1
|
Avižinienė A, Dalgėdienė I, Armalytė J, Petraitytė-Burneikienė R. Immunogenicity of novel vB_EcoS_NBD2 bacteriophage-originated nanotubes as a carrier for peptide-based vaccines. Virus Res 2024; 345:199370. [PMID: 38614253 PMCID: PMC11059446 DOI: 10.1016/j.virusres.2024.199370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/02/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Non-infectious virus-like nanoparticles mimic native virus structures and can be modified by inserting foreign protein fragments, making them immunogenic tools for antigen presentation. This study investigated, for the first time, the immunogenicity of long and flexible polytubes formed by yeast-expressed tail tube protein gp39 of bacteriophage vB_EcoS_NBD2 and evaluated their ability to elicit an immune response against the inserted protein fragments. Protein gp39-based polytubes induced humoral immune response in mice, even without the use of adjuvant. Bioinformatics analysis guided the selection of protein fragments from Acinetobacter baumannii for insertion into the C-terminus of gp39. Chimeric polytubes, displaying 28-amino acid long OmpA protein fragment, induced IgG response against OmpA protein fragment in immunized mice. These polytubes demonstrated their effectiveness both as antigen carrier and an adjuvant, when the OmpA fragments were either displayed on chimeric polytubes or used alongside with the unmodified polytubes. Our findings expand the potential applications of long and flexible polytubes, contributing to the development of novel antigen carriers with improved immunogenicity and antigen presentation capabilities.
Collapse
Affiliation(s)
- Aliona Avižinienė
- Department of Eukaryote Gene Engineering, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius, Lithuania.
| | - Indrė Dalgėdienė
- Department of Immunology, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius, Lithuania
| | - Julija Armalytė
- Institute of Biosciences, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius, Lithuania
| | - Rasa Petraitytė-Burneikienė
- Department of Eukaryote Gene Engineering, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius, Lithuania
| |
Collapse
|
2
|
Lučiūnaitė A, Dalgėdienė I, Vasiliūnaitė E, Norkienė M, Kučinskaitė-Kodzė I, Žvirblienė A, Gedvilaitė A. Immunogenic Properties and Antigenic Similarity of Virus-like Particles Derived from Human Polyomaviruses. Int J Mol Sci 2023; 24:ijms24054907. [PMID: 36902338 PMCID: PMC10003412 DOI: 10.3390/ijms24054907] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Polyomaviruses (PyVs) are highly prevalent in humans and animals. PyVs cause mild illness, however, they can also elicit severe diseases. Some PyVs are potentially zoonotic, such as simian virus 40 (SV40). However, data are still lacking about their biology, infectivity, and host interaction with different PyVs. We investigated the immunogenic properties of virus-like particles (VLPs) derived from viral protein 1 (VP1) of human PyVs. We immunised mice with recombinant HPyV VP1 VLPs mimicking the structure of viruses and compared their immunogenicity and cross-reactivity of antisera using a broad spectrum of VP1 VLPs derived from the PyVs of humans and animals. We demonstrated a strong immunogenicity of studied VLPs and a high degree of antigenic similarity between VP1 VLPs of different PyVs. PyV-specific monoclonal antibodies were generated and applied for investigation of VLPs phagocytosis. This study demonstrated that HPyV VLPs are highly immunogenic and interact with phagocytes. Data on the cross-reactivity of VP1 VLP-specific antisera revealed antigenic similarities among VP1 VLPs of particular human and animal PyVs and suggested possible cross-immunity. As the VP1 capsid protein is the major viral antigen involved in virus-host interaction, an approach based on the use of recombinant VLPs is relevant for studying PyV biology regarding PyV interaction with the host immune system.
Collapse
|
3
|
Schlohsarczyk EK, Drewes S, Koteja P, Röhrs S, Ulrich RG, Teifke JP, Herden C. Tropism of Puumala orthohantavirus and Endoparasite Coinfection in the Bank Vole Reservoir. Viruses 2023; 15:v15030612. [PMID: 36992321 PMCID: PMC10058470 DOI: 10.3390/v15030612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/08/2023] [Accepted: 02/12/2023] [Indexed: 02/25/2023] Open
Abstract
In Europe, most cases of human hantavirus disease are caused by Puumala orthohantavirus (PUUV) transmitted by bank voles (Clethrionomys glareolus, syn. Myodes glareolus), in which PUUV causes inconspicuous infection. Little is known about tropism and endoparasite coinfections in PUUV-infected reservoir and spillover-infected rodents. Here, we characterized PUUV tropism, pathological changes and endoparasite coinfections. The voles and some non-reservoir rodents were examined histologically, immunohistochemically, by in situ hybridization, indirect IgG enzyme-linked immunosorbent assay and reverse transcription-polymerase chain reaction. PUUV RNA and anti-PUUV antibodies were detected simultaneously in a large proportion of the bank voles, indicating persistent infection. Although PUUV RNA was not detected in non-reservoir rodents, the detection of PUUV-reactive antibodies suggests virus contact. No specific gross and histological findings were detected in the infected bank voles. A broad organ tropism of PUUV was observed: kidney and stomach were most frequently infected. Remarkably, PUUV was detected in cells lacking the typical secretory capacity, which may contribute to the maintenance of virus persistence. PUUV-infected wild bank voles were found to be frequently coinfected with Hepatozoon spp. and Sarcocystis (Frenkelia) spp., possibly causing immune modulation that may influence susceptibility to PUUV infection or vice versa. The results are a prerequisite for a deeper understanding of virus–host interactions in natural hantavirus reservoirs.
Collapse
Affiliation(s)
- Elfi K. Schlohsarczyk
- Institute of Veterinary Pathology, FB10—Veterinary Medicine, Justus-Liebig-University Giessen, 35392 Giessen, Germany
- Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Stephan Drewes
- Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Paweł Koteja
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland
| | - Susanne Röhrs
- Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Rainer G. Ulrich
- Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Jens P. Teifke
- Institute of Veterinary Pathology, FB10—Veterinary Medicine, Justus-Liebig-University Giessen, 35392 Giessen, Germany
- Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Christiane Herden
- Institute of Veterinary Pathology, FB10—Veterinary Medicine, Justus-Liebig-University Giessen, 35392 Giessen, Germany
- Correspondence: ; Tel.: +49-6419938201
| |
Collapse
|
4
|
Characterization of a Panel of Cross-Reactive Hantavirus Nucleocapsid Protein-Specific Monoclonal Antibodies. Viruses 2023; 15:v15020532. [PMID: 36851747 PMCID: PMC9958643 DOI: 10.3390/v15020532] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
Hantaviruses are emerging pathogens with a worldwide distribution that can cause life-threatening diseases in humans. Monoclonal antibodies (MAbs) against hantavirus nucleocapsid (N) proteins are important tools in virus diagnostics, epidemiological studies and basic research studies on virus replication and pathogenesis. Here, we extend the collection of previously generated MAbs raised against a segment of Puumala orthohantavirus (PUUV) N protein harbored on virus-like particles (VLPs) and MAbs against N proteins of Sin Nombre orthohantavirus/Andes orthohantavirus by generating nine novel MAbs against N proteins of Dobrava-Belgrade orthohantavirus (DOBV), Tula orthohantavirus (TULV), Thottapalayam thottimvirus (TPMV) and PUUV. In order to have a wide collection of well-described hantavirus-specific MAbs, the cross-reactivity of novel and previously generated MAbs was determined against N proteins of 15 rodent- and shrew-borne hantaviruses by different immunological methods. We found that all MAbs, excluding TPMV-specific MAbs, demonstrated different cross-reactivity patterns with N proteins of hantaviruses and recognized native viral antigens in infected mammalian cells. This well-characterized collection of cross-reactive hantavirus-specific MAbs has a potential application in various fields of hantavirus research, diagnostics and therapy.
Collapse
|
5
|
Guo B, Wei C, Luan L, Zhang J, Li Q. Production and application of monoclonal antibodies against ORF66 of cyprinid herpesvirus 2. J Virol Methods 2021; 299:114342. [PMID: 34728270 DOI: 10.1016/j.jviromet.2021.114342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/24/2021] [Accepted: 10/27/2021] [Indexed: 01/17/2023]
Abstract
Cyprinid herpesvirus 2(CyHV-2)is the main pathogen causing haematopoietic necrosis disease of goldfish (Carassius auratus auratus) and gibel carp (Carassius auratus gibelio), which has caused huge economic losses to aquaculture industry of goldfish and gibel carp around the world. Currently, various detection methods based on nucleic acids have been established for the detection of CyHV-2. However, there is still a lack of rapid and effective immunological detection technology. In this study, anti-CyHV-2 ORF66 monoclonal antibodies (MAbs) were prepared to use the recombinant ORF66 protein as the antigen. Firstly, the open reading frame of CyHV-2 ORF66 was cloned into the pET-28a vector and expressed in Escherichia coli. Three MAbs (2F11, 2G8, and 3D6) against recombinant ORF66 protein were developed by immunization of Balb/C mice. Among them, MAb-2F11 belonged to the IgG2b isotype, 2G8 and 3D6 belonged to the IgG1 isotype. Western blotting analysis was performed to assess the ability of the MAbs to bind to the ORF66 recombinant protein and CyHV-2 nucleocapsid protein ORF66. In addition, the MAb-2F11 was used to detect the virus particles that infected in cell line and tissues of gibel carp virus infection by immunological methods. These results indicated that the anti-CyHV-2 ORF66 MAb-2F11 prepared in this study could not only detect the presence of the virus but also provide a research tool for further studying the role of ORF66 in the process of CyHV-2 infection.
Collapse
Affiliation(s)
- Baoqin Guo
- Department of Ocean Technology, College of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng, 224051, China; Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, China
| | - Chang Wei
- Department of Ocean Technology, College of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Linlin Luan
- Department of Ocean Technology, College of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng, 224051, China; Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, China
| | - Jialin Zhang
- Department of Ocean Technology, College of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Qiang Li
- Department of Ocean Technology, College of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng, 224051, China.
| |
Collapse
|
6
|
Yamaoka Y, Miyakawa K, Jeremiah SS, Funabashi R, Okudela K, Kikuchi S, Katada J, Wada A, Takei T, Nishi M, Shimizu K, Ozawa H, Usuku S, Kawakami C, Tanaka N, Morita T, Hayashi H, Mitsui H, Suzuki K, Aizawa D, Yoshimura Y, Miyazaki T, Yamazaki E, Suzuki T, Kimura H, Shimizu H, Okabe N, Hasegawa H, Ryo A. Highly specific monoclonal antibodies and epitope identification against SARS-CoV-2 nucleocapsid protein for antigen detection tests. Cell Rep Med 2021; 2:100311. [PMID: 34027498 PMCID: PMC8126173 DOI: 10.1016/j.xcrm.2021.100311] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 04/02/2021] [Accepted: 05/13/2021] [Indexed: 12/24/2022]
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic is a major global public health concern. Although rapid point-of-care testing for detecting viral antigen is important for management of the outbreak, the current antigen tests are less sensitive than nucleic acid testing. In our current study, we produce monoclonal antibodies (mAbs) that exclusively react with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and exhibit no cross-reactivity with other human coronaviruses, including SARS-CoV. Molecular modeling suggests that the mAbs bind to epitopes present on the exterior surface of the nucleocapsid, making them suitable for detecting SARS-CoV-2 in clinical samples. We further select the optimal pair of anti-SARS-CoV-2 nucleocapsid protein (NP) mAbs using ELISA and then use this mAb pair to develop immunochromatographic assay augmented with silver amplification technology. Our mAbs recognize the variants of concern (501Y.V1-V3) that are currently in circulation. Because of their high performance, the mAbs of this study can serve as good candidates for developing antigen detection kits for COVID-19.
Collapse
Affiliation(s)
- Yutaro Yamaoka
- Department of Microbiology, Yokohama City University School of Medicine, Yokohama, Kanagawa 236-0004, Japan
- Life Science Laboratory, Technology and Development Division, Kanto Chemical Co., Inc., Isehara, Kanagawa 259-1146, Japan
| | - Kei Miyakawa
- Department of Microbiology, Yokohama City University School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | | | - Rikako Funabashi
- Department of Microbiology, Yokohama City University School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Koji Okudela
- Department of Pathology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Sayaka Kikuchi
- Life Science Laboratory, Technology and Development Division, Kanto Chemical Co., Inc., Isehara, Kanagawa 259-1146, Japan
| | - Junichi Katada
- Medical Systems Research & Development Center, FUJIFILM Corporation, Kaisei, Kanagawa 258-8538, Japan
| | - Atsuhiko Wada
- Medical Systems Research & Development Center, FUJIFILM Corporation, Kaisei, Kanagawa 258-8538, Japan
| | - Toshiki Takei
- Medical Systems Research & Development Center, FUJIFILM Corporation, Kaisei, Kanagawa 258-8538, Japan
| | - Mayuko Nishi
- Department of Microbiology, Yokohama City University School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Kohei Shimizu
- Yokohama City Institute of Public Health, Yokohama, Kanagawa 236-0051, Japan
| | - Hiroki Ozawa
- Yokohama City Institute of Public Health, Yokohama, Kanagawa 236-0051, Japan
| | - Shuzo Usuku
- Yokohama City Institute of Public Health, Yokohama, Kanagawa 236-0051, Japan
| | - Chiharu Kawakami
- Yokohama City Institute of Public Health, Yokohama, Kanagawa 236-0051, Japan
| | - Nobuko Tanaka
- Yokohama City Institute of Public Health, Yokohama, Kanagawa 236-0051, Japan
| | - Takeshi Morita
- Department of Microbiology, Yokohama City University School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Hiroyuki Hayashi
- Division of Pathology, Yokohama Municipal Citizen’s Hospital, Yokohama, Kanagawa 221-0855, Japan
| | - Hideaki Mitsui
- Department of Pathology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Keita Suzuki
- Life Science Laboratory, Technology and Development Division, Kanto Chemical Co., Inc., Isehara, Kanagawa 259-1146, Japan
| | - Daisuke Aizawa
- Life Science Laboratory, Technology and Development Division, Kanto Chemical Co., Inc., Isehara, Kanagawa 259-1146, Japan
| | - Yukihiro Yoshimura
- Division of Infectious Disease, Yokohama Municipal Citizen’s Hospital, Yokohama, Kanagawa 221-0855, Japan
| | - Tomoyuki Miyazaki
- Department of Physiology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Etsuko Yamazaki
- Clinical Laboratory Department, Yokohama City University Hospital, Yokohama, Kanagawa 236-0004, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku, Tokyo 162-8640, Japan
| | - Hirokazu Kimura
- School of Medical Technology, Faculty of Health Sciences, Gunma Paz University, Takasaki, Gunma 370-0006, Japan
| | - Hideaki Shimizu
- Division of Virology, Kawasaki City Institute for Public Health, Kawasaki, Kanagawa 210-0821, Japan
| | - Nobuhiko Okabe
- Division of Virology, Kawasaki City Institute for Public Health, Kawasaki, Kanagawa 210-0821, Japan
| | - Hideki Hasegawa
- Center for Influenza and Respiratory Virus Research, National Institute of Infectious Diseases, Musashimurayama, Tokyo 208-0011, Japan
| | - Akihide Ryo
- Department of Microbiology, Yokohama City University School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| |
Collapse
|
7
|
Drewes S, Jeske K, Straková P, Balčiauskas L, Ryll R, Balčiauskienė L, Kohlhause D, Schnidrig GA, Hiltbrunner M, Špakova A, Insodaitė R, Petraitytė-Burneikienė R, Heckel G, Ulrich RG. Identification of a novel hantavirus strain in the root vole (Microtus oeconomus) in Lithuania, Eastern Europe. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2021; 90:104520. [PMID: 32890767 DOI: 10.1016/j.meegid.2020.104520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/13/2020] [Accepted: 08/26/2020] [Indexed: 12/22/2022]
Abstract
Hantaviruses are zoonotic pathogens that can cause subclinical to lethal infections in humans. In Europe, five orthohantaviruses are present in rodents: Myodes-associated Puumala orthohantavirus (PUUV), Microtus-associated Tula orthohantavirus, Traemmersee hantavirus (TRAV)/ Tatenale hantavirus (TATV)/ Kielder hantavirus, rat-borne Seoul orthohantavirus, and Apodemus-associated Dobrava-Belgrade orthohantavirus (DOBV). Human PUUV and DOBV infections were detected previously in Lithuania, but the presence of Microtus-associated hantaviruses is not known. For this study we screened 234 Microtus voles, including root voles (Microtus oeconomus), field voles (Microtus agrestis) and common voles (Microtus arvalis) from Lithuania for hantavirus infections. This initial screening was based on reverse transcription-polymerase chain reaction (RT-PCR) targeting the S segment and serological analysis. A novel hantavirus was detected in eight of 79 root voles tentatively named "Rusne virus" according to the capture location and complete genome sequences were determined. In the coding regions of all three genome segments, Rusne virus showed high sequence similarity to TRAV and TATV and clustered with Kielder hantavirus in phylogenetic analyses of partial S and L segment sequences. Pairwise evolutionary distance analysis confirmed Rusne virus as a strain of the species TRAV/TATV. Moreover, we synthesized the entire nucleocapsid (N) protein of Rusne virus in Saccharomyces cerevisiae. We observed cross-reactivity of antibodies raised against other hantaviruses, including PUUV, with this new N protein. ELISA investigation of all 234 voles detected Rusne virus-reactive antibodies exclusively in four of 79 root voles, all being also RNA positive, but not in any other vole species. In conclusion, the detection of Rusne virus RNA in multiple root voles at the same trapping site during three years and its absence in sympatric field voles suggests root voles as the reservoir host of this novel virus. Future investigations should evaluate host association of TRAV, TATV, Kielder virus and the novel Rusne virus and their evolutionary relationships.
Collapse
Affiliation(s)
- Stephan Drewes
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Kathrin Jeske
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Petra Straková
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; Department of Virology, Veterinary Research Institute, Hudcova 70, 62100 Brno, Czech Republic
| | | | - René Ryll
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | | | - David Kohlhause
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; University Greifswald, Domstraße 11, 17498 Greifswald, Germany
| | - Guy-Alain Schnidrig
- Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland
| | - Melanie Hiltbrunner
- Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland
| | - Aliona Špakova
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania
| | - Rasa Insodaitė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania
| | - Rasa Petraitytė-Burneikienė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania
| | - Gerald Heckel
- Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland
| | - Rainer G Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany.
| |
Collapse
|
8
|
Jandrig B, Krause H, Zimmermann W, Vasiliunaite E, Gedvilaite A, Ulrich RG. Hamster Polyomavirus Research: Past, Present, and Future. Viruses 2021; 13:v13050907. [PMID: 34068409 PMCID: PMC8153644 DOI: 10.3390/v13050907] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/29/2021] [Accepted: 05/09/2021] [Indexed: 12/11/2022] Open
Abstract
Hamster polyomavirus (Mesocricetus auratus polyomavirus 1, HaPyV) was discovered as one of the first rodent polyomaviruses at the end of the 1960s in a colony of Syrian hamsters (Mesocricetus auratus) affected by skin tumors. Natural HaPyV infections have been recorded in Syrian hamster colonies due to the occurrence of skin tumors and lymphomas. HaPyV infections of Syrian hamsters represent an important and pioneering tumor model. Experimental infections of Syrian hamsters of different colonies are still serving as model systems (e.g., mesothelioma). The observed phylogenetic relationship of HaPyV to murine polyomaviruses within the genus Alphapolyomavirus, and the exclusive detection of other cricetid polyomaviruses, i.e., common vole (Microtus arvalis polyomavirus 1) and bank vole (Myodes glareolus polyomavirus 1) polyomaviruses, in the genus Betapolyomavirus, must be considered with caution, as knowledge of rodent-associated polyomaviruses is still limited. The genome of HaPyV shows the typical organization of polyomaviruses with an early and a late transcriptional region. The early region encodes three tumor (T) antigens including a middle T antigen; the late region encodes three capsid proteins. The major capsid protein VP1 of HaPyV was established as a carrier for the generation of autologous, chimeric, and mosaic virus-like particles (VLPs) with a broad range of applications, e.g., for the production of epitope-specific antibodies. Autologous VLPs have been applied for entry and maturation studies of dendritic cells. The generation of chimeric and mosaic VLPs indicated the high flexibility of the VP1 carrier protein for the insertion of foreign sequences. The generation of pseudotype VLPs of original VP1 and VP2–foreign protein fusion can further enhance the applicability of this system. Future investigations should evaluate the evolutionary origin of HaPyV, monitor its occurrence in wildlife and Syrian hamster breeding, and prove its value for the generation of potential vaccine candidates and as a gene therapy vehicle.
Collapse
Affiliation(s)
- Burkhard Jandrig
- Department of Urology, University Medical Center Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
- Correspondence:
| | - Hans Krause
- Charité—Universitätsmedizin Berlin, Urologische Klinik, Charitéplatz 1, 10117 Berlin, Germany;
| | | | - Emilija Vasiliunaite
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania; (E.V.); (A.G.)
| | - Alma Gedvilaite
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania; (E.V.); (A.G.)
| | - Rainer G. Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany;
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Insel Riems, Germany
| |
Collapse
|
9
|
Eiden M, Gedvilaite A, Leidel F, Ulrich RG, Groschup MH. Vaccination with Prion Peptide-Displaying Polyomavirus-Like Particles Prolongs Incubation Time in Scrapie-Infected Mice. Viruses 2021; 13:v13050811. [PMID: 33946367 PMCID: PMC8147134 DOI: 10.3390/v13050811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/22/2022] Open
Abstract
Prion diseases like scrapie in sheep, bovine spongiform encephalopathy (BSE) in cattle or Creutzfeldt–Jakob disease (CJD) in humans are fatal neurodegenerative diseases characterized by the conformational conversion of the normal, mainly α-helical cellular prion protein (PrPC) into the abnormal β-sheet rich infectious isoform PrPSc. Various therapeutic or prophylactic approaches have been conducted, but no approved therapeutic treatment is available so far. Immunisation against prions is hampered by the self-tolerance to PrPC in mammalian species. One strategy to avoid this tolerance is presenting PrP variants in virus-like particles (VLPs). Therefore, we vaccinated C57/BL6 mice with nine prion peptide variants presented by hamster polyomavirus capsid protein VP1/VP2-derived VLPs. Mice were subsequently challenged intraperitoneally with the murine RML prion strain. Importantly, one group exhibited significantly increased mean survival time of 240 days post-inoculation compared with 202 days of the control group. These data show that immunisation with VLPs presenting PrP peptides may represent a promising strategy for an effective vaccination against transmissible spongiform encephalitis agents.
Collapse
Affiliation(s)
- Martin Eiden
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (F.L.); (R.G.U.); (M.H.G.)
- Correspondence:
| | - Alma Gedvilaite
- Life Sciences Center, Institute of Biotechnology, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania;
| | - Fabienne Leidel
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (F.L.); (R.G.U.); (M.H.G.)
- Task Force Animal Diseases, Darmstadt Regional Administrative Council, Luisenplatz 2, 64283 Darmstadt, Germany
| | - Rainer G. Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (F.L.); (R.G.U.); (M.H.G.)
| | - Martin H. Groschup
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (F.L.); (R.G.U.); (M.H.G.)
| |
Collapse
|
10
|
Survey of molecular chaperone requirement for the biosynthesis of hamster polyomavirus VP1 protein in Saccharomyces cerevisiae. Arch Virol 2016; 161:1807-19. [PMID: 27038828 DOI: 10.1007/s00705-016-2846-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 03/23/2016] [Indexed: 10/22/2022]
Abstract
A number of viruses utilize molecular chaperones during various stages of their life cycle. It has been shown that members of the heat-shock protein 70 (Hsp70) chaperone family assist polyomavirus capsids during infection. However, the molecular chaperones that assist the formation of recombinant capsid viral protein 1 (VP1)-derived virus-like particles (VLPs) in yeast remain unclear. A panel of yeast strains with single chaperone gene deletions were used to evaluate the chaperones required for biosynthesis of recombinant hamster polyomavirus capsid protein VP1. The impact of deletion or mild overexpression of chaperone genes was determined in live cells by flow cytometry using enhanced green fluorescent protein (EGFP) fused with VP1. Targeted genetic analysis demonstrated that VP1-EGFP fusion protein levels were significantly higher in yeast strains in which the SSZ1 or ZUO1 genes encoding ribosome-associated complex components were deleted. The results confirmed the participation of cytosolic Hsp70 chaperones and suggested the potential involvement of the Ydj1 and Caj1 co-chaperones and the endoplasmic reticulum chaperones in the biosynthesis of VP1 VLPs in yeast. Likewise, the markedly reduced levels of VP1-EGFP in Δhsc82 and Δhsp82 yeast strains indicated that both Hsp70 and Hsp90 chaperones might assist VP1 VLPs during protein biosynthesis.
Collapse
|
11
|
Pleckaityte M, Bremer CM, Gedvilaite A, Kucinskaite-Kodze I, Glebe D, Zvirbliene A. Construction of polyomavirus-derived pseudotype virus-like particles displaying a functionally active neutralizing antibody against hepatitis B virus surface antigen. BMC Biotechnol 2015; 15:85. [PMID: 26370129 PMCID: PMC4570255 DOI: 10.1186/s12896-015-0203-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 09/04/2015] [Indexed: 11/18/2022] Open
Abstract
Background Virus-like particles (VLPs) can be efficiently produced by heterologous expression of viral structural proteins in yeast. Due to their repetitive structure, VLPs are extensively used for protein engineering and generation of chimeric VLPs with inserted foreign epitopes. Hamster polyomavirus VP1 represents a promising epitope carrier. However, insertion of large sized protein sequences may interfere with its self-assembly competence. The co-expression of polyomavirus capsid protein VP1 with minor capsid protein VP2 or its fusion protein may result in pseudotype VLPs where an intact VP1 protein mediates VLP formation. In the current study, the capacity of VP1 protein to self-assemble to VLPs and interact with the modified VP2 protein has been exploited to generate pseudotype VLPs displaying large-sized antibody molecules. Results Polyomavirus-derived pseudotype VLPs harbouring a surface-exposed functionally active neutralizing antibody specific to hepatitis B virus (HBV) surface antigen (HBsAg) have been generated. The pseudotype VLPs consisting of an intact hamster polyomavirus (HaPyV) major capsid protein VP1 and minor capsid protein VP2 fused with the anti-HBsAg molecule were efficiently produced in yeast Saccharomyces cerevisiae and purified by density-gradient centrifugation. Formation of VLPs was confirmed by electron microscopy. Two types of pseudotype VLPs were generated harbouring either the single-chain fragment variable (scFv) or Fc-engineered scFv on the VLP surface. The antigen-binding activity of the purified pseudotype VLPs was evaluated by ELISA and virus-neutralization assay on HBV-susceptible primary hepatocytes from Tupaia belangeri. Both types of the pseudotype VLPs were functionally active and showed a potent HBV-neutralizing activity comparable to that of the parental monoclonal antibody. The VP2-fused scFv molecules were incorporated into the VLPs with higher efficiency as compared to the VP2-fused Fc-scFv. However, the pseudotype VLPs with displayed VP2-fused Fc-scFv molecule showed higher antigen-binding activity and HBV-neutralizing capacity that might be explained by a better accessibility of the Fc-engineered scFv of the VLP surface. Conclusions Polyomavirus-derived pseudotype VLPs harbouring multiple functionally active antibody molecules with virus-neutralizing capability may represent a novel platform for developing therapeutic tools with a potential application for post-exposure or therapeutic treatment of viral infections.
Collapse
Affiliation(s)
- Milda Pleckaityte
- Department of Immunology and Cell Biology, Institute of Biotechnology, Vilnius University, Graciuno 8, LT-02241, Vilnius, Lithuania.
| | - Corinna M Bremer
- Institute of Medical Virology, National Reference Centre for Hepatitis B and D Viruses, German Centre for Infection Research, Justus-Liebig University of Giessen, Schubertstrasse 81, 35392, Giessen, Germany.
| | - Alma Gedvilaite
- Department of Immunology and Cell Biology, Institute of Biotechnology, Vilnius University, Graciuno 8, LT-02241, Vilnius, Lithuania.
| | - Indre Kucinskaite-Kodze
- Department of Immunology and Cell Biology, Institute of Biotechnology, Vilnius University, Graciuno 8, LT-02241, Vilnius, Lithuania.
| | - Dieter Glebe
- Institute of Medical Virology, National Reference Centre for Hepatitis B and D Viruses, German Centre for Infection Research, Justus-Liebig University of Giessen, Schubertstrasse 81, 35392, Giessen, Germany.
| | - Aurelija Zvirbliene
- Department of Immunology and Cell Biology, Institute of Biotechnology, Vilnius University, Graciuno 8, LT-02241, Vilnius, Lithuania.
| |
Collapse
|
12
|
Evaluation of Trichodysplasia Spinulosa-Associated Polyomavirus Capsid Protein as a New Carrier for Construction of Chimeric Virus-Like Particles Harboring Foreign Epitopes. Viruses 2015; 7:4204-29. [PMID: 26230706 PMCID: PMC4576179 DOI: 10.3390/v7082818] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 07/20/2015] [Accepted: 07/27/2015] [Indexed: 12/21/2022] Open
Abstract
Recombinant virus-like particles (VLPs) represent a promising tool for protein engineering. Recently, trichodysplasia spinulosa-associated polyomavirus (TSPyV) viral protein 1 (VP1) was efficiently produced in yeast expression system and shown to self-assemble to VLPs. In the current study, TSPyV VP1 protein was exploited as a carrier for construction of chimeric VLPs harboring selected B and T cell-specific epitopes and evaluated in comparison to hamster polyomavirus VP1 protein. Chimeric VLPs with inserted either hepatitis B virus preS1 epitope DPAFR or a universal T cell-specific epitope AKFVAAWTLKAAA were produced in yeast Saccharomyces cerevisiae. Target epitopes were incorporated either at the HI or BC loop of the VP1 protein. The insertion sites were selected based on molecular models of TSPyV VP1 protein. The surface exposure of the insert positions was confirmed using a collection of monoclonal antibodies raised against the intact TSPyV VP1 protein. All generated chimeric proteins were capable to self-assemble to VLPs, which induced a strong immune response in mice. The chimeric VLPs also activated dendritic cells and T cells as demonstrated by analysis of cell surface markers and cytokine production profiles in spleen cell cultures. In conclusion, TSPyV VP1 protein represents a new potential carrier for construction of chimeric VLPs harboring target epitopes.
Collapse
|
13
|
Fleury MJJ, Nicol JTJ, Samimi M, Arnold F, Cazal R, Ballaire R, Mercey O, Gonneville H, Combelas N, Vautherot JF, Moreau T, Lorette G, Coursaget P, Touzé A. Identification of the neutralizing epitopes of Merkel cell polyomavirus major capsid protein within the BC and EF surface loops. PLoS One 2015; 10:e0121751. [PMID: 25812141 PMCID: PMC4374900 DOI: 10.1371/journal.pone.0121751] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 02/04/2015] [Indexed: 11/19/2022] Open
Abstract
Merkel cell polyomavirus (MCPyV) is the first polyomavirus clearly associated with a human cancer, i.e. the Merkel cell carcinoma (MCC). Polyomaviruses are small naked DNA viruses that induce a robust polyclonal antibody response against the major capsid protein (VP1). However, the polyomavirus VP1 capsid protein epitopes have not been identified to date. The aim of this study was to identify the neutralizing epitopes of the MCPyV capsid. For this goal, four VP1 mutants were generated by insertional mutagenesis in the BC, DE, EF and HI loops between amino acids 88-89, 150-151, 189-190, and 296-297, respectively. The reactivity of these mutants and wild-type VLPs was then investigated with anti-VP1 monoclonal antibodies and anti-MCPyV positive human sera. The findings together suggest that immunodominant conformational neutralizing epitopes are present at the surface of the MCPyV VLPs and are clustered within BC and EF loops.
Collapse
Affiliation(s)
- Maxime J J Fleury
- L'UNAM Université, Groupe d'Etude des Interactions Hôte-Pathogène, UPRES EA 3142, Université d'Angers, Angers, France
| | - Jérôme T J Nicol
- UMR INRA 1282, Virologie et Immunologie Moléculaire, Faculté des Sciences Pharmaceutiques, Université François Rabelais, PRES Centre-Val de Loire Université, Tours, France
| | - Mahtab Samimi
- UMR INRA 1282, Virologie et Immunologie Moléculaire, Faculté des Sciences Pharmaceutiques, Université François Rabelais, PRES Centre-Val de Loire Université, Tours, France; CHRU de Tours-Hôpital Trousseau, Service de Dermatologie, Tours, France
| | - Françoise Arnold
- UMR INRA 1282, Virologie et Immunologie Moléculaire, Faculté des Sciences Pharmaceutiques, Université François Rabelais, PRES Centre-Val de Loire Université, Tours, France
| | - Raphael Cazal
- UMR INRA 1282, Virologie et Immunologie Moléculaire, Faculté des Sciences Pharmaceutiques, Université François Rabelais, PRES Centre-Val de Loire Université, Tours, France
| | - Raphaelle Ballaire
- UMR INRA 1282, Virologie et Immunologie Moléculaire, Faculté des Sciences Pharmaceutiques, Université François Rabelais, PRES Centre-Val de Loire Université, Tours, France
| | - Olivier Mercey
- UMR INRA 1282, Virologie et Immunologie Moléculaire, Faculté des Sciences Pharmaceutiques, Université François Rabelais, PRES Centre-Val de Loire Université, Tours, France
| | - Hélène Gonneville
- UMR INRA 1282, Virologie et Immunologie Moléculaire, Faculté des Sciences Pharmaceutiques, Université François Rabelais, PRES Centre-Val de Loire Université, Tours, France
| | - Nicolas Combelas
- UMR INRA 1282, Virologie et Immunologie Moléculaire, Faculté des Sciences Pharmaceutiques, Université François Rabelais, PRES Centre-Val de Loire Université, Tours, France
| | | | - Thierry Moreau
- UMR INSERM 1100, Mécanismes Protéolytiques dans l'Inflammation, Faculté de Médecine, Université François Rabelais, PRES Centre-Val de Loire Université, Tours, France
| | - Gérard Lorette
- UMR INRA 1282, Virologie et Immunologie Moléculaire, Faculté des Sciences Pharmaceutiques, Université François Rabelais, PRES Centre-Val de Loire Université, Tours, France; CHRU de Tours-Hôpital Trousseau, Service de Dermatologie, Tours, France
| | - Pierre Coursaget
- Faculté des Sciences Pharmaceutiques, Université François Rabelais, PRES Centre-Val de Loire Université, Tours, France
| | - Antoine Touzé
- UMR INRA 1282, Virologie et Immunologie Moléculaire, Faculté des Sciences Pharmaceutiques, Université François Rabelais, PRES Centre-Val de Loire Université, Tours, France
| |
Collapse
|
14
|
Hovestädt M, Memczak H, Pleiner D, Zhang X, Rappich J, Bier FF, Stöcklein WFM. Characterization of a new maleimido functionalization of gold for surface plasmon resonance spectroscopy. J Mol Recognit 2014; 27:707-13. [PMID: 25319618 DOI: 10.1002/jmr.2396] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 05/16/2014] [Accepted: 05/16/2014] [Indexed: 11/06/2022]
Abstract
Para-maleimidophenyl (p-MP) modified gold surfaces have been prepared by one-step electrochemical deposition and used in surface plasmon resonance (SPR) studies. Therefore, a FITC mimotope peptide (MP1, 12 aa), a human mucin 1 epitope peptide (MUC, 9 aa) and a protein with their specific antibodies were used as model systems. The peptides were modified with an N-terminal cysteine for covalent and directed coupling to the maleimido functionalized surface by means of Michael addition. The coupling yield of the peptide, the binding characteristics of antibody and the unspecific adsorption of the analytes were investigated. The results expand the spectrum of biosensors usable with p-MP by widely used SPR and support its potential to be versatile for several electrochemical and optical biosensors. This allows the combination of an electrochemical and optical read-out for a broad variety of biomolecular interactions on the same chip.
Collapse
Affiliation(s)
- Marc Hovestädt
- Fraunhofer Institute for Biomedical Engineering IBMT, Branch Potsdam, Department of Molecular Bioanalytics and Bioelectronics, Am Mühlenberg 13, 14476, Potsdam, Germany; University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße 24/25, 14476, Potsdam, Germany
| | | | | | | | | | | | | |
Collapse
|
15
|
Zvirbliene A, Kucinskaite-Kodze I, Razanskiene A, Petraityte-Burneikiene R, Klempa B, Ulrich RG, Gedvilaite A. The use of chimeric virus-like particles harbouring a segment of hantavirus Gc glycoprotein to generate a broadly-reactive hantavirus-specific monoclonal antibody. Viruses 2014; 6:640-60. [PMID: 24513568 PMCID: PMC3939476 DOI: 10.3390/v6020640] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 01/07/2014] [Accepted: 01/18/2014] [Indexed: 11/16/2022] Open
Abstract
Monoclonal antibodies (MAbs) against viral glycoproteins have important diagnostic and therapeutic applications. In most cases, the MAbs specific to viral glycoproteins are raised against intact virus particles. The biosynthesis of viral glycoproteins in heterologous expression systems such as bacteria, yeast, insect or mammalian cells is often problematic due to their low expression level, improper folding and limited stability. To generate MAbs against hantavirus glycoprotein Gc, we have used initially a recombinant yeast-expressed full-length Puumala virus (PUUV) Gc protein. However, this approach was unsuccessful. As an alternative recombinant antigen, chimeric virus-like particles (VLPs) harboring a segment of PUUV Gc glycoprotein were generated in yeast Saccharomyces cerevisiae. A 99 amino acid (aa)-long segment of Gc protein was inserted into the major capsid protein VP1 of hamster polyomavirus at previously defined positions: either site #1 (aa 80-89) or site #4 (aa 280-289). The chimeric proteins were found to self-assemble to VLPs as evidenced by electron microscopy. Chimeric VLPs induced an efficient insert-specific antibody response in immunized mice. Monoclonal antibody (clone #10B8) of IgG isotype specific to hantavirus Gc glycoprotein was generated. It recognized recombinant full-length PUUV Gc glycoprotein both in ELISA and Western blot assay and reacted specifically with hantavirus-infected cells in immunofluorescence assay. Epitope mapping studies revealed the N-terminally located epitope highly conserved among different hantavirus strains. In conclusion, our approach to use chimeric VLPs was proven useful for the generation of virus-reactive MAb against hantavirus Gc glycoprotein. The generated broadly-reactive MAb #10B8 might be useful for various diagnostic applications.
Collapse
Affiliation(s)
- Aurelija Zvirbliene
- Vilnius University Institute of Biotechnology, V.A. Graiciuno 8, Vilnius LT-02241, Lithuania.
| | - Indre Kucinskaite-Kodze
- Vilnius University Institute of Biotechnology, V.A. Graiciuno 8, Vilnius LT-02241, Lithuania.
| | - Ausra Razanskiene
- Vilnius University Institute of Biotechnology, V.A. Graiciuno 8, Vilnius LT-02241, Lithuania.
| | | | - Boris Klempa
- Institute of Medical Virology, Helmut-Ruska-Haus, Charité Medical School, Berlin 10117, Germany.
| | - Rainer G Ulrich
- Institute for Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, Greifswald-Insel Riems 17493, Germany.
| | - Alma Gedvilaite
- Vilnius University Institute of Biotechnology, V.A. Graiciuno 8, Vilnius LT-02241, Lithuania.
| |
Collapse
|
16
|
Teunissen EA, de Raad M, Mastrobattista E. Production and biomedical applications of virus-like particles derived from polyomaviruses. J Control Release 2013; 172:305-321. [PMID: 23999392 DOI: 10.1016/j.jconrel.2013.08.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/18/2013] [Accepted: 08/20/2013] [Indexed: 10/26/2022]
Abstract
Virus-like particles (VLPs), aggregates of capsid proteins devoid of viral genetic material, show great promise in the fields of vaccine development and gene therapy. These particles spontaneously self-assemble after heterologous expression of viral structural proteins. This review will focus on the use of virus-like particles derived from polyomavirus capsid proteins. Since their first recombinant production 27 years ago these particles have been investigated for a myriad of biomedical applications. These virus-like particles are safe, easy to produce, can be loaded with a broad range of diverse cargoes and can be tailored for specific delivery or epitope presentation. We will highlight the structural characteristics of polyomavirus-derived VLPs and give an overview of their applications in diagnostics, vaccine development and gene delivery.
Collapse
Affiliation(s)
- Erik A Teunissen
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, University of Utrecht, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Markus de Raad
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, University of Utrecht, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Enrico Mastrobattista
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, University of Utrecht, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
| |
Collapse
|
17
|
Morkuniene R, Zvirbliene A, Dalgediene I, Cizas P, Jankeviciute S, Baliutyte G, Jokubka R, Jankunec M, Valincius G, Borutaite V. Antibodies bound to Aβ oligomers potentiate the neurotoxicity of Aβ by activating microglia. J Neurochem 2013; 126:604-15. [DOI: 10.1111/jnc.12332] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 06/04/2013] [Accepted: 06/05/2013] [Indexed: 01/16/2023]
Affiliation(s)
- Ramune Morkuniene
- Institute of Neurosciences; Lithuanian University of Health Sciences; Kaunas Lithuania
- Department of Biochemistry; Medical Academy; Lithuanian University of Health Sciences; Kaunas Lithuania
| | | | - Indre Dalgediene
- Vilnius University; Institute of Biotechnology; Vilnius Lithuania
| | - Paulius Cizas
- Institute of Neurosciences; Lithuanian University of Health Sciences; Kaunas Lithuania
- Department of Biochemistry; Medical Academy; Lithuanian University of Health Sciences; Kaunas Lithuania
| | - Silvija Jankeviciute
- Institute of Neurosciences; Lithuanian University of Health Sciences; Kaunas Lithuania
| | - Giedre Baliutyte
- Institute of Neurosciences; Lithuanian University of Health Sciences; Kaunas Lithuania
| | - Ramunas Jokubka
- Institute of Neurosciences; Lithuanian University of Health Sciences; Kaunas Lithuania
| | - Marija Jankunec
- Vilnius University; Institute of Biochemistry; Vilnius Lithuania
| | | | - Vilmante Borutaite
- Institute of Neurosciences; Lithuanian University of Health Sciences; Kaunas Lithuania
| |
Collapse
|
18
|
Muñoz LJ, Ludeña D, Gedvilaite A, Zvirbliene A, Jandrig B, Voronkova T, Ulrich RG, López DE. Lymphoma outbreak in a GASH:Sal hamster colony. Arch Virol 2013; 158:2255-65. [PMID: 23719671 DOI: 10.1007/s00705-013-1737-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 04/15/2013] [Indexed: 11/29/2022]
Abstract
We have detected a high incidence of lymphomas in a colony of GASH:Sal Syrian golden hamsters (Mesocricetus auratus). This strain is characterised by its ability to present convulsive crises of audiogenic origin. Almost 16 % (90 males and 60 females) of the 975 animals were affected during a 5-year period by the development of a progressing lymphoid tumour and exhibited similar clinical profiles characterised by lethargy, anorexia, evident abdominal distension, and a rapid disease progression resulting in mortality within 1 to 2 weeks. A TaqMan® probe-based real-time PCR analysis of genomic DNA from different tissue samples of the affected animals revealed the presence of a DNA sequence encoding the hamster polyomavirus (HaPyV) VP1 capsid protein. Additionally, immunohistochemical analysis using HaPyV-VP1-specific monoclonal antibodies confirmed the presence of viral proteins in all hamster tumour tissues analysed within the colony. An indirect ELISA and western blot analysis confirmed the presence of antibodies against the VP1 capsid protein in sera, not only from affected and non-affected GASH:Sal hamsters but also from control hamsters from the same breeding area. The HaPyV genome that accumulated in tumour tissues typically contained deletions affecting the noncoding regulatory region and adjacent sequences coding for the N-terminal part of the capsid protein VP2.
Collapse
Affiliation(s)
- Luis J Muñoz
- Animal Experimentation Service, University of Salamanca, Campus Miguel de Unamuno s/n, 37007, Salamanca, Spain,
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Dalgediene I, Lasickiene R, Budvytyte R, Valincius G, Morkuniene R, Borutaite V, Zvirbliene A. Immunogenic properties of amyloid beta oligomers. J Biomed Sci 2013; 20:10. [PMID: 23432787 PMCID: PMC3599114 DOI: 10.1186/1423-0127-20-10] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 02/19/2013] [Indexed: 01/20/2023] Open
Abstract
Background The central molecule in the pathogenesis of Alzheimer’s disease (AD) is believed to be a small-sized polypeptide – beta amyloid (Aβ) which has an ability to assemble spontaneously into oligomers. Various studies concerning therapeutic and prophylactic approaches for AD are based on the immunotherapy using antibodies against Aβ. It has been suggested that either active immunization with Aβ or passive immunization with anti-Aβ antibodies might help to prevent or reduce the symptoms of the disease. However, knowledge on the mechanisms of Aβ-induced immune response is rather limited. Previous research on Aβ1-42 oligomers in rat brain cultures showed that the neurotoxicity of these oligomers considerably depends on their size. In the current study, we evaluated the dependence of immunogenicity of Aβ1-42 oligomers on the size of oligomeric particles and identified the immunodominant epitopes of the oligomers. Results Mice were immunized with various Aβ1-42 oligomers. The analysis of serum antibodies revealed that small Aβ1-42 oligomers (1–2 nm in size) are highly immunogenic. They induced predominantly IgG2b and IgG2a responses. In contrast, larger Aβ1-42 oligomers and monomers induced weaker IgG response in immunized mice. The monoclonal antibody against 1–2 nm Aβ1-42 oligomers was generated and used for antigenic characterization of Aβ1-42 oligomers. Epitope mapping of both monoclonal and polyclonal antibodies demonstrated that the main immunodominant region of the 1–2 nm Aβ1-42 oligomers is located at the amino-terminus (N-terminus) of the peptide, between amino acids 1 and 19. Conclusions Small Aβ1-42 oligomers of size 1–2 nm induce the strongest immune response in mice. The N-terminus of Aβ1-42 oligomers represents an immunodominant region which indicates its surface localization and accessibility to the B cells. The results of the current study may be important for further development of Aβ-based vaccination and immunotherapy strategies.
Collapse
Affiliation(s)
- Indre Dalgediene
- Institute of Biotechnology, Vilnius University, V. Graiciuno str. 8, LT-02241, Vilnius, Lithuania.
| | | | | | | | | | | | | |
Collapse
|
20
|
Messerschmidt K, Hempel S, Holzlöhner P, Ulrich RG, Wagner D, Heilmann K. IgA antibody production by intrarectal immunization of mice using recombinant major capsid protein of hamster polyomavirus. Eur J Microbiol Immunol (Bp) 2012; 2:231-8. [PMID: 24688770 DOI: 10.1556/eujmi.2.2012.3.9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Accepted: 06/14/2012] [Indexed: 11/19/2022] Open
Abstract
Viral proteins are highly antigenic and known as potent stimulators of adaptive immune responses. This mechanism is often used for biotechnological applications in monoclonal antibody production resulting in high-affinity IgG antibodies in most cases. The aim of this study was to increase antigen-specific IgA antibody levels in mice in order to generate monoclonal IgA antibodies by hybridoma technology. For this purpose, hamster polyomavirus (HaPyV) major capsid protein VP1 was used to immunize mice by different routes in order to induce VP1-specific IgA titers. Recombinant HaPyV-VP1 was generated in Escherichia coli and administered intraperitoneally, orally, and intrarectally. VP1-specific antibodies were determined by ELISA in sera and organ culture supernatants. We found a significant increase of HaPyV-VP1-specific IgAs in spleen organ cultures after rectal immunization of mice but not in cultures of mesenteric lymph nodes, colon, or Peyer's patches. In contrast, oral and intraperitoneal immunization did not provide an appropriate specific IgA induction at all. These results show that specific IgA antibodies can be induced by intrarectal immunization in the spleen. The generation of monoclonal IgA antibodies with well-defined properties is a useful tool for the investigation of mucosal immune responses or autoimmune diseases and extends the spectrum of antibodies with specific effector functions.
Collapse
|
21
|
Schlegel M, Tegshduuren E, Yoshimatsu K, Petraityte R, Sasnauskas K, Hammerschmidt B, Friedrich R, Mertens M, Groschup MH, Arai S, Endo R, Shimizu K, Koma T, Yasuda S, Ishihara C, Ulrich RG, Arikawa J, Köllner B. Novel serological tools for detection of Thottapalayam virus, a Soricomorpha-borne hantavirus. Arch Virol 2012; 157:2179-87. [DOI: 10.1007/s00705-012-1405-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 05/25/2012] [Indexed: 01/03/2023]
|
22
|
Lasickienė R, Gedvilaite A, Norkiene M, Simanaviciene V, Sezaite I, Dekaminaviciute D, Shikova E, Zvirbliene A. The use of recombinant pseudotype virus-like particles harbouring inserted target antigen to generate antibodies against cellular marker p16INK4A. ScientificWorldJournal 2012; 2012:263737. [PMID: 22629125 PMCID: PMC3353289 DOI: 10.1100/2012/263737] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Accepted: 11/20/2011] [Indexed: 11/18/2022] Open
Abstract
Protein engineering provides an opportunity to generate new immunogens with desired features. Previously, we have demonstrated that hamster polyomavirus major capsid protein VP1-derived virus-like particles (VLPs) are highly immunogenic and can be employed for the insertion of foreign epitopes at certain surface-exposed positions. In the current study, we have designed pseudotype VLPs consisting of an intact VP1 protein and VP2 protein fused with the target antigen—cellular marker p16INK4A—at its N terminus. Both proteins coexpressed in yeast were self-assembled to pseudotype VLPs harbouring the inserted antigen on the surface. The pseudotype VLPs were used for generation of antibodies against p16INK4A that represents a potential biomarker for cells transformed by high-risk human papillomavirus (HPV). The pseudotype VLPs induced in immunized mice a strong immune response against the target antigen. The antisera raised against pseudotype VLPs showed specific immunostaining of p16INK4A protein in malignant cervical tissue. Spleen cells of the immunized mice were used to generate monoclonal antibodies against p16INK4A protein. The specificity of antibodies was proven by the immunostaining of HPV-transformed cells. In conclusion, the current study demonstrates the potential of pseudotype VLPs with inserted target antigen as a new type of immunogens to generate antibodies of high diagnostic value.
Collapse
Affiliation(s)
- Rita Lasickienė
- Institute of Biotechnology, Vilnius University, Graiciuno 8, 02241 Vilnius, Lithuania
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Mazeike E, Gedvilaite A, Blohm U. Induction of insert-specific immune response in mice by hamster polyomavirus VP1 derived virus-like particles carrying LCMV GP33 CTL epitope. Virus Res 2011; 163:2-10. [PMID: 21864590 PMCID: PMC7114473 DOI: 10.1016/j.virusres.2011.08.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 08/07/2011] [Accepted: 08/08/2011] [Indexed: 01/12/2023]
Abstract
Hamster polyomavirus (HaPyV) major capsid protein VP1 based chimeric virus-like particles (VLPs) carrying model GP33 CTL epitope derived from Lymphocytic choriomeningitis virus (LCMV) were generated in yeast and examined for their capability to induce CTL response in mice. Chimeric VP1-GP33 VLPs were effectively processed in antigen presenting cells in vitro and in vivo and induced antigen-specific CD8+ T cell proliferation. Mice immunized only once with VP1-GP33 VLPs without adjuvant developed an effective GP33-specific memory T cell response: 70% were fully and 30% partially protected from LCMV infection. Moreover, aggressive growth of tumors expressing GP33 was significantly delayed in these mice in vivo. Therefore, HaPyV VP1-derived VLP harboring CTL epitopes are attractive vaccine candidates for the induction of insert-specific CTL immune response.
Collapse
Affiliation(s)
- Egle Mazeike
- Vilnius University, Institute of Biotechnology, Graiciuno 8, LT-02241 Vilnius, Lithuania
| | | | | |
Collapse
|
24
|
Mertens M, Kindler E, Emmerich P, Esser J, Wagner-Wiening C, Wölfel R, Petraityte-Burneikiene R, Schmidt-Chanasit J, Zvirbliene A, Groschup MH, Dobler G, Pfeffer M, Heckel G, Ulrich RG, Essbauer SS. Phylogenetic analysis of Puumala virus subtype Bavaria, characterization and diagnostic use of its recombinant nucleocapsid protein. Virus Genes 2011; 43:177-91. [PMID: 21598005 DOI: 10.1007/s11262-011-0620-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Accepted: 05/05/2011] [Indexed: 10/18/2022]
Abstract
Puumala virus (PUUV) is the predominant hantavirus species in Germany causing large numbers of mild to moderate cases of haemorrhagic fever with renal syndrome (HFRS). During an outbreak in South-East Germany in 2004 a novel PUUV subtype designated Bavaria was identified as the causative agent of HFRS in humans [1]. Here we present a molecular characterization of this PUUV strain by investigating novel partial and almost entire nucleocapsid (N) protein-encoding small (S-) segment sequences and partial medium (M-) segment sequences from bank voles (Myodes glareolus) trapped in Lower Bavaria during 2004 and 2005. Phylogenetic analyses confirmed their classification as subtype Bavaria, which is further subdivided into four geographical clusters. The entire N protein, harbouring an amino-terminal hexahistidine tag, of the Bavarian strain was produced in yeast Saccharomyces cerevisiae and showed a slightly different reactivity with N-specific monoclonal antibodies, compared to the yeast-expressed N protein of the PUUV strain Vranica/Hällnäs. Endpoint titration of human sera from different parts of Germany and from Finland revealed only very slight differences in the diagnostic value of the different recombinant proteins. Based on the novel N antigen indirect and monoclonal antibody capture IgG-ELISAs were established. By using serum panels from Germany and Finland their validation demonstrated a high sensitivity and specificity. In summary, our investigations demonstrated the Bavarian PUUV strain to be genetically divergent from other PUUV strains and the potential of its N protein for diagnostic applications.
Collapse
Affiliation(s)
- Marc Mertens
- Institute for Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Kucinskaite-Kodze I, Petraityte-Burneikiene R, Zvirbliene A, Hjelle B, Medina RA, Gedvilaite A, Razanskiene A, Schmidt-Chanasit J, Mertens M, Padula P, Sasnauskas K, Ulrich RG. Characterization of monoclonal antibodies against hantavirus nucleocapsid protein and their use for immunohistochemistry on rodent and human samples. Arch Virol 2011; 156:443-56. [PMID: 21161552 PMCID: PMC8628251 DOI: 10.1007/s00705-010-0879-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 11/26/2010] [Indexed: 10/18/2022]
Abstract
Monoclonal antibodies are important tools for various applications in hantavirus diagnostics. Recently, we generated Puumala virus (PUUV)-reactive monoclonal antibodies (mAbs) by immunisation of mice with chimeric polyomavirus-derived virus-like particles (VLPs) harbouring the 120-amino-acid-long amino-terminal region of the PUUV nucleocapsid (N) protein. Here, we describe the generation of two mAbs by co-immunisation of mice with hexahistidine-tagged full-length N proteins of Sin Nombre virus (SNV) and Andes virus (ANDV), their characterization by different immunoassays and comparison with the previously generated mAbs raised against a segment of PUUV N protein inserted into VLPs. All of the mAbs reacted strongly in ELISA and western blot tests with the antigens used for immunization and cross-reacted to varying extents with N proteins of other hantaviruses. All mAbs raised against a segment of the PUUV N protein presented on chimeric VLPs and both mAbs raised against the full-length AND/SNV N protein reacted with Vero cells infected with different hantaviruses. The reactivity of mAbs with native viral nucleocapsids was also confirmed by their reactivity in immunohistochemistry assays with kidney tissue specimens from experimentally SNV-infected rodents and human heart tissue specimens from hantavirus cardiopulmonary syndrome patients. Therefore, the described mAbs represent useful tools for the immunodetection of hantavirus infection.
Collapse
|
26
|
Skrastina D, Bulavaite A, Sominskaya I, Kovalevska L, Ose V, Priede D, Pumpens P, Sasnauskas K. High immunogenicity of a hydrophilic component of the hepatitis B virus preS1 sequence exposed on the surface of three virus-like particle carriers. Vaccine 2008; 26:1972-81. [DOI: 10.1016/j.vaccine.2008.02.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2007] [Revised: 01/28/2008] [Accepted: 02/07/2008] [Indexed: 01/16/2023]
|
27
|
Dorn DC, Lawatscheck R, Zvirbliene A, Aleksaite E, Pecher G, Sasnauskas K, Özel M, Raftery M, Schönrich G, Ulrich RG, Gedvilaite A. Cellular and Humoral Immunogenicity of Hamster Polyomavirus-Derived Virus-Like Particles Harboring a Mucin 1 Cytotoxic T-Cell Epitope. Viral Immunol 2008; 21:12-27. [DOI: 10.1089/vim.2007.0085] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- David C. Dorn
- Institute of Virology, Charité Medical School, Campus Mitte, Berlin, Germany
- Medical Clinic for Oncology and Hematology, Charité Medical School, Campus Mitte, Berlin, Germany
| | - Robert Lawatscheck
- Institute of Virology, Charité Medical School, Campus Mitte, Berlin, Germany
| | | | | | - Gabriele Pecher
- Medical Clinic for Oncology and Hematology, Charité Medical School, Campus Mitte, Berlin, Germany
| | | | | | - Martin Raftery
- Institute of Virology, Charité Medical School, Campus Mitte, Berlin, Germany
| | - Günther Schönrich
- Institute of Virology, Charité Medical School, Campus Mitte, Berlin, Germany
| | - Rainer G. Ulrich
- Institute of Virology, Charité Medical School, Campus Mitte, Berlin, Germany
| | | |
Collapse
|
28
|
Lawatscheck R, Aleksaite E, Schenk JA, Micheel B, Jandrig B, Holland G, Sasnauskas K, Gedvilaite A, Ulrich RG. Chimeric polyomavirus-derived virus-like particles: the immunogenicity of an inserted peptide applied without adjuvant to mice depends on its insertion site and its flanking linker sequence. Viral Immunol 2007; 20:453-60. [PMID: 17931115 DOI: 10.1089/vim.2007.0023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We inserted the sequence of the carcinoembryonic antigen-derived T cell epitope CAP-1-6D (CEA) into different positions of the hamster polyomavirus major capsid protein VP1. Independently from additional flanking linkers, yeast-expressed VP1 proteins harboring the CEA insertion between VP1 amino acid residues 80 and 89 (site 1) or 288 and 295 (site 4) or simultaneously at both positions assembled to chimeric virus-like particles (VLPs). BALB/c mice immunized with adjuvant-free VLPs developed VP1- and epitope-specific antibodies. The level of the CEA-specific antibody response was determined by the insertion site, the number of inserts, and the flanking linker. The strongest CEA-specific antibody response was observed in mice immunized with VP1 proteins harboring the CEA insert at site 1. Moreover, the CEA-specific antibodies in these mice were still detectable 6 mo after the final booster immunization. Our results indicate that hamster polyomavirus-derived VLPs represent a highly immunogenic carrier for foreign insertions that might be useful for clinical and therapeutic applications.
Collapse
Affiliation(s)
- Robert Lawatscheck
- University of Potsdam, Institute of Biochemistry and Biology, Department of Biotechnology, Potsdam-Golm, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Velappan N, Martinez JS, Valero R, Chasteen L, Ponce L, Bondu-Hawkins V, Kelly C, Pavlik P, Hjelle B, Bradbury ARM. Selection and characterization of scFv antibodies against the Sin Nombre hantavirus nucleocapsid protein. J Immunol Methods 2007; 321:60-9. [PMID: 17336997 DOI: 10.1016/j.jim.2007.01.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Revised: 12/02/2006] [Accepted: 01/07/2007] [Indexed: 11/16/2022]
Abstract
Rodent-borne hantaviruses cause hemorrhagic fever with renal syndrome (HFRS) in the old world and hantavirus cardio-pulmonary syndrome (HCPS) in the new. Most cases of HCPS in North America are caused by Sin Nombre Virus (SNV). Current viral detection technologies depend upon the identification of anti-viral antibodies in patient serum. Detection of viral antigen may facilitate earlier detection of the pathogen. We describe here the characterization of two single-chain Fv antibodies (scFvs), selected from a large naïve phage antibody library, which are capable of identifying the Sin Nombre Virus nucleocapsid protein (SNV-N), with no cross reactivity with the nucleocapsid protein from other hantaviruses. The utility of such selected scFvs was increased by the creation of an scFv-alkaline phosphatase fusion protein which was able to directly detect virally produced material without the need for additional reagents.
Collapse
Affiliation(s)
- Nileena Velappan
- Los Alamos National Laboratory, TA-43, HRL-1, MS M888, Los Alamos NM 87545, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Voronkova T, Kazaks A, Ose V, Ozel M, Scherneck S, Pumpens P, Ulrich R. Hamster polyomavirus-derived virus-like particles are able to transfer in vitro encapsidated plasmid DNA to mammalian cells. Virus Genes 2006; 34:303-14. [PMID: 16927120 DOI: 10.1007/s11262-006-0028-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Accepted: 04/25/2006] [Indexed: 01/31/2023]
Abstract
The authentic major capsid protein 1 (VP1) of hamster polyomavirus (HaPyV) consists of 384 amino acid (aa) residues (42 kDa). Expression from an additional in-frame initiation codon located upstream from the authentic VP1 open reading frame (at position -4) might result in the synthesis of a 388 aa-long, amino-terminally extended VP1 (aa -4 to aa 384; VP1(ext)). In a plasmid-mediated Drosophila Schneider (S2) cell expression system, both VP1 derivatives as well as a VP1(ext) variant with an amino acid exchange of the authentic Met1Gly (VP1(ext-M1)) were expressed to a similar high level. Although all three proteins were detected in nuclear as well as cytoplasmic fractions, formation of virus-like particles (VLPs) was observed exclusively in the nucleus as confirmed by negative staining electron microscopy. The use of a tryptophan promoter-driven Escherichia coli expression system resulted in the efficient synthesis of VP1 and VP1(ext) and formation of VLPs. In addition, establishment of an in vitro disassembly/reassembly system allowed the encapsidation of plasmid DNA into VLPs. Encapsidated DNA was found to be protected against the action of DNase I. Mammalian COS-7 and CHO cells were transfected with HaPyV-VP1-VLPs carrying a plasmid encoding enhanced green fluorescent protein (eGFP). In both cell lines eGFP expression was detected indicating successful transfer of the plasmid into the cells, though at a still low level. Cesium chloride gradient centrifugation allowed the separation of VLPs with encapsidated DNA from "empty" VLPs, which might be useful for further optimization of transfection. Therefore, heterologously expressed HaPyV-VP1 may represent a promising alternative carrier for foreign DNA in gene transfer applications.
Collapse
Affiliation(s)
- Tatyana Voronkova
- Biomedical Research and Study Centre, Ratsupites 1, Riga LV-1067, Latvia.
| | | | | | | | | | | | | |
Collapse
|
31
|
Gedvilaite A, Dorn DC, Sasnauskas K, Pecher G, Bulavaite A, Lawatscheck R, Staniulis J, Dalianis T, Ramqvist T, Schönrich G, Raftery MJ, Ulrich R. Virus-like particles derived from major capsid protein VP1 of different polyomaviruses differ in their ability to induce maturation in human dendritic cells. Virology 2006; 354:252-60. [PMID: 16904154 DOI: 10.1016/j.virol.2006.07.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Revised: 04/13/2006] [Accepted: 07/07/2006] [Indexed: 11/20/2022]
Abstract
As polyomavirus major capsid protein VP1-derived virus-like particles (VLPs) have been demonstrated to be highly immunogenic, we studied their interaction with human dendritic cells (hDCs). Exposure of hDCs to VLPs originating from murine (MPyV) or hamster polyomavirus (HaPyV) induced hDC maturation. In contrast, exposure of hDCs to VLPs derived from human polyomaviruses (BK and JC) and simian virus 40 (SV40) only marginally induced DC maturation. The hDCs stimulated by HaPyV- or MPyV-derived VLPs readily produced interleukin-12 and stimulated CD8-positive T-cell responses in vitro. The highest frequencies of activated T cells were again observed after pulsing with HaPyV- and MPyV-derived VLPs. Monocyte-derived hDCs both bound and internalized the various tested polyomavirus VP1-derived VLPs with different levels of efficiency, partially explaining their individual maturation potentials. In conclusion, our data suggest a high variability in uptake of polyomavirus-derived VLPs and potency to induce hDC maturation.
Collapse
Affiliation(s)
- Alma Gedvilaite
- Institute of Biotechnology, V Graiciuno 8, LT-02241 Vilnius, Lithuania
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|