1
|
Li S, Wang Z, Guo X, Tang Y. Engineering and characterization of Hu3A4: A novel humanized antibody with potential as a therapeutic agent against myeloid lineage leukemias. Neoplasia 2025; 59:101084. [PMID: 39571332 PMCID: PMC11617877 DOI: 10.1016/j.neo.2024.101084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 11/05/2024] [Indexed: 12/08/2024]
Abstract
Leukemia stem cells (LSCs) play a critical role in the initiation, recurrence, and resistance to treatment of leukemia. Eradicating LSCs is crucial for the complete elimination of the disease. CD45RA is identified as an important marker for LSC subsets in acute myeloid leukemia (AML), providing a strategic target for therapy. In this report, we introduce Hu3A4, an innovative humanized CD45RA antibody devised to target LSCs expressing this antigen. Hu3A4 retains the antigen-recognition ability of its parental antibody while removing sequences from the variable region that could elicit human anti-mouse immune reactions. The modified variable regions of the heavy and light chains were intricately fused with the constant regions of human IgG1 heavy and light chains, respectively, producing a humanized antibody that emulates the structure of natural IgG. Hu3A4 was produced through recombinant expression in Chinese Hamster Ovary (CHO) cells, which ensured stable gene integration. In vitro tests revealed that Hu3A4 could effectively target and lyse the cells. Further, in vivo studies highlighted Hu3A4's substantial anti-leukemic activity, significantly prolonging survival times in treated animal models compared to controls (P < 0.01). To summarize, Hu3A4 exhibits remarkable bioactivity and offers a promising therapeutic potential for the treatment of leukemia patients. Progressing Hu3A4 through additional preclinical and clinical studies is crucial to validate its efficacy as a therapeutic agent for leukemia.
Collapse
MESH Headings
- Humans
- Animals
- Mice
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Cricetulus
- CHO Cells
- Xenograft Model Antitumor Assays
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/genetics
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/immunology
- Neoplastic Stem Cells/pathology
- Cell Line, Tumor
- Disease Models, Animal
- Antineoplastic Agents, Immunological/pharmacology
- Antineoplastic Agents, Immunological/therapeutic use
- Leukemia, Myeloid/drug therapy
- Leukemia, Myeloid/immunology
- Leukemia, Myeloid/therapy
Collapse
Affiliation(s)
- Sisi Li
- School of Medicine, Hangzhou City University, #51 Huzhou Street, Hangzhou 310015, China
| | - Zhujun Wang
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Xiaoping Guo
- Division of Hematology-Oncology, Pediatric Hematology-Oncology Center, Zhejiang Provincial Research Center for Childhood Leukemia New Diagnostic and Therapeutic Techniques, Children's Hospital, Zhejiang University School of Medicine, National Clinical Medical Research Center for Child Health, #57 Zhugan Road, Yan-an Street, Hangzhou 310006, China
| | - Yongmin Tang
- Division of Hematology-Oncology, Pediatric Hematology-Oncology Center, Zhejiang Provincial Research Center for Childhood Leukemia New Diagnostic and Therapeutic Techniques, Children's Hospital, Zhejiang University School of Medicine, National Clinical Medical Research Center for Child Health, #57 Zhugan Road, Yan-an Street, Hangzhou 310006, China.
| |
Collapse
|
2
|
Schriek AI, Falck D, Wuhrer M, Kootstra NA, van Gils MJ, de Taeye SW. Functional comparison of Fc-engineering strategies to improve anti-HIV-1 antibody effector functions. Antiviral Res 2024; 231:106015. [PMID: 39343065 DOI: 10.1016/j.antiviral.2024.106015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/17/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Substantial reduction of the intact proviral reservoir is essential towards HIV-1 cure. In vivo administration of broadly neutralizing antibodies (bNAbs) targeting the HIV-1 envelope glycoprotein (Env) trimer can decrease the viral reservoir, through Fc-mediated killing of infected cells. In this study, we compared three commonly used antibody engineering strategies to enhance Fc-mediated effector functions: (i) glyco-engineering, (ii) protein engineering, and (iii) subclass/hinge modifications in a panel of anti-HIV-1 antibodies. We found that antibody-dependent cellular phagocytosis (ADCP) was improved by elongating the hinge domain and switching to an IgG3 constant domain. In addition, potent NK cell activation and ADCC activity was observed for afucosylated antibodies and antibodies bearing the GASDALIE mutations. The combination of these engineering strategies further increased NK cell activation and induced antibody dependent cytotoxicity (ADCC) of infected cells at low antibody concentrations. The bNAb N6 was most effective at killing HIV-1 infected cells, likely due to its high affinity and optimal angle of approach. Overall, the findings of this study are applicable to other antibody formats, and can aid the development of effective immunotherapies and antibody-based treatments for HIV-1 cure strategies.
Collapse
Affiliation(s)
- Angela I Schriek
- Amsterdam UMC location University of Amsterdam, Department of Medical Microbiology, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious diseases, Amsterdam, the Netherlands.
| | - David Falck
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Neeltje A Kootstra
- Amsterdam Institute for Infection and Immunity, Infectious diseases, Amsterdam, the Netherlands; Amsterdam UMC location University of Amsterdam, Department of Experimental Immunology, Amsterdam, the Netherlands
| | - Marit J van Gils
- Amsterdam UMC location University of Amsterdam, Department of Medical Microbiology, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious diseases, Amsterdam, the Netherlands
| | - Steven W de Taeye
- Amsterdam UMC location University of Amsterdam, Department of Medical Microbiology, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious diseases, Amsterdam, the Netherlands.
| |
Collapse
|
3
|
Boje AS, Pekar L, Koep K, Lipinski B, Rabinovich B, Evers A, Gehlert CL, Krohn S, Xiao Y, Krah S, Zaynagetdinov R, Toleikis L, Poetzsch S, Peipp M, Zielonka S, Klausz K. Impact of antibody architecture and paratope valency on effector functions of bispecific NKp30 x EGFR natural killer cell engagers. MAbs 2024; 16:2315640. [PMID: 38372053 PMCID: PMC10877975 DOI: 10.1080/19420862.2024.2315640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 02/02/2024] [Indexed: 02/20/2024] Open
Abstract
Natural killer (NK) cells emerged as a promising effector population that can be harnessed for anti-tumor therapy. In this work, we constructed NK cell engagers (NKCEs) based on NKp30-targeting single domain antibodies (sdAbs) that redirect the cytotoxic potential of NK cells toward epidermal growth factor receptor (EGFR)-expressing tumor cells. We investigated the impact of crucial parameters such as sdAb location, binding valencies, the targeted epitope on NKp30, and the overall antibody architecture on the redirection capacity. Our study exploited two NKp30-specific sdAbs, one of which binds a similar epitope on NKp30 as its natural ligand B7-H6, while the other sdAb addresses a non-competing epitope. For EGFR-positive tumor targeting, humanized antigen-binding domains of therapeutic antibody cetuximab were used. We demonstrate that NKCEs bivalently targeting EGFR and bivalently engaging NKp30 are superior to monovalent NKCEs in promoting NK cell-mediated tumor cell lysis and that the architecture of the NKCE can substantially influence killing capacities depending on the NKp30-targeting sdAb utilized. While having a pronounced impact on NK cell killing efficacy, the capabilities of triggering antibody-dependent cellular phagocytosis or complement-dependent cytotoxicity were not significantly affected comparing the bivalent IgG-like NKCEs with cetuximab. However, the fusion of sdAbs can have a slight impact on the NK cell release of immunomodulatory cytokines, as well as on the pharmacokinetic profile of the NKCE due to unfavorable spatial orientation within the molecule architecture. Ultimately, our findings reveal novel insights for the engineering of potent NKCEs triggering the NKp30 axis.
Collapse
Affiliation(s)
- Ammelie Svea Boje
- Division of Antibody-Based Immunotherapy, Department of Internal Medicine II, University Medical Center Schleswig-Holstein and University of Kiel, Kiel, Germany
| | - Lukas Pekar
- Antibody Discovery & Protein Engineering, Merck Healthcare KGaA, Darmstadt, Germany
| | - Katharina Koep
- Drug Metabolism and Pharmacokinetics, Merck Healthcare KGaA, Darmstadt, Germany
| | - Britta Lipinski
- Antibody Discovery & Protein Engineering, Merck Healthcare KGaA, Darmstadt, Germany
| | - Brian Rabinovich
- Department of Oncology and Immuno-Oncology, EMD Serono Research & Development Institute Inc, 45A Middlesex Turnpike, Billerica, MA, USA
| | - Andreas Evers
- Antibody Discovery & Protein Engineering, Merck Healthcare KGaA, Darmstadt, Germany
| | - Carina Lynn Gehlert
- Division of Antibody-Based Immunotherapy, Department of Internal Medicine II, University Medical Center Schleswig-Holstein and University of Kiel, Kiel, Germany
| | - Steffen Krohn
- Division of Antibody-Based Immunotherapy, Department of Internal Medicine II, University Medical Center Schleswig-Holstein and University of Kiel, Kiel, Germany
| | - Yanping Xiao
- Department of Oncology and Immuno-Oncology, EMD Serono Research & Development Institute Inc, 45A Middlesex Turnpike, Billerica, MA, USA
| | - Simon Krah
- Antibody Discovery & Protein Engineering, Merck Healthcare KGaA, Darmstadt, Germany
| | - Rinat Zaynagetdinov
- Department of Oncology and Immuno-Oncology, EMD Serono Research & Development Institute Inc, 45A Middlesex Turnpike, Billerica, MA, USA
| | - Lars Toleikis
- Early Protein Supply & Characterization, Merck Healthcare KGaA, Darmstadt, Germany
| | - Sven Poetzsch
- Strategic Innovation, Merck Healthcare KGaA, Darmstadt, Germany
| | - Matthias Peipp
- Division of Antibody-Based Immunotherapy, Department of Internal Medicine II, University Medical Center Schleswig-Holstein and University of Kiel, Kiel, Germany
| | - Stefan Zielonka
- Antibody Discovery & Protein Engineering, Merck Healthcare KGaA, Darmstadt, Germany
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
| | - Katja Klausz
- Division of Antibody-Based Immunotherapy, Department of Internal Medicine II, University Medical Center Schleswig-Holstein and University of Kiel, Kiel, Germany
| |
Collapse
|
4
|
Lutz S, Klausz K, Albici AM, Ebinger L, Sellmer L, Teipel H, Frenzel A, Langner A, Winterberg D, Krohn S, Hust M, Schirrmann T, Dübel S, Scherließ R, Humpe A, Gramatzki M, Kellner C, Peipp M. Novel NKG2D-directed bispecific antibodies enhance antibody-mediated killing of malignant B cells by NK cells and T cells. Front Immunol 2023; 14:1227572. [PMID: 37965326 PMCID: PMC10641740 DOI: 10.3389/fimmu.2023.1227572] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/05/2023] [Indexed: 11/16/2023] Open
Abstract
The activating receptor natural killer group 2, member D (NKG2D) represents an attractive target for immunotherapy as it exerts a crucial role in cancer immunosurveillance by regulating the activity of cytotoxic lymphocytes. In this study, a panel of novel NKG2D-specific single-chain fragments variable (scFv) were isolated from naïve human antibody gene libraries and fused to the fragment antigen binding (Fab) of rituximab to obtain [CD20×NKG2D] bibodies with the aim to recruit cytotoxic lymphocytes to lymphoma cells. All bispecific antibodies bound both antigens simultaneously. Two bibody constructs, [CD20×NKG2D#3] and [CD20×NKG2D#32], efficiently activated natural killer (NK) cells in co-cultures with CD20+ lymphoma cells. Both bibodies triggered NK cell-mediated lysis of lymphoma cells and especially enhanced antibody-dependent cell-mediated cytotoxicity (ADCC) by CD38 or CD19 specific monoclonal antibodies suggesting a synergistic effect between NKG2D and FcγRIIIA signaling pathways in NK cell activation. The [CD20×NKG2D] bibodies were not effective in redirecting CD8+ T cells as single agents, but enhanced cytotoxicity when combined with a bispecific [CD19×CD3] T cell engager, indicating that NKG2D signaling also supports CD3-mediated T cell activation. In conclusion, engagement of NKG2D with bispecific antibodies is attractive to directly activate cytotoxic lymphocytes or to support their activation by monoclonal antibodies or bispecific T cell engagers. As a perspective, co-targeting of two tumor antigens may allow fine-tuning of antibody cancer therapies. Our proposed combinatorial approach is potentially applicable for many existing immunotherapies but further testing in different preclinical models is necessary to explore the full potential.
Collapse
Affiliation(s)
- Sebastian Lutz
- Department of Transfusion Medicine, Cell Therapeutics and Hemostaseology, University Hospital, Ludwig Maximilians University (LMU) Munich, Munich, Germany
- Division of Antibody-Based Immunotherapy, Department of Medicine II, Kiel University, Kiel, Germany
| | - Katja Klausz
- Division of Antibody-Based Immunotherapy, Department of Medicine II, Kiel University, Kiel, Germany
| | - Anca-Maria Albici
- Division of Antibody-Based Immunotherapy, Department of Medicine II, Kiel University, Kiel, Germany
| | - Lea Ebinger
- Division of Antibody-Based Immunotherapy, Department of Medicine II, Kiel University, Kiel, Germany
| | - Lea Sellmer
- Division of Antibody-Based Immunotherapy, Department of Medicine II, Kiel University, Kiel, Germany
| | - Hannah Teipel
- Division of Antibody-Based Immunotherapy, Department of Medicine II, Kiel University, Kiel, Germany
| | | | - Anna Langner
- Division of Antibody-Based Immunotherapy, Department of Medicine II, Kiel University, Kiel, Germany
| | - Dorothee Winterberg
- Division of Antibody-Based Immunotherapy, Department of Medicine II, Kiel University, Kiel, Germany
| | - Steffen Krohn
- Division of Antibody-Based Immunotherapy, Department of Medicine II, Kiel University, Kiel, Germany
| | - Michael Hust
- YUMAB GmbH, Braunschweig, Germany
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | | | - Stefan Dübel
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | - Regina Scherließ
- Department of Pharmaceutics and Biopharmaceutics, Kiel University, Kiel, Germany
| | - Andreas Humpe
- Department of Transfusion Medicine, Cell Therapeutics and Hemostaseology, University Hospital, Ludwig Maximilians University (LMU) Munich, Munich, Germany
| | - Martin Gramatzki
- Division of Antibody-Based Immunotherapy, Department of Medicine II, Kiel University, Kiel, Germany
| | - Christian Kellner
- Department of Transfusion Medicine, Cell Therapeutics and Hemostaseology, University Hospital, Ludwig Maximilians University (LMU) Munich, Munich, Germany
| | - Matthias Peipp
- Division of Antibody-Based Immunotherapy, Department of Medicine II, Kiel University, Kiel, Germany
| |
Collapse
|
5
|
Zhong X, Schenk J, Sakorafas P, Chamberland J, Tam A, Thomas LM, Yan G, D' Antona AM, Lin L, Nocula-Lugowska M, Zhang Y, Sousa E, Cohen J, Gu L, Abel M, Donahue J, Lim S, Meade C, Zhou J, Riegel L, Birch A, Fennell BJ, Franklin E, Gomes JM, Tzvetkova B, Scarcelli JJ. Impacts of fast production of afucosylated antibodies and Fc mutants in ExpiCHO-S™ for enhancing FcγRIIIa binding and NK cell activation. J Biotechnol 2022; 360:79-91. [PMID: 36341973 DOI: 10.1016/j.jbiotec.2022.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/29/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
This study has employed mammalian transient expression systems to generate afucosylated antibodies and antibody Fc mutants for rapid candidate screening in discovery and early development. While chemical treatment with the fucose analogue 2-fluoro-peracetyl-fucose during transient expression only partially produced antibodies with afucosylated N-glycans, the genetic inactivation of the FUT8 gene in ExpiCHO-S™ by CRISPR/Cas9 enabled the transient production of fully afucosylated antibodies. Human IgG1 and murine IgG2a generated by the ExpiCHOfut8KO cell line possessed a 8-to-11-fold enhanced FcγRIIIa binding activity in comparison with those produced by ExpiCHO-S™. The Fc mutant S239D/S298A/I332E produced by ExpiCHO-S™ had an approximate 2-fold higher FcγRIIIa affinity than that of the afucosylated wildtype molecule, although it displayed significantly lower thermal-stability. When the Fc mutant was produced in the ExpiCHOfut8KO cell line, the resulting afucosylated Fc mutant antibody had an additional approximate 6-fold increase in FcγRIIIa binding affinity. This synergistic effect between afucosylation and the Fc mutations was further verified by a natural killer (NK) cell activation assay. Together, these results have not only established an efficient large-scale transient CHO system for rapid production of afucosylated antibodies, but also confirmed a cooperative impact between afucosylation and Fc mutations on FcγRIIIa binding and NK cell activation.
Collapse
Affiliation(s)
- Xiaotian Zhong
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, 610 Main Street, Cambridge, MA 02139, USA.
| | - Jennifer Schenk
- Analytical R&D, Biotherapeutics Pharmaceutical Sciences, Medicinal Sciences, Pfizer Worldwide R&D, 1 Burtt Road, Andover, MA 01810, USA
| | - Paul Sakorafas
- Analytical R&D, Biotherapeutics Pharmaceutical Sciences, Medicinal Sciences, Pfizer Worldwide R&D, 1 Burtt Road, Andover, MA 01810, USA
| | - John Chamberland
- BioProcess R&D, Biotherapeutics Pharmaceutical Sciences, Medicinal Sciences, Pfizer Worldwide R&D, 1 Burtt Road, Andover, MA 01810, USA
| | - Amy Tam
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, 610 Main Street, Cambridge, MA 02139, USA
| | - L Michael Thomas
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, 610 Main Street, Cambridge, MA 02139, USA
| | - Grace Yan
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, 610 Main Street, Cambridge, MA 02139, USA
| | - Aaron M D' Antona
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, 610 Main Street, Cambridge, MA 02139, USA
| | - Laura Lin
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, 610 Main Street, Cambridge, MA 02139, USA
| | | | - Yan Zhang
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, 610 Main Street, Cambridge, MA 02139, USA
| | - Eric Sousa
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, 610 Main Street, Cambridge, MA 02139, USA
| | - Justin Cohen
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, 610 Main Street, Cambridge, MA 02139, USA
| | - Ling Gu
- Analytical R&D, Biotherapeutics Pharmaceutical Sciences, Medicinal Sciences, Pfizer Worldwide R&D, 1 Burtt Road, Andover, MA 01810, USA
| | - Molica Abel
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, 610 Main Street, Cambridge, MA 02139, USA
| | - Jacob Donahue
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, 610 Main Street, Cambridge, MA 02139, USA
| | - Sean Lim
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, 610 Main Street, Cambridge, MA 02139, USA
| | - Caryl Meade
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, 610 Main Street, Cambridge, MA 02139, USA
| | - Jing Zhou
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, 610 Main Street, Cambridge, MA 02139, USA
| | - Logan Riegel
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, 610 Main Street, Cambridge, MA 02139, USA
| | - Alex Birch
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, 610 Main Street, Cambridge, MA 02139, USA
| | - Brian J Fennell
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, Grange Castle, Dublin, Ireland
| | - Edward Franklin
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, Grange Castle, Dublin, Ireland
| | - Jose M Gomes
- BioProcess R&D, Biotherapeutics Pharmaceutical Sciences, Medicinal Sciences, Pfizer Worldwide R&D, 1 Burtt Road, Andover, MA 01810, USA
| | - Boriana Tzvetkova
- Analytical R&D, Biotherapeutics Pharmaceutical Sciences, Medicinal Sciences, Pfizer Worldwide R&D, 1 Burtt Road, Andover, MA 01810, USA
| | - John J Scarcelli
- BioProcess R&D, Biotherapeutics Pharmaceutical Sciences, Medicinal Sciences, Pfizer Worldwide R&D, 1 Burtt Road, Andover, MA 01810, USA.
| |
Collapse
|
6
|
Chockalingam K, Kumar A, Song J, Chen Z. Chicken-derived CD20 antibodies with potent B-cell depletion activity. Br J Haematol 2022; 199:560-571. [PMID: 36039695 PMCID: PMC9649889 DOI: 10.1111/bjh.18438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/26/2022] [Accepted: 08/17/2022] [Indexed: 12/01/2022]
Abstract
We report four novel anti-human CD20 (hCD20) monoclonal antibodies (mAbs) discovered from a phylogenetically distant species-chickens. The chicken-human chimaeric antibodies exhibit at least 10-fold enhanced antibody-dependent cellular cytotoxicity (ADCC) and 4-8-fold stronger complement-dependent cytotoxicity (CDC) relative to the clinically used mouse-human chimaeric anti-hCD20 antibody rituximab (RTX). Thus, to our knowledge these mAbs are the first to significantly outperform RTX in both Fc-mediated mechanisms of action. The antibodies show 20-100-fold superior depletion of B cells in whole blood from healthy humans relative to RTX and retain efficacy in vivo. One of the mAbs, AC1, can bind mouse CD20, indicating specificity for a novel hCD20 epitope inaccessible to current (mouse-derived) anti-hCD20 mAbs. A humanized version of one antibody, hAC11-10, was created by complementarity-determining region (CDR) grafting into a human variable region framework and this molecule retained the ADCC, in vitro human whole-blood B-cell depletion, and in vivo lymphoma cell depletion activities of the parent. These mAbs represent promising monotherapy candidates for improving upon current less-than-ideal clinical outcomes in lymphoid malignancies and provide an arsenal of biologically relevant molecules for the development of next-generation CD20-mediated immunotherapies including bispecific T-cell engagers (BiTE), antibody-drug conjugates (ADC) and chimaeric antigen receptor-engineered T (CAR-T) cells.
Collapse
Affiliation(s)
- Karuppiah Chockalingam
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center
| | - Anil Kumar
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center
| | - Jianxun Song
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center
| | - Zhilei Chen
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center
| |
Collapse
|
7
|
Klausz K, Pekar L, Boje AS, Gehlert CL, Krohn S, Gupta T, Xiao Y, Krah S, Zaynagetdinov R, Lipinski B, Toleikis L, Poetzsch S, Rabinovich B, Peipp M, Zielonka S. Multifunctional NK Cell–Engaging Antibodies Targeting EGFR and NKp30 Elicit Efficient Tumor Cell Killing and Proinflammatory Cytokine Release. THE JOURNAL OF IMMUNOLOGY 2022; 209:1724-1735. [DOI: 10.4049/jimmunol.2100970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 08/23/2022] [Indexed: 01/04/2023]
Abstract
Abstract
In this work, we have generated novel Fc-comprising NK cell engagers (NKCEs) that bridge human NKp30 on NK cells to human epidermal growth factor receptor (EGFR) on tumor cells. Camelid-derived VHH single-domain Abs specific for human NKp30 and a humanized Fab derived from the EGFR-specific therapeutic Ab cetuximab were used as binding arms. By combining camelid immunization with yeast surface display, we were able to isolate a diverse panel of NKp30-specific VHHs against different epitopes on NKp30. Intriguingly, NKCEs built with VHHs that compete for binding to NKp30 with B7-H6, the natural ligand of NKp30, were significantly more potent in eliciting tumor cell lysis of EGFR-positive tumor cells than NKCEs harboring VHHs that target different epitopes on NKp30 from B7-H6. We demonstrate that the NKCEs can be further improved with respect to killing capabilities by concomitant engagement of FcγRIIIa and that soluble B7-H6 does not impede cytolytic capacities of all scrutinized NKCEs at significantly higher B7-H6 concentrations than observed in cancer patients. Moreover, we show that physiological processes requiring interactions between membrane-bound B7-H6 and NKp30 on NK cells are unaffected by noncompeting NKCEs still eliciting tumor cell killing at low picomolar concentrations. Ultimately, the NKCEs generated in this study were significantly more potent in eliciting NK cell–mediated tumor cell lysis than cetuximab and elicited a robust release of proinflammatory cytokines, both features which might be beneficial for antitumor therapy.
Collapse
Affiliation(s)
- Katja Klausz
- *Division of Antibody-Based Immunotherapy, Department of Internal Medicine II, University Hospital Schleswig-Holstein and Christian Albrechts University Kiel, Kiel, Germany
| | - Lukas Pekar
- †Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
| | - Ammelie Svea Boje
- *Division of Antibody-Based Immunotherapy, Department of Internal Medicine II, University Hospital Schleswig-Holstein and Christian Albrechts University Kiel, Kiel, Germany
| | - Carina Lynn Gehlert
- *Division of Antibody-Based Immunotherapy, Department of Internal Medicine II, University Hospital Schleswig-Holstein and Christian Albrechts University Kiel, Kiel, Germany
| | - Steffen Krohn
- *Division of Antibody-Based Immunotherapy, Department of Internal Medicine II, University Hospital Schleswig-Holstein and Christian Albrechts University Kiel, Kiel, Germany
| | - Tushar Gupta
- ‡Protein Engineering and Antibody Technologies, EMD Serono Research & Development Institute, Inc., Billerica, MA
| | - Yanping Xiao
- §Department of Oncology and Immuno-oncology, EMD Serono Research & Development Institute, Inc., Billerica, MA
| | - Simon Krah
- †Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
| | - Rinat Zaynagetdinov
- §Department of Oncology and Immuno-oncology, EMD Serono Research & Development Institute, Inc., Billerica, MA
| | - Britta Lipinski
- †Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
- ¶Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany; and
| | - Lars Toleikis
- †Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
| | - Sven Poetzsch
- ‖Strategic Innovation, Merck Healthcare KGaA, Darmstadt, Germany
| | - Brian Rabinovich
- §Department of Oncology and Immuno-oncology, EMD Serono Research & Development Institute, Inc., Billerica, MA
| | - Matthias Peipp
- *Division of Antibody-Based Immunotherapy, Department of Internal Medicine II, University Hospital Schleswig-Holstein and Christian Albrechts University Kiel, Kiel, Germany
| | - Stefan Zielonka
- †Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
- ¶Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany; and
| |
Collapse
|
8
|
Gehlert CL, Rahmati P, Boje AS, Winterberg D, Krohn S, Theocharis T, Cappuzzello E, Lux A, Nimmerjahn F, Ludwig RJ, Lustig M, Rösner T, Valerius T, Schewe DM, Kellner C, Klausz K, Peipp M. Dual Fc optimization to increase the cytotoxic activity of a CD19-targeting antibody. Front Immunol 2022; 13:957874. [PMID: 36119088 PMCID: PMC9471254 DOI: 10.3389/fimmu.2022.957874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/12/2022] [Indexed: 12/02/2022] Open
Abstract
Targeting CD19 represents a promising strategy for the therapy of B-cell malignancies. Although non-engineered CD19 antibodies are poorly effective in mediating complement-dependent cytotoxicity (CDC), antibody-dependent cell-mediated cytotoxicity (ADCC) or antibody-dependent cellular phagocytosis (ADCP), these effector functions can be enhanced by Fc-engineering. Here, we engineered a CD19 antibody with the aim to improve effector cell-mediated killing and CDC activity by exchanging selected amino acid residues in the Fc domain. Based on the clinically approved Fc-optimized antibody tafasitamab, which triggers enhanced ADCC and ADCP due to two amino acid exchanges in the Fc domain (S239D/I332E), we additionally added the E345K amino acid exchange to favor antibody hexamerization on the target cell surface resulting in improved CDC. The dual engineered CD19-DEK antibody bound CD19 and Fcγ receptors with similar characteristics as the parental CD19-DE antibody. Both antibodies were similarly efficient in mediating ADCC and ADCP but only the dual optimized antibody was able to trigger complement deposition on target cells and effective CDC. Our data provide evidence that from a technical perspective selected Fc-enhancing mutations can be combined (S239D/I332E and E345K) allowing the enhancement of ADCC, ADCP and CDC with isolated effector populations. Interestingly, under more physiological conditions when the complement system and FcR-positive effector cells are available as effector source, strong complement deposition negatively impacts FcR engagement. Both effector functions were simultaneously active only at selected antibody concentrations. Dual Fc-optimized antibodies may represent a strategy to further improve CD19-directed cancer immunotherapy. In general, our results can help in guiding optimal antibody engineering strategies to optimize antibodies’ effector functions.
Collapse
Affiliation(s)
- Carina Lynn Gehlert
- Division of Antibody-Based Immunotherapy, Department of Medicine II, Christian Albrechts University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Pegah Rahmati
- Division of Antibody-Based Immunotherapy, Department of Medicine II, Christian Albrechts University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Ammelie Svea Boje
- Division of Antibody-Based Immunotherapy, Department of Medicine II, Christian Albrechts University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Dorothee Winterberg
- Department of Pediatrics I, University Hospital Schleswig-Holstein and Christian-Albrechts-University Kiel, Kiel, Germany
| | - Steffen Krohn
- Division of Antibody-Based Immunotherapy, Department of Medicine II, Christian Albrechts University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Thomas Theocharis
- Division of Antibody-Based Immunotherapy, Department of Medicine II, Christian Albrechts University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Elisa Cappuzzello
- Oncology and Immunology Section, Department of Surgery Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Anja Lux
- Division of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Falk Nimmerjahn
- Division of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ralf J. Ludwig
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Marta Lustig
- Division of Stem Cell Transplantation and Immunotherapy Department of Medicine II, Christian Albrechts University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Thies Rösner
- Division of Stem Cell Transplantation and Immunotherapy Department of Medicine II, Christian Albrechts University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Thomas Valerius
- Division of Stem Cell Transplantation and Immunotherapy Department of Medicine II, Christian Albrechts University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Denis Martin Schewe
- Department of Pediatrics, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Christian Kellner
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, Ludwig-Maximilians-University (LMU) University Hospital Munich, Munich, Germany
| | - Katja Klausz
- Division of Antibody-Based Immunotherapy, Department of Medicine II, Christian Albrechts University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Matthias Peipp
- Division of Antibody-Based Immunotherapy, Department of Medicine II, Christian Albrechts University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
- *Correspondence: Matthias Peipp,
| |
Collapse
|
9
|
Venetoclax enhances the efficacy of therapeutic antibodies in B-cell malignancies by augmenting tumor cell phagocytosis. Blood Adv 2022; 6:4847-4858. [PMID: 35820018 PMCID: PMC9631674 DOI: 10.1182/bloodadvances.2022007364] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 07/01/2022] [Indexed: 12/04/2022] Open
Abstract
Immunotherapy has evolved as a powerful tool for the treatment of B-cell malignancies, and patient outcomes have improved by combining therapeutic antibodies with conventional chemotherapy. Overexpression of antiapoptotic B-cell lymphoma 2 (Bcl-2) is associated with a poor prognosis, and increased levels have been described in patients with "double-hit" diffuse large B-cell lymphoma, a subgroup of Burkitt's lymphoma, and patients with pediatric acute lymphoblastic leukemia harboring a t(17;19) translocation. Here, we show that the addition of venetoclax (VEN), a specific Bcl-2 inhibitor, potently enhanced the efficacy of the therapeutic anti-CD20 antibody rituximab, anti-CD38 daratumumab, and anti-CD19-DE, a proprietary version of tafasitamab. This was because of an increase in antibody-dependent cellular phagocytosis by macrophages as shown in vitro and in vivo in cell lines and patient-derived xenograft models. Mechanistically, double-hit lymphoma cells subjected to VEN triggered phagocytosis in an apoptosis-independent manner. Our study identifies the combination of VEN and therapeutic antibodies as a promising novel strategy for the treatment of B-cell malignancies.
Collapse
|
10
|
Rahnama R, Christodoulou I, Bonifant CL. Gene-Based Natural Killer Cell Therapies for the Treatment of Pediatric Hematologic Malignancies. Hematol Oncol Clin North Am 2022; 36:745-768. [PMID: 35773048 PMCID: PMC10158845 DOI: 10.1016/j.hoc.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Pediatric blood cancers are among the most common malignancies that afflict children. Intensive chemotherapy is not curative in many cases, and novel therapies are urgently needed. NK cells hold promise for use as immunotherapeutic effectors due to their favorable safety profile, intrinsic cytotoxic properties, and potential for genetic modification that can enhance specificity and killing potential. NK cells can be engineered to express CARs targeting tumor-specific antigens, to downregulate inhibitory and regulatory signals, to secrete cytokine, and to optimize interaction with small molecule engagers. Understanding NK cell biology is key to designing immunotherapy for clinical translation.
Collapse
|
11
|
Kellner C, Lutz S, Oberg HH, Wesch D, Otte A, Diemer KJ, Wilcken H, Bauerschlag D, Glüer CC, Wichmann C, Kabelitz D, Leusen JHW, Klausz K, Humpe A, Gramatzki M, Peipp M. Tumor cell lysis and synergistically enhanced antibody-dependent cell-mediated cytotoxicity by NKG2D engagement with a bispecific immunoligand targeting the HER2 antigen. Biol Chem 2021; 403:545-556. [PMID: 34717050 DOI: 10.1515/hsz-2021-0229] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 10/13/2021] [Indexed: 11/15/2022]
Abstract
Natural killer group 2 member D (NKG2D) plays an important role in the regulation of natural killer (NK) cell cytotoxicity in cancer immune surveillance. With the aim of redirecting NK cell cytotoxicity against tumors, the NKG2D ligand UL-16 binding protein 2 (ULBP2) was fused to a single-chain fragment variable (scFv) targeting the human epidermal growth factor receptor 2 (HER2). The resulting bispecific immunoligand ULBP2:HER2-scFv triggered NK cell-mediated killing of HER2-positive breast cancer cells in an antigen-dependent manner and required concomitant interaction with NKG2D and HER2 as revealed in antigen blocking experiments. The immunoligand induced tumor cell lysis dose-dependently and was effective at nanomolar concentrations. Of note, ULBP2:HER2-scFv sensitized tumor cells for antibody-dependent cell-mediated cytotoxicity (ADCC). In particular, the immunoligand enhanced ADCC by cetuximab, a therapeutic antibody targeting the epidermal growth factor receptor (EGFR) synergistically. No significant improvements were obtained by combining cetuximab and anti-HER2 antibody trastuzumab. In conclusion, dual-dual targeting by combining IgG1 antibodies with antibody constructs targeting another tumor associated antigen and engaging NKG2D as a second NK cell trigger molecule may be promising. Thus, the immunoligand ULBP2:HER2-scFv may represent an attractive biological molecule to promote NK cell cytotoxicity against tumors and to boost ADCC.
Collapse
Affiliation(s)
- Christian Kellner
- Department of Transfusion Medicine, Cell Therapeutics and Hemostaseology, University Hospital, LMU Munich, Max-Lebsche-Platz 32, D-81377Munich, Germany
| | - Sebastian Lutz
- Department of Medicine II, Division of Stem Cell Transplantation and Immunotherapy, Christian-Albrechts-University of Kiel, D-24105Kiel, Germany
| | - Hans-Heinrich Oberg
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein, D-24105Kiel, Germany
| | - Daniela Wesch
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein, D-24105Kiel, Germany
| | - Anna Otte
- Department of Medicine II, Division of Stem Cell Transplantation and Immunotherapy, Christian-Albrechts-University of Kiel, D-24105Kiel, Germany
| | - Katarina J Diemer
- Department of Medicine II, Division of Stem Cell Transplantation and Immunotherapy, Christian-Albrechts-University of Kiel, D-24105Kiel, Germany
| | - Hauke Wilcken
- Department of Medicine II, Division of Stem Cell Transplantation and Immunotherapy, Christian-Albrechts-University of Kiel, D-24105Kiel, Germany
| | - Dirk Bauerschlag
- Department of Gynecology and Obestrics, University Medical Centre Schleswig-Holstein, Campus Kiel, D-24105Kiel, Germany
| | - Claus-Christian Glüer
- Department of Radiology and Neurology, Section Biomedical Imaging, University Hospital Schleswig-Holstein, D-24118Kiel, Germany
| | - Christian Wichmann
- Department of Transfusion Medicine, Cell Therapeutics and Hemostaseology, University Hospital, LMU Munich, Max-Lebsche-Platz 32, D-81377Munich, Germany
| | - Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein, D-24105Kiel, Germany
| | - Jeanette H W Leusen
- Laboratory of Translational Immunology, University Medical Center, NL-3584Utrecht, Netherlands
| | - Katja Klausz
- Department of Medicine II, Division of Stem Cell Transplantation and Immunotherapy, Christian-Albrechts-University of Kiel, D-24105Kiel, Germany
| | - Andreas Humpe
- Department of Transfusion Medicine, Cell Therapeutics and Hemostaseology, University Hospital, LMU Munich, Max-Lebsche-Platz 32, D-81377Munich, Germany
| | - Martin Gramatzki
- Department of Medicine II, Division of Stem Cell Transplantation and Immunotherapy, Christian-Albrechts-University of Kiel, D-24105Kiel, Germany
| | - Matthias Peipp
- Department of Medicine II, Division of Stem Cell Transplantation and Immunotherapy, Christian-Albrechts-University of Kiel, D-24105Kiel, Germany
| |
Collapse
|
12
|
Engineering of CD19 Antibodies: A CD19-TRAIL Fusion Construct Specifically Induces Apoptosis in B-Cell Precursor Acute Lymphoblastic Leukemia (BCP-ALL) Cells In Vivo. J Clin Med 2021; 10:jcm10122634. [PMID: 34203833 PMCID: PMC8232684 DOI: 10.3390/jcm10122634] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/04/2021] [Accepted: 06/10/2021] [Indexed: 12/22/2022] Open
Abstract
B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is the most frequent malignancy in children and also occurs in adulthood. Despite high cure rates, BCP-ALL chemotherapy can be highly toxic. This type of toxicity can most likely be reduced by antibody-based immunotherapy targeting the CD19 antigen which is commonly expressed on BCP-ALL cells. In this study, we generated a novel Fc-engineered CD19-targeting IgG1 antibody fused to a single chain tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) domain (CD19-TRAIL). As TRAIL induces apoptosis in tumor cells but not in healthy cells, we hypothesized that CD19-TRAIL would show efficient killing of BCP-ALL cells. CD19-TRAIL showed selective binding capacity and pronounced apoptosis induction in CD19-positive (CD19+) BCP-ALL cell lines in vitro and in vivo. Additionally, CD19-TRAIL significantly prolonged survival of mice transplanted with BCP-ALL patient-derived xenograft (PDX) cells of different cytogenetic backgrounds. Moreover, simultaneous treatment with CD19-TRAIL and Venetoclax (VTX), an inhibitor of the anti-apoptotic protein BCL-2, promoted synergistic apoptosis induction in CD19+ BCP-ALL cells in vitro and prolonged survival of NSG-mice bearing the BCP-ALL cell line REH. Therefore, IgG1-based CD19-TRAIL fusion proteins represent a new potential immunotherapeutic agent against BCP-ALL.
Collapse
|
13
|
Pekar L, Klausz K, Busch M, Valldorf B, Kolmar H, Wesch D, Oberg HH, Krohn S, Boje AS, Gehlert CL, Toleikis L, Krah S, Gupta T, Rabinovich B, Zielonka S, Peipp M. Affinity Maturation of B7-H6 Translates into Enhanced NK Cell-Mediated Tumor Cell Lysis and Improved Proinflammatory Cytokine Release of Bispecific Immunoligands via NKp30 Engagement. THE JOURNAL OF IMMUNOLOGY 2020; 206:225-236. [PMID: 33268483 DOI: 10.4049/jimmunol.2001004] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023]
Abstract
Activating NK cell receptors represent promising target structures to elicit potent antitumor immune responses. In this study, novel immunoligands were generated that bridge the activating NK cell receptor NKp30 on NK cells with epidermal growth factor receptor (EGFR) on tumor cells in a bispecific IgG-like format based on affinity-optimized versions of B7-H6 and the Fab arm derived from cetuximab. To enhance NKp30 binding, the solitary N-terminal IgV domain of B7-H6 (ΔB7-H6) was affinity matured by an evolutionary library approach combined with yeast surface display. Biochemical and functional characterization of 36 of these novel ΔB7-H6-derived NK cell engagers revealed an up to 45-fold-enhanced affinity for NKp30 and significantly improved NK cell-mediated, EGFR-dependent killing of tumor cells compared with the NK cell engager based on the wild-type ΔB7-H6 domain. In this regard, potencies (EC50 killing) of the best immunoligands were substantially improved by up to 87-fold. Moreover, release of IFN-γ and TNF-α was significantly increased. Importantly, equipment of the ΔB7-H6-based NK cell engagers with a human IgG1 Fc part competent in Fc receptor binding resulted in an almost 10-fold superior killing of EGFR-overexpressing tumor cells compared with molecules either triggering FcγRIIIa or NKp30. Additionally, INF-γ and TNF-α release was increased compared with molecules solely triggering FcγRIIIa, including the clinically approved Ab cetuximab. Thus, incorporating affinity-matured ligands for NK cell-activating receptors might represent an effective strategy for the generation of potent novel therapeutic agents with unique effector functions in cancer immunotherapy.
Collapse
Affiliation(s)
- Lukas Pekar
- Protein Engineering and Antibody Technologies, Merck KGaA, D-64293 Darmstadt, Germany.,Discovery Pharmacology, Merck KGaA, D-64293 Darmstadt, Germany
| | - Katja Klausz
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, University Hospital Schleswig-Holstein and Christian-Albrechts-University of Kiel, D-24105 Kiel, Germany
| | - Michael Busch
- Discovery Pharmacology, Merck KGaA, D-64293 Darmstadt, Germany
| | - Bernhard Valldorf
- Chemical and Pharmaceutical Development, Merck KGaA, D-64293 Darmstadt, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, D-64287 Darmstadt, Germany
| | - Daniela Wesch
- Institute of Immunology, University Hospital Schleswig-Holstein and Christian-Albrechts-University of Kiel, D-24105 Kiel, Germany; and
| | - Hans-Heinrich Oberg
- Institute of Immunology, University Hospital Schleswig-Holstein and Christian-Albrechts-University of Kiel, D-24105 Kiel, Germany; and
| | - Steffen Krohn
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, University Hospital Schleswig-Holstein and Christian-Albrechts-University of Kiel, D-24105 Kiel, Germany
| | - Ammelie Svea Boje
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, University Hospital Schleswig-Holstein and Christian-Albrechts-University of Kiel, D-24105 Kiel, Germany
| | - Carina Lynn Gehlert
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, University Hospital Schleswig-Holstein and Christian-Albrechts-University of Kiel, D-24105 Kiel, Germany
| | - Lars Toleikis
- Protein Engineering and Antibody Technologies, Merck KGaA, D-64293 Darmstadt, Germany
| | - Simon Krah
- Protein Engineering and Antibody Technologies, Merck KGaA, D-64293 Darmstadt, Germany
| | - Tushar Gupta
- Department of Immuno-oncology, EMD Serono Research & Development Institute Inc., Billerica, MA 01821
| | - Brian Rabinovich
- Department of Immuno-oncology, EMD Serono Research & Development Institute Inc., Billerica, MA 01821
| | - Stefan Zielonka
- Protein Engineering and Antibody Technologies, Merck KGaA, D-64293 Darmstadt, Germany;
| | - Matthias Peipp
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, University Hospital Schleswig-Holstein and Christian-Albrechts-University of Kiel, D-24105 Kiel, Germany;
| |
Collapse
|
14
|
Roßkopf S, Eichholz KM, Winterberg D, Diemer KJ, Lutz S, Münnich IA, Klausz K, Rösner T, Valerius T, Schewe DM, Humpe A, Gramatzki M, Peipp M, Kellner C. Enhancing CDC and ADCC of CD19 Antibodies by Combining Fc Protein-Engineering with Fc Glyco-Engineering. Antibodies (Basel) 2020; 9:antib9040063. [PMID: 33212776 PMCID: PMC7709100 DOI: 10.3390/antib9040063] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
Background: Native cluster of differentiation (CD) 19 targeting antibodies are poorly effective in triggering antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC), which are crucial effector functions of therapeutic antibodies in cancer immunotherapy. Both functions can be enhanced by engineering the antibody’s Fc region by altering the amino acid sequence (Fc protein-engineering) or the Fc-linked glycan (Fc glyco-engineering). We hypothesized that combining Fc glyco-engineering with Fc protein-engineering will rescue ADCC and CDC in CD19 antibodies. Results: Four versions of a CD19 antibody based on tafasitamab’s V-regions were generated: a native IgG1, an Fc protein-engineered version with amino acid exchanges S267E/H268F/S324T/G236A/I332E (EFTAE modification) to enhance CDC, and afucosylated, Fc glyco-engineered versions of both to promote ADCC. Irrespective of fucosylation, antibodies carrying the EFTAE modification had enhanced C1q binding and were superior in inducing CDC. In contrast, afucosylated versions exerted an enhanced affinity to Fcγ receptor IIIA and had increased ADCC activity. Of note, the double-engineered antibody harboring the EFTAE modification and lacking fucose triggered both CDC and ADCC more efficiently. Conclusions: Fc glyco-engineering and protein-engineering could be combined to enhance ADCC and CDC in CD19 antibodies and may allow the generation of antibodies with higher therapeutic efficacy by promoting two key functions simultaneously.
Collapse
Affiliation(s)
- Sophia Roßkopf
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany; (S.R.); (K.M.E.); (K.J.D.); (K.K.); (T.R.); (T.V.); (M.G.)
| | - Klara Marie Eichholz
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany; (S.R.); (K.M.E.); (K.J.D.); (K.K.); (T.R.); (T.V.); (M.G.)
| | - Dorothee Winterberg
- Pediatric Hematology/Oncology, Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany; (D.W.); (D.M.S.)
| | - Katarina Julia Diemer
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany; (S.R.); (K.M.E.); (K.J.D.); (K.K.); (T.R.); (T.V.); (M.G.)
| | - Sebastian Lutz
- Department of Transfusion Medicine, Cell Therapeutics and Hemostaseology, University Hospital, LMU Munich, 81377 Munich, Germany; (S.L.); (I.A.M.); (A.H.); (C.K.)
| | - Ira Alexandra Münnich
- Department of Transfusion Medicine, Cell Therapeutics and Hemostaseology, University Hospital, LMU Munich, 81377 Munich, Germany; (S.L.); (I.A.M.); (A.H.); (C.K.)
| | - Katja Klausz
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany; (S.R.); (K.M.E.); (K.J.D.); (K.K.); (T.R.); (T.V.); (M.G.)
| | - Thies Rösner
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany; (S.R.); (K.M.E.); (K.J.D.); (K.K.); (T.R.); (T.V.); (M.G.)
| | - Thomas Valerius
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany; (S.R.); (K.M.E.); (K.J.D.); (K.K.); (T.R.); (T.V.); (M.G.)
| | - Denis Martin Schewe
- Pediatric Hematology/Oncology, Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany; (D.W.); (D.M.S.)
| | - Andreas Humpe
- Department of Transfusion Medicine, Cell Therapeutics and Hemostaseology, University Hospital, LMU Munich, 81377 Munich, Germany; (S.L.); (I.A.M.); (A.H.); (C.K.)
| | - Martin Gramatzki
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany; (S.R.); (K.M.E.); (K.J.D.); (K.K.); (T.R.); (T.V.); (M.G.)
| | - Matthias Peipp
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany; (S.R.); (K.M.E.); (K.J.D.); (K.K.); (T.R.); (T.V.); (M.G.)
- Correspondence: ; Tel.: +49-431-500-22701
| | - Christian Kellner
- Department of Transfusion Medicine, Cell Therapeutics and Hemostaseology, University Hospital, LMU Munich, 81377 Munich, Germany; (S.L.); (I.A.M.); (A.H.); (C.K.)
| |
Collapse
|
15
|
Schultheis K, Pugh HM, Oh J, Nguyen J, Yung B, Reed C, Cooch N, Chen J, Yan J, Muthumani K, Humeau LM, Weiner DB, Broderick KE, Smith TRF. Active immunoprophylaxis with a synthetic DNA-encoded monoclonal anti-respiratory syncytial virus scFv-Fc fusion protein confers protection against infection and durable activity. Hum Vaccin Immunother 2020; 16:2165-2175. [PMID: 32544376 PMCID: PMC7553682 DOI: 10.1080/21645515.2020.1748979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Respiratory Syncytial virus (RSV) is a major threat to many vulnerable populations. There are currently no approved vaccines, and RSV remains a high unmet global medical need. Here we describe the employment of a novel synthetic DNA-encoded antibody technology platform to develop and deliver an engineered human DNA-encoded monoclonal antibody (dMAbTM) targeting the fusion protein (F) of RSV as a new approach to prevention or therapy of at risk populations. In in vivo models, a single administration of synthetic DNA-encoding the single-chain fragment variable-constant fragment (scFv-Fc) RSV-F dMAb resulted in robust and durable circulating levels of a functional antibody systemically and in mucosal tissue. In cotton rats, which are the gold-standard animals to model RSV infection, we observed sustained scFv-Fc RSV-F dMAb in the sera and lung-lavage samples, demonstrating the potential for both long-lasting immunity to RSV and effective biodistribution. The scFv-Fc RSV-F dMAb harbored in the sera exhibited RSV antigen-specific binding and potent viral neutralizing activity. Importantly, in vivo delivery of synthetic DNA-encoding, the scFv-Fc RSV-F dMAb protected animals against viral challenge. Our findings support the significance of dMAbs as a potential platform technology for durable protection against RSV disease.
Collapse
Affiliation(s)
| | - Holly M Pugh
- Inovio Pharmaceuticals , Plymouth Meeting, PA, USA
| | - Janet Oh
- Inovio Pharmaceuticals , Plymouth Meeting, PA, USA
| | | | - Bryan Yung
- Inovio Pharmaceuticals , Plymouth Meeting, PA, USA
| | - Charles Reed
- Inovio Pharmaceuticals , Plymouth Meeting, PA, USA
| | - Neil Cooch
- Inovio Pharmaceuticals , Plymouth Meeting, PA, USA
| | - Jing Chen
- Inovio Pharmaceuticals , Plymouth Meeting, PA, USA
| | - Jian Yan
- Inovio Pharmaceuticals , Plymouth Meeting, PA, USA
| | - Kar Muthumani
- Vaccine & Immunotherapy Center, The Wistar Institute , Philadelphia, PA, USA
| | | | - David B Weiner
- Vaccine & Immunotherapy Center, The Wistar Institute , Philadelphia, PA, USA
| | | | | |
Collapse
|
16
|
Freitas Monteiro M, Papaserafeim M, Réal A, Puga Yung GL, Seebach JD. Anti-CD20 rituximab IgG1, IgG3, and IgG4 but not IgG2 subclass trigger Ca 2+ mobilization and cytotoxicity in human NK cells. J Leukoc Biol 2020; 108:1409-1423. [PMID: 32620047 DOI: 10.1002/jlb.5ma0620-039r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/11/2020] [Accepted: 06/16/2020] [Indexed: 12/12/2022] Open
Abstract
NK cell-mediated Ab-dependent cellular cytotoxicity (ADCC) is increasingly recognized to play an important role in cancer immunotherapy, transplant rejection, and autoimmunity. However, several aspects of the molecular interactions of IgG subclasses with the Fc-gamma receptor IIIA (FcγRIIIA)/CD16a expressed on NK cells remain unknown. The aim of the current study was to further analyze the role of IgG subclasses and FCGR3A V158F single nucleotide polymorphism (SNP) on Ca2+ signaling and NK cell-mediated ADCC against Daudi target cells in vitro. NK cells were isolated from donors with different FCGR3A SNP. The affinity of rituximab IgG subclasses to CD20 expressed on Daudi cells showed similar dissociation constant as tested by flow cytometry. Induction of Ca2+ signaling, degranulation, intracellular cytokine production, and ADCC was demonstrated for IgG1 and IgG3, to a lesser degree also for IgG4, but not for IgG2. Compared to NK cells carrying the low-affinity (FF) variant for the FCGR3A V158F SNP, binding of IgG1 and IgG3 to NK cells carrying the high-affinity (VV) and VF SNP variants was two- to threefold higher. Variations of FCGR3A SNP among the eight tested donors (1 VV, 3FF, and 4VF) revealed no significant differences of Ca2+ signaling and degranulation; however, ADCC was somewhat weaker in donors with the low-affinity FF variation. In conclusion, this is the first study correlating Ca2+ signaling and NK cell-mediated ADCC triggered by the four IgG subclasses with the FCGR3A V158F SNP. Our findings indicate important differences in the interactions of IgG subclasses with FcγRIIIA/CD16a but no major impact of FCGR3A SNP and may therefore help to better correlate the functional properties of particular engineered therapeutic antibodies in vitro with individual differences of their clinical efficacy.
Collapse
Affiliation(s)
- Marta Freitas Monteiro
- Division of Immunology and Allergology, Department of Medicine, University Hospitals and Medical Faculty, Geneva, Switzerland
| | - Maria Papaserafeim
- Division of Immunology and Allergology, Department of Medicine, University Hospitals and Medical Faculty, Geneva, Switzerland
| | - Aline Réal
- Division of Immunology and Allergology, Department of Medicine, University Hospitals and Medical Faculty, Geneva, Switzerland
| | - Gisella L Puga Yung
- Division of Immunology and Allergology, Department of Medicine, University Hospitals and Medical Faculty, Geneva, Switzerland
| | - Jörg D Seebach
- Division of Immunology and Allergology, Department of Medicine, University Hospitals and Medical Faculty, Geneva, Switzerland
| |
Collapse
|
17
|
Hay CE, Ewing LE, Hambuchen MD, Zintner SM, Small JC, Bolden CT, Fantegrossi WE, Margaritis P, Owens SM, Peterson EC. The Development and Characterization of an scFv-Fc Fusion-Based Gene Therapy to Reduce the Psychostimulant Effects of Methamphetamine Abuse. J Pharmacol Exp Ther 2020; 374:16-23. [PMID: 32245884 PMCID: PMC7289050 DOI: 10.1124/jpet.119.261180] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 03/31/2020] [Indexed: 12/17/2022] Open
Abstract
Methamphetamine (METH) continues to be among the most addictive and abused drugs in the United States. Unfortunately, there are currently no Food and Drug Administration-approved pharmacological treatments for METH-use disorder. We have previously explored the use of adeno-associated viral (AAV)-mediated gene transfer of an anti-METH monoclonal antibody. Here, we advance our approach by generating a novel anti-METH single-chain variable fragment (scFv)-Fc fusion construct (termed 7F9-Fc) packaged into AAV serotype 8 vector (called AAV-scFv-Fc) and tested in vivo and ex vivo. A range of doses [1 × 1010, 1 × 1011, and 1 × 1012 vector copies (vcs)/mouse] were administered to mice, eliciting a dose-dependent expression of 7F9-Fc in serum with peak circulating concentrations of 48, 1785, and 3831 µg/ml, respectively. Expressed 7F9-Fc exhibited high-affinity METH binding, IC50 = 17 nM. Between days 21 and 35 after vector administration, at both 1 × 1011 vc/mouse and 1 × 1012 vc/mouse doses, the AAV-7F9-Fc gene therapy significantly decreased the potency of METH in locomotor assays. On day 116 post-AAV administration, mice expressing 7F9-Fc sequestered over 2.5 times more METH in the serum than vehicle-treated mice, and METH concentrations in the brain were reduced by 1.2 times the value for vehicle mice. These data suggest that an AAV-delivered anti-METH Fc fusion antibody could be used to persistently reduce concentrations of METH in the central nervous system. SIGNIFICANCE STATEMENT: In this manuscript, we describe the testing of a novel antimethamphetamine (METH) single-chain variable fragment-Fc fusion protein delivered in mice using gene therapy. The results suggest that the gene therapy delivery system can lead to the production of significant antibody concentrations that mitigate METH's psychostimulant effects in mice over an extended time period.
Collapse
Affiliation(s)
- Charles E Hay
- University of Arkansas for Medical Sciences, Little Rock, Arkansas (C.E.H., L.E.E., M.D.H., C.T.B., W.E.F., S.M.O., E.C.P,); The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania (S.M.Z., J.C.S., P.M.,); The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania (P.M.); and Department of Pediatrics, The University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania (P.M.)
| | - Laura E Ewing
- University of Arkansas for Medical Sciences, Little Rock, Arkansas (C.E.H., L.E.E., M.D.H., C.T.B., W.E.F., S.M.O., E.C.P,); The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania (S.M.Z., J.C.S., P.M.,); The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania (P.M.); and Department of Pediatrics, The University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania (P.M.)
| | - Michael D Hambuchen
- University of Arkansas for Medical Sciences, Little Rock, Arkansas (C.E.H., L.E.E., M.D.H., C.T.B., W.E.F., S.M.O., E.C.P,); The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania (S.M.Z., J.C.S., P.M.,); The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania (P.M.); and Department of Pediatrics, The University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania (P.M.)
| | - Shannon M Zintner
- University of Arkansas for Medical Sciences, Little Rock, Arkansas (C.E.H., L.E.E., M.D.H., C.T.B., W.E.F., S.M.O., E.C.P,); The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania (S.M.Z., J.C.S., P.M.,); The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania (P.M.); and Department of Pediatrics, The University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania (P.M.)
| | - Juliana C Small
- University of Arkansas for Medical Sciences, Little Rock, Arkansas (C.E.H., L.E.E., M.D.H., C.T.B., W.E.F., S.M.O., E.C.P,); The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania (S.M.Z., J.C.S., P.M.,); The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania (P.M.); and Department of Pediatrics, The University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania (P.M.)
| | - Chris T Bolden
- University of Arkansas for Medical Sciences, Little Rock, Arkansas (C.E.H., L.E.E., M.D.H., C.T.B., W.E.F., S.M.O., E.C.P,); The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania (S.M.Z., J.C.S., P.M.,); The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania (P.M.); and Department of Pediatrics, The University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania (P.M.)
| | - William E Fantegrossi
- University of Arkansas for Medical Sciences, Little Rock, Arkansas (C.E.H., L.E.E., M.D.H., C.T.B., W.E.F., S.M.O., E.C.P,); The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania (S.M.Z., J.C.S., P.M.,); The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania (P.M.); and Department of Pediatrics, The University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania (P.M.)
| | - Paris Margaritis
- University of Arkansas for Medical Sciences, Little Rock, Arkansas (C.E.H., L.E.E., M.D.H., C.T.B., W.E.F., S.M.O., E.C.P,); The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania (S.M.Z., J.C.S., P.M.,); The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania (P.M.); and Department of Pediatrics, The University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania (P.M.)
| | - S Michael Owens
- University of Arkansas for Medical Sciences, Little Rock, Arkansas (C.E.H., L.E.E., M.D.H., C.T.B., W.E.F., S.M.O., E.C.P,); The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania (S.M.Z., J.C.S., P.M.,); The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania (P.M.); and Department of Pediatrics, The University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania (P.M.)
| | - Eric C Peterson
- University of Arkansas for Medical Sciences, Little Rock, Arkansas (C.E.H., L.E.E., M.D.H., C.T.B., W.E.F., S.M.O., E.C.P,); The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania (S.M.Z., J.C.S., P.M.,); The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania (P.M.); and Department of Pediatrics, The University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania (P.M.)
| |
Collapse
|
18
|
Hu Y, Zeng T, Xiao Z, Hu Q, Li Y, Tan X, Yue H, Wang W, Tan H, Zou J. Immunological role and underlying mechanisms of B7-H6 in tumorigenesis. Clin Chim Acta 2020; 502:191-198. [PMID: 31904350 DOI: 10.1016/j.cca.2019.12.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/31/2019] [Accepted: 12/31/2019] [Indexed: 02/07/2023]
Abstract
B7 homolog 6 (B7-H6) has been identified as involved in tumorigenesis. Elucidating its role and potential mechanism of action is essential for understanding tumorigenesis and the potential development of an effective clinical strategy. Abnormal overexpression of B7-H6 in various types of tumors was reported to be linked with poor prognosis. B7-H6 suppresses the initiation of the "caspase cascade" and induces anti-apoptosis by STAT3 pathway activation to provoke tumorigenesis. B7-H6 facilitates tumor proliferation and cell cycle progression by regulating apoptosis suppressors. B7-H6 induces cellular cytotoxicity, secretion of TNF-α and IFN-γ and B7-H6-specific BiTE triggers T cells to accelerate tumorigenesis. B7-H6 induces abnormal immunological progression by HER2-scFv mediated ADCC and NKp30 immune escape to promote tumorigenesis. B7-H6 promotes tumorigenesis via apoptosis inhibition, proliferation and immunological progression. B7-H6 may a valuable potential biomarker and therapeutic strategy for diagnostics, prognostics and treatment in cancer.
Collapse
Affiliation(s)
- Yuxuan Hu
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China
| | - Tian Zeng
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China
| | - Zheng Xiao
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China
| | - Qihao Hu
- Cardiothoracic Surgery, The Second Affiliated Hospital, University of South China, Hengyang, Hunan 421001, PR China
| | - Yukun Li
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China
| | - Xiongjin Tan
- The Second Department of Orthopaedic, 922 Hospital of PLA, Hengyang, Hunan 410011, PR China
| | - Haiyan Yue
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China; Department of Pathology, The Central Hospital of Shaoyang, Shaoyang, Hunan 422000, PR China
| | - Wensong Wang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China
| | - Hui Tan
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China.
| | - Juan Zou
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China.
| |
Collapse
|
19
|
Sung AP, Tang JJJ, Guglielmo MJ, Redelman D, Smith-Gagen J, Bateman L, Hudig D. An improved method to quantify human NK cell-mediated antibody-dependent cell-mediated cytotoxicity (ADCC) per IgG FcR-positive NK cell without purification of NK cells. J Immunol Methods 2017; 452:63-72. [PMID: 29113954 DOI: 10.1016/j.jim.2017.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 10/31/2017] [Accepted: 11/02/2017] [Indexed: 12/12/2022]
Abstract
Natural killer (NK) lymphocyte ADCC supports anti-viral protection and monoclonal antibody (mAb) anti-tumor therapies. To predict in vivo ADCC therapeutic responses of different individuals, measurement of both ADCC cellular lytic capacity and their NK cellular receptor recognition of antibodies on 'target' cells are needed, using clinically available amounts of blood. Twenty ml of blood provides sufficient peripheral blood mononuclear cells (PBMCs) for the new assay for lytic capacity described here and for an antibody EC50 assay for Fc-receptor recognition. For the lytic capacity assay, we employed flow cytometry to quantify the CD16A IgG Fc-receptor positive NK effector cells from PBMCs to avoid loss of NKs during isolation. Targets were 51Cr-labeled Daudi B cells pretreated with excess obinutuzumab type 2 anti-CD20 mAb and washed; remaining free mAb was insufficient to convert B cells in the PBMCs into 'targets'. We calculated: the percentage Daudis killed at a 1:1 ratio of CD16A-positive NK cells to Daudis (CX1:1); lytic slopes; and ADCC50 lytic units. Among 27 donors, we detected wide ranges in CX1:1 (16-73% targets killed) and in lytic slopes. Slope variations prevented application of lytic units. We recommend CX1:1 to compare individuals' ADCC capacity. CX1:1 was similar for purified NK cells vs. PBMCs and independent of CD16A V & F genotypes and antibody EC50s. With high mAb bound onto targets and the high affinity of obinutuzumab Fc for CD16A, CX1:1 measurements discern ADCC lytic capacity rather than antibody recognition. This assay allows ADCC to be quantified without NK cell isolation and avoids distortion associated with lytic units.
Collapse
Affiliation(s)
- Alexander P Sung
- University of Nevada Reno School of Medicine, Department of Microbiology and Immunology Reno, Nevada, 1664 N. Virginia St., Reno, NV 89557, United States
| | - Jennifer J-J Tang
- University of Nevada Reno School of Medicine, Department of Microbiology and Immunology Reno, Nevada, 1664 N. Virginia St., Reno, NV 89557, United States
| | - Michael J Guglielmo
- University of Nevada Reno School of Medicine, Department of Microbiology and Immunology Reno, Nevada, 1664 N. Virginia St., Reno, NV 89557, United States
| | - Doug Redelman
- University of Nevada Reno School of Medicine, Department of Physiology and Cell Biology Reno, Nevada, 1664 N. Virginia St., Reno, NV 89557, United States
| | - Julie Smith-Gagen
- University of Nevada Reno School of Medicine, School of Community Health Sciences Reno, Nevada, 1664 N. Virginia St., Reno, NV 89557, United States
| | - Lucinda Bateman
- Bateman Horne Center, Salt Lake City, UT 84102, United States
| | - Dorothy Hudig
- University of Nevada Reno School of Medicine, Department of Microbiology and Immunology Reno, Nevada, 1664 N. Virginia St., Reno, NV 89557, United States.
| |
Collapse
|
20
|
Klausz K, Cieker M, Kellner C, Oberg HH, Kabelitz D, Valerius T, Burger R, Gramatzki M, Peipp M. A novel Fc-engineered human ICAM-1/CD54 antibody with potent anti-myeloma activity developed by cellular panning of phage display libraries. Oncotarget 2017; 8:77552-77566. [PMID: 29100408 PMCID: PMC5652799 DOI: 10.18632/oncotarget.20641] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 08/07/2017] [Indexed: 11/25/2022] Open
Abstract
To identify antibodies suitable for multiple myeloma (MM) immunotherapy, a cellular screening approach was developed using plasma cell lines JK-6L and INA-6 and human synthetic single-chain fragment variable (scFv) phage libraries. Isolated phage antibodies were screened for myeloma cell surface reactivity. Due to its binding characteristics, phage PIII-15 was selected to generate the scFv-Fc fusion protein TP15-Fc with an Fc domain optimized for FcγRIIIa binding. Various MM cell lines and patient-derived CD138-positive malignant plasma cells, but not granulocytes, B or T lymphocytes from healthy donors were recognized by TP15-Fc. Human intercellular adhesion molecule-1 (ICAM-1/CD54) was identified as target antigen by using transfected Chinese hamster ovary (CHO) cells. Of note, no cross-reactivity of TP15-Fc with mouse ICAM-1 transfected cells was detected. TP15-Fc was capable to induce antibody-dependent cell-mediated cytotoxicity (ADCC) against different human plasma cell lines and patients' myeloma cells with peripheral blood mononuclear cells (PBMC) and purified NK cells. Importantly, TP15-Fc showed potent in vivo efficacy and completely prevented growth of human INA-6.Tu1 plasma cells in a xenograft SCID/beige mouse model. Thus, the novel ADCC-optimized TP15-Fc exerts potent anti-myeloma activity and has promising characteristics to be further evaluated for MM immunotherapy.
Collapse
Affiliation(s)
- Katja Klausz
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, University Hospital Schleswig-Holstein and Christian-Albrechts-University Kiel, Kiel, Germany
| | - Michael Cieker
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, University Hospital Schleswig-Holstein and Christian-Albrechts-University Kiel, Kiel, Germany
| | - Christian Kellner
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, University Hospital Schleswig-Holstein and Christian-Albrechts-University Kiel, Kiel, Germany
| | - Hans-Heinrich Oberg
- Institute of Immunology, University Hospital Schleswig-Holstein and Christian-Albrechts-University Kiel, Kiel, Germany
| | - Dieter Kabelitz
- Institute of Immunology, University Hospital Schleswig-Holstein and Christian-Albrechts-University Kiel, Kiel, Germany
| | - Thomas Valerius
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, University Hospital Schleswig-Holstein and Christian-Albrechts-University Kiel, Kiel, Germany
| | - Renate Burger
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, University Hospital Schleswig-Holstein and Christian-Albrechts-University Kiel, Kiel, Germany
| | - Martin Gramatzki
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, University Hospital Schleswig-Holstein and Christian-Albrechts-University Kiel, Kiel, Germany
| | - Matthias Peipp
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, University Hospital Schleswig-Holstein and Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
21
|
Wirt T, Rosskopf S, Rösner T, Eichholz KM, Kahrs A, Lutz S, Kretschmer A, Valerius T, Klausz K, Otte A, Gramatzki M, Peipp M, Kellner C. An Fc Double-Engineered CD20 Antibody with Enhanced Ability to Trigger Complement-Dependent Cytotoxicity and Antibody-Dependent Cell-Mediated Cytotoxicity. Transfus Med Hemother 2017; 44:292-300. [PMID: 29070974 DOI: 10.1159/000479978] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/01/2017] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Engineering of the antibody's fragment crystallizable (Fc) by modifying the amino acid sequence (Fc protein engineering) or the glycosylation pattern (Fc glyco-engineering) allows enhancing effector functions of tumor targeting antibodies. Here, we investigated whether complement-dependent cytotoxicity (CDC) and antibody-dependent cell-mediated cytotoxicity (ADCC) of CD20 antibodies could be improved simultaneously by combining Fc protein engineering and glyco-engineering technologies. METHODS AND RESULTS Four variants of the CD20 antibody rituximab were generated: a native IgG1, a variant carrying the EFTAE modification (S267E/H268F/S324T/G236A/I332E) for enhanced CDC as well as glyco-engineered, non-fucosylated derivatives of both to boost ADCC. The antibodies bound CD20 specifically with similar affinity. Antibodies with EFTAE modification were more efficacious in mediating CDC, irrespective of fucosylation, than antibodies with wild-type sequences due to enhanced C1q binding. In contrast, non-fucosylated variants had an enhanced affinity to FcγRIIIA and improved ADCC activity. Importantly, the double-engineered antibody lacking fucose and carrying the EFTAE modification mediated both CDC and ADCC with higher efficacy than the native CD20 IgG1 antibody. CONCLUSION Combining glyco-engineering and protein engineering technologies offers the opportunity to simultaneously enhance ADCC and CDC activities of therapeutic antibodies. This approach may represent an attractive strategy to further improve antibody therapy of cancer and deserves further evaluation.
Collapse
Affiliation(s)
- Tim Wirt
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Sophia Rosskopf
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Thies Rösner
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Klara Marie Eichholz
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Anne Kahrs
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Sebastian Lutz
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Anna Kretschmer
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Thomas Valerius
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Katja Klausz
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Anna Otte
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Martin Gramatzki
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Matthias Peipp
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Christian Kellner
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts-University of Kiel, Kiel, Germany
| |
Collapse
|
22
|
Kellner C, Otte A, Cappuzzello E, Klausz K, Peipp M. Modulating Cytotoxic Effector Functions by Fc Engineering to Improve Cancer Therapy. Transfus Med Hemother 2017; 44:327-336. [PMID: 29070978 DOI: 10.1159/000479980] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 08/01/2017] [Indexed: 12/21/2022] Open
Abstract
In the last two decades, monoclonal antibodies have revolutionized the therapy of cancer patients. Although antibody therapy has continuously been improved, still a significant number of patients do not benefit from antibody therapy. Therefore, rational optimization of the antibody molecule by Fc engineering represents a major area of translational research to further improve this potent therapeutic option. Monoclonal antibodies are able to trigger a variety of effector mechanisms. Especially Fc-mediated effector functions such as antibody-dependent cell-mediated cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), and complement- dependent cytotoxicity (CDC) are considered important in antibody therapy of cancer. Novel mechanistic insights into the action of monoclonal antibodies allowed the development of various Fc engineering approaches to modulate antibodies' effector functions. Strategies in modifying the Fc glycosylation profile (Fc glyco-engineering) or approaches in engineering the protein backbone (Fc protein engineering) have been intensively evaluated. In the current review, Fc engineering strategies resulting in improved ADCC, ADCP and CDC activity are summarized and discussed.
Collapse
Affiliation(s)
- Christian Kellner
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Anna Otte
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Elisa Cappuzzello
- Department of Surgery, Oncology and Gastroenterology, Oncology and Immunology Section, University of Padua, Padua, Italy
| | - Katja Klausz
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Matthias Peipp
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
23
|
Rossignol A, Bonnaudet V, Clémenceau B, Vié H, Bretaudeau L. A high-performance, non-radioactive potency assay for measuring cytotoxicity: A full substitute of the chromium-release assay targeting the regulatory-compliance objective. MAbs 2017; 9:521-535. [PMID: 28281922 DOI: 10.1080/19420862.2017.1286435] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Standardized and biologically relevant potency assays are required by the regulatory authorities for the characterization and quality control of therapeutic antibodies. As critical mechanisms of action (MoA) of antibodies, the antibody-dependent cell-meditated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) must be characterized by appropriate potency assays. The current reference method for measuring cytotoxicity is the 51Cr-release method. However, radioactivity handling is difficult to implement in an industrial context because of environmental and operator protection constraints. Alternative non-radioactive methods suffer from poor validation performances and surrogate assays that measure FcγR-dependent functions do not comply with the regulatory requirement of biological relevance. Starting from these observations, we developed a non-radioactive luminescent method that is specific for target cell cytolysis. In adherent and non-adherent target cell models, the ADCC (using standardized effector cells) or CDC activities of rituximab, trastuzumab and adalimumab were compared in parallel using the 51Cr or luminescent methods. We demonstrated that the latter method is highly sensitive, with validation performances similar or better than the 51Cr method. This method also detected apoptosis following induction by a chemical agent or exposure to ultraviolet light. Moreover, it is more accurate, precise and specific than the concurrent non-radioactive calcein- and TR-FRET-based methods. The method is easy to use, versatile, standardized, biologically relevant and cost effective for measuring cytotoxicity. It is an ideal candidate for developing regulatory-compliant cytotoxicity assays for the characterization of the ADCC, CDC or apoptosis activities from the early stages of development to lot release.
Collapse
Affiliation(s)
| | | | - Béatrice Clémenceau
- b Centre Hospitalier Universitaire de Nantes , Nantes cedex 01 , France.,c UMR INSERM U892 , Nantes Cedex , France
| | - Henri Vié
- c UMR INSERM U892 , Nantes Cedex , France
| | | |
Collapse
|
24
|
Peipp M, Derer S, Lohse S, Staudinger M, Klausz K, Valerius T, Gramatzki M, Kellner C. HER2-specific immunoligands engaging NKp30 or NKp80 trigger NK-cell-mediated lysis of tumor cells and enhance antibody-dependent cell-mediated cytotoxicity. Oncotarget 2016; 6:32075-88. [PMID: 26392331 PMCID: PMC4741660 DOI: 10.18632/oncotarget.5135] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 09/04/2015] [Indexed: 12/19/2022] Open
Abstract
NK cells detect tumors through activating surface receptors, which bind self-antigens that are frequently expressed upon malignant transformation. To increase the recognition of tumor cells, the extracellular domains of ligands of the activating NK cell receptors NKp30, NKp80 and DNAM-1 (i.e. B7-H6, AICL and PVR, respectively) were fused to a single-chain fragment variable (scFv) targeting the human epidermal growth factor receptor 2 (HER2), which is displayed by various solid tumors. The resulting immunoligands, designated B7-H6:HER2-scFv, AICL:HER2-scFv, and PVR:HER2-scFv, respectively, bound HER2 and the addressed NK cell receptor. However, whereas B7-H6:HER2-scFv and AICL:HER2-scFv triggered NK cells to kill HER2-positive breast cancer cells at nanomolar concentrations, PVR:HER2-scFv was not efficacious. Moreover, NK cell cytotoxicity was enhanced synergistically when B7-H6:HER2-scFv or AICL:HER2-scFv were applied in combination with another HER2-specific immunoligand engaging the stimulatory receptor NKG2D. In contrast, no improvements were achieved by combining B7-H6:HER2-scFv with AICL:HER2-scFv. Additionally, B7-H6:HER2-scFv and AICL:HER2-scFv enhanced antibody-dependent cell-mediated cytotoxicity (ADCC) by the therapeutic antibodies trastuzumab and cetuximab synergistically, with B7-H6:HER2-scFv exhibiting a higher efficacy. In summary, antibody-derived proteins engaging NKp30 or NKp80 may represent attractive biologics to further enhance anti-tumor NK cell responses and may provide an innovative approach to sensitize tumor cells for antibody-based immunotherapy.
Collapse
Affiliation(s)
- Matthias Peipp
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Stefanie Derer
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Stefan Lohse
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Matthias Staudinger
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Katja Klausz
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Thomas Valerius
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Martin Gramatzki
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Christian Kellner
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine, Christian-Albrechts-University of Kiel, Kiel, Germany
| |
Collapse
|
25
|
Hua CK, Ackerman ME. Engineering broadly neutralizing antibodies for HIV prevention and therapy. Adv Drug Deliv Rev 2016; 103:157-173. [PMID: 26827912 DOI: 10.1016/j.addr.2016.01.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/19/2016] [Accepted: 01/20/2016] [Indexed: 01/15/2023]
Abstract
A combination of advances spanning from isolation to delivery of potent HIV-specific antibodies has begun to revolutionize understandings of antibody-mediated antiviral activity. As a result, the set of broadly neutralizing and highly protective antibodies has grown in number, diversity, potency, and breadth of viral recognition and neutralization. These antibodies are now being further enhanced by rational engineering of their anti-HIV activities and coupled to cutting edge gene delivery and strategies to optimize their pharmacokinetics and biodistribution. As a result, the prospects for clinical use of HIV-specific antibodies to treat, clear, and prevent HIV infection are gaining momentum. Here we discuss the diverse methods whereby antibodies are being optimized for neutralization potency and breadth, biodistribution, pharmacokinetics, and effector function with the aim of revolutionizing HIV treatment and prevention options.
Collapse
|
26
|
Derer S, Cossham M, Rösner T, Kellner C, Beurskens FJ, Schwanbeck R, Lohse S, Sina C, Peipp M, Valerius T. A Complement-Optimized EGFR Antibody Improves Cytotoxic Functions of Polymorphonuclear Cells against Tumor Cells. THE JOURNAL OF IMMUNOLOGY 2015; 195:5077-87. [DOI: 10.4049/jimmunol.1501458] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/20/2015] [Indexed: 11/19/2022]
|
27
|
Kellner C, Günther A, Humpe A, Repp R, Klausz K, Derer S, Valerius T, Ritgen M, Brüggemann M, van de Winkel JG, Parren PW, Kneba M, Gramatzki M, Peipp M. Enhancing natural killer cell-mediated lysis of lymphoma cells by combining therapeutic antibodies with CD20-specific immunoligands engaging NKG2D or NKp30. Oncoimmunology 2015; 5:e1058459. [PMID: 26942070 DOI: 10.1080/2162402x.2015.1058459] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 05/28/2015] [Accepted: 05/29/2015] [Indexed: 02/06/2023] Open
Abstract
Antibody-dependent cell-mediated cytotoxicity (ADCC) mediated through the IgG Fc receptor FcγRIIIa represents a major effector function of many therapeutic antibodies. In an attempt to further enhance natural killer (NK) cell-mediated ADCC, we combined therapeutic antibodies against CD20 and CD38 with recombinant immunoligands against the stimulatory NK cell receptors NKG2D or NKp30. These immunoligands, respectively designated as ULBP2:7D8 and B7-H6:7D8, contained the CD20 scFv 7D8 as a targeting moiety and a cognate ligand for either NKG2D or NKp30 (i.e. ULBP2 and B7-H6, respectively). Both the immunoligands synergistically augmented ADCC in combination with the CD20 antibody rituximab and the CD38 antibody daratumumab. Combinations with ULBP2:7D8 resulted in higher cytotoxicity compared to combinations with B7-H6:7D8, suggesting that coligation of FcγRIIIa with NKG2D triggered NK cells more efficiently than with NKp30. Addition of B7-H6:7D8 to ULBP2:7D8 and rituximab in a triple combination did not further increase the extent of tumor cell lysis. Importantly, immunoligand-mediated enhancement of ADCC was also observed for tumor cells and autologous NK cells from patients with hematologic malignancies, in which, again, ULBP2:7D8 was particularly active. In summary, co-targeting of NKG2D was more effective in promoting rituximab or daratumumab-mediated ADCC by NK cells than co-ligation of NKp30. The observed increase in the ADCC activity of these therapeutic antibodies suggests promise for a 'dual-dual-targeting' approach in which tumor cell surface antigens are targeted in concert with two distinct activating NK cell receptors (i.e. FcγRIIIa and NKG2D or B7-H6).
Collapse
Affiliation(s)
- Christian Kellner
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine; Christian-Albrechts-University Kiel; Kiel, Germany
| | - Andreas Günther
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine; Christian-Albrechts-University Kiel; Kiel, Germany
| | - Andreas Humpe
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine; Christian-Albrechts-University Kiel; Kiel, Germany
| | - Roland Repp
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine; Christian-Albrechts-University Kiel; Kiel, Germany
| | - Katja Klausz
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine; Christian-Albrechts-University Kiel; Kiel, Germany
| | - Stefanie Derer
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine; Christian-Albrechts-University Kiel; Kiel, Germany
| | - Thomas Valerius
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine; Christian-Albrechts-University Kiel; Kiel, Germany
| | - Matthias Ritgen
- 2nd Department of Medicine; Christian-Albrechts-University Kiel ; Kiel, Germany
| | - Monika Brüggemann
- 2nd Department of Medicine; Christian-Albrechts-University Kiel ; Kiel, Germany
| | - Jan Gj van de Winkel
- Genmab; Utrecht, the Netherlands; Department of Immunology; University Medical Center Utrecht; Utrecht, the Netherlands
| | - Paul Whi Parren
- Genmab; Utrecht, the Netherlands; Department of Cancer and Inflammation Research; Institute of Molecular Medicine; University of Southern Denmark; Odense, Denmark; Department of Immunohematology and Blood Transfusion; Leiden University Medical Center; Leiden, the Netherlands
| | - Michael Kneba
- 2nd Department of Medicine; Christian-Albrechts-University Kiel ; Kiel, Germany
| | - Martin Gramatzki
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine; Christian-Albrechts-University Kiel; Kiel, Germany
| | - Matthias Peipp
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine; Christian-Albrechts-University Kiel; Kiel, Germany
| |
Collapse
|
28
|
Derer S, Glorius P, Schlaeth M, Lohse S, Klausz K, Muchhal U, Desjarlais JR, Humpe A, Valerius T, Peipp M. Increasing FcγRIIa affinity of an FcγRIII-optimized anti-EGFR antibody restores neutrophil-mediated cytotoxicity. MAbs 2014; 6:409-21. [PMID: 24492248 PMCID: PMC3984330 DOI: 10.4161/mabs.27457] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/07/2013] [Accepted: 12/07/2013] [Indexed: 01/27/2023] Open
Abstract
Antibody-dependent cell-mediated cytotoxicity (ADCC) has been suggested as an essential mechanism for the in vivo activity of cetuximab, an epidermal growth factor receptor (EGFR)-targeting therapeutic antibody. Thus, enhancing the affinity of human IgG1 antibodies to natural killer (NK) cell-expressed FcγRIIIa by glyco- or protein-engineering of their Fc portion has been demonstrated to improve NK cell-mediated ADCC and to represent a promising strategy to improve antibody therapy. However, human polymorphonuclear (PMN) effector cells express the highly homologous FcγRIIIb isoform, which is described to be ineffective in triggering ADCC. Here, non-fucosylated or protein-engineered anti-EGFR antibodies with optimized FcγRIIIa affinities demonstrated the expected benefit in NK cell-mediated ADCC, but did not mediate ADCC by PMN, which could be restored by FcγRIIIb blockade. Furthermore, eosinophils and PMN from paroxysmal nocturnal hemoglobinuria patients that expressed no or low levels of FcγRIIIb mediated effective ADCC with FcγRIII-optimized anti-EGFR antibody. Additional experiments with double FcγRIIa/FcγRIII-optimized constructs demonstrated enhanced PMN-mediated ADCC compared with single FcγRIII-optimized antibody. In conclusion, our data demonstrate that FcγRIIIb engagement impairs PMN-mediated ADCC activity of FcγRIII-optimized anti-EGFR antibodies, while further optimization of FcγRIIa binding significantly restores PMN recruitment.
Collapse
MESH Headings
- Antibodies, Monoclonal, Humanized/genetics
- Antibodies, Monoclonal, Humanized/metabolism
- Antibody Affinity/genetics
- Antibody-Dependent Cell Cytotoxicity/genetics
- Cells, Cultured
- Cetuximab
- Cytotoxicity, Immunologic/genetics
- Eosinophils/immunology
- ErbB Receptors/immunology
- Glycosylation
- Hemoglobinuria, Paroxysmal/immunology
- Hemoglobinuria, Paroxysmal/therapy
- Humans
- Immunoglobulin Fc Fragments/genetics
- Immunoglobulin G/genetics
- Immunoglobulin G/metabolism
- Immunotherapy/methods
- Immunotherapy/trends
- Neutrophils/immunology
- Polymorphism, Genetic
- Protein Engineering
- Receptors, IgG/genetics
- Receptors, IgG/immunology
- Receptors, IgG/metabolism
Collapse
Affiliation(s)
- Stefanie Derer
- Division of Stem Cell Transplantation and Immunotherapy; 2nd Department of Medicine; University Hospital Schleswig-Holstein and Christian-Albrechts-University; Kiel, Germany
| | - Pia Glorius
- Division of Stem Cell Transplantation and Immunotherapy; 2nd Department of Medicine; University Hospital Schleswig-Holstein and Christian-Albrechts-University; Kiel, Germany
| | - Martin Schlaeth
- Division of Stem Cell Transplantation and Immunotherapy; 2nd Department of Medicine; University Hospital Schleswig-Holstein and Christian-Albrechts-University; Kiel, Germany
| | - Stefan Lohse
- Division of Stem Cell Transplantation and Immunotherapy; 2nd Department of Medicine; University Hospital Schleswig-Holstein and Christian-Albrechts-University; Kiel, Germany
| | - Katja Klausz
- Division of Stem Cell Transplantation and Immunotherapy; 2nd Department of Medicine; University Hospital Schleswig-Holstein and Christian-Albrechts-University; Kiel, Germany
| | | | | | - Andreas Humpe
- Division of Stem Cell Transplantation and Immunotherapy; 2nd Department of Medicine; University Hospital Schleswig-Holstein and Christian-Albrechts-University; Kiel, Germany
| | - Thomas Valerius
- Division of Stem Cell Transplantation and Immunotherapy; 2nd Department of Medicine; University Hospital Schleswig-Holstein and Christian-Albrechts-University; Kiel, Germany
| | - Matthias Peipp
- Division of Stem Cell Transplantation and Immunotherapy; 2nd Department of Medicine; University Hospital Schleswig-Holstein and Christian-Albrechts-University; Kiel, Germany
| |
Collapse
|
29
|
Fc engineering of antibodies and antibody derivatives by primary sequence alteration and their functional characterization. Methods Mol Biol 2014; 1131:525-40. [PMID: 24515488 DOI: 10.1007/978-1-62703-992-5_33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Therapeutic antibodies used in the treatment of cancer patients are able to mediate diverse effector mechanisms. Dependent on tumor entity, localization, and tumor burden different effector mechanisms may contribute to the in vivo antitumor activity to a variable degree. Especially Fc-mediated effector functions such as antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) have been suggested as being important for the in vivo activity of therapeutic antibodies like rituximab or trastuzumab. In recent years, several strategies have been pursued to further optimize the cytotoxic potential of monoclonal antibodies by modifying their Fc part (Fc engineering) with the ultimate goal to enhance antibody therapy.Since Fc engineering approaches are applicable to any Fc-containing molecule, strategies to enhance CDC or ADCC activity of full antibodies or scFv-Fc fusion proteins by altering the primary Fc sequence are described.
Collapse
|
30
|
Oberg HH, Peipp M, Kellner C, Sebens S, Krause S, Petrick D, Adam-Klages S, Röcken C, Becker T, Vogel I, Weisner D, Freitag-Wolf S, Gramatzki M, Kabelitz D, Wesch D. Novel bispecific antibodies increase γδ T-cell cytotoxicity against pancreatic cancer cells. Cancer Res 2014; 74:1349-60. [PMID: 24448235 DOI: 10.1158/0008-5472.can-13-0675] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The ability of human γδ T cells from healthy donors to kill pancreatic ductal adenocarcinoma (PDAC) in vitro and in vivo in immunocompromised mice requires the addition of γδ T-cell-stimulating antigens. In this study, we demonstrate that γδ T cells isolated from patients with PDAC tumor infiltrates lyse pancreatic tumor cells after selective stimulation with phosphorylated antigens. We determined the absolute numbers of γδ T-cell subsets in patient whole blood and applied a real-time cell analyzer to measure their cytotoxic effector function over prolonged time periods. Because phosphorylated antigens did not optimally enhance γδ T-cell cytotoxicity, we designed bispecific antibodies that bind CD3 or Vγ9 on γδ T cells and Her2/neu (ERBB2) expressed by pancreatic tumor cells. Both antibodies enhanced γδ T-cell cytotoxicity with the Her2/Vγ9 antibody also selectively enhancing release of granzyme B and perforin. Supporting these observations, adoptive transfer of γδ T cells with the Her2/Vγ9 antibody reduced growth of pancreatic tumors grafted into SCID-Beige immunocompromised mice. Taken together, our results show how bispecific antibodies that selectively recruit γδ T cells to tumor antigens expressed by cancer cells illustrate the tractable use of endogenous γδ T cells for immunotherapy.
Collapse
Affiliation(s)
- Hans-Heinrich Oberg
- Authors' Affiliations: Institute of Immunology; Division of Stem Cell Transplantation and Immunotherapy; Institute for Experimental Medicine; Institute of Pathology; Clinic of General and Thoracic Surgery; Institute for Medical Informatics and Statistic, Christian-Albrechts-University Kiel; Municipal Hospital, Department of Surgery; and Clinic of Gynaecology and Obstetrics, Kiel, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Liu Z, Gunasekaran K, Wang W, Razinkov V, Sekirov L, Leng E, Sweet H, Foltz I, Howard M, Rousseau AM, Kozlosky C, Fanslow W, Yan W. Asymmetrical Fc engineering greatly enhances antibody-dependent cellular cytotoxicity (ADCC) effector function and stability of the modified antibodies. J Biol Chem 2013; 289:3571-90. [PMID: 24311787 DOI: 10.1074/jbc.m113.513366] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Antibody-dependent cellular cytotoxicity (ADCC) is mediated through the engagement of the Fc segment of antibodies with Fcγ receptors (FcγRs) on immune cells upon binding of tumor or viral antigen. The co-crystal structure of FcγRIII in complex with Fc revealed that Fc binds to FcγRIII asymmetrically with two Fc chains contacting separate regions of the FcγRIII by utilizing different residues. To fully explore this asymmetrical nature of the Fc-FcγR interaction, we screened more than 9,000 individual clones in Fc heterodimer format in which different mutations were introduced at the same position of two Fc chains using a high throughput competition AlphaLISA® assay. To this end, we have identified a panel of novel Fc variants with significant binding improvement to FcγRIIIA (both Phe-158 and Val-158 allotypes), increased ADCC activity in vitro, and strong tumor growth inhibition in mice xenograft human tumor models. Compared with previously identified Fc variants in conventional IgG format, Fc heterodimers with asymmetrical mutations can achieve similar or superior potency in ADCC-mediated tumor cell killing and demonstrate improved stability in the CH2 domain. Fc heterodimers also allow more selectivity toward activating FcγRIIA than inhibitory FcγRIIB. Afucosylation of Fc variants further increases the affinity of Fc to FcγRIIIA, leading to much higher ADCC activity. The discovery of these Fc variants will potentially open up new opportunities of building the next generation of therapeutic antibodies with enhanced ADCC effector function for the treatment of cancers and infectious diseases.
Collapse
Affiliation(s)
- Zhi Liu
- From the Departments of Therapeutic Discovery and
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
|
33
|
Jain A, Poonia B, So EC, Vyzasatya R, Burch EE, Olsen HS, Mérigeon EY, Block DS, Zhang X, Schulze DH, Hanna NN, Twadell WS, Yfantis HG, Chan SL, Cai L, Strome SE. Tumour antigen targeted monoclonal antibodies incorporating a novel multimerisation domain significantly enhance antibody dependent cellular cytotoxicity against colon cancer. Eur J Cancer 2013; 49:3344-52. [PMID: 23871153 DOI: 10.1016/j.ejca.2013.06.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 04/29/2013] [Accepted: 06/10/2013] [Indexed: 12/21/2022]
Abstract
Tumour antigen targeted antibodies (mAbs) can induce natural killer (NK) cells to kill tumours through antibody dependent cellular cytotoxicity (ADCC) upon engagement of NK cell expressed FcγRIIIa. FcγRIIIa polymorphisms partially dictate the potency of the ADCC response. The high affinity FcγRIIIa-158-valine (V) polymorphism is associated with more potent ADCC response than the low affinity FcγRIIIa-158-phenylalanine (F) polymorphism. Because approximately 45% of patients are homozygous for the FcγRIIIa-158-F polymorphism (FF genotype), their ability to mount ADCC is impaired. We investigated whether a novel mAb capable of binding multiple antigen specific targets and engaging multiple low affinity FcγRIIIa receptors could further enhance ADCC against colon cancer in vitro. Specifically, we generated a novel anti-epidermal growth factor receptor (EGFR) antibody (termed a stradobody) consisting of an unmodified Fab sequence and two Immunoglobulin G, subclass 1 (IgG1) Fc domains separated by an isoleucine zipper domain and the 12 amino-acid IgG2 hinge. The stradobody framework induced multimerisation and was associated with increased binding to the EGFR and FcγRIIIa. From a functional perspective, when compared to an unmodified anti-EGFR mAb with a sequence identical to cetuximab (a commercially available anti-EGFR mAb), stradobodies significantly enhanced ADCC. These effects were observed using both KRAS wild type HT29 and KRAS mutant SW480 colon cancer cells as targets, and by NK cells obtained from healthy donors and a cohort of patients with colon cancer. These data suggest that high avidity cross-linking of multiple tumour surface antigens and multiple NK cell associated FcγRIIIa molecules can enhance ADCC and partially overcome impaired ADCC by FF genotype individuals in vitro.
Collapse
Affiliation(s)
- Ajay Jain
- Baltimore Veterans Administration Medical Center, Section of Surgical Oncology, and Research and Development Service, 10 N. Greene Street, 5C Surgical Services Area, Baltimore, MD 21201, USA; Division of General and Oncologic Surgery, University of Maryland School of Medicine, 22 S. Greene Street, Room S4B12, Baltimore, MD 21201, USA; Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, 16 S. Eutaw Street, Baltimore, MD 21201, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kellner C, Derer S, Valerius T, Peipp M. Boosting ADCC and CDC activity by Fc engineering and evaluation of antibody effector functions. Methods 2013; 65:105-13. [PMID: 23851282 DOI: 10.1016/j.ymeth.2013.06.036] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 06/26/2013] [Accepted: 06/27/2013] [Indexed: 01/18/2023] Open
Abstract
In recent years, therapy with monoclonal antibodies has become standard of care in various clinical applications. Despite obvious clinical activity, not all patients respond and benefit from this generally well tolerated treatment option. Therefore, rational optimization of antibody therapy represents a major area of interest in translational research. Animal models and clinical data suggested important roles of Fc-mediated effector mechanisms such as antibody dependent cell-mediated cytotoxicity (ADCC) or complement dependent cytotoxicity (CDC) in antibody therapy. These novel insights into the mechanisms of action mediated by monoclonal antibodies inspired the development of different engineering approaches to enhance/optimize antibodies' effector functions. Fc-engineering approaches by altering the Fc-bound glycosylation profile or by exchanging amino acids in the protein backbone have been intensively studied. Here, advanced and emerging technologies in Fc-engineering resulting in altered ADCC and CDC activity are summarized and experimental strategies to evaluate antibodies' effector functions are discussed.
Collapse
Affiliation(s)
- Christian Kellner
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine, Christian-Albrechts-University Kiel, Germany
| | - Stefanie Derer
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine, Christian-Albrechts-University Kiel, Germany
| | - Thomas Valerius
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine, Christian-Albrechts-University Kiel, Germany
| | - Matthias Peipp
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine, Christian-Albrechts-University Kiel, Germany.
| |
Collapse
|
35
|
Rozan C, Cornillon A, Pétiard C, Chartier M, Behar G, Boix C, Kerfelec B, Robert B, Pèlegrin A, Chames P, Teillaud JL, Baty D. Single-Domain Antibody–Based and Linker-Free Bispecific Antibodies Targeting FcγRIII Induce Potent Antitumor Activity without Recruiting Regulatory T Cells. Mol Cancer Ther 2013; 12:1481-91. [DOI: 10.1158/1535-7163.mct-12-1012] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Schmidt SR. Fusion Proteins: Applications and Challenges. FUSION PROTEIN TECHNOLOGIES FOR BIOPHARMACEUTICALS 2013:1-24. [DOI: 10.1002/9781118354599.ch1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
37
|
Schmidt SR. Fusion Proteins with Toxic Activity. FUSION PROTEIN TECHNOLOGIES FOR BIOPHARMACEUTICALS 2013:253-269. [DOI: 10.1002/9781118354599.ch17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
38
|
Fc engineering: design, expression, and functional characterization of antibody variants with improved effector function. Methods Mol Biol 2012; 907:519-36. [PMID: 22907372 DOI: 10.1007/978-1-61779-974-7_30] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Today monoclonal antibodies are widely used in cancer therapy. However, clinical experience as well as translational research into antibodies' pharmacology and effector mechanisms has identified limitations of antibody therapy, including inefficient effector cell recruitment or initiation of complement-dependent cytotoxicity (CDC). These insights opened alleys for further improvement of antibodies' immunomodulatory functions. While second generation antibodies were predominantly engineered to reduce immunogenicity, progress in antibody engineering now enables the generation of antibodies with novel interesting features. The introduction of Fc engineering technologies offers the potential to tailor Fc-mediated effector functions such as antibody-dependent cell-mediated cytotoxicity (ADCC), CDC or phagocytosis. Approaches to improve Fc-mediated effector mechanisms by Fc-engineering allow for the design of so-called "fit-for-purpose" antibodies or antibody-derivatives, hopefully overcoming some limitations of current forms of antibody therapy.
Collapse
|
39
|
Kellner C, Maurer T, Hallack D, Repp R, van de Winkel JGJ, Parren PWHI, Valerius T, Humpe A, Gramatzki M, Peipp M. Mimicking an induced self phenotype by coating lymphomas with the NKp30 ligand B7-H6 promotes NK cell cytotoxicity. THE JOURNAL OF IMMUNOLOGY 2012; 189:5037-46. [PMID: 23066150 DOI: 10.4049/jimmunol.1201321] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Induced self expression of the NKp30 ligand B7-H6 facilitates NK cell-mediated elimination of stressed cells. A fusion protein consisting of the ectodomain of B7-H6 and the CD20 single-chain fragment variable 7D8 was generated to mimic an induced self phenotype required for NK cell-mediated target cell elimination. B7-H6:7D8 had bifunctional properties as reflected by its ability to simultaneously bind to the CD20 Ag and to the NKp30 receptor. B7-H6:7D8 bound by CD20(+) lymphoma cells activated human NK cells and triggered degranulation. Consequently, the immunoligand B7-H6:7D8 induced killing of lymphoma-derived cell lines as well as fresh tumor cells from chronic lymphocytic leukemia or lymphoma patients. B7-H6:7D8 was active at nanomolar concentrations in a strictly Ag-specific manner and required interaction with both CD20 and NKp30. Remarkably, NK cell cytotoxicity was further augmented by concomitant activation of Fcγ receptor IIIa or NK group 2 member D. Thus, B7-H6:7D8 acted synergistically with the CD20 Ab rituximab and the immunoligand ULBP2:7D8, which was similarly designed as B7-H6:7D8 but engaging the NK group 2 member D receptor. In conclusion, to our knowledge, B7-H6:7D8 represents the first Ab-based molecule stimulating NKp30-mediated NK cell cytotoxicity for therapeutic purposes and provides proof of concept that Ag-specific NKp30 engagement may represent an innovative strategy to enhance antitumoral NK cell cytotoxicity.
Collapse
Affiliation(s)
- Christian Kellner
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian Albrechts University Kiel, 24105 Kiel, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Russell JS, Colevas AD. The use of epidermal growth factor receptor monoclonal antibodies in squamous cell carcinoma of the head and neck. CHEMOTHERAPY RESEARCH AND PRACTICE 2012; 2012:761518. [PMID: 23150825 PMCID: PMC3488396 DOI: 10.1155/2012/761518] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 09/03/2012] [Indexed: 12/21/2022]
Abstract
Targeting of the EGF receptor (EGFR) has become a standard of care in several tumor types. In squamous cell carcinoma of the head and neck, monoclonal antibodies directed against EGFR have become a regular component of therapy for curative as well as palliative treatment strategies. These agents have anti-tumor efficacy as a single modality and have demonstrated synergistic tumor killing when combined with radiation and/or chemotherapy. While cetuximab has been the primary anti-EGFR monoclonal antibody used in the US, variant anti-EGFR monoclonal antibodies have been used in several clinical studies and shown benefit with improved toxicity profiles. Next generation anti-EGFR monoclonal antibodies may demonstrate multi-target epitope recognition, enhanced immune cell stimulation, or conjugation with radioisotopes in order to improve clinical outcomes. Identification of the specific patient subset that would optimally benefit from anti-EGFR monoclonal antibodies remains an elusive goal.
Collapse
Affiliation(s)
- Jeffery S. Russell
- Division of Oncology, Department of Medicine, Stanford University Medical Center, Stanford University, Stanford, CA 94305, USA
| | - A. Dimitrios Colevas
- Division of Oncology, Department of Medicine, Stanford University Medical Center, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
41
|
Han T, Abdel-Motal UM, Chang DK, Sui J, Muvaffak A, Campbell J, Zhu Q, Kupper TS, Marasco WA. Human anti-CCR4 minibody gene transfer for the treatment of cutaneous T-cell lymphoma. PLoS One 2012; 7:e44455. [PMID: 22973452 PMCID: PMC3433438 DOI: 10.1371/journal.pone.0044455] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 08/03/2012] [Indexed: 01/23/2023] Open
Abstract
Background Although several therapeutic options have become available for patients with Cutaneous T-cell Lymphoma (CTCL), no therapy has been curative. Recent studies have demonstrated that CTCL cells overexpress the CC chemokine receptor 4 (CCR4). Methodology/Principal Findings In this study, a xenograft model of CTCL was established and a recombinant adeno-associated viral serotype 8 (AAV8) vector expressing a humanized single-chain variable fragment (scFv)-Fc fusion (scFvFc or “minibody”) of anti-CCR4 monoclonal antibody (mAb) h1567 was evaluated for curative treatment. Human CCR4+ tumor-bearing mice treated once with intravenous infusion of AAV8 virions encoding the h1567 (AAV8-h1567) minibody showed anti-tumor activity in vivo and increased survival. The AAV8-h1567 minibody notably increased the number of tumor-infiltrating Ly-6G+ FcγRIIIa(CD16A)+ murine neutrophils in the tumor xenografts over that of AAV8-control minibody treated mice. Furthermore, in CCR4+ tumor-bearing mice co-treated with AAV8-h1567 minibody and infused with human peripheral blood mononuclear cells (PBMCs), marked tumor infiltration of human CD16A+ CD56+ NK cells was observed. The h1567 minibody also induced in vitro ADCC activity through both mouse neutrophils and human NK cells. Conclusions/Significance Overall, our data demonstrate that the in vivo anti-tumor activity of h1567 minibody is mediated, at least in part, through CD16A+ immune effector cell ADCC mechanisms. These data further demonstrate the utility of the AAV-minibody gene transfer system in the rapid evaluation of candidate anti-tumor mAbs and the potency of h1567 as a potential novel therapy for CTCL.
Collapse
MESH Headings
- Analysis of Variance
- Animals
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/therapeutic use
- Blotting, Western
- DNA Primers/genetics
- Dependovirus/genetics
- Flow Cytometry
- Genetic Therapy/methods
- Genetic Vectors/administration & dosage
- Genetic Vectors/genetics
- Genetic Vectors/metabolism
- Humans
- Image Processing, Computer-Assisted
- Immunoglobulin Fc Fragments/genetics
- Immunoglobulin Fc Fragments/metabolism
- Immunohistochemistry
- Lymphoma, T-Cell, Cutaneous/genetics
- Lymphoma, T-Cell, Cutaneous/therapy
- Mice
- Mice, SCID
- Real-Time Polymerase Chain Reaction
- Receptors, CCR4/metabolism
- Single-Chain Antibodies/genetics
- Single-Chain Antibodies/metabolism
- Transduction, Genetic
Collapse
Affiliation(s)
- Thomas Han
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ussama M. Abdel-Motal
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - De-Kuan Chang
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jianhua Sui
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Asli Muvaffak
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - James Campbell
- Department of Dermatology, Brigham and Women’s Hospital, Harvard Skin Disease Research Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Quan Zhu
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Thomas S. Kupper
- Department of Dermatology, Brigham and Women’s Hospital, Harvard Skin Disease Research Center, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (WAM); (TSK)
| | - Wayne A. Marasco
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (WAM); (TSK)
| |
Collapse
|
42
|
Mohseni Nodehi S, Repp R, Kellner C, Bräutigam J, Staudinger M, Schub N, Peipp M, Gramatzki M, Humpe A. Enhanced ADCC activity of affinity maturated and Fc-engineered mini-antibodies directed against the AML stem cell antigen CD96. PLoS One 2012; 7:e42426. [PMID: 22879978 PMCID: PMC3411760 DOI: 10.1371/journal.pone.0042426] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 07/09/2012] [Indexed: 12/23/2022] Open
Abstract
CD96, a cell surface antigen recently described to be preferentially expressed on acute myeloid leukemia (AML) leukemic stem cells (LSC) may represent an interesting target structure for the development of antibody-based therapeutic approaches. The v-regions from the CD96-specific hybridoma TH-111 were isolated and used to generate a CD96-specific single chain fragment of the variable regions (scFv). An affinity maturated variant resulting in 4-fold enhanced CD96-binding was generated by random mutagenesis and stringent selection using phage display. The affinity maturated scFv CD96-S32F was used to generate bivalent mini-antibodies by genetically fusing an IgG1 wild type Fc region or a variant with enhanced CD16a binding. Antibody dependent cell-mediated cytotoxicity (ADCC) experiments revealed that Fc engineering was essential to trigger significant effector cell-mediated lysis when the wild type scFv was used. The mini-antibody variant generated by fusing the affinity-maturated scFv with the optimized Fc variant demonstrated the highest ADCC activity (2.3-fold enhancement in efficacy). In conclusion, our data provide proof of concept that CD96 could serve as a target structure for effector cell-mediated lysis and demonstrate that both enhancing affinity for CD96 and for CD16a resulted in mini-antibodies with the highest cytolytic potential.
Collapse
MESH Headings
- Amino Acid Sequence
- Antibody Affinity/immunology
- Antibody Specificity/immunology
- Antibody-Dependent Cell Cytotoxicity/immunology
- Antigens, CD/chemistry
- Antigens, CD/immunology
- Antigens, Neoplasm/immunology
- Cell Line, Tumor
- Dose-Response Relationship, Immunologic
- Humans
- Hybridomas
- Immunoglobulin G/immunology
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/pathology
- Models, Molecular
- Molecular Sequence Data
- Mutant Proteins/chemistry
- Mutant Proteins/metabolism
- Mutation/genetics
- Neoplastic Stem Cells/immunology
- Protein Binding
- Protein Engineering
- Protein Structure, Tertiary
- Receptors, Fc/immunology
- Sequence Alignment
- Single-Chain Antibodies/immunology
Collapse
Affiliation(s)
- Sahar Mohseni Nodehi
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Zoological Institute, Christian-Albrechts-University, Kiel, Germany
| | - Roland Repp
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Zoological Institute, Christian-Albrechts-University, Kiel, Germany
| | - Christian Kellner
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Zoological Institute, Christian-Albrechts-University, Kiel, Germany
| | - Joachim Bräutigam
- Department of Structural Biology, Zoological Institute, Christian-Albrechts-University, Kiel, Germany
| | - Matthias Staudinger
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Zoological Institute, Christian-Albrechts-University, Kiel, Germany
| | - Natalie Schub
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Zoological Institute, Christian-Albrechts-University, Kiel, Germany
| | - Matthias Peipp
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Zoological Institute, Christian-Albrechts-University, Kiel, Germany
| | - Martin Gramatzki
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Zoological Institute, Christian-Albrechts-University, Kiel, Germany
| | - Andreas Humpe
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Zoological Institute, Christian-Albrechts-University, Kiel, Germany
- * E-mail:
| |
Collapse
|