1
|
Tian Y, Teramoto H. Characterization of Azido-Incorporated Bombyx mori Silk Fibroin as a Drug Carrier Material. ACS Biomater Sci Eng 2025; 11:2783-2791. [PMID: 40249375 DOI: 10.1021/acsbiomaterials.5c00232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
Silk fibroin, a natural polymer derived from the domesticated silkworm, Bombyx mori, exhibits remarkable tensile toughness, broad biocompatibility, and biodegradability. We previously developed azido-incorporated silk fibroin (AzidoSilk) using genetic code expansion. AzidoSilk contains synthetic azido groups that can be selectively attached to any functional molecule in a bioorthogonal manner through click chemistry. Click chemistry provides high yields and minimal byproducts. In this study, AzidoSilk was characterized as a drug carrier material for on-demand drug delivery systems (DDS) because effective drug loading and controllable release by external stimuli can be achieved with AzidoSilk via click chemistry modifications. Fluorescent drug models were immobilized on AzidoSilk film and woven fabric via a UV-sensitive bifunctional linker using click chemistry. Azido-selective immobilization of the drug models was confirmed, and upon irradiation with 365 nm UV light, the drug models were gradually released from the AzidoSilk materials in a time-dependent manner. In another model, kanamycin was immobilized on AzidoSilk fabric via the same UV-sensitive linker, and its antibacterial activity against Staphylococcus aureus was tested. PBS extracts from kanamycin-immobilized AzidoSilk fabrics after UV irradiation showed significant antibacterial activity against S. aureus. These results demonstrate that AzidoSilk can be used as a drug carrier material for on-demand DDS. In this system, changes in linker design can expand the range of external stimuli usable for drug release, depending on the application. AzidoSilk has broadened the scope of chemical modification of silk fibroin to achieve simpler and more reliable drug delivery.
Collapse
Affiliation(s)
- Yaxi Tian
- Silk Materials Research Group, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-8634, Japan
- Masters/Doctoral Program in Life Science Innovation (T-LSI), University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Hidetoshi Teramoto
- Silk Materials Research Group, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-8634, Japan
- Masters/Doctoral Program in Life Science Innovation (T-LSI), University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
2
|
Nam JW, Sridharan B, Kang J, Lim HG. Current developments in diverse biomaterial formulations for ultrasound-mediated drug delivery. Drug Discov Today 2025; 30:104379. [PMID: 40355025 DOI: 10.1016/j.drudis.2025.104379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 04/18/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
In this review, we focus on advances in drug delivery systems (DDSs) pertaining to modern therapeutics, with a particular emphasis on the role of ultrasound (US)-mediated drug delivery (UMDD). We highlight the need for advanced systems in response to several challenges, such as the diversity of pharmacological agents and individual patient variations, over traditional methodologies. We detail the mechanisms of UMDD (thermal and mechanical), and discuss various material formulations suitable for UMDD. We also discuss new perspectives on the potential of US to innovate drug delivery methodologies and improve patient outcomes to emphasize the importance of development to enhance treatment effectiveness.
Collapse
Affiliation(s)
- Ji Won Nam
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Badrinathan Sridharan
- Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Juhyun Kang
- Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea.
| | - Hae Gyun Lim
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea; Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
3
|
Bakir M, Dawalibi A, Mufti MA, Behiery A, Mohammad KS. Nano-Drug Delivery Systems for Bone Metastases: Targeting the Tumor-Bone Microenvironment. Pharmaceutics 2025; 17:603. [PMID: 40430894 PMCID: PMC12115183 DOI: 10.3390/pharmaceutics17050603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 04/27/2025] [Accepted: 04/30/2025] [Indexed: 05/29/2025] Open
Abstract
Bone metastases are a prevalent and debilitating consequence of various cancers, including breast and prostate carcinomas, which significantly compromise patient quality of life due to pain, fractures, and other skeletal-related events (SREs). This review examines the pathophysiology of bone metastases, emphasizing the role of the bone microenvironment in tumor progression through mechanisms such as osteotropism and the dysregulated bone remodeling cycle. The primary focus is on the emerging nano-drug delivery systems (DDS) designed to target the bone microenvironment and improve the therapeutic index of anticancer agents. Current treatments, mainly comprising bisphosphonates and radiotherapy, provide palliative benefits but often have limited efficacy and significant side effects. Innovative strategies, such as bisphosphonate-conjugated nanoparticles and targeted therapies that utilize the unique bone marrow niche, are explored for their potential to enhance drug accumulation at metastatic sites while minimizing systemic toxicity. These approaches include the use of liposomes, polymeric nanoparticles, and inorganic nanoparticles, which can be functionalized to exploit the biological barriers within the bone microenvironment. This review also discusses the challenges and future directions for nano-DDS in clinical settings, emphasizing the need for multidisciplinary research to effectively integrate these technologies into standard care protocols.
Collapse
Affiliation(s)
- Mohamad Bakir
- Department of Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (M.B.); (M.A.M.)
| | - Ahmad Dawalibi
- Department of Anatomy, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.D.); (A.B.)
| | - Mohammad Alaa Mufti
- Department of Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (M.B.); (M.A.M.)
| | - Ayman Behiery
- Department of Anatomy, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.D.); (A.B.)
| | - Khalid S. Mohammad
- Department of Anatomy, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.D.); (A.B.)
| |
Collapse
|
4
|
Tang Z, Niu H, Wu Y, Zhang Y, Zhang F, Wang C, Zhang S, Song X, Wang Y, Du L, Jin Y. Ultrasonic head-mounted device spatiotemporal opening blood-brain barrier enhances the brain permeation of drugs for treatment of radiation-induced brain injury. Int J Pharm 2025; 674:125430. [PMID: 40081430 DOI: 10.1016/j.ijpharm.2025.125430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/04/2025] [Accepted: 03/02/2025] [Indexed: 03/16/2025]
Abstract
The field of physical therapy is advancing and using focused ultrasound to deliver drugs into the brain gains growing interest. However, the blood-brain barrier makes it difficult for drugs to enter. Finding safe and efficient physical therapy strategies to complement drug treatments is essential. Here, the rule and molecular mechanisms of spatiotemporal opening blood-brain barrier of ultrasound were explored using a Bluetooth-controlled ultrasonic head-mounted device which was used to enhance the brain permeation of drugs for the treatment of radiation-induced brain injury. The falling-off of tight junction proteins in the blood-brain barrier was the key to spatiotemporally opening under ultrasound. Evans blue and Rhodamine B represented macromolecules and small molecules, respectively, which were intravenously injected into the circulation. Their brain permeation was promoted by brain ultrasound and the smaller molecules required the lower sound intensity that also affected the speed of drug-passing. During the blood-brain barrier restoration after ultrasound, biomarkers like enzymes and growth factors changed, which could be used for selection of dosing window. After the use of the helmet, the blood-brain barrier was restored after 24 h, and the efficacy of water-soluble drugs for the treatment of radiation brain injury was increased. It was suitable for non-invasive external use and enhanced the treating effect when cooperating with drugs. This study provides a research basis for applying ultrasound technology into physio-pharmacotherapy.
Collapse
Affiliation(s)
- Ziyan Tang
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Hong Niu
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yanpin Wu
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yizhi Zhang
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Feng Zhang
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Chunqing Wang
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Shuxiu Zhang
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xingshuang Song
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yaxin Wang
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Lina Du
- Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Yiguang Jin
- Beijing Institute of Radiation Medicine, Beijing 100850, China.
| |
Collapse
|
5
|
Jiang M, Fang H, Tian H. Latest advancements and trends in biomedical polymers for disease prevention, diagnosis, treatment, and clinical application. J Control Release 2025; 380:138-174. [PMID: 39880039 DOI: 10.1016/j.jconrel.2025.01.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/13/2025] [Accepted: 01/21/2025] [Indexed: 01/31/2025]
Abstract
Biomedical polymers are at the forefront of medical advancements, offering innovative solutions in disease prevention, diagnosis, treatment, and clinical use due to their exceptional physicochemical properties. This review delves into the characteristics, classification, and preparation methods of these polymers, highlighting their diverse applications in drug delivery, medical imaging, tissue engineering, and regenerative medicine. We present a thorough analysis of the recent advancements in biomedical polymer research and their clinical applications, acknowledging the challenges that remain, such as immune response management, controlled degradation rates, and mechanical property optimization. Addressing these issues, we explore future directions, including personalization and the integration of nanotechnology, which hold significant potential for further advancing the field. This comprehensive review aims to provide a deep understanding of biomedical polymers and serve as a valuable resource for the development of innovative polymer materials in both fundamental research and clinical practice.
Collapse
Affiliation(s)
- Mingxia Jiang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Huapan Fang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China; Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China.
| | - Huayu Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China.
| |
Collapse
|
6
|
Ren L, Nguyen NTV, Yao T, Nguyen KT, Yuan B. Experimental studies on squeezing interstitial fluid via transfer of ultrasound momentum (SIF-TUM) in ex vivo chicken and porcine tissues. JOURNAL OF APPLIED PHYSICS 2025; 137:135103. [PMID: 40182930 PMCID: PMC11964473 DOI: 10.1063/5.0235806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 03/04/2025] [Indexed: 04/05/2025]
Abstract
The ultrasound-assisted transport of drugs or fluorophore-loaded nanoagents plays an important role in the desirable drug delivery and imaging contrasts. Unlike conventional ultrasound techniques that rely on thermal or cavitation effects, this study aims to conduct an experimental investigation into the dynamics of interstitial fluid streaming and tissue recovery in ex vivo chicken breast and porcine loin muscle tissues during and after ultrasound exposures, which has not been experimentally investigated in the literature. Biological tissues consist of both a fluid and a solid matrix, and an ultrasound beam compresses the tissues within a small focal volume from all directions, which generates macroscopic streaming of interstitial fluid and compression of the tissue's solid matrix. After the ultrasonic exposure, the solid matrix undergoes recovery, leading to a backflow of the fluid matrix. Temperature-insensitive sulforhodamine-101 encapsulated poly(lactic-co-glycolic acid) nanoparticles with an average diameter size of 175 nm were locally injected into ex vivo chicken breast and porcine loin muscle tissues to study the ultrasound-induced dynamics in the tissues during and after ultrasound exposure by analyzing the distribution of fluorescence. The changes in fluorescence over time caused by the streaming and backflow of interstitial fluid were studied with two ex vivo tissue models, and a faster recovery was observed in porcine tissues compared with chicken tissues. The ultrasound-induced transportability of the nanoagent in porcine muscle tissues was much higher (∼8.75 times) than in chicken breast tissue likely due to structural differences. The study reveals a promising, non-invasive strategy for enhancing drug delivery in dense tissues by leveraging mechanical ultrasound effects, potentially advancing therapeutic and diagnostic applications.
Collapse
Affiliation(s)
| | | | | | | | - Baohong Yuan
- Author to whom correspondence should be addressed:
| |
Collapse
|
7
|
Zhang K, Kong W, Lin D, Wang X, Wang P. Ultrasound-Driven Nitric Oxide Generation for Enhanced Sonodynamic-Photothermal Therapy. Mol Pharm 2025; 22:2182-2192. [PMID: 40032688 DOI: 10.1021/acs.molpharmaceut.4c01401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Recently, green gas therapy based on nitric oxide (NO) has gained considerable attention in cancer treatment. The supplementation of exogenous NO and its controlled release represent promising strategies for adjuvant tumor therapy. In this study, we developed a novel ultrasound (US)-triggered NO generation and release nanoplatform that integrates NO therapy, sonodynamic therapy, and photothermal therapy (PTT) into a collaborative therapeutic modality. An environmentally friendly biomacromolecule, polydopamine, was employed to coload chlorin e6 (Ce6) and NO donor (BNN6), resulting in the nanocomposite PDA-Ce6/BNN6 (PCB). A single US stimulus simultaneously activated Ce6 to produce reactive oxygen species (ROS) and promoted BNN6 to release NO. The dual effects of ultrasonic mechanical action and physiological modulation by NO substantially improved local vascular function and enhanced tumor cell permeability, thereby increasing the targeted accumulation of PCB within tumors. Reactive nitrogen species (RNS) derived from NO and ROS further exacerbated oxidative damage and enhanced the sensitivity of tumor cells to hyperthermia. Both in vitro and in vivo experiments demonstrated that ultrasonic stimulation of NO/ROS/RNS combined with PTT effectively inhibited tumor cell growth and proliferation. The findings suggest that NO gas therapy based on extracorporeal US can significantly amplify the efficacy of PTT and offer new insights for developing other combined strategies aimed at physically regulating deep tumors.
Collapse
Affiliation(s)
- Kun Zhang
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Weirong Kong
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Dewu Lin
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Xiaobing Wang
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Pan Wang
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
8
|
You T, Zhang S. Recent advances in PLGA polymer nanocarriers for ovarian cancer therapy. Front Oncol 2025; 15:1526718. [PMID: 40196734 PMCID: PMC11973302 DOI: 10.3389/fonc.2025.1526718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/06/2025] [Indexed: 04/09/2025] Open
Abstract
Ovarian cancer (OC) is the most lethal gynecologic malignancy worldwide, and early diagnosis and effective treatment have been the focus of research in this field. It is because of its late diagnosis, acquired resistance mechanisms, and systemic toxicity of chemotherapeutic agents that the treatment of ovarian cancer is challenging. Combination chemotherapy can potentially improve therapeutic efficacy by activating multiple downstream pathways to overcome resistance and reduce the required dose. In recent years, PLGA-lipid hybrid nanoparticles have demonstrated their potential as an emerging drug delivery system for treating ovarian cancer. PLGA (poly (lactic-co-glycolic acid) has become a highly sought-after biomaterial for the clinical translation of adjustable drug delivery regimens due to its biodegradability, biocompatibility, and multifunctionality, coupled with controlled drug release, which can effectively overcome multidrug resistance and improve the efficiency of chemotherapy. Combination therapies are gradually becoming an ideal alternative to traditional drug formulations. The application of nanoparticles not only improves the therapeutic effect but also reduces the side effects, which provides strong support for personalized precision medicine. We review polymeric nanoparticle carriers for drug combinations used in the treatment of ovarian cancer, particularly the combination of paclitaxel analogs (commonly used first-line therapy for ovarian cancer) with other small molecule therapeutic agents and cavitation combination therapy under ultrasound targeting (Figure 1). The elucidation of these issues will provide a theoretical basis for future exploration of novel NNDDS targeting GRPR for anti-OC therapy. This review presents research on recent advances in PLGA polymer nanoparticles in ovarian cancer, focusing on the use of PLGA degradable microspheres for loading chemotherapeutic agents and ultrasound combination therapy.
Collapse
Affiliation(s)
| | - Shengmin Zhang
- Department of Ultrasound Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
9
|
Wan W, Tao H, Chen Z, Guo F, Tian Y. Recent advances in nanoultrasonography for the diagnosis and treatment of gastrointestinal diseases. Nanomedicine (Lond) 2025; 20:519-530. [PMID: 39846205 PMCID: PMC11875487 DOI: 10.1080/17435889.2025.2457319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 01/20/2025] [Indexed: 01/24/2025] Open
Abstract
With the rapid development of nanotechnology, nanoultrasonography has emerged as a promising medical imaging technique that demonstrates significant potential in the diagnosis and treatment of gastrointestinal (GI) diseases. This review discusses the applications of nanoultrasonography in the gastrointestinal field, including improvements in imaging resolution, diagnostic accuracy, latest research findings, and prospects for clinical application. By analyzing existing literature, we explore the role of nanoultrasonography in enhancing imaging resolution, enabling targeted drug delivery, and improving therapeutic outcomes, thereby providing a reference for future research directions.
Collapse
Affiliation(s)
- Weiping Wan
- Department of Ultrasound, Yantaishan Hospital, Binzhou Medical University, Yantai, Shandong, China
| | - Haina Tao
- Department of Gastroenterology, Yantaishan Hospital, Binzhou Medical University, Yantai, Shandong, China
| | - Zhixiao Chen
- Department of Ultrasound, Yantaishan Hospital, Binzhou Medical University, Yantai, Shandong, China
| | - Fangming Guo
- Department of Cardiology,Yantaishan Hospital, Binzhou Medical University, Yantai, China
| | - Yun Tian
- Department of Ultrasound, Yantaishan Hospital, Binzhou Medical University, Yantai, Shandong, China
| |
Collapse
|
10
|
Zhang K, Wang T, Huang X, Wu P, Shen L, Yang Y, Wan W, Sun S, Zhang Z. Ultrasound-mediated nanomaterials for the treatment of inflammatory diseases. ULTRASONICS SONOCHEMISTRY 2025; 114:107270. [PMID: 39961217 PMCID: PMC11875835 DOI: 10.1016/j.ultsonch.2025.107270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/01/2025] [Accepted: 02/11/2025] [Indexed: 03/03/2025]
Abstract
Sterile and infection-associated inflammatory diseases are becoming increasingly prevalent worldwide. Conventional drug therapies often entail significant drawbacks, such as the risk of drug overdose, the development of drug resistance in pathogens, and systemic adverse reactions, all of which can undermine the effectiveness of treatments for these conditions. Nanomaterials (NMs) have emerged as a promising tool in the treatment of inflammatory diseases due to their precise targeting capabilities, tunable characteristics, and responsiveness to external stimuli. Ultrasound (US), a non-invasive and effective treatment method, has been explored in combination with NMs to achieve enhanced therapeutic outcomes. This review provides a comprehensive overview of the recent advances in the use of US-mediated NMs for treating inflammatory diseases. A comprehensive introduction to the application and classification of US was first presented, emphasizing the advantages of US-mediated NMs and the mechanisms through which US and NMs interact to enhance anti-inflammatory therapy. Subsequently, specific applications of US-mediated NMs in sterile and infection-associated inflammation were summarized. Finally, the challenges and prospects of US-mediated NMs in clinical translation were discussed, along with an outline of future research directions. This review aims to provide insights to guide the development and improvement of US-mediated NMs for more effective therapeutic interventions in inflammatory diseases.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, PR China; Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, PR China
| | - Tingting Wang
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, PR China
| | - Xingyong Huang
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, PR China
| | - Peng Wu
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, PR China
| | - Lufan Shen
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, PR China
| | - Yuanyuan Yang
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, PR China
| | - Wenyu Wan
- Key Laboratory of Immunodermatology, Ministry of Education, Department of Dermatology, The First Hospital of China Medical University, PR China; Key Laboratory of Immunodermatology, National Health Commission of the People's Republic of China, The First Hospital of China Medical University, PR China; National and Local Joint Engineering Research Center of Immunodermatological Theranostics, The First Hospital of China Medical University, PR China.
| | - Siyu Sun
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, PR China; Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, PR China.
| | - Zhan Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, PR China; Cancer Stem Cell and Translational Medicine Laboratory, Shengjing Hospital of China Medical University, Shenyang, PR China.
| |
Collapse
|
11
|
Imani Z, Saeedian Moghadam E, Imani Z, Amini M, Atyabi F, Dinarvand R. A comprehensive review on the latest advances of dimeric anticancer prodrugs. Future Med Chem 2025; 17:709-723. [PMID: 39976272 PMCID: PMC11938984 DOI: 10.1080/17568919.2025.2463884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 02/03/2025] [Indexed: 02/21/2025] Open
Abstract
The advancement of targeted drug delivery systems has opened up a wide array of opportunities in cancer therapy, leading to the exploration of various strategies. Among these, the use of prodrugs stands out as a particularly promising approach in targeted cancer treatment, aimed at enhancing the selectivity and effectiveness of cytotoxic agents. In the last few years, there has been considerable progress in the area of dimeric-based prodrugs aimed at cancer therapy. The advantages presented by dimeric-based prodrugs have significantly improved the efficiency of delivering anticancer drugs, characterized by a high drug loading capacity, advantageous pharmacokinetics, and drug release that responds to tumor stimuli. With respect to the importance of drug dimerization in the field of prodrug development, herein we review the latest reports covering research in dimeric prodrugs. We have categorized the article according to the reported anticancer agents. We have also spent a great deal of attention on different types of used linkers and methods of the dissociation of dimeric prodrugs into free monomeric drugs. Readers will easily be able to compare between the reported research using the same drugs with different linkers or different dissociation methods as well as different cancer cell lines targeted in the studies.
Collapse
Affiliation(s)
- Zhila Imani
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ebrahim Saeedian Moghadam
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Imani
- Department of Pediatric Dentistry, School of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohsen Amini
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Atyabi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Rassoul Dinarvand
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Wang Y, Zhou Y, Wang J, Zhang L, Liu C, Guo D, Yu Y, Ye R, Wang Y, Xu B, Luo Y, Chen D. Nucleolin-targeted silicon-based nanoparticles for enhanced chemo-sonodynamic therapy of diffuse large B-cell lymphoma. Int J Pharm 2025; 671:125294. [PMID: 39884591 DOI: 10.1016/j.ijpharm.2025.125294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/28/2024] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
The limited selectivity and high systemic toxicity of traditional chemotherapy hinder its efficacy in treating diffuse large B-cell lymphoma (DLBCL). The combination of sonodynamic therapy (SDT) with chemotherapy has emerged as a novel strategy for cancer treatment, aiming to improve therapeutic outcomes and reduce systemic toxicity. However, challenges such as elevated drug clearance rates and non-selecitivity remain to be resolved. This study has developed a biocompatible nanomedicine delivery system, PA-HM@DOX/ICG, employing hollow mesoporous silica nanoparticles (HMSNs) as the nanocarrier. The nanomedicine incorporates the chemotherapeutic agent doxorubicin (DOX) along with the sonosensitizer indocyanine green (ICG) within its encapsulation, and undergoes additional surface modification using lipid-nucleic acid conjugates (DSPE-PEG-AS1411) to facilitate active targeted delivery. In vitro cellular experiments have validated that PA-HM@DOX/ICG can specifically recognize and be internalized by SU-DHL-4 lymphoma cells due to the overexpression of nucleolin on their surface. The synergistic effects of DOX-induced DNA damage and reactive oxygen species (ROS) generated by ultrasound-activated ICG induce apoptosis in these cells. Furthermore, PA-HM@DOX/ICG displays minimal toxicity towards LO2 normal hepatocytes, indicating a favorable biosafety profile. In vivo animal studies have shown that PA-HM@DOX/ICG effectively accumulates in tumor sites in mice through both the enhanced permeability and retention (EPR) effect and nucleolin-mediated targeting. Under ultrasound irradiation, PA-HM@DOX/ICG significantly inhibits tumor growth. This study introduces a nanoplatform that integrates chemotherapy with sonodynamic therapy, offering a novel approach for the efficient treatment of DLBCL.
Collapse
MESH Headings
- Animals
- Doxorubicin/administration & dosage
- Doxorubicin/chemistry
- Doxorubicin/pharmacokinetics
- Doxorubicin/pharmacology
- Nucleolin
- Nanoparticles/chemistry
- Nanoparticles/administration & dosage
- RNA-Binding Proteins/metabolism
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/therapy
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Cell Line, Tumor
- Humans
- Silicon Dioxide/chemistry
- Silicon Dioxide/administration & dosage
- Phosphoproteins/metabolism
- Mice
- Indocyanine Green/administration & dosage
- Indocyanine Green/chemistry
- Mice, Inbred BALB C
- Reactive Oxygen Species/metabolism
- Apoptosis/drug effects
- Mice, Nude
- Ultrasonic Therapy/methods
- Drug Delivery Systems
- Xenograft Model Antitumor Assays
- Oligodeoxyribonucleotides/chemistry
- Oligodeoxyribonucleotides/administration & dosage
- Drug Carriers/chemistry
- Polyethylene Glycols/chemistry
- DNA Damage/drug effects
Collapse
Affiliation(s)
- Yubo Wang
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, 55 Zhenhai Road, Xiamen 361003 China.
| | - Yong Zhou
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, 55 Zhenhai Road, Xiamen 361003 China; The School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian 350108, China.
| | - Jinling Wang
- Department of Emergency and Critical Care Center, The Second Affiliated Hospital of Guangdong Medical University, No.12 Minyou Road, Xiashan, Zhanjiang, Guangdong 524003, China.
| | - Lu Zhang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China; School of Life Sciences, Xiamen University, Xiamen 361005, China.
| | - Chen Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China.
| | - Ding Guo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China.
| | - Yanlin Yu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China.
| | - Roumei Ye
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China.
| | - Yun Wang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China; Jiamusi Campus of Heilongjiang University of TCM, Jiamusi 154007, China.
| | - Bing Xu
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, 55 Zhenhai Road, Xiamen 361003 China; The School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian 350108, China.
| | - Yiming Luo
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, 55 Zhenhai Road, Xiamen 361003 China; The School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian 350108, China.
| | - Dengyue Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
13
|
Moni SS, Moshi JM, Matou-Nasri S, Alotaibi S, Hawsawi YM, Elmobark ME, Hakami AMS, Jeraiby MA, Sulayli AA, Moafa HN. Advances in Materials Science for Precision Melanoma Therapy: Nanotechnology-Enhanced Drug Delivery Systems. Pharmaceutics 2025; 17:296. [PMID: 40142960 PMCID: PMC11945159 DOI: 10.3390/pharmaceutics17030296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/14/2025] [Accepted: 02/19/2025] [Indexed: 03/28/2025] Open
Abstract
Melanoma, a highly aggressive form of skin cancer, poses a major therapeutic challenge due to its metastatic potential, resistance to conventional therapies, and the complexity of the tumor microenvironment (TME). Materials science and nanotechnology advances have led to using nanocarriers such as liposomes, dendrimers, polymeric nanoparticles, and metallic nanoparticles as transformative solutions for precision melanoma therapy. This review summarizes findings from Web of Science, PubMed, EMBASE, Scopus, and Google Scholar and highlights the role of nanotechnology in overcoming melanoma treatment barriers. Nanoparticles facilitate passive and active targeting through mechanisms such as the enhanced permeability and retention (EPR) effect and functionalization with tumor-specific ligands, thereby improving the accuracy of drug delivery and reducing systemic toxicity. Stimuli-responsive systems and multi-stage targeting further improve therapeutic precision and overcome challenges such as poor tumor penetration and drug resistance. Emerging therapeutic platforms combine diagnostic imaging with therapeutic delivery, paving the way for personalized medicine. However, there are still issues with scalability, biocompatibility, and regulatory compliance. This comprehensive review highlights the potential of integrating nanotechnology with advances in genetics and proteomics, scalable, and patient-specific therapies. These interdisciplinary innovations promise to redefine the treatment of melanoma and provide safer, more effective, and more accessible treatments. Continued research is essential to bridge the gap between evidence-based scientific advances and clinical applications.
Collapse
Affiliation(s)
- Sivakumar S. Moni
- College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
- Health Research Centre, Jazan University, Jazan 45142, Saudi Arabia
| | - Jobran M. Moshi
- Department of Medical Laboratory Technology, College of Nursing and Health Science, Jazan University, Jazan 45142, Saudi Arabia
- Health Research Centre, Jazan University, Jazan 45142, Saudi Arabia
| | - Sabine Matou-Nasri
- Blood and Cancer Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, Riyadh 11481, Saudi Arabia;
- Biosciences Department, Faculty of the School for Systems Biology, George Mason University, Manassas, VA 22030, USA
| | - Shmoukh Alotaibi
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah 23433, Saudi Arabia; (S.A.); (Y.M.H.)
| | - Yousef M. Hawsawi
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah 23433, Saudi Arabia; (S.A.); (Y.M.H.)
- Department of Biochemistry and Molecular Medicine, College of Medicine, Al-Faisal University, Riyadh 11533, Saudi Arabia
| | | | | | - Mohammed A. Jeraiby
- Department of Basic Medical Science, Faculty of Medicine, Jazan University, Jazan 45142, Saudi Arabia;
| | - Ahmed A. Sulayli
- Laboratory Department, Prince Mohammed bin Nasser Hospital, Jazan Health Cluster, Jazan 82734, Saudi Arabia;
| | - Hassan N. Moafa
- Department of Public Health, College of Nursing and Health Sciences, Jazan University, Jazan 45142, Saudi Arabia;
- Department of Quality and Patients Safety, Jazan University Hospital, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
14
|
Takahashi Y, Sugino T, Onogi S, Nakajima Y, Masuda K. Improved segmentation of hepatic vascular networks in ultrasound volumes using 3D U-Net with intensity transformation-based data augmentation. Med Biol Eng Comput 2025:10.1007/s11517-025-03320-2. [PMID: 39939404 DOI: 10.1007/s11517-025-03320-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/28/2025] [Indexed: 02/14/2025]
Abstract
Accurate three-dimensional (3D) segmentation of hepatic vascular networks is crucial for supporting ultrasound-mediated theranostics for liver diseases. Despite advancements in deep learning techniques, accurate segmentation remains challenging due to ultrasound image quality issues, including intensity and contrast fluctuations. This study introduces intensity transformation-based data augmentation methods to improve deep convolutional neural network-based segmentation of hepatic vascular networks. We employed a 3D U-Net, which leverages spatial contextual information, as the baseline. To address intensity and contrast fluctuations and improve 3D U-Net performance, we implemented data augmentation using high-contrast intensity transformation with S-shaped tone curves and low-contrast intensity transformation with Gamma and inverse S-shaped tone curves. We conducted validation experiments on 78 ultrasound volumes to evaluate the effect of both geometric and intensity transformation-based data augmentations. We found that high-contrast intensity transformation-based data augmentation decreased segmentation accuracy, while low-contrast intensity transformation-based data augmentation significantly improved Recall and Dice. Additionally, combining geometric and low-contrast intensity transformation-based data augmentations, through an OR operation on their results, further enhanced segmentation accuracy, achieving improvements of 9.7% in Recall and 3.3% in Dice. This study demonstrated the effectiveness of low-contrast intensity transformation-based data augmentation in improving volumetric segmentation of hepatic vascular networks from ultrasound volumes.
Collapse
Affiliation(s)
- Yukino Takahashi
- Department of Biomedical Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Takaaki Sugino
- Department of Biomedical Informatics, Laboratory for Biomaterials and Bioengineering, Institute of Integrated Research, Institute of Science Tokyo, Tokyo, Japan.
| | - Shinya Onogi
- Department of Biomedical Informatics, Laboratory for Biomaterials and Bioengineering, Institute of Integrated Research, Institute of Science Tokyo, Tokyo, Japan
| | - Yoshikazu Nakajima
- Department of Biomedical Informatics, Laboratory for Biomaterials and Bioengineering, Institute of Integrated Research, Institute of Science Tokyo, Tokyo, Japan
| | - Kohji Masuda
- Department of Biomedical Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
15
|
Liu S, Liu Z, Lei H, Miao YB, Chen J. Programmable Nanomodulators for Precision Therapy, Engineering Tumor Metabolism to Enhance Therapeutic Efficacy. Adv Healthc Mater 2025; 14:e2403019. [PMID: 39529548 DOI: 10.1002/adhm.202403019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Tumor metabolism is crucial in the continuous advancement and complex growth of cancer. The emerging field of nanotechnology has made significant strides in enhancing the understanding of the complex metabolic intricacies inherent to tumors, offering potential avenues for their strategic manipulation to achieve therapeutic goals. This comprehensive review delves into the interplay between tumor metabolism and various facets of cancer, encompassing its origins, progression, and the formidable challenges posed by metastasis. Simultaneously, it underscores the classification of programmable nanomodulators and their transformative impact on enhancing cancer treatment, particularly when integrated with modalities such as chemotherapy, radiotherapy, and immunotherapy. This review also encapsulates the mechanisms by which nanomodulators modulate tumor metabolism, including the delivery of metabolic inhibitors, regulation of oxidative stress, pH value modulation, nanoenzyme catalysis, nutrient deprivation, and RNA interference technology, among others. Additionally, the review delves into the prospects and challenges of nanomodulators in clinical applications. Finally, the innovative concept of using nanomodulators to reprogram metabolic pathways is introduced, aiming to transform cancer cells back into normal cells. This review underscores the profound impact that tailored nanomodulators can have on tumor metabolic, charting a path toward pioneering precision therapies for cancer.
Collapse
Affiliation(s)
- Siwei Liu
- Women & Children's Molecular Medicine Center, Department of Gynecology, Guangyuan Central Hospital, No. 16, Jingxiangzi, Lizhou District, Guangyuan, 628000, P. R. China
| | - Zhijun Liu
- Urology Institute of Shenzhen University, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, 518000, China
| | - Huajiang Lei
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China
| | - Yang-Bao Miao
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China
| | - Jiao Chen
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China
| |
Collapse
|
16
|
Mundžić M, Ultimo A, Mladenović M, Pavlović A, Gobbo OL, Ruiz-Hernandez E, Santos-Martinez MJ, Knežević NŽ. Chlorotoxin-functionalized mesoporous silica nanoparticles for pH-responsive paclitaxel delivery to Glioblastoma multiforme. Heliyon 2025; 11:e41151. [PMID: 39758413 PMCID: PMC11699378 DOI: 10.1016/j.heliyon.2024.e41151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 01/07/2025] Open
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive brain cancer associated with poor survival rates. We developed novel mesoporous silica nanoparticles (MSNs)-based nanocarriers for pH-responsive delivery of a therapeutic drug Paclitaxel (PTX) to GBM tumor cells. The pores of MSNs are loaded with PTX, which is retained by β-cyclodextrin (CD) moieties covalently linked to the pore entrances through a hydrazone linkage, which is cleavable in weakly acidic environment. Furthermore, we utilized a host-guest interaction between the adamantane and capping CD moieties to further functionalize the surface with a potential glioma-targeting oligopeptide chlorotoxin (CHX). In vitro studies in the U87 GBM cell line show decreased uptake, but increased toxicity of CHX-modified nanoparticles compared to CHX-free nanoparticles. The obtained results are promising toward development of advanced drug nanocarriers, which may target the overexpressed receptors in cancer tissues and utilize their weakly acidic environment for triggering the drug release, potentially leading to more efficient cancer treatments.
Collapse
Affiliation(s)
- Mirjana Mundžić
- BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000, Novi Sad, Serbia
| | - Amelia Ultimo
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College Dublin, D02PN40, Dublin, Ireland
| | - Minja Mladenović
- BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000, Novi Sad, Serbia
| | - Aleksandra Pavlović
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College Dublin, D02PN40, Dublin, Ireland
| | - Oliviero L. Gobbo
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College Dublin, D02PN40, Dublin, Ireland
- Trinity St. James's Cancer Institute, St James's Hospital, D08 NHY1, Dublin, Ireland
| | - Eduardo Ruiz-Hernandez
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College Dublin, D02PN40, Dublin, Ireland
- Trinity St. James's Cancer Institute, St James's Hospital, D08 NHY1, Dublin, Ireland
| | - Maria Jose Santos-Martinez
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College Dublin, D02PN40, Dublin, Ireland
- Trinity St. James's Cancer Institute, St James's Hospital, D08 NHY1, Dublin, Ireland
- School of Medicine, Trinity College Dublin, D02 E8C0, Dublin, Ireland
| | - Nikola Ž. Knežević
- BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000, Novi Sad, Serbia
| |
Collapse
|
17
|
Wang G, Wang D, Tian H, Xia L, Shen D, Wang Z, Dai Y. A metal-phenolic nanotuner induces cancer pyroptosis for sono-immunotherapy. Biomater Sci 2025; 13:446-456. [PMID: 39655454 DOI: 10.1039/d4bm01292e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
Although ultrasound therapy is efficacious and safe in clinical oncology, its capacity to elicit an anti-tumor immune response is constrained by ultrasound-induced apoptosis. Pyroptosis, which releases immunogenic damage-associated molecular patterns (DAMPs), can significantly enhance immune activation. It necessitates robust Gasdermin E (GSDME) expression in cancer cells for caspase-3-mediated pyroptosis. An epigenetic strategy is introduced to induce cancer pyroptosis during sonotherapy using a nanocoordinator (HTA) constructed through metal-phenolic coordination involving Aza (a DNA methyltransferase inhibitor), TiO2 nanoparticles, and polyphenol-modified hyaluronic acid. While Aza restores GSDME expression, TiO2 generates reactive oxygen species (ROS) under ultrasound stimulation, activating caspase-3 and inducing pyroptosis via GSDME cleavage. In an orthotopic breast cancer model, HTA enhanced anti-tumor immunity and improved the efficacy of sonodynamic therapy (SDT). This approach presents a novel strategy for augmenting SDT through epigenetically induced pyroptosis.
Collapse
Affiliation(s)
- Guohao Wang
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Dongmei Wang
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen, 361023, China
| | - Huimin Tian
- Medical College, Xiamen University, Xiamen, 361102, China
| | - Lu Xia
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Dongyan Shen
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Zhanxiang Wang
- Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China.
| | - Yunlu Dai
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China.
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, 999078, China
| |
Collapse
|
18
|
Wan W, Zhou J, Ha X, Han C. Application of nanoultrasonography in early diagnosis of coronary heart disease. Nanomedicine (Lond) 2025; 20:79-89. [PMID: 39639651 DOI: 10.1080/17435889.2024.2435255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024] Open
Abstract
Coronary heart disease (CHD) remains one of the leading causes of mortality and disability globally. In recent years, nanoultrasonography technology has demonstrated significant potential in both the diagnosis and treatment of CHD. This review summarizes the latest research advancements in nanoultrasonography within the field of coronary heart disease, focusing on its applications in early diagnosis, targeted drug delivery, imaging techniques, and treatment strategies. We explore the working principles of nanoultrasonography, its technological advantages, and the challenges faced in clinical applications. The aim is to provide guidance for future research and clinical practice in this promising area.
Collapse
Affiliation(s)
- Weiping Wan
- Department of Ultrasound, Yantaishan Hospital, Binzhou Medical University, Yantai, Shandong, China
| | - Jianmin Zhou
- Department of Ultrasound, Yantaishan Hospital, Binzhou Medical University, Yantai, Shandong, China
| | - Xiaoming Ha
- Department of Ultrasound, Yantaishan Hospital, Binzhou Medical University, Yantai, Shandong, China
| | - Chao Han
- Department of Ultrasound, Yantaishan Hospital, Binzhou Medical University, Yantai, Shandong, China
| |
Collapse
|
19
|
Li J, Ahmed HH, Hussein AM, Kaur M, Jameel MK, Kaur H, Tillaeva U, Al-Hussainy AF, Sameer HN, Hameed HG, Idan AH, Alsaikhan F, Narmani A, Farhood B. Advances in polysaccharide-based materials for biomedical and pharmaceutical applications: A comprehensive review. Arch Pharm (Weinheim) 2025; 358:e2400854. [PMID: 39651831 DOI: 10.1002/ardp.202400854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024]
Abstract
Polysaccharides, the most abundant biopolymers in nature, have attracted the attention of researchers and clinicians due to its practicality in biomedical and pharmaceutical sciences. These biomaterials have high bioavailability and play structural and functional roles in living organisms. Polysaccharides are classified into several groups based on their origin, including plant polysaccharides and marine polysaccharides (like chitosan, hyaluronic acid, dextran, alginates, etc.) with specific applications. These biopolymers possess unique physicochemical (such as surface functional groups, solubility, and stability), mechanical (like mechanical strength and tensile), and biomedical (such as antioxidant activity, biocompatibility, biodegradability, renewability, and non-immunogenicity) characteristics which have made them excellent platforms for a wide variety of biomedical and pharmaceutical applications. Ease of extraction and different preparation approaches are mentioned as other potential properties of polysaccharides that further improved their practicality in biomedical sciences. They have high drug/bioactive encapsulation capacity and sustained/controlled release manner in in vivo microenvironments. The anti-inflammatory and immunomodulation, stimuli-responsive drug/bioactive release, and passive and active drug/bioactive delivery are considered the potential features of these biopolymers in pharmaceutical sciences. Polysaccharides have indicated practical applications in biomedical sciences, including biosensors, tissue engineering, implantation, wound healing, vascular grafting, and vaccines. This review highlights the advances of polysaccharide-based materials in biomedical and pharmaceutical sciences.
Collapse
Affiliation(s)
- Jiahao Li
- Department of Cognitive Neuroscience and Philosophy, University of Skovde, Skovde, Sweden
| | | | - Ali M Hussein
- Department of Biomedical Sciences, Cihan University-Erbil, Kurdistan Region, Iraq
| | - Mandeep Kaur
- Department of Chemistry, School of Sciences, Jain (Deemed-to-be) University, Bengaluru, Karnataka, India
- Department of Sciences, Vivekananda Global University, Jaipur, Rajasthan, India
| | - Mohammed Khaleel Jameel
- Department of Medical Laboratory Technology, University of Imam Jaafar AL-Sadiq, Baghdad, Iraq
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh, India
- Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand, India
| | | | | | - Hayder Naji Sameer
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | | | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
- School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia
| | - Asghar Narmani
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
20
|
Yazdan M, Naghib SM. Smart Ultrasound-responsive Polymers for Drug Delivery: An Overview on Advanced Stimuli-sensitive Materials and Techniques. Curr Drug Deliv 2025; 22:283-309. [PMID: 38288800 DOI: 10.2174/0115672018283792240115053302] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/11/2023] [Accepted: 12/28/2023] [Indexed: 04/11/2025]
Abstract
In recent years, a notable advancement has occurred in the domain of drug delivery systems via the integration of intelligent polymers that respond to ultrasound. The implementation of this groundbreaking methodology has significantly revolutionised the controlled and precise delivery of therapeutic interventions. An in-depth investigation is conducted into the most recent developments in ultrasonic stimulus-responsive materials and techniques for the purpose of accomplishing precise medication administration. The investigation begins with an exhaustive synopsis of the foundational principles underlying drug delivery systems that react to ultrasonic stimuli, focusing specifically on the complex interplay between polymers and ultrasound waves. Significant attention is devoted to the development of polymers that demonstrate tailored responsiveness to ultrasound, thereby exemplifying their versatility in generating controlled drug release patterns. Numerous classifications of intelligent polymers are examined in the discussion, including those that react to variations in temperature, pH, and enzymes. When coupled with ultrasonic stimuli, these polymers offer a sophisticated framework for the precise manipulation of drug release in terms of both temporal and spatial dimensions. The present study aims to examine the synergistic effects of responsive polymers and ultrasound in overcoming biological barriers such as the blood-brain barrier and the gastrointestinal tract. By doing so, it seeks to shed light on the potential applications of these materials in intricate clinical scenarios. The issues and future prospects of intelligent ultrasound-responsive polymers in the context of drug delivery are critically analysed in this article. The objective of this study is to offer valuable perspectives on the challenges that must be overcome to enable the effective implementation of these technologies. The primary objective of this comprehensive review is to furnish researchers, clinicians, and pharmaceutical scientists with a wealth of information that will serve as a guide for forthcoming developments in the development and enhancement of intelligent drug delivery systems that employ ultrasound-responsive polymers to attain superior therapeutic outcomes.
Collapse
Affiliation(s)
- Mostafa Yazdan
- Department of Nanotechnology, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, 1684613114, Iran
| | - Seyed Morteza Naghib
- Department of Nanotechnology, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, 1684613114, Iran
| |
Collapse
|
21
|
Vedarethinam V, Jeevanandam J. Role of nanotechnology in microbiome drug development. HUMAN MICROBIOME DRUG TARGETS 2025:245-263. [DOI: 10.1016/b978-0-443-15435-5.00018-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
22
|
Zhu S, Jin G, He X, Li Y, Xu F, Guo H. Mechano-assisted strategies to improve cancer chemotherapy. Life Sci 2024; 359:123178. [PMID: 39471901 DOI: 10.1016/j.lfs.2024.123178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/25/2024] [Accepted: 10/22/2024] [Indexed: 11/01/2024]
Abstract
Chemotherapy remains a cornerstone in cancer treatment; however, its effectiveness is frequently undermined by the development of drug resistance. Recent studies underscores the pivotal role of the tumor mechanical microenvironment (TMME) and the emerging field of mechanical nanomedicine in tackling chemo-resistance. This review offers an in-depth analysis of mechano-assisted strategies aimed at mitigating chemo-resistance through the modification of the TMME and the refinement of mechanical nanomedicine delivery systems. We explore the potential of targeting abnormal tumor mechanical properties as a promising avenue for enhancing the efficacy of cancer chemotherapy, which offers novel directions for advancing future cancer therapies, especially from the mechanomedicine perspective.
Collapse
Affiliation(s)
- Shanshan Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Guorui Jin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Xiaocong He
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yuan Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China.
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China.
| | - Hui Guo
- Department of Medical Oncology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, PR China.
| |
Collapse
|
23
|
Nair ST, Abhi C, Kamalasanan K, Pavithran K, Unni AR, Sithara MS, Sarma M, Mangalanandan TS. Pathophysiology-Driven Approaches for Overcoming Nanomedicine Resistance in Pancreatic Cancer. Mol Pharm 2024; 21:5960-5988. [PMID: 39561094 DOI: 10.1021/acs.molpharmaceut.4c00801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Tumor heterogeneity poses a significant challenge in cancer therapy. To address this, we analyze pharmacotherapeutic challenges by categorizing them into static and dynamic barriers, reframing these challenges to improve drug delivery, efficacy, and the development of controlled-release nanomedicines (CRNMs). This pathophysiology-driven approach facilitates the design of novel therapeutics tailored to overcome obstacles in pancreatic ductal adenocarcinoma (PDAC) using nanotechnology. Advanced biomaterials in nanodrug delivery systems offer innovative solutions by combining controlled release, stimuli sensitivity, and smart design strategies. CRNMs are engineered to modulate spatiotemporal signaling and control drug release in PDAC, where resistance to conventional therapies is particularly high. This review explores pharmacokinetic considerations for nanomedicine design, RNA interference (RNAi) for stromal modulation, and the development of targeted nanomedicine strategies. Additionally, we highlight the limitations of current animal models in capturing the complexities of PDAC and discuss notable clinical failures, such as PEGylated hyaluronidase (Phase III HALO 109-301 trial) and evofosfamide (TH-302) with gemcitabine (MAESTRO trial), underscoring the need for improved models and treatment strategies. By targeting pathways like Notch and Hedgehog and incorporating stimuli-sensitive and pathway-modulating agents, CRNMs offer a promising avenue to enhance drug penetration and efficacy, reshaping the paradigm of pancreatic cancer treatment.
Collapse
Affiliation(s)
- Sreejith Thrivikraman Nair
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - C Abhi
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - Kaladhar Kamalasanan
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - K Pavithran
- Department of Medical Oncology and Hematology, School of Medicine, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - Ashok R Unni
- Department of Veterinary Medicine, Central Animal Facility, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - M S Sithara
- Department of Veterinary Medicine, Central Animal Facility, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - Manjit Sarma
- Department of Nuclear Medicine, Amrita School of Medicine, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - T S Mangalanandan
- Department of Endocrinology, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| |
Collapse
|
24
|
Hsu CY, Allela OQB, Hussein AM, Mustafa MA, Kaur M, Alaraj M, Al-Hussainy AF, Radi UK, Ubaid M, Idan AH, Alsaikhan F, Narmani A, Farhood B. Recent advances in polysaccharide-based drug delivery systems for cancer therapy: a comprehensive review. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2024; 52:564-586. [PMID: 39639430 DOI: 10.1080/21691401.2024.2436350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/13/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
Cancer has a high rate of incidence and mortality throughout the world. Although several conventional approaches have been developed for the treatment of cancer, such as surgery, chemotherapy, radiotherapy and thermal therapy, they have remarkable disadvantages which result in inefficient treatment of cancer. For example, immunogenicity, prolonged treatment, non-specificity, metastasis and high cost of treatment, are considered as the major drawbacks of chemotherapy. Therefore, there is a fundamental requirement for the development of breakthrough technologies for cancer suppression. Polysaccharide-based drug delivery systems (DDSs) are the most reliable drug carriers for cancer therapy. Polysaccharides, as a kind of practical biomaterials, are divided into several types, including chitosan, alginates, dextran, hyaluronic acid, cyclodextrin, pectin, etc. Polysaccharides are extracted from different natural resources (like herbal, marine, microorganisms, etc.). The potential features of polysaccharides have made them reliable candidates for therapeutics delivery to cancer sites; the simple purification, ease of modification and functionalization, hydrophilicity, serum stability, appropriate drug loading capacity, biocompatibility, bioavailability, biodegradability and stimuli-responsive and sustained drug release manner are considerable aspects of these biopolymers. This review highlights the practical applications of polysaccharides-based DDSs in pharmaceutical science and cancer therapy.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City, Taiwan
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, Arizona, USA
| | | | - Ali M Hussein
- Department of Biomedical Sciences, College of Applied Sciences, Cihan University-Erbil, Kurdistan Region, Iraq
| | | | - Mandeep Kaur
- Department of Chemistry, School of Sciences, Jain (Deemed-to-be) University, Bengaluru, India
- Department of Sciences, Vivekananda Global University, Jaipur, India
| | | | | | - Usama Kadem Radi
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Mohammed Ubaid
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
- School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia
| | - Asghar Narmani
- Department of Life Science Engineering, University of Tehran, Tehran, Iran
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
25
|
Zhao H, Du F, Xiang X, Tang Y, Feng Z, Wang Z, Rong X, Qiu L. Progress in application of nanomedicines for enhancing cancer sono-immunotherapy. ULTRASONICS SONOCHEMISTRY 2024; 111:107105. [PMID: 39427436 PMCID: PMC11533716 DOI: 10.1016/j.ultsonch.2024.107105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/22/2024] [Accepted: 10/12/2024] [Indexed: 10/22/2024]
Abstract
Cancer immunotherapy has significant potential as a cancer treatment since it boosts the immune system and prevents immune escape to get rid of or fight cancers. However, its clinical applicability is still limited because of the low response rate and immune-related side effects. Recently ultrasound has been shown to alter the tumor immune microenvironment, enhance the effectiveness of other antitumor therapies, and cause tumors to become more sensitive to immunotherapy, thus providing new insights into cancer treatment. Nanomedicines are also anticipated to have a positive impact on improving the immunological effects and enhancing ultrasound effect for cancer therapy. Therefore, designing effective nanomedicines enhanced ultrasound effect for augmenting sono-immunotherapy has been a pivot on anticancer therapy. In this review, the immunological impacts of various ultrasound therapeutic modalities, ultrasound parameters, and their underlying mechanisms are discussed. Moreover, we highlight the recent progress of nanomedicines synergistically enhancing sono-immunotherapy. Finally, we put forward opportunities and challenges on sono-immunotherapy.
Collapse
Affiliation(s)
- Hongxin Zhao
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fangxue Du
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xi Xiang
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuanjiao Tang
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ziyan Feng
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ziyao Wang
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiao Rong
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Li Qiu
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
26
|
Han B, Liu Y, Zhou Q, Yu Y, Liu X, Guo Y, Zheng X, Zhou M, Yu H, Wang W. The advance of ultrasound-enabled diagnostics and therapeutics. J Control Release 2024; 375:1-19. [PMID: 39208935 DOI: 10.1016/j.jconrel.2024.08.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/27/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Point-of-care ultrasound demonstrates significant potential in biomedical research due to its noninvasive, real-time visualization, cost-effectiveness, and other biological benefits. Ultrasound irradiation can precisely control the mechanical and physicochemical effects on pathogenic lesions, enabling real-time visualization, tunable tissue penetration depth, and therapeutic applications. This review summarizes recent advancements in ultrasound-enabled diagnostics and therapeutics, focusing on mechanochemical effects that can be directly integrated into biomedical applications. Additionally, the structure-functionality relationships of sonotheranostic nanoplatforms are systematically discussed, providing insights into the underlying biological effects. Finally, the limitations of current ultrasonic medicine are discussed, along with potential expansions to facilitate patient-centered translations.
Collapse
Affiliation(s)
- Biying Han
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Yan Liu
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Qianqian Zhou
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Yuting Yu
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Xingxing Liu
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Yu Guo
- State Key Laboratory of Chemical Biology & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaohua Zheng
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Mengjiao Zhou
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China.
| | - Haijun Yu
- State Key Laboratory of Chemical Biology & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Weiqi Wang
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China.
| |
Collapse
|
27
|
Young CM, Viña-González A, de Toledo Aguiar RS, Kalman C, Pilitsis JG, Martin-Lopez LI, Mahani T, Pineda-Pardo JA. A Scoping Review of Focused Ultrasound Enhanced Drug Delivery for Across the Blood-Brain Barrier for Brain Tumors. Oper Neurosurg (Hagerstown) 2024; 27:523-532. [PMID: 38717167 DOI: 10.1227/ons.0000000000001175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/29/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Previous mechanisms of opening the blood-brain barrier (BBB) created a hypertonic environment. Focused ultrasound (FUS) has recently been introduced as a means of controlled BBB opening. Here, we performed a scoping review to assess the advances in drug delivery across the BBB for treatment of brain tumors to identify advances and literature gaps. METHODS A review of current literature was conducted through a MEDLINE search inclusive of articles on FUS, BBB, and brain tumor barrier, including human, modeling, and animal studies written in English. Using the Rayyan platform, 2 reviewers (J.P and C.Y) identified 967 publications. 224 were chosen to review after a title screen. Ultimately 98 were reviewed. The scoping review was designed to address the following questions: (1) What FUS technology improvements have been made to augment drug delivery for brain tumors? (2) What drug delivery improvements have occurred to ensure better uptake in the target tissue for brain tumors? RESULTS Microbubbles (MB) with FUS are used for BBB opening (BBBO) through cavitation to increase its permeability. Drug delivery into the central nervous system can be combined with MB to enhance transport of therapeutic agents to target brain tissue resulting in suppression of tumor growth and prolonging survival rate, as well as reducing systemic toxicity and degradation rate. There is accumulating evidence demonstrating that drug delivery through BBBO with FUS-MB improves drug concentrations and provides a better impact on tumor growth and survival rates, compared with drug-only treatments. CONCLUSION Here, we review the role of FUS in BBBO. Identified gaps in the literature include impact of tumor microenvironment and extracellular space, improved understanding and control of MB and drug delivery, further work on ideal pharmacologics for delivery, and clinical use.
Collapse
Affiliation(s)
- Christopher M Young
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton , Florida , USA
| | - Ariel Viña-González
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid , Spain
| | | | - Cheyenne Kalman
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton , Florida , USA
| | - Julie G Pilitsis
- Department of Neurosurgery, University of Arizona, Tucson , Arizona , USA
| | - Laura I Martin-Lopez
- Pediatric Oncology Unit, Hospital Universitario HM Montepríncipe, HM Hospitales/CIOCC, Madrid , Spain
| | - Tanmay Mahani
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton , Florida , USA
| | - José A Pineda-Pardo
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid , Spain
| |
Collapse
|
28
|
Guan Y, Zhang W, Mao Y, Li S. Nanoparticles and bone microenvironment: a comprehensive review for malignant bone tumor diagnosis and treatment. Mol Cancer 2024; 23:246. [PMID: 39487487 PMCID: PMC11529338 DOI: 10.1186/s12943-024-02161-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 10/17/2024] [Indexed: 11/04/2024] Open
Abstract
Malignant bone tumors, which are difficult to treat with current clinical strategies, originate from bone tissues and can be classified into primary and secondary types. Due to the specificity of the bone microenvironment, the results of traditional means of treating bone tumors are often unsatisfactory, so there is an urgent need to develop new treatments for malignant bone tumors. Recently, nanoparticle-based approaches have shown great potential in diagnosis and treatment. Nanoparticles (NPs) have gained significant attention due to their versatility, making them highly suitable for applications in bone tissue engineering, advanced imaging techniques, and targeted drug delivery. For diagnosis, NPs enhance imaging contrast and sensitivity by integrating targeting ligands, which significantly improve the specific recognition and localization of tumor cells for early detection. For treatment, NPs enable targeted drug delivery, increasing drug accumulation at tumor sites while reducing systemic toxicity. In conclusion, understanding bone microenvironment and using the unique properties of NPs holds great promise in improving disease management, enhancing treatment outcomes, and ultimately improving the quality of life for patients with malignant bone tumors. Further research and development will undoubtedly contribute to the advancement of personalized medicine in the field of bone oncology.
Collapse
Affiliation(s)
- Yujing Guan
- Second Ward of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, China
- The Liaoning Provincial Key Laboratory of Interdisciplinary Research on Gastrointestinal Tumor Combining Medicine with Engineering, Shenyang, Liaoning, 110042, China
- Institute of Cancer Medicine, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Wei Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, P.R. China
| | - Yuling Mao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, P.R. China.
| | - Shenglong Li
- Second Ward of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, China.
- The Liaoning Provincial Key Laboratory of Interdisciplinary Research on Gastrointestinal Tumor Combining Medicine with Engineering, Shenyang, Liaoning, 110042, China.
- Institute of Cancer Medicine, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning, 116024, China.
| |
Collapse
|
29
|
Liu T, Chen K, Yan Z, Wang Q. Comparative study of permeation effects between vibrating microneedle and low-frequency sonophoresis systems. Drug Deliv Transl Res 2024; 14:3239-3249. [PMID: 38407771 DOI: 10.1007/s13346-024-01547-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2024] [Indexed: 02/27/2024]
Abstract
Microneedle transdermal administration and low-frequency ultrasound represent two important physical penetration-promoting methods for enhancing drug penetration. This article aims to investigate and compare the effects of drug penetration enhancement through transdermal administration using vibrating microneedles versus low-frequency sonophoresis. In Vitro permeation studies were conducted using Valia-Chien double chamber diffusion cells to evaluate the transdermal delivery of tetramethylpyrazine hydrochloride (TMPH). The TMPH concentration in the receiving compartment was determined using high-performance liquid chromatography (HPLC). Several combinations of microneedles and ultrasound settings were investigated, including different needle heights, vibration frequencies, exposure times, and assorted distances of ultrasound horn and skin. The results revealed the vibrating microneedle system as the most efficacious treatment to increase the TMPH permeability into the rat skin. The combination of a larger needle, higher frequency, and a 3-min exposure led to a 41.92-fold increase in cumulative permeability compared to the control group. The ultrasound treatment exhibited a moderate enhancement effect on TMPH skin penetration. Using a horn-to-skin distance of 3 mm and a 3-min exposure resulted in a 4.34-fold increase in TMPH cumulative permeation compared to the control group. It could be concluded that while both the vibrating microneedle and the low-frequency ultrasound systems act as penetration enhancers for promoting the TMPH permeation through the skin, the vibrating microneedle system notably demonstrates a more effective penetration-promoting effect.
Collapse
Affiliation(s)
- Tingting Liu
- School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Kai Chen
- School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Zhigang Yan
- School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Qiao Wang
- College of Pharmacy, Hangzhou Medical College, Hangzhou, 310014, China
| |
Collapse
|
30
|
Asl AM, Abdouss M, Kalaee MR, Homami SS, Pourmadadi M. Targeted delivery of quercetin using gelatin/starch/Fe 3O 4 nanocarrier to suppress the growth of liver cancer HepG2 cells. Int J Biol Macromol 2024; 281:136535. [PMID: 39401620 DOI: 10.1016/j.ijbiomac.2024.136535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
To suppress HepG2 liver cancer cells, a nanocarrier (NC) consisting of Fe3O4, Gelatin (G), and Starch (S) was synthesized and characterized for targeted delivery of Quercetin (QC) drug. The spectra obtained from X-ray diffraction (XRD) and Fourier transform infrared (FTIR) demonstrated that the nanoparticles (NP) in the NC are well-interconnected to each other and have formed a regular structure. Also, field emission scanning electron microscopy (FE-SEM) indicates a smooth and homogeneous surface of the synthesized NC. The results of the vibrating sample magnetometer (VSM) also corroborated the correctness of the synthesis of Fe3O4 NPs and Gelatin/Starch/Fe3O4@Quercetin NC (G/S/Fe3O4@QC) because the magnetic properties of Fe3O4 decreased with the addition of G/S@QC. Stability and particle size were determined by zeta potential and Dynamic light scattering (DLS). The percentage of drug loading and encapsulation efficiency of QC in the NC was 46.25 % and 87 %, respectively. QC profile release in acidic and natural environments showed controlled release and pH sensitivity of the NC. Cytotoxicity of L929 and HepG2 treated cells with the G/S/Fe3O4@QC was investigated by MTT staining, which agreed with the flow cytometry result. The results of Flowcytometry and MTT showed 43.5 % apoptosis and 42 % cytotoxicity in treated HepG2 cells by G/S/Fe3O4@QC, while it was not toxic to L929 normal cells. According to the results, G/S/Fe3O4@QC is a suitable NC for the targeted delivery of QC as a drug against HepG2 cancer cells.
Collapse
Affiliation(s)
- Afsaneh Mojtahedzadeh Asl
- Department of Applied Chemistry, Faculty of Science, South Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Majid Abdouss
- Department of Chemistry, Amirkabir University of Technology, Tehran, P.O. Box 15875-4413, Tehran, Iran.
| | - Mohammad Reza Kalaee
- Department of Polymer and Chemical Engineering, South Tehran Branch, Islamic Azad University, P.O. Box 19585-466, Tehran, Iran; Nanotechnology Research Center, South Tehran Branch, Islamic Azad University, P.O. Box 19585-466, Tehran, Iran.
| | - Seyed Saied Homami
- Department of Applied Chemistry, Faculty of Science, South Tehran Branch, Islamic Azad University, Tehran, Iran; Research Center of Modeling and Optimization in Science and Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mehrab Pourmadadi
- Protein Research Center, Shahid Beheshti University, Tehran, GC 1983963113, Iran
| |
Collapse
|
31
|
Wang Z, Su Q, Deng W, Wang X, Zhou H, Zhang M, Lin W, Xiao J, Duan X. Morphology-Mediated Tumor Deep Penetration for Enhanced Near Infrared II Photothermal and Chemotherapy of Colorectal Cancer. ACS NANO 2024; 18:28038-28051. [PMID: 39363419 DOI: 10.1021/acsnano.4c07085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The low permeability and heterogeneous distribution of drugs (including nanomedicines) have limited their deep penetration into solid tumors. Herein we report the design of gold nanoparticles with virus-like spikes (AuNVs) to mimic viral shapes and facilitate tumor penetration. Mechanistic studies revealed that AuNVs mainly entered cells through macropinocytosis, then transported to the Golgi/endoplasmic reticulum system via Rab11-regulated pathway, and finally exocytosed through recycling endosomes, leading to high cellular uptake, effective transcytosis, and deep tumor penetration compared to gold nanospheres (AuNPs) and gold nanostars (AuNSs). The high tumor accumulation and deep tumor penetration of mitoxantrone (MTO) facilitated by AuNVs endowed effective chemophotothermal therapy when exposed to a near-infrared II laser, significantly reducing tumor sizes in a mouse model of colorectal cancer. This study reveals a potent mechanism of viral-like structures in tissue penetration and highlights their potential as effective drug delivery carriers.
Collapse
Affiliation(s)
- Zhenyu Wang
- Department of General Surgery, Zhujiang Hospital; Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Department of Cardiology, Heart Center, Guangdong Provincial Biomedical Engineering Technology Research, Center for Cardiovascular Disease, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Qianyi Su
- Department of General Surgery, Zhujiang Hospital; Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wenjia Deng
- Department of General Surgery, Zhujiang Hospital; Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiao Wang
- Department of General Surgery, Zhujiang Hospital; Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Huimin Zhou
- Department of General Surgery, Zhujiang Hospital; Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Miaomiao Zhang
- Department of General Surgery, Zhujiang Hospital; Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wenbin Lin
- Departments of Chemistry and Radiation and Cellular Oncology and the Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois 60637, United States
| | - Jisheng Xiao
- Department of General Surgery, Zhujiang Hospital; Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Department of Cardiology, Heart Center, Guangdong Provincial Biomedical Engineering Technology Research, Center for Cardiovascular Disease, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xiaopin Duan
- Department of General Surgery, Zhujiang Hospital; Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
32
|
Nguyen M, Agarwal A, Kumaradas JC, Kolios MC, Peyman G, Tavakkoli JJ. Real-time non-invasive control of ultrasound hyperthermia using high-frequency ultrasonic backscattered energy in ex vivotissue and in vivoanimal studies. Phys Med Biol 2024; 69:215001. [PMID: 39392296 DOI: 10.1088/1361-6560/ad7f19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024]
Abstract
Objective.A reliable, calibrated, non-invasive thermometry method is essential for thermal therapies to monitor and control the treatment. Ultrasound (US) is an effective thermometry modality due to its relatively high sensitivity to temperature changes, and fast data acquisition and processing capabilities.Approach.In this work, the change in backscattered energy (CBE) was used to control the tissue temperature non-invasively using a real-time proportional-integral-derivative (PID) controller. A clinical high-frequency US scanner was used to acquire radio-frequency echo data fromex vivoporcine tissue samples andin vivomice hind leg tissue while the tissue was treated with mild hyperthermia by a focused US applicator. The PID controller maintained the focal temperature at approximately 40 °C for about 4 min.Main results.The results show that the US thermometry based on CBE estimated by a high-frequency US scanner can produce 2D temperature maps of a localized heating region and to estimate the focal temperature during mild hyperthermia treatments. The CBE estimated temperature varied by an average of ±0.85 °C and ±0.97 °C, compared to a calibrated thermocouple, inex vivoandin vivostudies, respectively. The mean absolute deviations of CBE thermometry during the controlled hyperthermia treatment were ±0.45 °C and ±0.54 °C inex vivoandin vivo,respectively.Significance.It is concluded that non-invasive US thermometry via backscattered energies at high frequencies can be used for real-time monitoring and control of hyperthermia treatments with acceptable accuracy. This provides a foundation for an US mediated drug delivery system.
Collapse
Affiliation(s)
- Michael Nguyen
- Department of Physics, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario, Canada
| | - Ayushi Agarwal
- Department of Physics, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario, Canada
| | - J Carl Kumaradas
- Department of Physics, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario, Canada
| | - Michael C Kolios
- Department of Physics, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Gholam Peyman
- Basic Medical Science, University of Arizona, Phoenix Campus, Phoenix, AZ, United States of America
- College of Optical Sciences, University of Arizona, Tucson Campus, Tucson, AZ, United States of America
- Cancer Rx Inc., Sun City, AZ, United States of America
| | - Jahangir Jahan Tavakkoli
- Department of Physics, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| |
Collapse
|
33
|
Thanjavur N, Buddolla AL, Bugude L, Buddolla V, Kim YJ. Ultrasonic nanotechnology for the effective management of Staphylococcus aureus skin infections: an update. NANOSCALE 2024; 16:16329-16343. [PMID: 39129708 DOI: 10.1039/d4nr02147a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Ultrasonic nanotechnology represents a groundbreaking advancement in the management of Staphylococcus aureus skin infections, addressing the significant limitations of conventional treatments. S. aureus poses substantial challenges, including antibiotic resistance and biofilm formation, necessitating novel and effective approaches. By harnessing the power of ultrasonic waves and nanostructures, this technology offers a precise mechanism to disrupt bacterial cells, enhancing antibiotic susceptibility and facilitating the eradication of bacterial colonies. This innovative approach not only improves treatment outcomes, but also offers a non-invasive and highly efficient alternative to traditional methods. Recent studies have demonstrated the remarkable efficacy of ultrasonic nanotechnology, showcasing its ability to revolutionize the treatment paradigm for S. aureus infections. Ongoing research is dedicated to refining treatment protocols, developing new nanostructures, and assessing clinical applicability, with a focus on overcoming challenges such as scalability and long-term effectiveness. This review provides a comprehensive overview of the current state of ultrasonic nanotechnology in combating S. aureus skin infections, detailing its mechanism of action, summarizing key research findings, and highlighting its superiority over conventional modalities. Accumulating evidence underscores its potential as a pivotal development in modern science and technology, promising significant advancements in infection management strategies. As research continues to evolve, the optimization of protocols, exploration of innovative applications, and translation into clinical practice are poised to further solidify the transformative impact of ultrasonic nanotechnology in the medical field.
Collapse
Affiliation(s)
- Naveen Thanjavur
- Department of Electronic Engineering, Gachon University, Seongnam 13120, Republic of Korea.
- Department of Semiconductor Engineering, Gachon University, Seongnam 13120, Republic of Korea
| | - Anantha Lakshmi Buddolla
- Department of Electronic Engineering, Gachon University, Seongnam 13120, Republic of Korea.
- Department of Semiconductor Engineering, Gachon University, Seongnam 13120, Republic of Korea
| | - Laxmi Bugude
- Dr Buddolla's Institute of Life Sciences, A Unit of Dr Buddolla's Research and Educational Society, Tirupati - 517506, India.
| | - Viswanath Buddolla
- Dr Buddolla's Institute of Life Sciences, A Unit of Dr Buddolla's Research and Educational Society, Tirupati - 517506, India.
| | - Young-Joon Kim
- Department of Electronic Engineering, Gachon University, Seongnam 13120, Republic of Korea.
- Department of Semiconductor Engineering, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
34
|
Zhang Z, Chen Z, Que Z, Fang Z, Zhu H, Tian J. Chinese Medicines and Natural Medicine as Immunotherapeutic Agents for Gastric Cancer: Recent Advances. Cancer Rep (Hoboken) 2024; 7:e2134. [PMID: 39233637 PMCID: PMC11375283 DOI: 10.1002/cnr2.2134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/06/2024] [Accepted: 06/30/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUD According to the 2020 statistics from the World Health Organization's International Agency for Research on Cancer (IARC), it is projected that there will be over 1 million new cases of gastric cancer (GC) patients worldwide in 2020, resulting in approximately 770 000 deaths. Gastric cancer ranks fifth in terms of incidence rate and forth in death rate among malignant tumors. Despite advancements in early diagnostic techniques, the incidence of GC has exhibited a marginal decline; nevertheless, the mortality rate remains elevated for advanced inoperable patients with no currently available efficacious treatment options. RECENT FINDING Chinese medicine (CM) has emerged as an efficacious treatment for GC, gradually gaining acceptance and widespread usage in China. It exhibits distinctive advantages in the prevention and treatment of metastasis. CM and natural medicine possess the ability to elicit antitumor effects by augmenting immune cell population, enhancing immune cell activity, and improving the tumor immune microenvironment. CMs and natural remedies encompass a diverse range of types, characterized by multiple targets, pathways, and extensive pharmacological effects. Consequently, they have become a prominent research area among oncologists worldwide. Numerous studies have demonstrated that CM and natural medicine can directly or indirectly enhance innate immune system components (including macrophages, natural killer cells, and myeloid suppressor cells), adaptive immune system elements (such as T lymphocytes and regulatory T cells), relevant cytokines (e.g., IL-2, IL-4, IL-10, TNF-α), and PD-1/PD-L1 axis regulation, thereby bolstering the cytotoxicity of immune cells against tumor cells. CONCLUSIONS This ultimately leads to an improved tumor immune microenvironment facilitating superior antitumor efficacy. This paper critically examines the role of CM and natural medicine in regulating immunotherapy for GC, aiming to establish a new theoretical framework for the clinical treatment and prevention of gastric cancer within the realm of CM.
Collapse
Affiliation(s)
- Zhipeng Zhang
- Institute of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine (TCM), Shanghai, China
| | - Ziqi Chen
- Institute of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine (TCM), Shanghai, China
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zujun Que
- Institute of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine (TCM), Shanghai, China
| | - Zhihong Fang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huirong Zhu
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianhui Tian
- Institute of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine (TCM), Shanghai, China
- Clinical Oncology Center, Shanghai Municipal Hospital of TCM, Shanghai University of TCM, Shanghai, China
| |
Collapse
|
35
|
Duan X, Wang P, He L, He Z, Wang S, Yang F, Gao C, Ren W, Lin J, Chen T, Xu C, Li J, Wu A. Peptide-Functionalized Inorganic Oxide Nanomaterials for Solid Cancer Imaging and Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311548. [PMID: 38333964 DOI: 10.1002/adma.202311548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/15/2024] [Indexed: 02/10/2024]
Abstract
The diagnosis and treatment of solid tumors have undergone significant advancements marked by a trend toward increased specificity and integration of imaging and therapeutic functions. The multifaceted nature of inorganic oxide nanomaterials (IONs), which boast optical, magnetic, ultrasonic, and biochemical modulatory properties, makes them ideal building blocks for developing multifunctional nanoplatforms. A promising class of materials that have emerged in this context are peptide-functionalized inorganic oxide nanomaterials (PFIONs), which have demonstrated excellent performance in multifunctional imaging and therapy, making them potential candidates for advancing solid tumor diagnosis and treatment. Owing to the functionalities of peptides in tumor targeting, penetration, responsiveness, and therapy, well-designed PFIONs can specifically accumulate and release therapeutic or imaging agents at the solid tumor sites, enabling precise imaging and effective treatment. This review provides an overview of the recent advances in the use of PFIONs for the imaging and treatment of solid tumors, highlighting the superiority of imaging and therapeutic integration as well as synergistic treatment. Moreover, the review discusses the challenges and prospects of PFIONs in depth, aiming to promote the intersection of the interdisciplinary to facilitate their clinical translation and the development of personalized diagnostic and therapeutic systems by optimizing the material systems.
Collapse
Affiliation(s)
- Xiaolin Duan
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pin Wang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lulu He
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Zhen He
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shiwei Wang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fang Yang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Changyong Gao
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Wenzhi Ren
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Jie Lin
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Tianxiang Chen
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Chen Xu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Juan Li
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Aiguo Wu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| |
Collapse
|
36
|
Jakhmola A, Hornsby TK, Kashkooli FM, Kolios MC, Rod K, Tavakkoli JJ. Green synthesis of anti-cancer drug-loaded gold nanoparticles for low-intensity pulsed ultrasound targeted drug release. Drug Deliv Transl Res 2024; 14:2417-2432. [PMID: 38240946 DOI: 10.1007/s13346-024-01516-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2023] [Indexed: 11/01/2024]
Abstract
In the present work, we have designed a one-pot green protocol in which anti-cancer drugs (curcumin and doxorubicin) can be directly loaded on the surface of gold nanoparticles during their formation. We have further demonstrated that low-intensity pulsed ultrasound (LIPUS) can be used to effectively induce the release of anti-cancer drugs from the surface of gold nanoparticles in an ex vivo tissue model. With this protocol, gold nanoparticles can be easily loaded with different types of anticancer drugs, irrespective of their affinity towards water, and even hydrophobic molecules, like curcumin, can be attached onto the gold nanoparticles in an aqueous medium. The method is very simple and straightforward and does not require stirring or mechanical shaking. The drug molecules interact with the gold seeds formed during the reduction and growth process and modulate the final morphology into a spherical shape. A black-colored colloidal solution of gold nanowire networks is formed in the absence of these anti-cancer drug molecules in the reaction mixture. We used hyperspectral-enhanced dark field microscopy to examine the uptake of gold nanoparticles by breast cancer cells. Upon exposure to LIPUS, the release of the anti-cancer drug from the particle surface can be quantified by fluorescence measurements. This release of drug molecules along with trisodium citrate from the surface of gold nanoparticles by ultrasound resulted in their destabilization and subsequent aggregation, which could be visually observed through the change in the color of colloidal sol. Cancer cell viability was studied by MTT assay to examine the efficacy of this nanoparticle-based drug delivery system. Ultraviolet-visible spectroscopy, dynamic light scattering (DLS), and transmission electron microscope (TEM) analysis were used to characterize the nanoparticles and quantify anti-cancer drug release.
Collapse
Affiliation(s)
- Anshuman Jakhmola
- Department of Physics, Toronto Metropolitan University, Toronto, Canada
| | - Tyler K Hornsby
- Department of Physics, Toronto Metropolitan University, Toronto, Canada
| | | | - Michael C Kolios
- Department of Physics, Toronto Metropolitan University, Toronto, Canada
- iBEST, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada
| | - Kevin Rod
- Toronto Poly Clinic Inc., Toronto, Canada
| | - Jahangir Jahan Tavakkoli
- Department of Physics, Toronto Metropolitan University, Toronto, Canada.
- iBEST, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada.
| |
Collapse
|
37
|
Li S, Liu Y, Wu Y, Ren L, Lu Y, Yamaguchi S, Lu Q, Hu C, Li D, Jiang N. An Outlook on Platinum-Based Active Ingredients for Dermatologic and Skincare Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1303. [PMID: 39120408 PMCID: PMC11314049 DOI: 10.3390/nano14151303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
Platinum-based materials exhibit a broad spectrum of biological activities, including antioxidant, anti-inflammatory, antimicrobial, and pro-collagen synthesis properties, making them particularly useful for various biomedical applications. This review summarizes the biological effects and therapeutic potential of platinum-based active ingredients in dermatological and skincare applications. We discuss their synthesis methods and their antioxidant, anti-inflammatory, antimicrobial, and collagen synthesis properties, which play essential roles in treating skin conditions including psoriasis and acne, as well as enhancing skin aesthetics in anti-aging products. Safety and sustainability concerns, including the need for green synthesis and comprehensive toxicological assessments to ensure safe topical applications, are also discussed. By providing an up-to-date overview of current research, we aim to highlight both the potential and the current challenges of platinum-based active ingredients in advancing dermatology and skincare solutions.
Collapse
Affiliation(s)
- Shining Li
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yizhou Liu
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ying Wu
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Lu Ren
- Hua An Tang Biotech Group Co., Ltd., Guangzhou 511434, China
| | - Yongjie Lu
- Hua An Tang Biotech Group Co., Ltd., Guangzhou 511434, China
| | | | - Qipeng Lu
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Chuangang Hu
- State Key Laboratory of Organic–Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dongcui Li
- Hua An Tang Biotech Group Co., Ltd., Guangzhou 511434, China
| | - Naisheng Jiang
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
38
|
López-Aguirre M, Castillo-Ortiz M, Viña-González A, Blesa J, Pineda-Pardo JA. The road ahead to successful BBB opening and drug-delivery with focused ultrasound. J Control Release 2024; 372:901-913. [PMID: 38971426 DOI: 10.1016/j.jconrel.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/26/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
This review delves into the innovative technology of Blood-Brain Barrier (BBB) opening with low-intensity focused ultrasound in combination with microbubbles (LIFU-MB), a promising therapeutic modality aimed at enhancing drug delivery to the central nervous system (CNS). The BBB's selective permeability, while crucial for neuroprotection, significantly hampers the efficacy of pharmacological treatments for CNS disorders. LIFU-MB emerges as a non-invasive and localized method to transiently increase BBB permeability, facilitating the delivery of therapeutic molecules. Here, we review the procedural stages of LIFU-MB interventions, including planning and preparation, sonication, evaluation, and delivery, highlighting the technological diversity and methodological challenges encountered in current clinical applications. With an emphasis on safety and efficacy, we discuss the crucial aspects of ultrasound delivery, microbubble administration, acoustic feedback monitoring and assessment of BBB permeability. Finally, we explore the critical choices for effective BBB opening with LIFU-MB, focusing on selecting therapeutic agents, optimizing delivery methods, and timing for delivery. Overcoming existing barriers to integrate this technology into clinical practice could potentially revolutionize CNS drug delivery and treatment paradigms in the near future.
Collapse
Affiliation(s)
- Miguel López-Aguirre
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain; Instituto de Investigación Sanitaria HM Hospitales, Spain; PhD Program in Physics, Complutense University of Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Castillo-Ortiz
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain; Instituto de Investigación Sanitaria HM Hospitales, Spain; PhD Program in Technologies for Health and Well-being, Polytechnic University of Valencia, Valencia, Spain; Molecular Imaging Technologies Research Institute (I3M), Polytechnic University of Valencia, Valencia, Spain
| | - Ariel Viña-González
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain; Instituto de Investigación Sanitaria HM Hospitales, Spain; PhD Program in Biomedical Engineering, Polytechnic University of Madrid, Madrid, Spain
| | - Javier Blesa
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain; Instituto de Investigación Sanitaria HM Hospitales, Spain; Facultad HM de Ciencias de la Salud de la Universidad Camilo José Cela, Madrid, Spain
| | - José A Pineda-Pardo
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain; Instituto de Investigación Sanitaria HM Hospitales, Spain.
| |
Collapse
|
39
|
Huang H, Zheng Y, Chang M, Song J, Xia L, Wu C, Jia W, Ren H, Feng W, Chen Y. Ultrasound-Based Micro-/Nanosystems for Biomedical Applications. Chem Rev 2024; 124:8307-8472. [PMID: 38924776 DOI: 10.1021/acs.chemrev.4c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Due to the intrinsic non-invasive nature, cost-effectiveness, high safety, and real-time capabilities, besides diagnostic imaging, ultrasound as a typical mechanical wave has been extensively developed as a physical tool for versatile biomedical applications. Especially, the prosperity of nanotechnology and nanomedicine invigorates the landscape of ultrasound-based medicine. The unprecedented surge in research enthusiasm and dedicated efforts have led to a mass of multifunctional micro-/nanosystems being applied in ultrasound biomedicine, facilitating precise diagnosis, effective treatment, and personalized theranostics. The effective deployment of versatile ultrasound-based micro-/nanosystems in biomedical applications is rooted in a profound understanding of the relationship among composition, structure, property, bioactivity, application, and performance. In this comprehensive review, we elaborate on the general principles regarding the design, synthesis, functionalization, and optimization of ultrasound-based micro-/nanosystems for abundant biomedical applications. In particular, recent advancements in ultrasound-based micro-/nanosystems for diagnostic imaging are meticulously summarized. Furthermore, we systematically elucidate state-of-the-art studies concerning recent progress in ultrasound-based micro-/nanosystems for therapeutic applications targeting various pathological abnormalities including cancer, bacterial infection, brain diseases, cardiovascular diseases, and metabolic diseases. Finally, we conclude and provide an outlook on this research field with an in-depth discussion of the challenges faced and future developments for further extensive clinical translation and application.
Collapse
Affiliation(s)
- Hui Huang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yi Zheng
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P. R. China
| | - Meiqi Chang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P. R. China
| | - Jun Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Lili Xia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Chenyao Wu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wencong Jia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Hongze Ren
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wei Feng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yu Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
40
|
Jiang L, Luo M, Wang J, Ma Z, Zhang C, Zhang M, Zhang Q, Yang H, Li L. Advances in antitumor application of ROS enzyme-mimetic catalysts. NANOSCALE 2024; 16:12287-12308. [PMID: 38869451 DOI: 10.1039/d4nr02026j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
The rapid growth of research on enzyme-mimetic catalysts (Enz-Cats) is expected to promote further advances in nanomedicine for biological detection, diagnosis and treatment of disease, especially tumors. ROS-based nanomedicines present fascinating potential in antitumor therapy owing to the rapid development of nanotechnology. In this review, we focus on the applications of Enz-Cats based on ROS in antitumor therapy. Firstly, the definition and category of ROS are introduced, and the key factors enhancing ROS levels are carefully elucidated. Then, the rationally engineered Enz-Cats via different synthetic approaches with high ROS-producing efficiencies are comprehensively discussed. Subsequently, oncotherapy application of Enz-Cats is comprehensively discussed, which integrates diverse synergistic treatment modalities and exhibits high efficiency in ROS generation. Finally, the challenges and future research direction of this field are presented. This review is dedicated to unraveling the enigmas surrounding the interplay of nanomedicine and organisms.
Collapse
Affiliation(s)
- Lingfeng Jiang
- Department of Ultrasound, Institute of Ultrasound Teaching and Research, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China.
| | - Menglin Luo
- Department of Ultrasound, Institute of Ultrasound Teaching and Research, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China.
| | - Jiawei Wang
- Department of Ultrasound, Institute of Ultrasound Teaching and Research, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China.
| | - Zijun Ma
- Department of Ultrasound, Institute of Ultrasound Teaching and Research, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China.
| | - Chuan Zhang
- Department of Radiology, Institute of Radiation and Therapy, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China.
- Institute of Nanomedicine Innovation Research and Transformation, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Maochun Zhang
- Department of Ultrasound, Institute of Ultrasound Teaching and Research, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China.
| | - Qing Zhang
- Department of Ultrasound, Institute of Ultrasound Teaching and Research, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China.
| | - Hanfeng Yang
- Department of Radiology, Institute of Radiation and Therapy, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China.
- Institute of Nanomedicine Innovation Research and Transformation, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Ling Li
- Department of Ultrasound, Institute of Ultrasound Teaching and Research, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China.
- Institute of Nanomedicine Innovation Research and Transformation, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| |
Collapse
|
41
|
Wei L, Lin L, Wang J, Guan X, Li W, Gui Y, Liao S, Wang M, Li J, Deng Y, Song Y. The selection of animal models influences the assessment of anti-tumor efficacy: promising sialic acid-conjugate modified liposomes demonstrate remarkable therapeutic effects in diverse mouse strains. Drug Deliv Transl Res 2024; 14:1794-1809. [PMID: 38165530 DOI: 10.1007/s13346-023-01502-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2023] [Indexed: 01/03/2024]
Abstract
Mice as a crucial tool for preclinical assessment of antineoplastic agents. The impact of physiological differences among mouse strains on the in vivo efficacy of antitumor drugs, however, has been significantly overlooked. Mononuclear phagocyte system (MPS) is the major player in clearance in vivo, and differences in MPS among different strains may potentially impact the effectiveness of antitumor preparations. Therefore, in this study, we employed conventional liposomes (CL-EPI) and SA-ODA modified liposomes (SAL-EPI) as model preparations to investigate the comprehensive tumor therapeutic effects of CL-EPI and SAL-EPI in KM, BALB/c, and C57BL/6 tumor-bearing mice. The results demonstrated significant variability in the efficacy of CL-EPI for tumor treatment across different mouse strains. Therefore, we should pay attention to the selection of animal models in the study of antitumor agents. SAL-EPI effectively targeted tumor sites by binding to Siglec-1 on the surface of peripheral blood monocytes (PBMs), and achieved good therapeutic effect in different mouse strains with little difference in treatment. The SA modified preparation is therefore expected to achieve a favorable therapeutic effect in tumor patients with different immune states through PBMs delivery (Siglec-1 was expressed in both mice and humans), thereby possessing clinical translational value and promising development prospects.
Collapse
Affiliation(s)
- Lu Wei
- College of Pharmacy, Shenyang Pharmaceutical University, 110016, Shenyang, China
| | - Lin Lin
- College of Pharmacy, Shenyang Pharmaceutical University, 110016, Shenyang, China
| | - Jia Wang
- College of Pharmacy, Shenyang Pharmaceutical University, 110016, Shenyang, China
| | - Xinying Guan
- College of Pharmacy, Shenyang Pharmaceutical University, 110016, Shenyang, China
| | - Wen Li
- College of Pharmacy, Shenyang Pharmaceutical University, 110016, Shenyang, China
| | - Yangxu Gui
- College of Pharmacy, Shenyang Pharmaceutical University, 110016, Shenyang, China
| | - Shupei Liao
- College of Pharmacy, Shenyang Pharmaceutical University, 110016, Shenyang, China
| | - Mingyang Wang
- College of Pharmacy, Shenyang Pharmaceutical University, 110016, Shenyang, China
| | - Jiaqi Li
- College of Pharmacy, Shenyang Pharmaceutical University, 110016, Shenyang, China
| | - Yihui Deng
- College of Pharmacy, Shenyang Pharmaceutical University, 110016, Shenyang, China
| | - Yanzhi Song
- College of Pharmacy, Shenyang Pharmaceutical University, 110016, Shenyang, China.
| |
Collapse
|
42
|
Shen Q, Li Z, Wang Y, Meyer MD, De Guzman MT, Lim JC, Xiao H, Bouchard RR, Lu GJ. 50-nm Gas-Filled Protein Nanostructures to Enable the Access of Lymphatic Cells by Ultrasound Technologies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307123. [PMID: 38533973 PMCID: PMC11550859 DOI: 10.1002/adma.202307123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 03/14/2024] [Indexed: 03/28/2024]
Abstract
Ultrasound imaging and ultrasound-mediated gene and drug delivery are rapidly advancing diagnostic and therapeutic methods; however, their use is often limited by the need for microbubbles, which cannot transverse many biological barriers due to their large size. Here, the authors introduce 50-nm gas-filled protein nanostructures derived from genetically engineered gas vesicles(GVs) that are referred to as 50 nmGVs. These diamond-shaped nanostructures have hydrodynamic diameters smaller than commercially available 50-nm gold nanoparticles and are, to the authors' knowledge, the smallest stable, free-floating bubbles made to date. 50 nmGVs can be produced in bacteria, purified through centrifugation, and remain stable for months. Interstitially injected 50 nmGVs can extravasate into lymphatic tissues and gain access to critical immune cell populations, and electron microscopy images of lymph node tissues reveal their subcellular location in antigen-presenting cells adjacent to lymphocytes. The authors anticipate that 50 nmGVs can substantially broaden the range of cells accessible to current ultrasound technologies and may generate applications beyond biomedicine as ultrasmall stable gas-filled nanomaterials.
Collapse
Affiliation(s)
- Qionghua Shen
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA
| | - Zongru Li
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA
| | - Yixian Wang
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
| | - Matthew D Meyer
- Shared Equipment Authority, Rice University, Houston, TX, 77005, USA
| | - Marc T De Guzman
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA
| | - Janie C Lim
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA
| | - Han Xiao
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
- SynthX Center, Rice University, Houston, TX, 77005, USA
| | - Richard R Bouchard
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - George J Lu
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA
- Department of BioSciences, Rice University, Houston, TX, 77005, USA
- Rice Synthetic Biology Institute, Rice University, Houston, TX, 77005, USA
| |
Collapse
|
43
|
Yuan X, Liu X, Li H, Peng S, Huang H, Yu Z, Chen L, Liu X, Bai J. pH-Triggered Transformable Peptide Nanocarriers Extend Drug Retention for Breast Cancer Combination Therapy. Adv Healthc Mater 2024; 13:e2400031. [PMID: 38588449 DOI: 10.1002/adhm.202400031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/27/2024] [Indexed: 04/10/2024]
Abstract
Increasing the penetration and accumulation of antitumor drugs at the tumor site are crucial in chemotherapy. Smaller drug-loaded nanoparticles (NPs) typically exhibit increased tumor penetration and more effective permeation through the nuclear membrane, whereas larger drug-loaded NPs show extended retention at the tumor site. In addition, cancer stem cells (CSCs) have unlimited proliferative potential and are crucial for the onset, progression, and metastasis of cancer. Therefore, a drug-loaded amphiphilic peptide, DDP- and ATRA-loaded Pep1 (DA/Pep1), is designed that self-assembles into spherical NPs upon the encapsulation of cis-diamminedichloroplatinum (DDP) and all-trans retinoic acid (ATRA). In an acidic environment, DA/Pep1 transforms into aggregates containing sheet-like structures, which significantly increases drug accumulation at the tumor site, thereby increasing antitumor effects and inhibiting metastasis. Moreover, although DDP treatment can increase the number of CSCs present, ATRA can induce the differentiation of CSCs in breast cancer to increase the therapeutic effect of DDP. In conclusion, this peptide nanodelivery system that transforms in response to the acidic tumor microenvironment is an extremely promising nanoplatform that suggests a new idea for the combined treatment of tumors.
Collapse
Affiliation(s)
- Xiaomeng Yuan
- School of Bioscience and Technology, Shandong Second Medical University, Weifang, 261053, P. R. China
| | - Xiaoying Liu
- School of Bioscience and Technology, Shandong Second Medical University, Weifang, 261053, P. R. China
| | - Hongjie Li
- School of Medical Sciences, Shandong Second Medical University, Weifang, 261053, P. R. China
| | - Shan Peng
- School of Stomatology, Shandong Second Medical University, Weifang, 261053, P. R. China
| | - Haiqin Huang
- School of Bioscience and Technology, Shandong Second Medical University, Weifang, 261053, P. R. China
| | - Zhe Yu
- School of Bioscience and Technology, Shandong Second Medical University, Weifang, 261053, P. R. China
| | - Limei Chen
- School of Bioscience and Technology, Shandong Second Medical University, Weifang, 261053, P. R. China
| | - Xinlu Liu
- School of Bioscience and Technology, Shandong Second Medical University, Weifang, 261053, P. R. China
| | - Jingkun Bai
- School of Bioscience and Technology, Shandong Second Medical University, Weifang, 261053, P. R. China
| |
Collapse
|
44
|
Kashkooli FM, Jakhmola A, A Ferrier G, Sathiyamoorthy K, Tavakkoli J(J, C Kolios M. Development of an ultrasound-mediated nano-sized drug-delivery system for cancer treatment: from theory to experiment. Nanomedicine (Lond) 2024; 19:1167-1189. [PMID: 38722104 PMCID: PMC11418290 DOI: 10.2217/nnm-2023-0259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/06/2024] [Indexed: 09/21/2024] Open
Abstract
Aim: To establish a methodology for understanding how ultrasound (US) induces drug release from nano-sized drug-delivery systems (NSDDSs) and enhances drug penetration and uptake in tumors. This aims to advance cancer treatment strategies.Materials & methods: We developed a multi-physics mathematical model to elucidate and understand the intricate mechanisms governing drug release, transport and delivery. Unique in vitro models (monolayer, multilayer, spheroid) and a tailored US exposure setup were introduced to evaluate drug penetration and uptake.Results: The results highlight the potential advantages of US-mediated NSDDSs over conventional NSDDSs and chemotherapy, notably in enhancing drug release and inducing cell death.Conclusion: Our sophisticated numerical and experimental methods aid in determining and quantifying drug penetration and uptake into solid tumors.
Collapse
Affiliation(s)
| | - Anshuman Jakhmola
- Department of Physics, Toronto Metropolitan University, Toronto, ON, Canada
| | - Graham A Ferrier
- Department of Physics, Toronto Metropolitan University, Toronto, ON, Canada
| | | | - Jahangir (Jahan) Tavakkoli
- Department of Physics, Toronto Metropolitan University, Toronto, ON, Canada
- Institute for Biomedical Engineering, Science & Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Michael C Kolios
- Department of Physics, Toronto Metropolitan University, Toronto, ON, Canada
- Institute for Biomedical Engineering, Science & Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| |
Collapse
|
45
|
He X, Liang D, Zhou J, Li K, Xie B, Liang C, Liu C, Chen Z, Chen X, Long A, Zhuo S, Su X, Luo Y, Chen W, Zhao F, Jiang X. Nucleus-targeting DNase I self-assembly delivery system guided by pirarubicin for programmed multi-drugs release and combined anticancer therapy. Int J Biol Macromol 2024; 267:131514. [PMID: 38608986 DOI: 10.1016/j.ijbiomac.2024.131514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
The cell nucleus serves as the pivotal command center of living cells, and delivering therapeutic agents directly into the nucleus can result in highly efficient anti-tumor eradication of cancer cells. However, nucleus-targeting drug delivery is very difficult due to the presence of numerous biological barriers. Here, three antitumor drugs (DNase I, ICG: indocyanine green, and THP: pirarubicin) were sequentially triggered protein self-assembly to produce a nucleus-targeting and programmed responsive multi-drugs delivery system (DIT). DIT consisted of uniform spherical particles with a size of 282 ± 7.7 nm. The acidic microenvironment of tumors and near-infrared light could successively trigger DIT for the programmed release of three drugs, enabling targeted delivery to the tumor. THP served as a nucleus-guiding molecule and a chemotherapy drug. Through THP-guided DIT, DNase I was successfully delivered to the nucleus of tumor cells and killed them by degrading their DNA. Tumor acidic microenvironment had the ability to induce DIT, leading to the aggregation of sufficient ICG in the tumor tissues. This provided an opportunity for the photothermal therapy of ICG. Hence, three drugs were cleverly combined using a simple method to achieve multi-drugs targeted delivery and highly effective combined anticancer therapy.
Collapse
Affiliation(s)
- Xuan He
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China; Conservative Dentistry & Endodontics Department, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Dan Liang
- Conservative Dentistry & Endodontics Department, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Jun Zhou
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China; Conservative Dentistry & Endodontics Department, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Kangjing Li
- Conservative Dentistry & Endodontics Department, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Beibei Xie
- Conservative Dentistry & Endodontics Department, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Chunyun Liang
- Conservative Dentistry & Endodontics Department, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Cong Liu
- Conservative Dentistry & Endodontics Department, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Zhiyong Chen
- Conservative Dentistry & Endodontics Department, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Xinxin Chen
- Conservative Dentistry & Endodontics Department, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Ao Long
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China; Clinical Laboratory Medicine Department, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Shufang Zhuo
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China; Clinical Laboratory Medicine Department, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaoping Su
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Ying Luo
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Wenxia Chen
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China; Conservative Dentistry & Endodontics Department, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Fengfeng Zhao
- Center of Clinical Laboratory Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China.
| | - Xinglu Jiang
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China; Clinical Laboratory Medicine Department, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
46
|
Waheed I, Ali A, Tabassum H, Khatoon N, Lai WF, Zhou X. Lipid-based nanoparticles as drug delivery carriers for cancer therapy. Front Oncol 2024; 14:1296091. [PMID: 38660132 PMCID: PMC11040677 DOI: 10.3389/fonc.2024.1296091] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/22/2024] [Indexed: 04/26/2024] Open
Abstract
Cancer is a severe disease that results in death in all countries of the world. A nano-based drug delivery approach is the best alternative, directly targeting cancer tumor cells with improved drug cellular uptake. Different types of nanoparticle-based drug carriers are advanced for the treatment of cancer, and to increase the therapeutic effectiveness and safety of cancer therapy, many substances have been looked into as drug carriers. Lipid-based nanoparticles (LBNPs) have significantly attracted interest recently. These natural biomolecules that alternate to other polymers are frequently recycled in medicine due to their amphipathic properties. Lipid nanoparticles typically provide a variety of benefits, including biocompatibility and biodegradability. This review covers different classes of LBNPs, including their characterization and different synthesis technologies. This review discusses the most significant advancements in lipid nanoparticle technology and their use in medicine administration. Moreover, the review also emphasized the applications of lipid nanoparticles that are used in different cancer treatment types.
Collapse
Affiliation(s)
- Ibtesam Waheed
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Anwar Ali
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Department of Biochemical and Biotechnological Sciences, School of Precision Medicine, University of Campania, Naples, Italy
| | - Huma Tabassum
- Institute of Social and Cultural Studies, Department of Public Health, University of the Punjab, Lahore, Pakistan
| | - Narjis Khatoon
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Wing-Fu Lai
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- School of Food Science and Nutrition, University of Leeds, Leeds, United Kingdom
| | - Xin Zhou
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
47
|
Wang J, Wang Y, Zhong L, Yan F, Zheng H. Nanoscale contrast agents: A promising tool for ultrasound imaging and therapy. Adv Drug Deliv Rev 2024; 207:115200. [PMID: 38364906 DOI: 10.1016/j.addr.2024.115200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/31/2023] [Accepted: 02/02/2024] [Indexed: 02/18/2024]
Abstract
Nanoscale contrast agents have emerged as a versatile platform in the field of biomedical research, offering great potential for ultrasound imaging and therapy. Various kinds of nanoscale contrast agents have been extensively investigated in preclinical experiments to satisfy diverse biomedical applications. This paper provides a comprehensive review of the structure and composition of various nanoscale contrast agents, as well as their preparation and functionalization, encompassing both chemosynthetic and biosynthetic strategies. Subsequently, we delve into recent advances in the utilization of nanoscale contrast agents in various biomedical applications, including ultrasound molecular imaging, ultrasound-mediated drug delivery, and cell acoustic manipulation. Finally, the challenges and prospects of nanoscale contrast agents are also discussed to promote the development of this innovative nanoplatform in the field of biomedicine.
Collapse
Affiliation(s)
- Jieqiong Wang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 201206, China
| | - Yuanyuan Wang
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Lin Zhong
- School of public health, Nanchang University, Nanchang, Jiangxi, 330019, China
| | - Fei Yan
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Hairong Zheng
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
48
|
Romanovska A, Schmidt M, Brandt V, Tophoven J, Tiller JC. Controlling the function of bioactive worm micelles by enzyme-cleavable non-covalent inter-assembly cross-linking. J Control Release 2024; 368:15-23. [PMID: 38346504 DOI: 10.1016/j.jconrel.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024]
Abstract
Drugs that form self-assembled supramolecular structures to be most-active is a promising way of creating new highly specific and active pharmaceuticals. Controlling the activity of bioactive supramolecular structures such as drug-loaded micelles is possible by both core/shell and inter-assembly cross-linking. However, if the flexibility of the assembly is mandatory for the activity cross-linking is not feasible. Thus, such structures cannot be manipulated in their activity. The present study demonstrates a novel concept to control the activity of not drug-releasing, non-cross-linked bioactive superstructures. This is achieved by formation of nanostructured nanoparticles derived by non-covalent inter-assembly cross-linking of the superstructures. This is shown on the example of amphiphilic diblock-copolymers conjugated with the antibiotic ciprofloxacin (CIP). These polymer-antibiotic conjugates form worm micelles, which greatly activate the conjugated antibiotic without releasing it. Non-covalent inter-assembly cross-linking of these CIP-worm-micelles with amphiphilic triblock copolymers terminated with lipase-cleavable esters leads to nanostructured nanoparticles that resemble cross-linked worm micelles and show an up to 135-fold lower activity than the free worm micelles. The activity of the worm-micelles can be fully recovered by cleaving the end groups of the polymeric cross-linker with lipase.
Collapse
Affiliation(s)
- Alina Romanovska
- Biomaterials and Polymer Science, Department of Bio- and Chemical Engineering, TU Dortmund, Emil-Figge-Straße 66, 44227 Dortmund, Germany
| | - Martin Schmidt
- Biomaterials and Polymer Science, Department of Bio- and Chemical Engineering, TU Dortmund, Emil-Figge-Straße 66, 44227 Dortmund, Germany
| | - Volker Brandt
- Biomaterials and Polymer Science, Department of Bio- and Chemical Engineering, TU Dortmund, Emil-Figge-Straße 66, 44227 Dortmund, Germany
| | - Jonas Tophoven
- Biomaterials and Polymer Science, Department of Bio- and Chemical Engineering, TU Dortmund, Emil-Figge-Straße 66, 44227 Dortmund, Germany
| | - Joerg C Tiller
- Biomaterials and Polymer Science, Department of Bio- and Chemical Engineering, TU Dortmund, Emil-Figge-Straße 66, 44227 Dortmund, Germany.
| |
Collapse
|
49
|
Tehrani MHH, Moradi Kashkooli F, Soltani M. Spatiotemporal modeling of nano-delivered chemotherapeutics for synergistic microwave ablation cancer therapy. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 247:108102. [PMID: 38447317 DOI: 10.1016/j.cmpb.2024.108102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 02/25/2024] [Accepted: 02/25/2024] [Indexed: 03/08/2024]
Abstract
BACKGROUND AND OBJECTIVE The effectiveness of current microwave ablation (MWA) therapies is limited. Administration of thermosensitive liposomes (TSLs) which release drugs in response to heat has presented a significant potential for enhancing the efficacy of thermal ablation treatment, and the benefits of targeted drug delivery. However, a complete knowledge of the mechanobiological processes underlying the drug release process, especially the intravascular drug release mechanism and its distribution in response to MWA needs to be improved. Multiscale computational-based modeling frameworks, integrating different biophysical phenomena, have recently emerged as promising tools to decipher the mechanobiological events in combo therapies. The present study aims to develop a novel multiscale computational model of TSLs delivery following MWA implantation. METHODS Due to the complex interplay between the heating procedure and the drug concentration maps, a computational model is developed to determine the intravascular release of doxorubicin from TSL, its transvascular transport into the interstitium, transport in the interstitium, and cell uptake. Computational models can estimate the interplays among liposome and drug properties, tumor perfusion, and heating regimen to examine the impact of essential parameters and to optimize a targeted drug delivery platform. RESULTS Results indicated that the synergy of TSLs with MWA allows more localized drug delivery with lower side effects. The drug release rate and tumor permeability play crucial roles in the efficacy of TSLs during MWA treatment. The computational model predicted an unencapsulated drug lime around the ablated zone, which can destroy more cancer cells compared to MWA alone by 40%. Administration of TSLs with a high release rate capacity can improve the percentage of killed cancer cells by 24%. Since the heating duration in MWA is less than 15 min, the presented combination therapy showed better performance for highly permeable tumors. CONCLUSION This study highlights the potential of the proposed computational framework to address complex and realistic scenarios in cancer treatment, which can serve as the future research foundation, including advancements in nanomedicine and optimizing the pair of TSL and MWA for both preclinical and clinical studies. The present model could be as a valuable tool for patient-specific calibration of essential parameters.
Collapse
Affiliation(s)
- Masoud H H Tehrani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran Iran
| | | | - M Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran Iran; Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Canada; Centre for Biotechnology and Bioengineering, University of Waterloo, Waterloo, ON, Canada.
| |
Collapse
|
50
|
Tran Vo TM, Nakajima K, Potiyaraj P, Kobayashi T. In situ sono-rheometric assessment of procaine-loaded calcium pectinate hydrogel for enhanced drug releasing under ultrasound stimulation. Int J Biol Macromol 2024; 262:130164. [PMID: 38367776 DOI: 10.1016/j.ijbiomac.2024.130164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/27/2024] [Accepted: 02/11/2024] [Indexed: 02/19/2024]
Abstract
Ultrasound (US) triggered alterations in the viscoelastic behavior of the procaine-loaded ionically gelatinized pectin hydrogel matrix, and drug release was observed using a sono-device rheometer. The gel softened immediately upon activation of the ultrasound operated at 43 kHz and remained in a softened state throughout the irradiation. Upon cessation of ultrasound, the gel promptly reverted to its original hardness. This cycle of softening was consistently observed in ionically crosslinked pectin hydrogels, resulting in the promotion of procaine release, particularly with higher US power and lower calcium concentration. As the amount of loaded procaine increased, the gel weakened due to ion exchange with the calcium crosslinker and procaine. The most substantial release efficiency, reaching 82 % with a concentration of 32 μg/ml, was achieved when the hydrogels contained 0.03 % procaine within the gelatinized hydrogel medicine at a calcium concentration of 0.9 M, representing a six-fold increase compared to that without US. Notably, US exposure affected the 3D porous structure and degradation rate, leading to hydrogel collapse and facilitating medicine release. Additionally, the procaine-loaded pectin hydrogels with 0.9 M calcium exhibited improved fibroblast cell viability, indicating non-toxicity compared to those hydrogels prepared at a higher Ca2+ concentration of 2.4 M.
Collapse
Affiliation(s)
- Tu Minh Tran Vo
- Department of Energy and Environmental Science, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan; Department of Materials Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Keita Nakajima
- Department of Science of Technology Innovation, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Pranut Potiyaraj
- Department of Materials Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Takaomi Kobayashi
- Department of Energy and Environmental Science, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan; Department of Science of Technology Innovation, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan.
| |
Collapse
|