1
|
Gupta S, Afzal M, Agrawal N, Almalki WH, Rana M, Gangola S, Chinni SV, Kumar K B, Ali H, Singh SK, Jha SK, Gupta G. Harnessing the FOXO-SIRT1 axis: insights into cellular stress, metabolism, and aging. Biogerontology 2025; 26:65. [PMID: 40011269 DOI: 10.1007/s10522-025-10207-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 02/15/2025] [Indexed: 02/28/2025]
Abstract
Aging and metabolic disorders share intricate molecular pathways, with the Forkhead box O (FOXO)- Sirtuin 1 (SIRT1) axis emerging as a pivotal regulator of cellular stress adaptation, metabolic homeostasis, and longevity. This axis integrates nutrient signaling with oxidative stress defence, modulating glucose and lipid metabolism, mitochondrial function, and autophagy to maintain cellular stability. FOXO transcription factors, regulated by SIRT1 deacetylation, enhance antioxidant defence mechanisms, activating genes such as superoxide dismutase (SOD) and catalase, thereby counteracting oxidative stress and metabolic dysregulation. Recent evidence highlights the dynamic role of reactive oxygen species (ROS) as secondary messengers in redox signaling, influencing FOXO-SIRT1 activity in metabolic adaptation. Additionally, key redox-sensitive regulators such as nuclear factor erythroid 2-related factor 2 (Nrf2) and Peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) interact with this pathway, orchestrating mitochondrial biogenesis and adaptive stress responses. Pharmacological interventions, including alpha-lipoic acid (ALA), resveratrol, curcumin and NAD+ precursors, exhibit therapeutic potential by enhancing insulin sensitivity, reducing oxidative burden, and restoring metabolic balance. This review synthesizes current advancements in FOXO-SIRT1 regulation, its emerging role in redox homeostasis, and its therapeutic relevance, offering insights into future strategies for combating metabolic dysfunction and aging-related diseases.
Collapse
Affiliation(s)
- Saurabh Gupta
- Department of Pharmacology, Chameli Devi Institute of Pharmacy, Khandwa Road, Village Umrikheda, Near Tollbooth, Indore, Madhya Pradesh, 452020, India
| | - Muhammad Afzal
- Pharmacy Program, Department of Pharmaceutical Sciences, Batterjee Medical College, P.O. Box 6231, 21442, Jeddah, Saudi Arabia
| | - Neetu Agrawal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohit Rana
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Saurabh Gangola
- Department of Microbiology, Graphic Era Deemed to be University, Dehradun, 248002, India
| | - Suresh V Chinni
- Department of Biochemistry, Faculty of Medicine, Bioscience, and Nursing, MAHSA University, 42610, Jenjarom, Selangor, Malaysia
| | - Benod Kumar K
- Department of General Surgery, Consultant Head and Neck Surgical Oncology, Dr.D.Y.Patil Medical College, Hospital and Research Centre, Pimpri, Pune, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India
- Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, Sunway, Malaysia
| | - Saurabh Kumar Jha
- Department of Zoology, Kalindi College, University of Delhi, 110008, New Delhi, India
- Centre for Himalayan Studies, University of Delhi, Delhi, 110007, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.
| |
Collapse
|
2
|
Gillet R, Cerda-Drago TG, Brañes MC, Valenzuela R. Submicron Dispersions of Phytosterols Reverse Liver Steatosis with Higher Efficacy than Phytosterol Esters in a Diet Induced-Fatty Liver Murine Model. Int J Mol Sci 2025; 26:564. [PMID: 39859279 PMCID: PMC11766071 DOI: 10.3390/ijms26020564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Consumption of phytosterols is a nutritional strategy employed to reduce cholesterol absorption, but recent research shows that their biological activity might go beyond cholesterol reduction for the treatment of metabolic dysfunction-associated fatty liver disease (MAFLD), and novel phytosterol formulations, such as submicron dispersions, could improve these effects. We explored the therapeutic activity of phytosterols, either formulated as submicron dispersions of phytosterols (SDPs) or conventional phytosterol esters (PEs), in a mouse model of MAFLD. MAFLD was induced in mice by atherogenic diet (AD) feeding. The reversion of distorted serum and liver parameter values after a period of AD feeding was investigated after supplementation of the AD with SDPs, PEs, or a placebo (PT). Additionally, the metabolic parameters of fatty acid synthesis, fatty acid oxidation, and inflammation were studied to understand the mechanism of action of phytosterols. AD supplementation with SDPs was shown to reduce liver fat, along with showing a significant improvement in liver triglycerides (TGs), free fatty acids (FFAs), and liver cholesterol levels. These results were reinforced by the analyses of the liver steatosis scores, and liver histologies, where SDP intervention showed a consistent improvement. Treatment with PEs showed slighter effects in the same analyses, and no effects were observed with the PT treatment. Additionally, SDP intervention reversed, with a higher efficacy than PEs, the effect of AD on the serum levels of TGs, total- and LDL-cholesterol levels, and glucose levels. And, exceptionally, while SDP improved HDL-cholesterol serum levels, PEs did not show any effect on this parameter. We provide evidence for the therapeutical activity of phytosterols in MAFLD beyond the regulation of cholesterol levels, which is increased when the phytosterols are formulated as submicron dispersions compared to ester formulations.
Collapse
Affiliation(s)
- Raimundo Gillet
- Naturalis Research Consortium, Santiago 8700548, Chile; (R.G.); (T.G.C.-D.); (M.C.B.)
| | - Tomás G. Cerda-Drago
- Naturalis Research Consortium, Santiago 8700548, Chile; (R.G.); (T.G.C.-D.); (M.C.B.)
| | - María C. Brañes
- Naturalis Research Consortium, Santiago 8700548, Chile; (R.G.); (T.G.C.-D.); (M.C.B.)
| | - Rodrigo Valenzuela
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago 8380000, Chile
| |
Collapse
|
3
|
Yao L, Zhao L, Liu F, Al-Bukhaiti WQ, Huang X, Lin T, Qiu SX. New stilbenes from Cajanus cajan inhibit adipogenesis in 3T3-L1 adipocytes through down-regulation of PPARγ. Bioorg Chem 2024; 153:107851. [PMID: 39368142 DOI: 10.1016/j.bioorg.2024.107851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 09/17/2024] [Accepted: 09/26/2024] [Indexed: 10/07/2024]
Abstract
Two new stilbenes, denominated Cajanotone B (CAB) and Cajanotone C (CAC), were isolated from the leaves of Cajanus cajan. In this study, the structures of CAB and CAC were unambiguously elucidated by a combination of various spectral methods. Both compounds significantly inhibited the adipogenesis in 3T3-L1 adipocytes by reducing the lipid accumulation, triglyceride content and FFA secretion. CAB and CAC also substantially inhibit the mRNA expression of HSL, ATGL, C/EBPα and PPARγ as deciphered based by RT-PCR assay. Down-regulation of PPAR is believed to be the primary mechanism underlying which CAB and CAC inhibited adipogenic differentiation because the lipid-promoting activity of PPAR agonists can be counteracted by these compounds. The molecular interaction between CAB/CAC and PPARγ was revealed with the help of molecular docking. Taken together, CAB and CAC could serve as new lead compounds with the potential to speed up the development of novel lipid-lowering and weight-control therapies.
Collapse
Affiliation(s)
- Liyuan Yao
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, Laboratory of Natural Product Chemical Biology, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China; South China National Botanical Garden, Guangzhou 510650, PR China; Graduate University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Liyun Zhao
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, Laboratory of Natural Product Chemical Biology, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China
| | - Fen Liu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, Laboratory of Natural Product Chemical Biology, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China; South China National Botanical Garden, Guangzhou 510650, PR China; Graduate University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Wedad Q Al-Bukhaiti
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, Laboratory of Natural Product Chemical Biology, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China; South China National Botanical Garden, Guangzhou 510650, PR China; Graduate University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiaobao Huang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, Laboratory of Natural Product Chemical Biology, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China; Visiting Student from the Department of Chemistry, University of Wisconsin-Madison, USA
| | - Tingting Lin
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, Laboratory of Natural Product Chemical Biology, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China
| | - Sheng-Xiang Qiu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, Laboratory of Natural Product Chemical Biology, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China; South China National Botanical Garden, Guangzhou 510650, PR China.
| |
Collapse
|
4
|
Yadav P, Quadri K, Kadian R, Waziri A, Agrawal P, Alam MS. New approaches to the treatment of metabolic dysfunction-associated steatotic liver with natural products. ILIVER 2024; 3:100131. [DOI: 10.1016/j.iliver.2024.100131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
5
|
Yuan C, Ma T, Liu M, Zeng X, Tang G, Xing Y, Zhang T. Ferroptosis, oxidative stress and hearing loss: Mechanistic insights and therapeutic opportunities. Heliyon 2024; 10:e38553. [PMID: 39512327 PMCID: PMC11541459 DOI: 10.1016/j.heliyon.2024.e38553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/03/2024] [Accepted: 09/25/2024] [Indexed: 11/15/2024] Open
Abstract
Hearing loss, a prevalent sensory impairment, poses significant challenges worldwide. Recent research has shed light on the intricate interplay between ferroptosis, a newly recognized form of regulated cell death characterized by iron-dependent lipid peroxidation, and oxidative stress in the pathogenesis of hearing loss. In this review, we delve into the mechanisms underlying ferroptosis and oxidative stress in various forms of hearing loss, including age-related hearing loss (ARHL), noise-induced hearing loss (NIHL) ototoxic drug-induced hearing loss and genetic hearing loss. We discuss the pivotal role of molecules such as FSP1, ACSL4, LKB1-AMPK, and Nrf2 in modulating these pathways in hearing loss. Furthermore, we explore emerging therapeutic strategies targeting the antioxidant system and ferroptosis, including iron chelators, lipid peroxide inhibitors, and antioxidants, highlighting their potential in mitigating hearing loss progression. By elucidating the molecular mechanisms underlying ferroptosis and oxidative stress, this review offers insights into novel therapeutic avenues for the treatment of hearing loss and underscores the importance of targeting these pathways to preserve auditory function.
Collapse
Affiliation(s)
- Chenyang Yuan
- Department of Otorhinolaryngology Head and Neck surgery, The First Hospital affiliated to Harbin Medical University, Harbin, Heilongjiang, China
| | - Tianyu Ma
- Department of Otorhinolaryngology Head and Neck surgery, The First Hospital affiliated to Harbin Medical University, Harbin, Heilongjiang, China
| | - Mengting Liu
- Department of Otorhinolaryngology Head and Neck surgery, The First Hospital affiliated to Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiaoyun Zeng
- Department of Otorhinolaryngology Head and Neck surgery, The First Hospital affiliated to Harbin Medical University, Harbin, Heilongjiang, China
| | - Gongrui Tang
- Department of Otorhinolaryngology Head and Neck surgery, The First Hospital affiliated to Harbin Medical University, Harbin, Heilongjiang, China
| | - Yazhi Xing
- Department of Otolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Key Laboratory of Sleep Disordered Breathing, 600 Yishan Rd, Shanghai, 200233, China
| | - Tianhong Zhang
- Department of Otorhinolaryngology Head and Neck surgery, The First Hospital affiliated to Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
6
|
Hidalgo F, Ferretti AC, Etichetti CB, Baffo E, Pariani AP, Maknis TR, Bussi J, Girardini JE, Larocca MC, Favre C. Alpha lipoic acid diminishes migration and invasion in hepatocellular carcinoma cells through an AMPK-p53 axis. Sci Rep 2024; 14:21275. [PMID: 39261583 PMCID: PMC11390941 DOI: 10.1038/s41598-024-72309-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 09/05/2024] [Indexed: 09/13/2024] Open
Abstract
Hepatocellular carcinoma (HCC) associated with viral or metabolic liver diseases is a growing cancer without effective therapy. AMPK is downregulated in HCC and its activation diminishes tumor growth. Alpha lipoic acid (ALA), an indirect AMPK activator that inhibits hepatic steatosis, shows antitumor effects in different cancers. We aimed to study its putative action in liver-cancer derived cell lines through AMPK signaling. We performed cytometric studies for apoptosis and cell cycle, and 2D and 3D migration analysis in HepG2/C3A and Hep3B cells. ALA led to significant inhibition of cell migration/invasion only in HepG2/C3A cells. We showed that these effects depended on AMPK, and ALA also increased the levels and nuclear compartmentalization of the AMPK target p53. The anti-invasive effect of ALA was abrogated in stable-silenced (shTP53) versus isogenic-TP53 HepG2/C3A cells. Furthermore, ALA inhibited epithelial-mesenchymal transition (EMT) in control HepG2/C3A but not in shTP53 nor in Hep3B cells. Besides, we spotted that in patients from the HCC-TCGA dataset some EMT genes showed different expression patterns or survival depending on TP53. ALA emerges as a potent activator of AMPK-p53 axis in HCC cells, and it decreases migration/invasion by reducing EMT which could mitigate the disease in wild-type TP53 patients.
Collapse
Affiliation(s)
- Florencia Hidalgo
- Institute of Experimental Physiology (IFISE), School of Biochemical and Pharmaceutical Sciences, CONICET-University of Rosario, Suipacha 570, S2002LRL, Rosario, Argentina
| | - Anabela C Ferretti
- Institute of Experimental Physiology (IFISE), School of Biochemical and Pharmaceutical Sciences, CONICET-University of Rosario, Suipacha 570, S2002LRL, Rosario, Argentina
| | - Carla Borini Etichetti
- Institute of Clinical and Experimental Immunology of Rosario (IDICER), CONICET-University of Rosario, Rosario, Argentina
| | - Emilia Baffo
- Institute of Experimental Physiology (IFISE), School of Biochemical and Pharmaceutical Sciences, CONICET-University of Rosario, Suipacha 570, S2002LRL, Rosario, Argentina
| | - Alejandro P Pariani
- Institute of Experimental Physiology (IFISE), School of Biochemical and Pharmaceutical Sciences, CONICET-University of Rosario, Suipacha 570, S2002LRL, Rosario, Argentina
| | - Tomás Rivabella Maknis
- Institute of Experimental Physiology (IFISE), School of Biochemical and Pharmaceutical Sciences, CONICET-University of Rosario, Suipacha 570, S2002LRL, Rosario, Argentina
| | - Javier Bussi
- School of Statistics, University of Rosario, Rosario, Argentina
| | - Javier E Girardini
- Institute of Clinical and Experimental Immunology of Rosario (IDICER), CONICET-University of Rosario, Rosario, Argentina
| | - María C Larocca
- Institute of Experimental Physiology (IFISE), School of Biochemical and Pharmaceutical Sciences, CONICET-University of Rosario, Suipacha 570, S2002LRL, Rosario, Argentina
| | - Cristián Favre
- Institute of Experimental Physiology (IFISE), School of Biochemical and Pharmaceutical Sciences, CONICET-University of Rosario, Suipacha 570, S2002LRL, Rosario, Argentina.
| |
Collapse
|
7
|
Dugbartey GJ, Atule S, Alornyo KK, Adams I. Hepatoprotective potential of alpha-lipoic acid against gliclazide-induced liver injury in high-glucose-exposed human liver cells and experimental type 2 diabetic rats. Biochem Pharmacol 2024; 227:116447. [PMID: 39038553 DOI: 10.1016/j.bcp.2024.116447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/26/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Growing clinical evidence shows that sulfonylurea therapy for patients with type 2 diabetic mellitus (T2DM) contributes to progressive worsening of their liver. The present study presents hepatotoxicity induced by gliclazide, a second-generation sulfonylurea, and alpha-lipoic acid (ALA) as a novel and promising drug for T2DM treatment. Normal human liver cells (HL-7702) were incubated with high-glucose DMEM in the presence or absence of gliclazide and ALA for 72 h, and cell viability and death were measured by flow cytometry. Next, Sprague-Dawley rats were subjected to 12 h of fasting, and fasting blood glucose was measured. The rats were randomized into four groups: HC (healthy control; n = 7), T2DM (diabetic rats without treatment; n = 9), GLC (diabetic rats with 15 mg/kg gliclazide treatment; n = 7) and GLC+ALA (diabetic rats with gliclazide and 60 mg/kg ALA treatment; n = 7). T2DM was induced by a bolus administration of 110 mg/kg nicotinamide and 55 mg/kg streptozotocin intraperitoneally. The experimental protocol lasted for 6 weeks after which the animals were sacrificed and pancreas, liver and blood samples were collected for biochemical, histological and molecular analyses. Compared to healthy control (HC) group, exposure of HL-7702 cells to high glucose induced significant cell death by 19 % (p < 0.001), which was exacerbated with gliclazide treatment by 29 % (p < 0.0001) but markedly reduced by 6 % to near HC value following ALA treatment. In vivo, GLC-treated rats had severe liver damage characterized by increased hepatocellular vacuolation, and significant expression of ED-1, iNOS and caspase-3 as well as markedly high levels of liver enzymes (aspartate aminotransferase, alanine aminotransferase and alkaline phosphatase compared to T2DM rats. Interestingly, ALA administration prevented these pathological changes and protected the diabetic liver to levels comparable to HC rats. ALA showed hepatoprotective effect against gliclazide-induced hepatotoxicity by suppressing inflammation and apoptosis while activating antioxidant pathway in the diabetic liver. Abbreviations: ALA, Alpha-lipoic acid; ALT, Alanine aminotransferase; ALP, Alkaline phosphatase; AMPK, Adenosine monophosphate-activated protein kinase; AST, Aspartate aminotransferase; ATP, Adenosine triphosphate; DMEM, Dulbecco's Modified Eagle Medium; EDTA, ethylenediaminetetraacetic acid; FBG, Fasting blood glucose; FBS, Fetal bovine serum; GLC, Gliclazide; GLUT4, Glucose transporter type 4; GSH, Glutathione; H&E, Hematoxylin/Eosin; HbA1c, Glycosylated haemoglobin A1c; HC, Healthy control; HG, Hyperglycemic group; HOMA-β, Homeostasis model assessment of β-cell function; IL-1β, Interleukin-1β; IL-6, Interleukin-6; iNOS, Inducible nitric oxide synthase; KATP, ATP-dependent potassium channels; MDA, Malondialdehyde; MPTP, Mitochondrial permeability transition pore; NO, Nitric oxide; P/S, Penicillin/streptomycin; PAS, Periodic acid-Schiff; RIA, Radioimmunoassay; ROS, Reactive oxygen species; SOD, Superoxide dismutase; T2DM, Type 2 diabetes mellitus; TBARS, Thiobarbituric acid reactive substances; TNF-α, Tumor necrosis factor-alpha.
Collapse
Affiliation(s)
- George J Dugbartey
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana; Department of Physiology & Pharmacology, Accra College of Medicine, East Legon, Accra, Ghana.
| | - Stephen Atule
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Karl K Alornyo
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Ismaila Adams
- Department of Medical Pharmacology, University of Ghana Medical School, Korle-Bu, Accra, Ghana
| |
Collapse
|
8
|
Muzammil K, Sabah Ghnim Z, Saeed Gataa I, Fawzi Al-Hussainy A, Ali Soud N, Adil M, Ali Shallan M, Yasamineh S. NRF2-mediated regulation of lipid pathways in viral infection. Mol Aspects Med 2024; 97:101279. [PMID: 38772081 DOI: 10.1016/j.mam.2024.101279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/14/2024] [Accepted: 05/15/2024] [Indexed: 05/23/2024]
Abstract
The first line of defense against viral infection of the host cell is the cellular lipid membrane, which is also a crucial first site of contact for viruses. Lipids may sometimes be used as viral receptors by viruses. For effective infection, viruses significantly depend on lipid rafts during the majority of the viral life cycle. It has been discovered that different viruses employ different lipid raft modification methods for attachment, internalization, membrane fusion, genome replication, assembly, and release. To preserve cellular homeostasis, cells have potent antioxidant, detoxifying, and cytoprotective capabilities. Nuclear factor erythroid 2-related factor 2 (NRF2), widely expressed in many tissues and cell types, is one crucial component controlling electrophilic and oxidative stress (OS). NRF2 has recently been given novel tasks, including controlling inflammation and antiviral interferon (IFN) responses. The activation of NRF2 has two effects: it may both promote and prevent the development of viral diseases. NRF2 may also alter the host's metabolism and innate immunity during viral infection. However, its primary function in viral infections is to regulate reactive oxygen species (ROS). In several research, the impact of NRF2 on lipid metabolism has been examined. NRF2 is also involved in the control of lipids during viral infection. We evaluated NRF2's function in controlling viral and lipid infections in this research. We also looked at how lipids function in viral infections. Finally, we investigated the role of NRF2 in lipid modulation during viral infections.
Collapse
Affiliation(s)
- Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha, 62561, Saudi Arabia
| | | | | | | | - Nashat Ali Soud
- Collage of Dentist, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | | | | | - Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| |
Collapse
|
9
|
Chen L, Zhang L, Ye X, Deng Z, Zhao C. Ergothioneine and its congeners: anti-ageing mechanisms and pharmacophore biosynthesis. Protein Cell 2024; 15:191-206. [PMID: 37561026 PMCID: PMC10903977 DOI: 10.1093/procel/pwad048] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/24/2023] [Indexed: 08/11/2023] Open
Abstract
Ergothioneine, Ovothiol, and Selenoneine are sulfur/selenium-containing histidine-derived natural products widely distributed across different organisms. They exhibit significant antioxidant properties, making them as potential lead compounds for promoting health. Increasing evidence suggests that Ergothioneine is positively correlated with healthy ageing and longevity. The mechanisms underlying Ergothioneine's regulation of the ageing process at cellular and molecular levels are beginning to be understood. In this review, we provide an in-depth and extensive coverage of the anti-ageing studies on Ergothioneine and discuss its possible intracellular targeting pathways. In addition, we highlight the recent efforts in elucidating the biosynthetic details for Ergothioneine, Ovothiol, and Selenoneine, with a particular focus on the study of their pharmacophore-forming enzymology.
Collapse
Affiliation(s)
- Li Chen
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Liping Zhang
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Xujun Ye
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Zixin Deng
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Changming Zhao
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Ministry of Education, Wuhan University, Wuhan 430072, China
| |
Collapse
|
10
|
Lee GH, Lee HY, Lim YJ, Kim JH, Jung SJ, Jung ES, Chae SW, Lee J, Lim J, Rashid MMU, Min KH, Chae HJ. Angelica gigas extract inhibits acetylation of eNOS via IRE1α sulfonation/RIDD-SIRT1-mediated posttranslational modification in vascular dysfunction. Aging (Albany NY) 2023; 15:13608-13627. [PMID: 38095615 PMCID: PMC10756119 DOI: 10.18632/aging.205343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/06/2023] [Indexed: 12/21/2023]
Abstract
Angelica gigas NAKAI (AG) is a popular traditional medicinal herb widely used to treat dyslipidemia owing to its antioxidant activity. Vascular disease is intimately linked to obesity-induced metabolic syndrome, and AG extract (AGE) shows beneficial effects on obesity-associated vascular dysfunction. However, the effectiveness of AGE against obesity and its underlying mechanisms have not yet been extensively investigated. In this study, 40 high fat diet (HFD) rats were supplemented with 100-300 mg/kg/day of AGE to determine its efficacy in regulating vascular dysfunction. The vascular relaxation responses to acetylcholine were impaired in HFD rats, while the administration of AGE restored the diminished relaxation pattern. Endothelial dysfunction, including increased plaque area, accumulated reactive oxygen species, and decreased nitric oxide (NO) and endothelial nitric oxide synthase (eNOS) Ser1177 phosphorylation, were observed in HFD rats, whereas AGE reversed endothelial dysfunction and its associated biochemical signaling. Furthermore, AGE regulated endoplasmic reticulum (ER) stress and IRE1α sulfonation and its subsequent sirt1 RNA decay through controlling regulated IRE1α-dependent decay (RIDD) signaling, ultimately promoting NO bioavailability via the SIRT1-eNOS axis in aorta and endothelial cells. Independently, AGE enhanced AMPK phosphorylation, additionally stimulating SIRT1 and eNOS deacetylation and its associated NO bioavailability. Decursin, a prominent constituent of AGE, exhibited a similar effect in alleviating endothelial dysfunctions. These data suggest that AGE regulates dyslipidemia-associated vascular dysfunction by controlling ROS-associated ER stress responses, especially IRE1α-RIDD/sirt1 decay and the AMPK-SIRT1 axis.
Collapse
Affiliation(s)
- Geum-Hwa Lee
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Hwa-Young Lee
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
- Non-Clinical Evaluation Center, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Young-Je Lim
- Non-Clinical Evaluation Center, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Republic of Korea
- School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, Jeonju, Republic of Korea
| | - Ji-Hyun Kim
- Non-Clinical Evaluation Center, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Republic of Korea
- School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, Jeonju, Republic of Korea
| | - Su-Jin Jung
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
- Clinical Trial Center for Functional Foods (CTCF2), Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Eun-Soo Jung
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
- Clinical Trial Center for Functional Foods (CTCF2), Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Soo-Wan Chae
- Clinical Trial Center for Functional Foods (CTCF2), Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Juwon Lee
- School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, Jeonju, Republic of Korea
| | - Junghyun Lim
- School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, Jeonju, Republic of Korea
| | - Mohammad Mamun Ur Rashid
- Department of Pharmacology and Institute of New Drug Development, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Kyung Hyun Min
- School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, Jeonju, Republic of Korea
| | - Han-Jung Chae
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
- Non-Clinical Evaluation Center, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Republic of Korea
- School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
11
|
Suo X, Yan X, Tan B, Pan S, Li T, Liu H, Huang W, Zhang S, Yang Y, Dong X. Effect of Tea Polyphenols, α-Lipoic Acid and Their Joint Use on the Antioxidant and Lipid Metabolism Performance of Hybrid Grouper (♀ Epinephelus fuscoguttatus × ♂ E. lanceolatu) Fed with High-Lipid Diets. AQUACULTURE NUTRITION 2023; 2023:1393994. [PMID: 37936718 PMCID: PMC10627718 DOI: 10.1155/2023/1393994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/07/2023] [Accepted: 09/15/2023] [Indexed: 11/09/2023]
Abstract
This study investigated tea polyphenols (TP), α-lipoic acid (ALA) and their joint use on the antioxidant and lipid metabolic performance of hybrid grouper (♀Epinephelus fuscoguttatus × ♂E. lanceolatu) took food with high-fat diets. Six high-lipid diets with isonitrogen (50% of dry matter) and isolipid (17% of dry value) were designed, in which a total content of 1,000 mg/kg additives were added to each group except for the control group (FL). The additives addition ratios in each group were ALA (AL), TP (PL), ALA : TP = 1 : 1 (EL), ALA : TP = 1 : 2 (OL), ALA : TP = 2 : 1 (TL). Each diet was divided into three repeat groups with 30 tails (6.84 ± 0.01 g) in each group and fed for 8 weeks. The consequences were as follows: (1) the highest weight gain rate, specific growth rate, as well as the lowest feed conversion ratio and ingestion rate were discovered in the OL team, which were opposite to the TL group. (2) The body fat content and muscle fat content in the fish oil group were the lowest (P < 0.05), while those of the TL group were the highest. (3) Serum catalase, glutathione peroxidase, total antioxidant capacity, and superoxide dismutase activities were the highest, and the content of reactive oxygen species was the lowest in the OL group. (4) The OL group has the highest hepatic lipase activity and the lowest very low-density lipoprotein content of the liver. In contrast, the TL group had the highest fatty acid synthetase (FAS) activity (P < 0.05). (5) The oil-red aspects of liver tissue displayed lipid particles in other groups were reduced to different degrees compared with FL group, and the OL group showed the best lipid-lowering effect. (6) Compared with the FL group, the relative expressions of FAS, acetyl-CoA carboxylase (acc), and apolipoprotein b-100 (apoB100) genes in the liver were decreased. The relative expressions of lipoprotein lipase (lpl) and peroxisome proliferators-activated receptors-α (pparα) genes related to lipid catabolism were increased, among which the OL group had the most significant change (P < 0.05). (7) According to the 7-day challenge test of Vibrio alginolyticus, the OL group had the highest survival rate. To sum up, both ALA and TP have positive effects on relieving the lipid metabolism disorder of hybrid grouper. If they are jointly used, adding ALA : TP in a ratio of 1 : 2 (OL) may have the best effect, and an addition ratio of 2 : 1 (TL) may inhibit the hybrid grouper growth and increase the feeding cost.
Collapse
Affiliation(s)
- Xiangxiang Suo
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Guangdong Engineering Technology, Zhanjiang 524088, China
| | - Xiaobo Yan
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Guangdong Engineering Technology, Zhanjiang 524088, China
| | - Beiping Tan
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Guangdong Engineering Technology, Zhanjiang 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong 524000, China
| | - Simiao Pan
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Guangdong Engineering Technology, Zhanjiang 524088, China
| | - Tao Li
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Guangdong Engineering Technology, Zhanjiang 524088, China
| | - Hao Liu
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Guangdong Engineering Technology, Zhanjiang 524088, China
| | - Weibin Huang
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Guangdong Engineering Technology, Zhanjiang 524088, China
| | - Shuang Zhang
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Guangdong Engineering Technology, Zhanjiang 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong 524000, China
| | - Yuanzhi Yang
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiaohui Dong
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Guangdong Engineering Technology, Zhanjiang 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong 524000, China
| |
Collapse
|
12
|
Lei Y, Lei X, Zhu A, Xie S, Zhang T, Wang C, Song A, Wang X, Shu G, Deng X. Ethanol Extract of Rosa rugosa Ameliorates Acetaminophen-Induced Liver Injury via Upregulating Sirt1 and Subsequent Potentiation of LKB1/AMPK/Nrf2 Cascade in Hepatocytes. Molecules 2023; 28:7307. [PMID: 37959727 PMCID: PMC10649261 DOI: 10.3390/molecules28217307] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/21/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Acetaminophen (APAP)-induced liver injury is a common hepatic disease resulting from drug abuse. Few targeted treatments are available clinically nowadays. The flower bud of Rosa rugosa has a wide range of biological activities. However, it is unclear whether it alleviates liver injury caused by APAP. Here, we prepared an ethanol extract of Rosa rugosa (ERS) and analyzed its chemical profile. Furthermore, we revealed that ERS significantly ameliorated APAP-induced apoptosis and ferroptosis in AML-12 hepatocytes and dampened APAP-mediated cytotoxicity. In AML-12 cells, ERS elevated Sirt1 expression, boosted the LKB1/AMPK/Nrf2 axis, and thereby crippled APAP-induced intracellular oxidative stress. Both EX527 and NAM, which are chemically unrelated inhibitors of Sirt1, blocked ERS-induced activation of LKB1/AMPK/Nrf2 signaling. The protection of ERS against APAP-triggered toxicity in AML-12 cells was subsequently abolished. As expression of LKB1 was knocked down, ERS still upregulated Sirt1 but failed to activate AMPK/Nrf2 cascade or suppress cytotoxicity provoked by APAP. Results of in vivo experiments showed that ERS attenuated APAP-caused hepatocyte apoptosis and ferroptosis and improved liver injury and inflammation. Consistently, ERS boosted Sirt1 expression, increased phosphorylations of LKB1 and AMPK, and promoted Nrf2 nuclear translocation in the livers of APAP-intoxicated mice. Hepatic transcriptions of HO-1 and GCLC, which are downstream antioxidant genes of Nrf2, were also significantly increased in response to ERS. Our results collectively indicated that ERS effectively attenuates APAP-induced liver injury by activating LKB1/AMPK/Nrf2 cascade. Upregulated expression of Sirt1 plays a crucial role in ERS-mediated activation of LKB1.
Collapse
Affiliation(s)
- Yecheng Lei
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; (Y.L.)
| | - Xiao Lei
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; (Y.L.)
| | - Anqi Zhu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; (Y.L.)
| | - Shijie Xie
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; (Y.L.)
| | - Tiantian Zhang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; (Y.L.)
| | - Chuo Wang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; (Y.L.)
| | - Anning Song
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; (Y.L.)
| | - Xiaoming Wang
- School of Life Sciences, Nanjing University, Nanjing 210023, China;
| | - Guangwen Shu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; (Y.L.)
| | - Xukun Deng
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; (Y.L.)
| |
Collapse
|
13
|
Platko K, Lebeau PF, Nederveen JP, Byun JH, MacDonald ME, Bourgeois JM, Tarnopolsky MA, Austin RC. A Metabolic Enhancer Protects against Diet-Induced Obesity and Liver Steatosis and Corrects a Pro-Atherogenic Serum Profile in Mice. Nutrients 2023; 15:nu15102410. [PMID: 37242292 DOI: 10.3390/nu15102410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/18/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
OBJECTIVE Metabolic Syndrome (MetS) affects hundreds of millions of individuals and constitutes a major cause of morbidity and mortality worldwide. Obesity is believed to be at the core of metabolic abnormalities associated with MetS, including dyslipidemia, insulin resistance, fatty liver disease and vascular dysfunction. Although previous studies demonstrate a diverse array of naturally occurring antioxidants that attenuate several manifestations of MetS, little is known about the (i) combined effect of these compounds on hepatic health and (ii) molecular mechanisms responsible for their effect. METHODS We explored the impact of a metabolic enhancer (ME), consisting of 7 naturally occurring antioxidants and mitochondrial enhancing agents, on diet-induced obesity, hepatic steatosis and atherogenic serum profile in mice. RESULTS Here we show that a diet-based ME supplementation and exercise have similar beneficial effects on adiposity and hepatic steatosis in mice. Mechanistically, ME reduced hepatic ER stress, fibrosis, apoptosis, and inflammation, thereby improving overall liver health. Furthermore, we demonstrated that ME improved HFD-induced pro-atherogenic serum profile in mice, similar to exercise. The protective effects of ME were reduced in proprotein convertase subtilisin/kexin 9 (PCSK9) knock out mice, suggesting that ME exerts it protective effect partly in a PCSK9-dependent manner. CONCLUSIONS Our findings suggest that components of the ME have a positive, protective effect on obesity, hepatic steatosis and cardiovascular risk and that they show similar effects as exercise training.
Collapse
Affiliation(s)
- Khrystyna Platko
- Department of Medicine, Division of Nephrology, McMaster University, and the Research Institute of St. Joe's Hamilton, Hamilton, ON L8N 4A6, Canada
| | - Paul F Lebeau
- Department of Medicine, Division of Nephrology, McMaster University, and the Research Institute of St. Joe's Hamilton, Hamilton, ON L8N 4A6, Canada
| | - Joshua P Nederveen
- Department of Pediatrics, Faculty of Health Sciences, McMaster University Medical Centre (MUMC), Hamilton, ON L8N 3Z5, Canada
| | - Jae Hyun Byun
- Department of Medicine, Division of Nephrology, McMaster University, and the Research Institute of St. Joe's Hamilton, Hamilton, ON L8N 4A6, Canada
| | - Melissa E MacDonald
- Department of Medicine, Division of Nephrology, McMaster University, and the Research Institute of St. Joe's Hamilton, Hamilton, ON L8N 4A6, Canada
| | - Jacqueline M Bourgeois
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University Medical Centre (MUMC), Hamilton, ON L8N 5Z5, Canada
| | - Mark A Tarnopolsky
- Department of Pediatrics, Faculty of Health Sciences, McMaster University Medical Centre (MUMC), Hamilton, ON L8N 3Z5, Canada
- Exerkine Corporation, MUMC, Hamilton, ON L8N 3Z5, Canada
| | - Richard C Austin
- Department of Medicine, Division of Nephrology, McMaster University, and the Research Institute of St. Joe's Hamilton, Hamilton, ON L8N 4A6, Canada
| |
Collapse
|
14
|
Li Z, Liu H, Han W, Zhu S, Liu C. NMN Alleviates NP-Induced Learning and Memory Impairment Through SIRT1 Pathway in PC-12 Cell. Mol Neurobiol 2023; 60:2871-2883. [PMID: 36745337 DOI: 10.1007/s12035-023-03251-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 01/28/2023] [Indexed: 02/07/2023]
Abstract
Nonylphenol (NP) is widely used in the chemical industry; it accumulates in organisms through environmental contamination and causes learning memory impairment. Nicotinamide mononucleotide (NMN) has been found to have a positive effect on the treatment of central nervous-related diseases. This study aimed to investigate the protective effect of NMN on NP-induced learning memory-related impairment in vitro and to further identify the underlying mechanisms. The results showed that NP induced oxidative stress and impaired the cholinergic system, 5-HT system in PC-12 cells. NMN alleviated NP-induced learning and memory impairment at the molecular level through alleviating oxidative stress and protective effects on the 5-HT system and cholinergic system. The 50 μM NP group significantly reduced the NAD+ content, and the relative expression of SIRT1, PGC-1α, Nrf2, MAOA, BDNF, and p-TrkB were significantly downregulated. Co-treatment of NMN with NP significantly reduced oxidative stress, improved the homeostasis of 5-HT and cholinergic system, enhanced the intracellular NAD+ content, and significantly upregulated the expression of SIRT1 pathway proteins. SIRT1 inhibitors reduced the expression of SIRT1 pathway-related proteins, which implied the impairment of learning and memory by NP and the protective effect of NMN might be achieved through the SIRT1-mediated PGC-1α/MAOA/BDNF signaling pathway. Overall, this study not only help us to understand the toxic mechanism of NP on learning memory impairment in vitro, but also have important reference significance to further explore the health care value of NMN and promote the development of related functional foods.
Collapse
Affiliation(s)
- Zhongyi Li
- College of Food Science, South China Agricultural University, 483#, Wu-Shan Ave., Tian-He District, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Guangzhou, 510642, China
| | - Huan Liu
- College of Food Science, South China Agricultural University, 483#, Wu-Shan Ave., Tian-He District, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Guangzhou, 510642, China
| | - Wenna Han
- College of Food Science, South China Agricultural University, 483#, Wu-Shan Ave., Tian-He District, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Guangzhou, 510642, China
| | - Siyu Zhu
- College of Food Science, South China Agricultural University, 483#, Wu-Shan Ave., Tian-He District, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Guangzhou, 510642, China
| | - Chunhong Liu
- College of Food Science, South China Agricultural University, 483#, Wu-Shan Ave., Tian-He District, Guangzhou, 510642, China.
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Guangzhou, 510642, China.
| |
Collapse
|
15
|
Bioactive Compounds as Inhibitors of Inflammation, Oxidative Stress and Metabolic Dysfunctions via Regulation of Cellular Redox Balance and Histone Acetylation State. Foods 2023; 12:foods12050925. [PMID: 36900446 PMCID: PMC10000917 DOI: 10.3390/foods12050925] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
Bioactive compounds (BCs) are known to exhibit antioxidant, anti-inflammatory, and anti-cancer properties by regulating the cellular redox balance and histone acetylation state. BCs can control chronic oxidative states caused by dietary stress, i.e., alcohol, high-fat, or high-glycemic diet, and adjust the redox balance to recover physiological conditions. Unique functions of BCs to scavenge reactive oxygen species (ROS) can resolve the redox imbalance due to the excessive generation of ROS. The ability of BCs to regulate the histone acetylation state contributes to the activation of transcription factors involved in immunity and metabolism against dietary stress. The protective properties of BCs are mainly ascribed to the roles of sirtuin 1 (SIRT1) and nuclear factor erythroid 2-related factor 2 (NRF2). As a histone deacetylase (HDAC), SIRT1 modulates the cellular redox balance and histone acetylation state by mediating ROS generation, regulating nicotinamide adenine dinucleotide (NAD+)/NADH ratio, and activating NRF2 in metabolic progression. In this study, the unique functions of BCs against diet-induced inflammation, oxidative stress, and metabolic dysfunction have been considered by focusing on the cellular redox balance and histone acetylation state. This work may provide evidence for the development of effective therapeutic agents from BCs.
Collapse
|
16
|
Wu Y, Wang J, Jia M, Huang S, Cao Y, Yao T, Li J, Yang Y, Gu X. Clostridium autoethanogenum protein inclusion in the diet for broiler: Enhancement of growth performance, lipid metabolism, and gut microbiota. Front Vet Sci 2022; 9:1028792. [PMID: 36504874 PMCID: PMC9731230 DOI: 10.3389/fvets.2022.1028792] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/30/2022] [Indexed: 11/25/2022] Open
Abstract
This study aimed to investigate the effects of dietary supplementation of the new single-cell protein Clostridium autoethanogenum protein (CAP) on growth performance, plasma biochemical indexes, liver histology, lipid metabolism, and gut microbiota in Cobb broilers. According to the randomized block experimental design, 960 Cobb broilers (1d old) were divided into six treatments with eight replicates of 20 birds each. Six isonitrogenous and isoenergetic diets were formulated with different contents of CAP (0, 1, 2, 3, 4, and 5%) to replace soybean meal (SBM). The results showed that the addition of CAP did not influence liver health when it exceeded 2%. The protein metabolism markers and feed conversion rate increased (P < 0.05), significantly improving the growth performance. When the content of CAP was greater than 4%, it could promote lipolysis without affecting lipogenesis, decreasing the abdominal fat rate. There was no significant difference in MDA between these groups (P = 0.948). The increase of SOD and GSH-Px indicated the enhancement of antioxidant response. Alpha diversity did not significantly differ between groups (P > 0.05). Inclusion of 4% or less CAP led to the increase in beneficial microbiota, the concentration of short-chain fatty acids (SCFAs) such as acetic acid, propionic acid, and butyric acid (P < 0.05), and the concentration of primary bile acids such as cholic acid and goose deoxycholic acid (P < 0.05). While the concentration of secondary bile acids such as taurocholic acid and taurine goose deoxycholic acid was decreased (P < 0.05). These results illustrated that the CAP had a high potential for application in poultry nutrition. In terms of improving growth performance and antioxidant capacity and reducing fat deposition rate, 4% CAP content is recommended.
Collapse
Affiliation(s)
- Yushan Wu
- Institute of Feed Research of Chinese Academy of Agricultural Sciences, Laboratory of Feed-Derived Factor Risk Assessment for Animal Product Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing, China,Shanghai Municipal Supervisory Institute Veterinary Drugs and Feedstaff, Shanghai, China
| | - Jing Wang
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Ming Jia
- Institute of Feed Research of Chinese Academy of Agricultural Sciences, Laboratory of Feed-Derived Factor Risk Assessment for Animal Product Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Shixin Huang
- Shanghai Municipal Supervisory Institute Veterinary Drugs and Feedstaff, Shanghai, China
| | - Ying Cao
- Shanghai Municipal Supervisory Institute Veterinary Drugs and Feedstaff, Shanghai, China
| | - Ting Yao
- Institute of Feed Research of Chinese Academy of Agricultural Sciences, Laboratory of Feed-Derived Factor Risk Assessment for Animal Product Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Junguo Li
- Institute of Feed Research of Chinese Academy of Agricultural Sciences, Laboratory of Feed-Derived Factor Risk Assessment for Animal Product Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yuxin Yang
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Xu Gu
- Institute of Feed Research of Chinese Academy of Agricultural Sciences, Laboratory of Feed-Derived Factor Risk Assessment for Animal Product Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing, China,*Correspondence: Xu Gu
| |
Collapse
|
17
|
Dugbartey GJ, Alornyo KK, Adams I, Atule S, Obeng-Kyeremeh R, Amoah D, Adjei S. Targeting hepatic sulfane sulfur/hydrogen sulfide signaling pathway with α-lipoic acid to prevent diabetes-induced liver injury via upregulating hepatic CSE/3-MST expression. Diabetol Metab Syndr 2022; 14:148. [PMID: 36229864 PMCID: PMC9558364 DOI: 10.1186/s13098-022-00921-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/05/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Diabetes-induced liver injury is a complication of diabetes mellitus of which there are no approved drugs for effective treatment or prevention. This study investigates possible hepatoprotective effect of alpha-lipoic acid (ALA), and sulfane sulfur/hydrogen sulfide pathway as a novel protective mechanism in a rat model of type 2 diabetes-induced liver injury. METHODS Thirty Sprague-Dawley rats underwent fasting for 12 h after which fasting blood glucose was measured and rats were randomly assigned to diabetic and non-diabetic groups. Type 2 diabetes mellitus (T2DM) was induced in diabetic group by administration of nicotinamide (110 mg/kg) and streptozotocin (55 mg/kg). Diabetic rats were treated daily with ALA (60 mg/kg/day p.o.) or 40 mg/kg/day DL-propargylglycine (PPG, an inhibitor of endogenous hydrogen sulfide production) for 6 weeks and then sacrificed. Liver, pancreas and blood samples were collected for analysis. Untreated T2DM rats received distilled water. RESULTS Hypoinsulinemia, hyperglycemia, hepatomegaly and reduced hepatic glycogen content were observed in untreated T2DM rats compared to healthy control group (p < 0.001). Also, the pancreas of untreated T2DM rats showed severely damaged pancreatic islets while liver damage was characterized by markedly increased hepatocellular vacuolation, sinusoidal enlargement, abnormal intrahepatic lipid accumulation, severe transaminitis, hyperbilirubinemia, and impaired hepatic antioxidant status and inflammation compared to healthy control rats (p < 0.01). While pharmacological inhibition of hepatic sulfane sulfur/hydrogen sulfide with PPG administration aggravated these pathological changes (p < 0.05), ALA strongly prevented these changes. ALA also significantly increased hepatic expression of hydrogen sulfide-producing enzymes (cystathionine γ-lyase and 3-mecaptopyruvate sulfurtransferase) as well as hepatic sulfane sulfur and hydrogen sulfide levels compared to all groups (p < 0.01). CONCLUSIONS To the best of our knowledge, this is the first experimental evidence showing that ALA prevents diabetes-induced liver injury by activating hepatic sulfane sulfur/hydrogen sulfide pathway via upregulation of hepatic cystathionine γ-lyase and 3-mecaptopyruvate sulfurtransferase expressions. Therefore, ALA could serve as a novel pharmacological agent for the treatment and prevention of diabetes-induced liver injury, with hepatic sulfane sulfur/hydrogen sulfide as a novel therapeutic target.
Collapse
Affiliation(s)
- George J Dugbartey
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana.
| | - Karl K Alornyo
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Ismaila Adams
- Department of Medical Pharmacology, University of Ghana Medical School, Korle-Bu, Accra, Ghana
| | - Stephen Atule
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Richard Obeng-Kyeremeh
- Department of Animal Experimentation, College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Daniel Amoah
- Department of Animal Experimentation, College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Samuel Adjei
- Department of Animal Experimentation, College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| |
Collapse
|
18
|
Mohammadshahi M, Zakizadeh E, Ahmadi-Angali K, Ravanbakhsh M, Helli B. The synergic effects of alpha-lipoic acid supplementation and electrical isotonic contraction on anthropometric measurements and the serum levels of VEGF, NO, sirtuin-1, and PGC1-α in obese people undergoing a weight loss diet. Arch Physiol Biochem 2022; 128:1195-1201. [PMID: 32407179 DOI: 10.1080/13813455.2020.1762660] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Background: The anti-obesity effects of Alpha-lipoic acid (α-LA) and isotonic contraction has been reported. However, the underlying mechanism is not fully understood. This study aimed to investigate the effect of 1200 mg/day α-LA supplementation and 3 sessions per week of Faradic (an electrical stimulating system) on anthropometric parameters, body composition, VEGF, Sirtuin-1, nitric oxide (NO), and PGC1-α in obese people undergoing a weight loss regime.Methods: This randomised clinical trial was carried out on 100 obese adults. The subjects were randomly assigned to four groups of 25 subjects including Faradic, α-LA, α-LA + Faradic, and control. A Bio Impedance Analyser (BIA) was used to estimate anthropometric measurements including weight, body mass index (BMI), fat mass, and fat free mass. The serum levels of Sirtuin-1, PGC1-α, VEGF, and NO levels were measured. All measurements were done at baseline and after 8 weeks of the intervention.Results: A significant weight reduction was observed in all four groups compared to baseline (p<.01). The placebo group had significantly higher weight, BMI, weight circumstance (WC), and body fat (BF) compared with the other groups. The α-LA + Faradic group had significantly lower weight, BMI, BF, WC than control, faradic, and α-LA groups and higher, Sirtuin and PGC than the control group (all p < .05).Conclusions: The findings indicated that the α-LA and Faradic interventions may have a synergistic effect on weight, BMI, BF, WC, and SLM, possibly through changes in serum level of VEGF, NO, and PGC. Further studies are warranted to clarify the mutual effects of -α-LA and Faradic on obesity and its molecular mechanisms. Name of the registry: Iranian Registry of Clinical TrialsTrial registration number: IRCT20131117015424N2Date of registration: 04/04/2018URL of trial registry record: https://www.irct.ir/search/result?query=IRCT20131117015424N2.
Collapse
Affiliation(s)
- Majid Mohammadshahi
- Department of Nutrition, Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical sciences, Ahvaz, Iran
| | - Elahe Zakizadeh
- Department of Nutrition, Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical sciences, Ahvaz, Iran
| | - Kambiz Ahmadi-Angali
- Faculty of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Majid Ravanbakhsh
- Musculoskeletal Rehabilitation Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Bijan Helli
- Department of Nutrition, Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical sciences, Ahvaz, Iran
| |
Collapse
|
19
|
Heterozygous Loss of KRIT1 in Mice Affects Metabolic Functions of the Liver, Promoting Hepatic Oxidative and Glycative Stress. Int J Mol Sci 2022; 23:ijms231911151. [PMID: 36232456 PMCID: PMC9570113 DOI: 10.3390/ijms231911151] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 12/04/2022] Open
Abstract
KRIT1 loss-of-function mutations underlie the pathogenesis of Cerebral Cavernous Malformation (CCM), a major vascular disease affecting the central nervous system (CNS). However, KRIT1 is also expressed outside the CNS and modulates key regulators of metabolic and oxy-inflammatory pathways, including the master transcription factor FoxO1, suggesting a widespread functional significance. Herein, we show that the KRIT1/FoxO1 axis is implicated in liver metabolic functions and antioxidative/antiglycative defenses. Indeed, by performing comparative studies in KRIT1 heterozygous (KRIT1+/−) and wild-type mice, we found that KRIT1 haploinsufficiency resulted in FoxO1 expression/activity downregulation in the liver, and affected hepatic FoxO1-dependent signaling pathways, which are markers of major metabolic processes, including gluconeogenesis, glycolysis, mitochondrial respiration, and glycogen synthesis. Moreover, it caused sustained activation of the master antioxidant transcription factor Nrf2, hepatic accumulation of advanced glycation end-products (AGEs), and abnormal expression/activity of AGE receptors and detoxifying systems. Furthermore, it was associated with an impairment of food intake, systemic glucose disposal, and plasma levels of insulin. Specific molecular alterations detected in the liver of KRIT1+/− mice were also confirmed in KRIT1 knockout cells. Overall, our findings demonstrated, for the first time, that KRIT1 haploinsufficiency affects glucose homeostasis and liver metabolic and antioxidative/antiglycative functions, thus inspiring future basic and translational studies.
Collapse
|
20
|
Mansour SZ, Moustafa EM, Moawed FSM. Modulation of endoplasmic reticulum stress via sulforaphane-mediated AMPK upregulation against nonalcoholic fatty liver disease in rats. Cell Stress Chaperones 2022; 27:499-511. [PMID: 35779187 PMCID: PMC9485504 DOI: 10.1007/s12192-022-01286-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 01/24/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a major health concern. Endoplasmic reticulum (ER) stress, inflammation, and metabolic dysfunctions may be targeted to prevent the progress of nonalcoholic fatty liver disease. Sulforaphane (SFN), a sulfur-containing compound that is abundant in broccoli florets, seeds, and sprouts, has been reported to have beneficial effects on attenuating metabolic diseases. In light of this, the present study was designed to elucidate the mechanisms by which SFN ameliorated ER stress, inflammation, lipid metabolism, and insulin resistance - induced by a high-fat diet and ionizing radiation (IR) in rats. In our study, the rats were randomly divided into five groups: control, HFD, HFD + SFN, HFD + IR, and HFD + IR + SFN groups. After the last administration of SFN, liver and blood samples were taken. As a result, the lipid profile, liver enzymes, glucose, insulin, IL-1β, adipokines (leptin and resistin), and PI3K/AKT protein levels, as well as the mRNA gene expression of ER stress markers (IRE-1, sXBP-1, PERK, ATF4, and CHOP), fatty acid synthase (FAS), peroxisome proliferator-activated receptor-α (PPAR-α). Interestingly, SFN treatment modulated the levels of proinflammatory cytokine including IL-1β, metabolic indices (lipid profile, glucose, insulin, and adipokines), and ER stress markers in HFD and HFD + IR groups. SFN also increases the expression of PPAR-α and AMPK genes in the livers of HFD and HFD + IR groups. Meanwhile, the gene expression of FAS and CHOP was significantly attenuated in the SFN-treated groups. Our results clearly show that SFN inhibits liver toxicity induced by HFD and IR by ameliorating the ER stress events in the liver tissue through the upregulation of AMPK and PPAR-α accompanied by downregulation of FAS and CHOP gene expression.
Collapse
Affiliation(s)
- Somaya Z Mansour
- Radiation Biology Research, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Enas M Moustafa
- Radiation Biology Research, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Fatma S M Moawed
- Health Radiation Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt.
| |
Collapse
|
21
|
Alshammari GM, Abdelhalim MA, Al-Ayed MS, Al-Harbi LN, Yahya MA. The Protective Effect of α-Lipoic Acid against Gold Nanoparticles (AuNPs)-Mediated Liver Damage Is Associated with Upregulating Nrf2 and Suppressing NF-κB. Nutrients 2022; 14:nu14163327. [PMID: 36014833 PMCID: PMC9414933 DOI: 10.3390/nu14163327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 12/21/2022] Open
Abstract
This study examined if regulating the keap-1? Nrf2 antioxidant pathway mediated gold nanoparticles (AuNPs) induced liver damage, and examined the protective effect of co-supplement of α-lipoic acid (α-LA). Rats were separated into 4 groups (n = 8/each) as control, α-LA (200 mg/kg), AuNPs (5 µg/2.85 × 1011), and AuNPs (5 µg/2.85 × 1011) + α-LA (200 mg/kg). After 7 days, AuNPs induced severe degeneration in the livers of rats with the appearance of some fatty changes. In addition, it increased serum levels of alanine aminotransferase (ALT) and gamma-glutamyl transferase (ɣ-GTT), and aspartate aminotransferase (AST), as well as liver levels of malondialdehyde (MDA). Concomitantly, AuNPs significantly depleted hepatic levels of total glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT) but increased hepatic levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). It also reduced mRNA levels of B-cell lymphoma 2 (Bcl2) and heme oxygenase-1 (HO-1) but significantly increased those of Bax and cleaved caspase-3, as well as the ratio of Bax/Bcl2. In addition, AuNPs enhanced the total and nuclear levels of NF-κB p65 but reduced the mRNA and total and nuclear protein levels of Nrf2. Of note, AuNPs did not affect the mRNA levels of keap-1. All these events were reversed by α-LA in the AuNPs-treated rats. In conclusion, α-LA attenuated AuNPs-mediated liver damage in rats by suppressing oxidative stress and inflammation, effects that are associated with upregulation/activation of Nrf2.
Collapse
Affiliation(s)
- Ghedeir M. Alshammari
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed Anwar Abdelhalim
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed S. Al-Ayed
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Laila Naif Al-Harbi
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Abdo Yahya
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
- Correspondence:
| |
Collapse
|
22
|
El-Mancy EM, Elsherbini DMA, Al-Serwi RH, El-Sherbiny M, Ahmed Shaker G, Abdel-Moneim AMH, Enan ET, Elsherbiny NM. α-Lipoic Acid Protects against Cyclosporine A-Induced Hepatic Toxicity in Rats: Effect on Oxidative Stress, Inflammation, and Apoptosis. TOXICS 2022; 10:toxics10080442. [PMID: 36006121 PMCID: PMC9416703 DOI: 10.3390/toxics10080442] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 02/01/2023]
Abstract
The clinical application of cyclosporine A (CsA) as an immunosuppressive agent is limited by its organ toxicity. We aimed to evaluate the effectiveness of α-lipoic acid against CsA-induced hepatotoxicity and to delineate the underlying molecular mechanisms. Male Wistar rats (n = 24, 8 per each group) received the vehicle, CsA (25 mg/kg) and/or ALA (100 mg/kg, p.o.) for 3 weeks. Biochemical markers of liver function (serum ALT, AST, ALP < GGT), oxidative stress (MDA, TAC, SOD, GSH, Nrf2/HO-1), inflammation (NF-κB, CD68, iNOS, NO, COX-2), and apoptosis (caspase-3) were assessed in serum and tissue. Liver histological analysis using H&E and Sirius red was performed. The development of liver injury in CsA-treated animals was indicated by elevated levels of liver enzymes, oxidants/antioxidants imbalance, inflammatory cells infiltration, up-regulated expression of inflammatory mediators, and apoptosis. These changes were associated with altered architecture of hepatic cells and fibrous connective tissue. ALA co-administration protected against CsA-induced liver damage and ameliorated biochemical changes and cellular injury. In conclusion, ALA demonstrated hepatoprotective potential against CsA-induced liver injury through combating oxidative stress, inflammation, and apoptosis, highlighting ALA as a valuable adjunct to CsA therapy.
Collapse
Affiliation(s)
- Eman M. El-Mancy
- Deanship of Common First Year, Jouf University, P.O. Box 2014, Sakaka 42421, Saudi Arabia;
- Zoology Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo 11511, Egypt
| | - Dalia Mahmoud Abdelmonem Elsherbini
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, P.O. Box 2014, Sakaka 42421, Saudi Arabia;
- Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Rasha Hamed Al-Serwi
- Department of Basic Dental Sciences, College of Dentistry, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia
- Correspondence: (M.E.-S.); (N.M.E.)
| | - Gehan Ahmed Shaker
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; (G.A.S.); (A.-M.H.A.-M.)
| | - Abdel-Moneim Hafez Abdel-Moneim
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; (G.A.S.); (A.-M.H.A.-M.)
- Department of Medical Physiology, Faculty of Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Eman T. Enan
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Nehal M. Elsherbiny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
- Correspondence: (M.E.-S.); (N.M.E.)
| |
Collapse
|
23
|
Sharma N, Sircar A, Anders HJ, Gaikwad AB. Crosstalk between kidney and liver in non-alcoholic fatty liver disease: mechanisms and therapeutic approaches. Arch Physiol Biochem 2022; 128:1024-1038. [PMID: 32223569 DOI: 10.1080/13813455.2020.1745851] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Liver and kidney are vital organs that maintain homeostasis and injury to either of them triggers pathogenic pathways affecting the other. For example, non-alcoholic fatty liver disease (NAFLD) promotes the progression of chronic kidney disease (CKD), vice versa acute kidney injury (AKI) endorses the induction and progression of liver dysfunction. Progress in clinical and basic research suggest a role of excessive fructose intake, insulin resistance, inflammatory cytokines production, activation of the renin-angiotensin system, redox imbalance, and their impact on epigenetic regulation of gene expression in this context. Recent developments in experimental and clinical research have identified several biochemical and molecular pathways for AKI-liver interaction, including altered liver enzymes profile, metabolic acidosis, oxidative stress, activation of inflammatory and regulated cell death pathways. This review focuses on the current preclinical and clinical findings on kidney-liver crosstalk in NAFLD-CKD and AKI-liver dysfunction settings and highlights potential molecular mechanisms and therapeutic targets.
Collapse
Affiliation(s)
- Nisha Sharma
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan, India
| | - Anannya Sircar
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan, India
| | - Hans-Joachim Anders
- Division of Nephrology, Department of Internal Medicine IV, University Hospital of the Ludwig Maximilians University Munich, Munich, Germany
| | - Anil Bhanudas Gaikwad
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan, India
| |
Collapse
|
24
|
Pham TH, Lee GH, Jin SW, Lee SY, Han EH, Kim ND, Jeong HG. Puerarin attenuates hepatic steatosis via G‐protein‐coupled estrogen receptor‐mediated calcium and
SIRT1
signaling pathways. Phytother Res 2022; 36:3601-3618. [DOI: 10.1002/ptr.7526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 03/27/2022] [Accepted: 04/07/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Thi Hoa Pham
- College of Pharmacy Chungnam National University Daejeon Republic of Korea
- Molecular Microbiology Lab, Institute of Biotechnology Vietnam Academy of Science and Technology Hanoi Vietnam
| | - Gi Ho Lee
- College of Pharmacy Chungnam National University Daejeon Republic of Korea
| | - Sun Woo Jin
- College of Pharmacy Chungnam National University Daejeon Republic of Korea
| | - Seung Yeon Lee
- College of Pharmacy Chungnam National University Daejeon Republic of Korea
| | - Eun Hee Han
- Drug & Disease Target Research Team, Division of Bioconvergence Analysis Korea Basic Science Institute (KBSI) Cheongju Republic of Korea
| | | | - Hye Gwang Jeong
- College of Pharmacy Chungnam National University Daejeon Republic of Korea
| |
Collapse
|
25
|
Sabir U, Irfan HM, Alamgeer, Umer I, Niazi ZR, Asjad HMM. Phytochemicals targeting NAFLD through modulating the dual function of forkhead box O1 (FOXO1) transcription factor signaling pathways. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:741-755. [PMID: 35357518 DOI: 10.1007/s00210-022-02234-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/18/2022] [Indexed: 02/06/2023]
Abstract
Literature evidence reveals that natural compounds are potential candidates for ameliorating obesity-associated non-alcoholic fatty liver disease (NAFLD) by targeting forkhead box O1 (FOXO1) transcription factor. FOXO1 has a dual and complex role in regulating both increase and decrease in lipid accumulation in hepatocytes and adipose tissues (AT) at different stages of NAFLD. In insulin resistance (IR), it is constitutively expressed, resulting in increased hepatic glucose output and lipid metabolism irregularity. The studies on different phytochemicals indicate that dysregulation of FOXO1 causes disturbance in cellular nutrients homeostasis, and the natural entities have an enduring impact on the mitigation of these abnormalities. The current review communicates and evaluates certain phytochemicals through different search engines, targeting FOXO1 and its downstream cellular pathways to find lead compounds as potential therapeutic agents for treating NAFLD and related metabolic disorders. The findings of this review confirm that polyphenols, flavonoids, alkaloids, terpenoids, and anthocyanins are capable of modulating FOXO1 and associated signaling pathways, and they are potential therapeutic agents for NAFLD and related complications. HIGHLIGHTS: • FOXO1 has the potential to be targeted by novel drugs from natural sources for the treatment of NAFLD and obesity. • FOXO1 regulates cellular autophagy, inflammation, oxidative stress, and lipogenesis through alternative mechanisms. • Phytochemicals treat NAFLD by acting on FOXO1 or SREBP1c and PPARγ transcription factor signaling pathways.
Collapse
Affiliation(s)
- Usman Sabir
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | - Hafiz Muhammad Irfan
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, Pakistan.
| | - Alamgeer
- Punjab University College of Pharmacy, University of the Punjab Lahore, Lahore, Pakistan
| | - Ihtisham Umer
- Pharmacy Department, Comsat International University Lahore Campus, Lahore, Pakistan
| | | | | |
Collapse
|
26
|
Kumari S, Dhiman P, Singh D, Saneja A. R-α-Lipoic Acid Conjugated to d-α-Tocopherol Polyethylene Glycol 1000 Succinate: Synthesis, Characterization, and Effect on Antiseizure Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7674-7682. [PMID: 35713421 DOI: 10.1021/acs.jafc.2c01685] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
α-Lipoic acid (LA), a dithiol micronutrient, acts as a vital cofactor in various cellular catabolic reactions and is also known as a universal antioxidant. The therapeutic efficacy of LA is compromised by a poor aqueous solubility as well as a short half-life. In the present study, LA was conjugated to d-α-tocopherol polyethylene glycol succinate (TPGS) using carbodiimideacid-alcohol coupling reaction. The synthesized conjugate (TPGS-LA) was characterized using 1H and 13C nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FT-IR), UV-vis spectroscopy, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The TPGS-LA conjugate was demonstrated to be biocompatible and to have better anticonvulsion activity as compared to native LA in pentylenetetrazol (PTZ)-induced convulsions in zebrafish. Moreover, zebrafish larvae pretreated with TPGS-LA conjugate demonstrated a significant (p < 0.05) reduction of protein carbonylation levels and downregulation of c-fos expression during seizures as compared to native LA. Conclusively, the present findings demonstrate that the TPGS-LA conjugate can be a promising approach for the delivery of LA.
Collapse
Affiliation(s)
- Savita Kumari
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061 Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 Uttar Pradesh, India
| | - Poonam Dhiman
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061 Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 Uttar Pradesh, India
| | - Damanpreet Singh
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061 Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 Uttar Pradesh, India
| | - Ankit Saneja
- Formulation Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061 Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 Uttar Pradesh, India
| |
Collapse
|
27
|
Emerging Glycation-Based Therapeutics-Glyoxalase 1 Inducers and Glyoxalase 1 Inhibitors. Int J Mol Sci 2022; 23:ijms23052453. [PMID: 35269594 PMCID: PMC8910005 DOI: 10.3390/ijms23052453] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 12/13/2022] Open
Abstract
The abnormal accumulation of methylglyoxal (MG) leading to increased glycation of protein and DNA has emerged as an important metabolic stress, dicarbonyl stress, linked to aging, and disease. Increased MG glycation produces inactivation and misfolding of proteins, cell dysfunction, activation of the unfolded protein response, and related low-grade inflammation. Glycation of DNA and the spliceosome contribute to an antiproliferative and apoptotic response of high, cytotoxic levels of MG. Glyoxalase 1 (Glo1) of the glyoxalase system has a major role in the metabolism of MG. Small molecule inducers of Glo1, Glo1 inducers, have been developed to alleviate dicarbonyl stress as a prospective treatment for the prevention and early-stage reversal of type 2 diabetes and prevention of vascular complications of diabetes. The first clinical trial with the Glo1 inducer, trans-resveratrol and hesperetin combination (tRES-HESP)-a randomized, double-blind, placebo-controlled crossover phase 2A study for correction of insulin resistance in overweight and obese subjects, was completed successfully. tRES-HESP corrected insulin resistance, improved dysglycemia, and low-grade inflammation. Cell permeable Glo1 inhibitor prodrugs have been developed to induce severe dicarbonyl stress as a prospective treatment for cancer-particularly for high Glo1 expressing-related multidrug-resistant tumors. The prototype Glo1 inhibitor is prodrug S-p-bromobenzylglutathione cyclopentyl diester (BBGD). It has antitumor activity in vitro and in tumor-bearing mice in vivo. In the National Cancer Institute human tumor cell line screen, BBGD was most active against the glioblastoma SNB-19 cell line. Recently, potent antitumor activity was found in glioblastoma multiforme tumor-bearing mice. High Glo1 expression is a negative survival factor in chemotherapy of breast cancer where adjunct therapy with a Glo1 inhibitor may improve treatment outcomes. BBGD has not yet been evaluated clinically. Glycation by MG now appears to be a pathogenic process that may be pharmacologically manipulated for therapeutic outcomes of potentially important clinical impact.
Collapse
|
28
|
Sulforaphane Attenuates Nonalcoholic Fatty Liver Disease by Inhibiting Hepatic Steatosis and Apoptosis. Nutrients 2021; 14:nu14010076. [PMID: 35010950 PMCID: PMC8746639 DOI: 10.3390/nu14010076] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is characterized by lipotoxicity and ectopic lipid deposition within hepatocytes. Sulforaphane (SFA), an active compound used for inhibiting tumors, was found to have the potency to improve lipid metabolism. However, its molecular mechanisms on ameliorating NAFLD are still incompletely understood. This research evaluated if SFA could inhibit hepatic steatosis and apoptosis. The effects of SFA on cell viability, lipid accumulation, triglyceride (TG) contents, apoptosis, ceramide contents, and reactive oxygen species (ROS) levels were analyzed in palmitic acid (PA)-treated HepG2 cells and high-fat diet (HFD)-fed mice. The related molecular mechanisms were further explored in hepatocytes. The results showed SFA alleviated lipid accumulation and regulated AMPK/SREBP1c/FAS signaling pathway in PA-stressed HepG2 cells. In addition, SFA alleviated PA-mediated apoptosis, downregulated the expressions of cleaved caspase 3, as well as reduced ceramide contents and ROS levels. Moreover, SFA treatment reduced HFD-induced body weight gain, alleviated insulin resistance, decreased serum TG, total cholesterol (TC), and alanine aminotransferase (ALT) levels, and prevented lipid deposition and apoptosis in the liver. This study showed SFA suppressed lipid deposition and apoptosis both in vitro and in vivo, indicating that SFA may be a potential candidate for preventing and treating NAFLD.
Collapse
|
29
|
Jeffrey S, Isaac Samraj P, Sundara Raj B. Therapeutic Benefits of Alpha-Lipoic Acid Supplementation in Diabetes Mellitus: A Narrative Review. J Diet Suppl 2021; 19:566-586. [PMID: 34939534 DOI: 10.1080/19390211.2021.2020387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Elevated oxidative stress is a common denominator between pathways implicated in the pathogenesis of diabetes mellitus and diabetes complications, prompting the use of antioxidant compounds in diabetes therapy. Alpha-lipoic acid (ALA), has been investigated for its role as a potent antioxidant in diabetes treatment and the results from clinical trials indicate improved glucose metabolism, reduced oxidative stress, improved endothelial dysfunction, a decline in platelet reactivity and moderate improvements to weight loss yet conflicting data regarding insulin metabolism. ALA inhibits nuclear factor kappa B (NFkB), chelates divalent transient metal ions and induces the expression of adenosine monophosphate-activated protein kinase (AMPK). This narrative review explores the results from clinical trials investigating the role of ALA in the treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Sarah Jeffrey
- Endeavour College of Natural Health, Perth, WA, Australia
| | | | - Behin Sundara Raj
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, WA, Australia
| |
Collapse
|
30
|
Epigallocatechin-3-Gallate Suppresses BMP-6-Mediated SMAD1/5/8 Transactivation of Hepcidin Gene by Inducing SMILE in Hepatocytes. Antioxidants (Basel) 2021; 10:antiox10101590. [PMID: 34679725 PMCID: PMC8533173 DOI: 10.3390/antiox10101590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/27/2021] [Accepted: 10/09/2021] [Indexed: 01/01/2023] Open
Abstract
Hepcidin, a major regulator of systemic iron homeostasis, is mainly induced in hepatocytes by activating bone morphogenetic protein 6 (BMP-6) signaling in response to changes in the iron status. Small heterodimer partner-interacting leucine zipper protein (SMILE), a polyphenol-inducible transcriptional co-repressor, regulates hepatic gluconeogenesis and lipogenesis. Here, we examine the epigallocatechin-3-gallate (EGCG) effect on BMP-6-mediated SMAD1/5/8 transactivation of the hepcidin gene. EGCG treatment significantly decreased BMP-6-induced hepcidin gene expression and secretion in hepatocytes, which, in turn, abated ferroportin degradation. SMILE overexpression significantly decreased BMP receptor-induced hepcidin promoter activity. SMILE overexpression also significantly suppressed BMP-6-mediated induction of hepcidin mRNA and its secretion in HepG2 and AML12 cells. EGCG treatment inhibited BMP-6-mediated hepcidin gene expression and secretion, which were significantly reversed by SMILE knockdown in hepatocytes. Interestingly, SMILE physically interacted with SMAD1 in the nucleus and significantly blocked DNA binding of the SMAD complex to the BMP-response element on the hepcidin gene promoter. Taken together, these findings suggest that SMILE is a novel transcriptional repressor of BMP-6-mediated hepcidin gene expression, thus contributing to the control of iron homeostasis.
Collapse
|
31
|
Ding H, Li Y, Liu L, Hao N, Zou S, Jiang Q, Liang Y, Ma N, Feng S, Wang X, Wu J, Loor JJ. Sirtuin 1 is involved in oleic acid-induced calf hepatocyte steatosis via alterations in lipid metabolism-related proteins. J Anim Sci 2021; 99:6358199. [PMID: 34436591 DOI: 10.1093/jas/skab250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/24/2021] [Indexed: 11/14/2022] Open
Abstract
Sirtuin 1 (SIRT1), an NAD-dependent protein deacetylase, plays a central role in the control of lipid metabolism in nonruminants. However, the role of SIRT1 in hepatic lipid metabolism in dairy cows with fatty liver is not well known. Thus, we used isolated primary bovine hepatocytes to determine the role of SIRT1 in protecting cells against oleic acid (OA)-induced steatosis. Recombinant adenoviruses to overexpress (AD-GFP-SIRT1-E) or knockdown (AD-GFP-SIRT1-N) SIRT1 were used for transduction of hepatocytes. Calf hepatocytes isolated from five female calves (1 d old, 30 to 40 kg) were used to determine both time required and the lowest dose of OA that could induce triacylglycerol (TAG) accumulation. Analyses indicated that 0.25 mM OA for 24 h was suitable to induce TAG accumulation. In addition, OA not only led to an increase in TAG, but also upregulated mRNA and protein abundance of sterol regulatory element-binding transcription factor 1 (SREBF1) and downregulated SIRT1 and peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PPARGC1A). Thus, these in vitro conditions were deemed optimal for subsequent experiments. Calf hepatocytes were cultured and incubated with OA (0.25 mM) for 24 h, followed by adenoviral AD-GFP-SIRT1-E or AD-GFP-SIRT1-N transduction for 48 h. Overexpression of SIRT1 led to greater protein and mRNA abundance of SIRT1 along with fatty acid oxidation-related genes including PPARGC1A, peroxisome proliferator-activated receptor alpha (PPARA), retinoid X receptor α (RXRA), and ratio of phospho-acetyl-CoA carboxylase alpha (p-ACACA)/total acetyl-CoA carboxylase alpha (ACACA). In contrast, it resulted in lower protein and mRNA abundance of genes related to lipid synthesis including SREBF1, fatty acid synthase (FASN), apolipoprotein E (APOE), and low-density lipoprotein receptor (LDLR). The concentration of TAG decreased due to SIRT1 overexpression. In contrast, silencing SIRT1 led to lower protein and mRNA abundance of SIRT1, PPARGC1A, PPARA, RXRA, and greater protein and mRNA abundance of SREBF1, FASN, APOE, and LDLR. Further, those responses were accompanied by greater content of cellular TAG and total cholesterol (TC). Overall, data from these in vitro studies indicated that SIRT1 is involved in the regulation of lipid metabolism in calf hepatocytes subjected to an increase in the supply of OA. Thus, it is possible that alterations in SIRT1 abundance and activity in vivo contribute to development of fatty liver in dairy cows.
Collapse
Affiliation(s)
- Hongyan Ding
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Yu Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, China.,Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Hefei 230036, Anhui, China
| | - Leihong Liu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Ning Hao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Suping Zou
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Qianming Jiang
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Yusheng Liang
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Nana Ma
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Shibing Feng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Xichun Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Jinjie Wu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Juan J Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
32
|
α-Lipoic Acid Alleviates Hepatic Lipid Deposition by Inhibiting FASN Expression via miR-3548 in Rats. Nutrients 2021; 13:nu13072331. [PMID: 34371841 PMCID: PMC8308747 DOI: 10.3390/nu13072331] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/29/2021] [Accepted: 07/05/2021] [Indexed: 11/16/2022] Open
Abstract
Excessive liver lipid deposition is a vital risk factor for the development of many diseases. Here, we fed Sprague-Dawley rats with a control or α-lipoic acid-supplemented diet (0.2%) for 5 weeks to elucidate the effects of α-lipoic acid on preventive ability, hepatic lipid metabolism-related gene expression, and the involved regulatory mechanisms. In the current study, α-lipoic acid supplementation lowered plasma triglyceride level and hepatic triglyceride content. Reduced hepatic lipid deposition was closely associated with inhibiting fatty acid-binding protein 1 and fatty acid synthase expression, as well as increasing phosphorylated hormone-sensitive lipase expression at the protein level in α-lipoic acid-exposed rats. Hepatic miRNA sequencing revealed increased expression of miR-3548 targeting the 3'untranslated region of Fasn mRNA, and the direct regulatory link between miRNA-3548 and FASN was verified by dual-luciferase reporter assay. Taken together, α-lipoic acid lowered hepatic lipid accumulation, which involved changes in miRNA-mediated lipogenic genes.
Collapse
|
33
|
BAKİ AM, VURAL P, AYDIN AF, SOLUK TEKKEŞİN M, DOĞRU-ABBASOĞLU S, UYSAL M. Effect of α-lipoic acid and N-acetylcysteine on liver oxidative stress, preneoplastic lesions induced by diethylnitrosamine plus high-fat diet. ARCHIVES OF CLINICAL AND EXPERIMENTAL MEDICINE 2021. [DOI: 10.25000/acem.830126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
34
|
Behl T, Kaur I, Sehgal A, Singh S, Zengin G, Negrut N, Nistor-Cseppento DC, Pavel FM, Corb Aron RA, Bungau S. Exploring the Genetic Conception of Obesity via the Dual Role of FoxO. Int J Mol Sci 2021. [DOI: https://doi.org/10.3390/ijms22063179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Obesity or overweight are not superficial problems, constituting a pressing issue. The obesity index has almost tripled since 1975, which is an alarming state. Most of the individuals are currently becoming overweight or have inappropriate body mass index (BMI) conditions. Obesity is characterized by increased fat accumulation and thus poses a higher health risk. There is increased size and volume of fat cells in the body, which usually accounts for obesity. Many investigations have been carried out in this area, such as behavioral improvements, dietary changes, chemical involvements, etc., but presently no such goals are established to manage these health concerns. Based on previous literature reports and our interpretation, the current review indicates the involvement of various transcriptional and transporter functions in modifying the above-mentioned health conditions. Various transcriptional factors such as Forkhead box O1 (FoxO1) impart a significant effect on the physiology and pathology of metabolic dysfunction such as obesity. FoxO1 plays a dual role whether in the progression or suppression of metabolic processes depending on its targets. Thus, in the current study, will be discussed the dual role of FoxO1 in metabolic conditions (such as obesity), also summarizing the role of various other transcriptional factors involved in obesity.
Collapse
|
35
|
Behl T, Kaur I, Sehgal A, Singh S, Zengin G, Negrut N, Nistor-Cseppento DC, Pavel FM, Corb Aron RA, Bungau S. Exploring the Genetic Conception of Obesity via the Dual Role of FoxO. Int J Mol Sci 2021; 22:ijms22063179. [PMID: 33804729 PMCID: PMC8003860 DOI: 10.3390/ijms22063179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/10/2021] [Accepted: 03/18/2021] [Indexed: 12/12/2022] Open
Abstract
Obesity or overweight are not superficial problems, constituting a pressing issue. The obesity index has almost tripled since 1975, which is an alarming state. Most of the individuals are currently becoming overweight or have inappropriate body mass index (BMI) conditions. Obesity is characterized by increased fat accumulation and thus poses a higher health risk. There is increased size and volume of fat cells in the body, which usually accounts for obesity. Many investigations have been carried out in this area, such as behavioral improvements, dietary changes, chemical involvements, etc., but presently no such goals are established to manage these health concerns. Based on previous literature reports and our interpretation, the current review indicates the involvement of various transcriptional and transporter functions in modifying the above-mentioned health conditions. Various transcriptional factors such as Forkhead box O1 (FoxO1) impart a significant effect on the physiology and pathology of metabolic dysfunction such as obesity. FoxO1 plays a dual role whether in the progression or suppression of metabolic processes depending on its targets. Thus, in the current study, will be discussed the dual role of FoxO1 in metabolic conditions (such as obesity), also summarizing the role of various other transcriptional factors involved in obesity.
Collapse
Affiliation(s)
- Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (I.K.); (A.S.); (S.S.)
- Correspondence: (T.B.); (S.B.); Tel.: +40-726-776-588 (S.B.)
| | - Ishnoor Kaur
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (I.K.); (A.S.); (S.S.)
| | - Aayush Sehgal
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (I.K.); (A.S.); (S.S.)
| | - Sukhbir Singh
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (I.K.); (A.S.); (S.S.)
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University Campus, Konya 42130, Turkey;
| | - Nicoleta Negrut
- Department of Psycho-Neuroscience and Recovery, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (N.N.); (D.C.N.-C.)
| | - Delia Carmen Nistor-Cseppento
- Department of Psycho-Neuroscience and Recovery, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (N.N.); (D.C.N.-C.)
| | - Flavia Maria Pavel
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (F.M.P.); (R.A.C.A.)
| | - Raluca Anca Corb Aron
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (F.M.P.); (R.A.C.A.)
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
- Correspondence: (T.B.); (S.B.); Tel.: +40-726-776-588 (S.B.)
| |
Collapse
|
36
|
Kratz EM, Sołkiewicz K, Kubis-Kubiak A, Piwowar A. Sirtuins as Important Factors in Pathological States and the Role of Their Molecular Activity Modulators. Int J Mol Sci 2021; 22:ijms22020630. [PMID: 33435263 PMCID: PMC7827102 DOI: 10.3390/ijms22020630] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 02/06/2023] Open
Abstract
Sirtuins (SIRTs), enzymes from the family of NAD+-dependent histone deacetylases, play an important role in the functioning of the body at the cellular level and participate in many biochemical processes. The multi-directionality of SIRTs encourages scientists to undertake research aimed at understanding the mechanisms of their action and the influence that SIRTs have on the organism. At the same time, new substances are constantly being sought that can modulate the action of SIRTs. Extensive research on the expression of SIRTs in various pathological conditions suggests that regulation of their activity may have positive results in supporting the treatment of certain metabolic, neurodegenerative or cancer diseases or this connected with oxidative stress. Due to such a wide spectrum of activity, SIRTs may also be a prognostic markers of selected pathological conditions and prove helpful in assessing their progression, especially by modulating their activity. The article presents and discusses the activating or inhibiting impact of individual SIRTs modulators. The review also gathered selected currently available information on the expression of SIRTs in individual disease cases as well as the biological role that SIRTs play in the human organism, also in connection with oxidative stress condition, taking into account the progress of knowledge about SIRTs over the years, with particular reference to the latest research results.
Collapse
Affiliation(s)
- Ewa Maria Kratz
- Department of Laboratory Diagnostics, Division of Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland;
- Correspondence: ; Tel.: +48-(71)-784-01-52
| | - Katarzyna Sołkiewicz
- Department of Laboratory Diagnostics, Division of Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Adriana Kubis-Kubiak
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland; (A.K.-K.); (A.P.)
| | - Agnieszka Piwowar
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland; (A.K.-K.); (A.P.)
| |
Collapse
|
37
|
Sharma A, Anand SK, Singh N, Dwarkanath A, Dwivedi UN, Kakkar P. Berbamine induced activation of the SIRT1/LKB1/AMPK signaling axis attenuates the development of hepatic steatosis in high-fat diet-induced NAFLD rats. Food Funct 2021; 12:892-909. [PMID: 33411880 DOI: 10.1039/d0fo02501a] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD), a chronic metabolic disorder is concomitant with oxidative stress and inflammation. This study aimed to assess the effects of berbamine (BBM), a natural bisbenzylisoquinoline alkaloid with manifold biological activities and pharmacological effects on lipid, cholesterol and glucose metabolism in a rat model of NAFLD, and to explicate the potential mechanisms underlying its activity. BBM administration alleviated the increase in the body weight and liver index of HFD rats. The aberrations in liver function, serum parameters, and microscopic changes in the liver structure of HFD fed rats were significantly improved upon BBM administration. BBM also significantly attenuated oxidative damage and inhibited triglyceride and cholesterol synthesis. The SIRT1 deacetylase activity was also enhanced by BBM through liver kinase B1 and activated AMP-activated protein kinase. Activation of the SIRT1/LKB1/AMPK pathway prevented the downstream target ACC (acetyl-CoA carboxylase) and elevation in the expression of FAS (fatty acid synthase) and SCD1 (steroyl CoA desaturase). BBM also modulated the expression of PPARs maintaining the fatty acid homeostasis regulation. The assessment of berbamine induced ultrastructural changes by TEM analysis and the expression of autophagic markers LC3a/b, Beclin 1 and p62 revealed the induction of autophagy to alleviate fatty liver conditions. These results show novel findings that BBM induced protection against hepatic lipid metabolic disorders is achieved by regulating the SIRT1/LKB1/AMPK pathway, and thus it emerges as an effective phyoconstituent for the management of NAFLD.
Collapse
Affiliation(s)
- Ankita Sharma
- Herbal Research Laboratory, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Post Box No. 80, Mahatma Gandhi Marg, Lucknow-226001, India.
| | | | | | | | | | | |
Collapse
|
38
|
Therapeutic effects of Chlorella vulgaris on carbon tetrachloride induced liver fibrosis by targeting Hippo signaling pathway and AMPK/FOXO1 axis. Mol Biol Rep 2020; 48:117-126. [PMID: 33296068 DOI: 10.1007/s11033-020-05978-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 11/03/2020] [Indexed: 12/27/2022]
Abstract
This study was conducted to present the mechanism of the therapeutic effects of Chlorella vulgaris extract (CV) on the carbon tetrachloride (CCl4) induced liver fibrosis model. Primarily, the mechanism of antioxidant effects of CV were investigated via measuring the expression of forkhead box protein O1 (FOXO1) and phosphorylated 5' adenosine monophosphate-activated protein kinase (p-AMPK) as upstream regulators of superoxide dismutase (SOD) and catalase (CAT). Subsequently, we investigated the regulatory effect of CV treatment on the yes-associated protein (YAP) and transcriptional coactivators with a PDZ-binding motif (TAZ) as fibrogenic factors. Male Wistar rats received CCl4 and olive oil solution 1 ml/kg intraperitoneally for 12 weeks, twice weekly. CV 50 and 100 mg/kg were administered on a daily basis by gavage in the last 4 weeks. Ultimately, liver marker enzymes and hepatic hydroxyproline content were measured. The activity of SOD and CAT and the expression of YAP, TAZ, FOXO1, SOD, and CAT were analyzed. Finally, the protein levels of YAP, TAZ, and p-AMPK were detected. CV administration decreased liver marker enzymes and hydroxyproline content significantly. The expression and protein levels of YAP and TAZ reduced by CV treatment. Furthermore, the augmentation of expression and function of CAT and SOD by CV treatment was followed by an increase in the expression of FOXO1 and protein level of p-AMPK. Our data revealed that the stimulation of expression and function of SOD and CAT by CV treatment could be mediated by FOXO1/p-AMPK axis. Moreover, anti-fibrotic effect of CV might be associated with its inhibitory effect on the hepatic expression of YAP and TAZ. Chlorella vulgaris treatment ameliorates liver fibrosis via two cellular mechanisms. A) Likely, Chlorella vulgaris treatment increases gene expression of enzymatic antioxidants superoxide dismutase (SOD) and catalase (CAT) via upregulating its upstream regulatory elements i.e. phosphorylated 5' adenosine monophosphate-activated protein kinase (p-AMPK) and forkhead box protein O1 (FOXO1). These possible regulatory effects maybe lead to reduce reactive oxygen species level (ROS). B) Chlorella vulgaris treatment decreases hepatic protein level and gene expression of key elements of Hippo signaling pathway i.e. Yes-associated protein (YAP) and Transcriptional coactivators with a PDZ-binding motif (TAZ). Figure created with BioRender ( https://biorender.com ). ROS: Reactive oxygen species, YAP: Yes-associated protein, TAZ: Transcriptional coactivators with a PDZ-binding motif, FOXO1: Fork head Box O1, AMPK: 5' adenosine monophosphate activated protein kinase, SOD: Superoxide dismutase, CAT: Catalase, P: Phosphate group.
Collapse
|
39
|
Yang S, Qu Y, Zhang H, Xue Z, Liu T, Yang L, Sun L, Zhou Y, Fan Y. Hypoglycemic effects of polysaccharides from Gomphidiaceae rutilus fruiting bodies and their mechanisms. Food Funct 2020; 11:424-434. [PMID: 31828269 DOI: 10.1039/c9fo02283j] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Insulin resistance is the main cause of type 2 diabetes, fatty liver and obesity. Our previous study found that mushroom polysaccharides improved insulin resistance in vitro, but the underlying mechanisms were still unknown. Thus, we investigate the hypoglycemic effects of polysaccharides from Gomphidiaceae rutilus fruiting bodies and their mechanisms. The total polysaccharides (AGRP) from Gomphidiaceae rutilus fruiting bodies and the neutral polysaccharide (AGRP-N) fraction both enhance insulin-stimulated glucose uptake in an autophagy-dependent manner in high glucose and fatty acid-treated hepatic cells, but not the acidic polysaccharide (AGRP-A) fraction. Further, we elucidate the oral hypoglycemic effects of polysaccharides on ob/ob mice. AGRP and AGRP-N lower blood glucose and improve insulin sensitivity. They inhibit liver lipid deposition, not only by activating AMPK to increase autophagy but also by increasing the expressions of PPARα and CPT-1a to enhance lipolysis. Our results provide a basis for the development of polysaccharides from Gomphidiaceae rutilus as a hypoglycemic healthy food.
Collapse
Affiliation(s)
- Siwen Yang
- School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Ban Q, Cheng J, Sun X, Jiang Y, Guo M. Effect of feeding type 2 diabetes mellitus rats with synbiotic yogurt sweetened with monk fruit extract on serum lipid levels and hepatic AMPK (5' adenosine monophosphate-activated protein kinase) signaling pathway. Food Funct 2020; 11:7696-7706. [PMID: 32914810 DOI: 10.1039/d0fo01860k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Monk fruit extract (MFE) is a natural sweetener that has been used as an ingredient of food and pharmaceutical products. The effects of feeding synbiotic yogurt fortified with MFE to rats with type 2 diabetes induced by high-fat diet and streptozotocin on serum lipid levels and hepatic AMPK signaling pathway were evaluated. Results showed that oral administration of the synbiotic yogurt fortified with MFE could improve serum lipid levels, respiratory exchange rate, and heat level in type 2 diabetic rats. Transcriptome analysis showed that synbiotic yogurt fortified with MFE may affect the expression of genes involved in binding, catalytic activity, and transporter activity. The Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed that these differentially expressed genes were related to AMPK signaling pathway, linoleic acid metabolism, and α-linolenic acid metabolism. Western blotting confirmed that synbiotic yogurt fortified with MFE could activate AMPK signaling and improve the protein level of the hepatic gluconeogenic enzyme G6Pase in diabetic rats. The results indicated that MFE could be a novel sweetener for functional yogurt and related products.
Collapse
Affiliation(s)
- Qingfeng Ban
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China and Key Laboratory of Dairy Science of Ministry of Education, Northeast Agricultural University, Harbin 150030, China.
| | - Jianjun Cheng
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Xiaomeng Sun
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China and Key Laboratory of Dairy Science of Ministry of Education, Northeast Agricultural University, Harbin 150030, China.
| | - Yunqing Jiang
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China and Key Laboratory of Dairy Science of Ministry of Education, Northeast Agricultural University, Harbin 150030, China.
| | - Mingruo Guo
- Key Laboratory of Dairy Science of Ministry of Education, Northeast Agricultural University, Harbin 150030, China. and Department of Nutrition and Food Sciences, College of Agriculture and Life Sciences, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
41
|
Dai H, Lv Z, Hu C, Shi Z, Wei X, Jin S, Yuan Y, Yu D, Shi F. Alpha-lipoic acid improves the reproduction performance of breeder hens during the late egg-laying period. J Anim Physiol Anim Nutr (Berl) 2020; 104:1788-1797. [PMID: 32881138 DOI: 10.1111/jpn.13423] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/13/2020] [Accepted: 06/13/2020] [Indexed: 01/04/2023]
Abstract
Alpha-lipoic acid (ALA), a multifunctional antioxidant, can promote fatty acid mobilization, energy expenditure and scavenge free radicals. The effects of dietary ALA on the reproductive performance of breeder hens were investigated in the current study. In the 5-week experiment, 180 54-week-old Qiling breeder hens were randomly divided into three treatments with five replicates and supplemented with three levels of ALA (0, 300 and 600 mg/kg) in the basic corn-soya bean meal diets. 600 mg/kg ALA treatment group (HLA) significantly improved the eggshell thickness and strength (p < .05). ALA-treated groups improved egg-laying rate compared with the CON group, but with no statistically significant difference (p > .05). The levels of HDL-C, ALB and estradiol (E2) of the serum in the HLA group were elevated compared with the CON group (p < .05). In addition, ALA (600 mg/kg) treatment exhibited a reduced level of serum AST and TG (p < .05). Dietary ALA increased the activity of hepatic lipase in liver (p < .05). Supplemental 600 mg/kg ALA also improved the SOD activity and total antioxidant capacity level, along with a decreased MDA in ovarian tissue (p < .05). Furthermore, the mRNA expressions of ESR1, ESR2, VTG2 and ApoB in the liver and FSHR in follicles were upregulated in the HLA group (p < .05). In conclusion, dietary supplementation with 600 mg/kg ALA during the late egg-laying period could improve lipid metabolism and reproductive performance of breeder hens.
Collapse
Affiliation(s)
- Hongjian Dai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zengpeng Lv
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Chenhui Hu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zhicheng Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xihui Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Song Jin
- Changzhou Animal Disease Control Center, Bureau of Agriculture and Rural Affairs of Changzhou, Jiangsu, China
| | - Yunwei Yuan
- Jiangsu Hesheng Food Limited Company, Taizhou, China
| | - Debing Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Fangxiong Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.,National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
42
|
Chen W, Zhang X, Xu M, Jiang L, Zhou M, Liu W, Chen Z, Wang Y, Zou Q, Wang L. Betaine prevented high-fat diet-induced NAFLD by regulating the FGF10/AMPK signaling pathway in ApoE -/- mice. Eur J Nutr 2020; 60:1655-1668. [PMID: 32808060 DOI: 10.1007/s00394-020-02362-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 08/07/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE Nonalcoholic fatty liver disease (NAFLD) is currently the leading cause of chronic liver disease in developing countries. The pathogenesis is complex, and there is currently no effective treatment. Betaine is an essential intermediate in choline catabolism and an important component of the methionine cycle. Betaine deficiency is associated with NAFLD severity, and its mechanism needs to be further elaborated. METHODS In this study, an NAFLD mouse model was established by feeding ApoE-/- mice a high-fat diet. The effects of betaine on NAFLD were investigated, including its mechanism. RESULTS In this study, after treatment with betaine, blood lipid levels and liver damage were significantly decreased in the NAFLD mouse model. The fat infiltration of the liver tissues of high-fat diet (HFD)-fed mice after betaine administration was significantly improved. Betaine treatment significantly upregulated AMP-activated protein kinase (AMPK), fibroblast growth factor 10 (FGF10), and adipose triglyceride lipase (ATGL) protein levels both in vivo and in vitro and suppressed lipid metabolism-related genes. Furthermore, the overexpression of FGF10 increased the protein level of AMPK and decreased lipid accumulation in HepG2 cells. CONCLUSION Taken together, the data strongly suggest that betaine significantly prevents high-fat diet-induced NAFLD through the FGF10/AMPK signaling pathway in ApoE-/- mice.
Collapse
Affiliation(s)
- Weiqiang Chen
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular DiseasesMinistry of Education, Gannan Medical University, Ganzhou, 341000, China
- KingMed Diagnostics, Guangzhou, 510320, China
| | - Xiaoli Zhang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular DiseasesMinistry of Education, Gannan Medical University, Ganzhou, 341000, China
| | - Minwen Xu
- First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Lixia Jiang
- First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Min Zhou
- Undergraduate of Biotechnology, Gannan Medical University, Ganzhou, 341000, China
| | - Wenjun Liu
- Undergraduate of Biotechnology, Gannan Medical University, Ganzhou, 341000, China
| | - Zhijun Chen
- Undergraduate of Biotechnology, Gannan Medical University, Ganzhou, 341000, China
| | - Yucai Wang
- Jiangxi Xi Di Biological Science and Technology Co., Ltd., Ganzhou, 341000, China
| | - Qingyan Zou
- Jiangxi Xi Di Biological Science and Technology Co., Ltd., Ganzhou, 341000, China
| | - Liefeng Wang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular DiseasesMinistry of Education, Gannan Medical University, Ganzhou, 341000, China.
| |
Collapse
|
43
|
Santos FO, Correia BRO, Marinho TS, Barbosa-da-Silva S, Mandarim-de-Lacerda CA, Souza-Mello V. Anti-steatotic linagliptin pleiotropic effects encompasses suppression of de novo lipogenesis and ER stress in high-fat-fed mice. Mol Cell Endocrinol 2020; 509:110804. [PMID: 32259637 DOI: 10.1016/j.mce.2020.110804] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 12/30/2022]
Abstract
AIM To investigate the effects of linagliptin treatment on hepatic energy metabolism and ER stress in high-fat-fed C57BL/6 mice. METHODS Forty male C57BL/6 mice, three months of age, received a control diet (C, 10% of lipids as energy, n = 20) or high-fat diet (HF, 50% of lipids as energy, n = 20) for 10 weeks. The groups were randomly subdivided into four groups to receive linagliptin, for five weeks, at a dose of 30 mg/kg/day added to the diets: C, C-L, HF, and HF-L groups. RESULTS The HF group showed higher body mass, total and hepatic cholesterol levels and total and hepatic triacylglycerol levels than the C group, all of which were significantly diminished by linagliptin in the HF-L group. The HF group had higher hepatic steatosis than the C group, whereas linagliptin markedly reduced the hepatic steatosis (less 52%, P < 0.001). The expression of Sirt1 and Pgc1a was more significant in the HF-L group than in the HF group. Linagliptin also elicited enhanced GLP-1 concentrations and a reduction in the expression of the lipogenic genes Fas and Srebp1c. Besides, HF-L showed a reduction in the genes related to endoplasmic reticulum stress Chop, Atf4, and Gadd45 coupled with reduced apoptotic nuclei immunostaining. CONCLUSION Linagliptin caused a marked reduction in hepatic steatosis as a secondary effect of its glucose-lowering property. NAFLD countering involved reduced lipogenesis, increased beta-oxidation, and relief in endoplasmic reticulum stress, leading to reduced apoptosis and better preservation of the hepatic structure. Therefore, linagliptin may be used, preferably in diabetic patients, to avoid the progression of hepatic steatosis.
Collapse
Affiliation(s)
- F O Santos
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - B R O Correia
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - T S Marinho
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sandra Barbosa-da-Silva
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos A Mandarim-de-Lacerda
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vanessa Souza-Mello
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
44
|
Lee HS, Lee SJ, Ho JN, Cho HY. Preventive Effect of Fermented Chestnut Inner Shell Extract on Obesity-Induced Hepatic Steatosis. Prev Nutr Food Sci 2020; 25:32-40. [PMID: 32292753 PMCID: PMC7143010 DOI: 10.3746/pnf.2020.25.1.32] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/02/2019] [Indexed: 01/04/2023] Open
Abstract
This study aimed to investigate the effects of the gallic acid-enriched fermented chestnut inner shell extract (FCCE) by Saccharomyces cerevisiae on a high fat diet (HFD)-induced obesity and hepatic steatosis in vivo mouse model. Mice feeding FCCE exhibited reduced body weight gain compared to those in the HFD-fed group, and showed lower abdominal fat pad weight including epididymal, retroperitoneal, and mesenteric adipose tissue. Further, FCCE administration decreased adipocyte size by suppressing adipogenic factors such as peroxisome proliferator activated receptor γ and CCAAT/ enhancer-binding protein α, and lipogenic factors such as sterol regulatory element-binding protein-1c, fatty acid synthase, and stearoyl CoA desaturase-1. Moreover, FCCE decreased levels of lipids in serum and liver as well as serum alanine aminotransferase and aspartate aminotransferase levels, markers of liver injury. Histological observations of the liver showed that FCCE significantly attenuated HFD-induced hepatic steatosis. The effect of FCCE on hepatic lipid regulatory factors may be partly associated with adenosine monophosphate-activated protein kinase activation. These results suggest that gallic acid-enriched FCCE has potential to be a promising functional food for prevention of obesity and obesity-related fatty liver disease.
Collapse
Affiliation(s)
- Hee-Seop Lee
- Deptartment of Food and Biotechnology, Korea University, Sejong 30019, Korea
| | | | - Jin-Nyoung Ho
- Department of Urology, Seoul National University Bundang Hospital, Gyeonggi 13620, Korea
| | - Hong-Yon Cho
- Deptartment of Food and Biotechnology, Korea University, Sejong 30019, Korea
| |
Collapse
|
45
|
Guo C, Han L, Li M, Yu L. Seabuckthorn ( Hippophaë rhamnoides) Freeze-Dried Powder Protects against High-Fat Diet-Induced Obesity, Lipid Metabolism Disorders by Modulating the Gut Microbiota of Mice. Nutrients 2020; 12:nu12010265. [PMID: 31968607 PMCID: PMC7020008 DOI: 10.3390/nu12010265] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 12/11/2022] Open
Abstract
This study aimed to investigate the beneficial effects of seabuckthorn freeze-dried powder on high-fat diet-induced obesity and related lipid metabolism disorders, and further explored if this improvement is associated with gut microbiota. Results showed that seabuckthorn freeze-dried powder administration decreased body weight, Lee’s index, adipose tissue weight, liver weight, and serum lipid levels. Moreover, treatment with seabuckthorn freeze-dried powder effectively reduced fat accumulation by modulating the relative expression of genes involved in lipid metabolism through down-regulation of encoding lipogenic and store genes, including SREBP-1c, PPAR-γ, ACC, and SCD1, and up-regulation of regulating genes of fatty acid oxidation, including HSL, CPT-1, and ACOX. Especially, seabuckthorn freeze-dried powder regulated the composition of gut microbiota, such as increasing the ratio of Firmicutes/Bacteroidetes, decreasing relative abundance of harmful bacteria (Desulfovibrio), and increasing relative abundance of beneficial bacteria (Akkermansia and Bacteroides). The changes of beneficial bacteria had a positive correlation with genes encoding lipolysis and a negative correlation with genes encoding lipid lipogenesis and store. The harmful bacteria were just the opposite. Besides, changes in gut microbiota had an obvious effect in the secretion of main metabolites—short-chain fatty acids (SCFAs), especially propionic acid. Thus, our results indicated that the seabuckthorn freeze-dried powder could ameliorate high-fat diet-induced obesity and obesity-associated lipid metabolism disorders by changing the composition and structure of gut microbiota.
Collapse
Affiliation(s)
- Caixia Guo
- Correspondence: ; Tel.: +86-13994280378; Fax: +86-0351-7018397
| | | | | | | |
Collapse
|
46
|
Sim WC, Lee W, Sim H, Lee KY, Jung SH, Choi YJ, Kim HY, Kang KW, Lee JY, Choi YJ, Kim SK, Jun DW, Kim W, Lee BH. Downregulation of PHGDH expression and hepatic serine level contribute to the development of fatty liver disease. Metabolism 2020; 102:154000. [PMID: 31678070 DOI: 10.1016/j.metabol.2019.154000] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/08/2019] [Accepted: 10/19/2019] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Supplementation with serine attenuates alcoholic fatty liver by regulating homocysteine metabolism and lipogenesis. However, little is known about serine metabolism in fatty liver disease (FLD). We aimed to investigate the changes in serine biosynthetic pathways in humans and animal models of fatty liver and their contribution to the development of FLD. METHODS High-fat diet (HFD)-induced steatosis and methionine-choline-deficient diet-induced steatohepatitis animal models were employed. Human serum samples were obtained from patients with FLD whose proton density fat fraction was estimated by magnetic resonance imaging. 3-Phosphoglycerate dehydrogenase (Phgdh)-knockout mouse embryonic fibroblasts (MEF) and transgenic mice overexpressing Phgdh (Tg-phgdh) were used to evaluate the role of serine metabolism in the development of FLD. RESULTS Expression of Phgdh was markedly reduced in the animal models. There were significant negative correlations of the serum serine with the liver fat fraction, serum alanine transaminase, and triglyceride levels among patients with FLD. Increased lipid accumulation and reduced NAD+ and SIRT1 activity were observed in Phgdh-knockout MEF and primary hepatocytes incubated with free fatty acids; these effects were reversed by overexpression of Phgdh. Tg-Phgdh mice showed significantly reduced hepatic triglyceride accumulation compared with wild-type littermates fed a HFD, which was accompanied by increased SIRT1 activity and reduced expression of lipogenic genes and proteins. CONCLUSIONS Human and experimental data suggest that reduced Phgdh expression and serine levels are closely associated with the development of FLD.
Collapse
Affiliation(s)
- Woo-Cheol Sim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Wonseok Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hyungtai Sim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Kang-Yo Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Seung-Hwan Jung
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - You-Jin Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hyun Young Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Keon Wook Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Ji-Yoon Lee
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Young Jae Choi
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Sang Kyum Kim
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Dae Won Jun
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Won Kim
- Department of Internal Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Byung-Hoon Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
47
|
Vamecq J, Papegay B, Nuyens V, Boogaerts J, Leo O, Kruys V. Mitochondrial dysfunction, AMPK activation and peroxisomal metabolism: A coherent scenario for non-canonical 3-methylglutaconic acidurias. Biochimie 2019; 168:53-82. [PMID: 31626852 DOI: 10.1016/j.biochi.2019.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/10/2019] [Indexed: 12/13/2022]
Abstract
The occurrence of 3-methylglutaconic aciduria (3-MGA) is a well understood phenomenon in leucine oxidation and ketogenesis disorders (primary 3-MGAs). In contrast, its genesis in non-canonical (secondary) 3-MGAs, a growing-up group of disorders encompassing more than a dozen of inherited metabolic diseases, is a mystery still remaining unresolved for three decades. To puzzle out this anthologic problem of metabolism, three clues were considered: (i) the variety of disorders suggests a common cellular target at the cross-road of metabolic and signaling pathways, (ii) the response to leucine loading test only discriminative for primary but not secondary 3-MGAs suggests these latter are disorders of extramitochondrial HMG-CoA metabolism as also attested by their failure to increase 3-hydroxyisovalerate, a mitochondrial metabolite accumulating only in primary 3-MGAs, (iii) the peroxisome is an extramitochondrial site possessing its own pool and displaying metabolism of HMG-CoA, suggesting its possible involvement in producing extramitochondrial 3-methylglutaconate (3-MG). Following these clues provides a unifying common basis to non-canonical 3-MGAs: constitutive mitochondrial dysfunction induces AMPK activation which, by inhibiting early steps in cholesterol and fatty acid syntheses, pipelines cytoplasmic acetyl-CoA to peroxisomes where a rise in HMG-CoA followed by local dehydration and hydrolysis may lead to 3-MGA yield. Additional contributors are considered, notably for 3-MGAs associated with hyperammonemia, and to a lesser extent in CLPB deficiency. Metabolic and signaling itineraries followed by the proposed scenario are essentially sketched, being provided with compelling evidence from the literature coming in their support.
Collapse
Affiliation(s)
- Joseph Vamecq
- Inserm, CHU Lille, Univ Lille, Department of Biochemistry and Molecular Biology, Laboratory of Hormonology, Metabolism-Nutrition & Oncology (HMNO), Center of Biology and Pathology (CBP) Pierre-Marie Degand, CHRU Lille, EA 7364 RADEME, University of North France, Lille, France.
| | - Bérengère Papegay
- Laboratory of Experimental Medicine (ULB unit 222), University Hospital Center, Charleroi, (CHU Charleroi), Belgium
| | - Vincent Nuyens
- Laboratory of Experimental Medicine (ULB unit 222), University Hospital Center, Charleroi, (CHU Charleroi), Belgium
| | - Jean Boogaerts
- Laboratory of Experimental Medicine (ULB unit 222), University Hospital Center, Charleroi, (CHU Charleroi), Belgium
| | - Oberdan Leo
- Laboratory of Immunobiology, Department of Molecular Biology, ULB Immunology Research Center (UIRC), Free University of Brussels (ULB), Gosselies, Belgium
| | - Véronique Kruys
- Laboratory of Molecular Biology of the Gene, Department of Molecular Biology, ULB Immunology Research Center (UIRC), Free University of Brussels (ULB), Gosselies, Belgium
| |
Collapse
|
48
|
Xu C, Liu WB, Remø SC, Wang BK, Shi HJ, Zhang L, Liu JD, Li XF. Feeding restriction alleviates high carbohydrate diet-induced oxidative stress and inflammation of Megalobrama amblycephala by activating the AMPK-SIRT1 pathway. FISH & SHELLFISH IMMUNOLOGY 2019; 92:637-648. [PMID: 31271836 DOI: 10.1016/j.fsi.2019.06.057] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/18/2019] [Accepted: 06/29/2019] [Indexed: 06/09/2023]
Abstract
This study investigated the effects of restricted feeding on the growth performance, oxidative stress and inflammation of Megalobrama amblycephala fed high-carbohydrate (HC) diets. Fish (46.94 ± 0.04 g) were randomly assigned to four groups containing the satiation of a control diet (30% carbohydrate) and three satiate levels (100% (HC1), 80% (HC2) and 60% (HC3)) of the HC diets (43% carbohydrate) for 8 weeks. Results showed that HC1 diet remarkably decreased final weight (FW), weight gain rate (WGR), specific growth rate (SGR), feed conversion ratio (FCR), hepatic activities of total anti-oxidation capacity (T-AOC), superoxide dismutase (SOD) and catalase (CAT), the AMP/ATP ratio, the p-AMPKα/t-AMPKα ratio, sirtuin-1 (SIRT1) protein expression and hepatic transcriptions of AMPKα2, SIRT1, nuclear factor erythroid 2-related factor 2 (Nrf2), catalase (CAT), manganese superoxide dismutase (Mn-SOD), glutathione peroxidase 1 (GPx1) and interleukin10 (IL 10) compared to the control group, whereas the opposite was true for protein efficiency ratio (PER), nitrogen retention efficiency (NRE), energy retention efficiency (ERE), plasma glucose levels, alanine transaminase (AST) and aspartate aminotransferase (ALT) activities, hepatic contents of malondialdehyde (MDA), tumour necrosis factor α (TNF α) and interleukin 1β (IL 1β), ATP and AMP contents and hepatic transcriptions of kelch-like ECH associating protein 1 (Keap1), IkB kinase α (IKK α), nuclear factor kappa B (NF-κB), TNF α, IL 1β, interleukin 6 (IL 6) and transforming growth factor β (TGF β). As for the HC groups, fish fed the HC2 diet obtained relatively high values of SGR, PER, NRE, ERE, hepatic activities of T-AOC, SOD and CAT, the AMP/ATP ratio, the p-AMPKα/t-AMPKα ratio, SIRT1 protein expression and hepatic transcriptions of AMPKα2, Nrf2, CAT, copper/zinc superoxide dismutase (Cu/Zn-SOD), Mn-SOD, GPx1, glutathione S-transferase (GST) and interleukin10 (IL 10), while the opposite was true for hepatic content of IL 6 and transcription of IKK α. Overall, an 80% satiation improved the growth performance and alleviated the oxidative stress and inflammation of blunt snout bream fed HC diets via the activation of the AMPK-SIRT1 pathway and the up-regulation of the activities and transcriptions of Nrf2-modulated antioxidant enzymes coupled with the depression of the levels and transcriptions of the NF-κB-mediated pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Chao Xu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Wen-Bin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Sofie Charlotte Remø
- Department of Requirement and Welfare, Institute of Marine Research, Bergen, Norway
| | - Bing-Ke Wang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Hua-Juan Shi
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Li Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Jia-Dai Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Xiang-Fei Li
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
49
|
Abstract
Background General overnutrition is one of the key factors involved in the development of nonalcoholic fatty liver disease (NAFLD) as the most common liver disease occur by two steps of liver injury ranges from steatosis to nonalcoholic steatohepatitis (NASH). Here the effect of fructose, fat-rich and western diet (WD) feeding was studied along with aggravative effect of cigarette smoking on liver status in mice. Methods Sixty-four male NMRI mice were included in this study and assigned into 4 groups that fed standard, fructose-rich, high fat-, and western-diet for 8 weeks and then each group divided in two smoker and nonsmoker subgroups according to smoke exposing in the last 4 weeks of feeding time (n = 8). Histopathological studies, serum biochemical analyses and hepatic TNF-α level were evaluated in mice to compare alone or combination effects of dietary regimen and cigarette smoking. Results Serum liver enzymes and lipid profile levels in WD fed mice were significantly higher than in other studied diets. Exposing to cigarette smoke led to more elevation of serum biochemical parameters that was also accompanied by a significant increase in hepatic damage shown as more severe fat accumulation, hepatocyte ballooning and inflammation infiltrate. Elevated TNF-α level confirmed incidence of liver injury. Conclusion The finding of this study demonstrated that a combination of cigarette smoke exposure and WD (rich in fat, fructose, and cholesterol) could induce a more reliable mouse model of NASH.
Collapse
|
50
|
Insights on alpha lipoic and dihydrolipoic acids as promising scavengers of oxidative stress and possible chelators in mercury toxicology. J Inorg Biochem 2019; 195:111-119. [DOI: 10.1016/j.jinorgbio.2019.03.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 12/11/2022]
|