1
|
Qi L, Hao T, Chen K, Zheng L, Guan H, Zhou W, Yang J, Guan C. Soil temperature elevation enhances phenanthrene phytoremediation by maize through improvement of plant growth and soil microbial activity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109844. [PMID: 40168855 DOI: 10.1016/j.plaphy.2025.109844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/20/2025] [Accepted: 03/26/2025] [Indexed: 04/03/2025]
Abstract
As persistent organic pollutants (POPs), excessive accumulation of polycyclic aromatic hydrocarbons (PAHs) in soil poses a serious threat to human health and ecosystem security. Phytoremediation is considered to be a green and sustainable remediation method, during which the plants growth status and the soil ecosystem health may be influenced by soil temperature. To investigate the role of temperature elevation in the phytoremediation of phenanthrene (PHE)-contaminated soils, four kinds of soil temperatures for maize cultivation were set up in this study: ambient temperature (around 23 °C), 26 °C, 28 °C and 30 °C. The results showed that the removal efficiency of soil PHE significantly increased in the 28 °C treatment group, and the accumulation of PHE in maize was significantly lower than that of the 23 °C group. In addition, the results indicated that appropriate soil temperature elevation could effectively enhance maize growth and improve phytoremediation efficiency by regulating maize K+/Na+ ratio, improving soil sucrase, catalase and urease activities and increasing the abundance of some PAHs-degrading bacteria. Overall, this study was the first to find that soil temperature could improve phytoremediation efficiency by regulating soil microbiological systems and promoting maize growth. This study not only demonstrated the potential impact of soil temperature regulation on phytoremediation efficiency, but also bridged the gap between current theoretical and practical research on the optimization of phytoremediation techniques using temperature factors, contributing to the design of efficient and sustainable remediation strategies.
Collapse
Affiliation(s)
- Lihua Qi
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Tianlong Hao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Ke Chen
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Lixue Zheng
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Huijun Guan
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Wenqing Zhou
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jingjing Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Chunfeng Guan
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
2
|
Zhang Y, Qian F, Bao Y. Variations of microbiota and metabolites in rhizosphere soil of Carmona microphylla at the co-contaminated site with polycyclic aromatic hydrocarbons and heavy metals. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117734. [PMID: 39842173 DOI: 10.1016/j.ecoenv.2025.117734] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/27/2024] [Accepted: 01/12/2025] [Indexed: 01/24/2025]
Abstract
Co-contamination with organic/inorganic compounds is common in industrial area and poses a great risk to local soil ecological environment. In this study, an operating ink factory site co-contaminated with polycyclic aromatic hydrocarbons (PAHs, mild to moderate pollution level) and heavy metals (HMs, heavy pollution level) was selected and screened for native vegetation, Carmona microphylla. High-throughput sequencing and metabolomics were mainly used to investigate the responses of soil bacteria and metabolites to the composite pollution and rhizosphere effect. As the results showed, among three pollution levels, a medium level of pollution was favorable to increase the richness and diversity of soil bacterial community, while high level of pollution greatly decreased special OTUs number. In addition, HMs were the most significant factors driving bacterial community structure, especially for Cd. The influence of medium molecular weight PAHs with 4 rings (MMW-PAHs) on dominant bacteria was greater than low molecular weight PAHs with 2-3 rings (LMW-PAHs) and high molecular weight PAHs with 5-6 rings (HMW-PAHs). Soil bacterial function was affected mainly by pollution level, but not rhizosphere effect, in which high pollution level changed α diversity and structure and composition of C- and N-cycling bacteria. Rhizosphere promoted network complexity by increasing the connection densities among bacterial communities, metabolites, soil properties and the involved number of metabolites. Compared to HMs, PAHs played a more important role in shaping bacterial community through affecting metabolites in non-rhizosphere soil, which was different from rhizosphere soil with a more significant effect of HMs than PAHs. Some key bacterial taxa have established resistance to HMs in rhizosphere soils, whereas they were sensitive to compound contamination in non-rhizosphere soils. Some key bacterial taxa are resistant to HMs in rhizosphere soils, whereas they are susceptible to complex contamination in non-rhizosphere soils, which could be a consequence of the rhizosphere by regulating soil metabolism. It also provides a valuable reference for how co-contaminants and rhizosphere effect shape together soil bacterial community through the changes of soil metabolites.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education) / Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Fanghan Qian
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education) / Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yanyu Bao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education) / Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
3
|
Liu Y, Xu S, Li X, Zhang L. Clonal Integration Promotes the Photosynthesis of Clonal Plant Under Heterogeneous Pb and/or Pyrene Stress. TOXICS 2024; 12:899. [PMID: 39771114 PMCID: PMC11728559 DOI: 10.3390/toxics12120899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025]
Abstract
Clonal plants can support the growth of their ramets in heterogeneous environments through clonal integration between the ramets. However, the role of clonal integration in modulating ramet photosynthesis under toxic stress, especially combined stress, is unclear. This study examines the impact of clonal integration on Zoysia japonica under three heterogeneous stresses (Pb, pyrene, and Pb+Pyrene) with two stolon connection conditions (connected and disconnected). Our results show that clonal integration significantly enhances PN, gs, Ci, E, and CE while reducing WUE. It also improves ΦPSII, Fv'/Fm', Fv/Fm, Fv/F0, and qP while reducing NPQ. Clonal integration lowers MDA levels, increases SOD activity, and mitigates the decline in CAT and POD activity, resulting in increased biomass under stress. Furthermore, we observed that the synergistic effects of the Pb+Pyrene mixture negatively impacted the adaptability of clonal integration. Our study underscores the role of clonal integration in maintaining photosynthesis and supporting the success of clonal plants in toxic environments.
Collapse
Affiliation(s)
- Yichen Liu
- School of Environment, Liaoning University, Shenyang 110036, China; (Y.L.); (S.X.)
| | - Sunan Xu
- School of Environment, Liaoning University, Shenyang 110036, China; (Y.L.); (S.X.)
| | - Xuemei Li
- College of Life Science, Shenyang Normal University, Shenyang 110034, China;
| | - Lihong Zhang
- School of Environment, Liaoning University, Shenyang 110036, China; (Y.L.); (S.X.)
| |
Collapse
|
4
|
Wang Y, Imran MA, Zhao J, Sultan M, Li M. Single/joint effects of pyrene and heavy metals in contaminated soils on the growth and physiological response of maize ( Zea mays L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1505670. [PMID: 39687313 PMCID: PMC11648570 DOI: 10.3389/fpls.2024.1505670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/06/2024] [Indexed: 12/18/2024]
Abstract
The widespread presence of polycyclic aromatic hydrocarbons (PAHs) and toxic heavy metals in soils is having harmful effects on food crops and the environment. However, the defense mechanisms and capacity of plants to counteract these substances have not been comprehensively explored, necessitating a systematic categorization of their inhibitory effects. Accordingly, an experimental investigation was conducted to examine the growth and physiological response of maize (Zea mays L.) to different concentrations and combinations of pyrene, copper (Cu), and cadmium (Cd), with an indicator developed to assess the joint stress. The results showed that 57-day culture with contaminations significantly inhibited the plant biomass via causing root cell necrosis, inducing lipid peroxidation, and damaging photosynthesis. Cd (50-100 mg/kg) induced stronger inhibition than Cu (800-1000 mg/kg) under both single and joint stress, and their co-existence further aggravated the adverse effects and generated synergetic inhibition. Although the presence of pyrene at a low concentration (5-50 mg/kg) can somewhat diminish the metal stress, the elevated pollutant concentrations (400-750 mg/kg pyrene, 50-100 mg/kg Cd, and 800-1000 mg/kg Cu) switched the antagonistic effect to additive inhibition on maize growth. A satisfactory tolerance of a low-level pyrene and/or metal stress was determined, associated with a relative stability of chlorophyll-a (Chl-a) content and antioxidant enzymes activity. Nevertheless, the photosynthesis and antioxidant system were significantly damaged with increasing contaminant concentrations, resulting in chlorosis and biomass reduction. These findings could provide valuable knowledge for ensuring crop yield and food quality as well as implementing soil phytoremediation.
Collapse
Affiliation(s)
- Yuhui Wang
- College of Environmental Science and Engineering, Donghua University, Shanghai, China
| | - Muhammad A. Imran
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Juanjuan Zhao
- College of Environmental Science and Engineering, Donghua University, Shanghai, China
| | - Muhammad Sultan
- Department of Agricultural Engineering, Bahauddin Zakariya University, Multan, Pakistan
| | - Manjie Li
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| |
Collapse
|
5
|
Zheng X, Lin H, Du D, Li G, Alam O, Cheng Z, Liu X, Jiang S, Li J. Remediation of heavy metals polluted soil environment: A critical review on biological approaches. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116883. [PMID: 39173222 DOI: 10.1016/j.ecoenv.2024.116883] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/03/2024] [Accepted: 08/11/2024] [Indexed: 08/24/2024]
Abstract
Heavy metals (HMs) pollution is a globally emerging concern. It is difficult to cost-effectively combat such HMs polluted soil environments. The efficient remediation of HMs polluted soil is crucial to protect human health and ecological security that could be carried out by several methods. Amidst, biological remediation is the most affordable and ecological. This review focused on the principles, mechanisms, performances, and influential factors in bioremediation of HMs polluted soil. In microbial remediation, microbes can alter metallic compounds in soils. They transform these compounds into their metabolism through biosorption and bioprecipitation. The secreted microbial enzymes act as transformers and assist in HMs immobilization. The synergistic microbial effect can further improve HMs removal. In bioleaching, the microbial activity can simultaneously produce H2SO4 or organic acids and leach HMs. The production of acids and the metabolism of bacteria and fungi transform metallic compounds to soluble and extractable form. The key bioleaching mechanisms are acidolysis, complexolysis, redoxolysis and bioaccumulation. In phytoremediation, hyperaccumulator plants and their rhizospheric microbes absorb HMs by roots through absorption, cation exchange, filtration, and chemical changes. Then they exert different detoxification mechanisms. The detoxified HMs are then transferred and accumulated in their harvestable tissues. Plant growth-promoting bacteria can promote phytoremediation efficiency; however, use of chelants have adverse effects. There are some other biological methods for the remediation of HMs polluted soil environment that are not extensively practiced. Finally, the findings of this review will assist the practitioners and researchers to select the appropriate bioremediation approach for a specific soil environment.
Collapse
Affiliation(s)
- Xiaojun Zheng
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hongjun Lin
- Jiangsu Xianghe Agricultural Development Co. LTD, Lianyungang, Jiangsu 222048, China
| | - Daolin Du
- Jingjiang College, Institute of Environment and Ecology, School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Guanlin Li
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ohidul Alam
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Zheng Cheng
- Jiangsu Xianghe Agricultural Development Co. LTD, Lianyungang, Jiangsu 222048, China
| | - Xinlin Liu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shan Jiang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Jian Li
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China.
| |
Collapse
|
6
|
Pacwa-Płociniczak M, Kumor A, Bukowczan M, Sinkkonen A, Roslund M, Płociniczak T. The potential of enhanced phytoremediation to clean up multi-contaminated soil - insights from metatranscriptomics. Microbiol Res 2024; 284:127738. [PMID: 38692035 DOI: 10.1016/j.micres.2024.127738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/29/2024] [Accepted: 04/20/2024] [Indexed: 05/03/2024]
Abstract
This study aimed to (i) investigate the potential for enhanced phytoremediation to remove contaminants from soil historically co-contaminated with petroleum hydrocarbons (PHs) and heavy metals (HMs) and (ii) analyze the expression of crucial bacterial genes and whole metatranscriptomics profiles for better understanding of soil processes during applied treatment. Phytoremediation was performed using Zea mays and supported by the Pseudomonas qingdaonensis ZCR6 strain and a natural biofertilizer: meat and bone meal (MBM). In previous investigations, mechanisms supporting plant growth and PH degradation were described in the ZCR6 strain. Here, ZCR6 survived in the soil throughout the experiment, but the efficacy of PH removal from all soils fertilized with MBM reached 32 % regardless of the bacterial inoculation. All experimental groups contained 2 % (w/w) MBM. The toxic effect of this amendment on plants was detected 30 days after germination, irrespective of ZCR6 inoculation. Among the 17 genes tested using the qPCR method, only expression of the acdS gene, encoding 1-aminocyclopropane-1-carboxylic acid deaminase, and the CYP153 gene, encoding cytochrome P450-type alkane hydroxylase, was detected in soils. Metatranscriptomic analysis of soils indicated increased expression of methane particulated ammonia monooxygenase subunit A (pmoA-amoA) by Nitrosomonadales bacteria in all soils enriched with MBM compared to the non-fertilized control. We suggest that the addition of 2 % (w/w) MBM caused the toxic effect on plants via the rapid release of ammonia, and this led to high pmoA-amoA expression. In parallel, due to its wide substrate specificity, enhanced bacterial hydrocarbon removal in MBM-treated soils was observed. The metatranscriptomic results indicate that MBM application should be considered to improve bioremediation of soils polluted with PHs rather than phytoremediation. However, lower concentrations of MBM could be considered for phytoremediation enhancement. From a broader perspective, these results indicated the superior capability of metatranscriptomics to investigate the microbial mechanisms driving various bioremediation techniques.
Collapse
Affiliation(s)
- Magdalena Pacwa-Płociniczak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, Katowice 40-032, Poland.
| | - Agata Kumor
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, Katowice 40-032, Poland.
| | - Marta Bukowczan
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, Katowice 40-032, Poland.
| | - Aki Sinkkonen
- Horticulture Technologies, Natural Resources Institute Finland, Itäinen Pitkäkatu 4A, Turku, Finland.
| | - Marja Roslund
- Horticulture Technologies, Natural Resources Institute Finland, Itäinen Pitkäkatu 4A, Turku, Finland.
| | - Tomasz Płociniczak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, Katowice 40-032, Poland.
| |
Collapse
|
7
|
Kashyap P, Sharma P, Gohil R, Rajpurohit D, Mishra D, Shrivastav PS. Progress in appended calix[4]arene-based receptors for selective recognition of copper ions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123188. [PMID: 37515889 DOI: 10.1016/j.saa.2023.123188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/08/2023] [Accepted: 07/20/2023] [Indexed: 07/31/2023]
Abstract
In the past two decades, there has been significant progress in the design and development of synthetic receptors for molecular recognition as they find application in the field of chemical, biological, medical, and environmental sciences. Synthetic receptors based on calix systems appended with fluorogenic and chromogenic groups have gained considerable attention for sensing and recognition of ions and molecules. Copper (Cu2+) is an essential element required in trace amounts in all living organisms to carry out various biological processes. The aim of this review is to summarize advancement in π-conjugated fluorogenic and chromogenic groups appended to calix[4]arene motifs for detection and quantitation of Cu2+ ion. The focus is to present a comprehensive account of extended calix[4]arene systems with different linkers and highlight the unique design and binding characteristics for the recognition and sensing of Cu2+ ions.
Collapse
Affiliation(s)
- Priyanka Kashyap
- Department of Chemistry, School of Sciences, Gujarat University, Navrangpura, Ahmedabad-380009, Gujarat, India
| | - Payal Sharma
- Department of Chemistry, School of Sciences, Gujarat University, Navrangpura, Ahmedabad-380009, Gujarat, India
| | - Ritu Gohil
- Department of Chemistry, School of Sciences, Gujarat University, Navrangpura, Ahmedabad-380009, Gujarat, India
| | - Dushyantsingh Rajpurohit
- Department of Chemistry, School of Sciences, Gujarat University, Navrangpura, Ahmedabad-380009, Gujarat, India.
| | - Divya Mishra
- Department of Chemistry, School of Sciences, Gujarat University, Navrangpura, Ahmedabad-380009, Gujarat, India.
| | - Pranav S Shrivastav
- Department of Chemistry, School of Sciences, Gujarat University, Navrangpura, Ahmedabad-380009, Gujarat, India.
| |
Collapse
|
8
|
Lee YY, Lee SY, Cho KS. Long-term comparison of the performance of biostimulation and phytoextraction in soil contaminated with diesel and heavy metals. CHEMOSPHERE 2023:139332. [PMID: 37364638 DOI: 10.1016/j.chemosphere.2023.139332] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
The long-term remediation performance under the natural conditions is required to establish the appropriate remediation strategy for contaminated soil. The objective of this study was to compare the long-term remediation efficiency of biostimulation and phytoextraction in contaminated soil containing petroleum hydrocarbons (PHs) and heavy metals. Two types of contaminated soil (soil contaminated with diesel only and co-contaminated with diesel and heavy metals) were prepared. For the biostimulation treatments, the soil was amended with compost, whereas maize, a representative phytoremediation plant, was cultivated for the phytoextraction treatments. There was no significant difference in remediation performance of biostimulation and phytoextraction in the diesel-contaminated soil, in which the maximum total petroleum hydrocarbon (TPH) removability was 94-96% (p < 0.05). However, phytoextraction exhibited the higher removability for TPH and heavy metals than biostimulation in the co-contaminated soil. There was no considerable change in the TPH removal in biostimulation (16-25%), while phytoextraction showed a 75% of TPH removal rate in the co-contaminated soil. Additionally, no significant changes were observed in heavy metals concentration of biostimulation, whereas the removability of heavy metals was 33-63% in phytoextraction. Meanwhile, maize, which is a suitable plant for phytoextraction, showed a translocation factor (translocating efficiency from roots to shoots) value of >1. Correlation analysis revealed that soil properties (pH, water content, and organic content) negatively correlated with pollutants removal. Additionally, the soil bacterial communities were changed over the investigated period, and the types of pollutants exerted a significant influence on the bacterial community dynamics. This study performed a pilot-scale comparison of two types of biological remediation technologies under natural environmental conditions and provided information on changes in the bacterial community structures. This study can be useful for establishing appropriate biological remediation methods to restore soil contaminated with PHs and heavy metals.
Collapse
Affiliation(s)
- Yun-Yeong Lee
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Soo Yeon Lee
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Kyung-Suk Cho
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
9
|
Yadav S, Kumar S, Haritash AK. A comprehensive review of chlorophenols: Fate, toxicology and its treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118254. [PMID: 37295147 DOI: 10.1016/j.jenvman.2023.118254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/28/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
Chlorophenols represent one of the most abundant families of toxic pollutants emerging from various industrial manufacturing units. The toxicity of these chloroderivatives is proportional to the number and position of chlorine atoms on the benzene ring. In the aquatic environment, these pollutants accumulate in the tissues of living organisms, primarily in fishes, inducing mortality at an early embryonic stage. Contemplating the behaviour of such xenobiotics and their prevalence in different environmental components, it is crucial to understand the methods used to remove/degrade the chlorophenol from contaminated environment. The current review describes the different treatment methods and their mechanism towards the degradation of these pollutants. Both abiotic and biotic methods are investigated for the removal of chlorophenols. Chlorophenols are either degraded through photochemical reactions in the natural environment, or microbes, the most diverse communities on earth, perform various metabolic functions to detoxify the environment. Biological treatment is a slow process because of the more complex and stable structure of pollutants. Advanced Oxidation Processes are effective in degrading such organics with enhanced rate and efficiency. Based on their ability to generate hydroxyl radicals, source of energy, catalyst type, etc., different processes such as sonication, ozonation, photocatalysis, and Fenton's process are discussed for the treatment or remediation efficiency towards the degradation of chlorophenols. The review entails both advantages and limitations of treatment methods. The study also focuses on reclamation of chlorophenol-contaminated sites. Different remediation methods are discussed to restore the degraded ecosystem back in its natural condition.
Collapse
Affiliation(s)
- Shivani Yadav
- Department of Environmental Engineering, Delhi Technological University, Shahbad Daulatpur, Delhi, 110042, India.
| | - Sunil Kumar
- Solaris Chemtech Industries, Bhuj, Gujarat, India
| | - A K Haritash
- Department of Environmental Engineering, Delhi Technological University, Shahbad Daulatpur, Delhi, 110042, India
| |
Collapse
|
10
|
Liang Z, Zeng H, Kong J. Contrasting Responses and Phytoremediation Potential of Two Poplar Species to Combined Strontium and Diesel Oil Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112145. [PMID: 37299124 DOI: 10.3390/plants12112145] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023]
Abstract
The soil pollution caused by diesel oil and heavy metals has become an increasingly serious environmental issue, with negative global-scale impacts. The remediation of contaminated soil requires special attention, in which phytoremediation has emerged as an ecofriendly solution. However, the response of plants to the combined stress of diesel oil and heavy metals remains largely unknown. In this study, the aim was to investigate the potential of Populus alba and P. russkii for phytoremediation by examining their response to combined diesel oil and heavy metal stress. In a greenhouse experiment using soil contaminated with 15 mg kg-1 of diesel oil and varying concentrations of Sr (0, 10, or 100 mg kg-1), we studied the physiological and biochemical changes, as well as the Sr absorption, of P. alba and P. russkii. The results showed that at high concentrations of Sr and diesel oil, the growth of both species was substantially inhibited, but P. alba exhibited higher resistance due to its higher antioxidant enzyme activities and increased accumulation of soluble sugar and proline. Additionally, P. alba concentrated Sr in the stem, whereas P. russkii accumulated Sr in the leaf, exacerbating its negative effects. Diesel oil treatments were beneficial for Sr extraction due to cross-tolerance. Our findings indicate that P. alba is more suitable for the phytoremediation of Sr contamination due to its superior tolerance to combined stress, and we identified potential biomarkers for monitoring pollution. Therefore, this study provides a theoretical basis and implementation strategy for the remediation of soil contaminated by both heavy metals and diesel oil.
Collapse
Affiliation(s)
- Ziyan Liang
- Experimental Testing Team of Jiangxi Geological Bureau, Nanchang 330002, China
| | - Hanyong Zeng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Jijun Kong
- Yunnan Laboratory for Conservation of Rare, Endangered & Endemic Forest Plants, National Forestry and Grassland Administration, Yunnan Academy of Forestry and Grassland, Kunming 650201, China
| |
Collapse
|
11
|
Duan X, Li J, Li Y. The fate of three typical persistent organic pollutants in bioretention columns as revealed by stable carbon isotopes. CHEMOSPHERE 2023; 334:138996. [PMID: 37211166 DOI: 10.1016/j.chemosphere.2023.138996] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 05/23/2023]
Abstract
There is a lack of simple and effective methods to quantify the fate processes of persistent organic pollutants (POPs) in bioretention systems. In this study, the fate and elimination processes of three typical 13C-labeled POPs in regularly added bioretention columns were quantified using stable carbon isotope analysis techniques. The results showed that the modified media bioretention column removed more than 90% of Pyrene, PCB169 and p,p'-DDT. Media adsorption was the dominant removal mechanism for the reduction of the three exogenous organic compounds (59.1-71.8% of the input) although plant uptake (5.9-18.0%) was also important. Mineralization was effective in degrading pyrene (13.1%) but had a very limited effect on p,p'-DDT and PCB169 removal (<2.0%), the reason for which may be related to the aerobic conditions of the filter column. Volatilization was relatively weak and negligible (<1.5%). The presence of heavy metals inhibited the removal of POPs to some extent: media adsorption, mineralization and plant uptake were reduced by 4.3-6.4%, 1.8-8.3% and 1.5-3.6% respectively. This study suggests that bioretention systems are an effective measure for the sustainable removal of POPs from stormwater and that heavy metals can inhibit the overall performance of the system. Stable carbon isotope analysis techniques can help to investigate the migration and transformation of POPs in bioretention systems.
Collapse
Affiliation(s)
- Xiaolong Duan
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, 710048, China
| | - Jiake Li
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, 710048, China.
| | - Yuxing Li
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, 710048, China
| |
Collapse
|
12
|
Cao H, Li X, Qu C, Gao M, Cheng H, Ni N, Yao S, Bian Y, Gu C, Jiang X, Song Y. Bioaccessibility and Toxicity Assessment of Polycyclic Aromatic Hydrocarbons in Two Contaminated Sites. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 109:592-599. [PMID: 35635563 DOI: 10.1007/s00128-022-03530-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/12/2022] [Indexed: 06/15/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous soil contaminants, and their bioaccessibility determines their environmental risks in contaminated land. In the present study, the residual concentrations of PAHs in the soils of two industrial sites were determined, and their bioaccessibility was estimated by the hydroxypropyl-β-cyclodextrin extraction (HPCD) extraction method. The results showed heavy PAH contamination at both site S1 (0.38-3342.5 mg kg-1) and site S2 (0.2-138.18 mg kg-1), of which high molecular weight (HMW) PAHs (4-, 5-, and 6-ring compounds) accounted for approximately 80%. The average bioaccessibility of PAHs at sites S1 and S2 was 52.02% and 29.28%, respectively. The bioaccessibility of certain PAH compounds decreased with increasing ring number of the molecule. Lower PAH bioaccessibility was detected in loamy and silty soil textures than in sandy soil. Moreover, among the soil properties, the dissolved organic matter, total organic carbon, total potassium, and total manganese concentrations had significant effects on the bioaccessibility of PAHs. The toxicity analysis showed that the composition and bioaccessibility of PAHs could affect their potential toxicity in soil. We suggest that bioaccessibility should be taken into consideration when assessing the toxicity of PAHs in soil, and more attention should be given to low-ring PAHs with high bioaccessibility.
Collapse
Affiliation(s)
- Huihui Cao
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaona Li
- Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Changsheng Qu
- Jiangsu Environmental Engineering Technology Co., Ltd, Nanjing, 210000, China
| | - Meng Gao
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Hu Cheng
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Ni Ni
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, China
| | - Shi Yao
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongrong Bian
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chenggang Gu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Jiang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Song
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
13
|
Minkina T, Fedorenko A, Nevidomskaya D, Fedorenko G, Pol'shina T, Sushkova S, Chaplygin V, Beschetnikov V, Dudnikova T, Chernikova N, Lychagin M, Rajput VD. Uptake of potentially toxic elements and polycyclic aromatic hydrocarbons from the hydromorphic soil and their cellular effects on the Phragmites australis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119727. [PMID: 35820573 DOI: 10.1016/j.envpol.2022.119727] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 06/27/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
The current study provides an information on the combined effect of pollution with potentially toxic elements (PTEs) and polycyclic aromatic hydrocarbons (PAHs) in hydromorphic soils on the accumulation, growth, functional and morphological-anatomical changes of macrophyte plant, i.e., Phragmites australis Cav., as well as information about their bioindication status on the example of small rivers of the Azov basin. The territory of the lower reaches of the Kagalnik River is one of the small rivers of the Eastern Azov region was examined with different levels of PTEs contamination in soils, where the excess of the lithosphere clarkes and maximum permissible concentrations (MPC) for Mn, Cr, Zn, Pb, Cu, and Cd were found. The features of the 16 priority PAHs quantitative and qualitative composition in hydromorphic soils and P. australis were revealed. The influence of soil pollution on accumulation in P. australis, as well as changes in the morphological parameters were shown. It has been observed that morphometric changes in P. australis at sites experiencing the сontamination and salinity are reflected with the changes in the ultrastructure of plastids, mitochondria, and EPR elements of plant cells. PTEs accumulated in inactive organs and damaged cell structures. At the same time, PAHs penetrated through the biomembranes and violated their integrity, increased permeability, resulted cell disorganization, meristem, and conductive tissues of roots. The nature and extent of the structural alterations found are dependent on the type and extent of pollution in the examined regions and can be utilized as bioindicators for evaluating the degree of soil phytotoxicity characterized by the accumulation of PTE and PAHs.
Collapse
Affiliation(s)
| | | | | | - Grigoriy Fedorenko
- Federal Research Center the Southern Scientific Center of the Russian Academy of Sciences, 344006, Rostov-on-Don, Russia
| | - Tatiana Pol'shina
- Federal Research Center the Southern Scientific Center of the Russian Academy of Sciences, 344006, Rostov-on-Don, Russia
| | | | | | - Vladimir Beschetnikov
- Federal Research Center the Southern Scientific Center of the Russian Academy of Sciences, 344006, Rostov-on-Don, Russia
| | | | | | | | | |
Collapse
|
14
|
Li M, Xu M, Su A, Zhang Y, Niu L, Xu Y. Combined Phenanthrene and Copper Pollution Imposed a Selective Pressure on the Rice Root-Associated Microbiome. Front Microbiol 2022; 13:888086. [PMID: 35602076 PMCID: PMC9114715 DOI: 10.3389/fmicb.2022.888086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Combined organic and inorganic pollutants can greatly impact crops and microbes, but the interaction between coexisted pollutants and their effects on root-associated microbes under flooding conditions remains poorly understood. In this study, greenhouse experiments were conducted to investigate the individual and combined effects of phenanthrene (PHE) and copper (Cu) on rice uptake and root-associated microbial coping strategies. The results showed that more than 90% of phenanthrene was degraded, while the existence of Cu significantly reduced the dissipation of PHE in the rhizosphere, and the coexistence of phenanthrene and copper promoted their respective accumulation in plant roots. Copper played a dominant role in the interaction between these two chemicals. Microbes that can tolerate heavy metals and degrade PAHs, e.g., Herbaspirillum, Sphingobacteriales, and Saccharimonadales, were enriched in the contaminated soils. Additionally, microbes associated with redox processes reacted differently under polluted treatments. Fe reducers increased in Cu-treated soils, while sulfate reducers and methanogens were considerably inhibited under polluted treatments. In total, our results uncover the combined effect of heavy metals and polycyclic aromatic hydrocarbons on the assemblage of root-associated microbial communities in anaerobic environments and provide useful information for the selection of effective root-associated microbiomes to improve the resistance of common crops in contaminated sites.
Collapse
Affiliation(s)
- Mingyue Li
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao, China
| | - Minmin Xu
- Shandong Academy of Environmental Sciences Co., Ltd., Jinan, China
| | - Aoxue Su
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao, China
| | - Ying Zhang
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao, China
| | - Lili Niu
- Key Laboratory of Pollution Exposure and Health Intervention Technology, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, China
| | - Yan Xu
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao, China
| |
Collapse
|
15
|
Song X, Li C, Chen W. Phytoremediation potential of Bermuda grass (Cynodon dactylon (L.) pers.) in soils co-contaminated with polycyclic aromatic hydrocarbons and cadmium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113389. [PMID: 35272194 DOI: 10.1016/j.ecoenv.2022.113389] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/16/2021] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Soils co-contaminated with polycyclic aromatic hydrocarbons (PAHs) and cadmium (Cd) have serious environmental impacts and are highly toxic to humans and ecosystems. Phytoremediation is an effective biotechnology for the remediation and restoration of PAH- and Cd-polluted soils. Pot experiments were conducted to investigate the individual and combined effects of PAHs (1238.62 mg kg-1) and Cd (23.1 mg kg-1) on the phytoremediation potential of Bermuda grass grown in contaminated soils. Bermuda grass exhibited a significant decrease in plant growth rate, leaf pigment content, root activity, plant height and biomass and a remarkable increase in malondialdehyde content and electrolyte leakage when grown in PAH- and Cd-contaminated soils compared with grass grown in uncontaminated soils. The activity of soil enzymes, including urease, alkaline phosphatase, sucrose, and fluorescein diacetate hydrolysis, were reduced in soil with PAH and Cd stress. Furthermore, the toxicity of combined PAHs and Cd on Bermuda grass growth and soil enzyme activity was much higher than that of PAH or Cd stress alone, suggesting a synergistic effect of PAHs and Cd on cytotoxicity. To scavenge redundant reactive oxygen species and avoid oxidative damage, Bermuda grass increased plant catalase, superoxide dismutase, and peroxidase activity and soluble sugar and proline content. The bioconcentration factor of Cd in Bermuda grass grown under Cd alone and combined PAH and Cd exposure was greater than 1 for both, suggesting that Bermuda grass has a high Cd accumulation ability. Under PAH alone and combined PAH and Cd exposure conditions, a higher PAH removal rate (41.5-56.8%) was observed in soils planted with Bermuda grass than in unplanted soils (24.8-29.8%), indicating that Bermuda grass has a great ability to degrade PAHs. Bermuda grass showed great phytoremediation potential for the degradation of PAHs and phytoextraction of Cd in co-contaminated soils.
Collapse
Affiliation(s)
- Xiliang Song
- College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China; Shandong Provincial Engineering & Technology Research Center for Phyto-Microremediation in Saline-Alkali Land, Shandong, China
| | - Changjiang Li
- College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Weifeng Chen
- College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China; Shandong Provincial Engineering & Technology Research Center for Phyto-Microremediation in Saline-Alkali Land, Shandong, China.
| |
Collapse
|
16
|
Yuan L, Guo P, Guo S, Wang J, Huang Y. Influence of C14 alkane stress on antioxidant defense capacity, mineral nutrient element accumulation, and cadmium uptake of ryegrass. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:13857-13868. [PMID: 34595720 DOI: 10.1007/s11356-021-16806-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
In order to explore the influence of C14 alkane on physiological stress responses, mineral nutrient elements uptake, cadmium (Cd) transfer, and uptake characteristics of Lolium perenne L. (ryegrass), a series of pot trials were conducted which included a moderate level of Cd (2.182 mg·kg-1) without (control) and with five levels of C14 alkane (V/m, 0.1%, 0.2%, 0.5%, 1%, 2%). Biomass and Cd content in the root and shoot, chlorophyll content, antioxidant enzymes activity, and mineral nutrient elements in the shoot of ryegrass were determined at the end of the experiment. The results indicated that Cd uptake significantly elevated at 0.1% C14 alkane treatment, then gradually decreased with the increase of C14 alkane concentration. Compared with the control, chlorophyll content was significantly suppressed and malondialdehyde (MDA) concentration obviously increased. Superoxide dismutase (SOD) activity and catalase (CAT) activity significantly increased to prevent the C14 alkane stress. With the increase of C14 alkane, the Mn concentration gradually increased; Mg and Fe significantly decreased. Correlation analysis showed that Mn was positively correlated with SOD (with the exception of 2% treatment) and CAT (p < 0.01), and negatively correlated with Cd uptake (p < 0.01). It implied that the increase of Mn induced by C14 alkane stress was an important reason for the decrease of Cd uptake.
Collapse
Affiliation(s)
- Lizhu Yuan
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
- Institute of Applied Ecology, National-Local Joint Engineering Laboratory of Contaminated Soil Remediation By Bio-Physicochemical Synergistic Process, Chinese Academy of Sciences, Shenyang, 110016, China
| | | | - Shuhai Guo
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China.
- Institute of Applied Ecology, National-Local Joint Engineering Laboratory of Contaminated Soil Remediation By Bio-Physicochemical Synergistic Process, Chinese Academy of Sciences, Shenyang, 110016, China.
| | - Jianing Wang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| | - Yujie Huang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| |
Collapse
|
17
|
Li Y, Ning W, Zhang J, Xu S, Jiang L, Chen Z, Zhang L. Effects of Lead (Pb) and Benzo [a] Pyrene (B[a]P) and their Combined Exposure on Element Accumulation in Ryegrass (Lolium perenne L.). BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 107:955-960. [PMID: 34156501 DOI: 10.1007/s00128-021-03308-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
It was observed in this work that application of Pb and B[a]P co-exposure significantly (p < 0.05) reduced Pb content in ryegrass leaves and roots. The effect of Pb dominated the change of N, P, K, Cu, and Cr content in leaves and roots of ryegrass under joint stress of Pb and B[a]P. Principal component analysis showed that the foliar spraying of 400 μmol L-1 Pb and 80 μmol L-1 B[a]P had the best effect on improving the mineral element absorption under combined pollution. Ryegrass has strong resistance and certain Pb and B[a]P absorptive capacities, and can resist combined contamination by transferring N, P, K, Zn, Cu, and Cr contents between the overground and the root. These results highlight the potential capacity of ryegrass for use in the phytoremediation of soils contaminated by Pb and B[a]P.
Collapse
Affiliation(s)
- Yue Li
- School of Environment, Liaoning University, Shenyang, China.
| | - Wantong Ning
- School of Environment, Liaoning University, Shenyang, China
| | - Jiajiao Zhang
- School of Environment, Liaoning University, Shenyang, China
| | - Sunan Xu
- School of Environment, Liaoning University, Shenyang, China
| | - Lei Jiang
- School of Environment, Liaoning University, Shenyang, China
| | - Zhonglin Chen
- School of Environment, Liaoning University, Shenyang, China.
| | - Lihong Zhang
- School of Environment, Liaoning University, Shenyang, China.
| |
Collapse
|
18
|
Molina L, Segura A. Biochemical and Metabolic Plant Responses toward Polycyclic Aromatic Hydrocarbons and Heavy Metals Present in Atmospheric Pollution. PLANTS (BASEL, SWITZERLAND) 2021; 10:2305. [PMID: 34834668 PMCID: PMC8622723 DOI: 10.3390/plants10112305] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/18/2021] [Accepted: 10/23/2021] [Indexed: 05/17/2023]
Abstract
Heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) are toxic components of atmospheric particles. These pollutants induce a wide variety of responses in plants, leading to tolerance or toxicity. Their effects on plants depend on many different environmental conditions, not only the type and concentration of contaminant, temperature or soil pH, but also on the physiological or genetic status of the plant. The main detoxification process in plants is the accumulation of the contaminant in vacuoles or cell walls. PAHs are normally transformed by enzymatic plant machinery prior to conjugation and immobilization; heavy metals are frequently chelated by some molecules, with glutathione, phytochelatins and metallothioneins being the main players in heavy metal detoxification. Besides these detoxification mechanisms, the presence of contaminants leads to the production of the reactive oxygen species (ROS) and the dynamic of ROS production and detoxification renders different outcomes in different scenarios, from cellular death to the induction of stress resistances. ROS responses have been extensively studied; the complexity of the ROS response and the subsequent cascade of effects on phytohormones and metabolic changes, which depend on local concentrations in different organelles and on the lifetime of each ROS species, allow the plant to modulate its responses to different environmental clues. Basic knowledge of plant responses toward pollutants is key to improving phytoremediation technologies.
Collapse
Affiliation(s)
- Lázaro Molina
- Department of Environmental Protection, Estación Experimental del Zaidín, C.S.I.C., Calle Profesor Albareda 1, 18008 Granada, Spain;
| | | |
Collapse
|
19
|
Wang Y, Li M, Liu Z, Zhao J, Chen Y. Interactions between pyrene and heavy metals and their fates in a soil-maize (Zea mays L.) system: Perspectives from the root physiological functions and rhizosphere microbial community. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117616. [PMID: 34174663 DOI: 10.1016/j.envpol.2021.117616] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/30/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
The co-occurrence of polycyclic aromatic hydrocarbons (PAHs) and heavy metals in agricultural soils has become a worldwide food crop security concern. Pot experiments, rhizosphere microbial metagenomic sequencing, and root metatranscriptomic sequencing were performed to investigate the interactions among pyrene, Cu, and Cd in a soil-maize (Zea mays L.) system. This study provided direct evidence that the co-presence of PAHs and heavy metals changed the root physiological functions and the rhizosphere microbial community, which subsequently influenced the fate of the contaminants. Co-contamination at low levels tended to enhance the uptake potential and biodegradation performance of the plant, whereas increased contaminant concentrations produced opposite effects. The co-presence of 1000 mg/kg Cu decreased the abundance of Mycobacterium in the rhizosphere and reduced pyrene degradation by 12%-16%. The presence of 400-750 mg/kg pyrene altered the metabolic processes, molecular binding functions, and catalytic activity of enzymes in the maize roots, thus impeding the phytoextraction of Cu and Cd. Competitive absorption between Cu and Cd was observed for the 800-1000 mg/kg Cu and 50-100 mg/kg Cd co-treatment, in which Cu showed a competitive advantage, enhancing its root-to-shoot translocation. These findings provide important information for the production of safe crops and for the development of phytoremediation technologies.
Collapse
Affiliation(s)
- Yuhui Wang
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Manjie Li
- State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing, 100084, PR China.
| | - Zhaowei Liu
- State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing, 100084, PR China
| | - Juanjuan Zhao
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Yongcan Chen
- State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing, 100084, PR China; Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, Sichuan, PR China
| |
Collapse
|
20
|
Solá MZS, Prado C, Rosa M, Aráoz MVC, Benimeli CS, Polti MA, Alvarez A. Assessment of the Streptomyces-plant system to mitigate the impact of Cr(VI) and lindane in experimental soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:51217-51231. [PMID: 33982258 DOI: 10.1007/s11356-021-14295-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
Phytoremediation techniques have been proposed as ecological methods to clean up contaminated sites. This study is aimed to evaluate the effect of the Streptomyces sp. Waksman & Henrici and Zea mays L. plant system on the dissipation of Cr(VI) and/or lindane from a co-contaminated soil, being 2 mg kg-1 of lindane and 150 mg kg-1 of chromium used. Lindane dissipation was improved in the presence of plant-microorganism association; however, Cr(VI) removal was higher when plants or the microorganism were separately. In co-contaminated systems, chromium content in plant tissues was lower than metal content in plants grown only with Cr(VI), suggesting that lindane could interfere with metal accumulation in the plant. The high malondialdehyde (MDA) concentration detected in non-inoculated plants grown with chromium could be consequence of high metal concentration in plant tissues. Interestingly, plants inoculated with Streptomyces sp. Z38 growing with Cr(VI) showed decrease in MDA concentration, indicating that the bacterium could activate defense mechanisms in the plant. Also, inoculated plants showed the highest value of superoxide dismutase activity. Lettuce plants used as bioindicators grew better in biologically treated soils compared with lettuce grown on non-treated soil. The results presented in this work provide the basis that will allow the optimization of future trials on a larger scale.
Collapse
Affiliation(s)
- María Zoleica Simón Solá
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, Av. Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina
| | - Carolina Prado
- Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV), CONICET-UNT, Miguel Lillo 205, 4000, Tucumán, Argentina
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán (UNT), Miguel Lillo 205, 4000, Tucumán, Argentina
| | - Mariana Rosa
- Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV), CONICET-UNT, Miguel Lillo 205, 4000, Tucumán, Argentina
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán (UNT), Miguel Lillo 205, 4000, Tucumán, Argentina
| | - María Victoria Coll Aráoz
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, Av. Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán (UNT), Miguel Lillo 205, 4000, Tucumán, Argentina
| | - Claudia Susana Benimeli
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, Av. Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Catamarca, Belgrano 300, 4700, Catamarca, Argentina
| | - Marta Alejandra Polti
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, Av. Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán (UNT), Miguel Lillo 205, 4000, Tucumán, Argentina
| | - Analia Alvarez
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, Av. Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina.
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán (UNT), Miguel Lillo 205, 4000, Tucumán, Argentina.
| |
Collapse
|
21
|
Liao XY, Gong XG, Zhang LL, Cassidy DP. Micro-distribution of arsenic and polycyclic aromatic hydrocarbons and their interaction in Pteris vittata L. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117250. [PMID: 33957513 DOI: 10.1016/j.envpol.2021.117250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/19/2021] [Accepted: 04/25/2021] [Indexed: 06/12/2023]
Abstract
Interactive effects of inorganic arsenic (As) species and polycyclic aromatic hydrocarbons (PAHs) on their uptake, accumulation and translocation in the hyperaccumulator Pteris vittata L. (P. vittata) were studied hydroponically. The presence of PAHs hindered As uptake and acropetal translocation by P. vittata, decreasing As concentrations by 29.8%-54.5% in pinnae, regardless of the initial As speciation. The inhibitive effect of PAHs was 1.6-8.7 times greater for arsenite [As(III)] than for arsenate [As(V)]. Similarly, inorganic As inhibited the uptake of fluorene (FLU) and benzo[a]pyrene (BaP) by P. vittata roots by 0.4%-21.7% and by 33.1%-69.7%, respectively. Interestingly, coexposure to As and PAHs slightly enhanced the translocation of PAHs by P. vittata with their concentrations increased 0.3 to 0.8 times in shoots, except for the As(III)+BaP treatment. The antagonistic interaction between As and PAHs uptake is likely caused by competitive inhibition or oxidative stress injury. By using synchrotron radiation micro X-ray fluorescence imaging, high concentrations of As were found distributed throughout the microstructures far from main vein of the pinnae when coexposed with PAHs, the opposite of what was observed with exposure to As only. PAHs could also significantly inhibit the accumulation and distribution of As in vascular bundles in rachis treated with As(III). The results of two-photon laser scanning confocal microscopy revealed that PAHs were mainly distributed in the vascular cylinder, epidermal cells, vascular bundles, epidermis and vein tissues, and this was independent of As speciation and treatment. This work offers new positive evidence for the interaction between As and PAHs in P. vittata, presents new information on the underlying mechanisms for interactions of As and PAHs affecting their uptake and translocation within P. vittata L., and provides direction for future research on the mechanisms of PAHs uptake by plants.
Collapse
Affiliation(s)
- Xiao-Yong Liao
- Key Laboratory of Land Surface Pattern and Simulation, Beijing Key Laboratory of Environmental Damage Assessment and Remediation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xue-Gang Gong
- Key Laboratory of Land Surface Pattern and Simulation, Beijing Key Laboratory of Environmental Damage Assessment and Remediation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; Beijing General Research Institute of Mining & Metallurgy Technology Group, Beijing, 100160, China
| | - Li-Li Zhang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Daniel P Cassidy
- Department of Geological & Environmental Sciences, Western Michigan University, Kalamazoo, 49008, USA
| |
Collapse
|
22
|
Zhou C, Ma Q, Li S, Zhu M, Xia Z, Yu W. Toxicological effects of single and joint sulfamethazine and cadmium stress in soil on pakchoi (Brassica chinensis L.). CHEMOSPHERE 2021; 263:128296. [PMID: 33297238 DOI: 10.1016/j.chemosphere.2020.128296] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 06/12/2023]
Abstract
The combined pollution of heavy metals and antibiotics in soil has attracted increasing attention due to their negative effects on plant growth. The aims of this study were to evaluate the phytotoxicity of single and combined sulfamethazine (SMT) and cadmium (Cd), selected as target pollutants in soil, on growth and physiological response of pakchoi (Brassica chinensis L.). Results revealed that the soil spiked with 10 mg kg-1 Cd inhibited the pakchoi growth regardless of SMT addition. The combined effect of SMT and Cd stress on uptake of SMT or Cd by pakchoi were concerned with their combined concentration. The combined influence of high concentrations SMT and Cd (1 and 10 mg kg-1) exposure on the Cd content of pakchoi showed antagonistic effects and synergistic effects, respectively. Besides, oxidative substances and enzyme activity of pakchoi tissue were affected by Cd and SMT exposure in the soil, particularly by their joint stress. This mainly expressed as the increase of malondialdehyde (MDA), H2O2 content and antioxidant enzyme activity (superoxide dismutase (SOD), peroxidase (POD), catalase (CAT)), which could be ascribed to the induction of Cd and SMT stress. Additionally, the SMT-Cd combined stress caused more reduction in nutrients (vitamin C and sugar) of pakchoi than the correspondingly single Cd stress. In conclusion, the SMT and Cd in soil lead to their accumulation and oxidative damage in pakchoi, which disturb the antioxidant defense system and ultimately adversely affect growth and quality of pakchoi.
Collapse
Affiliation(s)
- Changrui Zhou
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiang Ma
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Shuailin Li
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Mengmeng Zhu
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhuqing Xia
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wantai Yu
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
| |
Collapse
|
23
|
He M, Tian Z, Liu Q, Guo Y. Trichoderma asperellum promotes cadmium accumulation within maize seedlings. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1997155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Mengting He
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Zengyuan Tian
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Qianqian Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yuqi Guo
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, PR China
| |
Collapse
|
24
|
Verâne J, Dos Santos NCP, da Silva VL, de Almeida M, de Oliveira OMC, Moreira ÍTA. Phytoremediation of polycyclic aromatic hydrocarbons (PAHs) in mangrove sediments using Rhizophora mangle. MARINE POLLUTION BULLETIN 2020; 160:111687. [PMID: 33181957 DOI: 10.1016/j.marpolbul.2020.111687] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 09/12/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
A phytoremediation experiment was carried out in mesocosms to investigate the performance of Rhizophora mangle in the remediation of polycyclic aromatic hydrocarbons (PAHs) in mangrove sediment contaminated with crude oil. The water pH of the experiments (phytoremediation and natural attenuation) ranged from 4.9 to 8.4 at 0 and 90 days, respectively. The oxy-reduction potential (Eh) ranged from oxidising (108.0 mV, time 0) to reducing (approximately -110.0 mV, time 90) environments. Dissolved oxygen (DO) ranged from 5.7 mg L-1 (time 0) to 4.5 mg L-1 and 3.6 mg L-1 (time 90) in phytoremediation and natural attenuation, respectively. The sediments had silty texture and an average concentration of 5% organic matter (OM). Phytoremediation (60.76%) showed better efficiency in the remediation of the 16 PAHs compared to natural attenuation (49.57%). Principal component analyses showed a correlation between the concentrations of PAHs with pH, Eh, OM and DO in both experiments.
Collapse
Affiliation(s)
- Jéssica Verâne
- Geoscience Institute, Federal University of Bahia (UFBA), Street Barão de Jeremoabo, s/n, 40170-290 Salvador, BA, Brazil.
| | - Naiara C P Dos Santos
- Department of Environmental Engineering, Polytechnic School, Federal University of Bahia (UFBA), Street Prof. Aristídes Novis, 2, Federação, 40170290 Salvador, BA, Brazil
| | - Verônica L da Silva
- Department of Environmental Engineering, Polytechnic School, Federal University of Bahia (UFBA), Street Prof. Aristídes Novis, 2, Federação, 40170290 Salvador, BA, Brazil
| | - Marcos de Almeida
- Geoscience Institute, Federal University of Bahia (UFBA), Street Barão de Jeremoabo, s/n, 40170-290 Salvador, BA, Brazil
| | - Olívia M C de Oliveira
- Geoscience Institute, Federal University of Bahia (UFBA), Street Barão de Jeremoabo, s/n, 40170-290 Salvador, BA, Brazil
| | - Ícaro T A Moreira
- Department of Environmental Engineering, Polytechnic School, Federal University of Bahia (UFBA), Street Prof. Aristídes Novis, 2, Federação, 40170290 Salvador, BA, Brazil.
| |
Collapse
|
25
|
Du J, Zhou Q, Wu J, Li G, Li G, Wu Y. Vegetation alleviate the negative effects of graphene oxide on benzo[a]pyrene dissipation and the associated soil bacterial community. CHEMOSPHERE 2020; 253:126725. [PMID: 32298916 DOI: 10.1016/j.chemosphere.2020.126725] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 03/21/2020] [Accepted: 04/05/2020] [Indexed: 06/11/2023]
Abstract
Graphene oxide (GO) will enter the soil environment in increasing amounts. The effects of GO on the dissipation of benzo[a]pyrene (B[a]P) from contaminated soil and their phytoremediation system have been explored in this study. B[a]P is a ubiquitous soil pollutant used as a representative indicator of polycyclic aromatic hydrocarbons. A pot experiment was performed to investigate the effects of GO or/and vegetation (Tagetes patula) on B[a]P dissipation and the associated bacterial communities in soil. The bacterial communities in soil were investigated by Illumina sequencing analysis. The presence of vegetation significantly enhanced the dissipation of B[a]P from soil. The addition of GO (100 mg/kg) significantly decreased the B[a]P dissipation. When vegetation and GO coexisted, the inhibition effects of GO on B[a]P dissipation were alleviated by vegetation. Compared with the control treatment, the presence of GO or vegetation had no significant effects on the richness and diversity of bacterial communities in B[a]P-contaminated soil. Compared with the presence of only vegetation, the richness and diversity all significantly decreased when vegetation and GO coexisted. And, vegetation had a greater influence on the bacterial community composition than GO. Vegetation alleviated the inhibition effects of GO on B[a]P dissipation and had a greater influence on the associated bacterial communities than GO. This work helps to understand the interactive effects of GO and vegetation on B[a]P dissipation and the associated bacterial communities in contaminated soil.
Collapse
Affiliation(s)
- Junjie Du
- College of Food Science, Shanxi Normal University, Linfen, 041004, China; NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, 100022, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.
| | - Jianhu Wu
- College of Food Science, Shanxi Normal University, Linfen, 041004, China
| | - Guifeng Li
- College of Food Science, Shanxi Normal University, Linfen, 041004, China
| | - Guoqin Li
- College of Food Science, Shanxi Normal University, Linfen, 041004, China
| | - Yongning Wu
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, 100022, China.
| |
Collapse
|
26
|
Jeelani N, Yang W, Zhu HL, An S. Phytoremediation for co-contaminated soils of cadmium and pyrene using Phragmites australis (common reed). INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 22:1385-1395. [PMID: 32673058 DOI: 10.1080/15226514.2020.1780411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Soil contamination is currently the most severe problem as it poses a toxicological impact on human health and ecosystems. A greenhouse experiment was carried out to investigate the effect of 20 and 40 mg kg-1 of cadmium (Cd) or 50 and 100 mg kg-1 of pyrene (PYR) and the combined effect of Cd-PYR on the growth of Phragmites australis together with the uptake and accumulation of Cd as well as removal of PYR. Results demonstrated that the single or co- contaminants of Cd and PYR did not affect plant growth relative to control treatments, except low Cd and high PYR treatment, which showed a significant increase in 91% biomass compared to the control. However, under the joint effect of Cd-PYR, P. australis was unwilling to uptake and translocate Cd, and bioconcentration factor (BCF) and translocation factor (TrF) values were less than one. The removal rate of PYR in the soils and soil enzymes was negatively impacted at the elevated Cd level in the soil. Our study shows that P. australis may have the potential for phytostabilization but cannot be useful for phytoextraction.
Collapse
Affiliation(s)
- Nasreen Jeelani
- School of Life Science, Nanjing University, Nanjing, PR China
- Nanjing University Ecological Research Institute of Changshu, Changshu, PR China
| | - Wen Yang
- College of Life Sciences, Shaanxi Normal University, Xi'an, PR China
| | - Hai-Liang Zhu
- School of Life Science, Nanjing University, Nanjing, PR China
| | - Shuqing An
- School of Life Science, Nanjing University, Nanjing, PR China
- Nanjing University Ecological Research Institute of Changshu, Changshu, PR China
| |
Collapse
|
27
|
Lyubun Y, Muratova A, Dubrovskaya E, Sungurtseva I, Turkovskaya O. Combined effects of cadmium and oil sludge on sorghum: growth, physiology, and contaminant removal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:22720-22734. [PMID: 32323232 DOI: 10.1007/s11356-020-08789-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 04/06/2020] [Indexed: 05/22/2023]
Abstract
The physiological and biochemical responses of Sorghum bicolor (L.) Moench. to cadmium (Cd) (30 mg kg-1) and oil sludge (OS) (16 g kg-1) present in soil both separately and as a mixture were studied in pot experiments. The addition of oil sludge as a co-contaminant decreased Cd entry into the plant by almost 80% and simultaneously decreased the stimulation of superoxide dismutase (SOD) and peroxidase. The decrease in glutathione reductase (GR) activity and the increase in glutathione-S-transferase (GST) activity under the influence of oil sludge indicated that its components were detoxified by conjugation with glutathione. Cd additionally activated the antioxidant and detoxifying potential of the plant enzymatic response to stress. This helped to enhance the degradation rate of oil sludge in the rhizosphere, in which the participation of the root-released enzymes in the degradation could be possible. Cd increased the extent of soil clean-up from oil sludge, mainly owing to the elimination of paraffins, naphthenes, and mono- and bicyclic aromatic hydrocarbons. The mutual influence of the pollutants on the biochemical responses of sorghum and on soil clean-up was evaluated. The results are important for understanding the antistress and detoxification responses of the remediating plant to combined environmental pollution.
Collapse
Affiliation(s)
- Yelena Lyubun
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov, Russia, 410049.
| | - Anna Muratova
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov, Russia, 410049
| | - Ekaterina Dubrovskaya
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov, Russia, 410049
| | - Irina Sungurtseva
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov, Russia, 410049
| | - Olga Turkovskaya
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov, Russia, 410049
| |
Collapse
|
28
|
Üreyen Esertaş ÜZ, Uzunalioğlu E, Güzel Ş, Bozdeveci A, Alpay Karaoğlu Ş. Determination of bioremediation properties of soil-borne Bacillus sp. 5O5Y11 and its effect on the development of Zea mays in the presence of copper. Arch Microbiol 2020; 202:1817-1829. [PMID: 32440759 DOI: 10.1007/s00203-020-01900-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 04/21/2020] [Accepted: 05/11/2020] [Indexed: 10/24/2022]
Abstract
Today, industrial activities lead to the accumulation of heavy metals in the soil, water, and air due to mine deposits and operations, fertilizers, and drugs used in agriculture, and urban wastes. Using microorganism bioremediation of metals is an important technique in solving these problems. Herein, a rhizoid bacterium isolated from orchids that grow in Ovit plateau was defined as Bacillus sp. 5O5Y11 by conventional and molecular methods and the bioremediation properties of strain were investigated. It was capable of growth at high salt (10-15%) concentration, wide temperature (10-45 °C) and pH range (pH 4.5-8.0), and was observed to have strong lecithinase, gelatinase activity, and nitrate reduction. When the plant growth-promoting properties of this strain were examined, strong siderophore and ammonium production were observed in in vitro conditions. Bacillus sp. 5O5Y11 was found to have high tolerance to a group of heavy metals [iron (Fe), copper (Cu), lead (Pb), silver (Ag), zinc (Zn)]. Minimum inhibition concentration (MIC) and minimum bactericidal concentration (MBC) values of copper metal on Bacillus sp. 5O5Y11 were determined as 12.5 mM and 50 mM, respectively. The effectiveness of this bacterium on the germination and growth of maize plant in the presence and absence of copper were investigated. These results suggest that Bacillus sp. 5O5Y11 is a microorganism, which has potential in metal bioremediation and plant growth promotion.
Collapse
Affiliation(s)
| | - Emel Uzunalioğlu
- Department of Biology, Faculty of Arts and Sciences, Recep Tayyip Erdoğan University, Rize, Turkey
| | - Şule Güzel
- Department of Biology, Faculty of Arts and Sciences, Recep Tayyip Erdoğan University, Rize, Turkey
| | - Arif Bozdeveci
- Department of Biology, Faculty of Arts and Sciences, Recep Tayyip Erdoğan University, Rize, Turkey
| | - Şengül Alpay Karaoğlu
- Department of Biology, Faculty of Arts and Sciences, Recep Tayyip Erdoğan University, Rize, Turkey.
| |
Collapse
|
29
|
Li X, Zhu W, Meng G, Guo R, Wang Y. Phytoremediation of alkaline soils co-contaminated with cadmium and tetracycline antibiotics using the ornamental hyperaccumulators Mirabilis jalapa L. and Tagetes patula L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:14175-14183. [PMID: 32037495 DOI: 10.1007/s11356-020-07975-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
The co-contamination of farmland soils with heavy metals and antibiotics from the application of livestock and poultry manures poses great threats to human health. Phytoremediation might be a good solution to this problem. A pot culture experiment was conducted to evaluate the remediation capacity of two ornamental hyperaccumulators, namely, Mirabilis jalapa L. and Tagetes patula L., in alkaline soils co-contaminated with cadmium (Cd) and tetracycline antibiotics (TCs). The growth of M. jalapa and T. patula was significantly influenced by the co-contaminated soil. In treatments with TCs alone, the growth of T. patula was promoted (p < 0.05), while that of M. jalapa was inhibited. In the C2T3 treatment with TCs and Cd combined, the biomass of T. patula and M. jalapa decreased by 42.27% and 56.15% in roots and by 22.24% and 32.27% for in shoots, respectively, compared with those in the same treatment without TCs. The addition of TCs increased the accumulation of Cd in treatments with less than 15.0 mg/kg Cd. In M. jalapa, the concentration of Cd increased by 4.64% and 39.69% in roots and by 30.33% and 71.71% in shoots, and that in T. patula increased by 74.66% and 11.03% in roots and by 15.36% and 17.58% in shoots, respectively, in two treatments with TCs compared with those in the treatments with Cd alone. However, the accumulated Cd amounts decreased from 36.25 to 31.91 μg/pot and increased from 201.33 to 229.26 μg/pot in C2T2 for M. jalapa and T. patula, respectively, compared with those in the treatments without TCs. The TC removal efficiencies of all treatments were above 99%, and the residual amounts of TC and OTC were higher than that of CTC. M. jalapa and T. patula are promising hyperaccumulators that can be used for the remediation of alkaline soil co-contaminated with Cd and TCs.
Collapse
Affiliation(s)
- Xuhui Li
- National Demonstration Center for Environment and Planning, Henan University, Kaifeng, 475004, China
- Key Laboratory of Environment Change & Water-land Pollution Control, College of Environment and Planning, Henan University, University of Henan Province, Kaifeng, 475004, China
- Henan Engineering Research Centre for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004, China
| | - Weigang Zhu
- National Demonstration Center for Environment and Planning, Henan University, Kaifeng, 475004, China
| | - Gengjian Meng
- National Demonstration Center for Environment and Planning, Henan University, Kaifeng, 475004, China
| | - Ruichao Guo
- National Demonstration Center for Environment and Planning, Henan University, Kaifeng, 475004, China.
- Key Laboratory of Environment Change & Water-land Pollution Control, College of Environment and Planning, Henan University, University of Henan Province, Kaifeng, 475004, China.
- Henan Engineering Research Centre for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004, China.
| | - Yulong Wang
- National Demonstration Center for Environment and Planning, Henan University, Kaifeng, 475004, China.
- Key Laboratory of Environment Change & Water-land Pollution Control, College of Environment and Planning, Henan University, University of Henan Province, Kaifeng, 475004, China.
- Henan Engineering Research Centre for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
30
|
Dai Y, Liu R, Zhou Y, Li N, Hou L, Ma Q, Gao B. Fire Phoenix facilitates phytoremediation of PAH-Cd co-contaminated soil through promotion of beneficial rhizosphere bacterial communities. ENVIRONMENT INTERNATIONAL 2020; 136:105421. [PMID: 31884414 DOI: 10.1016/j.envint.2019.105421] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/10/2019] [Accepted: 12/13/2019] [Indexed: 05/13/2023]
Abstract
Pot experiments were conducted in a growth chamber to evaluate the phytoremediation efficiency and rhizosphere regulation mechanism of Fire Phoenix (a mixture of Festuca L.) in polycyclic aromatic hydrocarbon-cadmium (PAH-Cd) co-contaminated soils. Plant biomass, removal rates of PAHs and Cd, soil enzyme activity, and soil bacterial community were determined. After 150 days of planting, the removal rates of the total 4 PAHs and Cd reached 64.57% and 40.93% in co-contaminated soils with low-PAH (104.79-144.87 mg·kg-1), and 68.29% and 25.40% in co-contaminated soils with high-PAH (169.17-197.44 mg·kg-1), respectively. The polyphenol oxidase (PPO) activity decreased in soils having Fire Phoenix, while the dehydrogenase (DHO) activity increased as the changes of DHO activity had a strong positive correlation with the removal rates of PAHs and Cd in the low-PAH soils (r = 0.862 (P < 0.006) and 0.913 (P < 0.002), respectively). Meanwhile, successional changes in the bacterial communities were detected using high-throughput 454 Gs-FLX pyrosequencing of the 16S rRNA, and these changes were especially apparent for the co-contaminated soils with the low PAH concentration. The Fire Phoenix could promote the growth of Mycobacterium, Dokdonella, Gordonia and Kaistobacter, which played important roles in PAHs degradation or Cd dissipation. These results indicated that Fire Phoenix could effectively motivate the soil enzyme and bacterial community and enhance the potential for phytoremediation of PAH-Cd co-contaminated soils.
Collapse
Affiliation(s)
- Yuanyuan Dai
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Liu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China.
| | - Yuemei Zhou
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China
| | - Na Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liqun Hou
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Ma
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
31
|
Zhang X, Su C, Liu X, Liu Z, Liang X, Zhang Y, Feng Y. Effect of plant-growth-promoting rhizobacteria on phytoremediation efficiency of Scirpus triqueter in pyrene-Ni co-contaminated soils. CHEMOSPHERE 2020; 241:125027. [PMID: 31606002 DOI: 10.1016/j.chemosphere.2019.125027] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/21/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
The aim of this study was to investigate whether the plant-growth-promoting rhizobacteria (PGPR) could enhance phytoremediation efficiency of Scirpus triqueter (S.triqueter) in the pyrene-Ni co-contaminated soil. We also expected to reveal the possible mechanism for the affected phytoremediation efficiency induced by PGPR. We used three kinds of contaminated soils (Ni-contaminated soil, pyrene-contaminated soil and pyrene-Ni co-contaminated soil) to conduct this pot study. After harvest, plants growth indicators, polyphenol oxidase (PPO) activity and soil microbial community structure of each treatment were investigated to explain the different dissipation rates of pyrene and removal rates of Ni between treatments with and without PGPR. The results showed that PGPR-inoculated S. triqueter increased dissipation rates of pyrene and removal rates of Ni in all three contaminated soils, among which Ni removal rates in Ni single contaminated soil was elevated most significantly, from 0.895‰ to 8.8‰, increasing nearly 9 folds. However, Ni removal rate efficiency in co-contaminated soil was weakened because more toxic and complicated co-contaminated soil restrained plant growth and Ni absorption. We also observed that co-contamination harmed the soil microbial community more severely than that in single pyrene or Ni contaminated soil through phospholipid fatty acids analysis. Furthermore, dissipation rates of pyrene and removal rates of Ni were found positively correlated to the PPO activity and the abundance of branched and saturated fatty acids reflected by Pearson correlation analysis.
Collapse
Affiliation(s)
- Xinying Zhang
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Chang Su
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Xiaoyan Liu
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China.
| | - Zhenguo Liu
- College of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Xia Liang
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Yanming Zhang
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Yuwei Feng
- College of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| |
Collapse
|
32
|
Janus A, Waterlot C, Douay F, Pelfrêne A. Ex situ evaluation of the effects of biochars on environmental and toxicological availabilities of metals and polycyclic aromatic hydrocarbons. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:1852-1869. [PMID: 31760614 DOI: 10.1007/s11356-019-06764-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/14/2019] [Indexed: 06/10/2023]
Abstract
The present study experimented five biochars, one made from wood (400 °C, 12 h) and four made from miscanthus cultivated on contaminated soils (temperature 400/600 °C, duration 45/90 min). They were used as amendments at a 2% application rate on soil, cultivated or not cultivated with ryegrass, contaminated with (i) metals (Cd, Pb, and Zn), (ii) eight polycyclic aromatic hydrocarbons (PAHs), and (iii) a mix of metals and PAHs. The objectives were (i) to compare the effectiveness of the five biochars on soil parameters and pollutant availability and (ii) to determine the influence of soil multicontamination and ryegrass cultivation on biochar effectiveness. The results showed that biochar application did not necessarily lead to lower pollutant extractability and metal bioaccessibility. However, differences were highlighted between the biochars. The miscanthus biochars produced at 600 °C (BM600) showed higher effectiveness at decreasing metal extractability than the miscanthus biochars produced at 400 °C (BM400) due to its better sorption characteristics. In addition, ryegrass cultivation did not impact pollutant availability but modified metal bioaccessibility, especially for the soil amended with the BM600 and the woody biochar. Moreover, the presence of PAHs also negatively impacted the metal bioaccessibility in the soil amended with the BM600, and, on the contrary, positively impacted it in the soil amended with the BM400. Complementary studies are therefore necessary to understand the mechanisms involved, particularly in a context where soils requiring remediation operations are often multicontaminated and vegetated.
Collapse
Affiliation(s)
- Adeline Janus
- Laboratoire Génie Civil et géoEnvironnement (LGCgE), Yncréa Hauts-de-France, 48 boulevard Vauban, BP 41290, 59014, Lille cedex, France.
| | - Christophe Waterlot
- Laboratoire Génie Civil et géoEnvironnement (LGCgE), Yncréa Hauts-de-France, 48 boulevard Vauban, BP 41290, 59014, Lille cedex, France
| | - Francis Douay
- Laboratoire Génie Civil et géoEnvironnement (LGCgE), Yncréa Hauts-de-France, 48 boulevard Vauban, BP 41290, 59014, Lille cedex, France
| | - Aurélie Pelfrêne
- Laboratoire Génie Civil et géoEnvironnement (LGCgE), Yncréa Hauts-de-France, 48 boulevard Vauban, BP 41290, 59014, Lille cedex, France
| |
Collapse
|
33
|
Chen F, Zeng S, Ma J, Li X, Zhang S, Zhu Q. Interactions between decabromodiphenyl ether and lead in soil-plant system. CHEMOSPHERE 2019; 236:124406. [PMID: 31545203 DOI: 10.1016/j.chemosphere.2019.124406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 06/10/2023]
Abstract
Pot experiments were conducted under abiotic conditions to investigate the interactive influence of decabromodiphenyl ether (BDE-209) and lead (Pb) on the seed germination, germ length, root exudation and physiological characteristics of tall fescue (Festuca arundinaceae), and the uptake, accumulation of Pb and BDE-209 in the plant tissues. Results show that seed germination and germ length were impacted by Pb but less influenced by BDE-209. BDE-209 spiking (10 and 50 mg/L) could alleviate the toxicity of high Pb concentration on seed germination and growth. The chlorophyll content was significantly increased at 500 mg/kg Pb but declined at 2000 mg/kg Pb. Low-level Pb contamination (500 mg/kg) activated antioxidase activity; however, 2000 mg/kg Pb significantly reduced the antioxidase activity. Plant biomass slightly decreased at 500 mg/kg Pb but significantly declined at 2000 mg/kg Pb. The addition of a moderate dosage of BDE-209 (10-50 mg/kg) lessened Pb phytotoxicity, leading to improved plant growth relative to the case of Pb spiking alone. The exudate secretion was significantly enhanced by Pb addition, but BDE-209 spiking only caused slightly increased secretion. Pb could interfere with BDE-209 adsorption and translocation of tall fescue by affecting physiological behavior of the plant, but BDE-209 exhibited little influence on the Pb fate in the plant. Overall, BDE-209 had slight interference on the impact of Pb towards tall fescue. The results demonstrate the complex interactive effects of organic pollutants and heavy metals in the soil-plant system.
Collapse
Affiliation(s)
- Fu Chen
- Low Carbon Energy Institute, China University of Mining and Technology, Xuzhou, Jiangsu, 221008, China.
| | - Siyan Zeng
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, Jiangsu, 221008, China
| | - Jing Ma
- Low Carbon Energy Institute, China University of Mining and Technology, Xuzhou, Jiangsu, 221008, China
| | - Xiaoxiao Li
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, Jiangsu, 221008, China
| | - Shaoliang Zhang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, Jiangsu, 221008, China
| | - Qianlin Zhu
- Low Carbon Energy Institute, China University of Mining and Technology, Xuzhou, Jiangsu, 221008, China
| |
Collapse
|
34
|
Effects of PGPR on growth and photosynthetic pigment of Trigonella foenum-graceum and Brassica juncea in PAH-contaminated soil. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-0780-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
35
|
Zhang X, Chen J, Liu X, Gao M, Chen X, Huang C. Nickel uptake and distribution in Agropyron cristatum L. in the presence of pyrene. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 174:370-376. [PMID: 30849657 DOI: 10.1016/j.ecoenv.2019.01.132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 01/15/2019] [Accepted: 01/21/2019] [Indexed: 06/09/2023]
Abstract
PAHs affect the uptake of heavy metal by plants. The uptake pathway, distribution and detoxification of nickel (Ni) in Agropyron cristatum L. (A. cristatum) were investigated in the presence of pyrene in this study. Most of Ni was adsorbed on the cell wall in the insoluble phosphate (57.31-72.18%) form and pectate and protein integrated (38.27-38.98%) form. Ni was transferred to the organelle (from 37.84% to 40.52%) in the presence of pyrene. The concentration of Ni in A. cristatum decreased by 27.42%; it was affected by the ATP production inhibitor and 29.49% by the P-type ATPase inhibitor. The results indicated that the uptake of Ni related closely to the synthesis and decomposition of ATP and was an active uptake process. Contents of phytochelatins (PCs) in A. cristatum in Ni contaminated soils increased by 19.97%, and an additional 4.13% increase occurred in the presence of pyrene when compared to single Ni contamination. The content of malic acid in A. cristatum was the highest for 262.78 mg g-1 in shoots and 46.81 mg g-1 in roots with Ni contamination. Besides, acetic acid in shoots and roots increased by 40.25% and 102.63% with Ni contamination, and by 61.59% and 185.71% with Ni-pyrene co-contamination. This study preliminarily explored the inhibitory mechanism of pyrene on plant uptake of Ni.
Collapse
Affiliation(s)
- Xinying Zhang
- Laboratory of Environmental Remediation, School of Environmental and Chemical Engineering, Shanghai University, No. 99, Shangda Road, Baoshan District, Shanghai 200444, China
| | - Jing Chen
- Laboratory of Environmental Remediation, School of Environmental and Chemical Engineering, Shanghai University, No. 99, Shangda Road, Baoshan District, Shanghai 200444, China
| | - Xiaoyan Liu
- Laboratory of Environmental Remediation, School of Environmental and Chemical Engineering, Shanghai University, No. 99, Shangda Road, Baoshan District, Shanghai 200444, China.
| | - Mingjing Gao
- Laboratory of Environmental Remediation, School of Environmental and Chemical Engineering, Shanghai University, No. 99, Shangda Road, Baoshan District, Shanghai 200444, China
| | - Xueping Chen
- Laboratory of Environmental Remediation, School of Environmental and Chemical Engineering, Shanghai University, No. 99, Shangda Road, Baoshan District, Shanghai 200444, China
| | - Cheng Huang
- Laboratory of Environmental Remediation, School of Environmental and Chemical Engineering, Shanghai University, No. 99, Shangda Road, Baoshan District, Shanghai 200444, China
| |
Collapse
|
36
|
Simón Solá MZ, Lovaisa N, Dávila Costa JS, Benimeli CS, Polti MA, Alvarez A. Multi-resistant plant growth-promoting actinobacteria and plant root exudates influence Cr(VI) and lindane dissipation. CHEMOSPHERE 2019; 222:679-687. [PMID: 30735968 DOI: 10.1016/j.chemosphere.2019.01.197] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/13/2019] [Accepted: 01/31/2019] [Indexed: 05/18/2023]
Abstract
The aims of this study were (1) to isolate new multi-resistant actinobacteria from soil, rhizosphere and plant samples collected from an ancient illegal pesticide storage and (2) to elucidate the effects of these microorganisms developed with maize root exudates on lindane and Cr(VI) removal. Fifty-seven phenotypically different actinobacteria were isolated and four of them, belonging to the genus Streptomyces exhibit tolerance to a mixture of lindane and Cr(VI). Two rhizospheric strains named as Streptomyces sp. Z38 and Streptomyces sp. Z2 were selected to be grown with root exudates because they showed the highest Cr(VI) and lindane removal in co-contaminated medium. When root exudates were the only carbon source, metal dissipation increased significantly either as single or mixed contaminant, compared to metal dissipation with glucose. No significant differences were found on lindane removal with root exudates or glucose, so a higher lindane concentration was evaluated. Despite of this, lindane removal remained stable while metal dissipation was notoriously lower when lindane concentration was enhanced. In addition to a good performance growing with mixed contaminants, Streptomyces strains showed plant growth promoting traits that could improve plant establishment. The results presented in this study show the importance of the screening programs addressed to find new actinobacteria able to grow in co-contaminated systems. It was also evidenced that root exudates of maize improve the growth of Streptomyces strains when they were used as carbon source, being the dissipation of Cr(VI) considerably improved in presence of lower lindane concentration.
Collapse
Affiliation(s)
- María Zoleica Simón Solá
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina
| | - Nadia Lovaisa
- Facultad de Agronomía y Zootecnia, Universidad Nacional de Tucuman, Avenida Kirchner 1900, 4000, Tucumán, Argentina
| | - Jose Sebastian Dávila Costa
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina
| | - Claudia Susana Benimeli
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Catamarca, Avenida Belgrano 300, 4700, Catamarca, Argentina
| | - Marta Alejandra Polti
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina; Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Miguel Lillo 205, 4000, Tucumán, Argentina
| | - Analia Alvarez
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina; Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Miguel Lillo 205, 4000, Tucumán, Argentina.
| |
Collapse
|
37
|
Košnář Z, Částková T, Wiesnerová L, Praus L, Jablonský I, Koudela M, Tlustoš P. Comparing the removal of polycyclic aromatic hydrocarbons in soil after different bioremediation approaches in relationto the extracellular enzyme activities. J Environ Sci (China) 2019; 76:249-258. [PMID: 30528015 DOI: 10.1016/j.jes.2018.05.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 06/09/2023]
Abstract
A 120-day experiment was conducted to compare the removal of polycyclic aromatic hydrocarbons (PAHs) from agricultural soil after natural attenuation (NA), phytoremediation (P), mycoremediation (M), and plant-assisted mycoremediation (PAM) approaches in relation to the extracellular enzyme activities in soil. The NA treatment removed the total soil PAH content negligibly. The P treatment using maize (Zea mays) enhanced only the removal of low and medium molecular PAHs. The Pleurotus ostreatus cultivated on 30-50 mm wood chip substrate used in M treatment was the most successful in the removal of majority PAHs. Therefore, significantly (p < 0.05) highest total PAH removal by 541.4 μg/kg dw (dry weight) (36%) from all tested M treatments was observed. When using the same fungal substrate together with maize in PAM treatment, the total PAH removal was not statistically different from the previous M treatment. However, the maize-assisted mycoremediation treatment significantly boosted fungal biomass, microbial and manganese peroxidase activity in soil which strongly correlated with the removal of total PAHs. The higher PAH removal in that PAM treatment could be reflected in the following post-harvest time. Our suggested M and PAM approaches could be promising in situ bioremediation strategies for PAH-contaminated soils.
Collapse
Affiliation(s)
- Zdeněk Košnář
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague 6 - Suchdol, Czech Republic.
| | - Tereza Částková
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague 6 - Suchdol, Czech Republic
| | - Lucie Wiesnerová
- Department of Horticulture, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague 6 - Suchdol, Czech Republic
| | - Lukáš Praus
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague 6 - Suchdol, Czech Republic
| | - Ivan Jablonský
- Department of Horticulture, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague 6 - Suchdol, Czech Republic
| | - Martin Koudela
- Department of Horticulture, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague 6 - Suchdol, Czech Republic
| | - Pavel Tlustoš
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague 6 - Suchdol, Czech Republic
| |
Collapse
|
38
|
Figlioli F, Sorrentino MC, Memoli V, Arena C, Maisto G, Giordano S, Capozzi F, Spagnuolo V. Overall plant responses to Cd and Pb metal stress in maize: Growth pattern, ultrastructure, and photosynthetic activity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:1781-1790. [PMID: 30456613 DOI: 10.1007/s11356-018-3743-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/12/2018] [Indexed: 05/20/2023]
Abstract
This study provides a full description of the responses of the crop energy plant Zea mays to stress induced by Cd and Pb, in view of a possible extensive use in phytoattenuation of metal-polluted soils. In this perspective, (i) the uptake capability in root and shoot, (ii) the changes in growth pattern and cytological traits, and (iii) the photosynthetic efficiency based on photochemistry and the level of key proteins were investigated in hydroponic cultures. Both metals were uptaken by maize, with a translocation factor higher for Cd than Pb, but only Cd-treated plants showed a reduced growth compared to control (i.e., a lower leaf number and a reduced plant height), with a biomass loss up to 40%, at the highest concentration of metal (10-3 M). The observation of cytological traits highlighted ultrastructural damages in the chloroplasts of Cd-treated plants. A decline of Rubisco and D1 was observed in plants under Cd stress, while a relevant increase of the same proteins was found in Pb-treated plants, along with an increase of chlorophyll content. Fluorescent emission measurements indicated that both metals induced an increase of NPQ, but only Cd at the highest concentration determined a significant decline of Fv/Fm. These results indicate a different response of Z. mays to individual metals, with Pb triggering a compensative response and Cd inducing severe morpho-physiological alterations at all investigated levels. Therefore, Z. mays could be successfully exploited in phytoattenuation of Pb-polluted soil, but only at very low concentrations of Cd to avoid severe plant damages and biomass loss.
Collapse
Affiliation(s)
- Francesca Figlioli
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, via Cinthia 4, 80126, Naples, Italy
| | - Maria Cristina Sorrentino
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, via Cinthia 4, 80126, Naples, Italy
| | - Valeria Memoli
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, via Cinthia 4, 80126, Naples, Italy
| | - Carmen Arena
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, via Cinthia 4, 80126, Naples, Italy
| | - Giulia Maisto
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, via Cinthia 4, 80126, Naples, Italy
| | - Simonetta Giordano
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, via Cinthia 4, 80126, Naples, Italy
| | - Fiore Capozzi
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, via Cinthia 4, 80126, Naples, Italy.
| | - Valeria Spagnuolo
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, via Cinthia 4, 80126, Naples, Italy
| |
Collapse
|
39
|
Cipullo S, Snapir B, Tardif S, Campo P, Prpich G, Coulon F. Insights into mixed contaminants interactions and its implication for heavy metals and metalloids mobility, bioavailability and risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 645:662-673. [PMID: 30029141 DOI: 10.1016/j.scitotenv.2018.07.179] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 07/13/2018] [Accepted: 07/13/2018] [Indexed: 06/08/2023]
Abstract
Mobility of heavy metals at contaminated sites is mainly influenced by the soil physicochemical properties and environmental conditions, therefore assessing heavy metals (HMs) and metalloids fractionation can provide insights into their potential risk and the mechanisms that regulate bioavailability. A 12-months mesocosms experiment was setup to investigate the effect of physicochemical factors (pH, moisture, and temperature) and weathering (time) on HMs and metalloids fractionation in three different multi-contaminated soil matrices (low, medium, and high contamination) collected from a soil treatment facility located in the United Kingdom, and two rural contaminated soil samples. The study demonstrates that even though Pb and Zn were found associated with the exchangeable fraction in the soil with the highest contamination (total average Pb 3400 mg/kg, and total average Zn 2100 mg/kg in Soil C), neither the condition applied nor the weathering caused an increase in their mobility. Although it was expected that lower pH (4.5) would favours the dissociation of HMs and metalloids, no significant differences were observed, potentially due to the initial alkaline pH of the genuine-contaminated soil samples. The results show that even though total concentration of Pb, Cu, and Zn exceed the soil standards and guideline values, HMs were predominantly associated with the non-exchangeable fraction, while only 5% were dissolved in the pore water fraction (potentially bioavailable). In addition, the mobility and bioavailability of HMs remained constant over the 12 months monitoring, suggesting that these soils pose negligible risk to the environment.
Collapse
Affiliation(s)
- S Cipullo
- Cranfield University, School of Water, Energy and Environment, Cranfield MK43 0AL, UK
| | - B Snapir
- Cranfield University, School of Water, Energy and Environment, Cranfield MK43 0AL, UK
| | - S Tardif
- University of Copenhagen, Department of Plant and Environmental Sciences, Microbial Ecology and Biotechnology, Denmark
| | - P Campo
- Cranfield University, School of Water, Energy and Environment, Cranfield MK43 0AL, UK
| | - G Prpich
- University of Virginia, Department of Chemical Engineering, United States of America
| | - F Coulon
- Cranfield University, School of Water, Energy and Environment, Cranfield MK43 0AL, UK.
| |
Collapse
|
40
|
Jeelani N, Yang W, Qiao Y, Li J, An S, Leng X. Individual and combined effects of cadmium and polycyclic aromatic hydrocarbons on the phytoremediation potential of Xanthium sibiricum in co-contaminated soil. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2018; 20:773-779. [PMID: 29775102 DOI: 10.1080/15226514.2018.1425666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Soil contamination with heavy metals and organic pollutants continues to cause major ecological damage and human health problems. Phytoremediation offers a highly promising technology for the recovery of sites contaminated with mixed pollutants. In this study, we performed a greenhouse experiment to investigate the individual and combined effects of cadmium (Cd) and polycyclic aromatic hydrocarbon (PAH) contamination on the growth of Xanthium sibiricum, and also the ability of this species to accumulate and remove Cd and to reduce PAHs over a period of 75 days. Our results demonstrated that individual or combined contamination by Cd and PAHs showed no significant differences to the control treatment except in the high Cd treatment. The reduction of PAH concentration in the soil with the passage of time was similar in the presence or absence of plants. At higher levels of Cd, the removal of pyrene decreased in both planted and non-planted soils; however, this effect might be due to the higher Cd content. Soil dehydrogenase and polyphenol oxidase activities showed that soil contamination did not have a significant effect on the removal of PAHs. Overall, our results suggest that X. sibiricum might be a suitable species for use in the phytoremediation of contaminated soils.
Collapse
Affiliation(s)
- Nasreen Jeelani
- a School of Life Science , Nanjing University , Nanjing , P. R. China
- b Nanjing University Ecology Research Institute of Changshu (NJUecoRICH) , Changshu , Jiangsu , P.R. China
| | - Wen Yang
- a School of Life Science , Nanjing University , Nanjing , P. R. China
- b Nanjing University Ecology Research Institute of Changshu (NJUecoRICH) , Changshu , Jiangsu , P.R. China
| | - Yajun Qiao
- a School of Life Science , Nanjing University , Nanjing , P. R. China
- b Nanjing University Ecology Research Institute of Changshu (NJUecoRICH) , Changshu , Jiangsu , P.R. China
| | - Jingjing Li
- a School of Life Science , Nanjing University , Nanjing , P. R. China
- b Nanjing University Ecology Research Institute of Changshu (NJUecoRICH) , Changshu , Jiangsu , P.R. China
| | - Shuqing An
- a School of Life Science , Nanjing University , Nanjing , P. R. China
- b Nanjing University Ecology Research Institute of Changshu (NJUecoRICH) , Changshu , Jiangsu , P.R. China
| | - Xin Leng
- a School of Life Science , Nanjing University , Nanjing , P. R. China
- b Nanjing University Ecology Research Institute of Changshu (NJUecoRICH) , Changshu , Jiangsu , P.R. China
| |
Collapse
|
41
|
Wawra A, Friesl-Hanl W, Jäger A, Puschenreiter M, Soja G, Reichenauer T, Watzinger A. Investigations of microbial degradation of polycyclic aromatic hydrocarbons based on 13C-labeled phenanthrene in a soil co-contaminated with trace elements using a plant assisted approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:6364-6377. [PMID: 29249024 DOI: 10.1007/s11356-017-0941-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 12/04/2017] [Indexed: 06/07/2023]
Abstract
Co-contaminations of soils with organic and inorganic pollutants are a frequent environmental problem. Due to their toxicity and recalcitrance, the heterogeneous pollutants may persist in soil. The hypothesis of this study was that degradation of polycyclic aromatic hydrocarbons (PAHs) is enhanced if heavy metals in soil are immobilized and their bioavailability reduced. For metal immobilization and enhanced biodegradation, distinct mineral and organic soil amendments (iron oxides, gravel sludge, biochar) were deployed in an incubation batch experiment. The second part of the experiment consisted of a greenhouse pot experiment applying fast-growing and pollution-tolerant woody plants (willow and black locust). Soil amendments initially immobilized NH4NO3-extractable zinc, cadmium, and lead; after 100 days of incubation, soil amendments showed reductions only for cadmium and a tendency to enhance arsenic mobility. In order to monitor the remediation success, a 13C-phenanthrene (PHE) label was applied. 13C-phospholipid fatty acid analysis (13C-PLFA) further enabled the identification of PHE-degrading soil microorganisms. Both experiments exhibited a similar PLFA profile. Gram-negative bacteria (esp. cy17:0, 16:1ω7 + 6, 18:1ω7c) were the most significant microbial group taking up 13C-PHE. Plants effectively increased the label uptake by gram-positive bacteria and increased the biomass of the fungal biomarker, although their contribution to the degradation process was minor. Plants tended to prolong PAH dissipation in soil; at the end of the experiment, however, all treatments showed equally low total PAH concentrations in soil. While black locust plants tended not to take up potentially toxic trace elements, willows accumulated them in their leaves. The results of this study show that the chosen treatments did not enhance the remediation of the experimental soil.
Collapse
Affiliation(s)
- Anna Wawra
- Environmental Resources & Technologies, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430, Tulln, Austria
- Institute of Soil Research, University of Natural Resources and Life Sciences (BOKU), Konrad-Lorenz-Straße 24, 3430, Tulln, Austria
| | - Wolfgang Friesl-Hanl
- Environmental Resources & Technologies, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430, Tulln, Austria.
| | - Anna Jäger
- Environmental Resources & Technologies, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430, Tulln, Austria
| | - Markus Puschenreiter
- Institute of Soil Research, University of Natural Resources and Life Sciences (BOKU), Konrad-Lorenz-Straße 24, 3430, Tulln, Austria
| | - Gerhard Soja
- Environmental Resources & Technologies, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430, Tulln, Austria
| | - Thomas Reichenauer
- Environmental Resources & Technologies, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430, Tulln, Austria
| | - Andrea Watzinger
- Environmental Resources & Technologies, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430, Tulln, Austria
| |
Collapse
|
42
|
Yu L, Duan L, Naidu R, Semple KT. Abiotic factors controlling bioavailability and bioaccessibility of polycyclic aromatic hydrocarbons in soil: Putting together a bigger picture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 613-614:1140-1153. [PMID: 28954375 DOI: 10.1016/j.scitotenv.2017.09.025] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 09/02/2017] [Accepted: 09/03/2017] [Indexed: 06/07/2023]
Abstract
The bioavailability and bioaccessibility of polycyclic aromatic hydrocarbons (PAHs) in soil underpin the risk assessment of contaminated land with these contaminants. Despite a significant volume of research conducted in the past few decades, comprehensive understanding of the factors controlling the behaviour of soil PAHs and a set of descriptive soil parameters to explain variations in PAH bioavailability and bioaccessibility are still lacking. This review focuses on the role of source materials on bioavailability and bioaccessibility of soil PAHs, which is often overlooked, along with other abiotic factors including contaminant concentration and mixture, soil composition and properties, as well as environmental factors. It also takes into consideration the implications of different types of risk assessment (ecological and human health) on bioavailability and bioaccessibility of PAHs in soil. We recommend that future research should (1) account for the effects of source materials on bioavailability and bioaccessibility of soil PAHs; (2) adopt non-disruptive methods to analyse soil components controlling PAH sequestration; (3) integrate both natural organic matter (NOM) and xenobiotic organic matter (XOM) while evaluating the influences of soil organic matter (SOM) on the behaviour of PAHs; and (4) consider the dissimilar desorption scenarios in ecological risk assessment and human health risk assessment while assessing PAH bioavailability and bioaccessibility.
Collapse
Affiliation(s)
- Linbo Yu
- Global Centre for Environmental Remediation (GCER), ATC Building, University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE Pty Ltd), ATC Building, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Luchun Duan
- Global Centre for Environmental Remediation (GCER), ATC Building, University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE Pty Ltd), ATC Building, University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), ATC Building, University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE Pty Ltd), ATC Building, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Kirk T Semple
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| |
Collapse
|
43
|
Jeelani N, Yang W, Xu L, Qiao Y, An S, Leng X. Phytoremediation potential of Acorus calamus in soils co-contaminated with cadmium and polycyclic aromatic hydrocarbons. Sci Rep 2017; 7:8028. [PMID: 28808325 PMCID: PMC5556126 DOI: 10.1038/s41598-017-07831-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 07/04/2017] [Indexed: 11/14/2022] Open
Abstract
Phytoremediation is a promising technology for the remediation of sites co-contaminated with inorganic (heavy metal) and organic pollutants. A greenhouse experiment was conducted to investigate the independent and interactive effects of cadmium (Cd) and polycyclic aromatic hydrocarbons (PAHs) on the growth of the wetland plant Acorus calamus and its ability to uptake, accumulate, and remove pollutants from soils. Our results showed that growth and biomass of A. calamus were significantly influenced by the interaction of Cd and PAHs after 60 days of growth. The combined treatment of low Cd and low PAHs increased plant biomass and Cd accumulation in plant tissues, thus enhancing Cd removal. Dissipation of PAHs from soils was not significantly influenced by Cd addition or by the presence of plants. Correlation analysis also indicated a positive relationship between residual concentrations of phenantherene and pyrene (PAHs), whereas enzyme activities (dehydrogenase and polyphenol oxidase) were negatively correlated with each other. Cluster analysis was used to evaluate the similarity between different treatments during phytoremediation of Cd and PAHs. Our results suggest that A. calamus might be useful for phytoremediation of co-contaminated soil.
Collapse
Affiliation(s)
- Nasreen Jeelani
- School of Life Science, Nanjing University, Nanjing, 210093, P. R. China
- Nanjing University Ecology Research Institute of Changshu (NJUecoRICH), Changshu, 215500, Jiangsu, P.R. China
| | - Wen Yang
- School of Life Science, Nanjing University, Nanjing, 210093, P. R. China
- Nanjing University Ecology Research Institute of Changshu (NJUecoRICH), Changshu, 215500, Jiangsu, P.R. China
| | - Lingqian Xu
- School of Life Science, Nanjing University, Nanjing, 210093, P. R. China
- Nanjing University Ecology Research Institute of Changshu (NJUecoRICH), Changshu, 215500, Jiangsu, P.R. China
| | - Yajun Qiao
- School of Life Science, Nanjing University, Nanjing, 210093, P. R. China
- Nanjing University Ecology Research Institute of Changshu (NJUecoRICH), Changshu, 215500, Jiangsu, P.R. China
| | - Shuqing An
- School of Life Science, Nanjing University, Nanjing, 210093, P. R. China
- Nanjing University Ecology Research Institute of Changshu (NJUecoRICH), Changshu, 215500, Jiangsu, P.R. China
| | - Xin Leng
- School of Life Science, Nanjing University, Nanjing, 210093, P. R. China.
- Nanjing University Ecology Research Institute of Changshu (NJUecoRICH), Changshu, 215500, Jiangsu, P.R. China.
| |
Collapse
|
44
|
Oliveira V, Gomes NCM, Santos M, Almeida A, Lillebø AI, Ezequiel J, Serôdio J, Silva AMS, Simões MMQ, Rocha SM, Cunha Â. Effects of the Inoculant Strain Pseudomonas sp. SPN31 nah + and of 2-Methylnaphthalene Contamination on the Rhizosphere and Endosphere Bacterial Communities of Halimione portulacoides. Curr Microbiol 2017; 74:575-583. [DOI: 10.1007/s00284-017-1197-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 01/08/2017] [Indexed: 01/19/2023]
|
45
|
Montenegro IPFM, Mucha AP, Reis I, Rodrigues P, Almeida CMR. Effect of petroleum hydrocarbons in copper phytoremediation by a salt marsh plant (Juncus maritimus) and the role of autochthonous bioaugmentation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:19471-19480. [PMID: 27381357 DOI: 10.1007/s11356-016-7154-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 06/26/2016] [Indexed: 06/06/2023]
Abstract
This work aimed to investigate, under controlled but environmental relevant conditions, the effects of the presence of both inorganic and organic contaminants (copper and petroleum hydrocarbons) on phytoremediation potential of the salt marsh plant Juncus maritimus. Moreover, bioaugmentation, with an autochthonous microbial consortium (AMC) resistant to Cu, was tested, aiming an increase in the remediation potential of this plant in the presence of a co-contamination. Salt marsh plants with sediment attached to their roots were collected, placed in vessels, and kept in greenhouses, under tidal simulation. Sediments were contaminated with Cu and petroleum, and the AMC was added to half of the vessels. After 5 months, plants accumulated significant amounts of Cu but only in belowground structures. The amount of Cu was even higher in the presence of petroleum. AMC addition increased Cu accumulation in belowground tissues, despite decreasing Cu bioavailability, promoting J. maritimus phytostabilization potential. Therefore, J. maritimus has potential to phytoremediate co-contaminated sediments, and autochthonous bioaugmentation can be a valuable strategy for the recovery and management of moderately impacted estuaries. This approach can contribute for a sustainable use of the environmental resources. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- I P F M Montenegro
- CIMAR/CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas, 289, 4050-123, Porto, Portugal
| | - A P Mucha
- CIMAR/CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas, 289, 4050-123, Porto, Portugal.
| | - I Reis
- CIMAR/CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas, 289, 4050-123, Porto, Portugal
| | - P Rodrigues
- CIMAR/CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas, 289, 4050-123, Porto, Portugal
| | - C M R Almeida
- CIMAR/CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas, 289, 4050-123, Porto, Portugal
| |
Collapse
|
46
|
Barone R, de Biasi MG, Piccialli V, de Napoli L, Oliviero G, Borbone N, Piccialli G. Degradation of some representative polycyclic aromatic hydrocarbons by the water-soluble protein extracts from Zea mays L. cv PR32-B10. CHEMOSPHERE 2016; 160:258-265. [PMID: 27391049 DOI: 10.1016/j.chemosphere.2016.06.069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 05/10/2016] [Accepted: 06/17/2016] [Indexed: 06/06/2023]
Abstract
The ability of the water-soluble protein extracts from Zea mais L. cv. PR32-B10 to degrade some representative polycyclic aromatic hydrocarbons (PAHs), has been evaluated. Surface sterilized seeds of corn (Zea mais L. Pioneer cv. PR32-B10) were hydroponically cultivated in a growth chamber under no-stressful conditions. The water-soluble protein extracts isolated from maize tissues showed peroxidase, polyphenol oxidase and catalase activities. Incubation of the extracts with naphthalene, fluorene, phenanthrene and pyrene, led to formation of oxidized and/or degradation products. GC-MS and TLC monitoring of the processes showed that naphthalene, phenanthrene, fluorene and pyrene underwent 100%, 78%, 92% and 65% oxidative degradation, respectively, after 120 min. The chemical structure of the degradation products were determined by (1)H NMR and ESI-MS spectrometry.
Collapse
Affiliation(s)
- Roberto Barone
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy
| | | | - Vincenzo Piccialli
- Department of Chemical Sciences, University of Naples Federico II, Via Cyntia 4, 80126, Naples, Italy.
| | - Lorenzo de Napoli
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy
| | - Giorgia Oliviero
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy
| | - Nicola Borbone
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy
| | - Gennaro Piccialli
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy; Institute of Protein Biochemistry, CNR, Via P. Castellino 111, 80131, Naples, Italy
| |
Collapse
|
47
|
Agnello AC, Bagard M, van Hullebusch ED, Esposito G, Huguenot D. Comparative bioremediation of heavy metals and petroleum hydrocarbons co-contaminated soil by natural attenuation, phytoremediation, bioaugmentation and bioaugmentation-assisted phytoremediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 563-564:693-703. [PMID: 26524994 DOI: 10.1016/j.scitotenv.2015.10.061] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 10/10/2015] [Accepted: 10/10/2015] [Indexed: 05/21/2023]
Abstract
Biological remediation technologies are an environmentally friendly approach for the treatment of polluted soils. This study evaluated through a pot experiment four bioremediation strategies: a) natural attenuation, b) phytoremediation with alfalfa (Medicago sativa L.), c) bioaugmentation with Pseudomonas aeruginosa and d) bioaugmentation-assisted phytoremediation, for the treatment of a co-contaminated soil presenting moderate levels of heavy metals (Cu, Pb and Zn at 87, 100 and 110mgkg(-1) DW, respectively) and petroleum hydrocarbons (3800mgkg(-1) DW). As demonstrated by plant biomass and selected physiological parameters alfalfa plants were able to tolerate and grow in the co-contaminated soil, especially when soil was inoculated with P. aeruginosa, which promoted plant growth (56% and 105% increase for shoots and roots, respectively) and appeared to alleviate plant stress. The content of heavy metals in alfalfa plants was limited and followed the order: Zn>Cu>Pb. Heavy metals were mainly concentrated in plant roots and were poorly translocated, favouring their stabilization in the root zone. Bioaugmentation of planted soil with P. aeruginosa generally led to a decrease of plant metal concentration and translocation. The highest degree of total petroleum hydrocarbon removal was obtained for bioaugmentation-assisted phytoremediation treatment (68%), followed by bioaugmentation (59%), phytoremediation (47%) and natural attenuation (37%). The results of this study demonstrated that the combined use of plant and bacteria was the most advantageous option for the treatment of the present co-contaminated soil, as compared to natural attenuation, bioaugmentation or phytoremediation applied alone.
Collapse
Affiliation(s)
- A C Agnello
- Université Paris-Est, Laboratoire Géomatériaux et Environnement (EA 4508), UPEM, 77454 Marne-la-Vallée, France; Università degli Studi di Cassino e del Lazio Meridionale, Dipartimento di Ingegneria Civile e Meccanica, via Di Biasio 43, 03043 Cassino, FR, Italy
| | - M Bagard
- Université Paris-Est Créteil, Institut d'écologie et des sciences de l'environnement de Paris UMR 1392, Équipe Interactions plantes-environnement, Créteil Cedex, France
| | - E D van Hullebusch
- Université Paris-Est, Laboratoire Géomatériaux et Environnement (EA 4508), UPEM, 77454 Marne-la-Vallée, France
| | - G Esposito
- Università degli Studi di Cassino e del Lazio Meridionale, Dipartimento di Ingegneria Civile e Meccanica, via Di Biasio 43, 03043 Cassino, FR, Italy
| | - D Huguenot
- Université Paris-Est, Laboratoire Géomatériaux et Environnement (EA 4508), UPEM, 77454 Marne-la-Vallée, France.
| |
Collapse
|
48
|
Tang X, Dong S, Shi W, Gao N, Zuo L, Xu H. Fates of nickel and fluoranthene during the bioremediation byPleurotus eryngiiin three different soils. J Basic Microbiol 2016; 56:1194-1202. [DOI: 10.1002/jobm.201600171] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 07/15/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Xia Tang
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education); College of Life Science; Sichuan University; Chengdu Sichuan P. R. China
| | - Shunwen Dong
- Industrial Crop Research Institute of Sichuan Academy of Agricultural Sciences; Chengdu Sichuan P. R. China
| | - Wenjin Shi
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education); College of Life Science; Sichuan University; Chengdu Sichuan P. R. China
| | - Ni Gao
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education); College of Life Science; Sichuan University; Chengdu Sichuan P. R. China
| | - Lei Zuo
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education); College of Life Science; Sichuan University; Chengdu Sichuan P. R. China
| | - Heng Xu
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education); College of Life Science; Sichuan University; Chengdu Sichuan P. R. China
| |
Collapse
|
49
|
Agnello AC, Huguenot D, van Hullebusch ED, Esposito G. Citric acid- and Tween(®) 80-assisted phytoremediation of a co-contaminated soil: alfalfa (Medicago sativa L.) performance and remediation potential. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:9215-9226. [PMID: 26838038 DOI: 10.1007/s11356-015-5972-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 12/14/2015] [Indexed: 06/05/2023]
Abstract
A pot experiment was designed to assess the phytoremediation potential of alfalfa (Medicago sativa L.) in a co-contaminated (i.e., heavy metals and petroleum hydrocarbons) soil and the influence of citric acid and Tween(®) 80 (polyethylene glycol sorbitan monooleate), applied individually and combined together, for their possible use in chemically assisted phytoremediation. The results showed that alfalfa plants could tolerate and grow in a co-contaminated soil. Over a 90-day experimental time, shoot and root biomass increased and negligible plant mortality occurred. Heavy metals were uptaken by alfalfa to a limited extent, mostly by plant roots, and their concentration in plant tissues were in the following order: Zn > Cu > Pb. Microbial population (alkane-degrading microorganisms) and activity (lipase enzyme) were enhanced in the presence of alfalfa with rhizosphere effects of 9.1 and 1.5, respectively, after 90 days. Soil amendments did not significantly enhance plant metal concentration or total uptake. In contrast, the combination of citric acid and Tween(®) 80 significantly improved alkane-degrading microorganisms (2.4-fold increase) and lipase activity (5.3-fold increase) in the rhizosphere of amended plants, after 30 days of experiment. This evidence supports a favorable response of alfalfa in terms of tolerance to a co-contaminated soil and improvement of rhizosphere microbial number and activity, additionally enhanced by the joint application of citric acid and Tween(®) 80, which could be promising for future phytoremediation applications.
Collapse
Affiliation(s)
- A C Agnello
- Université Paris-Est, Laboratoire Géomatériaux et Environnement (EA 4508), UPEM, 77454, Marne-la-Vallée, France
- Dipartimento di Ingegneria Civile e Meccanica, Università degli Studi di Cassino e del Lazio Meridionale, via Di Biasio 43, 03043, Cassino, FR, Italy
| | - D Huguenot
- Université Paris-Est, Laboratoire Géomatériaux et Environnement (EA 4508), UPEM, 77454, Marne-la-Vallée, France.
| | - E D van Hullebusch
- Université Paris-Est, Laboratoire Géomatériaux et Environnement (EA 4508), UPEM, 77454, Marne-la-Vallée, France
| | - G Esposito
- Dipartimento di Ingegneria Civile e Meccanica, Università degli Studi di Cassino e del Lazio Meridionale, via Di Biasio 43, 03043, Cassino, FR, Italy
| |
Collapse
|
50
|
Wang S, Wang Y, Lei W, Sun Y, Wang Y, Luo C, Zhang G. Simultaneous enhanced removal of Cu, PCBs, and PBDEs by corn from e-waste-contaminated soil using the biodegradable chelant EDDS. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:18203-18210. [PMID: 26178838 DOI: 10.1007/s11356-015-5045-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/05/2015] [Indexed: 06/04/2023]
Abstract
We evaluated the influence of the biodegradable chelant ethylenediamine disuccinic acid (EDDS) on plant uptake of polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and Cu by corn from electronic waste (e-waste)-contaminated soil. The highest concentration and highest total uptake of Cu in corn were observed in the treatment with 5 mM EDDS, which resulted in a 4-fold increase of the Cu translocation factor (C(shoot)/C(root)) compared to the control. The concentrations of PCBs and PBDEs in shoots and roots increased with increasing application rates of EDDS, and 1.58- and 1.32-fold average increases in the concentrations of PCBs and PBDEs, respectively, were observed in shoots in the EDDS treatments. A significant positive correlation was observed between shoot Cu and shoot PCBs and PBDEs. We speculate that PCBs and PBDEs were activated by the EDDS-triggered dissolved organic carbon (DOC) and then indiscriminately taken up by roots and translocated to shoots following damage to the roots mainly by the increased extractable Cu resulting from the EDDS application.
Collapse
Affiliation(s)
- Shaorui Wang
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- Graduate University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Yan Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Wenrui Lei
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yingtao Sun
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- Graduate University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Yujie Wang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Chunling Luo
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
| | - Gan Zhang
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| |
Collapse
|