1
|
Singh S, Agrawal R, Sharma H. Comprehensive PRISMA Based Systematic Review: Exploring the Phytochemistry, Pharmacological Profile and Clinical aspects of Panax ginseng. Curr Top Med Chem 2025; 25:172-195. [PMID: 39428934 DOI: 10.2174/0115680266344493241014082257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/01/2024] [Accepted: 09/16/2024] [Indexed: 10/22/2024]
Abstract
INTRODUCTION Ginseng, a perennial herb belonging to the Araliaceae family, is renowned for its traditional and folk uses. The Panax ginseng C.A. Meyer species is predominantly found in Asian countries, including Japan, China, and Korea. MATERIALS AND METHODS This manuscript offers valuable insights into the cultivation, collection, morphology, phytochemistry, pharmacological properties, and clinical studies of Ginseng. The data was meticulously gathered from diverse electronic resources, such as PubMed, Scopus, Science Direct, and Web of Science, spanning from 1963 to 2023. RESULTS Ginseng contains various bioactive components, including carbohydrates, polyacetylenic alcohols, polysaccharides, ginsenosides, peptides, vitamins, and fatty acids. The biological attributes of ginsenosides, which include anti-diabetic, anti-cancer, anti-oxidant, and anti-inflammatory activities, render them especially remarkable. CONCLUSION This manuscript comprehensively explores the versatile therapeutic applications of ginseng in the treatment of various types of cancers.
Collapse
Affiliation(s)
- Sonia Singh
- Institute of Pharmaceutical Research, GLA University, 17km Stone, NH-2, Mathura-Delhi Road Mathura, Chaumuhan, Uttar Pradesh-281406, India
| | - Ronak Agrawal
- Institute of Pharmaceutical Research, GLA University, 17km Stone, NH-2, Mathura-Delhi Road Mathura, Chaumuhan, Uttar Pradesh-281406, India
| | - Himanshu Sharma
- Department of Computer Engineering & Applications GLA University, 17km Stone, NH-2, Mathura-Delhi Road Mathura, Chaumuhan, Uttar Pradesh-281406, India
| |
Collapse
|
2
|
Zheng Y, Tan H, Chai J, Han L, Zhai C, Lee J, Li X, Zhao Y. Ginseng fruit rare saponins (GFRS) improved inflammatory response: In vitro and in vivo assessment. Fitoterapia 2024; 179:106244. [PMID: 39396651 DOI: 10.1016/j.fitote.2024.106244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/24/2024] [Accepted: 10/05/2024] [Indexed: 10/15/2024]
Abstract
Inflammation is the body's protective immune response to tissue damage. Ginseng has a long history of medicinal use, and its active ingredient ginsenosides have anti-inflammatory effects. Ginseng fruit rare saponins (GFRS) is a transformation product of ginseng saponins and rich in a variety of rare saponins. We used HPLC-DAD method to study GFRS rare saponins with ginsenoside F4, R-Rg3, SRg3, Rk1, Rg6, Rg5, Rk3 and Rh4. However, there is no study on the use of GFRS to reduce skin inflammation. This study enriched the action pathway of GFRS through network pharmacology and revealed the anti-inflammatory effect of GFRS for the first time. In vitro experiments showed that GFRS could significantly reduce the release of NO in lipopolysaccharide (LPS) -induced RAW264.7 cells and HaCaT cells, and reduce the secretion and expression of inflammation-related factors Interleukin-6 (IL-6), Tumor necrosis factor-α (TNF-α) and Interleukin-17 A (IL-17 A), thereby reducing cell inflammatory damage. In the imiquimod (IMQ) -induced mouse inflammatory model, the therapeutic effect of GFRS on the pathogenesis of psoriasis-like dermatitis was studied. In vivo experiments showed that the skin erythema, scales, thickness and inflammatory infiltration of GFRS-treated mice were reduced, and the psoriasis area severity index score was significantly lower than that of IMQ group. GFRS restored IMQ-induced spleen size and reduced the secretion and expression of TNF-α, IL-6, Interferon-γ (IFN-γ) and IL-17 A in serum. In summary, our results demonstrate that GFRS alleviates IMQ-induced dermatitis symptoms, effectively reduces the secretion of inflammatory factors, and inhibits IL-17 A expression.
Collapse
Affiliation(s)
- Yifei Zheng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Hongyan Tan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Jiayi Chai
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Linlin Han
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Changzhen Zhai
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Jungjoon Lee
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Xiaomin Li
- Perfect (Guangdong) Co., Ltd., Guangdong 528400, China.
| | - Yuqing Zhao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| |
Collapse
|
3
|
Hameed H, Hussain J, Cláudia Paiva-Santos A, Zaman M, Hamza A, Sajjad I, Asad F. Comprehensive insights on treatment modalities with conventional and herbal drugs for the treatment of duodenal ulcers. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8211-8229. [PMID: 38837070 DOI: 10.1007/s00210-024-03178-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/21/2024] [Indexed: 06/06/2024]
Abstract
Areas of the body accessible to gastric secretions, such as the stomach and duodenum, are most commonly damaged by circumscribed lesions of the upper gastrointestinal tract mucosa. Peptic ulcer disease is the term for this illness (PUD). About 80% of peptic ulcers are duodenal ulcers, with stomach ulcers accounting for the remaining 20%. Duodenal ulcers are linked to the two primary results about Helicobacter pylori infection and COX inhibitor users. Additional causes might include drinking, smoking, stress, and coffee consumption. The indications and symptoms of a duodenal ulcer depend on the patient's age and the lesion's location. For duodenal ulcers, proton pump inhibitors (PPIs) are the usual course of treatment. This comprehensive study included an in-depth literature search in the literature and methods section using electronic databases such as PubMed, ScienceDirect, and Google Scholar. The search method included publications published from the inception of the relevant database to the present. Inclusion criteria included studies investigating different treatment options for duodenal ulcer disease, including traditional pharmacotherapy and naturopathic treatments. Data mining includes information on treatment techniques, treatment outcomes, and possible synergies between conventional and herbal treatments. In addition, this review critically examines the available information on the effectiveness, safety, and possible side effects of different treatments. The inclusion of conventional and herbal treatments is intended to provide a comprehensive overview of the many treatment options available for duodenal ulcer disease. A more comprehensive and personalized treatment plan can be achieved by incorporating dietary changes, lifestyle modifications, and, if necessary, herbal therapies to complement other treatments normally.
Collapse
Affiliation(s)
- Huma Hameed
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, 54000, Pakistan.
| | - Jahangir Hussain
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, 54000, Pakistan
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, 3000-548, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, 3000-548, Portugal
| | - Muhammad Zaman
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, 54000, Pakistan
| | - Ali Hamza
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, 54000, Pakistan
| | - Irsa Sajjad
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, 54000, Pakistan
| | - Faria Asad
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, 54000, Pakistan
| |
Collapse
|
4
|
Golubnitschaja O, Kapinova A, Sargheini N, Bojkova B, Kapalla M, Heinrich L, Gkika E, Kubatka P. Mini-encyclopedia of mitochondria-relevant nutraceuticals protecting health in primary and secondary care-clinically relevant 3PM innovation. EPMA J 2024; 15:163-205. [PMID: 38841620 PMCID: PMC11148002 DOI: 10.1007/s13167-024-00358-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 06/07/2024]
Abstract
Despite their subordination in humans, to a great extent, mitochondria maintain their independent status but tightly cooperate with the "host" on protecting the joint life quality and minimizing health risks. Under oxidative stress conditions, healthy mitochondria promptly increase mitophagy level to remove damaged "fellows" rejuvenating the mitochondrial population and sending fragments of mtDNA as SOS signals to all systems in the human body. As long as metabolic pathways are under systemic control and well-concerted together, adaptive mechanisms become triggered increasing systemic protection, activating antioxidant defense and repair machinery. Contextually, all attributes of mitochondrial patho-/physiology are instrumental for predictive medical approach and cost-effective treatments tailored to individualized patient profiles in primary (to protect vulnerable individuals again the health-to-disease transition) and secondary (to protect affected individuals again disease progression) care. Nutraceuticals are naturally occurring bioactive compounds demonstrating health-promoting, illness-preventing, and other health-related benefits. Keeping in mind health-promoting properties of nutraceuticals along with their great therapeutic potential and safety profile, there is a permanently growing demand on the application of mitochondria-relevant nutraceuticals. Application of nutraceuticals is beneficial only if meeting needs at individual level. Therefore, health risk assessment and creation of individualized patient profiles are of pivotal importance followed by adapted nutraceutical sets meeting individual needs. Based on the scientific evidence available for mitochondria-relevant nutraceuticals, this article presents examples of frequent medical conditions, which require protective measures targeted on mitochondria as a holistic approach following advanced concepts of predictive, preventive, and personalized medicine (PPPM/3PM) in primary and secondary care.
Collapse
Affiliation(s)
- Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Andrea Kapinova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Nafiseh Sargheini
- Max Planck Institute for Plant Breeding Research, Carl-Von-Linne-Weg 10, 50829 Cologne, Germany
| | - Bianka Bojkova
- Department of Animal Physiology, Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University in Košice, 040 01 Košice, Slovakia
| | - Marko Kapalla
- Negentropic Systems, Ružomberok, Slovakia
- PPPM Centre, s.r.o., Ruzomberok, Slovakia
| | - Luisa Heinrich
- Institute of General Medicine, University of Leipzig, Leipzig, Germany
| | - Eleni Gkika
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Peter Kubatka
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
5
|
Vijayakumar A, Kim JH. Ginseng and ginsenosides on cardiovascular and pulmonary diseases; Pharmacological potentials for the coronavirus (COVID-19). J Ginseng Res 2024; 48:113-121. [PMID: 38465214 PMCID: PMC10920003 DOI: 10.1016/j.jgr.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/20/2023] [Accepted: 10/26/2023] [Indexed: 03/12/2024] Open
Abstract
Since its outbreak in late 2019, the Coronavirus disease 2019 (COVID-19) pandemic has profoundly caused global morbidity and deaths. The COVID-19 pandemic caused by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) has major complications in cardiovascular and pulmonary system. The increased rate of mortality is due to delayed detection of certain biomarkers that are crucial in the development of disease. Furthermore, certain proteins and enzymes in cellular signaling pathways play an important role in replication of SARS-CoV-2. Most cases are mild to moderate symptoms, however severe cases of COVID-19 leads to death. Detecting the level of biomarkers such as C-reactive protein, cardiac troponin, creatine kinase, creatine kinase-MB, procalcitonin and Matrix metalloproteinases helps in early detection of the severity of disease. Similarly, through downregulating Renin-angiotensin system, interleukin, Mitogen-activated protein kinases and Phosphoinositide 3-kinases pathways, COVID-19 can be effectively controlled and mortality could be prevented. Ginseng and ginsenosides possess therapeutic potential in cardiac and pulmonary complications, there are several studies performed in which they have suppressed these biomarkers and downregulated the pathways, thereby inhibiting the further spread of disease. Supplementation with ginseng or ginsenoside could act on multiple pathways to reduce the level of biomarkers significantly and alleviate cardiac and pulmonary damage. Therefore, this review summarizes the potential of ginseng extract and ginsenosides in controlling the cardiovascular and pulmonary diseases by COVID-19.
Collapse
Affiliation(s)
- Ajay Vijayakumar
- College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, Iksan-city, Republic of Korea
| | - Jong-Hoon Kim
- College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, Iksan-city, Republic of Korea
| |
Collapse
|
6
|
Lee C, Lee S, Jang YP, Park J. Anti-Inflammatory Activity of Vacuum Distillate from Panax ginseng Root on LPS-Induced RAW264.7 Cells. J Microbiol Biotechnol 2024; 34:262-269. [PMID: 38213284 PMCID: PMC10940780 DOI: 10.4014/jmb.2312.12001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/19/2023] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
Panax ginseng has been widely applied as an important herb in traditional medicine to treat numerous human disorders. However, the inflammatory regulation effect of P. ginseng distillate (GSD) has not yet been fully assessed. To determine whether GSD can ameliorate inflammatory processes, a GSD was prepared using the vacuum distillation process for the first time, and the regulation effect on lipopolysaccharide-induced macrophages was assessed. The results showed that GSD effectively inhibited nitric oxide (NO) formation and activation of inducible nitric oxide synthase (iNOS) mRNA in murine macrophage cell, but not cyclooxygenase-2 production. The mRNA expression pattern of tumor necrosis factor alpha and IL-6 were also reduced by GSD. Furthermore, we confirmed that GSD exerted its anti-inflammatory effects by downregulating c-Jun NH2-terminal kinase (JNK) phosphorylation, the extracellular signal-regulated kinase phosphorylation, and signaling pathway of nuclear factor kappa B (NF-κB). Our findings revealed that the inflammatory regulation activity of GSD could be induced by iNOS and NO formation inhibition mediated by regulation of nuclear factor kappa B and p38/JNK MAPK pathways.
Collapse
Affiliation(s)
- Chanwoo Lee
- College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seul Lee
- Department of Engineering Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Young Pyo Jang
- College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Junseong Park
- Department of Engineering Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
7
|
Balusamy SR, Perumalsamy H, Huq MA, Yoon TH, Mijakovic I, Thangavelu L, Yang DC, Rahimi S. A comprehensive and systemic review of ginseng-based nanomaterials: Synthesis, targeted delivery, and biomedical applications. Med Res Rev 2023; 43:1374-1410. [PMID: 36939049 DOI: 10.1002/med.21953] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 11/22/2022] [Accepted: 02/26/2023] [Indexed: 03/21/2023]
Abstract
Among 17 Panax species identified across the world, Panax ginseng (Korean ginseng), Panax quinquefolius (American ginseng), and Panax notoginseng (Chinese ginseng) are highly recognized for the presence of bioactive compound, ginsenosides and their pharmacological effects. P. ginseng is widely used for synthesis of different types of nanoparticles compared to P. quinquefolius and P. notoginseng. The use of nano-ginseng could increase the oral bioavailability, membrane permeability, and thus provide effective delivery of ginsenosides to the target sites through transport system. In this review, we explore the synthesis of ginseng nanoparticles using plant extracts from various organs, microbes, and polymers, as well as their biomedical applications. Furthermore, we highlight transporters involved in transport of ginsenoside nanoparticles to the target sites. Size, zeta potential, temperature, and pH are also discussed as the critical parameters affecting the quality of ginseng nanoparticles synthesis.
Collapse
Affiliation(s)
- Sri Renukadevi Balusamy
- Department of Food Science and Biotechnology, Sejong University, Seoul, Gwangjin-gu, Republic of Korea
| | - Haribalan Perumalsamy
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul, Republic of Korea
- Institute for Next Generation Material Design, Hanyang University, Seoul, Republic of Korea
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Md Amdadul Huq
- Department of Food and Nutrition, Chung Ang University, Anseong-si, Gyeonggi-do, Republic of Korea
| | - Tae Hyun Yoon
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul, Republic of Korea
- Institute for Next Generation Material Design, Hanyang University, Seoul, Republic of Korea
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Ivan Mijakovic
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamilnadu, India
| | - Deok Chun Yang
- Graduate School of Biotechnology, Kyung Hee University, Yongin, Republic of Korea
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, Republic of Korea
| | - Shadi Rahimi
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
8
|
Ji W, Liu W, Huo Y, Hu C, Zhang Y. Banxia Xiexin decoction ameliorates dextran sulfate sodium (DSS)-induced ulcerative colitis via inhibiting serine-threonine protein kinase (Akt)/mitogen-activated protein kinase (MAPK) signaling pathway. Biotechnol Appl Biochem 2023; 70:1530-1542. [PMID: 36806191 DOI: 10.1002/bab.2451] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/02/2023] [Accepted: 02/11/2023] [Indexed: 02/19/2023]
Abstract
Banxia Xiexin decoction (BXD), a traditional Chinese medicine, was widely used in treating ulcerative colitis (UC). However, the active components of BXD and its mechanism in UC remain elusive. Therefore, we used network pharmacology in vivo experiments, molecular docking, and surface plasmon resonance strategy (SPR) to uncover BXD's potential mechanism. A UC rat model was established by orally administering 7% dextran sulfate sodium (DSS) in drinking water, BXD and palmatine were orally administered for 7 days. Network pharmacology was used to investigate the main bioactive components and crucial targets of BXD in treating UC. Molecular docking was used to investigate interactions between components and crucial targets, verifying the results by SPR. By network pharmacology predicting, 20 active components and 44 candidate anti-UC targets of BXD were identified, and the crucial proteins were screeded from PPI network, including extracellular regulated protein kinases (ERK), AKT1, and tumor necrosis factor-α (TNF). In addition, some key active components (palmatine, sexangularetin, and skullcapflavone II) were screened out from the active components-targets network. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment and in vivo experiments showed that protein-serine-threonine kinase (Akt)/MAPK pathway was involved in BXD treatment for UC; BXD and palmatine significantly ameliorated the severity of DSS-induced UC in rats. Our study might assist in further investigation of the active components in Chinese medicine.
Collapse
Affiliation(s)
- Wanli Ji
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Wangzhenzu Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Huo
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Hu
- Science and Technology Experiment Center, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yifan Zhang
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
9
|
Seo K, Yoo JH, Kim J, Min SJ, Heo DN, Kwon IK, Moon HJ. Ginseng-derived exosome-like nanovesicles extracted by sucrose gradient ultracentrifugation to inhibit osteoclast differentiation. NANOSCALE 2023; 15:5798-5808. [PMID: 36857681 DOI: 10.1039/d2nr07018a] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Plant-derived extracellular nanovesicles contain RNA and proteins with unique and diverse pharmacological mechanisms. The extracellular nanovesicles encapsulating plant extracts resemble exosomes as they have a round, lipid bilayer morphology. Ginseng is anti-inflammatory, anti-cancer, immunostimulant, and osteogenic/anti-osteoporotic. Here, we confirmed that ginseng-derived extracellular nanovesicles (GDNs) inhibit osteoclast differentiation and elucidated the associated molecular mechanisms. We isolated GDNs by centrifugation with a sucrose gradient. We measured their dynamic light scattering and zeta potentials and examined their morphology by transmission electron microscopy. We used bone marrow-derived macrophages (BMMs) to determine the potential cytotoxicity of GDNs and establish their ability to inhibit osteoclast differentiation. The GDNs treatment maintained high BMM viability and proliferation whilst impeding osteoclastogenesis. Tartrate-resistant acid phosphatase and F-actin staining revealed that GDNs at concentrations >1 μg mL-1 strongly hindered osteoclast differentiation. Moreover, they substantially suppressed the RANKL-induced IκBα, c-JUN n-terminal kinase, and extracellular signal-regulated kinase signaling pathways and the genes regulating osteoclast maturation. The GDNs contained elevated proportions of Rb1 and Rg1 ginsenosides and were more effective than either of them alone or in combination at inhibiting osteoclast differentiation. In vivo bone analysis via microcomputerized tomography, bone volume/total volume ratios, and bone mineral density and bone cavity measurements demonstrated the inhibitory effect of GDNs against osteoclast differentiation in lipopolysaccharide-induced bone resorption mouse models. The results of this work suggest that GDNs are anti-osteoporotic by inhibiting osteoclast differentiation and are, therefore, promising for use in the clinical prevention and treatment of bone loss diseases.
Collapse
Affiliation(s)
- Kwansung Seo
- Department of Dentistry, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Ji Hye Yoo
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jisu Kim
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Sung Jun Min
- Department of Dentistry, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Dong Nyoung Heo
- Department of Dental Materials, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| | - Il Keun Kwon
- Department of Dental Materials, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| | - Ho-Jin Moon
- Department of Dental Materials, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
10
|
Yang KE, Nam SB, Jang M, Park J, Lee GE, Cho YY, Jang BC, Lee CJ, Choi JS. Ginsenoside Rb2 suppresses cellular senescence of human dermal fibroblasts by inducing autophagy. J Ginseng Res 2023; 47:337-346. [PMID: 36926607 PMCID: PMC10014224 DOI: 10.1016/j.jgr.2022.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/19/2022] [Accepted: 11/03/2022] [Indexed: 11/13/2022] Open
Abstract
Background Ginsenoside Rb2, a major active component of Panax ginseng, has various physiological activities, including anticancer and anti-inflammatory effects. However, the mechanisms underlying the rejuvenation effect of Rb2 in human skin cells have not been elucidated. Methods We performed a senescence-associated β-galactosidase staining assay to confirm cellular senescence in human dermal fibroblasts (HDFs). The regulatory effects of Rb2 on autophagy were evaluated by analyzing the expression of autophagy marker proteins, such as microtubule-associated protein 1A/1B-light chain (LC) 3 and p62, using immunoblotting. Autophagosome and autolysosome formation was monitored using transmission electron microscopy. Autophagic flux was analyzed using tandem-labeled GFP-RFP-LC3, and lysosomal function was assessed with Lysotracker. We performed RNA sequencing to identify potential target genes related to HDF rejuvenation mediated by Rb2. To verify the functions of the target genes, we silenced them using shRNAs. Results Rb2 decreased β-galactosidase activity and altered the expression of cell cycle regulatory proteins in senescent HDFs. Rb2 markedly induced the conversion of LC3-Ⅰ to LC3-Ⅱ and LC3 puncta. Moreover, Rb2 increased lysosomal function and red puncta in tandem-labeled GFP-RFP-LC3, which indicate that Rb2 promoted autophagic flux. RNA sequencing data showed that the expression of DNA damage-regulated autophagy modulator 2 (DRAM2) was induced by Rb2. In autophagy signaling, Rb2 activated the AMPK-ULK1 pathway and inactivated mTOR. DRAM2 knockdown inhibited autophagy and Rb2-restored cellular senescence. Conclusion Rb2 reverses cellular senescence by activating autophagy via the AMPK-mTOR pathway and induction of DRAM2, suggesting that Rb2 might have potential value as an antiaging agent.
Collapse
Affiliation(s)
- Kyeong Eun Yang
- Bio-Chemical Analysis Group, Center for Research Equipment, Korea Basic Science Institute, Daejeon, Republic of Korea
| | - Soo-Bin Nam
- Research Center for Materials Analysis, Korea Basic Science Institute, Daejeon, Republic of Korea.,Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
| | - Minsu Jang
- Division of Biological Science and Technology, Yonsei University, Wonju, Republic of Korea
| | - Junsoo Park
- Division of Biological Science and Technology, Yonsei University, Wonju, Republic of Korea
| | - Ga-Eun Lee
- BRL & BK21-4th Team, College of Pharmacy, The Catholic University of Korea, Gyeonggi, Republic of Korea
| | - Yong-Yeon Cho
- BRL & BK21-4th Team, College of Pharmacy, The Catholic University of Korea, Gyeonggi, Republic of Korea
| | - Byeong-Churl Jang
- Department of Molecular Medicine, College of Medicine, Keimyung University, Daegu, Republic of Korea
| | - Cheol-Jung Lee
- Research Center for Materials Analysis, Korea Basic Science Institute, Daejeon, Republic of Korea
| | - Jong-Soon Choi
- Research Center for Materials Analysis, Korea Basic Science Institute, Daejeon, Republic of Korea.,Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
11
|
Song MW, Park JY, Kim WJ, Kim KT, Paik HD. Fermentative effects by probiotic Lactobacillus brevis B7 on antioxidant and anti-inflammatory properties of hydroponic ginseng. Food Sci Biotechnol 2023; 32:169-180. [PMID: 36647519 PMCID: PMC9839932 DOI: 10.1007/s10068-022-01183-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/22/2022] [Accepted: 10/04/2022] [Indexed: 01/19/2023] Open
Abstract
Soil-cultivation presents environmental limitations and requires considerable labor, space, and water supply. Alternatively, hydroponically-cultured ginseng (HG) was improved its productivity, availability, and functionality. Improvement of bio-functionality by probiotic fermentation also has been studied. Therefore, in this study, HG was fermented using probiotics to enhance antioxidant and anti-inflammatory activities. Soil-cultivated ginseng (SG), 1 and 2-year HG (HG1, HG2) were extracted using 70% ethanol and fermented by Lactobacillus brevis B7. After fermentation, the phenolic and flavonoid contents, and antioxidant and NO scavenging activities were increased, and HG showed higher bioactivities than SG. Particularly, fermented HG2 showed the highest antioxidant and anti-inflammatory activities and significantly decreased the level of inflammatory mediators. Furthermore, fermented HG2 also effectively inhibited NF-κB signaling pathway. These results suggested that fermented HG significantly enhanced functionality compared to SG and non-fermented HG. This suggests that fermented HG is a potentially useful ingredient for developing health-functional foods or pharmaceutical materials.
Collapse
Affiliation(s)
- Myung Wook Song
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Republic of Korea
| | - Ji-Young Park
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Republic of Korea
| | - Won-Ju Kim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Republic of Korea
| | - Kee-Tae Kim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Republic of Korea
- Research Laboratory, WithBio Inc, Seoul, 05029 Republic of Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Republic of Korea
- Research Laboratory, WithBio Inc, Seoul, 05029 Republic of Korea
| |
Collapse
|
12
|
Marium Z, Siddiqi MZ, Lee JH, Im WT, Hwang SG. Repressing effect of transformed ginsenoside Rg3-mix against LPS-induced inflammation in RAW264.7 macrophage cells. J Genet Eng Biotechnol 2023; 21:6. [PMID: 36656433 PMCID: PMC9852415 DOI: 10.1186/s43141-023-00462-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/07/2023] [Indexed: 01/20/2023]
Abstract
BACKGROUND Rg3-ginsenoside, a protopanaxadiol saponin, is a well-known adaptogen used for the prevention of cancer and inflammation. However, despite its distinct biological activity, the concentration of Rg3 in the total ginseng extract is insufficient for therapeutic applications. This study aims to convert PPD-class of major ginsenosides into a mixture of minor ginsenoside, to analyze its immune-regulatory role in macrophage cells. RESULTS Using heat and organic acid treatment, three major ginsenosides, Rc, Rd, and Rb1, were converted into a mixture of minor ginsenosides, GRg3-mix [Rg3(S), Rg3(R), Rg5, and Rk1]. Purity and content analysis of the transformed compound were performed using thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC), compared with their standards. Preceding with the anti-inflammatory activity of GRg3-mix, lipopolysaccharide (LPS)-stimulated murine RAW264.7 macrophage cells were treated with various concentrations of GRg3-mix (6.25, 12.5, 25, and 50 μg/mL). The cell viability assay revealed that the level of cell proliferation was increased, while the nitric oxide (NO) assay showed that NO production decreased dose-dependently in activated RAW264.7 cells. The obtained results were compared to those of pure Rg3(S) ≥ 98% (6.25, 12.5, and 25 μg/mL). Preliminary analysis of the CCK-8 and NO assay demonstrated that GRg3-mix can be used as an anti-inflammatory mediator, but mRNA and protein expression levels were evaluated for further confirmation. The doses of GRg3-mix significantly suppressed the initially upregulated mRNA and protein expression of inflammation-related enzymes and cytokines, namely inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), nuclear transcription factor kappa B (NF-κB), tumor necrosis factor (TNF-α), and interleukins (IL-6 and IL1B), as measured by reverse transcription-polymerase chain reaction and western blotting. CONCLUSIONS Our pilot data confirmed that the mixture of minor ginsenosides, namely GRg3-mix, has high anti-inflammatory activity and has an easy production procedure.
Collapse
Affiliation(s)
- Zuneera Marium
- grid.411968.30000 0004 0642 2618Department of Animal Life and Environmental Sciences, Hankyong National University, 327 Jungang-ro, Anseong-si, Gyeonggi-do 17579 Republic of Korea ,grid.411968.30000 0004 0642 2618Department of Biotechnology, Hankyong National University, 327 Jungang-ro, Anseong-si, Gyeonggi-do 17579 Republic of Korea
| | - Muhammad Zubair Siddiqi
- grid.411968.30000 0004 0642 2618Department of Biotechnology, Hankyong National University, 327 Jungang-ro, Anseong-si, Gyeonggi-do 17579 Republic of Korea ,AceEMzyme Co., Ltd., Room 403, Academic-Industry Cooperation, 327 Jungang-ro, Anseong-si, Gyeonggi-do 17579 Republic of Korea ,grid.411968.30000 0004 0642 2618HK Ginseng Research Centre, Hankyong National University, 327 Jungang-ro, Anseong-si, Gyeonggi-do 17579 Republic of Korea
| | - Ji-Hye Lee
- grid.411968.30000 0004 0642 2618Department of Biotechnology, Hankyong National University, 327 Jungang-ro, Anseong-si, Gyeonggi-do 17579 Republic of Korea
| | - Wan-Taek Im
- grid.411968.30000 0004 0642 2618Department of Biotechnology, Hankyong National University, 327 Jungang-ro, Anseong-si, Gyeonggi-do 17579 Republic of Korea ,AceEMzyme Co., Ltd., Room 403, Academic-Industry Cooperation, 327 Jungang-ro, Anseong-si, Gyeonggi-do 17579 Republic of Korea ,grid.411968.30000 0004 0642 2618HK Ginseng Research Centre, Hankyong National University, 327 Jungang-ro, Anseong-si, Gyeonggi-do 17579 Republic of Korea
| | - Seong-Gu Hwang
- grid.411968.30000 0004 0642 2618Department of Animal Life and Environmental Sciences, Hankyong National University, 327 Jungang-ro, Anseong-si, Gyeonggi-do 17579 Republic of Korea
| |
Collapse
|
13
|
Zhang J, Sayakoummane S, Kim SA, Lee JS, Choung ES, Kim ES, Lee SG, Yum J, Lee BH, Lee S, Kim JH, Cho JY. Hymenocallis littoralis ameliorates inflammatory responses in LPS-stimulated RAW264.7 cells and HCl/EtOH-induced gastric mucosal injury via targeting the MAPK pathway. JOURNAL OF ETHNOPHARMACOLOGY 2022; 295:115400. [PMID: 35623503 DOI: 10.1016/j.jep.2022.115400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hymenocallis littoralis (Jacq.) Salisb. Also known as Pancratium littorale Jacq. And Hymenocallis panamensis Lindl., is a medicinal plant from the family Amarylideceae used for emetic and wound healing and has manifested anti-neoplastic, anti-oxidant, and anti-viral properties. AIM OF THE STUDY The aim of this paper is to investigate the anti-inflammatory potential and molecular mechanism of H. littoralis against lipopolysaccharide (LPS)-induced macrophages and in vivo HCl/EtOH-induced gastritis mucosal injury models. MATERIALS AND METHODS The production of pro-inflammatory cytokines and mediators was evaluated by Griess assay, RT-PCR, and real-time PCR. Moreover, the relevant proteins of mitogen-activated protein kinases (MAPKs) including ERK, JNK, p38, c-Jun, and c-Fos were detected using immunoblotting. RESULTS We demonstrated that H. littoralis prominently dampened production of nitric oxide (NO) in LPS-, poly I:C-, or pam3CSK-stimulated RAW264.7 cells; down-regulated the expression levels of interleukin 6 (IL-6) and inducible nitric oxide synthase; and markedly attenuated the luciferase activities of AP-1 reporter promoters. Moreover, H. littoralis administration prominently downregulated c-Fos and c-Jun phosphorylation as well as JNK1, ERK2, and MKK7 overexpression in HEK 293T cells. Furthermore, H. littoralis displayed anti-inflammatory effects in the HCl/EtOH-induced gastritis mice model. CONCLUSIONS Cumulatively, these results demonstrated that H. littoralis exerts eminently anti-inflammatory activities in LPS-stimulated RAW264.7 cells in vitro and in HCl/EtOH-induced gastritis mice models in vivo. These activities could be attributed to its modulatory effects on the MAPK signaling pathway.
Collapse
Affiliation(s)
- Jianmei Zhang
- Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Sousath Sayakoummane
- Department of Forestry, Ministry of Agriculture and Forestry, Vientiane Capital, P.O. Box 2932, Laos.
| | - Soo Ah Kim
- DanjoungBio Co. Ltd, Wonju, 26303, Republic of Korea.
| | - Jong Sub Lee
- DanjoungBio Co. Ltd, Wonju, 26303, Republic of Korea.
| | - Eui Su Choung
- DanjoungBio Co. Ltd, Wonju, 26303, Republic of Korea.
| | - Eun Sil Kim
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon, 22689, Republic of Korea.
| | - Seung-Gyu Lee
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon, 22689, Republic of Korea.
| | - Jinwhoa Yum
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon, 22689, Republic of Korea.
| | - Byoung-Hee Lee
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon, 22689, Republic of Korea.
| | - Sarah Lee
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon, 22689, Republic of Korea.
| | - Ji Hye Kim
- Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Jae Youl Cho
- Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
14
|
Shin KK, Park SH, Lim HY, Lorza LR, Qomaladewia NP, You L, Aziz N, Kim SA, Lee JS, Choung ES, Noh JK, Yie DK, Jeong D, Lee J, Cho JY. In Vitro Anti-Photoaging and Skin Protective Effects of Licania macrocarpa Cuatrec Methanol Extract. PLANTS (BASEL, SWITZERLAND) 2022; 11:1383. [PMID: 35631808 PMCID: PMC9144732 DOI: 10.3390/plants11101383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 12/24/2022]
Abstract
The Licania genus has been used in the treatment of dysentery, diabetes, inflammation, and diarrhea in South America. Of these plants, the strong anti-inflammatory activity of Licania macrocarpa Cuatrec (Chrysobalanaceae) has been reported previously. However, the beneficial activities of this plant on skin health have remained unclear. This study explores the protective activity of a methanol extract (50-100 μg/mL) in the aerial parts of L. macrocarpa Cuatrec (Lm-ME) and its mechanism, in terms of its moisturizing/hydration factors, skin wrinkles, UV radiation-induced cell damage, and radical generation (using RT/real-time PCR, carbazole assays, flowcytometry, DPPH/ABTS, and immunoblotting analysis). The anti-pigmentation role of Lm-ME was also tested by measuring levels of melanin, melanogenesis-related genes, and pigmentation-regulatory proteins. Lm-ME decreased UVB-irradiated death in HaCaT cells by suppressing apoptosis and inhibited matrix metalloproteinases 1/2 (MMP1/2) expression by enhancing the activity of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38. It was confirmed that Lm-ME displayed strong antioxidative activity. Lm-ME upregulated the expression of hyaluronan synthases-2/3 (HAS-2/3) and transglutaminase-1 (TGM-1), as well as secreted levels of hyaluronic acid (HA) via p38 and JNK activation. This extract also significantly inhibited the production of hyaluronidase (Hyal)-1, -2, and -4. Lm-ME reduced the melanin expression of microphthalmia-associated transcription factor (MITF), tyrosinase, and tyrosinase-related protein-1/2 (TYRP-1/2) in α-melanocyte-stimulating hormone (α-MSH)-treated B16F10 cells via the reduction of cAMP response element-binding protein (CREB) and p38 activation. These results suggest that Lm-ME plays a role in skin protection through antioxidative, moisturizing, cytoprotective, and skin-lightening properties, and may become a new and promising cosmetic product beneficial for the skin.
Collapse
Affiliation(s)
- Kon Kuk Shin
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (K.K.S.); (L.R.L.); (N.P.Q.); (L.Y.); (N.A.); (D.J.)
| | - Sang Hee Park
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Korea; (S.H.P.); (H.Y.L.)
| | - Hye Yeon Lim
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Korea; (S.H.P.); (H.Y.L.)
| | - Laura Rojas Lorza
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (K.K.S.); (L.R.L.); (N.P.Q.); (L.Y.); (N.A.); (D.J.)
| | - Nurinanda Prisky Qomaladewia
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (K.K.S.); (L.R.L.); (N.P.Q.); (L.Y.); (N.A.); (D.J.)
| | - Long You
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (K.K.S.); (L.R.L.); (N.P.Q.); (L.Y.); (N.A.); (D.J.)
| | - Nur Aziz
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (K.K.S.); (L.R.L.); (N.P.Q.); (L.Y.); (N.A.); (D.J.)
| | - Soo Ah Kim
- DanjoungBio Co., Ltd., Wonju 26303, Korea; (S.A.K.); (J.S.L.); (E.S.C.)
| | - Jong Sub Lee
- DanjoungBio Co., Ltd., Wonju 26303, Korea; (S.A.K.); (J.S.L.); (E.S.C.)
| | - Eui Su Choung
- DanjoungBio Co., Ltd., Wonju 26303, Korea; (S.A.K.); (J.S.L.); (E.S.C.)
| | - Jin Kyung Noh
- Instituto de BioEconomia, El Batan, Quito 170135, Ecuador;
| | - Dong-Keun Yie
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea;
| | - Deok Jeong
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (K.K.S.); (L.R.L.); (N.P.Q.); (L.Y.); (N.A.); (D.J.)
- Convergence Research Center for Energy and Environmental Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Jongsung Lee
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (K.K.S.); (L.R.L.); (N.P.Q.); (L.Y.); (N.A.); (D.J.)
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Korea; (S.H.P.); (H.Y.L.)
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (K.K.S.); (L.R.L.); (N.P.Q.); (L.Y.); (N.A.); (D.J.)
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Korea; (S.H.P.); (H.Y.L.)
| |
Collapse
|
15
|
Wang Y, Wang L, Suo M, Qiu Z, Wu H, Zhao M, Yang H. Regulating Root Fungal Community Using Mortierella alpina for Fusarium oxysporum Resistance in Panax ginseng. Front Microbiol 2022; 13:850917. [PMID: 35633727 PMCID: PMC9133625 DOI: 10.3389/fmicb.2022.850917] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/02/2022] [Indexed: 01/16/2023] Open
Abstract
Plant-associated microbes play important roles in plant health and disease. Mortierella is often found in the plant rhizosphere, and its possible functions are not well known, especially in medical plants. Mortierella alpina isolated from ginseng soil was used to investigate its effects on plant disease. The promoting properties and interactions with rhizospheric microorganisms were investigated in a medium. Further, a pot experiment was conducted to explore its effects on ginseng root rot disease. Physicochemical properties, high-throughput sequencing, network co-occurrence, distance-based redundancy analysis (db-RDA), and correlation analysis were used to evaluate their effects on the root rot pathogen. The results showed that Mortierella alpina YW25 had a high indoleacetic acid production capacity, and the maximum yield was 141.37 mg/L at 4 days. The growth of M. alpina YW25 was inhibited by some probiotics (Bacillus, Streptomyces, Brevibacterium, Trichoderma, etc.) and potential pathogens (Cladosporium, Aspergillus, etc.), but it did not show sensitivity to the soil-borne pathogen Fusarium oxysporum. Pot experiments showed that M. alpina could significantly alleviate the diseases caused by F. oxysporum, and increased the available nitrogen and phosphorus content in rhizosphere soil. In addition, it enhanced the activities of soil sucrase and acid phosphatase. High-throughput results showed that the inoculation of M. alpina with F. oxysporum changed the microbial community structure of ginseng, stimulated the plant to recruit more plant growth-promoting bacteria, and constructed a more stable microbial network of ginseng root. In this study, we found and proved the potential of M. alpina as a biocontrol agent against F. oxysporum, providing a new idea for controlling soil-borne diseases of ginseng by regulating rhizosphere microorganisms.
Collapse
Affiliation(s)
- Yan Wang
- College of Life Sciences, Northeast Forestry University, Harbin, China
- Key Laboratory for Enzyme and Enzyme-like Material Engineering of Heilongjiang, Harbin, China
| | - Liwei Wang
- College of Life Sciences, Northeast Forestry University, Harbin, China
- Key Laboratory for Enzyme and Enzyme-like Material Engineering of Heilongjiang, Harbin, China
| | - Meng Suo
- College of Life Sciences, Northeast Forestry University, Harbin, China
- Key Laboratory for Enzyme and Enzyme-like Material Engineering of Heilongjiang, Harbin, China
| | - Zhijie Qiu
- College of Life Sciences, Northeast Forestry University, Harbin, China
- Key Laboratory for Enzyme and Enzyme-like Material Engineering of Heilongjiang, Harbin, China
| | - Hao Wu
- College of Life Sciences, Northeast Forestry University, Harbin, China
- Key Laboratory for Enzyme and Enzyme-like Material Engineering of Heilongjiang, Harbin, China
| | - Min Zhao
- College of Life Sciences, Northeast Forestry University, Harbin, China
- Key Laboratory for Enzyme and Enzyme-like Material Engineering of Heilongjiang, Harbin, China
| | - Hongyan Yang
- College of Life Sciences, Northeast Forestry University, Harbin, China
- Key Laboratory for Enzyme and Enzyme-like Material Engineering of Heilongjiang, Harbin, China
| |
Collapse
|
16
|
Ekeuku SO, Chin KY, Qian J, Qu H, Wang Y, Ramli ESM, Wong SK, Noor MMM, Ima-Nirwana S. Normalisation of High Bone Remodelling due to Oestrogen Deficiency by Traditional Chinese Formulation Kang Shuai Lao Pian in Ovariectomised Rats. Int J Med Sci 2022; 19:1648-1659. [PMID: 36237992 PMCID: PMC9553853 DOI: 10.7150/ijms.75915] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/09/2022] [Indexed: 11/05/2022] Open
Abstract
Postmenopausal osteoporosis transpires due to excessive osteoclastic bone resorption and insufficient osteoblastic bone formation in the presence of oestrogen insufficiency. Kang Shuai Lao Pian (KSLP) is a red ginseng-based traditional Chinese medicine known for its anti-ageing properties. However, studies on its effect on bone loss are lacking. Thus, the current study examined the skeletal protective effects of KSLP in an ovariectomised rodent bone loss model. Three-month-old female Sprague Dawley rats (n=42) were randomised into baseline, sham and ovariectomised (OVX) groups. The OVX rats were supplemented with low- (KSLP-L; 0.15 g/kg), medium- (KSLP-M; 0.30 g/kg), high-dose KSLP (KSLP-H; 0.45 g/kg) or calcium carbonate (1% w/v). The daily supplementation of KSLP was performed via oral gavage for eight weeks. Gavage stress was stimulated in the ovariectomised control with distilled water. The rats were euthanised at the end of the study. Whole-body and femoral bone mineral content and density scans were performed at baseline and every four weeks. Blood samples were obtained for the determination of bone remodelling markers. Histomorphometry and biomechanical strength testing were performed on femurs and tibias. High bone remodelling typically due to oestrogen deficiency, indicated by the elevated bone formation and resorption markers, osteoclast surface, single-labelled surface and mineralising surface/bone surface ratio, was observed in the untreated OVX rats. Whole-body BMD adjusted to body weight and Young's modulus decreased significantly in the untreated OVX rats. High-dose KSLP supplementation counteracted these degenerative changes. In conclusion, KSLP improves bone health by normalising bone remodelling, thereby preventing bone loss and decreased bone strength caused by oestrogen deficiency. Its anti-osteoporosis effects should be validated in patients with postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Sophia Ogechi Ekeuku
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Jing Qian
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Haibin Qu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yi Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Elvy Suhana Mohd Ramli
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Sok Kuan Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Mohd Mustazil Mohd Noor
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Soelaiman Ima-Nirwana
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
17
|
Song C, Lorz LR, Lee J, Cho JY. In Vitro Photoprotective, Anti-Inflammatory, Moisturizing, and Antimelanogenic Effects of a Methanolic Extract of Chrysophyllum lucentifolium Cronquist. PLANTS 2021; 11:plants11010094. [PMID: 35009097 PMCID: PMC8747116 DOI: 10.3390/plants11010094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/17/2021] [Accepted: 12/24/2021] [Indexed: 12/20/2022]
Abstract
UVB exposure causes DNA mutation and ROS generation, which lead to skin photoaging, skin wrinkling, skin sagging, and uneven skin pigmentation. ROS activate the NF-κB and MAPK signaling pathways leading to production of inflammatory molecules such as COX-2, collagen-degrading proteins such as matrix metalloproteinases (MMPs), and moisture-deficiency-related proteins such as hyaluronidases (HYALs). UVB exposure also induces irregular skin pigmentation though melanin overproduction, related to CREB transcription factor activity and transcription of melanogenesis genes. Here, we demonstrate that Chrysophyllum lucentifolium methanol extract (Cl-ME) has antioxidant activity; it dose-dependently decreased the expression of COX-2, MMP-1, MMP-9, HYAL-1, and HYAL-4 by downregulating the NF-κB (IKKα/β, IκBα) and MAPK (ERK, JNK, and p38) pathways and increased the expression of Col1a1, which encodes a protein important for maintaining skin elasticity. Cl-ME also showed promising antimelanogenic activity by decreasing the expression of CREB, a transcription factor, which in turn inhibited the expression of genes encoding tyrosinase, MITF, TYRP1, and TYRP2. In summary, a methanol extract of C. lucentifolium exhibited antiphotoaging and antimelanogenic activity and could be useful in the cosmeceutical industry.
Collapse
Affiliation(s)
- Chaoran Song
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (C.S.); (L.R.L.)
| | - Laura Rojas Lorz
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (C.S.); (L.R.L.)
| | - Jongsung Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (C.S.); (L.R.L.)
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Korea
- Correspondence: (J.L.); (J.Y.C.); Tel.: +82-31-290-7862 (J.L.); +82-31-290-7868 (J.Y.C.)
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (C.S.); (L.R.L.)
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Korea
- Correspondence: (J.L.); (J.Y.C.); Tel.: +82-31-290-7862 (J.L.); +82-31-290-7868 (J.Y.C.)
| |
Collapse
|
18
|
Aomatsu N, Shigemitsu K, Nakagawa H, Morooka T, Ishikawa J, Yamashita T, Tsuruoka A, Fuke A, Motoyama K, Kitagawa D, Ikeda K, Maeda K, Shirano M, Rinka H. Efficacy of Ninjin'yoeito in treating severe coronavirus disease 2019 in patients in an intensive care unit. Neuropeptides 2021; 90:102201. [PMID: 34753072 PMCID: PMC8484001 DOI: 10.1016/j.npep.2021.102201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 02/08/2023]
Abstract
Coronavirus Disease-2019 (COVID-19), an infectious disease associated with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), is a global emergency with high mortality. There are few effective treatments, and many severe patients are treated in an intensive care unit (ICU). The purpose of this study was to evaluate whether the Japanese Kampo medicine ninjin'yoeito (NYT) is effective in treating ICU patients with COVID-19. Nine patients with confirmed SARS-CoV-2 infection admitted to the ICU were enrolled in this study. All patients underwent respiratory management with invasive mechanical ventilation (IMV) and enteral nutrition. Four patients received NYT (7.5 g daily) from an elemental diet tube. We retrospectively examined the prognostic nutritional index (PNI), length of IMV, length of ICU stay, length of hospital stay, rate of tracheostomy, and mortality rate. The median age of the enrolled participants was 60.0 years (4 men and 5 women). The median body mass index was 27.6. The most common comorbidity was diabetes (4 patients, 44%), followed by hypertension (3 patients, 33%) and chronic kidney disease (2 patients, 22%). The median length of IMV, ICU stay, and hospital stay were all shorter in the NYT group than in the non-NYT group (IMV; 4.0 days vs 14.3 days, ICU; 5.3 days vs 14.5 days, hospital stay; 19.9 days vs 28.2 days). In the NYT and non-NYT groups, the median PNI at admission was 29.0 and 31.2, respectively. One week after admission, the PNI was 30.7 in the NYT group and 24.4 in non-NYT group. PNI was significantly (p = 0.032) increased in the NYT group (+13.6%) than in the non-NYT group (-22.0%). The Japanese Kampo medicine NYT might be useful for treating patients with severe COVID-19 in ICU. This study was conducted in a small number of cases, and further large clinical trials are necessary.
Collapse
Affiliation(s)
- Naoki Aomatsu
- Department of Emergency and Critical Care Medical center, Osaka City General Hospital, Osaka, Japan; Department of Gastroenterological Surgery, Osaka City General Hospital, Osaka, Japan.
| | - Kazuaki Shigemitsu
- Department of Emergency and Critical Care Medical center, Osaka City General Hospital, Osaka, Japan
| | - Hidenori Nakagawa
- Department of Infectious Diseases, Osaka City General Hospital, Osaka, Japan
| | - Takaya Morooka
- Department of Emergency and Critical Care Medical center, Osaka City General Hospital, Osaka, Japan
| | - Junichi Ishikawa
- Department of Emergency and Critical Care Medical center, Osaka City General Hospital, Osaka, Japan
| | - Tomoya Yamashita
- Department of Emergency and Critical Care Medical center, Osaka City General Hospital, Osaka, Japan
| | - Ayumu Tsuruoka
- Department of Emergency and Critical Care Medical center, Osaka City General Hospital, Osaka, Japan
| | - Akihiro Fuke
- Department of Emergency and Critical Care Medical center, Osaka City General Hospital, Osaka, Japan
| | - Koka Motoyama
- Department of Emergency and Critical Care Medical center, Osaka City General Hospital, Osaka, Japan
| | - Daiki Kitagawa
- Department of Emergency and Critical Care Medical center, Osaka City General Hospital, Osaka, Japan
| | - Katsumi Ikeda
- Department of Breast Surgical Oncology, Osaka City General Hospital, Osaka, Japan
| | - Kiyoshi Maeda
- Department of Gastroenterological Surgery, Osaka City General Hospital, Osaka, Japan
| | - Michinori Shirano
- Department of Infectious Diseases, Osaka City General Hospital, Osaka, Japan
| | - Hiroshi Rinka
- Department of Gastroenterological Surgery, Osaka City General Hospital, Osaka, Japan
| |
Collapse
|
19
|
Kim JH, Park JG, Hong YH, Shin KK, Kim JK, Kim YD, Yoon KD, Kim KH, Yoo BC, Sung GH, Cho JY. Sauropus brevipes ethanol extract negatively regulates inflammatory responses in vivo and in vitro by targeting Src, Syk and IRAK1. PHARMACEUTICAL BIOLOGY 2021; 59:74-86. [PMID: 33439064 PMCID: PMC7808742 DOI: 10.1080/13880209.2020.1866024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
CONTEXT Sauropus brevipes Müll. Arg. (Phyllanthaceae) has been used as an effective ingredient in a decoction for the treatment of diarrhoea. However, there was no report on its modulatory role in inflammation. OBJECTIVE This study investigates anti-inflammatory effect of S. brevipes in various inflammation models. MATERIALS AND METHODS The aerial part of S. brevipes was extracted with 95% ethanol to produce Sb-EE. RAW264.7 cells pre-treated with Sb-EE were stimulated by lipopolysaccharide (LPS), and Griess assay and PCR were performed. High-performance liquid chromatography (HPLC) analysis, luciferase assay, Western blotting and kinase assay were employed. C57BL/6 mice (10 mice/group) were orally administered with Sb-EE (200 mg/kg) once a day for five days, and peritonitis was induced by an intraperitoneal injection of LPS (10 mg/kg). ICR mice (four mice/group) were orally administered with Sb-EE (20 or 200 mg/kg) or ranitidine (positive control) twice a day for two days, and EtOH/HCl was orally injected to induce gastritis. RESULTS Sb-EE suppressed nitric oxide (NO) release (IC50=34 µg/mL) without cytotoxicity and contained flavonoids (quercetin, luteolin and kaempferol). Sb-EE (200 µg/mL) reduced the mRNA expression of inducible NO synthase (iNOS). Sb-EE blocked the activities of Syk and Src, while inhibiting interleukin-1 receptor associated kinases (IRAK1) by 68%. Similarly, orally administered Sb-EE (200 mg/kg) suppressed NO production by 78% and phosphorylation of Src and Syk in peritonitis mice. Sb-EE also decreased inflammatory lesions in gastritis mice. DISCUSSION AND CONCLUSIONS This study demonstrates the inhibitory effect of Sb-EE on the inflammatory response, suggesting that Sb-EE can be developed as a potential anti-inflammatory agent.
Collapse
Affiliation(s)
- Ji Hye Kim
- Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Republic of Korea
| | - Jae Gwang Park
- Division of Translational Science, Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Yo Han Hong
- Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Republic of Korea
| | - Kon Kuk Shin
- Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Republic of Korea
| | - Jin Kyeong Kim
- Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Republic of Korea
| | - Young-Dong Kim
- Department of Life Science, Hallym University, Chuncheon, Republic of Korea
| | - Ki Dong Yoon
- College of Pharmacy, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Kyung-Hee Kim
- Proteomic Analysis Team, Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Byong Chul Yoo
- Division of Translational Science, Research Institute, National Cancer Center, Goyang, Republic of Korea
- Byong Chul Yoo Division of Translational Science, Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Gi-Ho Sung
- Institute for Bio-Medical Convergence, International St. Mary’s Hospital and College of Medicine, Catholic Kwandong University, Incheon, Republic of Korea
- CONTACT Gi-Ho Sung Institute for Bio-Medical Convergence, International St. Mary’s Hospital and College of Medicine, Catholic Kwandong University, Incheon, Republic of Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Republic of Korea
- Jae Youl Cho Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
20
|
Jo M, Lee J, Kim HG, Kim JK, Kim H, Shin KK, Bach TT, Eum SM, Lee JS, Choung ES, Yang Y, Kim KH, Sung GH, Yoo BC, Cho JY. Anti-inflammatory effect of Barringtonia angusta methanol extract is mediated by targeting of Src in the NF-κB signalling pathway. PHARMACEUTICAL BIOLOGY 2021; 59:799-810. [PMID: 34190667 PMCID: PMC8253214 DOI: 10.1080/13880209.2021.1938613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 04/27/2021] [Accepted: 05/28/2021] [Indexed: 06/13/2023]
Abstract
CONTEXT Among the plants in the genus Barringtonia (Lecythidaceae) used as traditional medicines to treat arthralgia, chest pain, and haemorrhoids in Indonesia, Barringtonia racemosa L. and Barringtonia acutangula (L.) Gaertn. have demonstrated anti-inflammatory activity in systemic inflammatory models. OBJECTIVE The anti-inflammatory activity of Barringtonia angusta Kurz has not been investigated. We prepared a methanol extract of the leaves and stems of B. angusta (Ba-ME) and systemically evaluated its anti-inflammatory effects in vitro and in vivo. MATERIALS AND METHODS RAW264.7 cells stimulated with LPS or Pam3CSK4 for 24 h were treated with Ba-ME (12.5, 25, 50, 100, and 150 µg/mL), and NO production and mRNA levels of inflammatory genes were evaluated. Luciferase reporter gene assay, western blot analysis, overexpression experiments, and cellular thermal shift assay were conducted to explore the mechanism of Ba-ME. In addition, the anti-gastritis activity of Ba-ME (50 and 100 mg/kg, administered twice per day for two days) was evaluated using an HCl/EtOH-induced gastritis mouse model. RESULTS Ba-ME dose-dependently suppressed NO production [IC50 = 123.33 µg/mL (LPS) and 46.89 µg/mL (Pam3CSK4)] without affecting cell viability. Transcriptional expression of iNOS, IL-1β, COX-2, IL-6, and TNF-α and phosphorylation of Src, IκBα, p50/105, and p65 were inhibited by Ba-ME. The extract specifically targeted the Src protein by binding to its SH2 domain. Moreover, Ba-ME significantly ameliorated inflammatory lesions in the HCl/EtOH-induced gastritis model. DISCUSSION AND CONCLUSIONS The anti-inflammatory activity of Ba-ME is mediated by targeting of the Src/NF-κB signalling pathway, and B. angusta has potential as an anti-inflammatory drug.
Collapse
Affiliation(s)
- Minkyeong Jo
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jongsung Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
- Research Institute of Biomolecule Control and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Republic of Korea
| | - Han Gyung Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
- Research Institute of Biomolecule Control and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Republic of Korea
| | - Jin Kyeong Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Haeyeop Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Kon Kuk Shin
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Tran The Bach
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology (VAST), Ha Noi, Vietnam
| | - Sang Mi Eum
- International Biological Material Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, Republic of Korea
| | | | | | - Yoonyong Yang
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon, Republic of Korea
| | - Kyung-Hee Kim
- Proteomic Analysis Team, Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Gi-Ho Sung
- Department of Microbiology, Biomedical Institute of Mycological Resource, International St. Mary's Hospital and College of Medicine, Catholic Kwandong University, Incheon, Republic of Korea
| | - Byong Chul Yoo
- Division of Translational Science, Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
- Research Institute of Biomolecule Control and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
21
|
Min JH, Cho HJ, Yi YS. A novel mechanism of Korean red ginseng-mediated anti-inflammatory action via targeting caspase-11 non-canonical inflammasome in macrophages. J Ginseng Res 2021; 46:675-682. [PMID: 36090677 PMCID: PMC9459075 DOI: 10.1016/j.jgr.2021.12.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/22/2021] [Accepted: 12/26/2021] [Indexed: 01/05/2023] Open
Abstract
Background Korean Red Ginseng (KRG) was reported to play an anti-inflammatory role, however, previous studies largely focused on the effects of KRG on priming step, the inflammation-preparing step, and the anti-inflammatory effect of KRG on triggering, the inflammation-activating step has been poorly understood. This study demonstrated anti-inflammatory role of KRG in caspase-11 non-canonical inflammasome activation in macrophages during triggering of inflammatory responses. Methods Caspase-11 non-canonical inflammasome-activated J774A.1 macrophages were established by priming with Pam3CSK4 and triggering with lipopolysaccharide (LPS). Cell viability and pyroptosis were examined by MTT and lactate dehydrogenase (LDH) assays. Nitric oxide (NO)-inhibitory effect of KRG was assessed using a NO production assay. Expression and proteolytic cleavage of proteins were examined by Western blotting analysis. In vivo anti-inflammatory action of KRG was evaluated with the LPS-injected sepsis model in mice. Results KRG reduced LPS-stimulated NO production in J774A.1 cells and suppressed pyroptosis and IL-1β secretion in caspase-11 non-canonical inflammasome-activated J774A.1 cells. Mechanistic studies demonstrated that KRG suppressed the direct interaction between LPS and caspase-11 and inhibited proteolytic processing of both caspase-11 and gasdermin D in caspase-11 non-canonical inflammasome-activated J774A.1 cells. Furthermore, KRG significantly ameliorated LPS-mediated lethal septic shock in mice. Conclusion The results demonstrate a novel mechanism of KRG-mediated anti-inflammatory action that operates through targeting the caspase-11 non-canonical inflammasome at triggering step of macrophage-mediated inflammatory response.
Collapse
|
22
|
Anti-Gastritis and Anti-Lung Injury Effects of Pine Tree Ethanol Extract Targeting Both NF-κB and AP-1 Pathways. Molecules 2021; 26:molecules26206275. [PMID: 34684856 PMCID: PMC8538959 DOI: 10.3390/molecules26206275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/03/2021] [Accepted: 10/13/2021] [Indexed: 02/07/2023] Open
Abstract
An ethanol extract (Pd-EE) of Pinus densiflora Siebold and Zucc was derived from the branches of pine trees. According to the Donguibogam, pine resin has the effects of lowering the fever, reducing pain, and killing worms. The purpose of this study is to investigate whether Pd-EE has anti-inflammatory effects. During in vitro trials, NO production, as well as changes in the mRNA levels of inflammation-related genes and the phosphorylation levels of related proteins, were confirmed in RAW264.7 cells activated with lipopolysaccharide depending on the presence or absence of Pd-EE treatment. The activities of transcription factors were checked in HEK293T cells transfected with adapter molecules in the inflammatory pathway. The anti-inflammatory efficacy of Pd-EE was also estimated in vivo with acute gastritis and acute lung injury models. LC-MS analysis was conducted to identify the components of Pd-EE. This extract reduced the production of NO and the mRNA expression levels of iNOS, COX-2, and IL-6 in RAW264.7 cells. In addition, protein expression levels of p50 and p65 and phosphorylation levels of FRA1 were decreased. In the luciferase assay, the activities of NF-κB and AP-1 were lowered. In acute gastritis and acute lung injury models, Pd-EE suppressed inflammation, resulting in alleviated damage.
Collapse
|
23
|
Choi SH, Won KJ, Lee R, Cho HS, Hwang SH, Nah SY. Wound Healing Effect of Gintonin Involves Lysophosphatidic Acid Receptor/Vascular Endothelial Growth Factor Signaling Pathway in Keratinocytes. Int J Mol Sci 2021; 22:10155. [PMID: 34576317 PMCID: PMC8467330 DOI: 10.3390/ijms221810155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 12/18/2022] Open
Abstract
Gintonin, a novel compound of ginseng, is a ligand of the lysophosphatidic acid (LPA) receptor. The in vitro and in vivo skin wound healing effects of gintonin remain unknown. Therefore, the objective of this study was to investigate the effects of gintonin on wound healing-linked responses, especially migration and proliferation, in skin keratinocytes HaCaT. In this study, 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide assay, Boyden chamber migration assay, scratch wound healing assay, and Western blot assay were performed. A tail wound mouse model was used for the in vivo test. Gintonin increased proliferation, migration, and scratch closure in HaCaT cells. It also increased the release of vascular endothelial growth factor (VEGF) in HaCaT cells. However, these increases, induced by gintonin, were markedly blocked by treatment with Ki16425, an LPA inhibitor, PD98059, an ERK inhibitor, 1,2-Bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis (acetoxymethyl ester), a calcium chelator, and U73122, a PLC inhibitor. The VEGF receptor inhibitor axitinib also attenuated gintonin-enhanced HaCaT cell proliferation. Gintonin increased the phosphorylation of AKT and ERK1/2 in HaCaT cells. In addition, gintonin improved tail wound healing in mice. These results indicate that gintonin may promote wound healing through LPA receptor activation and/or VEGF release-mediated downstream signaling pathways. Thus, gintonin could be a beneficial substance to facilitate skin wound healing.
Collapse
Affiliation(s)
- Sun-Hye Choi
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea; (S.-H.C.); (R.L.); (H.-S.C.)
| | - Kyung-Jong Won
- Department of Physiology and Medical Science, School of Medicine, Konkuk University, Seoul 05029, Korea;
| | - Rami Lee
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea; (S.-H.C.); (R.L.); (H.-S.C.)
| | - Han-Sung Cho
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea; (S.-H.C.); (R.L.); (H.-S.C.)
| | - Sung-Hee Hwang
- Department of Pharmaceutical Engineering, College of Health Sciences, Sangji University, Wonju 26339, Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea; (S.-H.C.); (R.L.); (H.-S.C.)
| |
Collapse
|
24
|
Luong Huynh D, Nguyen NH, Nguyen CT. Pharmacological properties of ginsenosides in inflammation-derived cancers. Mol Cell Biochem 2021; 476:3329-3340. [PMID: 33900512 DOI: 10.1007/s11010-021-04162-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/15/2021] [Indexed: 02/06/2023]
Abstract
Ginseng is commonly used as an herbal medicine for improvement of life quality. It is also used as a supplemental medication with anti-cancer drugs to enhance chemotherapy efficacy and shows some beneficial effects. Ginsenosides, also known as saponins, are the major active pharmacological compounds found in ginseng and have been extensively using in treatment of not only cancers but also the other inflammatory diseases such as atherosclerosis, diabetes, acute lung injury, cardiovascular, and infectious diseases. The anti-cancer activities of ginsengs and ginsenosides in different types of cancers have been well studied experimentally and clinically. The major anti-cancer mechanisms of ginseng compounds include inhibition of angiogenesis and metastasis as well as induction of cell cycle arrest and apoptosis. Herein, we review and summarize the current knowledge on the pharmacological effects of ginsengs and ginseng-derived compounds in the treatment of cancers. Moreover, the molecular and cellular mechanism(s) by which ginsengs and ginsenosides modulate the immune response in cancer diseases as well as ginsengs-drugs interaction are also discussed.
Collapse
Affiliation(s)
- Do Luong Huynh
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam
| | - Nguyen Hoai Nguyen
- Faculty of Biotechnology, Ho Chi Minh City Open University, 97 Vo Van Tan Street, District 3, Ho Chi Minh City, Vietnam
| | - Cuong Thach Nguyen
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
25
|
Merecz-Sadowska A, Sitarek P, Śliwiński T, Zajdel R. Anti-Inflammatory Activity of Extracts and Pure Compounds Derived from Plants via Modulation of Signaling Pathways, Especially PI3K/AKT in Macrophages. Int J Mol Sci 2020; 21:ijms21249605. [PMID: 33339446 PMCID: PMC7766727 DOI: 10.3390/ijms21249605] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/12/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
The plant kingdom is a source of important therapeutic agents. Therefore, in this review, we focus on natural compounds that exhibit efficient anti-inflammatory activity via modulation signaling transduction pathways in macrophage cells. Both extracts and pure chemicals from different species and parts of plants such as leaves, roots, flowers, barks, rhizomes, and seeds rich in secondary metabolites from various groups such as terpenes or polyphenols were included. Selected extracts and phytochemicals control macrophages biology via modulation signaling molecules including NF-κB, MAPKs, AP-1, STAT1, STAT6, IRF-4, IRF-5, PPARγ, KLF4 and especially PI3K/AKT. Macrophages are important immune effector cells that take part in antigen presentation, phagocytosis, and immunomodulation. The M1 and M2 phenotypes are related to the production of pro- and anti-inflammatory agents, respectively. The successful resolution of inflammation mediated by M2, or failed resolution mediated by M1, may lead to tissue repair or chronic inflammation. Chronic inflammation is strictly related to several disorders. Thus, compounds of plant origin targeting inflammatory response may constitute promising therapeutic strategies.
Collapse
Affiliation(s)
- Anna Merecz-Sadowska
- Department of Computer Science in Economics, University of Lodz, 90-214 Lodz, Poland
- Correspondence: (A.M.-S.); (T.Ś.)
| | - Przemysław Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, 90-151 Lodz, Poland;
| | - Tomasz Śliwiński
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
- Correspondence: (A.M.-S.); (T.Ś.)
| | - Radosław Zajdel
- Department of Medical Informatics and Statistics, Medical University of Lodz, 90-645 Lodz, Poland;
| |
Collapse
|
26
|
Euodia pasteuriana Methanol Extract Exerts Anti-Inflammatory Effects by Targeting TAK1 in the AP-1 Signaling Pathway. Molecules 2020; 25:molecules25235760. [PMID: 33297427 PMCID: PMC7730574 DOI: 10.3390/molecules25235760] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/29/2020] [Accepted: 12/05/2020] [Indexed: 12/14/2022] Open
Abstract
Euodia pasteuriana A. Chev. ex Guillaumin, also known as Melicope accedens (Blume) T.G. Hartley, is a herbal medicinal plant native to Vietnam. Although Euodia pasteuriana is used as a traditional medicine to treat a variety of inflammatory diseases, the pharmacological mechanisms related to this plant are unclear. This study aimed to investigate the anti-inflammatory effects of a methanol extract of Euodia pasteuriana leaves (Ep-ME) on the production of inflammatory mediators, the mRNA expression of proinflammatory genes, and inflammatory signaling activities in macrophage cell lines. The results showed that Ep-ME strongly suppressed the release of nitric oxide (NO) in RAW264.7 cells induced with lipopolysaccharide (LPS), pam3CysSerLys4 (Pam3CSK), and polyinosinic-polycytidylic acid (poly I:C) without cytotoxicity. A reverse transcription-polymerase chain reaction further confirmed that Ep-ME suppressed the expression of interleukin 6 (IL-6), matrix metalloproteinase-1 (MMP1), matrix metalloproteinase-2 (MMP2), matrix metalloproteinase-3 (MMP3), tumor necrosis factor-α (TNF-α), and matrix metalloproteinase-9 (MMP9) at the transcriptional level and reduced the luciferase activities of activator protein 1 (AP-1) reporter promoters. In addition, immunoblotting analyses of the whole lysate and nuclear fraction, as well as overexpression assays demonstrated that Ep-ME decreased the translocation of c-Jun and suppressed the activation of transforming growth factor beta-activated kinase 1 (TAK1) in the AP-1 signaling pathways. These results imply that Ep-ME could be developed as an anti-inflammatory agent that targets TAK1 in the AP-1 signaling pathway.
Collapse
|
27
|
Liu L, Xu FR, Wang YZ. Traditional uses, chemical diversity and biological activities of Panax L. (Araliaceae): A review. JOURNAL OF ETHNOPHARMACOLOGY 2020; 263:112792. [PMID: 32311488 DOI: 10.1016/j.jep.2020.112792] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/22/2020] [Accepted: 03/22/2020] [Indexed: 05/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax L. (Araliaceae) is globally-recognized plant resource suitable for the globalization of traditional Chinese medicines. It has traditionally been used as tonic agents in various ethnomedicinal systems of East Asia, especially in China. It is often used to regulate bodily functions and considered as adjuvant therapy for tumor, resuscitation of traumatic hemorrhagic shock, etc. AIM OF THIS REVIEW: This review systematically summarized the information on distributions, botanical characteristics, traditional uses, chemical components and biological activities of the genus Panax, in order to explore and exploit the therapeutic potential of this plant. MATERIALS AND METHODS The available information about genus Panax was collected via the online search on Web of Science, Google Scholar, PubMed, Baidu Scholar, Science Direct, China National Knowledge Infrastructure and Springer search. The keywords used include Panax, saponin, secondary metabolites, chemical components, biological activity, pharmacology, traditional medicinal uses, safety and other related words. The Plant List (www.theplantlist.org) and Catalogue of Life: 2019 Annual Checklist (www.catalogueoflife.org/col/) databases were used to provide the scientific names, subspecies classification and distribution information of Panax. RESULTS Panax is widely assessed concerning its phytochemistry and biological activities. To date, at least 748 chemical compounds from genus Panax were isolated, including saponins, flavonoids, polysaccharides, steroids and phenols. Among them, triterpenoid saponins and polysaccharides were the representative active ingredients of Panax plants, which have been widely investigated. Modern pharmacological studies showed that these compounds exhibited a wide range of biological activities in vitro and in vivo including antineoplastic, anti-inflammatory, hepatorenal protective, neuroprotective, immunoregulatory, cardioprotective and antidiabetic activities. Many studies also confirmed that the mechanisms of organ-protective were closely related to molecular signaling pathways, the expression of related proteins and antioxidant reactions. To sum up, genus Panax has high medicinal and social value, deserving further investigation. CONCLUSIONS The genus Panax is very promising to be fully utilized in the development of nutraceutical and pharmaceutical products. However, there is a lack of in-depth studies on ethnomedicinal uses of Panax plants. In addition, further studies of single chemical component should be performed based on the diversity of chemical structure, significant biological activities and clinical application. If the bioactive molecules and multicomponent interactions are discovered, it will be of great significance to the clinical application of Panax plants. It is an urgent requirement to carry out detailed phytochemical, pharmacology and clinical research on Panax classical prescriptions for the establishment of modern medication guidelines. Exploring the molecular basis of herbal synergistic actions may provide a new understanding of the complex disease mechanisms and accelerate the process of pharmaceutical development.
Collapse
Affiliation(s)
- Lu Liu
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China; College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Fu-Rong Xu
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China.
| | - Yuan-Zhong Wang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China.
| |
Collapse
|
28
|
Anti-Melanogenic Effects of Ethanol Extracts of the Leaves and Roots of Patrinia villosa (Thunb.) Juss through Their Inhibition of CREB and Induction of ERK and Autophagy. Molecules 2020; 25:molecules25225375. [PMID: 33212959 PMCID: PMC7698407 DOI: 10.3390/molecules25225375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 11/16/2022] Open
Abstract
Patrinia villosa (Thunb.) Juss is a traditional herb commonly used in East Asia including Korea, Japan, and China. It has been administered to reduce and treat inflammation in Donguibogam, Korea. The mechanism for its anti-inflammatory effects has already been reported. In this study, we confirmed the efficacy of Patrinia villosa (Thunb.) Juss ethanol extract (Pv-EE) for inducing autophagy and investigate its anti-melanogenic properties. Melanin secretion and content were investigated using cells from the melanoma cell line B16F10. Pv-EE inhibited melanin in melanogenesis induced by α-melanocyte-stimulating hormone (α-MSH). The mechanism of inhibition of Pv-EE was confirmed by suppressing the mRNA of microphthalmia-associated transcription factor (MITF), decreasing the phosphorylation level of CREB, and increasing the phosphorylation of ERK. Finally, it was confirmed that Pv-EE induces autophagy through the autophagy markers LC3B and p62, and that the anti-melanogenic effect of Pv-EE is inhibited by the autophagy inhibitor 3-methyl adenine (3-MA). These results suggest that Pv-EE may be used as a skin protectant due to its anti-melanin properties including autophagy.
Collapse
|
29
|
STAT3 Differentially Regulates TLR4-Mediated Inflammatory Responses in Early or Late Phases. Int J Mol Sci 2020; 21:ijms21207675. [PMID: 33081347 PMCID: PMC7589049 DOI: 10.3390/ijms21207675] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/02/2020] [Accepted: 10/14/2020] [Indexed: 12/17/2022] Open
Abstract
Toll-like receptor 4 (TLR4) signaling is an important therapeutic target to manage lipopolysaccharide (LPS)-induced inflammation. The transcription factor signal transducer and activator of transcription 3 (STAT3) has been identified as an important regulator of various immune-related diseases and has generated interest as a therapeutic target. Here, we investigated the time-dependent roles of STAT3 in LPS-stimulated RAW264.7 macrophages. STAT3 inhibition induced expression of the pro-inflammatory genes iNOS and COX-2 at early time points. STAT3 depletion resulted in regulation of nuclear translocation of nuclear factor (NF)-κB subunits p50 and p65 and IκBα/Akt/PI3K signaling. Moreover, we found that one Src family kinase, Lyn kinase, was phosphorylated in STAT3 knockout macrophages. In addition to using pharmacological inhibition of NF-κB, we found out that STAT3KO activation of NF-κB subunit p50 and p65 and expression of iNOS was significantly inhibited; furthermore, Akt tyrosine kinase inhibitors also inhibited iNOS and COX-2 gene expression during early time points of LPS stimulation, demonstrating an NF-κB- Akt-dependent mechanism. On the other hand, iNOS expression was downregulated after prolonged treatment with LPS. Activation of NF-κB signaling was also suppressed, and consequently, nitric oxide (NO) production and cell invasion were repressed. Overall, our data indicate that STAT3 differentially regulates early- and late-phase TLR4-mediated inflammatory responses.
Collapse
|
30
|
LOMIX, a Mixture of Flaxseed Linusorbs, Exerts Anti-Inflammatory Effects through Src and Syk in the NF-κB Pathway. Biomolecules 2020; 10:biom10060859. [PMID: 32512905 PMCID: PMC7356372 DOI: 10.3390/biom10060859] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/30/2020] [Accepted: 06/02/2020] [Indexed: 12/12/2022] Open
Abstract
Although flax (Linum usitatissimum L.) has long been used as Ayurvedic medicine, its anti-inflammatory role is still unclear. Therefore, we aimed to investigate the anti-inflammatory role of a linusorb mixture (LOMIX) recovered from flaxseed oil. Effects of LOMIX on inflammation and its mechanism of action were examined using several in vitro assays (i.e., NO production, real-time PCR analysis, luciferase-reporter assay, Western blot analysis, and kinase assay) and in vivo analysis with animal inflammation models as well as acute toxicity test. Results: LOMIX inhibited NO production, cell shape change, and inflammatory gene expression in stimulated RAW264.7 cells through direct targeting of Src and Syk in the NF-κB pathway. In vivo study further showed that LOMIX alleviated symptoms of gastritis, colitis, and hepatitis in murine model systems. In accordance with in vitro results, the in vivo anti-inflammatory effects were mediated by inhibition of Src and Syk. LOMIX was neither cytotoxic nor did it cause acute toxicity in mice. In addition, it was found that LOB3, LOB2, and LOA2 are active components included in LOMIX, as assessed by NO assay. These in vitro and in vivo results suggest that LOMIX exerts an anti-inflammatory effect by inhibiting the inflammatory responses of macrophages and ameliorating symptoms of inflammatory diseases without acute toxicity and is a promising anti-inflammatory medication for inflammatory diseases.
Collapse
|
31
|
Kim E, Jang J, Park JG, Kim KH, Yoon K, Yoo BC, Cho JY. Protein Arginine Methyltransferase 1 (PRMT1) Selective Inhibitor, TC-E 5003, Has Anti-Inflammatory Properties in TLR4 Signaling. Int J Mol Sci 2020; 21:ijms21093058. [PMID: 32357521 PMCID: PMC7246892 DOI: 10.3390/ijms21093058] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/19/2020] [Accepted: 04/25/2020] [Indexed: 12/14/2022] Open
Abstract
Protein arginine methyltransferase 1 (PRMT1) is the most predominant PRMT and is type I, meaning it generates monomethylarginine and asymmetric dimethylarginine. PRMT1 has functions in oxidative stress, inflammation and cancers, and modulates diverse diseases; consequently, numerous trials to develop PRMT1 inhibitors have been attempted. One selective PRMT1 inhibitor is N,N′-(Sulfonyldi-4,1-phenylene)bis(2-chloroacetamide), also named TC-E 5003 (TC-E). In this study, we investigated whether TC-E regulated inflammatory responses. Nitric oxide (NO) production was evaluated by the Griess assay and the inflammatory gene expression was determined by conducting RT-PCR. Western blot analyzing was carried out for inflammatory signaling exploration. TC-E dramatically reduced lipopolysaccharide (LPS)-induced NO production and the expression of inflammatory genes (inducible NO synthase (iNOS), cyclooxygenase (COX)-2, tumor necrosis factor (TNF)-α and interleukin (IL)-6) as determined using RT-PCR. TC-E downregulated the nuclear translocation of the nuclear factor (NF)-κB subunits p65 and p50 and the activator protein (AP)-1 transcriptional factor c-Jun. Additionally, TC-E directly regulated c-Jun gene expression following LPS treatment. In NF-κB signaling, the activation of IκBα and Src was attenuated by TC-E. Taken together, these data show that TC-E modulates the lipopolysaccharide (LPS)-induced AP-1 and NF-κB signaling pathways and could possibly be further developed as an anti-inflammatory compound.
Collapse
Affiliation(s)
- Eunji Kim
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (E.K.); (J.J.); (K.Y.)
| | - Jiwon Jang
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (E.K.); (J.J.); (K.Y.)
| | - Jae Gwang Park
- Division of Translational Science, Research Institute, National Cancer Center, Goyang 10408, Korea;
| | - Kyung-Hee Kim
- Proteomic Analysis Team, Research Institute, National Cancer Center, Goyang 10408, Korea;
| | - Keejung Yoon
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (E.K.); (J.J.); (K.Y.)
| | - Byong Chul Yoo
- Division of Translational Science, Research Institute, National Cancer Center, Goyang 10408, Korea;
- Correspondence: (B.C.Y.); (J.Y.C.); Tel.: +82-31-920-2342 (B.C.Y.); +82-31-290-7876 (J.Y.C.)
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (E.K.); (J.J.); (K.Y.)
- Correspondence: (B.C.Y.); (J.Y.C.); Tel.: +82-31-920-2342 (B.C.Y.); +82-31-290-7876 (J.Y.C.)
| |
Collapse
|
32
|
Kim H, Shin KK, Kim HG, Jo M, Kim JK, Lee JS, Choung ES, Li WY, Lee SW, Kim KH, Yoo BC, Cho JY. Src/NF-κB-Targeted Anti-Inflammatory Effects of Potentilla glabra var. Mandshurica (Maxim.) Hand.-Mazz. Ethanol Extract. Biomolecules 2020; 10:biom10040648. [PMID: 32331432 PMCID: PMC7225925 DOI: 10.3390/biom10040648] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/14/2020] [Accepted: 04/20/2020] [Indexed: 12/14/2022] Open
Abstract
Inflammation is a complex protective response of body tissues to harmful stimuli. Acute inflammation can progress to chronic inflammation, which can lead to severe disease. Therefore, this research focuses on the development of anti-inflammatory drugs, and natural extracts have been explored as potential agents. No study has yet examined the inflammation-associated pharmacological activity of Potentilla glabra Var. mandshurica (Maxim.) Hand.-Mazz ethanol extract (Pg-EE). To examine the mechanisms by which Pg-EE exerts anti-inflammatory effects, we studied its activities in lipopolysaccharide (LPS)-treated murine macrophage RAW264.7 cells and an HCl/EtOH-induced gastritis model. LPS-triggered nitric oxide (NO) release and mRNA levels of inducible nitric oxide synthase (iNOS), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1 beta (IL-1β) in RAW264.7 cells were suppressed by Pg-EE in a dose-dependent manner. Using a luciferase assay and western blot assay, we found that the NF-κB pathway was inhibited by Pg-EE, particularly by the decreased level of phosphorylated proteins of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) subunits (p65 and p50), inhibitor of kappa B alpha (IκBα), p85, and Src. Using an overexpression strategy, cellular thermal shift assay, and immunoprecipitation analysis, we determined that the anti-inflammatory effect of Pg-EE was mediated by the inhibition of Src. Pg-EE further showed anti-inflammatory effects in vivo in the HCl/EtOH-induced gastritis mouse model. In conclusion, Pg-EE exerts anti-inflammatory activities by targeting Src in the NF-κB pathway, and these results suggest that Pg-EE could be used as an anti-inflammatory herbal medicine.
Collapse
Affiliation(s)
- Haeyeop Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (H.K.); (K.K.S.); (H.G.K.); (M.J.); (J.K.K.)
| | - Kon Kuk Shin
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (H.K.); (K.K.S.); (H.G.K.); (M.J.); (J.K.K.)
| | - Han Gyung Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (H.K.); (K.K.S.); (H.G.K.); (M.J.); (J.K.K.)
- Research Institute of Biomolecule Control and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea
| | - Minkyeong Jo
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (H.K.); (K.K.S.); (H.G.K.); (M.J.); (J.K.K.)
| | - Jin Kyeong Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (H.K.); (K.K.S.); (H.G.K.); (M.J.); (J.K.K.)
| | - Jong Sub Lee
- DanjoungBio Co., Ltd., Wonju 26303, Korea; (J.S.L.); (E.S.C.)
| | - Eui Su Choung
- DanjoungBio Co., Ltd., Wonju 26303, Korea; (J.S.L.); (E.S.C.)
| | - Wan Yi Li
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming 650224, China;
| | - Sang Woo Lee
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea;
| | - Kyung-Hee Kim
- Biomarker Branch, Research Institute, National Cancer Center, Goyang 10408, Korea;
| | - Byong Chul Yoo
- Biomarker Branch, Research Institute, National Cancer Center, Goyang 10408, Korea;
- Correspondence: (B.C.Y.); (J.Y.C.); Tel.: +82-31-920-2342 (B.C.Y.); +82-31-290-7876 (J.Y.C.)
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (H.K.); (K.K.S.); (H.G.K.); (M.J.); (J.K.K.)
- Research Institute of Biomolecule Control and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea
- Correspondence: (B.C.Y.); (J.Y.C.); Tel.: +82-31-920-2342 (B.C.Y.); +82-31-290-7876 (J.Y.C.)
| |
Collapse
|
33
|
Anti-Inflammatory Functions of Alverine via Targeting Src in the NF-κB Pathway. Biomolecules 2020; 10:biom10040611. [PMID: 32326535 PMCID: PMC7225962 DOI: 10.3390/biom10040611] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/03/2020] [Accepted: 04/11/2020] [Indexed: 12/25/2022] Open
Abstract
Alverine, a smooth muscle relaxant, is used to relieve cramps or spasms of the stomach and intestine. Although the effects of alverine on spontaneous and induced contractile activity are well known, its anti-inflammatory activity has not been fully evaluated. In this study, we investigated the anti-inflammatory effects of alverine in vitro and in vivo. The production of nitric oxide (NO) in RAW264.7 cells activated by lipopolysaccharide (LPS) or polyinosinic:polycytidylic acid (poly (I:C)) was reduced by alverine. The mRNA expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and tumor necrosis factor-α (TNF-α) was also dose-dependently inhibited by treatment with alverine. In reporter gene assays, alverine clearly decreased luciferase activity, mediated by the transcription factor nuclear factor κB (NF-κB) in TIR-domain-containing adapter-inducing interferon-β (TRIF)- or MyD88-overexpressing HEK293 cells. Additionally, phosphorylation of NF-κB subunits and upstream signaling molecules, including p65, p50, AKT, IκBα, and Src was downregulated by 200 μM of alverine in LPS-treated RAW264.7 cells. Using immunoblotting and cellular thermal shift assays (CETSAs), Src was identified as the target of alverine in its anti-inflammatory response. In addition, HCl/EtOH-stimulated gastric ulcers in mice were ameliorated by alverine at doses of 100 and 200 mg/kg. In conclusion, alverine reduced inflammatory responses by targeting Src in the NF-κB pathway, and these findings provide new insights into the development of anti-inflammatory drugs.
Collapse
|
34
|
Loratadine, an antihistamine drug, exhibits anti-inflammatory activity through suppression of the NF- kB pathway. Biochem Pharmacol 2020; 177:113949. [PMID: 32251678 DOI: 10.1016/j.bcp.2020.113949] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/01/2020] [Indexed: 12/15/2022]
Abstract
Loratadine is an antihistamine drug that shows promise as an anti-inflammatory drug, but supportive studies are lacking. We elucidated the effects and mechanisms by which loratadine inhibits inflammatory responses. Molecular components were evaluated in macrophages by nitric oxide assay, polymerase chain reaction, luciferase assay, immunoblotting, overexpression strategies and cellular thermal shift assay. At the molecular level, loratadine reduced the levels of nitric oxide, iNOS, IL-1β, TNF-α, IL-6, and COX-2 in RAW264.7 cells treated with lipopolysaccharide. Loratadine also specifically inhibited the NF-kB pathway, targeting the Syk and Src proteins. Furthermore, loratadine bound Src in the bridge between SH2 and SH3, and bound Syk in the protein tyrosine kinase domain. The NF-kB signaling pathway was assessed along with putative binding sites through a docking approach. The anti-inflammatory effect of loratadine was tested using mouse models of gastritis, hepatitis, colitis, and peritonitis. Stomach tissue histopathology, liver morphology, and colon length in the loratadine group were improved over the group without loratadine treatment. Taken together, loratadine inhibited the inflammatory response through the NF-kB pathway by binding with the Syk and Src proteins.
Collapse
|
35
|
Hong YH, Kim JH, Cho JY. Ranunculus bulumei Methanol Extract Exerts Anti-Inflammatory Activity by Targeting Src/Syk in NF-κB Signaling. Biomolecules 2020; 10:biom10040546. [PMID: 32260181 PMCID: PMC7226355 DOI: 10.3390/biom10040546] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 02/07/2023] Open
Abstract
(1) Background: Ranunculus bulumei is a flowering plant that belongs to the Ranunculus species. Several Ranunculus species, such as R. aquatilis and R. muricatus, have traditionally been used to treat fever and rheumatism throughout Asia, suggesting that plants belonging to the Ranunculus species may have anti-inflammatory effects. To our knowledge, the pharmacological activity of R. bulumei has not been reported. Therefore, in this study, we aim to assess the anti-inflammatory activity of a methanol extract that was derived from R. bulumei (Rb-ME) in macrophage-mediated inflammatory responses and to identify the molecular mechanism that underlies any anti-inflammatory action. (2) Methods: The anti-inflammatory efficacy of Rb-ME was evaluated while using in vitro and in vivo experiments. The RAW264.7 cells and peritoneal macrophages were stimulated by lipopolysaccharide (LPS). In addition, LPS-induced peritonitis and HCl/EtOH-triggered gastritis models were produced. A nitric oxide (NO) assay, real-time PCR, luciferase reporter gene assay, western blot analysis, plasmid overexpression strategy, and in vitro kinase assay were used to determine the molecular mechanisms and target molecules of Rb-ME. The phytochemical active ingredients of Rb-ME were also identified by high performance liquid chromatograph (HPLC). (3) Results: Rb-ME reduced the production of NO and mRNA expression of iNOS, COX-2, IL-1β, and IL-6 without cytotoxicity. The protein secretion of TNF-α and IL-6 was also decreased by Rb-ME. HPLC analysis indicates that quercetin, luteolin, and kaempferol are the main active ingredients in the anti-inflammatory efficacy of Rb-ME. Rb-ME also blocked MyD88-induced NF-κB promoter activity and nuclear translocation of NF-κB subunits (p65 and p50). Moreover, Rb-ME reduced the phosphorylation of IκBα, Akt, p85, Src, and Syk, which are NF-κB upstream signaling molecules in LPS-activated RAW264.7 cells. According to the in vitro kinase assay, Rb-ME directly inhibits Syk kinase activity. The oral administration of Rb-ME alleviated inflammatory responses and the levels of p-IκBα in mice with LPS-induced peritonitis and HCl/EtOH-induced gastritis. (4) Conclusions Rb-ME has anti-inflammatory capacity by suppressing NF-κB signaling and it has been found to target Src and Syk in the NF-κB pathway. Based on this efficacy, Rb-ME could be developed as an anti-inflammatory herbal medicine.
Collapse
|
36
|
Yu T, Wang Z, Jie W, Fu X, Li B, Xu H, Liu Y, Li M, Kim E, Yang Y, Cho JY. The kinase inhibitor BX795 suppresses the inflammatory response via multiple kinases. Biochem Pharmacol 2020; 174:113797. [DOI: 10.1016/j.bcp.2020.113797] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/07/2020] [Indexed: 02/06/2023]
|
37
|
Ratan ZA, Haidere MF, Hong YH, Park SH, Lee JO, Lee J, Cho JY. Pharmacological potential of ginseng and its major component ginsenosides. J Ginseng Res 2020; 45:199-210. [PMID: 33841000 PMCID: PMC8020288 DOI: 10.1016/j.jgr.2020.02.004] [Citation(s) in RCA: 245] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 02/25/2020] [Indexed: 12/25/2022] Open
Abstract
Ginseng has been used as a traditional herb in Asian countries for thousands of years. It contains a large number of active ingredients including steroidal saponins, protopanaxadiols, and protopanaxatriols, collectively known as ginsenosides. In the last few decades, the antioxidative and anticancer effects of ginseng, in addition to its effects on improving immunity, energy and sexuality, and combating cardiovascular diseases, diabetes mellitus, and neurological diseases, have been studied in both basic and clinical research. Ginseng could be a valuable resource for future drug development; however, further higher quality evidence is required. Moreover, ginseng may have drug interactions although the available evidence suggests it is a relatively safe product. This article reviews the bioactive compounds, global distribution, and therapeutic potential of plants in the genus Panax.
Collapse
Affiliation(s)
- Zubair Ahmed Ratan
- Department of Biomedical Engineering, Khulna University of Engineering and Technology, Khulna, 9203, Bangladesh
| | - Mohammad Faisal Haidere
- Department of Public Health and Informatics, Bangabandhu Sheikh Mujib Medical University, Dhaka, 1000, Bangladesh
| | - Yo Han Hong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Sang Hee Park
- Department of Biocosmetics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jeong-Oog Lee
- Department of Aerospace Information Engineering, Bio-Inspired Aerospace Information Laboratory, Konkuk University, Seoul, Republic of Korea
| | - Jongsung Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Biocosmetics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Corresponding author. Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-Ro, Suwon, 16419, Republic of Korea.
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Biocosmetics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Research Institute of Biomolecule Control and Biomedical Institute for Convergence at SKKU (BICS), Suwon, 16419, Republic of Korea
- Corresponding author. Department of Integrative Biotechnology, Sungkyunkwan, 2066 Seobu-Ro, Suwon, 16419, Republic of Korea.
| |
Collapse
|
38
|
Jo M, Yi YS, Cho JY. Archidendron lucidum Exerts Anti-Inflammatory Effects by Targeting PDK1 in the NF- κB Pathway. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:429-444. [PMID: 32160757 DOI: 10.1142/s0192415x20500226] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pharmacological activities of some Leguminosae family members were reported. Pharmacological activities of Archidendron lucidum, a Leguminosae family member have never been explored. Therefore, this study investigated anti-inflammatory effects of an Archidendron lucidum methanol extract (Al-ME). In this study, anti-inflammatory effects of Al-ME were investigated in LPS-stimulated RAW264.7 cells and HCl/EtOH-induced gastritis mice by MTT assay, nitric oxide (NO) production assay, semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR), luciferase reporter assay, and Western blotting. High-performance liquid chromatography (HPLC) analysis identified ethnopharmacological compounds in Al-ME. Al-ME inhibited NO production without cytotoxicity in peritoneal macrophages and RAW264.7 cells stimulated with LPS or Pam3CSK4. Al-ME downregulated mRNA expression of inflammatory genes (inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2)) and pro-inflammatory cytokines (tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6). Al-ME exerted anti-inflammatory activity in LPS-stimulated RAW264.7 cells by inhibiting nuclear factor-kappa B (NF-κB) signaling pathway. HPLC analysis identified quercetin, luteolin, and kaempferol as major anti-inflammatory components in Al-ME. Al-ME ameliorated HCl/EtOH-induced gastritis symptoms in mice by suppressing iNOS and IL-6 mRNA expressions and IκBα phosphorylation. Therefore, these results suggest that Al-ME exhibited anti-inflammatory activity by targeting NF-κB signaling pathway, implying that Al-ME could be potent anti-inflammatory medications to prevent and treat inflammatory diseases.
Collapse
Affiliation(s)
- Minkyeong Jo
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea
| | - Young-Su Yi
- Department of Life Science, Kyonggi University, Suwon 16227, Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
39
|
Yang KE, Jang HJ, Hwang IH, Hong EM, Lee MG, Lee S, Jang IS, Choi JS. Stereoisomer-specific ginsenoside 20( S)-Rg3 reverses replicative senescence of human diploid fibroblasts via Akt-mTOR-Sirtuin signaling. J Ginseng Res 2020; 44:341-349. [PMID: 32148417 PMCID: PMC7031753 DOI: 10.1016/j.jgr.2019.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 08/01/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The replicative senescence of human dermal fibroblasts (HDFs) is accompanied by growth arrest. In our previous study, the treatment of senescent HDFs with Rg3(S) lowered the intrinsic reactive oxygen species (ROS) levels and reversed cellular senescence by inducing peroxiredoxin-3, an antioxidant enzyme. However, the signaling pathways involved in Rg3(S)-induced senescence reversal in HDFs and the relatedness of the stereoisomer Rg3(R) in corresponding signaling pathways are not known yet. METHODS We performed senescence-associated β-galactosidase and cell cycle assays in Rg3(S)-treated senescent HDFs. The levels of ROS, adenosine triphosphate (ATP), and cyclic adenosine monophosphate (cAMP) as well as the mitochondrial DNA copy number, nicotinamide adenine dinucleotide (NAD)+/1,4-dihydronicotinamide adenine dinucleotide (NADH) ratio, and NAD-dependent sirtuins expression were measured and compared among young, old, and Rg3(S)-pretreated old HDFs. Major signaling pathways of phosphatidylinositol 3-kinase/Akt, 5' adenosine monophosphate-activated protein kinase (AMPK), and sirtuin 1/3, including cell cycle regulatory proteins, were examined by immunoblot analysis. RESULTS Ginsenoside Rg3(S) reversed the replicative senescence of HDFs by restoring the ATP level and NAD+/NADH ratio in downregulated senescent HDFs. Rg3(S) recovered directly the cellular levels of ROS and the NAD+/NADH ratio in young HDFs inactivated by rotenone. Rg3(S) mainly downregulated phosphatidylinositol 3-kinase/Akt through the inhibition of mTOR by cell cycle regulators like p53/p21 in senescent HDFs, whereas Rg3(R) did not alter the corresponding signaling pathways. Rg3(S)-activated sirtuin 3/PGC1α to stimulate mitochondrial biogenesis. CONCLUSION Cellular molecular analysis suggests that Rg3(S) specifically reverses the replicative senescence of HDFs by modulating Akt-mTOR-sirtuin signaling to promote the biogenesis of mitochondria.
Collapse
Affiliation(s)
- Kyeong-Eun Yang
- Biological Disaster Analysis Group, Korea Basic Science Institute, Daejeon, Republic of Korea
| | - Hyun-Jin Jang
- Biological Disaster Analysis Group, Korea Basic Science Institute, Daejeon, Republic of Korea
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| | - In-Hu Hwang
- Neuroscience Research institute, Korea University College of Medicine, Seoul, Republic of Korea
| | - Eun Mi Hong
- Biological Disaster Analysis Group, Korea Basic Science Institute, Daejeon, Republic of Korea
| | - Min-Goo Lee
- Department of Physiology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Soon Lee
- Division of Bio-Analytical Science, University of Science and Technology, Daejeon, Republic of Korea
| | - Ik-Soon Jang
- Biological Disaster Analysis Group, Korea Basic Science Institute, Daejeon, Republic of Korea
- Division of Bio-Analytical Science, University of Science and Technology, Daejeon, Republic of Korea
| | - Jong-Soon Choi
- Biological Disaster Analysis Group, Korea Basic Science Institute, Daejeon, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
40
|
Aziz N, Kang YG, Kim YJ, Park WS, Jeong D, Lee J, Kim D, Cho JY. Regulation of 8-Hydroxydaidzein in IRF3-Mediated Gene Expression in LPS-Stimulated Murine Macrophages. Biomolecules 2020; 10:biom10020238. [PMID: 32033247 PMCID: PMC7072285 DOI: 10.3390/biom10020238] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/17/2020] [Accepted: 01/26/2020] [Indexed: 12/20/2022] Open
Abstract
Cytokines and chemokines are transcriptionally regulated by inflammatory transcription factors such as nuclear factor-κB (NF-κB), activator protein-1 (AP-1), and interferon regulatory factor (IRF)-3. A daidzein derivative compound, 8-hydroxydaidzein (8-HD), isolated from soy products, has recently gained attention due to various pharmacological benefits, including anti-inflammatory activities. However, regulation of the inflammatory signaling mechanism for 8-HD is still poorly understood, particularly with respect to the IRF-3 signaling pathway. In this study, we explored the molecular mechanism of 8-HD in regulating inflammatory processes, with a focus on the IRF-3 signaling pathway using a lipopolysaccharide (LPS) and polyinosinic:polycytidylic acid [Poly (I:C)] stimulated murine macrophage cell line (RAW264.7). The 8-HD downregulated the mRNA expression level of IRF-3-dependent genes by inhibiting phosphorylation of the IRF-3 transcription factor. The inhibitory mechanism of 8-HD in the IRF-3 signaling pathway was shown to inhibit the kinase activity of IKKε to phosphorylate IRF-3. This compound can also interfere with the TRIF-mediated complex formation composed of TRAF3, TANK, and IKKε leading to downregulation of AKT phosphorylation and reduction of IRF-3 activation, resulted in inhibition of IRF-3-dependent expression of genes including IFN-β, C-X-C motif chemokine 10 (CXCL10), and interferon-induced protein with tetratricopeptide repeats 1 (IFIT1). Therefore, these results strongly suggest that 8-HD can act as a promising compound with the regulatory function of IRF-3-mediated inflammatory responses.
Collapse
Affiliation(s)
- Nur Aziz
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (N.A.); (D.J.)
| | - Young-Gyu Kang
- Basic Research & Innovation Division, R&D Center, AmorePacific Corporation, Yongin 17074, Korea; (Y.-G.K.); (Y.-J.K.); (W.-S.P.)
| | - Yong-Jin Kim
- Basic Research & Innovation Division, R&D Center, AmorePacific Corporation, Yongin 17074, Korea; (Y.-G.K.); (Y.-J.K.); (W.-S.P.)
| | - Won-Seok Park
- Basic Research & Innovation Division, R&D Center, AmorePacific Corporation, Yongin 17074, Korea; (Y.-G.K.); (Y.-J.K.); (W.-S.P.)
| | - Deok Jeong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (N.A.); (D.J.)
| | - Jongsung Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (N.A.); (D.J.)
- Correspondence: (J.L.); (D.K.); (J.Y.C.); Tel.: +82-31-290-7861 (J.L.); +82-31-280-5869 (D.K.); +82-31-290-7868 (J.Y.C.)
| | - Donghyun Kim
- Basic Research & Innovation Division, R&D Center, AmorePacific Corporation, Yongin 17074, Korea; (Y.-G.K.); (Y.-J.K.); (W.-S.P.)
- Correspondence: (J.L.); (D.K.); (J.Y.C.); Tel.: +82-31-290-7861 (J.L.); +82-31-280-5869 (D.K.); +82-31-290-7868 (J.Y.C.)
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (N.A.); (D.J.)
- Correspondence: (J.L.); (D.K.); (J.Y.C.); Tel.: +82-31-290-7861 (J.L.); +82-31-280-5869 (D.K.); +82-31-290-7868 (J.Y.C.)
| |
Collapse
|
41
|
Trichosanthes tricuspidata Lour. Methanol Extract Exhibits Anti-Inflammatory Activity by Targeting Syk, Src, and IRAK1 Kinase Activity. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2019:6879346. [PMID: 31929819 PMCID: PMC6942823 DOI: 10.1155/2019/6879346] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 11/27/2019] [Indexed: 12/19/2022]
Abstract
Trichosanthes tricuspidata Lour., also known as T. palmata Roxb, T. bracteata Lam., T. puber Blume, and Modecca bracteata, is a vine belonging to the Cucurbitaceae family (English name: redball snake gourd). Distributed in China, South and East Asia, and tropical Australia, it has been traditionally used as a medicinal plant for its antifever, laxative, anthelmintic properties and for migraine treatment. In this paper, we examined the effects of Trichosanthes tricuspidata Lour. ethanol extract (Tt-ME) in vitro and in vivo. To confirm the effects of Tt-ME on inflammatory responses, we conducted experimental analyses including level of nitric oxide (NO) production, RT-PCR, and immunoblotting and using a HCl/EtOH-induced gastritis animal model. Tt-ME attenuated the release of NO and decreased mRNA levels of inducible NO synthase (iNOS), TNF-α, and IL-6 in lipopolysaccharide- (LPS-) induced macrophages in a concentration-dependent manner. Tt-ME time-dependently suppressed nuclear translocation of nuclear factor kappa B (NF-κB) subunits p50 and p65, activator protein (AP-1) subunits c-Fos and c-Jun, and STAT3 transcriptional activity by inhibiting nuclear translocation of p50, p65, c-Fos, c-Jun, and STAT3. Tt-ME significantly downregulated NF-κB, MAPK, and JAK2 signaling by targeting Syk, Src, and IRAK1 protein kinases. Furthermore, matrix metalloproteinase-9 (MMP-9) expression and cell migration were observed to be downregulated by Tt-ME in LPS-activated macrophages. In vivo studies on Tt-ME also produced similar trends in Hcl/EtOH-induced gastritis mouse models by inhibiting proinflammatory cytokines and the inflammatory signaling pathway. Our results strongly suggest that Tt-ME exerted anti-inflammatory activity in LPS-stimulated macrophages and mouse models of acute inflammatory disease.
Collapse
|
42
|
Therapeutic potential of ginsenosides on diabetes: From hypoglycemic mechanism to clinical trials. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103630] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
43
|
Choi E, Kang YG, Hwang SH, Kim JK, Hong YD, Park WS, Kim D, Kim E, Cho JY. In Vitro Effects of Dehydrotrametenolic Acid on Skin Barrier Function. Molecules 2019; 24:molecules24244583. [PMID: 31847353 PMCID: PMC6943483 DOI: 10.3390/molecules24244583] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/07/2019] [Accepted: 12/12/2019] [Indexed: 11/16/2022] Open
Abstract
Dehydrotrametenolic acid (DTA) is a lanostane-type triterpene acid isolated from Poria cocos Wolf (Polyporaceae). Several studies have reported the anti-inflammatory and antidiabetic effects of DTA; however, its effects on the skin are poorly understood. In this study, we investigated the effects of DTA on skin barrier function in vitro and its regulatory mechanism in human keratinocyte cell line HaCaT cells. DTA increased the microRNA (mRNA) expression of natural moisturizing factor-related genes, such as HAS-2, HAS-3, and AQP3 in HaCaT cells. DTA also upregulated the mRNA expression of various keratinocyte differentiation markers, including TGM-1, involucrin, and caspase-14. Moreover, the protein expression of HAS-2, HAS-3, and TGM-2 were significantly increased by DTA. To examine the regulatory mechanisms of DTA, Western blotting, luciferase-reporter assays, and RT-PCR were conducted. The phosphorylation of mitogen-activated protein kinases (MAPKs) and IκBα were increased in DTA-treated HaCaT cells. In addition, AP-1 and NF-κB transcriptional factors were dose-dependently activated by DTA. Taken together, our in vitro mechanism studies indicate that the regulatory effects of DTA on skin hydration and keratinocyte differentiation are mediated by the MAPK/AP-1 and IκBα/NF-κB pathways. In addition, DTA could be a promising ingredient in cosmetics for moisturizing and increased skin barrier function.
Collapse
Affiliation(s)
- Eunju Choi
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (E.C.); (S.-H.H.); (J.K.K.)
| | - Young-Gyu Kang
- Basic Research & Innovation Division, R&D Center, AmorePacific Corporation, Yongin 17074, Korea; (Y.-G.K.); (Y.D.H.); (W.-S.P.); (D.K.)
| | - So-Hyeon Hwang
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (E.C.); (S.-H.H.); (J.K.K.)
| | - Jin Kyeong Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (E.C.); (S.-H.H.); (J.K.K.)
| | - Yong Deog Hong
- Basic Research & Innovation Division, R&D Center, AmorePacific Corporation, Yongin 17074, Korea; (Y.-G.K.); (Y.D.H.); (W.-S.P.); (D.K.)
| | - Won-Seok Park
- Basic Research & Innovation Division, R&D Center, AmorePacific Corporation, Yongin 17074, Korea; (Y.-G.K.); (Y.D.H.); (W.-S.P.); (D.K.)
| | - Donghyun Kim
- Basic Research & Innovation Division, R&D Center, AmorePacific Corporation, Yongin 17074, Korea; (Y.-G.K.); (Y.D.H.); (W.-S.P.); (D.K.)
| | - Eunji Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (E.C.); (S.-H.H.); (J.K.K.)
- Correspondence: (E.K.); or (J.Y.C.); Tel.: +82-31-290-7860 (E.K.); +82-31-290-7868 (J.Y.C.)
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (E.C.); (S.-H.H.); (J.K.K.)
- Correspondence: (E.K.); or (J.Y.C.); Tel.: +82-31-290-7860 (E.K.); +82-31-290-7868 (J.Y.C.)
| |
Collapse
|
44
|
Hwang SH, Lorz LR, Yi DK, Noh JK, Yi YS, Cho JY. Viburnum pichinchense methanol extract exerts anti-inflammatory effects via targeting the NF-κB and caspase-11 non-canonical inflammasome pathways in macrophages. JOURNAL OF ETHNOPHARMACOLOGY 2019; 245:112161. [PMID: 31419499 DOI: 10.1016/j.jep.2019.112161] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/11/2019] [Accepted: 08/12/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Viburnum pichinchense Benth. Mainly found in Ecuador and Colombia has been ethnopharmacologically utilized as a remedy for various female disorders with kidney inflammation and uterine relaxant. AIM OF THE STUDY The pharmacological activity of Viburnum pichinchense has never been studied, therefore, this study explored anti-inflammatory activity of Viburnum pichinchense methanol extract (Vp-ME). MATERIALS AND METHODS Anti-inflammatory activities of Vp-ME were evaluated in lipopolysaccharide (LPS)-stimulated RAW264.7 cells and HCl/EtOH-induced gastritis mice by MTT assay, nitric oxide (NO) production assay, semi-quantitative reverse-transcriptase-polymerase chain reaction (RT-PCR), luciferase reporter assay, Western blotting, and enzyme-linked immunosorbent assays (ELISA). Anti-inflammatory compounds in Vp-ME were identified by high performance liquid chromatography (HPLC). RESULTS Vp-ME inhibited NO production in RAW264.7 cells stimulated with pam3CSK4, poly I:C or LPS and in LPS-stimulated peritoneal macrophages without cytotoxicity and downregulated mRNA expression of inflammatory enzymes, inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) and pro-inflammatory cytokines, tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6. The anti-inflammatory activity was accomplished by inhibiting nuclear factor-kappa B (NF-κB) transcriptional activation, upstream signaling molecules in the NF-κB pathway, and caspase-11 non-canonical inflammasome in RAW264.7 cells. Moreover, Vp-ME exhibited in vivo anti-inflammatory activity by ameliorating gastritis symptoms, inhibiting iNOS and IL-6 mRNA expression and IκBα activation in mice. HPLC analysis identified resveratrol, quercetin, luteolin, and kaempferol as the anti-inflammatory components in Vp-ME. CONCLUSION This study demonstrated Vp-ME has the anti-inflammatory activity via targeting NF-κB and caspase-11 non-canonical inflammasome pathways in macrophage-mediated inflammatory responses, suggesting Vp-ME could be developed as anti-inflammatory ethnopharmacological remedies to prevent and treat inflammatory diseases.
Collapse
Affiliation(s)
- So-Hyeon Hwang
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, South Korea.
| | - Laura Rojas Lorz
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, South Korea.
| | - Dong-Keun Yi
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, South Korea.
| | - Jin Kyoung Noh
- Instituto de BioEconomia, El Batan, Quito, 170135, Ecuador.
| | - Young-Su Yi
- Department of Pharmaceutical and Biomedical Engineering, Cheongju University, Cheongju, 28503, South Korea.
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, South Korea.
| |
Collapse
|
45
|
Lee JO, Kim JH, Kim S, Kim MY, Hong YH, Kim HG, Cho JY. Gastroprotective effects of the nonsaponin fraction of Korean Red Ginseng through cyclooxygenase-1 upregulation. J Ginseng Res 2019; 44:655-663. [PMID: 32617046 PMCID: PMC7322762 DOI: 10.1016/j.jgr.2019.11.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 10/07/2019] [Accepted: 11/01/2019] [Indexed: 01/16/2023] Open
Abstract
Background Korean Red Ginseng is known to exhibit immune-enhancing and anti-inflammatory properties. The immune-enhancing effects of the nonsaponin fraction (NSF) of Korean Red Ginseng have been studied in many reports. However, the gastroprotective effect of this fraction is not fully understood. In this study, we demonstrate the activities of NSF for gastrointestinal protection and its related critical factor. Methods The in vitro and in vivo regulatory functions of NSF on cyclooxygenase-1 (COX-1) messenger RNA and protein levels were examined by reverse transcription polymerase chain reaction and immunoblotting analyses. Gastroprotective effects of NSF were investigated by histological score, gastric juice pH, and myeloperoxidase activity on indomethacin-induced, cold stress-induced, and acetylsalicylic acid-induced gastritis and dextran sulfate sodium-induced colitis in in vivo mouse models. Results NSF did not show cytotoxicity, and it increased COX-1 messenger RNA expression and protein levels in RAW264.7 cells. This upregulation was also observed in colitis and gastritis in vivo models. In addition, NSF treatment in mice ameliorated the symptoms of gastrointestinal inflammation, including histological score, colon length, gastric juice pH, gastric wall thickness, and myeloperoxidase activity. Conclusion These results suggest that NSF has gastroprotective effects on gastritis and colitis in in vivo mouse models through COX-1 upregulation.
Collapse
Affiliation(s)
- Jeong-Oog Lee
- Department of Aerospace Information Engineering, Bio-Inspired Aerospace Information Laboratory, Konkuk University, Seoul, Republic of Korea
| | - Ji Hye Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sunggyu Kim
- Research and Business Foundation, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Biocosmetics, Sungkyunkwan University, Suwon, Republic of Korea
| | - Mi-Yeon Kim
- School of Systems Biomedical Science, Soongsil University, Seoul, Republic of Korea
| | - Yo Han Hong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
- Corresponding author: Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Suwon, 16419, Republic of Korea.
| | - Han Gyung Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
- Corresponding author: Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Suwon 16419, Republic of Korea.
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
- Research and Business Foundation, Sungkyunkwan University, Suwon, Republic of Korea
- Corresponding author: Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Suwon, 16419, Republic of Korea.
| |
Collapse
|
46
|
Shin KK, Park JG, Hong YH, Aziz N, Park SH, Kim S, Kim E, Cho JY. Anti-Inflammatory Effects of Licania macrocarpa Cuatrec Methanol Extract Target Src- and TAK1-Mediated Pathways. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:4873870. [PMID: 31611922 PMCID: PMC6757254 DOI: 10.1155/2019/4873870] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/13/2019] [Accepted: 08/17/2019] [Indexed: 12/15/2022]
Abstract
In this study, we investigated the anti-inflammatory effects of Licania macrocarpa Cuatrec methanol extract (Lm-ME) in vitro and in vivo and found pharmacological target proteins of Lm-ME in TLR4-mediated inflammatory signaling. This extract reduced NO production and mRNA expression of inflammatory cytokines such as iNOS, COX-2, IL-6, and IL-1β. In the NF-κB- and AP-1-mediated luciferase reporter gene assay, transcription factor activities decreased under cotransfection with MyD88 or TRIF. Phosphorylated protein levels of Src, PI3K, IKKα/β, and IκBα as well as p50 and p65 in the NF-κB signal pathway were downregulated, and phosphorylation of TAK1, MEK1/2, MKK4/7, and MKK3/6 as well as ERK, JNK, and p38 was decreased in the AP-1 signal pathway. Through overexpression of HA-Src and HA-TAK1, respectively, Lm-ME inhibited autophosphorylation of overexpressed proteins and thereby activated fewer downstream signaling molecules. Lm-ME also attenuated stomach ulcers in an HCl/EtOH-induced acute gastritis model mice, and COX-2 mRNA expression and phosphorylated TAK1 levels in gastric tissues were diminished. The flavonoids kaempferol and quercetin were identified in the HPLC analysis of Lm-ME; both are actively anti-inflammatory. Therefore, these results suggest that Lm-ME can be used for anti-inflammatory remedy by targeting Src and TAK1.
Collapse
Affiliation(s)
- Kon Kuk Shin
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jae Gwang Park
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Division of Translational Science, Research Institute, National Cancer Center, Goyang 10408, Republic of Korea
| | - Yo Han Hong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Nur Aziz
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sang Hee Park
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sunggyu Kim
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Research and Business Foundation, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Eunji Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
47
|
Kim E, Han SY, Hwang K, Kim D, Kim EM, Hossain MA, Kim JH, Cho JY. Antioxidant and Cytoprotective Effects of (-)-Epigallocatechin-3-(3″- O-methyl) Gallate. Int J Mol Sci 2019; 20:ijms20163993. [PMID: 31426336 PMCID: PMC6719974 DOI: 10.3390/ijms20163993] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/12/2019] [Accepted: 08/14/2019] [Indexed: 01/23/2023] Open
Abstract
Reactive oxygen species (ROS) are generated from diverse cellular processes or external sources such as chemicals, pollutants, or ultraviolet (UV) irradiation. Accumulation of radicals causes cell damage that can result in degenerative diseases. Antioxidants remove radicals by eliminating unpaired electrons from other molecules. In skin health, antioxidants are essential to protect cells from the environment and prevent skin aging. (-)-Epigallocatechin-3-(3″-O-methyl) gallate (3″Me-EGCG) has been found in limited oolong teas or green teas with distinctive methylated form, but its precise activities have not been fully elucidated. In this study, we examined the antioxidant roles of 3″Me-EGCG in keratinocytes (HaCaT cells). 3″Me-EGCG showed scavenging effects in cell and cell-free systems. Under H2O2 exposure, 3″Me-EGCG recovered cell viability and increased the expression of heme oxygenase 1 (HO-1). Under ultraviolet B (UVB) and sodium nitroprusside (SNP) exposure, 3″Me-EGCG protected keratinocytes and regulated the survival protein AKT1. By regulating the AKT1/NF-κB pathway, 3″Me-EGCG augmented cell survival and proliferation in HaCaT cells. These results indicate that 3″Me-EGCG exhibits antioxidant properties, resulting in cytoprotection against various external stimuli. In conclusion, our findings suggest that 3″Me-EGCG can be used as an ingredient of cosmetic products or health supplements.
Collapse
Affiliation(s)
- Eunji Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea
| | - Sang Yun Han
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea
- Daewoong Pharmaceutical Co., Yongin 17028, Korea
| | - Kyeonghwan Hwang
- Basic Research & Innovation vision, R&D Center, AmorePacific Corporation, Yongin 17074, Korea
| | - Donghyun Kim
- Basic Research & Innovation vision, R&D Center, AmorePacific Corporation, Yongin 17074, Korea
| | - Eun-Mi Kim
- Basic Research & Innovation vision, R&D Center, AmorePacific Corporation, Yongin 17074, Korea
| | | | - Jong-Hoon Kim
- College of Veterinary Medicine, Chonbuk National University, Iksan 54596, Korea.
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea.
| |
Collapse
|
48
|
Choi E, Kim MY, Cho JY. Anti-inflammatory activities of Canarium subulatum Guillaumin methanol extract operate by targeting Src and Syk in the NF-κB pathway. JOURNAL OF ETHNOPHARMACOLOGY 2019; 238:111848. [PMID: 30951845 DOI: 10.1016/j.jep.2019.111848] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/24/2019] [Accepted: 03/31/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Canarium subulatum Guillaumin is an herbal medicinal plant native to Southeast Asia. Ethnopharmacological evidence suggests that plants of the genus Canarium cure a variety of inflammatory diseases. AIM OF THE STUDY The pharmacological mechanisms of C. subulatum Guillaumin remain poorly understood. In this study, we investigate inflammatory mechanisms and target molecules using C. subulatum Guillaumin methanol extract (Cs-ME) in inflammatory reactions managed by macrophages. MATERIALS AND METHODS To identify the anti-inflammatory activities of Cs-ME, lipopolysaccharide (LPS)-stimulated macrophages and a murine HCl/EtOH-induced gastritis model were chosen. The luciferase reporter gene assay, Western blot analysis, overexpression strategy, and the cellular thermal shift assay (CETSA) were employed to investigate the molecular mechanisms and target enzymes of Cs-ME. The active ingredients of this extract were also determined by HPLC. RESULTS Released levels of nitric oxide (NO) and mRNA expression levels of iNOS and IL-6 were downregulated by Cs-ME without exhibiting cytotoxicity. This extract inhibited MyD88-induced promoter activity and the nuclear translocation of nuclear factor (NF)-κB. Moreover, we found that Cs-ME reduced the phosphorylation of NF-κB upstream signaling molecules including IκBα, IKKα/β, Src, and Syk in LPS-stimulated macrophage-like RAW264.7 cells. The results of Western blot and CETSA confirmed that Src and Syk are anti-inflammatory targets of Cs-ME. In addition, orally injected Cs-ME alleviated HCl/EtOH-induced gastric ulcers in mice. HPLC analysis indicated that quercetin, luteolin, and kaempferol are major active components of this extract with anti-inflammatory activity. CONCLUSIONS Cs-ME exhibits anti-inflammatory effects in vitro and in vivo by targeting Src and Syk in the NF-κB signaling pathway. Consequently, Cs-ME could be developed as an anti-inflammatory herbal medicine.
Collapse
Affiliation(s)
- Eunju Choi
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Mi-Yeon Kim
- School of Systems Biomedical Science, Soongsil University, Seoul, 06978, Republic of Korea.
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
49
|
Protium javanicum Burm. Methanol Extract Attenuates LPS-Induced Inflammatory Activities in Macrophage-Like RAW264.7 Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:2910278. [PMID: 31118953 PMCID: PMC6500672 DOI: 10.1155/2019/2910278] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/11/2019] [Accepted: 04/10/2019] [Indexed: 02/07/2023]
Abstract
Protium javanicum Burm. f. is a medicinal plant used in traditional medicine. Gum and oleoresins from this plant have been used as anti-inflammatory agents for treating ulcers, headaches, eyelid inflammation, and rheumatic pain. However, its anti-inflammatory mechanism of action is still unknown. To better understand the mechanism, we used lipopolysaccharide- (LPS-) treated RAW264.7 cells to measure inflammatory mediators with the Griess assay and to identify target signaling molecules by immunoblot analysis. In this study, we report that the Protium javanicum methanol extract (Pj-ME) plays an important role in suppressing nitric oxide (NO) levels without cytotoxicity. The effect of Pj-ME in LPS-induced expression leads to reduced inflammatory cytokine expression, specifically inducible nitric oxide synthase (iNOS), cyclooxygenase (COX-2), and tumor necrosis factor (TNF-α). Pj-ME significantly inhibited LPS-induced protein expression of the nuclear factor-kappa B (NF-κB) signaling pathway in a time-dependent manner. Syk and Src were identified as putative signaling molecules of Pj-ME-mediated anti-inflammatory activity, which were inhibited by Pj-ME. We demonstrated that Pj-ME controls the STAT3 signaling pathway by suppressing STAT3 and JAK phosphorylation and also downregulates the gene expression of IL-6. Therefore, these results elucidate Pj-ME as a novel anti-inflammatory naturally derived drug with anti-inflammatory and antioxidant properties which may be subject to therapeutic and prognostic relevance.
Collapse
|
50
|
Kim HG, Yang WS, Hong YH, Kweon DH, Lee J, Kim S, Cho JY. Anti-inflammatory functions of the CDC25 phosphatase inhibitor BN82002 via targeting AKT2. Biochem Pharmacol 2019; 164:216-227. [PMID: 30980807 DOI: 10.1016/j.bcp.2019.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 04/08/2019] [Indexed: 11/28/2022]
Abstract
This study presents BN82002 as an anti-inflammatory drug candidate. It was found that BN82002 inhibited the production of nitric oxide (NO) and prostaglandin E2 (PGE2) in RAW 264.7 cells and peritoneal macrophages that were activated by toll-like receptor (TLR) 4 ligand, lipopolysaccharide (LPS). BN82002 dose-dependently down-regulated mRNA levels of nitric oxide synthase, tumor necrosis factor-α, and cyclooxygenase-2. The nuclear translocation of nuclear factor (NF)-κB (p65 and p50) was also blocked by BN82002 in RAW265.7 cells stimulated by LPS. According to reporter gene assay performed with NF-κB construct, BN82002 clearly reduced increased level of luciferase activity mediated by transcription factor NF-κB in LPS-treated RAW264.7 cells and in MyD88- and AKT2-overexpressing HEK293 cells. However, BN82002 did not inhibit NF-κB activity in AKT1- or IKKβ-overexpressing HEK293 cells. NF-κB upstream signaling events specifically targeted AKT2 but had no effect on AKT1. The specific target of BN82002 was Tyr-178 in AKT2. BN82002 bound to Tyr-178 and interrupted the kinase activity of AKT2, according to a cellular thermal shift assay analysis of the interaction of BN82002 with AKT2 and an AKT2 mutant (Tyr-178 mutated to Ala; AKT2 Y178A). These results suggest that BN82002 could reduce inflammatory pathway by controlling NF-κB pathway and specifically targeting AKT2.
Collapse
Affiliation(s)
- Han Gyung Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Woo Seok Yang
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yo Han Hong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Dae-Hyuk Kweon
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jongsung Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Sunggyu Kim
- Research and Business Foundation, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|