1
|
Cabrera V, Abate P, Balaszczuk V, Macchione AF. Alcohol outcomes on anxiety, impulsivity and spatial memory: Possible Omega-3 amelioration effects. Prog Neuropsychopharmacol Biol Psychiatry 2025; 137:111281. [PMID: 39904400 DOI: 10.1016/j.pnpbp.2025.111281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 01/23/2025] [Accepted: 01/30/2025] [Indexed: 02/06/2025]
Abstract
Alcohol consumption is a worldwide concern that causes 5 % of the global disease burden and contributes to 3 million deaths per year. Several studies suggest an increase in alcohol drinking and alcohol related problems. Alcohol Use Disorder (formerly referred as alcoholism or alcohol addiction) is one of many possible outcomes of an early and prolonged alcohol consumption and it is highly comorbid with anxiety disorders, impulsivity and memory deficits among others. In this review we approach recent data about global and American prevalence of alcohol use and discuss different factors that contribute to alcohol consumption. Furthermore, we revise evidence of ethanol effects on anxiety-like behaviors, impulsivity and spatial memory. Lastly, we look at the Omega-3 fatty acid as a possible course of action in mitigating the aforementioned deleterious effects of alcohol consumption.
Collapse
Affiliation(s)
- Valentín Cabrera
- Instituto de Investigaciones Psicológicas, (IIPsi-CONICET-UNC), Córdoba, Argentina
| | - Paula Abate
- Instituto de Investigaciones Psicológicas, (IIPsi-CONICET-UNC), Córdoba, Argentina; Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Verónica Balaszczuk
- Instituto de Investigaciones Psicológicas, (IIPsi-CONICET-UNC), Córdoba, Argentina; Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina.
| | - Ana Fabiola Macchione
- Instituto de Investigaciones Psicológicas, (IIPsi-CONICET-UNC), Córdoba, Argentina; Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
2
|
Ferreira MDR, Scalzo MDLM, Rodríguez S, D Alessandro ME. Changes in cerebral cortex redox status and cognitive performance in short- and long-term high-sucrose diet fed rats. Physiol Behav 2025; 290:114776. [PMID: 39638221 DOI: 10.1016/j.physbeh.2024.114776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 11/14/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Rising evidence suggests that Metabolic Syndrome (MetS) would be correlated with the development of neurodegenerative diseases. Although this has emerged as a relevant area of research, it has not been fully explored. It is not clear if a greater impairment of the metabolic peripheral environment is accompanied by a greater impairment of the central nervous system. We have previously shown that feeding rats with a high-sucrose diet (HSD) represents an animal model that resembles the human MetS phenotype. The aim of the present work was to assess in rats fed a HSD for a short (3 weeks-wk) or a long (15 weeks-wk) term, whether the worsening of the peripheral metabolic and hormonal profile that occur as the time of HSD consumption increases, is also accompanied by a worsening of oxidative stress in the cerebral cortex and/or cognitive behavior. Male Wistar rats received a HSD or a control diet during 3 wk or 15 wk. We found an increase in reactive oxygen species (ROS), thiobarbituric acid reactive substances (TBARS), advanced glycation end products (AGEs) and glutathione peroxidase (GPx) and glutathione reductase (GR) enzyme activities in the cerebral cortex of 3 wk HSD-fed rats. All of these parameters, except for the GPx, were also increased in the 15 wk HSD-fed group and values were similar to those observed at 3 wk. Glutathione reduced form (GSH), catalase (CAT) activity and brain-to-body weight ratio were reduced in 15 wk HSD-fed animals. Glutathione S- transferase (GST) was similar in all dietary groups. A poor performance in novel object recognition test and T-maze memory tasks was observed in 3 wk and 15 wk HSD-fed rats in a similar magnitude. Our results add new evidence related to the association between an adverse peripheral metabolic environment and brain/cognitive dysfunction.
Collapse
Affiliation(s)
- María Del Rosario Ferreira
- Laboratorio de Estudio de Enfermedades Metabólicas relacionadas con la Nutrición, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral. Ciudad Universitaria, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| | - María de Los Milagros Scalzo
- Laboratorio de Estudio de Enfermedades Metabólicas relacionadas con la Nutrición, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral. Ciudad Universitaria, Santa Fe, Argentina
| | - Silvia Rodríguez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - María Eugenia D Alessandro
- Laboratorio de Estudio de Enfermedades Metabólicas relacionadas con la Nutrición, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral. Ciudad Universitaria, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| |
Collapse
|
3
|
Olivares-Costa M, Fabio MC, De la Fuente-Ortega E, Haeger PA, Pautassi R. New therapeutics for the prevention or amelioration of fetal alcohol spectrum disorders: a narrative review of the preclinical literature. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2024; 50:749-770. [PMID: 39023419 DOI: 10.1080/00952990.2024.2361442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/25/2024] [Accepted: 05/26/2024] [Indexed: 07/20/2024]
Abstract
Background: Ethanol consumption during pregnancy induces enduring detrimental effects in the offspring, manifesting as a spectrum of symptoms collectively termed as Fetal Alcohol Spectrum Disorders (FASD). Presently, there is a scarcity of treatments for FASD.Objectives: To analyze current literature, emphasizing evidence derived from preclinical models, that could potentially inform therapeutic interventions for FASD.Methods: A narrative review was conducted focusing on four prospective treatments: nutritional supplements, antioxidants, anti-inflammatory compounds and environmental enrichment. The review also highlights innovative therapeutic strategies applied during early (e.g. folate administration, postnatal days 4-9) or late (e.g. NOX2 inhibitors given after weaning) postnatal stages that resulted in significant improvements in behavioral responses during adolescence (a critical period marked by the emergence of mental health issues in humans).Results: Our findings underscore the value of treatments centered around nutritional supplementation or environmental enrichment, aimed at mitigating oxidative stress and inflammation, implying shared mechanisms in FASD pathogenesis. Moreover, the review spotlights emerging evidence pertaining to the involvement of novel molecular components with potential pharmacological targets (such as NOX2, MCP1/CCR2, PPARJ, and PDE1).Conclusions: Preclinical studies have identified oxidative imbalance and neuroinflammation as relevant pathological mechanisms induced by prenatal ethanol exposure. The relevance of these mechanisms, which exhibit positive feedback loop mechanisms, appear to peak during early development and decreases in adulthood. These findings provide a framework for the future development of therapeutic avenues in the development of specific clinical treatments for FASD.
Collapse
Affiliation(s)
- Montserrat Olivares-Costa
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - María Carolina Fabio
- Instituto de Investigación Médica M. y M. Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
- Facultad de Psicología, Universidad Nacional de Córdoba, Coquimbo, Chile
| | - Erwin De la Fuente-Ortega
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Paola A Haeger
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
- Millennium Nucleus of Neuroepigenetics and Plasticity (EpiNeuro), Santiago, Chile
| | - Ricardo Pautassi
- Instituto de Investigación Médica M. y M. Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
- Facultad de Psicología, Universidad Nacional de Córdoba, Coquimbo, Chile
| |
Collapse
|
4
|
Atakisi E, Atakisi O, Ozturkler M, Dalginli KY, Ozbey C. Investigation of the Effect of Omega-3 Fatty Acids on Antioxidant System and Serum Aluminum, Zinc, and Iron Levels in Acute Aluminum Toxicity. Biol Trace Elem Res 2024:10.1007/s12011-024-04402-2. [PMID: 39365382 DOI: 10.1007/s12011-024-04402-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/27/2024] [Indexed: 10/05/2024]
Abstract
Aluminum (Al), one of the three most prevalent metals in the Earth's crust, adversely impacts all metabolic systems of living organisms due to its extensive utilization by humans. It is known that omega-3 fatty acids (ω-3FA) protect the organism against diseases and have positive effects on the immune system. The aim of the study was to investigate the effect of ω-3FA on 8-OH-2-deoxyguanosine (8-OHdG), glutathione (GSH) levels and adenosine deaminase (ADA), paraoxonase (PON), and catalase (CAT) activities in rats with acute aluminum toxicity. The study also aimed to investigate the antioxidant system, as well as Al, zinc (Zn), and iron (Fe) levels. Forty Sprague-Dawley rats (n = 40) were used in the study and the rats were divided into four equal groups (n = 10). In group I, 0.5 mL of 0.9% saline solution (NaCI) was injected intraperitoneally. Group II was injected with 34 mg/kg aluminum chloride (AlCI3) intraperitoneally. Group III received 400 mg/kg ω-3FA for 7 days and group IV received both AlCI3 and 400 mg/kg ω-3FA for 7 days. At the end of the study, blood samples were obtained by cardiac puncture. The findings showed that Al exposure increased serum 8-OHdG and total oxidant status (TOS) levels, as well as ADA activity, which are markers associated with oxidative damage. Conversely, PON and CAT activities, GSH, and total antioxidant status (TAS) levels decreased compared to the control group. Furthermore, Zn and Fe levels decreased as Al levels increased. In conclusion, Al has the capacity to induce oxidative damage and lipid peroxidation, while ω-3 fatty acids may mitigate this damage through a regulatory mechanism. Moreover, ω-3-FA could be used as a therapeutic agent that reduces Al toxicity.
Collapse
Affiliation(s)
- Emine Atakisi
- Department of Biochemistry, Faculty of Veterinary Medicine, Kafkas University, Kars, Turkey.
| | - Onur Atakisi
- Departments of Chemistry, Faculty of Science and Letter, Kafkas University, Kars, Turkey
| | - Melek Ozturkler
- Department of Chemistry and Chemical Processing Technologies, Kars Vocational School, Kafkas University, Kars, Turkey
| | - Kezban Yildiz Dalginli
- Department of Chemistry and Chemical Processing Technologies, Kars Vocational School, Kafkas University, Kars, Turkey
| | - Cagatay Ozbey
- Department of Medical Services and Techniques, Atatürk Vocational School of Health Services, Kafkas University, Kars, Turkey
| |
Collapse
|
5
|
Leung ECH, Jain P, Michealson MA, Choi H, Ellsworth-Kopkowski A, Valenzuela CF. Recent breakthroughs in understanding the cerebellum's role in fetal alcohol spectrum disorder: A systematic review. Alcohol 2024; 119:37-71. [PMID: 38097146 PMCID: PMC11166889 DOI: 10.1016/j.alcohol.2023.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 06/14/2024]
Abstract
Exposure to alcohol during fetal development can lead to structural and functional abnormalities in the cerebellum, a brain region responsible for motor coordination, balance, and specific cognitive functions. In this systematic review, we comprehensively analyze a vast body of research conducted on vertebrate animals and humans over the past 13 years. We identified studies through PubMed and screened them following PRISMA guidelines. Data extraction and quality analysis were conducted using Covidence systematic review software. A total of 108 studies met our inclusion criteria, with the majority (79 studies) involving vertebrate animal models and 29 studies focusing on human subjects. Animal models included zebrafish, mice, rats, sheep, and non-human primates, investigating the impact of ethanol on cerebellar structure, gene/protein expression, physiology, and cerebellar-dependent behaviors. Additionally, some animal studies explored potential therapeutic interventions against ethanol-induced cerebellar damage. The human studies predominantly adopted cohort designs, exploring the effects of prenatal alcohol exposure on cerebellar structure and function. Certain human studies delved into innovative cerebellar-based diagnostic approaches for fetal alcohol spectrum disorder (FASD). The collective findings from these studies clearly indicate that the cerebellum is involved in various neurophysiological deficits associated with FASD, emphasizing the importance of evaluating both cerebellar structure and function in the diagnostic process for this condition. Moreover, this review sheds light into potential therapeutic strategies that can mitigate prenatal alcohol exposure-induced cerebellar damage.
Collapse
Affiliation(s)
- Eric C H Leung
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States
| | - Priyanka Jain
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States
| | - Marisa A Michealson
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States
| | - Hyesun Choi
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States
| | - Alexis Ellsworth-Kopkowski
- Health Sciences Library & Informatics Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States
| | - C Fernando Valenzuela
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States.
| |
Collapse
|
6
|
Haidary M, Ahmadi-Soleimani SM, Ghofraninezad M, Azhdari-Zarmehri H, Beheshti F. Omega-3 fatty acids supplementation prevents learning and memory impairment induced by chronic ethanol consumption in adolescent male rats through restoration of inflammatory and oxidative responses. Int J Dev Neurosci 2024; 84:423-433. [PMID: 38803108 DOI: 10.1002/jdn.10336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/03/2024] [Accepted: 04/24/2024] [Indexed: 05/29/2024] Open
Abstract
OBJECTIVE Ethanol (Eth) intake is known to cause numerous detrimental effects on the structure and function of the brain, and it is commonly used as a psychostimulant drug by adolescents. Conversely, omega-3 (O3) can reduce the risk of cognitive decline and promote the maintenance of neurophysiological functions. In this study, we investigated the protective effects of O3 on behavioral alterations, oxidative stress, and interleukin-6 (IL-6) levels induced by chronic Eth intake during adolescence in rats. MATERIALS AND METHODS Adolescent male rats (21 days old) were divided as follows: (1) Vehicle, (2) Eth (Eth in drinking water [20%]), (3-5) Eth + O3 (50/100/150 mg/kg), and (6) O3 (150 mg/kg). After 5 weeks, Morris water maze (MWM) and passive avoidance (PA) tests were performed, and the hippocampal and cortical levels of oxidative stress markers and inflammatory indices were measured. RESULTS Adolescent Eth intake impairs learning and memory function in MWM and PA tests (groups × day, p < 0.05 and p < 0.001, respectively). It was shown that Eth induced oxidative stress and neuroinflammation. O3 improved learning and impairment induced by Eth by reducing the adverse effects of Eth on the oxidant/antioxidant balance in the hippocampi (for malondialdehyde [MDA]/thiol: p < 0.01, p < 0.001, respectively) and for superoxide dismutase (SOD)/catalase (CAT): p < 0.01 and p < 0.05, respectively). Furthermore, we found that O3 prevented the Eth-induced increase of hippocampal IL-6 (p < 0.001). CONCLUSION O3 supplementation acts as an effective approach to prevent learning and memory impairments induced by chronic Eth consumption during adolescence. In this respect, the antioxidant and anti-inflammatory properties of O3 seem to be the main underlying mechanisms of neuroprotection.
Collapse
Affiliation(s)
- Murtaza Haidary
- Student Research Committee, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - S Mohammad Ahmadi-Soleimani
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Departments of Physiology, School of Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Mina Ghofraninezad
- Student Research Committee, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Hassan Azhdari-Zarmehri
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Departments of Physiology, School of Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Farimah Beheshti
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Departments of Physiology, School of Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| |
Collapse
|
7
|
Zhang P, Munier JJ, Wiese CB, Vergnes L, Link JC, Abbasi F, Ronquillo E, Scheker K, Muñoz A, Kuang YL, Theusch E, Lu M, Sanchez G, Oni-Orisan A, Iribarren C, McPhaul MJ, Nomura DK, Knowles JW, Krauss RM, Medina MW, Reue K. X chromosome dosage drives statin-induced dysglycemia and mitochondrial dysfunction. Nat Commun 2024; 15:5571. [PMID: 38956041 PMCID: PMC11219728 DOI: 10.1038/s41467-024-49764-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 06/18/2024] [Indexed: 07/04/2024] Open
Abstract
Statin drugs lower blood cholesterol levels for cardiovascular disease prevention. Women are more likely than men to experience adverse statin effects, particularly new-onset diabetes (NOD) and muscle weakness. Here we find that impaired glucose homeostasis and muscle weakness in statin-treated female mice are associated with reduced levels of the omega-3 fatty acid, docosahexaenoic acid (DHA), impaired redox tone, and reduced mitochondrial respiration. Statin adverse effects are prevented in females by administering fish oil as a source of DHA, by reducing dosage of the X chromosome or the Kdm5c gene, which escapes X chromosome inactivation and is normally expressed at higher levels in females than males. As seen in female mice, we find that women experience more severe reductions than men in DHA levels after statin administration, and that DHA levels are inversely correlated with glucose levels. Furthermore, induced pluripotent stem cells from women who developed NOD exhibit impaired mitochondrial function when treated with statin, whereas cells from men do not. These studies identify X chromosome dosage as a genetic risk factor for statin adverse effects and suggest DHA supplementation as a preventive co-therapy.
Collapse
Affiliation(s)
- Peixiang Zhang
- Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Joseph J Munier
- Molecular, Cellular & Integrative Physiology, University of California, Los Angeles, CA, USA
| | - Carrie B Wiese
- Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Laurent Vergnes
- Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Jenny C Link
- Molecular Biology Institute, University of California, Los Angeles, CA, USA
- Department of Biology, Whittier College, Whittier, CA, USA
| | - Fahim Abbasi
- Division of Cardiovascular Medicine and Cardiovascular Institute, Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Emilio Ronquillo
- Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Katherine Scheker
- Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Antonio Muñoz
- Department of Pediatrics, University of California, San Francisco, Oakland, CA, USA
| | - Yu-Lin Kuang
- Department of Pediatrics, University of California, San Francisco, Oakland, CA, USA
| | - Elizabeth Theusch
- Department of Pediatrics, University of California, San Francisco, Oakland, CA, USA
| | - Meng Lu
- Division of Research, Kaiser Permanente, Oakland, CA, USA
| | | | - Akinyemi Oni-Orisan
- Institute for Human Genetics, University of California, San Francisco, CA, USA
| | | | - Michael J McPhaul
- Quest Diagnostics Nichols Institute, San Juan Capistrano, CA, 92675, USA
| | - Daniel K Nomura
- Nutritional Sciences and Toxicology, and Novartis-Berkeley Center of Proteomics and Chemistry Technologies, University of California, Berkeley, Berkeley, CA, USA
| | - Joshua W Knowles
- Division of Cardiovascular Medicine and Cardiovascular Institute, Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Ronald M Krauss
- Department of Pediatrics, University of California, San Francisco, Oakland, CA, USA
| | - Marisa W Medina
- Department of Pediatrics, University of California, San Francisco, Oakland, CA, USA
| | - Karen Reue
- Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
- Molecular Biology Institute, University of California, Los Angeles, CA, USA.
| |
Collapse
|
8
|
Król M, Skowron P, Skowron K, Gil K. The Fetal Alcohol Spectrum Disorders-An Overview of Experimental Models, Therapeutic Strategies, and Future Research Directions. CHILDREN (BASEL, SWITZERLAND) 2024; 11:531. [PMID: 38790526 PMCID: PMC11120554 DOI: 10.3390/children11050531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024]
Abstract
Since the establishment of a clear link between maternal alcohol consumption during pregnancy and certain birth defects, the research into the treatment of FASD has become increasingly sophisticated. The field has begun to explore the possibility of intervening at different levels, and animal studies have provided valuable insights into the pathophysiology of the disease, forming the basis for implementing potential therapies with increasingly precise mechanisms. The recent reports suggest that compounds that reduce the severity of neurodevelopmental deficits, including glial cell function and myelination, and/or target oxidative stress and inflammation may be effective in treating FASD. Our goal in writing this article was to analyze and synthesize current experimental therapeutic interventions for FASD, elucidating their potential mechanisms of action, translational relevance, and implications for clinical application. This review exclusively focuses on animal models and the interventions used in these models to outline the current direction of research. We conclude that given the complexity of the underlying mechanisms, a multifactorial approach combining nutritional supplementation, pharmacotherapy, and behavioral techniques tailored to the stage and severity of the disease may be a promising avenue for further research in humans.
Collapse
Affiliation(s)
- Magdalena Król
- Department of Pathophysiology, Jagiellonian University Medical College, Czysta St. 18, 31-121 Krakow, Poland; (M.K.); (K.S.)
| | - Paweł Skowron
- Department of Physiology and Pathophysiology, Wroclaw Medical University, T. Chalubinskiego St. 10, 50-368 Wrocław, Poland;
| | - Kamil Skowron
- Department of Pathophysiology, Jagiellonian University Medical College, Czysta St. 18, 31-121 Krakow, Poland; (M.K.); (K.S.)
| | - Krzysztof Gil
- Department of Pathophysiology, Jagiellonian University Medical College, Czysta St. 18, 31-121 Krakow, Poland; (M.K.); (K.S.)
| |
Collapse
|
9
|
Padilla-Valdez MM, Díaz-Iñiguez MI, Ortuño-Sahagún D, Rojas-Mayorquín AE. Neuroinflammation in fetal alcohol spectrum disorders and related novel therapeutic approaches. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166854. [PMID: 37611676 DOI: 10.1016/j.bbadis.2023.166854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/21/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023]
Abstract
Fetal alcohol spectrum disorders (FASD) is an umbrella term to describe the neurological effects of prenatal alcohol exposure (PAE). It has been extensively characterized that PAE causes cell proliferation disruption, heterotopias, and malformations in various brain regions and there is increasing evidence that neuroinflammation is responsible for some of these neurotoxic effects. Despite evidence of its importance, neuroinflammation is not usually considered at diagnosis or treatment for FASD. Here, we discuss the literature regarding anti- inflammatory drugs and nutraceuticals, which hold promise for future therapeutical interventions in these disorders.
Collapse
Affiliation(s)
- Mayra Madeleine Padilla-Valdez
- Departamento de Ciencias Ambientales, Universidad de Guadalajara, Centro Universitario de Ciencias Biológicas y Agropecuarias, Guadalajara 45200, Mexico; Laboratorio de Neuroinmunobiología Molecular, Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, C.P 44340 Guadalajara, JAL, Mexico
| | - María Isabel Díaz-Iñiguez
- Departamento de Ciencias Ambientales, Universidad de Guadalajara, Centro Universitario de Ciencias Biológicas y Agropecuarias, Guadalajara 45200, Mexico; Laboratorio de Neuroinmunobiología Molecular, Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, C.P 44340 Guadalajara, JAL, Mexico
| | - Daniel Ortuño-Sahagún
- Laboratorio de Neuroinmunobiología Molecular, Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, C.P 44340 Guadalajara, JAL, Mexico.
| | - Argelia Esperanza Rojas-Mayorquín
- Departamento de Ciencias Ambientales, Universidad de Guadalajara, Centro Universitario de Ciencias Biológicas y Agropecuarias, Guadalajara 45200, Mexico.
| |
Collapse
|
10
|
Martín-Llorente A, Serrano M, Bonilla-Del Río I, Lekunberri L, Ocerin G, Puente N, Ramos A, Rico-Barrio I, Gerrikagoitia I, Grandes P. Omega-3 Recovers Cannabinoid 1 Receptor Expression in the Adult Mouse Brain after Adolescent Binge Drinking. Int J Mol Sci 2023; 24:17316. [PMID: 38139145 PMCID: PMC10744058 DOI: 10.3390/ijms242417316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Adolescent binge drinking is a social problem with a long-lasting impact on cognitive functions. The cannabinoid type-1 (CB1) receptor of the endocannabinoid system (ECS) is involved in brain synaptic plasticity, cognition and behavior via receptor localization at specific subcellular compartments of the cortical, limbic and motor regions. Alcohol (EtOH) intake affects the ECS, CB1 and their functions. Evidence indicates that binge drinking during adolescence impairs memory via the abrogation of CB1-dependent synaptic plasticity in the hippocampus. However, the impact of EtOH consumption on global CB1 receptor expression in the adult brain is unknown. We studied this using optical density analysis throughout brain regions processed for light microscopy (LM) immunohistotochemistry. CB1 staining decreased significantly in the secondary motor cortex, cerebellum, cingulate cortex, amygdala and nucleus accumbens. Next, as omega-3 (n-3) polyunsaturated fatty acids (PUFAs) rescue synaptic plasticity and improve EtOH-impaired cognition, we investigated whether docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) had any effect on CB1 receptors. N-3 intake during EtOH abstinence restored CB1 immunostaining in the secondary motor cortex, cerebellum and amygdala, and ameliorated receptor density in the cingulate cortex. These results show that n-3 supplementation recovers CB1 receptor expression disrupted by EtOH in distinct brain regions involved in motor functions and cognition.
Collapse
Affiliation(s)
- Ane Martín-Llorente
- Laboratory of Ultrastructural and Functional Neuroanatomy of the Synapse, Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (A.M.-L.); (M.S.); (I.B.-D.R.); (L.L.); (G.O.); (N.P.); (A.R.); (I.R.-B.)
| | - Maitane Serrano
- Laboratory of Ultrastructural and Functional Neuroanatomy of the Synapse, Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (A.M.-L.); (M.S.); (I.B.-D.R.); (L.L.); (G.O.); (N.P.); (A.R.); (I.R.-B.)
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Itziar Bonilla-Del Río
- Laboratory of Ultrastructural and Functional Neuroanatomy of the Synapse, Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (A.M.-L.); (M.S.); (I.B.-D.R.); (L.L.); (G.O.); (N.P.); (A.R.); (I.R.-B.)
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Leire Lekunberri
- Laboratory of Ultrastructural and Functional Neuroanatomy of the Synapse, Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (A.M.-L.); (M.S.); (I.B.-D.R.); (L.L.); (G.O.); (N.P.); (A.R.); (I.R.-B.)
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Garazi Ocerin
- Laboratory of Ultrastructural and Functional Neuroanatomy of the Synapse, Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (A.M.-L.); (M.S.); (I.B.-D.R.); (L.L.); (G.O.); (N.P.); (A.R.); (I.R.-B.)
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Nagore Puente
- Laboratory of Ultrastructural and Functional Neuroanatomy of the Synapse, Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (A.M.-L.); (M.S.); (I.B.-D.R.); (L.L.); (G.O.); (N.P.); (A.R.); (I.R.-B.)
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Almudena Ramos
- Laboratory of Ultrastructural and Functional Neuroanatomy of the Synapse, Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (A.M.-L.); (M.S.); (I.B.-D.R.); (L.L.); (G.O.); (N.P.); (A.R.); (I.R.-B.)
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Irantzu Rico-Barrio
- Laboratory of Ultrastructural and Functional Neuroanatomy of the Synapse, Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (A.M.-L.); (M.S.); (I.B.-D.R.); (L.L.); (G.O.); (N.P.); (A.R.); (I.R.-B.)
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Inmaculada Gerrikagoitia
- Laboratory of Ultrastructural and Functional Neuroanatomy of the Synapse, Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (A.M.-L.); (M.S.); (I.B.-D.R.); (L.L.); (G.O.); (N.P.); (A.R.); (I.R.-B.)
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Pedro Grandes
- Laboratory of Ultrastructural and Functional Neuroanatomy of the Synapse, Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (A.M.-L.); (M.S.); (I.B.-D.R.); (L.L.); (G.O.); (N.P.); (A.R.); (I.R.-B.)
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| |
Collapse
|
11
|
Serrano M, Rico-Barrio I, Grandes P. The effect of omega-3 fatty acids on alcohol-induced damage. Front Nutr 2023; 10:1068343. [PMID: 37090780 PMCID: PMC10113533 DOI: 10.3389/fnut.2023.1068343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/21/2023] [Indexed: 04/08/2023] Open
Abstract
Alcohol is the most widely consumed psychoactive substance in the world that has a severe impact on many organs and bodily systems, particularly the liver and nervous system. Alcohol use during pregnancy roots long-lasting changes in the newborns and during adolescence has long-term detrimental effects especially on the brain. The brain contains docosahexaenoic acid (DHA), a major omega-3 (n-3) fatty acid (FA) that makes up cell membranes and influences membrane-associated protein function, cell signaling, gene expression and lipid production. N-3 is beneficial in several brain conditions like neurodegenerative diseases, ameliorating cognitive impairment, oxidative stress, neuronal death and inflammation. Because alcohol decreases the levels of n-3, it is timely to know whether n-3 supplementation positively modifies alcohol-induced injuries. The aim of this review is to summarize the state-of-the-art of the n-3 effects on certain conditions caused by alcohol intake, focusing primarily on brain damage and alcoholic liver disease.
Collapse
Affiliation(s)
- Maitane Serrano
- Laboratory of Ultrastructural and Functional Neuroanatomy of the Synapse, Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Leioa, Spain
| | - Irantzu Rico-Barrio
- Laboratory of Ultrastructural and Functional Neuroanatomy of the Synapse, Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Leioa, Spain
| | - Pedro Grandes
- Laboratory of Ultrastructural and Functional Neuroanatomy of the Synapse, Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Leioa, Spain
- *Correspondence: Pedro Grandes,
| |
Collapse
|
12
|
Dludla PV, Ziqubu K, Mabhida SE, Mazibuko-Mbeje SE, Hanser S, Nkambule BB, Basson AK, Pheiffer C, Tiano L, Kengne AP. Dietary Supplements Potentially Target Plasma Glutathione Levels to Improve Cardiometabolic Health in Patients with Diabetes Mellitus: A Systematic Review of Randomized Clinical Trials. Nutrients 2023; 15:944. [PMID: 36839303 PMCID: PMC9966974 DOI: 10.3390/nu15040944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
Cardiovascular diseases (CVDs) continue to be the leading cause of death in people with diabetes mellitus. Severely suppressed intracellular antioxidant defenses, including low plasma glutathione (GSH) levels, are consistently linked with the pathological features of diabetes such as oxidative stress and inflammation. In fact, it has already been established that low plasma GSH levels are associated with increased risk of CVD in people with diabetes. Dietary supplements are widely used and may offer therapeutic benefits for people with diabetes at an increased risk of developing CVDs. However, such information remains to be thoroughly scrutinized. Hence, the current systematic review explored prominent search engines, including PubMed and Google Scholar, for updated literature from randomized clinical trials reporting on the effects of dietary supplements on plasma GSH levels in people with diabetes. Available evidence indicates that dietary supplements, such as coenzyme Q10, selenium, curcumin, omega-3 fatty acids, and vitamin E or D, may potentially improve cardiometabolic health in patients with diabetes. Such beneficial effects are related to enhancing plasma GSH levels and reducing cholesterol, including biomarkers of oxidative stress and inflammation. However, available evidence is very limited and additional clinical studies are still required to validate these findings, including resolving issues related to the bioavailability of these bioactive compounds.
Collapse
Affiliation(s)
- Phiwayinkosi V. Dludla
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3880, South Africa
| | - Khanyisani Ziqubu
- Department of Biochemistry, North-West University, Mmabatho 2745, South Africa
| | - Sihle E. Mabhida
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa
| | | | - Sidney Hanser
- Department of Physiology and Environmental Health, University of Limpopo, Sovenga 0727, South Africa
| | - Bongani B. Nkambule
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Albertus K. Basson
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3880, South Africa
| | - Carmen Pheiffer
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa
- Centre for Cardio-Metabolic Research in Africa (CARMA), Division of Medical Physiology, University of Stellenbosch, Tygerberg 7505, South Africa
- Department of Obstetrics and Gynaecology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - André P. Kengne
- Non-Communicable Diseases Research Unit, South African Medical Research Council, Tygerberg 7505, South Africa
- Department of Medicine, University of Cape Town, Cape Town 7700, South Africa
| |
Collapse
|
13
|
Basavarajappa BS, Subbanna S. Synaptic Plasticity Abnormalities in Fetal Alcohol Spectrum Disorders. Cells 2023; 12:442. [PMID: 36766783 PMCID: PMC9913617 DOI: 10.3390/cells12030442] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/10/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
The brain's ability to strengthen or weaken synaptic connections is often termed synaptic plasticity. It has been shown to function in brain remodeling following different types of brain damage (e.g., drugs of abuse, alcohol use disorders, neurodegenerative diseases, and inflammatory conditions). Although synaptic plasticity mechanisms have been extensively studied, how neural plasticity can influence neurobehavioral abnormalities in alcohol use disorders (AUDs) is far from being completely understood. Alcohol use during pregnancy and its harmful effects on the developing offspring are major public health, social, and economic challenges. The significant attribute of prenatal alcohol exposure on offspring is damage to the central nervous system (CNS), causing a range of synaptic structural, functional, and behavioral impairments, collectively called fetal alcohol spectrum disorder (FASD). Although the synaptic mechanisms in FASD are limited, emerging evidence suggests that FASD pathogenesis involves altering a set of molecules involved in neurotransmission, myelination, and neuroinflammation. These studies identify several immediate and long-lasting changes using many molecular approaches that are essential for synaptic plasticity and cognitive function. Therefore, they can offer potential synaptic targets for the many neurobehavioral abnormalities observed in FASD. In this review, we discuss the substantial research progress in different aspects of synaptic and molecular changes that can shed light on the mechanism of synaptic dysfunction in FASD. Increasing our understanding of the synaptic changes in FASD will significantly advance our knowledge and could provide a basis for finding novel therapeutic targets and innovative treatment strategies.
Collapse
Affiliation(s)
- Balapal S. Basavarajappa
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York, NY 10032, USA
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA
| | - Shivakumar Subbanna
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| |
Collapse
|
14
|
Zhou L, Xiong JY, Chai YQ, Huang L, Tang ZY, Zhang XF, Liu B, Zhang JT. Possible antidepressant mechanisms of omega-3 polyunsaturated fatty acids acting on the central nervous system. Front Psychiatry 2022; 13:933704. [PMID: 36117650 PMCID: PMC9473681 DOI: 10.3389/fpsyt.2022.933704] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Omega-3 polyunsaturated fatty acids (PUFAs) can play important roles in maintaining mental health and resistance to stress, and omega-3 PUFAs supplementation can display beneficial effects on both the prevention and treatment of depressive disorders. Although the underlying mechanisms are still unclear, accumulated evidence indicates that omega-3 PUFAs can exhibit pleiotropic effects on the neural structure and function. Thus, they play fundamental roles in brain activities involved in the mood regulation. Since depressive symptoms have been assumed to be of central origin, this review aims to summarize the recently published studies to identify the potential neurobiological mechanisms underlying the anti-depressant effects of omega-3 PUFAs. These include that of (1) anti-neuroinflammatory; (2) hypothalamus-pituitary-adrenal (HPA) axis; (3) anti-oxidative stress; (4) anti-neurodegeneration; (5) neuroplasticity and synaptic plasticity; and (6) modulation of neurotransmitter systems. Despite many lines of evidence have hinted that these mechanisms may co-exist and work in concert to produce anti-depressive effects, the potentially multiple sites of action of omega-3 PUFAs need to be fully established. We also discussed the limitations of current studies and suggest future directions for preclinical and translational research in this field.
Collapse
Affiliation(s)
- Lie Zhou
- Yangtze University Health Science Center, Jingzhou, China
- Mental Health Institute of Yangtze University, Jingzhou, China
| | - Jia-Yao Xiong
- Yangtze University Health Science Center, Jingzhou, China
| | - Yu-Qian Chai
- Yangtze University Health Science Center, Jingzhou, China
| | - Lu Huang
- Yangtze University Health Science Center, Jingzhou, China
- Mental Health Institute of Yangtze University, Jingzhou, China
| | - Zi-Yang Tang
- Yangtze University Health Science Center, Jingzhou, China
- Mental Health Institute of Yangtze University, Jingzhou, China
- Jingzhou Mental Health Center, Jingzhou, China
| | - Xin-Feng Zhang
- Mental Health Institute of Yangtze University, Jingzhou, China
- Jingzhou Mental Health Center, Jingzhou, China
| | - Bo Liu
- Mental Health Institute of Yangtze University, Jingzhou, China
- Jingzhou Mental Health Center, Jingzhou, China
| | - Jun-Tao Zhang
- Yangtze University Health Science Center, Jingzhou, China
- Mental Health Institute of Yangtze University, Jingzhou, China
| |
Collapse
|
15
|
Grafe EL, Wade MMM, Hodson CE, Thomas JD, Christie BR. Postnatal Choline Supplementation Rescues Deficits in Synaptic Plasticity Following Prenatal Ethanol Exposure. Nutrients 2022; 14:2004. [PMID: 35631142 PMCID: PMC9146219 DOI: 10.3390/nu14102004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/03/2022] [Accepted: 05/06/2022] [Indexed: 02/06/2023] Open
Abstract
Prenatal ethanol exposure (PNEE) is a leading cause of neurodevelopmental impairments, yet treatments for individuals with PNEE are limited. Importantly, postnatal supplementation with the essential nutrient choline can attenuate some adverse effects of PNEE on cognitive development; however, the mechanisms of action for choline supplementation remain unclear. This study used an animal model to determine if choline supplementation could restore hippocampal synaptic plasticity that is normally impaired by prenatal alcohol. Throughout gestation, pregnant Sprague Dawley rats were fed an ethanol liquid diet (35.5% ethanol-derived calories). Offspring were injected with choline chloride (100 mg/kg/day) from postnatal days (PD) 10-30, and then used for in vitro electrophysiology experiments as juveniles (PD 31-35). High-frequency conditioning stimuli were used to induce long-term potentiation (LTP) in the medial perforant path input to the dentate gyrus of the hippocampus. PNEE altered synaptic transmission in female offspring by increasing excitability, an effect that was mitigated with choline supplementation. In contrast, PNEE juvenile males had decreased LTP compared to controls, and this was rescued by choline supplementation. These data demonstrate sex-specific changes in plasticity following PNEE, and provide evidence that choline-related improvements in cognitive functioning may be due to its positive impact on hippocampal synaptic physiology.
Collapse
Affiliation(s)
- Erin L. Grafe
- Division of Medical Sciences, University of Victoria, Victoria, BC V8W 2Y2, Canada; (E.L.G.); (M.M.M.W.); (C.E.H.); (B.R.C.)
| | - Mira M. M. Wade
- Division of Medical Sciences, University of Victoria, Victoria, BC V8W 2Y2, Canada; (E.L.G.); (M.M.M.W.); (C.E.H.); (B.R.C.)
| | - Claire E. Hodson
- Division of Medical Sciences, University of Victoria, Victoria, BC V8W 2Y2, Canada; (E.L.G.); (M.M.M.W.); (C.E.H.); (B.R.C.)
| | - Jennifer D. Thomas
- Department of Psychology, San Diego State University, San Diego, CA 92120, USA
| | - Brian R. Christie
- Division of Medical Sciences, University of Victoria, Victoria, BC V8W 2Y2, Canada; (E.L.G.); (M.M.M.W.); (C.E.H.); (B.R.C.)
| |
Collapse
|
16
|
Sprygin VG, Kushnerova NF, Fomenko SE. Effect of a Lipid Complex from the Marine Red Alga Ahnfeltia tobuchiensis on the Metabolic Responses of the Liver under Conditions of Experimental Toxic Hepatitis. BIOL BULL+ 2022. [DOI: 10.1134/s1062359022010149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Ahmed M, Herrmann N, Chen JJ, Saleem M, Oh PI, Andreazza AC, Kiss A, Lanctôt KL. Glutathione Peroxidase Activity Is Altered in Vascular Cognitive Impairment-No Dementia and Is a Potential Marker for Verbal Memory Performance. J Alzheimers Dis 2021; 79:1285-1296. [PMID: 33427735 PMCID: PMC7990450 DOI: 10.3233/jad-200754] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Background: Coronary artery disease (CAD) increases risk for vascular cognitive impairment-no dementia (VCIND), a precursor to dementia, potentially through persistent oxidative stress. Objective: This study assessed peripheral glutathione peroxidase activity (GPX), which is protective against oxidative stress, in VCIND versus cognitively normal CAD controls (CN). GPX activity was also evaluated as a biomarker of cognition, particularly verbal memory. Methods: 120 CAD patients with VCIND (1SD below norms on executive function or verbal memory (VM)) or without (CN) participated in exercise rehabilitation for 24 weeks. Neurocognitive and cardiopulmonary fitness (VO2peak) assessments and plasma were collected at baseline and 24-weeks. Results: GPX was higher in VCIND compared to CN (F1,119 = 3.996, p = 0.048). Higher GPX was associated with poorer baseline VM (β= –0.182, p = 0.048), and longitudinally with VM decline controlling for sex, body mass index, VO2peak, and education (b[SE] = –0.02[0.01], p = 0.004). Only CN participants showed improved VM performance with increased fitness (b[SE] = 1.30[0.15], p < 0.005). Conclusion: GPX was elevated in VCIND consistent with a compensatory response to persistent oxidative stress. Increased GPX predicted poorer cognitive outcomes (verbal memory) in VCIND patients despite improved fitness.
Collapse
Affiliation(s)
- Mehnaz Ahmed
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Nathan Herrmann
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Geriatric Psychiatry, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Jinghan Jenny Chen
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Mahwesh Saleem
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Paul I Oh
- Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada
| | - Ana C Andreazza
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Alexander Kiss
- Evaluative Clinical Sciences, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Krista L Lanctôt
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Geriatric Psychiatry, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Evaluative Clinical Sciences, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada.,Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
18
|
The Effect of Dietary Supplements on Oxidative Stress in Pregnant Women with Gestational Diabetes Mellitus: A Network Meta-Analysis. Nutrients 2021; 13:nu13072284. [PMID: 34209454 PMCID: PMC8308478 DOI: 10.3390/nu13072284] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/16/2021] [Accepted: 06/23/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) exacerbates the oxidative stress status of the pregnant women. Τo improve the oxidative stress status, several therapeutic interventions have been suggested. The aim of this network meta-analysis is to assess the effect of different dietary supplements on the oxidative stress status in pregnant women with GDM. METHODS A network meta-analysis of randomized control trials was performed comparing the changes delta (Δ) in total antioxidant capacity (TAC) and concentration of malondialdehyde (MDA) as primary outcomes, following different therapeutic interventions with dietary supplements in pregnant women with GDM. Four electronic databases and grey literature sources were searched. The secondary outcomes were other markers of oxidative stress. RESULTS The meta-analysis included 16 studies of 1173 women with GDM. Regarding ΔTAC: probiotics and omega-3 with vitamin E were superior to placebo/no intervention. Regarding ΔMDA: vitamin D with calcium, omega-3, vitamin D, omega-3 with vitamin E, magnesium with zinc and calcium, and probiotics were superior to placebo/no intervention. CONCLUSIONS Administration of dietary supplements in women with GDM can be helpful in limiting the oxidative stress which develop in these pregnancies.
Collapse
|
19
|
AlFaris NA, Alshammari GM, AlTamimi JZ, AlMousa LA, AlKehayez NM, Aljabryn DH, Alagal RI, Yahya MA. The protective effect of shrimp cooked in different methods on high-cholesterol- induced fatty liver in rats. Saudi J Biol Sci 2021; 28:170-182. [PMID: 33424294 PMCID: PMC7783650 DOI: 10.1016/j.sjbs.2020.09.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/24/2020] [Accepted: 09/17/2020] [Indexed: 11/25/2022] Open
Abstract
This study examined the impact of different cooking methods on fatty acid (FAs) composition of shrimp meat and the ability of these foods to protect against high cholesterol (HC) diet-induced non-alcoholic fatty liver disease (NAFLD) in rats. Shrimp were cooked for 10 min boiled, grilled, or fried in sunflower oil. Rats (n = 6/group) were fed a normal diet (ND)or high-cholesterol diet (HC) each containing boiled, grilled or fried shrimp powder (15% w/w) (NDBS, NDFS, NDGS for ND or HCBS, HCFS, HCDGS for HC diet). Frying alone significantly reduced total levels of saturated FAs (SFA) and increased total mono- and polyunsaturated FAs (MSFA, and PUFAs, respectively) in shrimp meat. It also increased levels of n-6 PUFAs and linoleic acid (LA) and decreased levels of n-3 PUFAs including eicosapentaenoic FAs (EPA) and docosahexaenoic fatty acid (DHA). When fed to HC rats, only diets containing the grilled and boiled shrimp powders significantly prevented the weight loss, lowered fasting and glucose levels, improved glucose and insulin tolerance, and prevented the increase in serum liver markers, ALT and AST. They also reduced hepatic fat accumulation, reduced serum levels and hepatic levels of cholesterol and triglycerides (TGs), reduced hepatic levels of MDA, tumor necrosis factor-alpha (TNF-α), and IL-6, and increased those of glutathione (GSH) and superoxide dismutase (SOD). No alterations in all these parameters were observed in HC-fed rats which fed fried shrimp. In conclusion, boiling and grilling but not frying are the best method to cook shrimp to preserve their fatty acid content and its nutritional value in ameliorating NAFLD.
Collapse
Affiliation(s)
- Nora A AlFaris
- Department of Physical Sport Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ghedeir M Alshammari
- Department of Food Science and Nutrition, College of Food and Agricultural Science, King Saud University, Riyadh, Saudi Arabia
| | - Jozaa Z AlTamimi
- Department of Physical Sport Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Lujain A AlMousa
- Department of Physical Sport Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Nora M AlKehayez
- Department of Physical Sport Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Dalal H Aljabryn
- Department of Physical Sport Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Reham I Alagal
- Department of Physical Sport Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mohammed A Yahya
- Department of Food Science and Nutrition, College of Food and Agricultural Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
20
|
Banerjee M, Chawla R, Kumar A. Antioxidant supplements in age-related macular degeneration: are they actually beneficial? Ther Adv Ophthalmol 2021; 13:25158414211030418. [PMID: 34471798 PMCID: PMC8404659 DOI: 10.1177/25158414211030418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 06/16/2021] [Indexed: 11/17/2022] Open
Abstract
Age-related macular degeneration (ARMD) is one of the prominent causes of central visual loss in the older age group in the urbanized, industrialized world. In recent years, many epidemiological studies and clinical trials have evaluated the role of antioxidants and micronutrients to prevent the progression of ARMD. In this article, we review some of these major studies. In addition, we review the absorption and bioavailability and possible undesirable effects of these nutrients after ingestion. The role of genotypes and inappropriate use of these supplements are also discussed. From all the above evidence, we conclude that it may not be prudent to prescribe these formulations without a proper assessment of the individual's health and dietary status. The effectiveness of all the components in antioxidant formulations is controversial. Thus, these supplements should not be prescribed just for the purpose of providing patients some kind of therapy, which may give a false sense of mental satisfaction.
Collapse
Affiliation(s)
- Mousumi Banerjee
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Rohan Chawla
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Atul Kumar
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
21
|
Omega-3 fatty acid supplement use and oxidative stress levels in pregnancy. PLoS One 2020; 15:e0240244. [PMID: 33095772 PMCID: PMC7584173 DOI: 10.1371/journal.pone.0240244] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 09/22/2020] [Indexed: 12/25/2022] Open
Abstract
Oxidative stress is a biological imbalance in reactive oxygen species and antioxidants. Increased oxidative stress during pregnancy has been associated with adverse birth outcomes. Omega-3 fatty acid (n-3 FA) supplementation may decrease oxidative stress; however, this relationship is seldom examined during pregnancy. This study assessed the association between n-3 FA supplement use during pregnancy and urinary oxidative stress biomarker concentrations. Data came from The Infant Development and the Environment Study (TIDES), a prospective cohort study that recruited pregnant women in 4 US cities between 2010-2012. Third trimester n-3 FA intake was self-reported. Third trimester urinary 8-iso-prostaglandin F2α (8-iso-PGF2α) was measured as an oxidative stress biomarker. Additionally, we measured the major metabolite of 8-iso-PGF2α and Prostaglandin F2α (PGF2α) and utilized the 8-iso-PGF2α to PGF2α ratio to calculate the change in 8-iso-PGF2α reflecting oxidative stress versus inflammation. Adjusted linear models were used to determine associations with control for confounding. Of 725 women, 165 reported n-3 FA supplement use in the third trimester. In adjusted linear models, n-3 FA use was associated with 10.2% lower levels of 8-iso-PGF2α (95% Confidence Interval [CI]: -19.6, 0.25) and 10.3% lower levels of the metabolite (95% CI: -17.1, -2.91). No associations were observed with PGF2α. The lower levels of 8-iso-PGF2α appeared to reflect a decrease in oxidative stress (percent change with supplement use: -18.7, 95% CI: -30.1, -5.32) rather than inflammation. Overall, third trimester n-3 FA intake was associated with lower concentrations of 8-iso-PGF2α and its metabolite, suggesting a decrease in maternal oxidative stress during pregnancy.
Collapse
|
22
|
Hunsche C, Martínez de Toda I, Hernandez O, Jiménez B, Díaz LE, Marcos A, De la Fuente M. The supplementations with 2-hydroxyoleic acid and n-3 polyunsaturated fatty acids revert oxidative stress in various organs of diet-induced obese mice. Free Radic Res 2020; 54:455-466. [PMID: 32752974 DOI: 10.1080/10715762.2020.1800004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Obesity and its related diseases have been associated with oxidative stress. Thus, the search for nutritional strategies to ameliorate oxidative stress in obese individuals seems important. We hypothesized that the supplementation with monounsaturated (2-hydroxyoleic acid (2-OHOA)) and with combined n-3 polyunsaturated (eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)) fatty acids would ameliorate oxidative stress in different organs, including brain, liver, lungs, and kidneys of adult diet-induced obese (DIO) mice. Adult female ICR-CD1 mice were fed a high-fat diet (HFD) for 14 weeks. During the last 6 weeks of HFD feeding, one group of DIO mice received the same HFD, supplemented with 1500 mg of 2-OHOA per kg of HFD and another group with 1500 mg of EPA and 1500 mg of DHA per kg of HFD. At the end of the experiment, several parameters of oxidative stress were assessed. The supplementation with 2-OHOA or with EPA and DHA in DIO mice was able to revert oxidative stress, enhancing the activities of catalase and glutathione reductase, as well as diminishing the activity of xanthine oxidase, the concentration of thiobarbituric acid reactive substances (TBARS) and the ratio between oxidized glutathione and reduced glutathione in several organs. These reached similar values to those of control mice, which were fed a standard diet. These data suggest that supplementation with 2-OHOA and with EPA and DHA could be an effective nutritional intervention to restore an appropriate redox state in DIO mice.
Collapse
Affiliation(s)
- Caroline Hunsche
- Department of Genetics, Physiology and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University of Madrid and Research Institute of Hospital 12 de Octubre (i + 12), Madrid, Spain
| | - Irene Martínez de Toda
- Department of Genetics, Physiology and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University of Madrid and Research Institute of Hospital 12 de Octubre (i + 12), Madrid, Spain
| | - Oskarina Hernandez
- Department of Genetics, Physiology and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University of Madrid and Research Institute of Hospital 12 de Octubre (i + 12), Madrid, Spain
| | - Beatriz Jiménez
- Department of Genetics, Physiology and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University of Madrid and Research Institute of Hospital 12 de Octubre (i + 12), Madrid, Spain
| | - Ligia Esperanza Díaz
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), Madrid, Spain
| | - Ascensión Marcos
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), Madrid, Spain
| | - Mónica De la Fuente
- Department of Genetics, Physiology and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University of Madrid and Research Institute of Hospital 12 de Octubre (i + 12), Madrid, Spain
| |
Collapse
|
23
|
Boschen KE, Ptacek TS, Simon JM, Parnell SE. Transcriptome-Wide Regulation of Key Developmental Pathways in the Mouse Neural Tube by Prenatal Alcohol Exposure. Alcohol Clin Exp Res 2020; 44:1540-1550. [PMID: 32557641 DOI: 10.1111/acer.14389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/02/2020] [Accepted: 05/31/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Early gestational alcohol exposure is associated with severe craniofacial and CNS dysmorphologies and behavioral abnormalities during adolescence and adulthood. Alcohol exposure during the formation of the neural tube (gestational day [GD] 8 to 10 in mice; equivalent to4th week of human pregnancy) disrupts development of ventral midline brain structures such as the pituitary, septum, and ventricles. This study identifies transcriptomic changes in the rostroventral neural tube (RVNT), the region of the neural tube that gives rise to the midline structures sensitive to alcohol exposure during neurulation. METHODS Female C57BL/6J mice were administered 2 doses of alcohol (2.9 g/kg) or vehicle 4 hours apart on GD 9.0. The RVNTs of embryos were collected 6 or 24 hours after the first dose and processed for RNA-seq. RESULTS Six hours following GD 9.0 alcohol exposure (GD 9.25), over 2,300 genes in the RVNT were determined to be differentially regulated by alcohol. Enrichment analysis determined that PAE affected pathways related to cell proliferation, p53 signaling, ribosome biogenesis, and immune activation. In addition, over 100 genes involved in primary cilia formation and function and regulation of morphogenic pathways were altered 6 hours after alcohol exposure. The changes to gene expression were largely transient, as only 91 genes identified as differentially regulated by prenatal alcohol at GD 10 (24 hours postexposure). Functionally, the differentially regulated genes at GD 10 were related to organogenesis and cell migration. CONCLUSIONS These data give a comprehensive view of the changing landscape of the embryonic transcriptome networks in regions of the neural tube that give rise to brain structures impacted by a neurulation-stage alcohol exposure. Identification of gene networks dysregulated by alcohol will help elucidate the pathogenic mechanisms of alcohol's actions.
Collapse
Affiliation(s)
- Karen E Boschen
- From the Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Travis S Ptacek
- Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jeremy M Simon
- Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Scott E Parnell
- From the Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
24
|
Feltham BA, Louis XL, Eskin MNA, Suh M. Docosahexaenoic Acid: Outlining the Therapeutic Nutrient Potential to Combat the Prenatal Alcohol-Induced Insults on Brain Development. Adv Nutr 2020; 11:724-735. [PMID: 31989167 PMCID: PMC7231602 DOI: 10.1093/advances/nmz135] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/05/2019] [Accepted: 12/22/2019] [Indexed: 01/20/2023] Open
Abstract
Brain development is markedly affected by prenatal alcohol exposure, leading to cognitive and behavioral problems in the children. Protecting neuronal damage from prenatal alcohol could improve neural connections and functioning of the brain. DHA, a n-3 (ω-3) long-chain PUFA, is involved in the development of neurons. Insufficient concentrations of DHA impair neuronal development and plasticity of synaptic junctions and affect neurotransmitter concentrations in the brain. Alcohol consumption during pregnancy decreases the maternal DHA status and reduces the placental transfer of DHA to the fetus, resulting in less DHA being available for brain development. It is important to know whether DHA could induce beneficial effects on various physiological functions that promote neuronal development. This review will discuss the current evidence for the beneficial role of DHA in protecting against neuronal damage and its potential in mitigating the teratogenic effects of alcohol.
Collapse
Affiliation(s)
- Bradley A Feltham
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
| | - Xavier L Louis
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
| | - Michael N A Eskin
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Miyoung Suh
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
| |
Collapse
|
25
|
Di Miceli M, Bosch-Bouju C, Layé S. PUFA and their derivatives in neurotransmission and synapses: a new hallmark of synaptopathies. Proc Nutr Soc 2020; 79:1-16. [PMID: 32299516 DOI: 10.1017/s0029665120000129] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PUFA of the n-3 and n-6 families are present in high concentration in the brain where they are major components of cell membranes. The main forms found in the brain are DHA (22 :6, n-3) and arachidonic acid (20:4, n-6). In the past century, several studies pinpointed that modifications of n-3 and n-6 PUFA levels in the brain through dietary supply or genetic means are linked to the alterations of synaptic function. Yet, synaptopathies emerge as a common characteristic of neurodevelopmental disorders, neuropsychiatric diseases and some neurodegenerative diseases. Understanding the mechanisms of action underlying the activity of PUFA at the level of synapses is thus of high interest. In this frame, dietary supplementation in PUFA aiming at restoring or promoting the optimal function of synapses appears as a promising strategy to treat synaptopathies. This paper reviews the link between dietary PUFA, synapse formation and the role of PUFA and their metabolites in synaptic functions.
Collapse
Affiliation(s)
- Mathieu Di Miceli
- INRAE, University of Bordeaux, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
| | - Clémentine Bosch-Bouju
- INRAE, University of Bordeaux, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
| | - Sophie Layé
- INRAE, University of Bordeaux, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
| |
Collapse
|
26
|
Sowell KD, Holt RR, Uriu-Adams JY, Chambers CD, Coles CD, Kable JA, Yevtushok L, Zymak-Zakutnya N, Wertelecki W, Keen CL. Altered Maternal Plasma Fatty Acid Composition by Alcohol Consumption and Smoking during Pregnancy and Associations with Fetal Alcohol Spectrum Disorders. J Am Coll Nutr 2020; 39:249-260. [PMID: 32240041 DOI: 10.1080/07315724.2020.1737984] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Objective: Polyunsaturated fatty acids are vital for optimal fetal neuronal development. The relationship between maternal alcohol consumption and smoking with third trimester plasma fatty acids were examined and their association with Fetal Alcohol Spectrum Disorders (FASD).Methods: Moderate to heavy alcohol-using and low/unexposed comparison women were recruited during mid-pregnancy from two prenatal clinics in Ukraine. The participants' infants underwent physical and neurobehavioral exams prior to one-year of age and classified as having FASD by maternal alcohol consumption and neurobehavioral scores. A subset of mother-child pairs was selected representing three groups of cases and controls: Alcohol-Exposed with FASD (AE-FASD, n = 30), Alcohol-Exposed Normally Developing (AE-ND, n = 33), or Controls (n = 46). Third trimester maternal plasma samples were analyzed for fatty acids and levels were compared across groups.Results: The percent of C18:0 (p < 0.001), arachidonic acid (AA, C20:4n-6, p = 0.017) and C22:5n-6 (p = 0.001) were significantly higher in AE-FASD women than controls or AE-ND women. Alcohol-exposed women who smoked had lower C22:5n-3 (p = 0.029) and docosahexaenoic acid (DHA, C22:6n-3, p = 0.005) and higher C22:5n-6 (p = 0.013) than women consuming alcohol alone or abstainers.Conclusion: Alterations in fatty acid profiles were observed in moderate to heavy alcohol-consuming mothers with infants classified with FASD compared to alcohol-exposed normally developing infants or controls.
Collapse
Affiliation(s)
- Krista D Sowell
- Department of Health, Physical Education, and Sport Studies, Winston-Salem State University, Winston Salem, North Carolina, USA
| | - Roberta R Holt
- Department of Nutrition, University of California, Davis, Davis, California, USA
| | - Janet Y Uriu-Adams
- Department of Nutrition, University of California, Davis, Davis, California, USA
| | - Christina D Chambers
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA.,Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, California, USA
| | - Claire D Coles
- Departments of Psychiatry and Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Julie A Kable
- Departments of Psychiatry and Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Lyubov Yevtushok
- OMNI-Net, Rivne & the Rivne Diagnostic Center, Rivne, Ukraine.,Department of Therapy No.1 and Medical Diagnostics, Lviv National Medical University, Lviv, Ukraine
| | | | - Wladimir Wertelecki
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Carl L Keen
- Department of Nutrition, University of California, Davis, Davis, California, USA
| | | |
Collapse
|
27
|
Plaza-Briceño W, Estay SF, de la Fuente-Ortega E, Gutiérrez C, Sánchez G, Hidalgo C, Chávez AE, Haeger PA. N-Methyl-d-Aspartate Receptor Modulation by Nicotinamide Adenine Dinucleotide Phosphate Oxidase Type 2 Drives Synaptic Plasticity and Spatial Memory Impairments in Rats Exposed Pre- and Postnatally to Ethanol. Antioxid Redox Signal 2020; 32:602-617. [PMID: 31880947 DOI: 10.1089/ars.2019.7787] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Aims: Pre- and/or early postnatal ethanol exposure (prenatal alcohol exposure [PAE]) impairs synaptic plasticity as well as memory formation, but the mechanisms underlying these effects remain unclear. Both long-term potentiation (LTP) and spatial memory formation in the hippocampus involve the nicotinamide adenine dinucleotide phosphate oxidase type 2 (NOX2) enzyme. Previous studies have reported that N-methyl-d-aspartate receptor (NMDAR) activation increases NOX2-mediated superoxide generation, resulting in inhibition of NMDAR function, but whether NOX2 impacts NMDAR function in PAE animals leading to impaired LTP and memory formation remains unknown. We aim to evaluate whether the NOX2-NMDAR complex is involved in the long-lasting deleterious effects of PAE on hippocampal LTP and memory formation. Results: Here we provide novel evidence that PAE animals display impaired NMDAR-dependent LTP in the cornus ammonis field 1 (CA1) and NMDAR-mediated LTP in the dentate gyrus (DG). Moreover, PAE rats displayed increased NMDAR-mediated transmission in both hippocampal areas. Interestingly, NOX2 pharmacological inhibition restored NMDAR-mediated transmission and LTP in the CA1, but not in the DG. PAE also induced overexpression of NOX2 and CaMKII isoforms, but did not modify the content or the redox state of the N-methyl-d-aspartate receptor subunit-1 (NR1) subunit of NMDAR in both areas of the hippocampus. In addition, adolescent PAE rats orally fed the antioxidant and free radical scavenger apocynin exhibited significantly improved spatial memory acquisition. Innovation and Conclusion: By showing in PAE animals NOX2 overexpression and increased NMDAR-mediated transmission, which might lead to impaired synaptic plasticity and memory formation in a region-specific manner, we provide an important advance to our current understanding of the cellular mechanisms underlying PAE-dependent defective hippocampal function.
Collapse
Affiliation(s)
- Wladimir Plaza-Briceño
- Departamento de Ciencias Biomédicas, Facultad De Medicina, Universidad Católica Del Norte, Coquimbo, Chile.,Programa de Magíster en Ciencias Biológicas mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaiso, Chile
| | - Sebastián F Estay
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile.,Programa de Doctorado en Ciencias mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaiso, Chile
| | - Erwin de la Fuente-Ortega
- Departamento de Ciencias Biomédicas, Facultad De Medicina, Universidad Católica Del Norte, Coquimbo, Chile
| | - Camilo Gutiérrez
- Departamento de Ciencias Biomédicas, Facultad De Medicina, Universidad Católica Del Norte, Coquimbo, Chile
| | - Gina Sánchez
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile.,CEMC, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Cecilia Hidalgo
- CEMC, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Departamento de Neurociencia, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Andrés E Chávez
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Paola A Haeger
- Departamento de Ciencias Biomédicas, Facultad De Medicina, Universidad Católica Del Norte, Coquimbo, Chile
| |
Collapse
|
28
|
Punia S, Sandhu KS, Siroha AK, Dhull SB. Omega 3-metabolism, absorption, bioavailability and health benefits–A review. PHARMANUTRITION 2019. [DOI: 10.1016/j.phanu.2019.100162] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Miguel PM, Pereira LO, Silveira PP, Meaney MJ. Early environmental influences on the development of children's brain structure and function. Dev Med Child Neurol 2019; 61:1127-1133. [PMID: 30740660 DOI: 10.1111/dmcn.14182] [Citation(s) in RCA: 195] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/26/2018] [Indexed: 12/13/2022]
Abstract
The developing brain in utero and during the first years of life is highly vulnerable to environmental influences. Experiences occurring during this period permanently modify brain structure and function through epigenetic modifications (alterations of the DNA structure and chromatin function) and consequently affect the susceptibility to mental disorders. In this review, we describe evidence linking adverse environmental variation during early life (from the fetal period to childhood) and long-term changes in brain volume, microstructure, and connectivity, especially in amygdala and hippocampal regions. We also describe genetic variations that moderate the impact of adverse environmental conditions on child neurodevelopment, such as polymorphisms in brain-derived neurotrophic factor and catechol-O-methyltransferase genes, as well as genetic pathways related to glutamate and monoaminergic signaling. Lastly, we have depicted positive early life experiences that could benefit childhood neurodevelopment and reverse some detrimental effects of adversity in the offspring. WHAT THIS PAPER ADDS: Prenatal, peripartum, and postnatal adversities influence child behavior and neurodevelopment. Exposure to environmental enrichment and positive influences may revert these effects. Putative mechanisms involve alterations in neurotrophic factors and neurotransmitter systems. New tools/big data improved the understanding on how early adversity alters neurodevelopment. This permits better translation/application of the findings from animal models to humans.
Collapse
Affiliation(s)
- Patrícia M Miguel
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Lenir O Pereira
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Patrícia P Silveira
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada.,Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.,Sackler Program for Epigenetics and Psychobiology at McGill University, Montreal, QC, Canada
| | - Michael J Meaney
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada.,Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.,Sackler Program for Epigenetics and Psychobiology at McGill University, Montreal, QC, Canada.,Child and Brain Development Program, Canadian Institute for Advanced Research, Toronto, ON, Canada.,Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
| |
Collapse
|
30
|
Heshmati J, Morvaridzadeh M, Maroufizadeh S, Akbari A, Yavari M, Amirinejad A, Maleki-Hajiagha A, Sepidarkish M. Omega-3 fatty acids supplementation and oxidative stress parameters: A systematic review and meta-analysis of clinical trials. Pharmacol Res 2019; 149:104462. [PMID: 31563611 DOI: 10.1016/j.phrs.2019.104462] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/25/2019] [Accepted: 09/20/2019] [Indexed: 01/04/2023]
Abstract
Omega-3 fatty acids (omega-3 FAs) supplementation effects on oxidants and antioxidants are always controversial. Oxidative stress (OS) is one of the major mechanisms that contribute to the pathogenesis of several chronic diseases. The present systematic review and meta-analysis aimed to summarize the finding of randomized clinical trials (RCTs) examining the effects of omega-3 FAs on OS markers. Five databases including PubMed, Embase, Scopus, Web of science, and Cochrane were searched up to May 5th, 2019 with no language restriction. RCTs included if they compared OS indices among subjects who received omega-3 FAs supplements and subjects who supplemented with placebo. To estimate the effects of omega-3 FAs supplementation, standardized mean difference (SMD) with 95% confidence intervals (95% CI) were pooled using random effects model. Of 5,887 publications, 39 trials involving 2,875 participants were included for the meta-analysis. The pooled analysis of data indicated that omega-3 FAs significantly increased serum total antioxidant capacity (TAC) (SMD: 0.48, 95% CI: 0.23, 0.72, P< 0.001; I2= 60%), glutathione peroxidase (GPx) (SMD: 0.73, 95% CI: 0.30, 1.16, P= 0.001; I2= 83%) activity and decreased malondialdehyde (MDA) (SMD= -0.42, 95% CI: -0.62, -0.21; P < 0.001; I2= 74%) compared to the placebo group. However, the effects of omega-3 FAs on nitric oxide (NO) (SMD: -0.17 , 95% CI: -0.77, 0.43, P = 0.57; I2= 91%), reduced glutathione (GSH) (SMD= 0.23, 95% CI= -0.17, 0.64, P= 0.25; I2= 75%), superoxide dismutase (SOD) (0.12 , 95% CI: -0.40, 0.65, P= 0.64; I2= 89%) and catalase (CAT) (0.16, 95% CI: -0.33, 0.65, P= 0.52; I2= 75%,) activities was not significant. Supplementation with omega-3 FAs significantly improves MDA, TAC levels, and GPx activity. Thus, omega-3 FAs can be mentioned as enhancer factors in antioxidant defense against reactive oxygen species (ROS).
Collapse
Affiliation(s)
- Javad Heshmati
- Department of Nutritional Science, School of Nutritional Science and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mojgan Morvaridzadeh
- Department of Nutritional Science, School of Nutritional Science and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saman Maroufizadeh
- School of Nursing and Midwifery, Guilan University of Medical Sciences, Rasht, Iran
| | - Abolfazl Akbari
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Yavari
- Department of Nutritional Science, Texas Tech University, Lubbock, TX, USA
| | - Ali Amirinejad
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Arezoo Maleki-Hajiagha
- Research Development Center, Arash Women's Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Sepidarkish
- Department of Biostatistics and Epidemiology, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
31
|
Shi Z, Xie Y, Ren H, He B, Wang M, Wan J, Yuan T, Yao X, Su H. Fish oil treatment reduces chronic alcohol exposure induced synaptic changes. Addict Biol 2019; 24:577-589. [PMID: 29569345 DOI: 10.1111/adb.12623] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 01/22/2018] [Accepted: 02/27/2018] [Indexed: 12/16/2022]
Abstract
Alcohol addiction is a chronic neuropsychiatric disorder that represents one of the most serious global public health problems. Yet, currently there still lacks an effective pharmacotherapy. Omega-3 polyunsaturated fatty acids (N-3 PUFAs) have exhibited beneficial effects in a variety of neurological disorders, particularly in reversing behavioral deficits and neurotoxicity induced by prenatal alcohol exposure and binge drinking. In the present study, we investigated if fish oil, which is rich in N-3 PUFAs, had beneficial effects on preventing relapse and alleviating withdrawal symptoms after chronic alcohol exposure. Our results demonstrated that fish oil significantly reduced the chronic alcohol exposure-induced aberrant dendritic morphologic changes of the medium-sized spiny neurons in the core and the shell of nucleus accumbens. This inhibited the expression of AMPAR2-lacking AMPARs and their accumulation on the post synaptic membranes of medium-sized spiny neurons and eventually alleviated withdrawal symptoms and alcohol dependence. Our study therefore suggests that N-3 PUFAs are promising for treating withdrawal symptoms and alcohol dependence.
Collapse
Affiliation(s)
- Zhe Shi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical SciencesUniversity of Macau China
| | - Youna Xie
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated HospitalSun Yat‐Sen University China
| | - Huixia Ren
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical SciencesUniversity of Macau China
| | - Baixuan He
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated HospitalSun Yat‐Sen University China
| | - Meng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical SciencesUniversity of Macau China
| | - Jian‐Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical SciencesUniversity of Macau China
| | - Ti‐Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health CenterShanghai Jiao Tong University School of Medicine China
- Co‐innovation Center of NeuroregenerationNantong University China
| | - Xiaoli Yao
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated HospitalSun Yat‐Sen University China
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical SciencesUniversity of Macau China
| |
Collapse
|
32
|
Feltham BA, Louis XL, Kapourchali FR, Eskin MNA, Suh M. DHA supplementation during prenatal ethanol exposure alters the expression of fetal rat liver genes involved in oxidative stress regulation. Appl Physiol Nutr Metab 2018; 44:744-750. [PMID: 30521352 DOI: 10.1139/apnm-2018-0580] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prenatal ethanol (EtOH) exposure is known to induce adverse effects on fetal brain development. Docosahexaenoic acid (DHA) has been shown to alleviate these effects by up-regulating antioxidant mechanisms in the brain. The liver is the first organ to receive enriched blood after placental transport. Therefore, it could be negatively affected by EtOH, but no studies have assessed the effects of DHA on fetal liver. This study examined the effects of maternal DHA intake on DHA status and gene expression of key enzymes of the glutathione antioxidant system in the fetal liver after prenatal EtOH exposure. Pregnant Sprague-Dawley dams were intubated with EtOH for the first 10 days of pregnancy, while being fed a control or DHA-supplemented diet. Fetal livers were collected at gestational day 20, and free fatty acids and phospholipid profile, as well as glutathione reductase (GR) and glutathione peroxidase-1 (GPx1) gene expressions, were assessed. Prenatal EtOH exposure increased fetal liver weight, whereas maternal DHA supplementation decreased fetal liver weight. DHA supplementation increased fetal liver free fatty acid and phospholipid DHA independently of EtOH. GR and GPx1 messenger RNA (mRNA) expressions were significantly increased and decreased, respectively, in the EtOH-exposed group compared with all other groups. Providing DHA normalized GR and GPx1 mRNA expression to control levels. This study shows that maternal DHA supplementation alters the expression of fetal liver genes involved in the glutathione antioxidative system during prenatal EtOH exposure. The fetal liver may play an important role in mitigating the signs and symptoms of fetal alcohol spectrum disorders in affected offspring.
Collapse
Affiliation(s)
- Bradley A Feltham
- a Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.,b Division of Neurodegenerative Disorders & Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
| | - Xavier L Louis
- a Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.,b Division of Neurodegenerative Disorders & Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
| | - Fatemeh Ramezani Kapourchali
- a Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.,b Division of Neurodegenerative Disorders & Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
| | - Michael N A Eskin
- a Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Miyoung Suh
- a Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.,b Division of Neurodegenerative Disorders & Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
| |
Collapse
|
33
|
Ghizoni H, Ventura M, Colle D, Gonçalves CL, de Souza V, Hartwig JM, Santos DB, Naime AA, Cristina de Oliveira Souza V, Lopes MW, Barbosa F, Brocardo PS, Farina M. Effects of perinatal exposure to n-3 polyunsaturated fatty acids and methylmercury on cerebellar and behavioral parameters in mice. Food Chem Toxicol 2018; 120:603-615. [DOI: 10.1016/j.fct.2018.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 12/20/2022]
|
34
|
A review of interventions against fetal alcohol spectrum disorder targeting oxidative stress. Int J Dev Neurosci 2018; 71:140-145. [PMID: 30205148 DOI: 10.1016/j.ijdevneu.2018.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 08/09/2018] [Accepted: 09/01/2018] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Fetal alcohol spectrum disorder is caused by maternal ethanol exposure; it causes physical, behavioral, cognitive, and neural impairments (Murawski et al., 2015). Mechanisms of FASD causing damage are not yet fully elucidated. Oxidative stress might be one of its mechanisms (Henderson et al., 1995). Yet no effective treatment against FASD has been found other than ethanol abstention (Long et al., 2010). METHODS This review summarizes relevant literatures regarding interventions targeting oxidative stress that may relieve fetal alcohol spectrum disorder. RESULTS Astaxanthin was found to mitigate embryonic growth retardation induced by prenatal ethanol treatment through ameliorating the down regulation of hydrogen peroxide (H2O2) and malondialdehyde (MDA) caused by alcohol in a mice model (Zheng et al., 2014; Vabulas et al., 2002). Vitamin E protected against fatal alchol spectrum disorders by ameliorating oxidative stress in rat models (Mitchell et al., 1999a), and yielded a better outcome when it was combined with Vitamin C (Packer et al., 1979; Peng et al., 2005). Vitamin C mitigated embryonic retardation caused by alcohol and reversed ethanol induced NF-κB activation and ROS (reactive oxygen species) formation in a Xenopus laevis model (Peng et al., 2005). Beta carotene supplement was proved to protect against neurotoxicity in hippocampal cultures of embryos induced by alcohol in a rats model (Mitchell et al., 1999a). Prenatal folic acid supplement reversed the decrease of body weight caused by maternal ethanol treatment and ameliorated the increment of glutathione reductase specific activities as well as the increase of thiobarbituric acid reactive substances (TBARS) induced by alcohol in a rats model (Cano et al., 2001). Omega-3 fatty acids reversed the decrease of reduced glutathione (GSH) levels in brain caused by prenatal ethanol treatment in a rats model (Patten et al., 2013). EUK-134 treatment reduced the incidence of forelimb defects caused by ethanol treatment in a mice model (Chen et al., 2004). Pretreatment of activity-dependent neurotrophic factor-9 (ADNF-9) and NAPVSIPQ (NAP) protected against prenatal ethanol induced fetal death as well as fetal growth abnormalities in a mice model, and such treatment reversed the decrease of the rate of reduced glutathione (GSH)/ oxidative glutathione (GSSG) caused by alcohol (Spong et al., 2001). CONCLUSION By now interventions against fetal alcohol spectrum disorder targeting oxidative stress includes astaxanthin, Ascorbic acid (Vitamin C), Vitamin E, beta-carotene, (-)-Epigallocatechin-3-gallate (EGCG), Omega-3 fatty acids, etc (see Fig. 1). However, most interventions are only assayed in animal models, more clinical trials are needed to show whether antioxidants make an effort against FASD damage.
Collapse
|
35
|
Early-Ethanol Exposure Induced Region-Specific Changes in Metabolic Proteins in the Rat Brain: A Proteomics Study. J Mol Neurosci 2018; 65:277-288. [DOI: 10.1007/s12031-018-1097-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 06/07/2018] [Indexed: 01/01/2023]
|
36
|
Bastons-Compta A, Astals M, Andreu-Fernandez V, Navarro-Tapia E, Garcia-Algar O. Postnatal nutritional treatment of neurocognitive deficits in fetal alcohol spectrum disorder. Biochem Cell Biol 2018; 96:213-221. [DOI: 10.1139/bcb-2017-0085] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Ethanol is the most important teratogen agent in humans. Prenatal alcohol exposure can lead to a wide range of adverse effects, which are broadly termed as fetal alcohol spectrum disorder (FASD). The most severe consequence of maternal alcohol abuse is the development of fetal alcohol syndrome, defined by growth retardation, facial malformations, and central nervous system impairment expressed as microcephaly and neurodevelopment abnormalities. These alterations generate a broad range of cognitive abnormalities such as learning disabilities and hyperactivity and behavioural problems. Socioeconomic status, ethnicity, differences in genetic susceptibility related to ethanol metabolism, alcohol consumption patterns, obstetric problems, and environmental influences like maternal nutrition, stress, and other co-administered drugs are all factors that may influence FASD manifestations. Recently, much attention has been paid to the role of nutrition as a protective factor against alcohol teratogenicity. There are a great number of papers related to nutritional treatment of nutritional deficits due to several factors associated with maternal consumption of alcohol and with eating and social disorders in FASD children. Although research showed the clinical benefits of nutritional interventions, most of work was in animal models, in a preclinical phase, or in the prenatal period. However, a minimum number of studies refer to postnatal nutrition treatment of neurodevelopmental deficits. Nutritional supplementation in children with FASD has a dual objective: to overcome nutritional deficiencies and to reverse or improve the cognitive deleterious effects of prenatal alcohol exposure. Further research is necessary to confirm positive results, to determine optimal amounts of nutrients needed in supplementation, and to investigate the collective effects of simultaneous multiple-nutrient supplementation.
Collapse
Affiliation(s)
- A. Bastons-Compta
- Neonatology Unit, Hospital Clinic-Maternitat, ICGON, Grup de Recerca Infancia i Entorn (GRIE), BCNatal, Barcelona, Spain
- Neonatology Unit, Hospital Clinic-Maternitat, ICGON, Grup de Recerca Infancia i Entorn (GRIE), BCNatal, Barcelona, Spain
| | - M. Astals
- Neonatology Unit, Hospital Clinic-Maternitat, ICGON, Grup de Recerca Infancia i Entorn (GRIE), BCNatal, Barcelona, Spain
- Neonatology Unit, Hospital Clinic-Maternitat, ICGON, Grup de Recerca Infancia i Entorn (GRIE), BCNatal, Barcelona, Spain
| | - V. Andreu-Fernandez
- Neonatology Unit, Hospital Clinic-Maternitat, ICGON, Grup de Recerca Infancia i Entorn (GRIE), BCNatal, Barcelona, Spain
- Neonatology Unit, Hospital Clinic-Maternitat, ICGON, Grup de Recerca Infancia i Entorn (GRIE), BCNatal, Barcelona, Spain
| | - E. Navarro-Tapia
- Neonatology Unit, Hospital Clinic-Maternitat, ICGON, Grup de Recerca Infancia i Entorn (GRIE), BCNatal, Barcelona, Spain
- Neonatology Unit, Hospital Clinic-Maternitat, ICGON, Grup de Recerca Infancia i Entorn (GRIE), BCNatal, Barcelona, Spain
| | - O. Garcia-Algar
- Neonatology Unit, Hospital Clinic-Maternitat, ICGON, Grup de Recerca Infancia i Entorn (GRIE), BCNatal, Barcelona, Spain
- Neonatology Unit, Hospital Clinic-Maternitat, ICGON, Grup de Recerca Infancia i Entorn (GRIE), BCNatal, Barcelona, Spain
| |
Collapse
|
37
|
Avci B, Bilge SS, Arslan G, Alici O, Darakci O, Baratzada T, Ciftcioglu E, Yardan T, Bozkurt A. Protective effects of dietary omega-3 fatty acid supplementation on organophosphate poisoning. Toxicol Ind Health 2017; 34:69-82. [PMID: 29141517 DOI: 10.1177/0748233717737646] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In this study, we aimed to study the possible preventive effect of docosahexaenoic acid (DHA), a dietary omega-3 fatty acid, on toxicity caused by chlorpyrifos (CPF). Six groups of Sprague Dawley rats (200-250 g) consisting of equal numbers of males and females (n = 8) were assigned to study. The rats were orally given for 5 days. The control group was administered pure olive oil, which was the vehicle for CPF. The CPF challenge groups were administered oral physiological saline, pure olive oil, or DHA (50, 100 and 400 mg/kg dosages) for 5 days. The animals were weighed on the sixth day and then administered CPF (279 mg/kg, subcutaneously). The rats were weighed again 24 h following CPF administration. The body temperatures and locomotor activities of the rats were also measured. Blood samples, brain and liver tissues were collected for biochemical, histopathological and immunohistochemical examinations. A comparison with the control group demonstrated that CPF administration increased malondialdehyde (MDA) levels in blood, brain and liver, while it reduced catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) concentrations ( p < 0.05-0.001). Advanced oxidation protein products (AOPPs) increased only in the brain ( p < 0.001). DHA reduced these changes in MDA and AOPP values ( p < 0.05-0.001), while it increased CAT, SOD and GPx concentrations ( p < 0.05-0.001). Similarly, DHA prevented the decreases in body weight, body temperature and locomotor activities caused by CPF at 100 mg/kg and 400 mg/kg dosages ( p < 0.05-0.001). Similar to the physiological and biochemical changes, the histopathological damage scores, which increased with CPF ( p < 0.05-0.01), decreased at all three dosages of DHA ( p < 0.05-0.01). Our findings suggest that DHA, by supporting the antioxidant mechanism, reduces toxicity caused by CPF.
Collapse
Affiliation(s)
- Bahattin Avci
- 1 Department of Biochemistry, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - S Sirri Bilge
- 2 Department of Pharmacology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Gokhan Arslan
- 3 Department of Physiology, Faculty of Medicine, Cumhuriyet University, Sivas, Turkey
| | - Omer Alici
- 4 Department of Pathology, Faculty of Medicine, Gaziosmanpasa University, Tokat, Turkey
| | - Ozge Darakci
- 5 Department of Physiology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Turkhan Baratzada
- 1 Department of Biochemistry, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Engin Ciftcioglu
- 6 Department of Anatomy, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Turker Yardan
- 7 Department of Emergency Medicine, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Ayhan Bozkurt
- 5 Department of Physiology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
38
|
Thomazeau A, Bosch-Bouju C, Manzoni O, Layé S. Nutritional n-3 PUFA Deficiency Abolishes Endocannabinoid Gating of Hippocampal Long-Term Potentiation. Cereb Cortex 2017; 27:2571-2579. [PMID: 26946127 DOI: 10.1093/cercor/bhw052] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Maternal n-3 polyunsaturated fatty acids (PUFAs), especially docosahexaenoic acid, is critical during perinatal brain development. How early postnatal n-3 PUFA deficiency impacts on hippocampal synaptic plasticity is mostly unknown. Here we compared activity-dependent plasticity at excitatory and inhibitory synapses in the CA1 region of the hippocampus in weaned pups whose mothers were fed with an n-3 PUFA-balanced or n-3 PUFA-deficient diet. Normally, endogenous cannabinoids (eCB) produced by the post-synapse dually control network activity by mediating the long-term depression of inhibitory inputs (iLTD) and positively gating NMDAR-dependent long-term potentiation (LTP) of excitatory inputs. We found that both iLTD and LTP were impaired in n-3 PUFA-deficient mice. Pharmacological dissection of the underlying mechanism revealed that impairment of NMDAR-dependent LTP was causally linked to and attributable to the ablation of eCB-mediated iLTD and associated to disinhibitory gating of excitatory synapses. The data shed new light on how n-3 PUFAs shape synaptic activity in the hippocampus and provide a new synaptic substrate to the cognitive impairments associated with perinatal n-3 deficiency.
Collapse
Affiliation(s)
- Aurore Thomazeau
- Nutrition et Neurobiologie Intégrée, UMR 1286, INRA, F-33000 Bordeaux, France.,Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux University, F-33000 Bordeaux, France
| | - Clémentine Bosch-Bouju
- Nutrition et Neurobiologie Intégrée, UMR 1286, INRA, F-33000 Bordeaux, France.,Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux University, F-33000 Bordeaux, France
| | - Olivier Manzoni
- Aix-Marseille Université.,INSERM.,INMED UMR S 901, Marseille 13009, France
| | - Sophie Layé
- Nutrition et Neurobiologie Intégrée, UMR 1286, INRA, F-33000 Bordeaux, France.,Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux University, F-33000 Bordeaux, France
| |
Collapse
|
39
|
Immune dysfunction and increased oxidative stress state in diet-induced obese mice are reverted by nutritional supplementation with monounsaturated and n-3 polyunsaturated fatty acids. Eur J Nutr 2017; 57:1123-1135. [DOI: 10.1007/s00394-017-1395-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 02/02/2017] [Indexed: 12/28/2022]
|
40
|
Brocardo PS, Gil-Mohapel J, Wortman R, Noonan A, McGinnis E, Patten AR, Christie BR. The Effects of Ethanol Exposure During Distinct Periods of Brain Development on Oxidative Stress in the Adult Rat Brain. Alcohol Clin Exp Res 2016; 41:26-37. [DOI: 10.1111/acer.13266] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 10/02/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Patricia S. Brocardo
- Division of Medical Sciences and UBC Island Medical Program ; University of Victoria; Victoria British Columbia Canada
- Department of Morphological Sciences; Center of Biological Sciences; Universidade Federal de Santa Catarina; Florianópolis Santa Catarina Brazil
| | - Joana Gil-Mohapel
- Division of Medical Sciences and UBC Island Medical Program ; University of Victoria; Victoria British Columbia Canada
| | - Ryan Wortman
- Division of Medical Sciences and UBC Island Medical Program ; University of Victoria; Victoria British Columbia Canada
| | - Athena Noonan
- Division of Medical Sciences and UBC Island Medical Program ; University of Victoria; Victoria British Columbia Canada
| | - Eric McGinnis
- Division of Medical Sciences and UBC Island Medical Program ; University of Victoria; Victoria British Columbia Canada
| | - Anna R. Patten
- Division of Medical Sciences and UBC Island Medical Program ; University of Victoria; Victoria British Columbia Canada
| | - Brian R. Christie
- Division of Medical Sciences and UBC Island Medical Program ; University of Victoria; Victoria British Columbia Canada
| |
Collapse
|
41
|
Wang D, Zhang L, Wen M, Du L, Gao X, Xue C, Xu J, Wang Y. Enhanced neuroprotective effect of DHA and EPA-enriched phospholipids against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced oxidative stress in mice brain. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.06.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
42
|
Oda SS. The influence of Omega3 fatty acids supplementation against aluminum-induced toxicity in male albino rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:14354-14361. [PMID: 27055897 DOI: 10.1007/s11356-016-6578-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/27/2016] [Indexed: 06/05/2023]
Abstract
This study evaluated the protective and antioxidant potential of Omega3 fatty acids (FAs) against aluminum intoxicated male albino rats. Twenty-four male albino rats were divided into four equal groups: group I served as control; group II (Omega3-treated) received Omega3 FAs 1000 mg/kg bwt/day orally; group III (aluminum-treated) received aluminum chloride 100 mg/kg bwt/day orally and group IV (aluminum + Omega3-treated) received aluminum chloride 100 mg/kg bwt/day and Omega3 FAs 1000 mg/kg bwt/day orally. Treatments lasted for 4 weeks. Results indicate that administration of aluminum chloride showed non-significant changes in serum alanine aminotransferase, urea, and creatinine levels, a significant increase in serum aspartate aminotransferase and malondialdehyde as well as a significant reduction in serum-reduced glutathione levels. Aluminum treatment induced histopathological alterations in the liver, kidney, brain, testes, and epididymis. Omega3 FAs supplementation improved the serum parameters, enhanced endogenous antioxidant status, reduced lipid peroxidation, and ameliorated the intensity of the histopathological lesions. These findings reveal that Omega3 FAs supplementation can lighten the toxic effects of aluminum through their antioxidant and free radical-scavenging effects.
Collapse
Affiliation(s)
- Samah S Oda
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, P.O. Box. 22758, Edfina-Rashid-Behera, Egypt.
| |
Collapse
|
43
|
Di Nunzio M, Valli V, Bordoni A. PUFA and oxidative stress. Differential modulation of the cell response by DHA. Int J Food Sci Nutr 2016; 67:834-43. [PMID: 27353954 DOI: 10.1080/09637486.2016.1201790] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Although an increased dietary intake of long-chain n-3 PUFA is considered an effective preventive strategy, a theoretical concern related to the possible increase of lipid peroxidation induced by a PUFA-rich diet still remains a problem. In this study, the effects of different PUFA (linoleic, α-linolenic, arachidonic, eicosapentaenoic and docosahexaenoic acid) on cytotoxicity, lipid oxidation, and modulation of antioxidant defenses were evaluated in HepG2 cells submitted to an oxidative stress (H2O2). Results clearly evidenced that all supplemented PUFA, but DHA, enhanced cell susceptibility to H2O2. Overall, our results underline that PUFA cannot be considered as a single category but as individual compounds, and research on mechanisms of action and preventive effects should deal with the individual fatty acids, particularly in the case of DHA.
Collapse
Affiliation(s)
- Mattia Di Nunzio
- a Interdepartmental Centre for Industrial Agri-Food Research , University of Bologna , Cesena (FC), Italy
| | - Veronica Valli
- b Department of Agri-Food Science and Technology , University of Bologna , Cesena (FC), Italy
| | - Alessandra Bordoni
- a Interdepartmental Centre for Industrial Agri-Food Research , University of Bologna , Cesena (FC), Italy ;,b Department of Agri-Food Science and Technology , University of Bologna , Cesena (FC), Italy
| |
Collapse
|
44
|
Nguyen TT, Risbud RD, Chambers CD, Thomas JD. Dietary Nutrient Intake in School-Aged Children With Heavy Prenatal Alcohol Exposure. Alcohol Clin Exp Res 2016; 40:1075-82. [PMID: 27012806 PMCID: PMC4844832 DOI: 10.1111/acer.13035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 02/02/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND Nutrition is an important factor that affects brain development. Nutritional deficiencies can exacerbate alcohol's damaging effects. Conversely, nutritional supplementation can serve a protective role against alcohol damage and may prove to be a worthwhile intervention strategy. This study investigated dietary intake in school-aged children with heavy prenatal alcohol exposure to understand their nutritional status, compared to a national sample of typically developing children and Dietary Reference Intakes. METHODS Dietary intake data were collected from children with confirmed histories of heavy prenatal alcohol exposure (5 to 10 years, n = 55) using the Automated Self-Administered 24-Hour Dietary Recall (ASA24). Observed nutrient levels were compared to the Dietary Reference Intakes to evaluate adequacy of nutrient intake as well as to national averages for same-aged children (What We Eat in America, NHANES 2007-2008). RESULTS Alcohol-exposed children exhibited poorer nutritional status compared to the typically developing NHANES sample, consuming lower levels of protein, omega-3 fatty acids, magnesium, potassium, zinc, vitamins C and K, niacin, and choline. Moreover, their diets did not meet Recommended Dietary Allowance or Adequate Intake for dietary fiber, potassium, vitamins E and K, omega-3 fatty acids, and choline. CONCLUSIONS The present findings are consistent with prior studies investigating nutritional intake in preschoolers with FASD, indicating that these children are vulnerable to nutritional inadequacies. Moreover, data suggest a specific profile of dietary intake in this population. As several nutrients are important for cognitive development, targeted interventions in clinical populations might be effective in boosting outcomes. Thus, further clinical investigation into the role of nutrition in improving cognitive outcomes is warranted.
Collapse
Affiliation(s)
- Tanya T. Nguyen
- VA San Diego Healthcare System, Mental Illness Research, Education, and Clinical Center (MIRECC), San Diego, California
- Department of Psychiatry, University of California, San Diego, California
| | - Rashmi D. Risbud
- Center for Behavioral Teratology, Department of Psychology, San Diego State University, San Diego, California
| | - Christina D. Chambers
- Department of Pediatrics, Division of Dysmorphology and Teratology, University of California, San Diego, San Diego, California
- Department of Family and Preventive Medicine, University of California, San Diego, San Diego, California
| | - Jennifer D. Thomas
- Center for Behavioral Teratology, Department of Psychology, San Diego State University, San Diego, California
| |
Collapse
|
45
|
The investigation of the prenatal and postnatal alcohol exposure-induced neurodegeneration in rat brain: protection by betaine and/or omega-3. Childs Nerv Syst 2016; 32:467-74. [PMID: 26732065 DOI: 10.1007/s00381-015-2990-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 12/21/2015] [Indexed: 10/22/2022]
Abstract
PURPOSE We aim to study the effect of neurodegeneration on the brain of rat pups caused by prenatal and postnatal ethanol exposure with modified liquid diet to elucidate protective effects of betaine and omega-3 supplementation. When ethanol is consumed during prenatal and postnatal periods, it may result in fetal alcohol syndrome (FAS) in the offspring. METHODS Rats were divided into control, ethanol, ethanol + betaine, ethanol + omega-3, ethanol + omega-3 + betaine groups. The effect of betaine and omega-3 in response to ethanol-induced changes on the brain, by biochemical analyses cytochrome c, caspase-3, calpain, cathepsin B and L, DNA fragmentation, histological and morfometric methods were evaluated. RESULTS Caspase-3, calpain, cathepsin B, and cytochrome c levels in ethanol group were significantly higher than control. Caspase-3, calpain levels were decreased in ethanol + betaine, ethanol + omega-3, and ethanol + omega-3 + betaine groups compared to ethanol group. Cathepsin B in ethanol + omega-3 + betaine group was decreased compared to ethanol, ethanol + betaine groups. Cathepsin L and DNA fragmentation were found not statistically significant. We found similar results in histological and morfometric parameters. CONCLUSION We found that pre- and postnatal ethanol exposure is capable of triggering necrotic cell death in rat brains, omega-3, and betaine reduce neurodegeneration. Omega-3 and betaine may prove beneficial for neurodegeneration, particularly in preventing FAS.
Collapse
|
46
|
Effects of pre-natal alcohol exposure on hippocampal synaptic plasticity: Sex, age and methodological considerations. Neurosci Biobehav Rev 2016; 64:12-34. [PMID: 26906760 DOI: 10.1016/j.neubiorev.2016.02.014] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/14/2016] [Accepted: 02/18/2016] [Indexed: 12/28/2022]
Abstract
The consumption of alcohol during gestation is detrimental to the developing central nervous system (CNS). The severity of structural and functional brain alterations associated with alcohol intake depends on many factors including the timing and duration of alcohol consumption. The hippocampal formation, a brain region implicated in learning and memory, is highly susceptible to the effects of developmental alcohol exposure. Some of the observed effects of alcohol on learning and memory may be due to changes at the synaptic level, as this teratogen has been repeatedly shown to interfere with hippocampal synaptic plasticity. At the molecular level alcohol interferes with receptor proteins and can disrupt hormones that are important for neuronal signaling and synaptic plasticity. In this review we examine the consequences of prenatal and early postnatal alcohol exposure on hippocampal synaptic plasticity and highlight the numerous factors that can modulate the effects of alcohol. We also discuss some potential mechanisms responsible for these changes as well as emerging therapeutic avenues that are beginning to be explored.
Collapse
|
47
|
Abdel-Wahab BA, Shaikh IA, Khateeb MM, Habeeb SM. Omega 3 polyunsaturated fatty acids enhance the protective effect of levetiracetam against seizures, cognitive impairment and hippocampal oxidative DNA damage in young kindled rats. Pharmacol Biochem Behav 2015; 135:105-13. [PMID: 26044965 DOI: 10.1016/j.pbb.2015.05.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 05/26/2015] [Accepted: 05/29/2015] [Indexed: 10/23/2022]
Abstract
Levetiracetam (LEV) is a unique, effective, relatively safe antiepileptic drug that preferentially interacts with synaptic vesicle protein 2A (SV2A). This study aimed to explore the effect of combined treatment of LEV with omega 3 (OM3) on cognitive impairment and hippocampal oxidative stress and DNA damage induced by seizures in the PTZ-kindled young rat model. Cognitive functions, biomarkers of oxidative stress, and DNA damage were assessed in PTZ-kindled young rats pretreated with single and combined treatment of LEV (30mg/kg, i.p.) and OM3 (200mg/kg, p.o.). Pretreatment with LEV and OM3 at the tested doses significantly attenuated PTZ-induced seizures and decreased cognitive impairment in both passive avoidance and elevated plus maze tests in the PTZ-kindled rats. Moreover, the increase in hippocampal glutamate, malondialdehyde and 8-hydroxy-2-deoxyguanosine (8-OHdG) levels, as well as the decrease in reduced glutathione (GSH) levels and GSH-peroxidase and superoxide dismutase activities induced by PTZ kindling, significantly decreased. These effects were higher with combined treatment of LEV with OM3 and significantly more than the observed effects of single LEV or OM3. In conclusion, the combined treatment of LEV with OM3 is more effective in seizure control and alleviating the cognitive impairment induced by PTZ kindling in the young rat model, the effects that result from the decrease in hippocampal oxidative stress and DNA damage which can be attributed to the antioxidant properties of both LEV and OM3. These results may be promising for the use of LEV and OM3 combination in the treatment of epileptic children.
Collapse
Affiliation(s)
- Basel A Abdel-Wahab
- Department of Pharmacology, College of Medicine, Assiut University, Assiut, Egypt; Department of Pharmacology, College of Pharmacy, Najran University, Najran, Saudi Arabia.
| | - Ibrahim A Shaikh
- Department of Pharmacology, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Masood M Khateeb
- Department of Pharmacology, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Shafiuddin M Habeeb
- Department of Pharmacology, College of Pharmacy, Najran University, Najran, Saudi Arabia
| |
Collapse
|
48
|
Koren G. Pharmacological treatment of disruptive behavior in children with fetal alcohol spectrum disorder. Paediatr Drugs 2015; 17:179-84. [PMID: 25634057 DOI: 10.1007/s40272-015-0118-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fetal alcohol spectrum disorder (FASD) is considered to be the most common cause of developmental disability, affecting more than 1% of the general population in North America. Inattention, hyperactivity, and impulsivity afflict 50-90% of children with FASD and are 3-9 times more common than in the general population. Of importance, a large proportion of children with FASD are affected by oppositional defiant/conduct disorder (ODD/CD), including lack of social judgment and failure to learn from experience. These devastating numbers are contrasted by almost no pharmacological research into treatment of these pervasive conditions in FASD. This review focuses on analyzing the published evidence on the effectiveness and safety of therapy for disruptive behaviors in FASD. Often, the child afflicted by FASD will not be allowed to participate in class activities without such therapies, which makes such analysis critical.
Collapse
Affiliation(s)
- Gideon Koren
- Motherisk Program, Division of Clinical Pharmacology/Toxicology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, 555 University Avenue, Toronto, ON, M5G 1X8, Canada,
| |
Collapse
|
49
|
Kupsco A, Schlenk D. Oxidative stress, unfolded protein response, and apoptosis in developmental toxicity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 317:1-66. [PMID: 26008783 DOI: 10.1016/bs.ircmb.2015.02.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Physiological development requires precise spatiotemporal regulation of cellular and molecular processes. Disruption of these key events can generate developmental toxicity in the form of teratogenesis or mortality. The mechanism behind many developmental toxicants remains unknown. While recent work has focused on the unfolded protein response (UPR), oxidative stress, and apoptosis in the pathogenesis of disease, few studies have addressed their relationship in developmental toxicity. Redox regulation, UPR, and apoptosis are essential for physiological development and can be disturbed by a variety of endogenous and exogenous toxicants to generate lethality and diverse malformations. This review examines the current knowledge of the role of oxidative stress, UPR, and apoptosis in physiological development as well as in developmental toxicity, focusing on studies and advances in vertebrates model systems.
Collapse
Affiliation(s)
- Allison Kupsco
- Environmental Toxicology Program, University of California, Riverside, CA, USA
| | - Daniel Schlenk
- Environmental Toxicology Program, University of California, Riverside, CA, USA; Environmental Sciences, University of California, Riverside, CA, USA
| |
Collapse
|
50
|
Wellmann KA, George F, Brnouti F, Mooney SM. Docosahexaenoic acid partially ameliorates deficits in social behavior and ultrasonic vocalizations caused by prenatal ethanol exposure. Behav Brain Res 2015; 286:201-11. [PMID: 25746516 DOI: 10.1016/j.bbr.2015.02.048] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 02/23/2015] [Accepted: 02/24/2015] [Indexed: 01/17/2023]
Abstract
Prenatal ethanol exposure disrupts social behavior in humans and rodents. One system particularly important for social behavior is the somatosensory system. Prenatal ethanol exposure alters the structure and function of this area. Docosahexaenoic acid (DHA), an omega 3 polyunsaturated fatty acid, is necessary for normal brain development and brains from ethanol-exposed animals are DHA deficient. Thus, we determined whether postnatal DHA supplementation ameliorated behavioral deficits induced by prenatal ethanol exposure. Timed pregnant Long-Evans rats were assigned to one of three groups: ad libitum access to an ethanol-containing liquid diet, pair fed an isocaloric isonutritive non-alcohol liquid diet, or ad libitum access to chow and water. Pups were assigned to one of two postnatal treatment groups; gavaged intragastrically once per day between postnatal day (P)11 and P20 with DHA (10 mg/kg in artificial rat milk) or artificial rat milk. A third group was left untreated. Isolation-induced ultrasonic vocalizations (iUSVs) were recorded on P14. Social behavior and play-induced USVs were tested on P28 or P42. Somatosensory performance was tested with a gap crossing test around P33 or on P42. Anxiety was tested on elevated plus maze around P35. Animals exposed to ethanol prenatally vocalized less, play fought less, and crossed a significantly shorter gap than control-treated animals. Administration of DHA ameliorated these ethanol-induced deficits such that the ethanol-exposed animals given DHA were no longer significantly different to control-treated animals. Thus, DHA administration may have therapeutic value to reverse some of ethanol's damaging effects.
Collapse
Affiliation(s)
- Kristen A Wellmann
- Department of Pediatrics, University of Maryland, Baltimore, MD 21201, United States.
| | - Finney George
- Department of Pediatrics, University of Maryland, Baltimore, MD 21201, United States
| | - Fares Brnouti
- Department of Pediatrics, University of Maryland, Baltimore, MD 21201, United States
| | - Sandra M Mooney
- Department of Pediatrics, University of Maryland, Baltimore, MD 21201, United States.
| |
Collapse
|