and the experimental use of single-dose of adeno-associated virus vector gene immunotherapy.
Collapse
Affiliation(s)
- Andreina Marques-Mejias
- Department of Women and Children's Health (Paediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom; Children's Allergy Service, Evelina London, Guy's and St Thomas', NHS Foundation Trust, London, United Kingdom
| | - Irene Bartha
- Department of Women and Children's Health (Paediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom; Children's Allergy Service, Evelina London, Guy's and St Thomas', NHS Foundation Trust, London, United Kingdom
| | - Christina E Ciaccio
- Department of Pediatrics, The University of Chicago, Chicago, Illinois; Department of Medicine, The University of Chicago, Chicago, Illinois
| | - R Sharon Chinthrajah
- Department of Medicine, and Sean N Parker Center for Allergy and Asthma Research, Stanford University, Palo Alto, California
| | - Susan Chan
- Department of Women and Children's Health (Paediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom; Children's Allergy Service, Evelina London, Guy's and St Thomas', NHS Foundation Trust, London, United Kingdom; Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| | - Gurjit K Khurana Hershey
- Division of Asthma Research, Cincinnati Children's Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | | | - Laurie Kost
- Department of Medicine, and Sean N Parker Center for Allergy and Asthma Research, Stanford University, Palo Alto, California
| | - Gideon Lack
- Department of Women and Children's Health (Paediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom; Children's Allergy Service, Evelina London, Guy's and St Thomas', NHS Foundation Trust, London, United Kingdom; Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| | - Janice A Layhadi
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Donald Y M Leung
- Department of Pediatrics, National Jewish Health, Denver, Colorado
| | - Hannah F Marshall
- Children's Allergy Service, Evelina London, Guy's and St Thomas', NHS Foundation Trust, London, United Kingdom
| | - Kari C Nadeau
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Suzana Radulovic
- Department of Women and Children's Health (Paediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom; Children's Allergy Service, Evelina London, Guy's and St Thomas', NHS Foundation Trust, London, United Kingdom; Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| | - Reena Rajcoomar
- Department of Medicine, and Sean N Parker Center for Allergy and Asthma Research, Stanford University, Palo Alto, California
| | - Mohamed H Shamji
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Sayantani Sindher
- Department of Medicine, and Sean N Parker Center for Allergy and Asthma Research, Stanford University, Palo Alto, California
| | - Helen A Brough
- Department of Women and Children's Health (Paediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom; Children's Allergy Service, Evelina London, Guy's and St Thomas', NHS Foundation Trust, London, United Kingdom; Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom.
| |
Collapse
|
27
|
Strakosha M, Vega-Mendoza D, Kane J, Jain A, Sun L, Rockowitz S, Elkins M, Miyake K, Chou J, Karasuyama H, Geha RS, Leyva-Castillo JM. Basophils Play a Protective Role in the Recovery of Skin Barrier Function from Mechanical Injury in Mice. J Invest Dermatol 2024; 144:1784-1797.e4. [PMID: 38286187 PMCID: PMC11260541 DOI: 10.1016/j.jid.2023.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 12/12/2023] [Accepted: 12/17/2023] [Indexed: 01/31/2024]
Abstract
Physical trauma disrupts skin barrier function. How the skin barrier recovers is not fully understood. We evaluated in mice the mechanism of skin barrier recovery after mechanical injury inflicted by tape stripping. Tape stripping disrupted skin barrier function as evidenced by increased transepidermal water loss. We show that tape stripping induces IL-1-, IL-23-, and TCRγδ+-dependent upregulation of cutaneous Il17a and Il22 expression. We demonstrate that IL-17A and IL-22 induce epidermal hyperplasia, promote neutrophil recruitment, and delay skin barrier function recovery. Neutrophil depletion improved the recovery of skin barrier function and decreased epidermal hyperplasia. Single-cell RNA sequencing and flow cytometry analysis of skin cells revealed basophil infiltration into tape-stripped skin. Basophil depletion upregulated Il17a expression, increased neutrophil infiltration, and delayed skin barrier recovery. Comparative analysis of genes differentially expressed in tape-stripped skin of basophil-depleted mice and Il17a-/- mice indicated that basophils counteract the effects of IL-17A on the expression of epidermal and lipid metabolism genes important for skin barrier integrity. Our results demonstrate that basophils play a protective role by downregulating Il17a expression after mechanical skin injury, thereby counteracting the adverse effect of IL-17A on skin barrier function recovery, and suggest interventions to accelerate this recovery.
Collapse
Affiliation(s)
- Maria Strakosha
- Division of Immunology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniela Vega-Mendoza
- Division of Immunology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jennifer Kane
- Division of Immunology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ashish Jain
- Research Computing, Information Technology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Liang Sun
- Research Computing, Information Technology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Shira Rockowitz
- Research Computing, Information Technology, Boston Children's Hospital, Boston, Massachusetts, USA; Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA; The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Megan Elkins
- Division of Immunology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kensuke Miyake
- Inflammation, Infection and Immunity Laboratory, Advanced Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Janet Chou
- Division of Immunology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Hajime Karasuyama
- Inflammation, Infection and Immunity Laboratory, Advanced Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Raif S Geha
- Division of Immunology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Juan-Manuel Leyva-Castillo
- Division of Immunology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
28
|
Maywald M, Rink L. Zinc Deficiency and Zinc Supplementation in Allergic Diseases. Biomolecules 2024; 14:863. [PMID: 39062576 PMCID: PMC11274920 DOI: 10.3390/biom14070863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
In recent decades, it has become clear that allergic diseases are on the rise in both Western and developing countries. The exact reason for the increase in prevalence has not been conclusively clarified yet. Multidimensional approaches are suspected in which diet and nutrition seem to play a particularly important role. Allergic diseases are characterized by a hyper-reactive immune system to usually harmless allergens, leading to chronic inflammatory diseases comprising respiratory diseases like asthma and allergic rhinitis (AR), allergic skin diseases like atopic dermatitis (AD), and food allergies. There is evidence that diet can have a positive or negative influence on both the development and severity of allergic diseases. In particular, the intake of the essential trace element zinc plays a very important role in modulating the immune response, which was first demonstrated around 60 years ago. The most prevalent type I allergies are mainly based on altered immunoglobulin (Ig)E and T helper (Th)2 cytokine production, leading to type 2 inflammation. This immune status can also be observed during zinc deficiency and can be positively influenced by zinc supplementation. The underlying immunological mechanisms are very complex and multidimensional. Since zinc supplements vary in dose and bioavailability, and clinical trials often differ in design and structure, different results can be observed. Therefore, different results are not surprising. However, the current literature suggests a link between zinc deficiency and the development of allergies, and shows positive effects of zinc supplementation on modulating the immune system and reducing allergic symptoms, which are discussed in more detail in this review.
Collapse
Affiliation(s)
| | - Lothar Rink
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University Hospital, 52074 Aachen, Germany;
| |
Collapse
|
29
|
Xuan Z, Chen X, Zhou W, Shen Y, Sun Z, Zhang H, Yao Z. Exploring causal correlations between circulating cytokines and atopic dermatitis: a bidirectional two-sample Mendelian randomization study. Front Immunol 2024; 15:1367958. [PMID: 39055710 PMCID: PMC11269137 DOI: 10.3389/fimmu.2024.1367958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024] Open
Abstract
Objectives Numerous observational studies have reported associations between circulating cytokines and atopic dermatitis (AD); however, the causal relationships between them remain unclear. To explore the causal correlations and direction of causal effects between AD and levels of 91 circulating cytokines. Methods Two-sample Mendelian randomization (MR) analyses were conducted to examine the causal relationships between 91 circulating cytokines and AD using summary statistics from genome-wide association studies (GWAS). Reverse MR analyses were performed to investigate reverse causation. Pleiotropy and heterogeneity tests were conducted to assess the robustness of the findings. Additional transcriptome database and clinical peripheral blood mononuclear cells (PBMCs) samples were utilized to validate the results of MR analyses. Results Levels of interleukin (IL)-13, IL-18 Receptor 1, Tumor necrosis factor ligand superfamily member 14 (TNFSF14), TNF-related activation-induced cytokine (TRANCE), C-X-C motif chemokine (CXCL)11, IL-33, TNF-beta and CD5 were suggestively associated with the risk of AD (odds ratio, OR: 1.202, 95% CI: 1.018-1.422, p = 0.030; OR: 1.029, 95% CI: 1.029-1.157, p = 0.004; OR: 1.159, 95% CI: 1.018-1.320, p = 0.026; OR: 1.111, 95% CI: 1.016-1.214, p = 0.020; OR: 0.878, 95% CI: 0.783-0.984, p = 0.025; OR: 0.809, 95% CI: 0.661-0.991, p = 0.041; OR: 0.945, 95% CI: 0.896-0.997, p = 0.038; OR: 0.764, 95% CI: 0.652-0.895, p = 8.26e-04). In addition, levels of cytokines including Axin-1, CXCL5, CXCL10, Oncostatin-M (OSM), Sulfotransferase 1A1 (SULT1A1) and TNFSF14 were suggested to be consequences of AD (Beta: -0.080, p = 0.016; Beta: -0.062, p = 0.036; Beta: -0.066, p = 0.049; Beta: -0.073, p = 0.013; Beta: -0.089, p = 0.008; Beta: -0.079, p = 0.031). IL-13, IL-18R1, TNFSF14, and TRANCE were upregulated in both lesional skin biopsies and PBMCs from AD patients. Conclusion The study indicates that several cytokines, including IL-13, IL-18R1, TNFSF14, TRANCE, CXCL11, IL-33, TNF-beta, and CD5, are upstream of AD development, whereas a few circulating cytokines are potentially downstream in the development of AD.
Collapse
Affiliation(s)
- Zhenquan Xuan
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xuanyi Chen
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Weinan Zhou
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yihang Shen
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhe Sun
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hui Zhang
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhirong Yao
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
30
|
Kim J, Kim BE, Ahn K, Leung DYM. Skin Predictive Biomarkers for the Development of Atopic Dermatitis and Food Allergy in Infants. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2024; 16:323-337. [PMID: 39155734 PMCID: PMC11331187 DOI: 10.4168/aair.2024.16.4.323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024]
Abstract
The pathogenesis of atopic dermatitis (AD) is multifactorial, involving a dynamic interplay between genetic susceptibility, skin-barrier dysfunction, microbiome alterations, and immune dysregulation, whereas food allergy (FA) arises from the interplay of transcutaneous sensitization to food allergens and failure in the induction of oral tolerance. Skin epicutaneous sensitization is commonly involved in the development of AD and FA. Although clinical trials have been conducted to prevent AD or FA by applications of emollients on the skin after birth, the results are not consistent. For more effective preventive strategies, reliable biomarkers are required to identify high-risk individuals. Skin tape stripping (STS) is a non-invasive technique for identifying these biomarkers in the skin. By analyzing the stratum corneum collected via STS, researchers can gain molecular or cellular insights into the early pathogenesis and potential progression of AD and FA. This review aims to elucidate the critical aspects of AD and FA, underlying their pathogenesis, early manifestations, and STS's potential as a tool for identifying predictive non-invasive biomarkers in infants prior to onset of clinical disease.
Collapse
Affiliation(s)
- Jihyun Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Seoul, Korea
| | - Byung Eui Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Department of Pediatrics, National Jewish Health, Denver, CO, USA
| | - Kangmo Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Seoul, Korea.
| | - Donald Y M Leung
- Department of Pediatrics, National Jewish Health, Denver, CO, USA.
| |
Collapse
|
31
|
Schmuth M, Eckmann S, Moosbrugger-Martinz V, Ortner-Tobider D, Blunder S, Trafoier T, Gruber R, Elias PM. Skin Barrier in Atopic Dermatitis. J Invest Dermatol 2024; 144:989-1000.e1. [PMID: 38643989 DOI: 10.1016/j.jid.2024.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/27/2024] [Accepted: 03/07/2024] [Indexed: 04/23/2024]
Abstract
A compromised permeability barrier is a hallmark of atopic dermatitis (AD). Localized to the outermost skin layer, the stratum corneum (SC) is critically dependent on terminal differentiation of epidermal keratinocytes, which transform into protein-rich corneocytes surrounded by extracellular lamellae of unique epidermal lipids, conferring permeability barrier function. These structures are disrupted in AD. A leaky barrier is prone to environmental insult, which in AD elicits type 2-dominant inflammation, in turn resulting in a vicious cycle further impairing the SC structure. Therapies directed at enforcing SC structure and anti-inflammatory strategies administered by topical and systemic route as well as UV therapy have differential effects on the permeability barrier. The expanding armamentarium of therapeutic modalities for AD treatment warrants optimization of their effects on permeability barrier function.
Collapse
Affiliation(s)
- Matthias Schmuth
- Dermatology, Venerology and Allergy, Medical University Innsbruck, Innsbruck, Austria; Institute for Pediatric Dermatology and Rare Diseases, Karl Landsteiner Society, Innsbruck, Austria.
| | - Sonja Eckmann
- Dermatology, Venerology and Allergy, Medical University Innsbruck, Innsbruck, Austria
| | | | | | - Stefan Blunder
- Dermatology, Venerology and Allergy, Medical University Innsbruck, Innsbruck, Austria
| | - Thomas Trafoier
- Dermatology, Venerology and Allergy, Medical University Innsbruck, Innsbruck, Austria
| | - Robert Gruber
- Dermatology, Venerology and Allergy, Medical University Innsbruck, Innsbruck, Austria; Institute for Pediatric Dermatology and Rare Diseases, Karl Landsteiner Society, Innsbruck, Austria
| | - Peter M Elias
- Dermatology, Veteran Affairs Health Care System, San Francisco, California, USA; University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
32
|
Kim S, Kang BG, Sa S, Park SY, Ryu K, Lee J, Park B, Kwon M, Kim Y, Kim J, Shin S, Jang S, Kim BE, Bae J, Ahn K, Liu KH, Kim J. Advanced fructo-oligosaccharides improve itching and aberrant epidermal lipid composition in children with atopic dermatitis. Front Microbiol 2024; 15:1383779. [PMID: 38741747 PMCID: PMC11089124 DOI: 10.3389/fmicb.2024.1383779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/09/2024] [Indexed: 05/16/2024] Open
Abstract
Introduction The effects of fructo-oligosaccharides (FOS) on atopic dermatitis (AD) have not been determined. Methods In a randomized, double-blind, placebo-controlled trial, children with AD aged 24 months to 17 years received either advanced FOS containing 4.25 g of 1-kestose or a placebo (maltose) for 12 weeks. Results The SCORAD and itching scores were reduced in patients treated with both FOS (all p < 0.01) and maltose (p < 0.05 and p < 0.01). Sleep disturbance was improved only in the FOS group (p < 0.01). The FOS group revealed a decreased proportion of linoleic acid (18:2) esterified omega-hydroxy-ceramides (EOS-CERs) with amide-linked shorter chain fatty acids (C28 and C30, all p < 0.05), along with an increased proportion of EOS-CERs with longer chain fatty acids (C32, p < 0.01). Discussion FOS may be beneficial in alleviating itching and sleep disturbance, as well as improving skin barrier function in children with AD.
Collapse
Affiliation(s)
- Sukyung Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Bae-Gon Kang
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
| | - Soonok Sa
- Food R&D, Samyang Corporation, Seongnam, Republic of Korea
| | - Se Young Park
- Food R&D, Samyang Corporation, Seongnam, Republic of Korea
| | - Kyungheon Ryu
- Food R&D, Samyang Corporation, Seongnam, Republic of Korea
| | - Jinyoung Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Boram Park
- Biomedical Statistics Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Mijeong Kwon
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yeonghee Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jiwon Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sanghee Shin
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sehun Jang
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Byung Eui Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Pediatrics, National Jewish Health, Denver, CO, United States
| | - Jaewoong Bae
- R&D Institute, BioEleven Co., Ltd., Seoul, Republic of Korea
| | - Kangmo Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Seoul, Republic of Korea
| | - Kwang-Hyeon Liu
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
| | - Jihyun Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Seoul, Republic of Korea
| |
Collapse
|
33
|
Flori E, Cavallo A, Mosca S, Kovacs D, Cota C, Zaccarini M, Di Nardo A, Bottillo G, Maiellaro M, Camera E, Cardinali G. JAK/STAT Inhibition Normalizes Lipid Composition in 3D Human Epidermal Equivalents Challenged with Th2 Cytokines. Cells 2024; 13:760. [PMID: 38727296 PMCID: PMC11083560 DOI: 10.3390/cells13090760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Derangement of the epidermal barrier lipids and dysregulated immune responses are key pathogenic features of atopic dermatitis (AD). The Th2-type cytokines interleukin IL-4 and IL-13 play a prominent role in AD by activating the Janus Kinase/Signal Transduction and Activator of Transcription (JAK/STAT) intracellular signaling axis. This study aimed to investigate the role of JAK/STAT in the lipid perturbations induced by Th2 signaling in 3D epidermal equivalents. Tofacitinib, a low-molecular-mass JAK inhibitor, was used to screen for JAK/STAT-mediated deregulation of lipid metabolism. Th2 cytokines decreased the expression of elongases 1, 3, and 4 and serine-palmitoyl-transferase and increased that of sphingolipid delta(4)-desaturase and carbonic anhydrase 2. Th2 cytokines inhibited the synthesis of palmitoleic acid and caused depletion of triglycerides, in association with altered phosphatidylcholine profiles and fatty acid (FA) metabolism. Overall, the ceramide profiles were minimally affected. Except for most sphingolipids and very-long-chain FAs, the effects of Th2 on lipid pathways were reversed by co-treatment with tofacitinib. An increase in the mRNA levels of CPT1A and ACAT1, reduced by tofacitinib, suggests that Th2 cytokines promote FA beta-oxidation. In conclusion, pharmacological inhibition of JAK/STAT activation prevents the lipid disruption caused by the halted homeostasis of FA metabolism.
Collapse
Affiliation(s)
- Enrica Flori
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (E.F.); (A.C.); (S.M.); (D.K.); (A.D.N.); (G.B.); (M.M.); (G.C.)
| | - Alessia Cavallo
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (E.F.); (A.C.); (S.M.); (D.K.); (A.D.N.); (G.B.); (M.M.); (G.C.)
| | - Sarah Mosca
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (E.F.); (A.C.); (S.M.); (D.K.); (A.D.N.); (G.B.); (M.M.); (G.C.)
| | - Daniela Kovacs
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (E.F.); (A.C.); (S.M.); (D.K.); (A.D.N.); (G.B.); (M.M.); (G.C.)
| | - Carlo Cota
- Genetic Research, Molecular Biology and Dermatopathology Unit, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (C.C.); (M.Z.)
| | - Marco Zaccarini
- Genetic Research, Molecular Biology and Dermatopathology Unit, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (C.C.); (M.Z.)
| | - Anna Di Nardo
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (E.F.); (A.C.); (S.M.); (D.K.); (A.D.N.); (G.B.); (M.M.); (G.C.)
| | - Grazia Bottillo
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (E.F.); (A.C.); (S.M.); (D.K.); (A.D.N.); (G.B.); (M.M.); (G.C.)
| | - Miriam Maiellaro
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (E.F.); (A.C.); (S.M.); (D.K.); (A.D.N.); (G.B.); (M.M.); (G.C.)
| | - Emanuela Camera
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (E.F.); (A.C.); (S.M.); (D.K.); (A.D.N.); (G.B.); (M.M.); (G.C.)
| | - Giorgia Cardinali
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (E.F.); (A.C.); (S.M.); (D.K.); (A.D.N.); (G.B.); (M.M.); (G.C.)
| |
Collapse
|
34
|
Shao S, Sun Z, Chu M, Chen J, Cao T, Swindell WR, Bai Y, Li Q, Ma J, Zhu Z, Schuler A, Helfrich Y, Billi AC, Li Z, Hao J, Xiao C, Dang E, Gudjonsson JE, Wang G. Formylpeptide receptor 1 contributes to epidermal barrier dysfunction-induced skin inflammation through NOD-like receptor C4-dependent keratinocyte activation. Br J Dermatol 2024; 190:536-548. [PMID: 37979162 DOI: 10.1093/bjd/ljad455] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/17/2023] [Accepted: 11/05/2023] [Indexed: 11/20/2023]
Abstract
BACKGROUND Skin barrier dysfunction may both initiate and aggravate skin inflammation. However, the mechanisms involved in the inflammation process remain largely unknown. OBJECTIVES We sought to determine how skin barrier dysfunction enhances skin inflammation and molecular mechanisms. METHODS Skin barrier defect mice were established by tape stripping or topical use of acetone on wildtype mice, or filaggrin deficiency. RNA-Seq was employed to analyse the differentially expressed genes in mice with skin barrier defects. Primary human keratinocytes were transfected with formylpeptide receptor (FPR)1 or protein kinase R-like endoplasmic reticulum (ER) kinase (PERK) small interfering RNA to examine the effects of these gene targets. The expressions of inflammasome NOD-like receptor (NLR)C4, epidermal barrier genes and inflammatory mediators were evaluated. RESULTS Mechanical (tape stripping), chemical (acetone) or genetic (filaggrin deficiency) barrier disruption in mice amplified the expression of proinflammatory genes, with transcriptomic profiling revealing overexpression of formylpeptide receptor (Fpr1) in the epidermis. Treatment with the FPR1 agonist fMLP in keratinocytes upregulated the expression of the NLRC4 inflammasome and increased interleukin-1β secretion through modulation of ER stress via the PERK-eIF2α-C/EBP homologous protein pathway. The activation of the FPR1-NLRC4 axis was also observed in skin specimens from old healthy individuals with skin barrier defect or elderly mice. Conversely, topical administration with a FPR1 antagonist, or Nlrc4 silencing, led to the normalization of barrier dysfunction and alleviation of inflammatory skin responses in vivo. CONCLUSIONS In summary, our findings show that the FPR1-NLRC4 inflammasome axis is activated upon skin barrier disruption and may explain exaggerated inflammatory responses that are observed in disease states characterized by epidermal dysfunction. Pharmacological inhibition of FPR1 or NLRC4 represents a potential therapeutic target.
Collapse
Affiliation(s)
- Shuai Shao
- Department of Dermatology, Xijing Hospital
| | | | | | | | - Tianyu Cao
- Department of Dermatology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shannxi, 710032, China
| | - William R Swindell
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yaxing Bai
- Department of Dermatology, Xijing Hospital
| | | | - Jingyi Ma
- Department of Dermatology, Xijing Hospital
| | | | - Andrew Schuler
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yolanda Helfrich
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Allison C Billi
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zhiguo Li
- Department of Dermatology, Xijing Hospital
| | | | | | - Erle Dang
- Department of Dermatology, Xijing Hospital
| | | | - Gang Wang
- Department of Dermatology, Xijing Hospital
| |
Collapse
|
35
|
Lu HF, Zhou YC, Yang LT, Zhou Q, Wang XJ, Qiu SQ, Cheng BH, Zeng XH. Involvement and repair of epithelial barrier dysfunction in allergic diseases. Front Immunol 2024; 15:1348272. [PMID: 38361946 PMCID: PMC10867171 DOI: 10.3389/fimmu.2024.1348272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/15/2024] [Indexed: 02/17/2024] Open
Abstract
The epithelial barrier serves as a critical defense mechanism separating the human body from the external environment, fulfilling both physical and immune functions. This barrier plays a pivotal role in shielding the body from environmental risk factors such as allergens, pathogens, and pollutants. However, since the 19th century, the escalating threats posed by environmental pollution, global warming, heightened usage of industrial chemical products, and alterations in biodiversity have contributed to a noteworthy surge in allergic disease incidences. Notably, allergic diseases frequently exhibit dysfunction in the epithelial barrier. The proposed epithelial barrier hypothesis introduces a novel avenue for the prevention and treatment of allergic diseases. Despite increased attention to the role of barrier dysfunction in allergic disease development, numerous questions persist regarding the mechanisms underlying the disruption of normal barrier function. Consequently, this review aims to provide a comprehensive overview of the epithelial barrier's role in allergic diseases, encompassing influencing factors, assessment techniques, and repair methodologies. By doing so, it seeks to present innovative strategies for the prevention and treatment of allergic diseases.
Collapse
Affiliation(s)
- Hui-Fei Lu
- Department of Graduate and Scientific Research, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
- Department of Otolaryngology, Longgang Otolaryngology Hospital & Shenzhen Key Laboratory of Otolaryngology, Institute of Otolaryngology Shenzhen, Shenzhen, China
| | - Yi-Chi Zhou
- Department of Gastroenterology, Beijing University of Chinese Medicine Shenzhen Hospital (Longgang), Shenzhen, China
| | - Li-Tao Yang
- Clinical Laboratory Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People’s Hospital of Shenzhen, Shenzhen, China
| | - Qian Zhou
- Department of Graduate and Scientific Research, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Xi-Jia Wang
- Department of Graduate and Scientific Research, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
- Department of Otolaryngology, Longgang Otolaryngology Hospital & Shenzhen Key Laboratory of Otolaryngology, Institute of Otolaryngology Shenzhen, Shenzhen, China
| | - Shu-Qi Qiu
- Department of Otolaryngology, Longgang Otolaryngology Hospital & Shenzhen Key Laboratory of Otolaryngology, Institute of Otolaryngology Shenzhen, Shenzhen, China
| | - Bao-Hui Cheng
- Department of Otolaryngology, Longgang Otolaryngology Hospital & Shenzhen Key Laboratory of Otolaryngology, Institute of Otolaryngology Shenzhen, Shenzhen, China
| | - Xian-Hai Zeng
- Department of Graduate and Scientific Research, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
- Department of Otolaryngology, Longgang Otolaryngology Hospital & Shenzhen Key Laboratory of Otolaryngology, Institute of Otolaryngology Shenzhen, Shenzhen, China
| |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW As the incidence of allergic conditions has increased in recent decades, the effects of climate change have been implicated. There is also increased knowledge on the effects of other physical influences, such as scratching and Staphylococcus aureus . The skin barrier is the first line of defense to the external environment, so understanding the ways that these factors influence skin barrier dysfunction is important. RECENT FINDINGS Although the impact on environmental exposures has been well studied in asthma and other allergic disorders, there is now more literature on the effects of temperature, air pollution, and detergents on the skin barrier. Factors that cause skin barrier dysfunction include extreme temperatures, air pollution (including greenhouse gases and particulate matter), wildfire smoke, pollen, scratching, S. aureus, and detergents. SUMMARY Understanding the ways that external insults affect the skin barrier is important to further understand the mechanisms in order to inform the medical community on treatment and prevention measures for atopic conditions.
Collapse
|
37
|
Zhao H, Chen Z, Kang X, Yang B, Luo P, Li H, He Q. The frontline of alternatives to animal testing: novel in vitro skin model application in drug development and evaluation. Toxicol Sci 2023; 196:152-169. [PMID: 37702017 DOI: 10.1093/toxsci/kfad093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
The FDA Modernization Act 2.0 has brought nonclinical drug evaluation into a new era. In vitro models are widely used and play an important role in modern drug development and evaluation, including early candidate drug screening and preclinical drug efficacy and toxicity assessment. Driven by regulatory steering and facilitated by well-defined physiology, novel in vitro skin models are emerging rapidly, becoming the most advanced area in alternative testing research. The revolutionary technologies bring us many in vitro skin models, either laboratory-developed or commercially available, which were all built to emulate the structure of the natural skin to recapitulate the skin's physiological function and particular skin pathology. During the model development, how to achieve balance among complexity, accessibility, capability, and cost-effectiveness remains the core challenge for researchers. This review attempts to introduce the existing in vitro skin models, align them on different dimensions, such as structural complexity, functional maturity, and screening throughput, and provide an update on their current application in various scenarios within the scope of chemical testing and drug development, including testing in genotoxicity, phototoxicity, skin sensitization, corrosion/irritation. Overall, the review will summarize a general strategy for in vitro skin model to enhance future model invention, application, and translation in drug development and evaluation.
Collapse
Affiliation(s)
- He Zhao
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhaozeng Chen
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China
| | - Xingchen Kang
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China
| | - Hui Li
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China
| |
Collapse
|
38
|
Körner RW, Velmans C, Dückers G, Tantcheva-Poór I. First observation of dupilumab efficacy in an infant with SAM (severe dermatitis, multiple allergies and metabolic wasting) syndrome. J Eur Acad Dermatol Venereol 2023; 37:e1200-e1202. [PMID: 37170963 DOI: 10.1111/jdv.19185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/03/2023] [Indexed: 05/13/2023]
Affiliation(s)
- R W Körner
- Department of Pediatrics, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany
| | - C Velmans
- Institute of Human Genetics, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany
| | - G Dückers
- Helios Klinikum, Children's Hospital, Krefeld, Germany
| | - I Tantcheva-Poór
- Department of Dermatology and Venereology, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany
| |
Collapse
|
39
|
Rajkumar J, Chandan N, Lio P, Shi V. The Skin Barrier and Moisturization: Function, Disruption, and Mechanisms of Repair. Skin Pharmacol Physiol 2023; 36:174-185. [PMID: 37717558 DOI: 10.1159/000534136] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 09/12/2023] [Indexed: 09/19/2023]
Abstract
BACKGROUND The anatomic layers of the skin are well-defined, and a functional model of the skin barrier has recently been described. Barrier disruption plays a key role in several skin conditions, and moisturization is recommended as an initial treatment in conditions such as atopic dermatitis. This review aimed to analyze the skin barrier in the context of the function model, with a focus on the mechanisms by which moisturizers support each of the functional layers of the skin barrier to promote homeostasis and repair. SUMMARY The skin barrier is comprised of four interdependent layers - physical, chemical, microbiologic, and immunologic - which maintain barrier structure and function. Moisturizers target disruption affecting each of these four layers through several mechanisms and were shown to improve transepidermal water loss in several studies. Occlusives, humectants, and emollients occlude the surface of the stratum corneum (SC), draw water from the dermis into the epidermis, and assimilate into the SC, respectively, in order to strengthen the physical skin barrier. Acidic moisturizers bolster the chemical skin barrier by supporting optimal enzymatic function, increasing ceramide production, and facilitating ideal conditions for commensal microorganisms. Regular moisturization may strengthen the immunologic skin barrier by reducing permeability and subsequent allergen penetration and sensitization. KEY MESSAGES The physical, chemical, microbiologic, and immunologic layers of the skin barrier are each uniquely impacted in states of skin barrier disruption. Moisturizers target each of the layers of the skin barrier to maintain homeostasis and facilitate repair.
Collapse
Affiliation(s)
- Jeffrey Rajkumar
- Department of Dermatology, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| | - Neha Chandan
- Department of Dermatology, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| | - Peter Lio
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Vivian Shi
- Department of Dermatology, University of Arkansas for Medical Sciences, Little Rock, Alaska, USA
| |
Collapse
|
40
|
Chun KH, Park YC, Hwang N, Yoon BK, Kim JW, Fang S. Gene signature from cutaneous autoimmune diseases provides potential immunotherapy-relevant biomarkers in melanoma. Sci Rep 2023; 13:15023. [PMID: 37700026 PMCID: PMC10497583 DOI: 10.1038/s41598-023-42238-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/07/2023] [Indexed: 09/14/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) are promising agents for treating melanoma. Given that autoimmune skin diseases exhibit hyper immune reaction, investigation of immune cells from autoimmune skin disease is crucial to validate the effectiveness of ICIs in melanoma treatment. We employed multipanel markers to predict the response to immune checkpoint inhibitors by characterizing the gene expression signatures of skin immune cells in systemic lupus erythematosus (SLE), atopic dermatitis (AD), and psoriasis (PS). By analyzing single-cell RNA sequencing data from each dataset, T cell gene signatures from autoimmune skin diseases exhibit a complex immune response in tumors that responded to immunotherapy. Based on that CD86 and CD80 provide essential costimulatory signals for T cell activation, we observed that interaction of CD86 signaling has been enhanced in the T cells of patients with SLE, AD, and PS. Our analysis revealed a common increase in CD86 signals from dendritic cells (DCs) to T cells in patients with SLE, AD, and PS, confirming that dendritic cells produce pro-inflammatory cytokines to activate T cells. Thus, we hypothesize that T cell gene signatures from autoimmune skin diseases exhibit a pro-inflammatory response and have the potential to predict cancer immunotherapy. Our study demonstrated that T cell gene signatures derived from inflammatory skin diseases, particularly SLE and PS, hold promise as potential biomarkers for predicting the response to immune checkpoint blockade therapy in patients with melanoma. Our data provide an understanding of the immune-related characteristics and differential gene expression patterns in autoimmune skin diseases, which may represent promising targets for melanoma immunotherapy.
Collapse
Affiliation(s)
- Kyu-Hye Chun
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Korea
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, 03722, Korea
- Chronic Intractable Disease for Systems Medicine Research Center, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Ye-Chan Park
- Severance Biomedical Science Institute, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Nahee Hwang
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, 03722, Korea
- Chronic Intractable Disease for Systems Medicine Research Center, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Bo Kyung Yoon
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, 03722, Korea
- Chronic Intractable Disease for Systems Medicine Research Center, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Jae-Woo Kim
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, 03722, Korea.
- Chronic Intractable Disease for Systems Medicine Research Center, Yonsei University College of Medicine, Seoul, 03722, Korea.
| | - Sungsoon Fang
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Korea.
- Chronic Intractable Disease for Systems Medicine Research Center, Yonsei University College of Medicine, Seoul, 03722, Korea.
- Severance Biomedical Science Institute, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Korea.
| |
Collapse
|
41
|
Altaş U, Altaş ZM, Ercan N, Özkars MY. The Effect of House Dust Sensitization on Skin Sebum and Moisture in Children with Allergic Respiratory Diseases. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1483. [PMID: 37761444 PMCID: PMC10529035 DOI: 10.3390/children10091483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023]
Abstract
This study aimed to investigate the levels of skin moisture and sebum in children with a house dust allergy without skin symptoms. This was a case-control study involving children, aged 0-18 years, who were being followed up for an allergic airway disease in a pediatric allergy clinic. Age, gender, hemogram parameters, and IgE values were evaluated. The skin moisture and sebum percentages of the patients and control group were measured by a non-invasive bioimpedance method using a portable digital skin moisture and sebum measurement device on the cubital fossa. The median value of the skin moisture percentage in the house dust mite allergy-positive patient group was significantly lower than that in the house dust mite allergy-negative patients and the control group (p < 0.001). The house dust mite allergy-positive patient group had the lowest skin sebum content. However, there was no statistical significance among the groups in terms of skin sebum percentage (p = 0.102). In the study, children with a house dust allergy were found to have lower levels of skin moisture and sebum. The regular use of moisturizers for children with a house dust allergy should be kept in mind as an effective solution to protect the skin barrier and reduce skin symptoms.
Collapse
Affiliation(s)
- Uğur Altaş
- Department of Pediatric Allergy and Immunology, Ümraniye Training and Research Hospital, University of Health Sciences, Ümraniye, 34764 Istanbul, Türkiye;
| | - Zeynep Meva Altaş
- Ümraniye District Health Directorate, Ümraniye, 34764 Istanbul, Türkiye;
| | - Nazlı Ercan
- Department of Pediatric Allergy and Immunology, Gülhane Education and Research Hospital, University of Health Sciences, Etlik, 06010 Ankara, Türkiye;
- Department of Pediatric Allergy and Immunology, Istinye University Faculty of Medicine, Zeytinburnu, 34010 Istanbul, Türkiye
| | - Mehmet Yaşar Özkars
- Department of Pediatric Allergy and Immunology, Ümraniye Training and Research Hospital, University of Health Sciences, Ümraniye, 34764 Istanbul, Türkiye;
| |
Collapse
|
42
|
Zhang P. The Role of Diet and Nutrition in Allergic Diseases. Nutrients 2023; 15:3683. [PMID: 37686715 PMCID: PMC10490368 DOI: 10.3390/nu15173683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/17/2023] [Accepted: 08/20/2023] [Indexed: 09/10/2023] Open
Abstract
Allergic diseases are a set of chronic inflammatory disorders of lung, skin, and nose epithelium characterized by aberrant IgE and Th2 cytokine-mediated immune responses to exposed allergens. The prevalence of allergic diseases, including asthma, allergic rhinitis, and atopic dermatitis, has increased dramatically worldwide in the past several decades. Evidence suggests that diet and nutrition play a key role in the development and severity of allergic diseases. Dietary components can differentially regulate allergic inflammation pathways through host and gut microbiota-derived metabolites, therefore influencing allergy outcomes in positive or negative ways. A broad range of nutrients and dietary components (vitamins A, D, and E, minerals Zn, Iron, and Se, dietary fiber, fatty acids, and phytochemicals) are found to be effective in the prevention or treatment of allergic diseases through the suppression of type 2 inflammation. This paper aims to review recent advances in the role of diet and nutrition in the etiology of allergies, nutritional regulation of allergic inflammation, and clinical findings about nutrient supplementation in treating allergic diseases. The current literature suggests the potential efficacy of plant-based diets in reducing allergic symptoms. Further clinical trials are warranted to examine the potential beneficial effects of plant-based diets and anti-allergic nutrients in the prevention and management of allergic diseases.
Collapse
Affiliation(s)
- Ping Zhang
- Center for Integrative Conservation, Yunnan Key Laboratory for the Conservation of Tropical Rainforests and Asian Elephants, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Xishuangbanna 6663030, China
| |
Collapse
|
43
|
Pfisterer K, Wielscher M, Samardzic D, Weinzettl P, Symmank D, Shaw LE, Campana R, Huang HJ, Farlik M, Bangert C, Vrtala S, Valenta R, Weninger W. Non-IgE-reactive allergen peptides deteriorate the skin barrier in house dust mite-sensitized atopic dermatitis patients. Front Cell Dev Biol 2023; 11:1240289. [PMID: 37675143 PMCID: PMC10478000 DOI: 10.3389/fcell.2023.1240289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/04/2023] [Indexed: 09/08/2023] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by type 2 cytokine-driven skin inflammation and epithelial barrier dysfunction. The latter is believed to allow the increased penetration of chemicals, toxins, and allergens into the skin. House dust mite allergens, particularly Der p 2, are important triggers in sensitized individuals with AD; the precise actions of these allergens in epithelial biology remain, however, incompletely understood. In this study, we compared the effects of the protein allergen Der p 2 and a mix of non-IgE-reactive Der p 2 peptides on skin cells using patch tests in AD patients and healthy participants. We then analyzed mRNA expression profiles of keratinocytes by single-cell RNA-sequencing. We report that existing barrier deficiencies in the non-lesional skin of AD patients allow deep penetration of Der p 2 and its peptides, leading to local microinflammation. Der p 2 protein specifically upregulated genes involved in the innate immune system, stress, and danger signals in suprabasal KC. Der p 2 peptides further downregulated skin barrier genes, in particular the expression of genes involved in cell-matrix and cell-cell adhesion. Peptides also induced genes involved in hyperproliferation and caused disturbances in keratinocyte differentiation. Furthermore, inflammasome-relevant genes and IL18 were overexpressed, while KRT1 was downregulated. Our data suggest that Der p 2 peptides contribute to AD initiation and exacerbation by augmenting hallmark features of AD, such as skin inflammation, barrier disruption, and hyperplasia of keratinocytes.
Collapse
Affiliation(s)
- Karin Pfisterer
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Matthias Wielscher
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - David Samardzic
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Pauline Weinzettl
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Dorte Symmank
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Lisa E. Shaw
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Raffaela Campana
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Vienna, Austria
| | - Huey-Jy Huang
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Vienna, Austria
- Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Matthias Farlik
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Christine Bangert
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Susanne Vrtala
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Vienna, Austria
| | - Rudolf Valenta
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Weninger
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
44
|
Hua X, Blosch CD, Dorsey H, Ficaro MK, Wallace NL, Hsung RP, Dai J. Epidermal Loss of RORα Enhances Skin Inflammation in a MC903-Induced Mouse Model of Atopic Dermatitis. Int J Mol Sci 2023; 24:10241. [PMID: 37373387 DOI: 10.3390/ijms241210241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease featuring skin barrier dysfunction and immune dysregulation. Previously, we reported that the retinoid-related orphan nuclear receptor RORα was highly expressed in the epidermis of normal skin. We also found that it positively regulated the expression of differentiation markers and skin barrier-related genes in human keratinocytes. In contrast, epidermal RORα expression was downregulated in the skin lesions of several inflammatory skin diseases, including AD. In this study, we generated mouse strains with epidermis-specific Rora ablation to understand the roles of epidermal RORα in regulating AD pathogenesis. Although Rora deficiency did not cause overt macroscopic skin abnormalities at the steady state, it greatly amplified MC903-elicited AD-like symptoms by intensifying skin scaliness, increasing epidermal hyperproliferation and barrier impairment, and elevating dermal immune infiltrates, proinflammatory cytokines, and chemokines. Despite the normal appearance at the steady state, Rora-deficient skin showed microscopic abnormalities, including mild epidermal hyperplasia, increased TEWL, and elevated mRNA expression of Krt16, Sprr2a, and Tslp genes, indicating subclinical impairment of epidermal barrier functions. Our results substantiate the importance of epidermal RORα in partially suppressing AD development by maintaining normal keratinocyte differentiation and skin barrier function.
Collapse
Affiliation(s)
- Xiangmei Hua
- School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA
| | - Conrad Dean Blosch
- Biomedical Research Model Services, University of Wisconsin, Madison, WI 53705, USA
| | - Hannah Dorsey
- School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA
| | - Maria K Ficaro
- School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA
| | - Nicole L Wallace
- School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA
| | - Richard P Hsung
- School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA
| | - Jun Dai
- School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA
- UW Carbone Cancer Center, University of Wisconsin, Madison, WI 53705, USA
| |
Collapse
|
45
|
Al S, Asilsoy S, Atay O, Kangallı O, Atakul G, Tezcan D, Uzuner N. Transepidermal water loss in allergic diseases. Allergy Asthma Proc 2023; 44:186-192. [PMID: 37160744 DOI: 10.2500/aap.2023.44.230010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Background: In recent years, the epithelial barrier hypothesis has been emphasized in the formation of allergic diseases. Transepidermal water loss (TEWL) occurs through diffusion and evaporation from the skin to the external environment. There are few studies on TEWL in allergic diseases. Objective: This study evaluated the relationship between patients with atopic diseases and healthy controls and hygiene habits in TEWL. Methods: The study was conducted on patients who were followed up for atopic disease (asthma, allergic rhinitis, immunoglobulin E mediated food allergy, and atopic dermatitis) and healthy children. TEWL measurement was in a room that was stable in terms of humidity and temperature by using a widely validated open room system. During the measurement, the participants reported their frequency of taking a shower and cleaning product use. Results: In the study group, TEWL was measured in 182 patients, and the median (min-max) TEWL was 21.3 g/hm² (7.8-101.3 g/hm²) in the disease group and 9.6 g/hm2 (3.9-30.3 g/hm²) in the control group (p < 0.001). The number of weekly baths was higher in the disease group (p < 0.001). The cutoff for atopic diseases was 13.2 g/hm² (sensitivity, 83.2%; specificity, 84.3%; p < 0.001). Conclusion: High TEWL in atopic diseases supports the epithelial barrier hypothesis associated with disease development. Further studies are necessary to determine the threshold between healthy controls and the patients in the disease group. The TEWL measurement can be an effective method to determine the risk groups. Moreover, further studies related to factors on TEWL and treatment methods to reduce this loss are necessary, too.
Collapse
Affiliation(s)
- Serdar Al
- From the Department of Pediatric Allergy and Clinical Immunology, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| | - Suna Asilsoy
- Department of Pediatric Allergy and Clinical Immunology, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey
| | - Ozge Atay
- Department of Pediatric Allergy and Clinical Immunology, Dr. Behçet Uz Child Disease and Pediatric Surgery Training and Research Hospital, Izmir, Turkey, and
| | - Ozge Kangallı
- Department of Pediatric Allergy and Clinical Immunology, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey
| | - Gizem Atakul
- Specialist of Pediatric Immunology and Allergy Diseases, Istanbul Allergy Center, Istanbul, Turkey
| | - Dilek Tezcan
- Department of Pediatric Allergy and Clinical Immunology, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey
| | - Nevin Uzuner
- Department of Pediatric Allergy and Clinical Immunology, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey
| |
Collapse
|
46
|
van den Bogaard EH, Elias PM, Goleva E, Berdyshev E, Smits JPH, Danby SG, Cork MJ, Leung DYM. Targeting Skin Barrier Function in Atopic Dermatitis. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:1335-1346. [PMID: 36805053 PMCID: PMC11346348 DOI: 10.1016/j.jaip.2023.02.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/22/2023]
Abstract
Atopic dermatitis (AD) is the most common chronic inflammatory skin disease in the general population. Skin barrier dysfunction is the central abnormality leading to AD. The cause of skin barrier dysfunction is complex and rooted in genetic mutations, interactions between the immune pathway activation and epithelial cells, altered host defense mechanisms, as well as environmental influences that cause epithelial cell activation and release of alarmins (such as thymic stromal lymphopoietin) that can activate the type 2 immune pathway, including generation of interleukins 4 and 13, which induces defects in the skin barrier and increased allergic inflammation. These inflammatory pathways are further influenced by environmental factors including the microbiome (especially Staphylococcus aureus), air pollution, stress, and other factors. As such, AD is a syndrome involving multiple phenotypes, all of which have in common skin barrier dysfunction as a key contributing factor. Understanding mechanisms leading to skin barrier dysfunction in AD is pointing to the development of new topical and systemic treatments in AD that helps keep skin borders secure and effectively treat the disease.
Collapse
Affiliation(s)
- Ellen H van den Bogaard
- Department of Dermatology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter M Elias
- Department of Dermatology, University of California San Francisco and VA Medical Center, San Francisco, Calif
| | - Elena Goleva
- Department of Pediatrics, Division of Pediatric Allergy and Immunology, National Jewish Health, Denver, Colo
| | - Evgeny Berdyshev
- Department of Pulmonology, Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, Colo
| | - Jos P H Smits
- Department of Dermatology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Simon G Danby
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School at The University of Sheffield, Beech Hill Road, Sheffield, UK
| | - Michael J Cork
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School at The University of Sheffield, Beech Hill Road, Sheffield, UK
| | - Donald Y M Leung
- Department of Pediatrics, Division of Pediatric Allergy and Immunology, National Jewish Health, Denver, Colo.
| |
Collapse
|
47
|
Tsuji G, Hashimoto-Hachiya A, Yumine A, Takemura M, Kido-Nakahara M, Ito T, Yamamura K, Nakahara T. PDE4 inhibition by difamilast regulates filaggrin and loricrin expression via keratinocyte proline-rich protein in human keratinocytes. J Dermatol Sci 2023:S0923-1811(23)00114-7. [PMID: 37156706 DOI: 10.1016/j.jdermsci.2023.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 04/06/2023] [Accepted: 04/26/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND Difamilast, a topical phosphodiesterase 4 (PDE4) inhibitor, has been shown to be effective for treating atopic dermatitis (AD), but the molecular mechanism involved is unclear. Since skin barrier dysfunction including reduced expression of filaggrin (FLG) and loricrin (LOR) contributes to AD development, difamilast treatment may be able to improve this dysfunction. PDE4 inhibition increases transcriptional activity of cAMP-responsive element binding protein (CREB). Therefore, we hypothesized that difamilast may affect FLG and LOR expression via CREB in human keratinocytes. OBJECTIVE To elucidate the mechanism by which difamilast regulates FLG and LOR expression via CREB in human keratinocytes. METHODS We analyzed normal human epidermal keratinocytes (NHEKs) treated with difamilast. RESULTS We observed increases of intracellular cAMP levels and CREB phosphorylation in difamilast (5 μM)-treated NHEKs. Next, we found that difamilast treatment increased mRNA and protein levels of FLG and LOR in NHEKs. Since reduced expression of keratinocyte proline-rich protein (KPRP) is reported to be involved in skin barrier dysfunction in AD, we examined KPRP expression in difamilast-treated NHEKs. We found that difamilast treatment increased mRNA and protein levels of KPRP in NHEKs. Furthermore, KPRP knockdown using siRNA transfection abolished the upregulation of FLG and LOR in difamilast-treated NHEKs. Finally, CREB knockdown canceled the upregulation of FLG, LOR, and KPRP in difamilast-treated NHEKs, indicating that PDE4 inhibition by difamilast treatment positively regulates FLG and LOR expression via the CREB-KPRP axis in NHEKs. CONCLUSION These findings may provide further guidance for therapeutic strategies in the treatment of AD using difamilast.
Collapse
Affiliation(s)
- Gaku Tsuji
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, Fukuoka, Japan.
| | - Akiko Hashimoto-Hachiya
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, Fukuoka, Japan
| | - Ayako Yumine
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masaki Takemura
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Makiko Kido-Nakahara
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takamichi Ito
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuhiko Yamamura
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeshi Nakahara
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, Fukuoka, Japan
| |
Collapse
|
48
|
Bae S, Jeong NH, Choi YA, Lee B, Jang YH, Lee S, Kim SH. Lupeol alleviates atopic dermatitis-like skin inflammation in 2,4-dinitrochlorobenzene/Dermatophagoides farinae extract-induced mice. BMC Pharmacol Toxicol 2023; 24:27. [PMID: 37098554 PMCID: PMC10131421 DOI: 10.1186/s40360-023-00668-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 04/04/2023] [Indexed: 04/27/2023] Open
Abstract
BACKGROUND Atopic dermatitis (AD) is a chronic inflammatory skin disease that affects from children to adults widely, presenting symptoms such as pruritus, erythema, scaling, and dryness. Lupeol, a pentacyclic triterpenoid, has anti-inflammatory and antimicrobial activities. Based on these properties, the therapeutic effects of lupeol on skin disorders have been actively studied. In the present study, we aimed to determine the effectiveness of lupeol on AD. METHODS We utilized tumor necrosis factor (TNF)-α/interferon (IFN)-γ-stimulated keratinocytes and 2, 4-dinitrochlorobenzene/Dermatophagoides farinae extract (DFE)-induced AD mice to confirm the action. RESULTS Lupeol inhibited TNF-α/IFN-γ-stimulated keratinocytes activation by reducing the expressions of pro-inflammatory cytokines and chemokines which are mediated by the activation of signaling molecules such as signal transducer and activator of transcription 1, mitogen-activated protein kinases (p38 and ERK), and nuclear factor-κB. Oral administration of lupeol suppressed epidermal and dermal thickening and immune cell infiltration in ear tissue. Immunoglobulin (Ig) E (total and DFE-specific) and IgG2a levels in serum were also reduced by lupeol. The gene expression and protein secretion of T helper (Th) 2 cytokines, Th1 cytokines, and pro-inflammatory cytokine in ear tissue were decreased by lupeol. CONCLUSIONS These results suggest that lupeol has inhibitory effects on AD-related responses. Therefore, lupeol could be a promising therapeutic agent for AD.
Collapse
Affiliation(s)
- Sojung Bae
- CMRI, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Na-Hee Jeong
- CMRI, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Young-Ae Choi
- CMRI, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Byungheon Lee
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
| | - Yong Hyun Jang
- Department of Dermatology, School of Medicine, Kyungpook National University Hospital, 130 Dongdeok-ro, Jung-gu, Daegu, 41944, Republic of Korea.
| | - Soyoung Lee
- Immunoregulatory Materials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181 Ipsin-gil, Jeongeup, 56212, Republic of Korea.
| | - Sang-Hyun Kim
- CMRI, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
49
|
Lukkarinen M, Kirjavainen PV, Backman K, Gonzales-Inca C, Hickman B, Kallio S, Karlsson H, Karlsson L, Keski-Nisula L, Korhonen LS, Korpela K, Kuitunen M, Kukkonen AK, Käyhkö N, Lagström H, Lukkarinen H, Peltola V, Pentti J, Salonen A, Savilahti E, Tuoresmäki P, Täubel M, Vahtera J, de Vos WM, Pekkanen J, Karvonen AM. Early-life environment and the risk of eczema at 2 years-Meta-analyses of six Finnish birth cohorts. Pediatr Allergy Immunol 2023; 34:e13945. [PMID: 37102387 DOI: 10.1111/pai.13945] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 01/28/2023] [Accepted: 03/07/2023] [Indexed: 04/28/2023]
Abstract
BACKGROUND Urban-related nature exposures are suggested to contribute to the rising prevalence of allergic diseases despite little supporting evidence. Our aim was to evaluate the impact of 12 land cover classes and two greenness indices around homes at birth on the development of doctor-diagnosed eczema by the age of 2 years, and the influence of birth season. METHODS Data from 5085 children were obtained from six Finnish birth cohorts. Exposures were provided by the Coordination of Information on the Environment in three predefined grid sizes. Adjusted logistic regression was run in each cohort, and pooled effects across cohorts were estimated using fixed or random effect meta-analyses. RESULTS In meta-analyses, neither greenness indices (NDVI or VCDI, 250 m × 250 m grid size) nor residential or industrial/commercial areas were associated with eczema by age of 2 years. Coniferous forest (adjusted odds ratio 1.19; 95% confidence interval 1.01-1.39 for the middle and 1.16; 0.98-1.28 for the highest vs. lowest tertile) and mixed forest (1.21; 1.02-1.42 middle vs. lowest tertile) were associated with elevated eczema risk. Higher coverage with agricultural areas tended to associate with elevated eczema risk (1.20; 0.98-1.48 vs. none). In contrast, transport infrastructure was inversely associated with eczema (0.77; 0.65-0.91 highest vs. lowest tertile). CONCLUSION Greenness around the home during early childhood does not seem to protect from eczema. In contrast, nearby coniferous and mixed forests may increase eczema risk, as well as being born in spring close to forest or high-green areas.
Collapse
Affiliation(s)
- Minna Lukkarinen
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Paediatrics and Adolescent Medicine, University of Turku and Turku University Hospital, Turku, Finland
| | - Pirkka V Kirjavainen
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Katri Backman
- Kuopio Birth Cohort (KuBiCo), University of Eastern Finland, Kuopio, Finland
- Department of Paediatrics, Kuopio University Hospital, Kuopio, Finland
| | | | - Brandon Hickman
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sampo Kallio
- FLORA: New Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Hasse Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
| | - Linnea Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Paediatrics and Adolescent Medicine, University of Turku and Turku University Hospital, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
| | - Leea Keski-Nisula
- Kuopio Birth Cohort (KuBiCo), University of Eastern Finland, Kuopio, Finland
- Department of Obstetrics and Gynaecology, Kuopio University Hospital, Kuopio, Finland
| | - Laura S Korhonen
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Paediatrics and Adolescent Medicine, University of Turku and Turku University Hospital, Turku, Finland
| | - Katri Korpela
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mikael Kuitunen
- FLORA: New Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Anna Kaarina Kukkonen
- FLORA: New Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Niina Käyhkö
- Department of Geography and Geology, University of Turku, Turku, Finland
| | - Hanna Lagström
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
| | - Heikki Lukkarinen
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Paediatrics and Adolescent Medicine, University of Turku and Turku University Hospital, Turku, Finland
| | - Ville Peltola
- Department of Paediatrics and Adolescent Medicine, University of Turku and Turku University Hospital, Turku, Finland
| | - Jaana Pentti
- Department of Public Health, University of Turku, Turku, Finland
- Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anne Salonen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Erkki Savilahti
- FLORA: New Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Pauli Tuoresmäki
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Martin Täubel
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Jussi Vahtera
- Department of Public Health, University of Turku, Turku, Finland
| | - Willem M de Vos
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Juha Pekkanen
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
- Department of Public Health, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anne M Karvonen
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
| |
Collapse
|
50
|
Wang J, Zhou Y, Zhang H, Hu L, Liu J, Wang L, Wang T, Zhang H, Cong L, Wang Q. Pathogenesis of allergic diseases and implications for therapeutic interventions. Signal Transduct Target Ther 2023; 8:138. [PMID: 36964157 PMCID: PMC10039055 DOI: 10.1038/s41392-023-01344-4] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/20/2023] [Accepted: 02/03/2023] [Indexed: 03/26/2023] Open
Abstract
Allergic diseases such as allergic rhinitis (AR), allergic asthma (AAS), atopic dermatitis (AD), food allergy (FA), and eczema are systemic diseases caused by an impaired immune system. Accompanied by high recurrence rates, the steadily rising incidence rates of these diseases are attracting increasing attention. The pathogenesis of allergic diseases is complex and involves many factors, including maternal-fetal environment, living environment, genetics, epigenetics, and the body's immune status. The pathogenesis of allergic diseases exhibits a marked heterogeneity, with phenotype and endotype defining visible features and associated molecular mechanisms, respectively. With the rapid development of immunology, molecular biology, and biotechnology, many new biological drugs have been designed for the treatment of allergic diseases, including anti-immunoglobulin E (IgE), anti-interleukin (IL)-5, and anti-thymic stromal lymphopoietin (TSLP)/IL-4, to control symptoms. For doctors and scientists, it is becoming more and more important to understand the influencing factors, pathogenesis, and treatment progress of allergic diseases. This review aimed to assess the epidemiology, pathogenesis, and therapeutic interventions of allergic diseases, including AR, AAS, AD, and FA. We hope to help doctors and scientists understand allergic diseases systematically.
Collapse
Affiliation(s)
- Ji Wang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Yumei Zhou
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Honglei Zhang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Linhan Hu
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Juntong Liu
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Lei Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 1000210, China
| | - Tianyi Wang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Haiyun Zhang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Linpeng Cong
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Qi Wang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China.
| |
Collapse
|