1
|
Wang Y, Gao J, Wu T, Wang Z. M2 Macrophages Mitigate Ocular Surface Inflammation and Promote Recovery in a Mouse Model of Dry Eye. Ocul Immunol Inflamm 2025:1-10. [PMID: 40327794 DOI: 10.1080/09273948.2025.2497484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 03/27/2025] [Accepted: 04/21/2025] [Indexed: 05/08/2025]
Abstract
PURPOSE Dry eye disease (DED) is a chronic, progressive, multifactorial condition characterized by tear film instability and ocular surface damage. Ocular surface inflammation is one of the main mechanisms of DED. This study aims to investigate the therapeutic effects of anti-inflammatory M2 macrophages on ocular surface inflammation and their potential mechanisms in improving dry eye symptoms in a mouse model. METHODS Mouse macrophages (RAW264.7) were polarized into M2 macrophages by IL-4 under different osmolarities, and M2 macrophage conditioned medium (M2-CM) was collected. Flow cytometry and ELISA were applied to measure the cytokine expression of the M2 macrophages. Primary mouse corneal epithelial cells (CECs) were co-cultured with RAW264.7 and M2 macrophages using a Transwell system. The viability and migration of CECs were assessed using CCK-8 and scratch assays. Mouse DED was established by subcutaneous injection of scopolamine, and the therapeutic effects of M2-CM were evaluated by phenol red thread test, fluorescein staining, and tear film breakup time (BUT). PCR and immunofluorescence staining were applied to observe inflammatory factors and cells on the ocular surface. RESULTS M2 macrophages enhanced CEC viability, proliferation, and migration, but hyperosmolarity inhibited M2 macrophage polarization. In the DED model, M2-CM improved ocular surface conditions, reduced pro-inflammatory cytokine expression, and increased anti-inflammatory factors. Immunofluorescence revealed reduced pro-inflammatory cells (M1 macrophages, Th1, and Th17) and increased M2 macrophages in the ocular tissues after M2-CM treatment. CONCLUSION These results suggest that M2-CM ameliorates ocular surface inflammation and promotes recovery in DED, offering a potential therapeutic strategy for DED.
Collapse
Affiliation(s)
- Yingming Wang
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jing Gao
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Tianhong Wu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Zhenyu Wang
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
2
|
Liu Y, Hong J, Peng R. SAA1 as a key mediator of immune inflammatory pathways in fungal keratitis through FOXO3a phosphorylation regulation. Cytokine 2025; 189:156898. [PMID: 40020519 DOI: 10.1016/j.cyto.2025.156898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/12/2025] [Accepted: 02/16/2025] [Indexed: 03/03/2025]
Abstract
OBJECTIVE Fungal keratitis (FK) is a severe ocular infection, with its underlying molecular mechanisms remaining incompletely understood. This study aimed to identify and investigate key genes involved in immune-inflammatory responses associated with FK pathogenesis using bioinformatics and in vitro assays. METHODS Transcriptomic data from the Gene Expression Omnibus (GEO) database (GSE58291) were analyzed using the limma package to identify differentially expressed genes (DEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed to evaluate significant biological processes and pathways related to DEGs. Weighted gene co-expression network analysis (WGCNA) identified gene modules linked with FK-associated DEGs, and Venn diagram analysis highlighted core genes. Receiver operating characteristic (ROC) analysis assessed diagnostic potential. Immune cell composition was analyzed using CIBERSORT, and correlations between key genes and immune cells were evaluated. In vitro, human corneal epithelial cells (HCEC) were stimulated with Aspergillus fumigatus (A.F.), and pro-inflammatory cytokine expression (IL-1β, TNF-α, IL-6) was assessed using enzyme-linked immunosorbent assay (ELISA). Western blot and quantitative real-time polymerase chain reaction (RT-qPCR) analyzed FOXO3a phosphorylation and gene expression changes post-SAA1 siRNA transfection. RESULTS A total of 101 DEGs were identified, with WGCNA revealing 6 co-expression network modules, with significant associations noted in yellow and black modules. Nine shared genes were identified in DEGs and modules, with SAA1 strongly linked to FK pathogenesis. SAA1 expression was positively correlated with neutrophils, T cells CD4 memory activated, T cells gamma delta, and activated mast cells. Upon stimulation with A.F., cytokine expression increased, peaking at 24 h. Inhibition of SAA1 reduced FOXO3a phosphorylation and pro-inflammatory cytokine levels, underscoring SAA1's role in FK inflammation via FOXO3a regulation. CONCLUSION SAA1 is a key gene in FK, promoting inflammation by modulating FOXO3a phosphorylation. This highlights its potential as a therapeutic target in managing FK-related inflammation.
Collapse
Affiliation(s)
- Yihe Liu
- Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, PR China; Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing 100191, PR China
| | - Jing Hong
- Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, PR China; Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing 100191, PR China
| | - Rongmei Peng
- Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, PR China; Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing 100191, PR China.
| |
Collapse
|
3
|
Fukuoka S, Adachi N, Ouchi E, Ikemoto H, Okumo T, Ishikawa F, Onda H, Sunagawa M. Mechanoreceptor Piezo1 channel-mediated interleukin expression in conjunctival epithelial cells: Linking mechanical stress to ocular inflammation. Ocul Surf 2025; 36:56-68. [PMID: 39778715 DOI: 10.1016/j.jtos.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 12/27/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
PURPOSE Mechanical stress on the ocular surface, such as from eye-rubbing, has been reported to lead to inflammation and various ocular conditions. We hypothesized that the mechanosensitive Piezo1 channel in the conjunctival epithelium contributes to the inflammatory response at the ocular surface after receiving mechanical stimuli. METHODS Human conjunctival epithelial cells (HConjECs) were treated with Yoda1, a Piezo1-specific agonist, and various allergens to measure cytokine expression levels using qRT-PCR. Piezo1 activation-induced intracellular signaling pathways were also investigated by Western blot. Mechanical stretching experiments were conducted to simulate Piezo1 activation in HConjECs. Specificity of Piezo1 was confirmed by PIEZO1 knockdown and GsMTx4. In in vivo studies, using immunohistochemistry, rats were administered Yoda1 eye drops to examine the inflammatory response in the conjunctiva and Piezo1-induced signaling activation. RESULTS HConjECs expressed functional Piezo1 channel which was the dominant mechanoreceptor among putative channels and whose activation significantly increased IL-6 and IL-8 expression through the p38 MAPK-CREB pathway. Piezo1-induced [Ca2+]i elevation was crucial for the production of IL-6. The Yoda1-induced inflammatory responses were blocked by PIEZO1 knockdown. Mechanical stretching mimicked these effects, which were suppressed by GsMTx4. In vivo, Yoda1 administration led to increased phospho-p38 MAPK, phospho-CREB, and IL-6 in the rat conjunctival epithelium, with significant neutrophil infiltration. CONCLUSION Mechanical stress-induced Piezo1 channel activation in conjunctival epithelial cells can cause ocular inflammation by upregulating pro-inflammatory cytokines via the p38 MAPK-CREB pathway and promoting neutrophil infiltration. These findings suggest that mechanical stimuli on ocular surface tissues are significant risk factors for ocular inflammation.
Collapse
Affiliation(s)
- Seiya Fukuoka
- Department of Physiology, Showa University Graduate School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan; Department of Ophthalmology, Showa University Graduate School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Naoki Adachi
- Department of Physiology, Showa University Graduate School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan.
| | - Erika Ouchi
- Department of Physiology, Showa University Graduate School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Hideshi Ikemoto
- Department of Physiology, Showa University Graduate School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Takayuki Okumo
- Department of Physiology, Showa University Graduate School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Fumihiro Ishikawa
- Center for Biotechnology, Showa University Graduate School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Hidetoshi Onda
- Department of Ophthalmology, Showa University Graduate School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Masataka Sunagawa
- Department of Physiology, Showa University Graduate School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| |
Collapse
|
4
|
Raîche-Marcoux G, Guérin S, Boisselier É. [Cellular models used to study the pathogenesis associated with ocular inflammation in the anterior part of the eye]. Med Sci (Paris) 2025; 41:327-335. [PMID: 40294293 DOI: 10.1051/medsci/2025046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025] Open
Abstract
Several multifactorial pathologies in ophthalmology that affect the anterior segment of the eye are partly inflammatory. To better understand the role and impact of inflammation in dry eye and corneal healing, many research teams have used in vitro models to mimic different aspects of these diseases. Several in vitro models have been developed to elucidate the signaling cascades involved in pathogenesis. They also offer the experimental flexibility to adjust environmental parameters, facilitating the validation of innovative therapies and the identification of new pharmacological targets. This review focuses on two-dimensional in vitro models, but also highlights the progress made in 3D models obtained by tissue engineering, which mimic inflammation in these ocular pathologies. The origin of the cells (human or animal), their tissue source, the type of cells (epithelial, endothelial, vascular, conjunctival), as well as the various experimental conditions used to mimic an inflammatory aspect according to the stages of progression of these pathologies, are thoroughly reported in this review of the literature.
Collapse
Affiliation(s)
- Gabrielle Raîche-Marcoux
- Centre universitaire d'ophtalmologie (CUO) - recherche, axe médecine régénératrice; Centre de recherche du CHU de Québec-Université Laval, Québec, QC G1S 4L8, Canada - Département d'ophtalmologie et d'oto-rhino-laryngologie - chirurgie cervico-faciale, Faculté de médecine, Université Laval, Québec, Canada
| | - Sylvain Guérin
- Centre universitaire d'ophtalmologie (CUO) - recherche, axe médecine régénératrice; Centre de recherche du CHU de Québec-Université Laval, Québec, QC G1S 4L8, Canada - Département d'ophtalmologie et d'oto-rhino-laryngologie - chirurgie cervico-faciale, Faculté de médecine, Université Laval, Québec, Canada
| | - Élodie Boisselier
- Centre universitaire d'ophtalmologie (CUO) - recherche, axe médecine régénératrice; Centre de recherche du CHU de Québec-Université Laval, Québec, QC G1S 4L8, Canada - Département d'ophtalmologie et d'oto-rhino-laryngologie - chirurgie cervico-faciale, Faculté de médecine, Université Laval, Québec, Canada
| |
Collapse
|
5
|
Wan X, Zhang Y, Zhang K, Mou Y, Jin X, Huang X. The alterations of ocular surface metabolism and the related immunity inflammation in dry eye. ADVANCES IN OPHTHALMOLOGY PRACTICE AND RESEARCH 2025; 5:1-12. [PMID: 39758836 PMCID: PMC11699629 DOI: 10.1016/j.aopr.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/22/2024] [Accepted: 08/09/2024] [Indexed: 01/07/2025]
Abstract
Background Dry eye disease (DED) stands as a prominent ocular condition of global prevalence, emerging as a growing concern within public health. However, the underlying mechanisms involved in its pathogenesis remain largely unknown. In recent years, with the development of metabolomics, numerous studies have reported alterations in ocular surface metabolism in DED and offered fresh perspectives on the development of DED. Main text The metabolic changes of the ocular surface of DED patients are closely intertwined with the cellular metabolism process and immune inflammation changes. This article expounds upon the correlation between ocular surface metabolism and immune inflammation alterations in DED in terms of glycolysis, lipid metabolism, amino acid metabolism, cellular signaling pathways, and immune inflammation regulation. Conclusions The alterations in ocular surface metabolism of patients with dry eye are closely associated with their inflammatory status. Our work contributes novel insights into the pathogenesis of dry eye diseases and offers innovative molecular targets for diagnosing, detecting, and managing DED patients.
Collapse
Affiliation(s)
- Xiaojie Wan
- Eye Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, China
| | - Yu Zhang
- Eye Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, China
| | - Kaiye Zhang
- Eye Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, China
| | - Yujie Mou
- Eye Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, China
| | - Xiuming Jin
- Eye Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, China
| | - Xiaodan Huang
- Eye Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, China
| |
Collapse
|
6
|
Chen J, Wang Z, Wang S, Lyu J, Fang Z, Qi W, Yang X, Gao G, Zhou T. Probing the familial ties between serpin members Kallistatin and PEDF: A comparative analysis review. Life Sci 2025; 362:123333. [PMID: 39719168 DOI: 10.1016/j.lfs.2024.123333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/07/2024] [Accepted: 12/19/2024] [Indexed: 12/26/2024]
Abstract
The serine protease inhibitors (Serpins) represent a diverse protein superfamily that holds paramount significance in governing vital pathophysiological processes. Their influence on critical biological pathways renders serpins highly coveted targets for drug discovery endeavors. Among the numerous members of this family, two distinct proteins, Kallistatin (encoded by the SERPINA4 gene) and Pigment Epithelium-Derived Factor (PEDF, encoded by the SERPINF1 gene), stand out as secreted proteins that are abundantly present in peripheral blood. Kallistatin is a serine protease inhibitor that specifically inhibits human tissue kallikrein, while PEDF is a non-inhibitory member of the serine protease inhibitors superfamily (Lin et al., 2015a; Chao and Chao, 1995 [1,2]). Instead, they exhibit notable anti-angiogenic effects and play pivotal roles in the pathogenesis of metabolic disorders. Extensive research, including our own investigations, has revealed intriguing similarities as well as noteworthy differences between these two proteins. Despite their shared characteristics, the distinctive features of Kallistatin and PEDF render them unique in their respective functions and mechanisms of action. However, a comprehensive literature review comparing their similarities and differences remains elusive. Therefore, the present review aims to systematically delve into and summarize the comparable and contrasting aspects of Kallistatin and PEDF. We will delve into their expression patterns, structural features, and mechanisms of expression regulation. Furthermore, this review will delve into their physiological functions and roles in diseases, the signaling pathways they influence, and their potential clinical applications. By comparing and contrasting these two proteins, we hope to provide a comprehensive understanding of their functions and potential in biomedical research and clinical practice.
Collapse
Affiliation(s)
- Jingnan Chen
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Zihan Wang
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Simin Wang
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jiayi Lyu
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Zhenzhen Fang
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Weiwei Qi
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xia Yang
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Guoquan Gao
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; Guangdong Engineering & Technology Research Center for Gene Manipulation and Biomacromolecular Products, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Ti Zhou
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; China Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou 510080, China; Guangdong Province Key Laboratory of Diabetology, Guangzhou 510080, China.
| |
Collapse
|
7
|
Shelton DA, Papania JT, Getz TE, Sellers JT, Giradot PE, Chrenek MA, Grossniklaus HE, Boatright JH, Nickerson JM. Loss of Pigment Epithelium Derived Factor Sensitizes C57BL/6J Mice to Light-Induced Retinal Damage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.04.626802. [PMID: 39679905 PMCID: PMC11643041 DOI: 10.1101/2024.12.04.626802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Purpose Pigment epithelium-derived factor (PEDF) is a neurotrophic glycoprotein secreted by the retinal pigment epithelium (RPE) that supports retinal photoreceptor health. Deficits in PEDF are associated with increased inflammation and retinal degeneration in aging and diabetic retinopathy. We hypothesized that light-induced stress in C57BL/6J mice deficient in PEDF would lead to increased retinal neuronal and RPE defects, impaired expression of neurotrophic factor Insulin-like growth factor 1 (IGF-1), and overactivation of Galectin-3-mediated inflammatory signaling. Methods C57BL/6J mice expressing the RPE65 M450/M450 allele were crossed to PEDF KO/KO and wildtype (PEDF +/+) littermates. Mice were exposed to 50,000 lux light for 5 hours to initiate acute damage. Changes in visual function outcomes were tracked via electroretinogram (ERG), confocal scanning laser ophthalmoscopy(cSLO), and spectral domain optical coherence tomography (SD-OCT) on days 3, 5, and 7 post-light exposure. Gene and protein expression of Galectin-3 were measured by digital drop PCR (ddPCR) and western blot. To further investigate the role of galectin-3 on visual outcomes and PEDF expression after damage, we also used a small-molecule inhibitor to reduce its activity. Results Following light damage, PEDF KO/KO mice showed more severe retinal thinning, impaired visual function (reduced a-, b-, and c-wave amplitudes), and increased Galectin-3 expressing immune cell infiltration compared to PEDF +/+. PEDF KO/KO mice had suppressed damage-associated increases in IGF-1 expression. Additionally, baseline Galectin-3 mRNA and protein expression were reduced in PEDF KO/KO mice compared to PEDF +/+. However, after light damage, Galectin-3 expression decreases in PEDF +/+ mice but increases in PEDF KO/KO mice without reaching PEDF +/+ levels. Galectin-3 inhibition worsens retinal degeneration, reduces PEDF expression in PEDF +/+ mice, and mimics the effects seen in PEDF knockouts. Conclusions Loss of PEDF alone does not elicit functional defects in C57BL/6J mice. However, under light stress, PEDF deficiency significantly increases severe retinal degeneration, visual deficits, Galectin-3 expression, and suppression of IGF-1 than PEDF +/+. PEDF deficiency reduced baseline expression of Galectin-3, and pharmacological inhibition of Galectin-3 worsens outcomes and suppresses PEDF expression in PEDF +/+, suggesting a novel co-regulatory relationship between the two proteins in mitigating light-induced retinal damage.
Collapse
Affiliation(s)
- Debresha A. Shelton
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
| | - Jack T. Papania
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
| | - Tatiana E. Getz
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
| | - Jana T. Sellers
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
| | - Preston E. Giradot
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
| | - Micah A. Chrenek
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
| | | | - Jeffrey H. Boatright
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
- Atlanta Veterans Administration Center for Visual and Neurocognitive Rehabilitation, Decatur, Georgia, United States
| | - John M. Nickerson
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
| |
Collapse
|
8
|
Zha Z, Xiao D, Liu Z, Peng F, Shang X, Sun Z, Liu Y, Chen W. Endoplasmic Reticulum Stress Induces ROS Production and Activates NLRP3 Inflammasome Via the PERK-CHOP Signaling Pathway in Dry Eye Disease. Invest Ophthalmol Vis Sci 2024; 65:34. [PMID: 39699913 DOI: 10.1167/iovs.65.14.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024] Open
Abstract
Purpose The purpose of this study was to investigate the potential roles of endoplasmic reticulum (ER) stress in the development of dry eye disease (DED). Methods Single-cell RNA sequencing (scRNA-seq) data from the Gene Expression Omnibus (GEO) database, derived from corneal tissues of a dry eye mouse model, was processed using the Seurat R program. The results were validated using a scopolamine-induced dry eye mouse model and a hyperosmotic-induced cell model involving primary human corneal epithelial cells (HCECs) and immortalized human corneal epithelial (HCE-2) cells. The HCE-2 cells were treated with 4-phenylbutyric acid (4-PBA) or tunicamycin (TM) to modulate ER stress. TXNIP and PERK knockdown were performed by siRNA transfection. Immunofluorescence, Western blotting, and real-time PCR were used to assess oxidative stress, ER stress, unfolded protein response (UPR) marker proteins, and TXNIP/NLRP3 axis activation. Results The analysis of scRNAseq data shows an increase in the ER stress marker GRP78, and the activation of the PERK-CHOP of UPR in DED mouse. These findings were confirmed both in vivo and in vitro. Additionally, HCE-2 cells treated with 4-PBA or TM showed significant effects on the production of reactive oxygen species (ROS) and the activation of the TXNIP/NLRP3-IL1β signaling pathway. Furthermore, siRNA knockdown of PERK or TXNIP, which alleviated the TXNIP/NLRP3-IL1β signaling axis, showed protective effects on HCECs. Conclusions This study explores the role of ER stress-induced oxidative stress and NLRP3-IL-1β mediated inflammation in DED, and highlights the therapeutic potential of PERK-CHOP axis and TXNIP in the treatment of DED.
Collapse
Affiliation(s)
- Zhiwei Zha
- The Affiliated Ningbo Eye Hospital of Wenzhou Medical University, Ningbo, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Decheng Xiao
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zihao Liu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fangli Peng
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xunjie Shang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhenzhen Sun
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yang Liu
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wei Chen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Ningbo Eye Institute, Ningbo Eye Hospital, Wenzhou Medical University, Ningbo, China
| |
Collapse
|
9
|
Ren Y, Tian J, Shi W, Feng J, Liu Y, Kang H, He Y. Evaluation of ocular surface inflammation and systemic conditions in patients with systemic lupus erythematosus: a cross-sectional study. BMC Ophthalmol 2024; 24:492. [PMID: 39533209 PMCID: PMC11556210 DOI: 10.1186/s12886-024-03760-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
OBJECTIVE The cross-sectional study was designed to evaluate the association of ocular surface inflammation with systemic conditions in patients with systemic lupus erythematosus (SLE). METHODS The study enrolled 30 SLE patients and 30 controls. Ocular symptoms were evaluated using the Ocular Surface Disease Index (OSDI) questionnaire. Tear samples from all participants were collected for tear multi-cytokine and chemokine concentration analysis. All participants were assessed for dry eye disease (DED), including Schirmer I test, tear break-up time (TBUT), corneal fluorescein staining (CFS), meibomian gland secretion (MGS), lid-parallel conjunctival folds (LIPCOF), corneal clarity, and symblepharon. Besides, all participants were also examined for conjunctival impression cytology to measure the density of conjunctival goblet cells (CGCs). The peripheral blood indicators from SLE patients were also collected to measure the SLE-associated autoantibody specificities and systemic inflammatory indicators. Pearson and Spearman's analysis were uesd to examine the correlation between tear cytokines, CGCs, DED-related indicators, and systemic conditions. RESULTS The two groups were matched for age and gender in this study. 36.67% of eyes (11 in 30) of SLE patients and 13.33% of eyes (4 in 30) of controls were diagnosed with DED. OSDI scores, abnormal TBUT percentages, CFS percentages, and DED grading were all higher in SLE patients than in control group, while density of CGCs was lower. There were no significant differences in Schirmer I test, MGS, LIPCOF, corneal clarity, and symblepharon between SLE patients and controls. The levels of tear chemokine (C-X-C motif) ligand 11 (CXCL11) and cytokine interleukin-7 (IL-7) in patients with SLE were significantly higher than those in control group. Moreover, among SLE patients, the severity of DED and the level of tear chemokine CXCL11 were significantly positively correlated with SLE-associated autoantibody specificities. CONCLUSION Dry eye and tear cytokines and chemokines-mediated ocular surface inflammation persist in SLE patients and are associated with systemic conditions. Therefore, it is necessary for patients with SLE to combine systemic and ocular assessments.
Collapse
Affiliation(s)
- Yuerong Ren
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Jing Tian
- Department of Rheumatology and Immunology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wen Shi
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Jianing Feng
- Xi'an People's Hospital (Xi'an Fourth Hospital), Shaanxi Eye Hospital, Northwest University Affiliated People's Hospital, Xi'an, Shaanxi Province, China
| | - Yingyi Liu
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Huanmin Kang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Yan He
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmic and Visual Science Key Laboratory, Beijing, China.
| |
Collapse
|
10
|
Liu Y, Wu M, Ren Y, Feng J, Shi W, Kang H, Tian J, He Y. Evaluation of Dry Eye Severity and Ocular Surface Inflammation in Patients with Autoimmune Rheumatic Diseases. Ocul Immunol Inflamm 2024; 32:2018-2030. [PMID: 38363334 DOI: 10.1080/09273948.2024.2315196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/19/2024] [Accepted: 01/31/2024] [Indexed: 02/17/2024]
Abstract
PURPOSE To evaluate dry eye severity and ocular surface inflammation in autoimmune rheumatic diseases (ARDs). METHODS Seventy-nine patients with ARDs were enrolled, including 26 patients with rheumatoid arthritis (RA), 33 patients with systemic lupus erythematosus (SLE), and 20 patients with primary Sjögren's syndrome (pSS). All patients underwent ocular surface evaluations, including ocular surface symptoms, signs, conjunctival impression cytology, and tear multicytokine detection. Systemic conditions, including disease duration, disease activity, and serological parameters, were also noted. RESULTS SLE patients had the shortest disease duration, and nearly half of them had low disease activity, while RA patients and pSS patients had a relatively long disease duration, and approximately 90% of them had moderate or high disease activity. The incidence of dry eye and the levels of the proinflammatory tear cytokines in SLE were significantly lower than those in RA and pSS. However, ocular surface squamous metaplasia was more severe in SLE and pSS than in RA. Dry eye severity in all ARD patients was shown to be independent of disease activity, while Nelson's grades were positively correlated with disease duration in RA patients. Disease-related serological parameters were associated with tear proinflammatory cytokines in all ARD patients. CONCLUSIONS Variable degrees of dry eye and immune-mediated ocular surface inflammation persist in different ARD patients. In addition to a well-known association between dry eye and pSS, dry eye is also commonly observed in SLE and RA patients. Therefore, there is a definite need for regular ophthalmologic evaluations and topical medications in all patients with ARDs.
Collapse
Affiliation(s)
- Yingyi Liu
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmic and Visual Science Key Laboratory, Beijing, China
| | - Mengbo Wu
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Ophthalmology, Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Yuerong Ren
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Ophthalmology, Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Jianing Feng
- Xi'an People's Hospital (Xi'an Fourth Hospital), Shaanxi Eye Hospital, Northwest University Affiliated People's Hospital, Xi'an, Shaanxi Province, China
| | - Wen Shi
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Ophthalmology, Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Huanmin Kang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Ophthalmology, Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Jing Tian
- Department of Rheumatology and Immunology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yan He
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmic and Visual Science Key Laboratory, Beijing, China
| |
Collapse
|
11
|
Bian J, Dai W, Liu D. The effect of leizumab on serum vascular endothelial growth factor, IL-6, MCP-1 inflammatory factors in neovascular glaucoma. Eur J Ophthalmol 2024; 34:1819-1827. [PMID: 38343022 DOI: 10.1177/11206721241231338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
This study aimed to assess Leizumab's effect on serum endothelial growth factor, interleukin-6 (IL-6), monocyte chemotactic protein-1 (MCP-1), and inflammatory factors in neovascular glaucoma patients. 80 eligible patients treated between January 2021 and April 2023 were enrolled, randomly divided into control and study groups. The control group underwent vitrectomy while the study group received preoperative intravitreal rituximab injection. Measurements included serum and aqueous humor VEGF/PEDF, IL-6/MCP-1 levels, postoperative rebleeding/retinal detachment, and visual acuity changes over 6 weeks. After surgery, patients showed reduced serum VEGF/PEDF levels (P < 0.05), with decreased VEGF and increased PEDF in aqueous humor (P < 0.05). The study group had lower VEGF and higher PEDF levels than the control (P < 0.05). Serum IL-6/MCP-1 levels reduced post-surgery, with the study group lower than control (P < 0.05). Intraocular rebleeding was lower in the study group (P < 0.05), while retinal detachment rates were similar (P > 0.05). Visual acuity differed significantly from week 1 to 6 post-surgery (P < 0.05), with higher acuity in the study group during weeks 1-4 (P < 0.05). Weeks 5-6 follow-up showed no significant difference (P > 0.05). Pre-vitrectomy ranibizumab injection effectively reduced bleeding, VEGF/PEDF levels, inflammatory factors, and improved visual recovery.
Collapse
Affiliation(s)
- Junjie Bian
- Department of Ophthalmology, Xuanwu hospital Capital Medical University, Beijing, 100053, China
| | - Weijia Dai
- Department of Ophthalmology, Xuanwu hospital Capital Medical University, Beijing, 100053, China
| | - Dachuan Liu
- Department of Ophthalmology, Xuanwu hospital Capital Medical University, Beijing, 100053, China
| |
Collapse
|
12
|
Chu X, Yin Y, Chen S, Chen F, Liu H, Zhao S. Suppressive Role of Pigment Epithelium-derived Factor in a Rat Model of Corneal Allograft Rejection. Transplantation 2024; 108:2072-2083. [PMID: 38644534 DOI: 10.1097/tp.0000000000005032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
BACKGROUND Immunological rejection is the most common reason for corneal transplantation failure. The importance of T cells in corneal allograft rejection is well demonstrated. Recent studies highlight that pigment epithelium-derived factor (PEDF) plays an immunoregulatory role in ocular diseases by enhancing the suppressive phenotype of regulatory T cells besides its other functions in neurotrophy and antiangiogenesis. METHODS The effects of PEDF on immune rejection were examined in rat models of corneal transplantation using slit-lamp microscope observation, immunohistochemistry, flow cytometry, and Western blot. In vitro, we demonstrated PEDF reduced alloreactive T-cell activation using real-time polymerase chain reaction, flow cytometry, and Western blot. RESULTS Topical administration of PEDF provided corneal transplantation rats with an improved graft survival rate of corneal allografts, reduced hemangiogenesis, and infiltration of immune cells in corneas, in particular, type 17 T helper cells while increased regulatory T cells. Moreover, nerve reinnervation within grafts was promoted in PEDF-treated recipient rats. In vitro, PEDF inhibited alloreactive T-cell activation via the c-Jun N-terminal kinase/c-Jun signaling pathway and upregulated the expressions of interleukin-10 and transforming growth factor-β, emphasizing the suppressive role of PEDF on immune responses. CONCLUSIONS Our results underscore the feasibility of PEDF in alleviating corneal allograft rejection and further illustrate its potential in managing immune-related diseases.
Collapse
Affiliation(s)
- Xiaoran Chu
- Department of Cornea and Refractive Surgery, Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | | | | | | | | | | |
Collapse
|
13
|
Ortiz G, Blanco T, Singh RB, Kahale F, Wang S, Chen Y, Dana R. IL-6 induces Treg dysfunction in desiccating stress-induced dry eye disease. Exp Eye Res 2024; 246:110006. [PMID: 39009059 PMCID: PMC11332651 DOI: 10.1016/j.exer.2024.110006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/03/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
Regulatory T cells (Tregs) play a critical role in maintaining immune homeostasis, and their dysfunction is implicated in the pathogenesis of various autoimmune disorders, including dry eye disease (DED). Treg dysfunction in DED allows T-helper cell 17 (Th17) mediated chronic inflammation at the ocular surface. In this study, the factors causing Treg dysfunction in DED were investigated. We observed reduced expression of Treg functional markers - FoxP3, CD25, and CTLA-4 in the cells isolated from DED mice (DED Tregs). Additionally, DED Tregs showed increased expression levels of receptors for pro-inflammatory cytokine receptors, namely IL-6R, IL-17RA, and IL-23R. An increased expression level of pro-inflammatory cytokine receptors was observed on exposing Tregs isolated from naïve mice (NTregs) to IL-6 or IL-17, but not IL-23, with a concomitant downregulation of FoxP3, CD25, and CTLA-4 in these cells. Furthermore, among these cytokines, IL-6 induced the most pronounced loss of Treg mediated suppression of Th17 proliferation and IL-10 secretion. In vitro and in vivo blockade of IL-6 effectively restored function in DED Tregs, leading to enhanced suppressive function against proliferating Th17 cells and ameliorating disease severity. In conclusion, this study provides insights into mechanisms of Treg dysregulation in DED, specifically delineating the effect of Th17-associated cytokines, with IL-6 emerging as the critical factor inducing Treg dysfunctionality. These findings highlight the potential for developing novel therapeutic interventions for DED through restoration of immunosuppressive function of Tregs.
Collapse
Affiliation(s)
- Gustavo Ortiz
- Laboratory of Ocular Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Tomas Blanco
- Laboratory of Ocular Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Rohan Bir Singh
- Laboratory of Ocular Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Francesca Kahale
- Laboratory of Ocular Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Shudan Wang
- Laboratory of Ocular Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Yihe Chen
- Laboratory of Ocular Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Reza Dana
- Laboratory of Ocular Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
14
|
Wu L, Liu Y, He Q, Ao G, Xu N, He W, Liu X, Huang L, Yu Q, Kanamaru H, Dong S, Zhu S, Yuan Y, Han M, Ling Y, Liu L, Wu C, Zhou Y, Sherchan P, Flores JJ, Tang J, Chen X, He X, Zhang JH. PEDF-34 attenuates neurological deficit and suppresses astrocyte-dependent neuroinflammation by modulating astrocyte polarization via 67LR/JNK/STAT1 signaling pathway after subarachnoid hemorrhage in rats. J Neuroinflammation 2024; 21:178. [PMID: 39034417 PMCID: PMC11264993 DOI: 10.1186/s12974-024-03171-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Reactive astrocytes participate in various pathophysiology after subarachnoid hemorrhage (SAH), including neuroinflammation, glymphatic-lymphatic system dysfunction, brain edema, BBB disruption, and cell death. Astrocytes transform into two new reactive phenotypes with changed morphology, altered gene expression, and secretion profiles, termed detrimental A1 and beneficial A2. This study investigates the effect of 67LR activation by PEDF-34, a PEDF peptide, on neuroinflammation and astrocyte polarization after the experimental SAH. METHODS A total of 318 male adult Sprague-Dawley rats were used in experiments in vivo, of which 272 rats were subjected to the endovascular perforation model of SAH and 46 rats underwent sham surgery. 67LR agonist (PEDF-34) was administrated intranasally 1 h after SAH. 67LR-specific inhibitor (NSC-47924) and STAT1 transcriptional activator (2-NP) were injected intracerebroventricularly 48 h before SAH. Short- and long-term neurological tests, brain water content, immunostaining, Nissl staining, western blot, and ELISA assay were performed. In experiments in vitro, primary astrocyte culture with hemoglobin (Hb) stimulation was used to mimic SAH. The expression of the PEDF-34/67LR signaling pathway and neuro-inflammatory cytokines were assessed using Western blot, ELISA, and immunohistochemistry assays both in vivo and in vitro. RESULTS Endogenous PEDF and 67LR expressions were significantly reduced at 6 h after SAH. 67LR was expressed in astrocytes and neurons. Intranasal administration of PEDF-34 significantly reduced brain water content, pro-inflammatory cytokines, and short-term and long-term neurological deficits after SAH. The ratio of p-JNK/JNK and p-STAT1/STAT1 and the expression of CFB and C3 (A1 astrocytes marker), significantly decreased after PEDF-34 treatment, along with fewer expression of TNF-α and IL-1β at 24 h after SAH. However, 2-NP (STAT1 transcriptional activator) and NSC-47924 (67LR inhibitor) reversed the protective effects of PEDF-34 in vivo and in vitro by promoting A1 astrocyte polarization with increased inflammatory cytokines. CONCLUSION PEDF-34 activated 67LR, attenuating neuroinflammation and inhibiting astrocyte A1 polarization partly via the JNK/STAT1 pathway, suggesting that PEDF-34 might be a potential treatment for SAH patients.
Collapse
Affiliation(s)
- Lei Wu
- Department of Cerebrovascular Surgery, Neurosurgery Center, Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
- Department of Neurology, Guangdong Second Provincial General Hospital, Guangzhou, 510317, Guangdong, China
| | - Yanchao Liu
- Department of Cerebrovascular Surgery, Neurosurgery Center, Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Qiuguang He
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Guangnan Ao
- Department of Cerebrovascular Surgery, Neurosurgery Center, Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Ningbo Xu
- Department of Cerebrovascular Surgery, Neurosurgery Center, Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
- Department of Interventional Therapy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Wangqing He
- Department of Cerebrovascular Surgery, Neurosurgery Center, Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Xiao Liu
- Department of Cerebrovascular Surgery, Neurosurgery Center, Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Lei Huang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
- Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Qian Yu
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Hideki Kanamaru
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Siyuan Dong
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Shiyi Zhu
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Ye Yuan
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Mingyang Han
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Yeping Ling
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Lu Liu
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Chenyu Wu
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - You Zhou
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Prativa Sherchan
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Jerry J Flores
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Xionghui Chen
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA.
- Department of Emergency Surgery, First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China.
| | - Xuying He
- Department of Cerebrovascular Surgery, Neurosurgery Center, Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China.
- Department of Neurology, Guangdong Second Provincial General Hospital, Guangzhou, 510317, Guangdong, China.
| | - John H Zhang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA.
- Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA.
| |
Collapse
|
15
|
Zou H, Hong Y, Xu B, Wang M, Xie H, Wang Y, Lin Q. Multifunctional Cerium Oxide Nanozyme for Synergistic Dry Eye Disease Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:34757-34771. [PMID: 38946068 DOI: 10.1021/acsami.4c07390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Dry eye disease (DED) is a chronic multifactorial ocular surface disease mainly caused by the instability of tear film, characterized by a series of ocular discomforts and even visual disorders. Oxidative stress has been recognized as an upstream factor in DED development. Diquafosol sodium (DQS) is an agonist of the P2Y2 receptor to restore the integrity/stability of the tear film. With the ability to alternate between Ce3+ and Ce4+, cerium oxide nanozymes could scavenge overexpressed reactive oxygen species (ROS). Hence, a DQS-loaded cerium oxide nanozyme was designed to boost the synergistic treatment of DED. Cerium oxide with branched polyethylenimine-graft-poly(ethylene glycol) as nucleating agent and dispersant was fabricated followed with DQS immobilization via a dynamic phenylborate ester bond, obtaining the DQS-loaded cerium oxide nanozyme (defined as Ce@PBD). Because of the ability to mimic the cascade processes of superoxide dismutase and catalase, Ce@PBD could scavenge excessive accumulated ROS, showing strong antioxidant and anti-inflammatory properties. Meanwhile, the P2Y2 receptors in the conjunctival cells could be stimulated by DQS in Ce@PBD, which can relieve the incompleteness and instability of the tear film. The animal experiments demonstrated that Ce@PBD significantly restored the defect of the corneal epithelium and increased the number of goblet cells, with the promotion of tear secretion, which was the best among commercial DQS ophthalmic solutions.
Collapse
Affiliation(s)
- Haoyu Zou
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Yueze Hong
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Baoqi Xu
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Mengting Wang
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Hongying Xie
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Yajia Wang
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Quankui Lin
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
16
|
Xia Y, Zhang Y, Du Y, Wang Z, Cheng L, Du Z. Comprehensive dry eye therapy: overcoming ocular surface barrier and combating inflammation, oxidation, and mitochondrial damage. J Nanobiotechnology 2024; 22:233. [PMID: 38725011 PMCID: PMC11080212 DOI: 10.1186/s12951-024-02503-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Dry Eye Disease (DED) is a prevalent multifactorial ocular disease characterized by a vicious cycle of inflammation, oxidative stress, and mitochondrial dysfunction on the ocular surface, all of which lead to DED deterioration and impair the patients' quality of life and social functioning. Currently, anti-inflammatory drugs have shown promising efficacy in treating DED; however, such drugs are associated with side effects. The bioavailability of ocular drugs is less than 5% owing to factors such as rapid tear turnover and the presence of the corneal barrier. This calls for investigations to overcome these challenges associated with ocular drug administration. RESULTS A novel hierarchical action liposome nanosystem (PHP-DPS@INS) was developed in this study. In terms of delivery, PHP-DPS@INS nanoparticles (NPs) overcame the ocular surface transport barrier by adopting the strategy of "ocular surface electrostatic adhesion-lysosomal site-directed escape". In terms of therapy, PHP-DPS@INS achieved mitochondrial targeting and antioxidant effects through SS-31 peptide, and exerted an anti-inflammatory effect by loading insulin to reduce mitochondrial inflammatory metabolites. Ultimately, the synergistic action of "anti-inflammation-antioxidation-mitochondrial function restoration" breaks the vicious cycle associated with DED. The PHP-DPS@INS demonstrated remarkable cellular uptake, lysosomal escape, and mitochondrial targeting in vitro. Targeted metabolomics analysis revealed that PHP-DPS@INS effectively normalized the elevated level of mitochondrial proinflammatory metabolite fumarate in an in vitro hypertonic model of DED, thereby reducing the levels of key inflammatory factors (IL-1β, IL-6, and TNF-α). Additionally, PHP-DPS@INS strongly inhibited reactive oxygen species (ROS) production and facilitated mitochondrial structural repair. In vivo, the PHP-DPS@INS treatment significantly enhanced the adhesion duration and corneal permeability of the ocular surface in DED mice, thereby improving insulin bioavailability. It also restored tear secretion, suppressed ocular surface damage, and reduced inflammation in DED mice. Moreover, it demonstrated favorable safety profiles both in vitro and in vivo. CONCLUSION In summary, this study successfully developed a comprehensive DED management nanosystem that overcame the ocular surface transmission barrier and disrupted the vicious cycle that lead to dry eye pathogenesis. Additionally, it pioneered the regulation of mitochondrial metabolites as an anti-inflammatory treatment for ocular conditions, presenting a safe, efficient, and innovative therapeutic strategy for DED and other inflammatory diseases.
Collapse
Affiliation(s)
- Yuanyou Xia
- Department of Ophthalmology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing, 400010, China
| | - Yu Zhang
- Department of Ophthalmology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Yangrui Du
- Department of Ophthalmology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Zhigang Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Long Cheng
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Zhiyu Du
- Department of Ophthalmology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
17
|
Xiang W, Li L, Zhao Q, Zeng Y, Shi J, Chen Z, Gao G, Lai K. PEDF protects retinal pigment epithelium from ferroptosis and ameliorates dry AMD-like pathology in a murine model. GeroScience 2024; 46:2697-2714. [PMID: 38153666 PMCID: PMC10828283 DOI: 10.1007/s11357-023-01038-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 12/05/2023] [Indexed: 12/29/2023] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of irreversible vision damage among elderly individuals. There is still no efficient treatment for dry AMD. Retinal pigment epithelial (RPE) degeneration has been confirmed to play an important role in dry AMD. Recent studies have reported that ferroptosis caused by iron overload and lipid peroxidation may be the primary causes of RPE degeneration. However, the upstream regulatory molecules of RPE ferroptosis remain largely unknown. Pigment epithelium-derived factor (PEDF) is an important endogenic protective factor for the RPE. Our results showed that in the murine dry AMD model induced by sodium iodate (SI), PEDF expression was downregulated. Moreover, dry AMD-like pathology was observed in PEDF-knockout mice. Therefore, the aim of this study was to reveal the effects and mechanism of PEDF on RPE ferroptosis and investigate potential therapeutic targets for dry AMD. The results of lipid peroxidation and transmission electron microscope showed that retinal ferroptosis was significantly activated in SI-treated mice and PEDF-knockout mice. Restoration of PEDF expression ameliorated SI-induced retinal dysfunction in mice, as assessed by electroretinography and optical coherence tomography. Mechanistically, western blotting and immunofluorescence analysis demonstrated that the overexpression of PEDF could upregulate the expression of glutathione peroxidase 4 (GPX4) and ferritin heavy chain-1 (FTH1), which proved to inhibit lipid peroxidation and RPE ferroptosis induced by SI. This study revealed the novel role of PEDF in ferroptosis inhibition and indicated that PEDF might be a potential therapeutic target for dry AMD.
Collapse
Affiliation(s)
- Wei Xiang
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Longhui Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Qin Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Yongcheng Zeng
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jinhui Shi
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Zitong Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Guoquan Gao
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
| | - Kunbei Lai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China.
| |
Collapse
|
18
|
Li K, Lin M, Huang K, Han J, Wei L, Miao L, Chen H, Gong Q, Li X, Hu L. Therapeutic effect and mechanism of action of pterostilbene nano drugs in dry eye models. Exp Eye Res 2024; 241:109836. [PMID: 38387712 DOI: 10.1016/j.exer.2024.109836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/05/2024] [Accepted: 02/17/2024] [Indexed: 02/24/2024]
Abstract
Dry eye disease is a multifactorial dysfunction of the tear film and ocular surface, with etiology involving inflammation and oxidative stress on the ocular surface. Pterostilbene (PS) is a secondary metabolite extracted from plants, which possesses remarkable anti-inflammatory and antioxidant effects. However, its application is limited by light instability and very poor water solubility. We modified fat-soluble PS into a biparental pterostilbene-glutaric anhydride-arginine-glycine-aspartic acid (PS-GA-RGD) nanomedicine by prodrug ligation of functional peptides. The aim of this study was to explore the protective effect and potential mechanism of PS-GA-RGD on dry eye disease in vitro and in vivo. We demonstrated good long-term biocompatibility of PS-GA-RGD through rabbit eye stimulation test. Lipopolysaccharide (LPS) was used to induce murine macrophages RAW 264.7 to establish an inflammation and oxidative stress model. In this model, PS-GA-RGD effectively reduced the production of ROS and 8-OHdG, enhancing the expression of antioxidant factor Nrf2 and antioxidant enzyme heme oxygenase-1. In addition, the expression of NF-κB inflammatory pathway significantly increased in LPS-induced RAW 264.7 cells, while PS-GA-RGD could significantly reduce this pathway. Hypertonic saline was utilized to establish a hypertonic model of human corneal epithelial cells. PS-GA-RGD was found to significantly reduce the production of ROS and NLRP3 inflammasomes in this model, exhibiting superior efficacy compared to PS. Experimental dry eye animal models were co-induced with subcutaneous injection of scopolamine and an intelligently controlled environmental system. We demonstrated that PS-GA-RGD nano drugs can prevent and reduce corneal epithelial cell defects and apoptosis, protect conjunctival goblet cells, and have an excellent anti-inflammatory effect. Finally, we demonstrated that RGD sequence in PS-GA-RGD can enhance cellular uptake, corneal retention, and penetration, thereby increasing their bioavailability and efficacy by a cell uptake assay and rabbit corneal drug retention experiment. Overall, this study highlights the potential of PS-GA-RGD nanomedicines in the treatment of dry eyes.
Collapse
Affiliation(s)
- Kexin Li
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Meng Lin
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Kaiyan Huang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jiaxin Han
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Linzhi Wei
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Lijie Miao
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Huijuan Chen
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Qianwen Gong
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Xingyi Li
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Liang Hu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
19
|
Lu YC, Ho TC, Huang CH, Yeh SI, Chen SL, Tsao YP. PEDF peptide plus hyaluronic acid stimulates cartilage regeneration in osteoarthritis via STAT3-mediated chondrogenesis. Bone Joint Res 2024; 13:137-148. [PMID: 38555936 PMCID: PMC10981997 DOI: 10.1302/2046-3758.134.bjr-2023-0179.r2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/02/2024] Open
Abstract
Aims Pigment epithelium-derived factor (PEDF) is known to induce several types of tissue regeneration by activating tissue-specific stem cells. Here, we investigated the therapeutic potential of PEDF 29-mer peptide in the damaged articular cartilage (AC) in rat osteoarthritis (OA). Methods Mesenchymal stem/stromal cells (MSCs) were isolated from rat bone marrow (BM) and used to evaluate the impact of 29-mer on chondrogenic differentiation of BM-MSCs in culture. Knee OA was induced in rats by a single intra-articular injection of monosodium iodoacetate (MIA) in the right knees (set to day 0). The 29-mer dissolved in 5% hyaluronic acid (HA) was intra-articularly injected into right knees at day 8 and 12 after MIA injection. Subsequently, the therapeutic effect of the 29-mer/HA on OA was evaluated by the Osteoarthritis Research Society International (OARSI) histopathological scoring system and changes in hind paw weight distribution, respectively. The regeneration of chondrocytes in damaged AC was detected by dual-immunostaining of 5-bromo-2'-deoxyuridine (BrdU) and chondrogenic markers. Results The 29-mer promoted expansion and chondrogenic differentiation of BM-MSCs cultured in different defined media. MIA injection caused chondrocyte death throughout the AC, with cartilage degeneration thereafter. The 29-mer/HA treatment induced extensive chondrocyte regeneration in the damaged AC and suppressed MIA-induced synovitis, accompanied by the recovery of cartilage matrix. Pharmacological inhibitors of PEDF receptor (PEDFR) and signal transducer and activator of transcription 3 (STAT3) signalling substantially blocked the chondrogenic promoting activity of 29-mer on the cultured BM-MSCs and injured AC. Conclusion The 29-mer/HA formulation effectively induces chondrocyte regeneration and formation of cartilage matrix in the damaged AC.
Collapse
Affiliation(s)
- Yung-Chang Lu
- Department of Medical Research, Mackay Memorial Hospital, New Taipei City, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Tsung-Chuan Ho
- Department of Medical Research, Mackay Memorial Hospital, New Taipei City, Taiwan
| | - Chang-Hung Huang
- Department of Medical Research, Mackay Memorial Hospital, New Taipei City, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
- School of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shu-I Yeh
- Department of Medical Research, Mackay Memorial Hospital, New Taipei City, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Show-Li Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yeou-Ping Tsao
- Department of Medical Research, Mackay Memorial Hospital, New Taipei City, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| |
Collapse
|
20
|
Chen S, Barnstable CJ, Zhang X, Li X, Zhao S, Tombran-Tink J. A PEDF peptide mimetic effectively relieves dry eye in a diabetic murine model by restoring corneal nerve, barrier, and lacrimal gland function. Ocul Surf 2024; 32:1-12. [PMID: 38103731 DOI: 10.1016/j.jtos.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 10/27/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
PURPOSE The study investigated effectiveness of a novel PEDF peptide mimetic to alleviate dry eye-like pathologies in a Type I diabetic mouse model established using streptozotocin. METHODS Mice were treated topically for 3-6 weeks with Ppx (a 17-mer PEDF mimetic) 2x/day or vehicle. Corneal sensitivity, tear film, epithelial and endothelial injury were measured using Cochet-Bonnet esthesiometer, phenol red cotton thread wetting, fluorescein sodium staining, and ZO1 expression, respectively. Inflammatory and parasympathetic nerve markers and activation of the MAPK/JNK pathways in the lacrimal glands were measured. RESULTS Diabetic mice exhibited features of dry eye including reduced corneal sensation and tear secretion and increased corneal epithelium injury, nerve degeneration, and edema. Ppx reversed these pathologies and restored ZO1 expression and morphological integrity of the endothelium. Upregulation of IL-1β and TNFα, increased activation of P-38, JNK, and ERK, and higher levels of M3ACHR in diabetic lacrimal glands were also reversed by the peptide treatment. CONCLUSION The study demonstrates that topical application of a synthetic PEDF mimetic effectively alleviates diabetes-induced dry eye by restoring corneal sensitivity, tear secretion, and endothelial barrier and lacrimal gland function. These findings have significant implications for the potential treatment of dry eye using a cost-effective and reproducible approach with minimal invasiveness and no obvious side effects.
Collapse
Affiliation(s)
- Shuangping Chen
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Colin James Barnstable
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China; Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, 17033-0850, USA; Skyran Biologics Inc., Harrisburg, PA, USA, 17112
| | - Xiaomin Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Shaozhen Zhao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China.
| | - Joyce Tombran-Tink
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China; Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, 17033-0850, USA; Skyran Biologics Inc., Harrisburg, PA, USA, 17112.
| |
Collapse
|
21
|
Yang Y, Wen W, Chen FL, Zhang YJ, Liu XC, Yang XY, Hu SS, Jiang Y, Yuan J. Expression and significance of pigment epithelium-derived factor and vascular endothelial growth factor in colorectal adenoma and cancer. World J Gastrointest Oncol 2024; 16:670-686. [PMID: 38577437 PMCID: PMC10989378 DOI: 10.4251/wjgo.v16.i3.670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/16/2024] [Accepted: 02/04/2024] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND The incidence and mortality of colorectal cancer (CRC) are among the highest in the world, and its occurrence and development are closely related to tumor neovascularization. When the balance between pigment epithelium-derived factors (PEDF) that inhibit angiogenesis and vascular endothelial growth factors (VEGF) that stimulate angiogenesis is broken, angiogenesis is out of control, resulting in tumor development. Therefore, it is very necessary to find more therapeutic targets for CRC for early intervention and later treatment. AIM To investigate the expression and significance of PEDF, VEGF, and CD31-stained microvessel density values (CD31-MVD) in normal colorectal mucosa, adenoma, and CRC. METHODS In this case-control study, we collected archived wax blocks of specimens from the Digestive Endoscopy Center and the General Surgery Department of Chengdu Second People's Hospital from April 2022 to October 2022. Fifty cases of specimen wax blocks were selected as normal intestinal mucosa confirmed by electronic colonoscopy and concurrent biopsy (normal control group), 50 cases of specimen wax blocks were selected as colorectal adenoma confirmed by electronic colonoscopy and pathological biopsy (adenoma group), and 50 cases of specimen wax blocks were selected as CRC confirmed by postoperative pathological biopsy after inpatient operation of general surgery (CRC group). An immunohistochemical staining experiment was carried out to detect PEDF and VEGF expression in three groups of specimens, analyze their differences, study the relationship between the two and clinicopathological factors in CRC group, record CD31-MVD in the three groups, and analyze the correlation of PEDF, VEGF, and CD31-MVD in the colorectal adenoma group and the CRC group. The F test or adjusted F test is used to analyze measurement data statistically. Kruskal-Wallis rank sum test was used between groups for ranked data. The chi-square test, adjusted chi-square test, or Fisher's exact test were used to compare the rates between groups. All differences between groups were compared using the Bonferroni method for multiple comparisons. Spearman correlation analysis was used to test the correlation of the data. The test level (α) was 0.05, and a two-sided P< 0.05 was considered statistically significant. RESULTS The positive expression rate and expression intensity of PEDF were gradually decreased in the normal control group, adenoma group, and CRC group (100% vs 78% vs 50%, χ2 = 34.430, P < 0.001; ++~++ vs +~++ vs -~+, H = 94.059, P < 0.001), while VEGF increased gradually (0% vs 68% vs 96%, χ2 = 98.35, P < 0.001; - vs -~+ vs ++~+++, H = 107.734, P < 0.001). In the CRC group, the positive expression rate of PEDF decreased with the increase of differentiation degree, invasion depth, lymph node metastasis, distant metastasis, and TNM stage (χ2 = 20.513, 4.160, 5.128, 6.349, 5.128, P < 0.05); the high expression rate of VEGF was the opposite (χ2 = 10.317, 13.134, 17.643, 21.844, 17.643, P < 0.05). In the colorectal adenoma group, the expression intensity of PEDF correlated negatively with CD31-MVD (r = -0.601, P < 0.001), whereas VEGF was not significantly different (r = 0.258, P = 0.07). In the CRC group, the expression intensity of PEDF correlated negatively with the expression intensity of CD31-MVD and VEGF (r = -0.297, P < 0.05; r = -0.548, P < 0.05), while VEGF expression intensity was positively related to CD31-MVD (r = 0.421, P = 0.002). CONCLUSION It is possible that PEDF can be used as a new treatment and prevention target for CRC by upregulating the expression of PEDF while inhibiting the expression of VEGF.
Collapse
Affiliation(s)
- Ye Yang
- Digestive Diseases, Chengdu Qingbaijiang District People's Hospital, Chengdu 610300, Sichuan Province, China
| | - Wu Wen
- Digestive Diseases, Chengdu Second People’s Hospital, Chengdu 610000, Sichuan Province, China
| | - Feng-Lin Chen
- Graduate School, Chengdu Medical College, Chengdu 610000, Sichuan Province, China
| | - Ying-Jie Zhang
- Digestive Diseases, Chengdu Second People’s Hospital, Chengdu 610000, Sichuan Province, China
| | - Xiao-Cong Liu
- Digestive Diseases, Chengdu Second People’s Hospital, Chengdu 610000, Sichuan Province, China
| | - Xiao-Yan Yang
- Digestive Diseases, Chengdu Second People’s Hospital, Chengdu 610000, Sichuan Province, China
| | - Shan-Shan Hu
- Digestive Diseases, Chengdu Second People’s Hospital, Chengdu 610000, Sichuan Province, China
| | - Ye Jiang
- Digestive Diseases, Chengdu Second People’s Hospital, Chengdu 610000, Sichuan Province, China
| | - Jing Yuan
- Digestive Diseases, Chengdu Second People’s Hospital, Chengdu 610000, Sichuan Province, China
| |
Collapse
|
22
|
Miao H, Hui H, Fan W, Lin Y, Li H, Li D, Luo M, Qiu F, Jiang B, Zhang Y. Overexpressed pigment epithelium-derived factor alleviates pulmonary hypertension in two rat models induced by monocrotaline and SU5416/hypoxia. Biomed Pharmacother 2024; 172:116303. [PMID: 38377738 DOI: 10.1016/j.biopha.2024.116303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Pulmonary hypertension (PH) is a progressive and fatal cardiopulmonary disease characterized by vascular remodeling and is associated with endothelial-to-mesenchymal transition (EndoMT). The pigment epithelium-derived factor (PEDF), a secretory protein widely distributed in multiple organs, has been shown to demonstrate anti-EndoMT activity in cardiovascular diseases. In the present study, the role of PEDF in PH was investigated. METHODS For PEDF overexpression, Sprague Dawley rats were infected with an adeno-associated virus through injection via the internal jugular vein. To establish PH models, the animals were subjected to monocrotaline or Sugen/hypoxia. Four weeks later, pulmonary artery angiography was performed, and hemodynamic parameters, right ventricular function, and vascular remodeling were evaluated. EndoMT and cell proliferation in the pulmonary arteries were assessed via immunofluorescence staining. Moreover, pulmonary artery endothelial cells (PAECs) isolated from experimental PH rats were cultured to investigate the underlying molecular mechanisms involved. RESULTS PEDF expression was significantly downregulated in PAECs from PH patients and PH model rats. Overexpressed PEDF alleviated the development of PH by improving pulmonary artery morphology and perfusion, reducing pulmonary artery pressure, improving right ventricular function, and alleviating vascular remodeling. PEDF inhibits EndoMT and reduces excessive PAEC proliferation. Moreover, PEDF overexpression reduced EndoMT in cultured PAECs by competitively inhibiting the binding of wnt to LRP6 and downregulating phosphorylation at the 1490 site of LRP6. CONCLUSIONS Our findings suggest that PEDF may be a potential therapeutic target for PH. We also found that PEDF can inhibit EndoMT in PAECs and may exert these effects by inhibiting the Wnt/LRP6/β-catenin pathway.
Collapse
Affiliation(s)
- Haoran Miao
- Department of Thoracic Cardiovascular Surgery, China
| | - Hongliang Hui
- Department of Thoracic Cardiovascular Surgery, China
| | - Wenbin Fan
- Department of Thoracic Cardiovascular Surgery, China
| | - Yangui Lin
- Department of Thoracic Cardiovascular Surgery, China
| | - Huaming Li
- Department of Thoracic Cardiovascular Surgery, China
| | - Dan Li
- Community Health Center, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Min Luo
- Department of Thoracic Cardiovascular Surgery, China
| | - Fan Qiu
- Department of Thoracic Cardiovascular Surgery, China.
| | - Bo Jiang
- Department of Thoracic Cardiovascular Surgery, China.
| | - Yiqian Zhang
- Department of Thoracic Cardiovascular Surgery, China.
| |
Collapse
|
23
|
Huang J, Jiang T, Li J, Qie J, Cheng X, Wang Y, Zhou T, Liu J, Han H, Yao K, Yu L. Biomimetic Corneal Stroma for Scarless Corneal Wound Healing via Structural Restoration and Microenvironment Modulation. Adv Healthc Mater 2024; 13:e2302889. [PMID: 37988231 DOI: 10.1002/adhm.202302889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/31/2023] [Indexed: 11/23/2023]
Abstract
Corneal injury-induced stromal scarring causes the most common subtype of corneal blindness, and there is an unmet need to promote scarless corneal wound healing. Herein, a biomimetic corneal stroma with immunomodulatory properties is bioengineered for scarless corneal defect repair. First, a fully defined serum-free system is established to derive stromal keratocytes (hAESC-SKs) from a current Good Manufacturing Practice (cGMP)-grade human amniotic epithelial stem cells (hAESCs), and RNA-seq is used to validate the phenotypic transition. Moreover, hAESC-SKs are shown to possess robust immunomodulatory properties in addition to the keratocyte phenotype. Inspired by the corneal stromal extracellular matrix (ECM), a photocurable gelatin-based hydrogel is fabricated to serve as a scaffold for hAESC-SKs for bioengineering of a biomimetic corneal stroma. The rabbit corneal defect model is used to confirm that this biomimetic corneal stroma rapidly restores the corneal structure, and effectively reshapes the tissue microenvironment via proteoglycan secretion to promote transparency and inhibition of the inflammatory cascade to alleviate fibrosis, which synergistically reduces scar formation by ≈75% in addition to promoting wound healing. Overall, the strategy proposed here provides a promising solution for scarless corneal defect repair.
Collapse
Affiliation(s)
- Jianan Huang
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, 310009, P. R. China
- MOE Laboratory of Biosystems Homeostasis & Protection & College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Tuoying Jiang
- MOE Laboratory of Biosystems Homeostasis & Protection & College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Jinying Li
- MOE Laboratory of Biosystems Homeostasis & Protection & College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- College of Traditional Chinese Medicine and Health Industry, Lishui University, Lishui, 323000, P. R. China
| | - Jiqiao Qie
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, 310009, P. R. China
| | - Xiaoyu Cheng
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, 310009, P. R. China
| | - Yiyao Wang
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, 310009, P. R. China
| | - Tinglian Zhou
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, 310009, P. R. China
| | - Jia Liu
- MOE Laboratory of Biosystems Homeostasis & Protection & College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Haijie Han
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, 310009, P. R. China
- State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Ke Yao
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, 310009, P. R. China
| | - Luyang Yu
- MOE Laboratory of Biosystems Homeostasis & Protection & College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| |
Collapse
|
24
|
Nampei M, Suzuki Y, Nakajima H, Oinaka H, Kawakita F, Suzuki H. Acute-Phase Plasma Pigment Epithelium-Derived Factor Predicting Outcomes after Aneurysmal Subarachnoid Hemorrhage in the Elderly. Int J Mol Sci 2024; 25:1701. [PMID: 38338974 PMCID: PMC10855834 DOI: 10.3390/ijms25031701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Aneurysmal subarachnoid hemorrhage (SAH) has increased with the aging of the population, but the outcome for elderly SAH patients is very poor. Therefore, predicting the outcome is important for determining whether to pursue aggressive treatment. Pigment epithelium-derived factor (PEDF) is a matricellular protein that is induced in the brain, and the plasma levels could be used as a biomarker for the severity of metabolic diseases. This study investigated whether acute-phase plasma PEDF levels could predict outcomes after aneurysmal SAH in the elderly. Plasma samples and clinical variables were collected over 1-3 days, post-SAH, from 56 consecutive elderly SAH patients ≥75 years of age registered in nine regional stroke centers in Japan between September 2013 and December 2016. The samples and variables were analyzed in terms of 3-month outcomes. Acute-phase plasma PEDF levels were significantly elevated in patients with ultimately poor outcomes, and the cutoff value of 12.6 µg/mL differentiated 3-month outcomes with high sensitivity (75.6%) and specificity (80.0%). Acute-phase plasma PEDF levels of ≥12.6 µg/mL were an independent and possibly better predictor of poor outcome than previously reported clinical variables. Acute-phase plasma PEDF levels may serve as the first biomarker to predict 3-month outcomes and to select elderly SAH patients who should be actively treated.
Collapse
Affiliation(s)
| | | | | | | | | | - Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu 514-8507, Japan; (M.N.); (Y.S.); (H.N.); (H.O.); (F.K.)
| | | |
Collapse
|
25
|
Elmi M, Dass JH, Dass CR. The Various Roles of PEDF in Cancer. Cancers (Basel) 2024; 16:510. [PMID: 38339261 PMCID: PMC10854708 DOI: 10.3390/cancers16030510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Pigment epithelium-derived factor (PEDF) is a natural immunomodulator, anti-inflammatory, anti-angiogenic, anti-tumour growth and anti-metastasis factor, which can enhance tumour response to PEDF but can also conversely have pro-cancerous effects. Inflammation is a major cause of cancer, and it has been proven that PEDF has anti-inflammatory properties. PEDF's functional activity can be investigated through measuring metastatic and metabolic biomarkers that will be discussed in this review.
Collapse
Affiliation(s)
- Mitra Elmi
- Curtin Medical School, Curtin University, Bentley, WA 6102, Australia; (M.E.); (J.H.D.)
- Curtin Health Innovation Research Institute, Curtin Medical School, Curtin University, Bentley, WA 6102, Australia
| | - Joshua H. Dass
- Curtin Medical School, Curtin University, Bentley, WA 6102, Australia; (M.E.); (J.H.D.)
- Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia
| | - Crispin R. Dass
- Curtin Medical School, Curtin University, Bentley, WA 6102, Australia; (M.E.); (J.H.D.)
- Curtin Health Innovation Research Institute, Curtin Medical School, Curtin University, Bentley, WA 6102, Australia
| |
Collapse
|
26
|
Zhou Y, Ma B, Liu Q, Duan H, Huo Y, Zhao L, Chen J, Han W, Qi H. Transmembrane Protein CMTM6 Alleviates Ocular Inflammatory Response and Improves Corneal Epithelial Barrier Function in Experimental Dry Eye. Invest Ophthalmol Vis Sci 2024; 65:4. [PMID: 38165704 PMCID: PMC10768713 DOI: 10.1167/iovs.65.1.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/04/2023] [Indexed: 01/04/2024] Open
Abstract
Purpose To investigate the impact of transmembrane protein CMTM6 on the pathogenesis of dry eye disease (DED) and elucidate its potential mechanisms. Methods CMTM6 expression was confirmed by database analysis, real-time polymerase chain reaction (RT-PCR), western blot, and immunohistochemistry. Tear secretion was measured using the phenol red thread test. Immune cell infiltration was assessed through flow cytometry. Barrier function was evaluated by fluorescein sodium staining, immunofluorescence staining of zonula occludens 1 (ZO-1), and electric cell-substrate impedance sensing (ECIS) assessment. For silencing CMTM6 expression, siRNA and shRNA were employed, along with lentiviral vector-mediated overexpression of CMTM6. Proinflammatory cytokine levels were analyzed by RT-PCR and cytometric bead array (CBA) analysis. Results CMTM6 showed high expression in healthy human and mouse corneal and conjunctival epithelium but was notably reduced in DED. Notably, this downregulation was correlated with disease severity. Cmtm6-/- dry eye (DE) mice displayed reduced tear secretion, severe corneal epithelial defects, decreased conjunctival goblet cell density, and upregulated inflammatory response. Additionally, Cmtm6-/- DE mice and CMTM6 knockdown human corneal epithelial cell-transformed (HCE-T) cells showed more severe barrier disruption and reduced expression of ZO-1. Knockdown of CMTM6 in HCE-T cells increased inflammatory responses induced by hyperosmotic stress, which was significantly mitigated by CMTM6 overexpression. Moreover, the level of phospho-p65 in hyperosmolarity-stimulated HCE-T cells increased after silencing CMTM6. Nuclear factor kappa B (NF-κB) p65 inhibition (JSH-23) reversed the excessive inflammatory responses caused by hyperosmolarity in CMTM6 knockdown HCE-T cells. Conclusions The reduction in CMTM6 expression on the ocular surface contributes to the pathogenesis of DED. The CMTM6-NF-κB p65 signaling pathway may serve as a promising therapeutic target for DED.
Collapse
Affiliation(s)
- Yifan Zhou
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Baikai Ma
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Qiyao Liu
- Department of Immunology, Peking University Health Science Center, NHC Key Laboratory of Medical Immunology, Beijing, China
- Peking University Center for Human Disease Genomics, Beijing, China
| | - Hongyu Duan
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Yangbo Huo
- Department of Immunology, Peking University Health Science Center, NHC Key Laboratory of Medical Immunology, Beijing, China
- Peking University Center for Human Disease Genomics, Beijing, China
| | - Lu Zhao
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Jiawei Chen
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Wenling Han
- Department of Immunology, Peking University Health Science Center, NHC Key Laboratory of Medical Immunology, Beijing, China
- Peking University Center for Human Disease Genomics, Beijing, China
| | - Hong Qi
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| |
Collapse
|
27
|
Feng J, Liu Y, Ren Y, Shi W, Kang H, Tan Y, Wu R, Zhang G, He Y. Evaluation of Dry Eye Severity and Ocular Surface Inflammation in Patients with Pemphigus and Pemphigoid. Ocul Immunol Inflamm 2024; 32:62-70. [PMID: 36637982 DOI: 10.1080/09273948.2022.2154680] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/29/2022] [Indexed: 01/14/2023]
Abstract
PURPOSE To evaluate ocular surface involvement, tear cytokine levels, and histopathological changes in pemphigus and pemphigoid patients. METHODS A total of 22 patients (15 pemphigus and 7 pemphigoids) and 21 non-diseased controls were enrolled in our study. All participants underwent ocular surface evaluation, which included ocular surface disease index test, slit lamp observation, dry eye-related examination, tear multicytokine analysis, and conjunctival impression cytology. RESULTS Pemphigus and pemphigoid patients presented much more severe conjunctivochalasis, corneal epithelial defects, corneal opacity, symblepharon and dry eye. Severe ocular surface squamous metaplasia and a significant increase of tear macrophage inflammatory protein-1beta, tumor necrosis factor-alpha, interleukin (IL)-1β, IL -6, and IL-8 occurred in pemphigus and pemphigoid patients. CONCLUSIONS Our results revealed that ocular surface inflammation and dry eye persist in most pemphigus and pemphigoid patients, and do not occur in parallel with the systemic course. Regular ophthalmological examinations and local anti-inflammatory should be provided for pemphigus and pemphigoid patients.
Collapse
Affiliation(s)
- Jianing Feng
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Ophthalmology, Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
- Xi'an People's Hospital (Xi'an Fourth Hospital), Shaanxi Eye Hospital, Northwest University Affiliated People's Hospital, Xi'an, Shaanxi Province, China
| | - Yingyi Liu
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Ophthalmology, Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Yuerong Ren
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Ophthalmology, Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Wen Shi
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Ophthalmology, Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Huanmin Kang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Ophthalmology, Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Yixin Tan
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ruifang Wu
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guiying Zhang
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yan He
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Ophthalmology, Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| |
Collapse
|
28
|
Zhang W, Yin J, Deng Y, Gong Y, Sun X, Chen J. Prostaglandin E2 promotes Th17 differentiation induces corneal epithelial cell apoptosis and participates in the progression of dry eye. Arch Biochem Biophys 2024; 751:109823. [PMID: 37984760 DOI: 10.1016/j.abb.2023.109823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/23/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023]
Abstract
This study is mainly based on T helper type 17 (Th17) cells analysis of the mechanism of prostaglandin E2 (PGE2) promoting the progression of dry eye (DE). Scopolamine and dry environment were used to induce mice DE model. Celecoxib was used to inhibit PGE2. Corneal epithelial cells and CD4+ T cells were used to construct a co-culture system. The osmotic pressure was increased by adding NaCl to simulate DE in vitro. AH6809 and E7046 were used to pre-culture to inhibit EP2/4 in T cells to verify the effect of exogenous PGE2 on Th17 cell differentiation and corneal epithelial cell apoptosis. The function of Th17 cells was analyzed by detecting RORγt and interleukin-17 (IL-17). PGE2 was instilled on the ocular surface to induce DE symptoms of mice. AH6809 and E7046 were used to inhibit EP2/4. The corneal epithelial cell apoptosis was observed by TUNEL. The proportion of Th17 cells in corneal tissue and draining lymph nodes (DLNs) was detected by flow cytometry. In DE mice, the concentration of PGE2 and IL-17 increased in tears, and the proportion of Th17 increased, while inhibition of PGE2 alleviated the symptoms of DE and inhibited Th17 differentiation. Hypertonic environment induces corneal epithelial cells to secrete PGE2. PGE2 promoted the expression of EP2/4 and the differentiation of Th17 cells in vitro. The hypertonic environment promoted PGE2 level and the apoptosis of corneal epithelial cells in the co-culture system. PGE2 alone did not cause corneal epithelial cell apoptosis, while PGE2 promoted apoptosis by promoting Th17. Blocking EP2/4 reduced the induction of Th17 differentiation by PGE2 and the promoted corneal epithelial cell apoptosis. Animal experiments showed that exogenous PGE2 induced DE symptoms. Blocking EP2/4 not only inhibited the proportion of Th17, but also alleviated the apoptosis of corneal epithelial cells caused by PGE2. PGE2 induces aggravation of inflammation by promoting the level of Th17 in the ocular surface, and causes corneal epithelial cell apoptosis, thereby participating in the progression of DE.
Collapse
Affiliation(s)
- Weijia Zhang
- Department of Ophthalmology, Yan 'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, China
| | - Jianwei Yin
- Department of Anesthesiology, Yan 'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, China
| | - Yachun Deng
- Department of Ophthalmology, Yan 'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, China
| | - Yu Gong
- Department of Ophthalmology, Yan 'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, China
| | - Xiaoyu Sun
- Department of Ophthalmology, Yan 'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, China
| | - Jingyao Chen
- Department of Ophthalmology, Yan 'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, China.
| |
Collapse
|
29
|
Ouyang W, Wang S, Yan D, Wu J, Zhang Y, Li W, Hu J, Liu Z. The cGAS-STING pathway-dependent sensing of mitochondrial DNA mediates ocular surface inflammation. Signal Transduct Target Ther 2023; 8:371. [PMID: 37735446 PMCID: PMC10514335 DOI: 10.1038/s41392-023-01624-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 07/21/2023] [Accepted: 08/21/2023] [Indexed: 09/23/2023] Open
Abstract
The innate immune response is the main pathophysiological process of ocular surface diseases exposed to multiple environmental stresses. The epithelium is central to the innate immune response, but whether and how innate immunity is initiated by ocular epithelial cells in response to various environmental stresses in ocular surface diseases, such as dry eye, is still unclear. By utilizing two classic experimental dry eye models-a mouse ocular surface treated with benzalkonium chloride (BAC) and a mouse model with surgically removed extraorbital lachrymal glands, as well as dry eye patient samples-along with human corneal epithelial cells (HCE) exposed to hyperosmolarity, we have discovered a novel innate immune pathway in ocular surface epithelial cells. Under stress, mitochondrial DNA (mtDNA) was released into the cytoplasm through the mitochondrial permeability transition pore (mPTP) and further activated the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway, aggravating downstream inflammatory responses and ocular surface damage. Genetic deletion or pharmacological suppression of STING and inhibition of mtDNA release reduced inflammatory responses, whereas mtDNA transfection supported cytoplasmic mtDNA-induced inflammatory responses by activating the cGAS-STING pathway. Our study clarified the cGAS-STING pathway-dependent sensing of mitochondrial DNA-mediated ocular surface inflammation, which elucidated a new mechanism of ocular surface diseases in response to multiple environmental stresses.
Collapse
Affiliation(s)
- Weijie Ouyang
- Xiamen University affiliated Xiamen Eye Center; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science; Fujian Engineering and Research Center of Eye Regenerative Medicine; Eye Institute of Xiamen University; School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, 361005, China
| | - Shoubi Wang
- Xiamen University affiliated Xiamen Eye Center; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science; Fujian Engineering and Research Center of Eye Regenerative Medicine; Eye Institute of Xiamen University; School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
- The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361005, China
| | - Dan Yan
- Xiamen University affiliated Xiamen Eye Center; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science; Fujian Engineering and Research Center of Eye Regenerative Medicine; Eye Institute of Xiamen University; School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, 361005, China
| | - Jieli Wu
- Changsha Aier Eye Hospital, Changsha, Hunan, 410016, China
| | - Yunuo Zhang
- Xiamen University affiliated Xiamen Eye Center; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science; Fujian Engineering and Research Center of Eye Regenerative Medicine; Eye Institute of Xiamen University; School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, 361005, China
| | - Wei Li
- Xiamen University affiliated Xiamen Eye Center; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science; Fujian Engineering and Research Center of Eye Regenerative Medicine; Eye Institute of Xiamen University; School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, 361005, China
| | - Jiaoyue Hu
- Xiamen University affiliated Xiamen Eye Center; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science; Fujian Engineering and Research Center of Eye Regenerative Medicine; Eye Institute of Xiamen University; School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China.
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, 361005, China.
| | - Zuguo Liu
- Xiamen University affiliated Xiamen Eye Center; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science; Fujian Engineering and Research Center of Eye Regenerative Medicine; Eye Institute of Xiamen University; School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China.
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, 361005, China.
- Department of Ophthalmology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
30
|
Patel S, Mittal R, Kumar N, Galor A. The environment and dry eye-manifestations, mechanisms, and more. FRONTIERS IN TOXICOLOGY 2023; 5:1173683. [PMID: 37681211 PMCID: PMC10482047 DOI: 10.3389/ftox.2023.1173683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/07/2023] [Indexed: 09/09/2023] Open
Abstract
Dry eye disease (DED) is a multifactorial condition that often presents with chronic symptoms of pain (that can be characterized as "dryness," "burning," and "irritation," to name a few) and/or fluctuating or poor-quality vision. Given its multifactorial nature, several pathophysiologic mechanisms have been identified that can underlie symptoms, including tear film, ocular surface, and/or corneal somatosensory nerve abnormalities. Research has focused on understanding how environmental exposures can increase the risk for DED flares and negatively impact the tear film, the ocular surface, and/or nerve health. Given that DED is a common condition that negatively impacts physical and mental functioning, managing DED requires multiple strategies. These can include both medical approaches and modulating adverse environmental conditions, the latter of which may be a cost-effective way to avoid DED flares. Thus, an understanding of how environmental exposures relate to disease is important. This Review summarizes research on the relationships between environmental exposures and DED, in the hope that this information will engage healthcare professionals and patients to consider environmental manipulations in their management of DED.
Collapse
Affiliation(s)
- Sneh Patel
- Division of Physical Medicine and Rehabilitation, Veterans Affairs (VA) Greater Los Angeles Healthcare System, Los Angeles, CA, United States
- University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Rhiya Mittal
- University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, United States
| | - Naresh Kumar
- Department of Public Health Sciences, University of Miami, Miami, FL, United States
| | - Anat Galor
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, United States
- Ophthalmology and Research Services, Miami VA Medical Center, Miami, FL, United States
| |
Collapse
|
31
|
Lang H, Noble KV, Barth JL, Rumschlag JA, Jenkins TR, Storm SL, Eckert MA, Dubno JR, Schulte BA. The Stria Vascularis in Mice and Humans Is an Early Site of Age-Related Cochlear Degeneration, Macrophage Dysfunction, and Inflammation. J Neurosci 2023; 43:5057-5075. [PMID: 37268417 PMCID: PMC10324995 DOI: 10.1523/jneurosci.2234-22.2023] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/19/2023] [Accepted: 05/25/2023] [Indexed: 06/04/2023] Open
Abstract
Age-related hearing loss, or presbyacusis, is a common degenerative disorder affecting communication and quality of life for millions of older adults. Multiple pathophysiologic manifestations, along with many cellular and molecular alterations, have been linked to presbyacusis; however, the initial events and causal factors have not been clearly established. Comparisons of the transcriptome in the lateral wall (LW) with other cochlear regions in a mouse model (of both sexes) of "normal" age-related hearing loss revealed that early pathophysiological alterations in the stria vascularis (SV) are associated with increased macrophage activation and a molecular signature indicative of inflammaging, a common form of immune dysfunction. Structure-function correlation analyses in mice across the lifespan showed that the age-dependent increase in macrophage activation in the stria vascularis is associated with a decline in auditory sensitivity. High-resolution imaging analysis of macrophage activation in middle-aged and aged mouse and human cochleas, along with transcriptomic analysis of age-dependent changes in mouse cochlear macrophage gene expression, support the hypothesis that aberrant macrophage activity is an important contributor to age-dependent strial dysfunction, cochlear pathology, and hearing loss. Thus, this study highlights the SV as a primary site of age-related cochlear degeneration and aberrant macrophage activity and dysregulation of the immune system as early indicators of age-related cochlear pathology and hearing loss. Importantly, novel new imaging methods described here now provide a means to analyze human temporal bones in a way that had not previously been feasible and thereby represent a significant new tool for otopathological evaluation.SIGNIFICANCE STATEMENT Age-related hearing loss is a common neurodegenerative disorder affecting communication and quality of life. Current interventions (primarily hearing aids and cochlear implants) offer imperfect and often unsuccessful therapeutic outcomes. Identification of early pathology and causal factors is crucial for the development of new treatments and early diagnostic tests. Here, we find that the SV, a nonsensory component of the cochlea, is an early site of structural and functional pathology in mice and humans that is characterized by aberrant immune cell activity. We also establish a new technique for evaluating cochleas from human temporal bones, an important but understudied area of research because of a lack of well-preserved human specimens and difficult tissue preparation and processing approaches.
Collapse
Affiliation(s)
- Hainan Lang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Kenyaria V Noble
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Jeremy L Barth
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Jeffrey A Rumschlag
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Tyreek R Jenkins
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Shelby L Storm
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Mark A Eckert
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Judy R Dubno
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Bradley A Schulte
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| |
Collapse
|
32
|
Soleimani M, Momenaei B, Baradaran-Rafii A, Cheraqpour K, An S, Ashraf MJ, Abedi F, Javadi MA, Djalilian AR. Mustard Gas-Induced Ocular Surface Disorders: An Update on the Pathogenesis, Clinical Manifestations, and Management. Cornea 2023; 42:776-786. [PMID: 36729713 PMCID: PMC10164045 DOI: 10.1097/ico.0000000000003182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/12/2022] [Indexed: 02/03/2023]
Abstract
PURPOSE Mustard gas (MG) is a potent blistering and alkylating agent that has been used for military and terrorism purposes. Ocular surface injuries are common after exposure to MG. This review provides an update on the pathophysiology, ocular surface complications, and treatment options for MG-related ocular injuries. METHODS Required information was obtained by reviewing various databases such as Cochrane Library, Google Scholar, and PubMed until March 2022. Data were collected by using keywords: "mustard gas" OR "sulfur mustard" AND "eye" OR "cornea" OR "ocular complication" OR "keratitis" OR "keratopathy" OR "limbal stem cell deficiency" OR "dry eye." RESULTS Chronic intracellular toxicity, inflammation, and ischemia have been shown to play an essential role in the pathogenesis of MG injury. Ocular surface injuries can have acute, chronic, and most distinctly a delayed-onset presentation leading to various degrees of limbal stem cell deficiency. To date, no treatment has been agreed on as the standard treatment for chronic/delayed-onset MG keratopathy. Based on the authors' experience, we propose a management algorithm for MG-related ocular surface injuries involving optimization of ocular health, anti-inflammatory therapy, and if needed surgical interventions. The management of chronic and delayed-onset presentation remains challenging. CONCLUSIONS MG keratopathy is a unique form of chemical injury which can lead to a range of ocular surface pathologies. Long-term anti-inflammatory therapy even in patients with seemingly mild disease may potentially reduce the likelihood of the development of more severe delayed-onset disease.
Collapse
Affiliation(s)
- Mohammad Soleimani
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Bita Momenaei
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Baradaran-Rafii
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of ophthalmology, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Kasra Cheraqpour
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Seungwon An
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Mohammad Javad Ashraf
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Farshad Abedi
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Mohammad Ali Javadi
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali R. Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
33
|
Yang X, Zuo X, Zeng H, Liao K, He D, Wang B, Yuan J. IFN-γ Facilitates Corneal Epithelial Cell Pyroptosis Through the JAK2/STAT1 Pathway in Dry Eye. INVESTIGATIVE OPTHALMOLOGY & VISUAL SCIENCE 2023; 64:34. [PMID: 36988949 PMCID: PMC10064915 DOI: 10.1167/iovs.64.3.34] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Purpose To investigate the effect of gamma interferon (IFN-γ) on corneal epithelial pyroptosis in an experimental dry eye (DE) model and explore the underlying molecular mechanisms. Methods Experimental DE was established in adult wild-type (WT) C57BL/6 mice and Ifng-knockout mice on a C57BL/6 background by subcutaneous injection of scopolamine (1.5 mg/0.3 mL, three times per day) and exposure to desiccating stress. An immortalized human corneal epithelial cell line (HCE-T) was treated with IFN-γ under hyperosmolar conditions. Corneal epithelial defects, tear production, and conjunctival goblet cells were detected by fluorescein sodium staining, the phenol red cotton test, and periodic acid-Schiff staining. The mRNA expression was measured by quantitative real-time PCR. Changes in protein expression were analyzed by Western blotting and immunofluorescence staining. Cell Counting Kit-8 and lactate dehydrogenase assays and in situ TUNEL staining were used to assess cell death. Results The expression of IFNG and its related genes was increased in the corneas of DE mice, whereas genetic deletion of Ifng ameliorated desiccating stress-induced dry eye symptoms. We further found that IFN-γ activated the JAK2/STAT1 signaling pathway inducing corneal epithelial pyroptosis. Topical application of a STAT1 inhibitor in vivo or siRNA targeting STAT1 in vitro suppressed pyroptosis of corneal epithelial cells. In addition, the production of reactive oxygen species (ROS) was elevated in DE, and a reduction in excessive ROS release prevented pyroptosis. Conclusions The increase in IFN-γ participates in the pathogenesis of dry eye and promotes corneal epithelial pyroptosis by activating the JAK2/STAT1 signaling pathway. Oxidative stress might be in downstream of JAK2/STAT1, thereby contributing to pyroptosis.
Collapse
|
34
|
Yu Y, Li K, Xue R, Liu S, Liu X, Wu K. A20 functions as a negative regulator of the lipopolysaccharide-induced inflammation in corneal epithelial cells. Exp Eye Res 2023; 228:109392. [PMID: 36717050 DOI: 10.1016/j.exer.2023.109392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/01/2022] [Accepted: 01/25/2023] [Indexed: 01/28/2023]
Abstract
A20, also called TNFAIP3, is a crucial regulator of inflammation in various diseases but has not evidenced its function in the cornea. We aimed to evaluate the existence and the functions of A20 in human corneal epithelial (HCE-T) cells. After being treated with lipopolysaccharide (LPS) in different concentrations or at separate times, cells were collected to analyze A20 expressions. We then constructed the A20 knockdown system by siRNA and the A20 overexpressing system by lentivirus transduction. Systems were further exposed to medium with or without LPS for indicated times. Next, we evaluated the production of inflammatory cytokines (IL-6 and IL-8) by qRT-PCR and ELISA. Also, the translocation of P65 and the phosphorylation of P65, P38 and JNK were observed in two systems. In addition, we used the nuclear factor kappa-B (NF-κB) antagonist TPCA-1 for the pretreatment in cells and then detected the A20 expressions. We found a low basal expression of A20 in HCE-T cells, and the expressions could be dose-dependently induced by LPS, peaking at 4 h in protein level after stimulation. Both the A20 knockdown and A20 overexpressing systems were confirmed to be effective. After the LPS treatment, productions of IL-6 and IL-8 were enhanced in the A20 knockdown system and reduced in the A20 overexpressing system. A20 reduced the translocation of P65 into the nucleus and the phosphorylation of P65, P38 and JNK. Furthermore, TPCA-1 pretreatment reduced the expression of A20 in cells. We concluded that A20 is a potent regulator for corneal epithelium's reaction to inflammation, and it thus is expected to be a potential therapy target for ocular surface diseases.
Collapse
Affiliation(s)
- Yubin Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Kunke Li
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, China
| | - Ran Xue
- Department of Ophthalmology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Sihao Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Xiuping Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Kaili Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
| |
Collapse
|
35
|
Recent Advances in Hydrogels for the Diagnosis and Treatment of Dry Eye Disease. Gels 2022; 8:gels8120816. [PMID: 36547340 PMCID: PMC9778550 DOI: 10.3390/gels8120816] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Dry eye disease (DED) is the most common clinical ocular surface disease. Given its multifactorial etiology, no consensus has been reached on the diagnosis criteria for dry eye disease. Topical drug administration remains the mainstay of treatment but is limited to the rapid clearance from the eye surface. To address these problems, hydrogel-based materials were designed to detect biomarkers or act as drug delivery systems by taking advantage of their good biocompatibility, excellent physical and mechanical properties, and long-term implant stability. Biosensors prepared using biocompatible hydrogels can be sensitive in diagnosing DED, and the designed hydrogels can also improve the drug bioavailability and retention time for more effective and long-term treatment. This review summarizes recent advances in the use of hydrogels for diagnosing and treating dry eye, aiming to provide a novel reference for the eventual clinical translation of hydrogels in the context of dry eye disease.
Collapse
|
36
|
Bernardo-Colón A, Lerner M, Becerra SP. Pigment epithelium-derived factor is an interleukin-6 antagonist in the RPE: Insight of structure-function relationships. Front Physiol 2022; 13:1045613. [PMID: 36467689 PMCID: PMC9709256 DOI: 10.3389/fphys.2022.1045613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/03/2022] [Indexed: 07/04/2024] Open
Abstract
Retinal and choroidal inflammatory lesions increase the levels of the pro-inflammatory cytokine interleukin-6 (IL-6). Pigment epithelium-derived factor (PEDF) has anti-inflammatory properties, but it is not known if it can prevent the production of IL-6 by the retinal pigment epithelium. To investigate the anti-inflammatory effects of PEDF in the RPE, we used human ARPE-19 cells stimulated with human recombinant tumor necrosis factor-alpha (TNF-α) to induce overexpression of the IL6 gene. We found that the viability of ARPE-19 cells decreased by 22% with TNF-α at 10 ng/ml, being drastically decreased at ≥50 ng/ml. TNF-α at 5-100 ng/ml elevated the production and secretion of IL-6 protein, as measured by ELISA. To challenge the TNF-α-mediated stimulation of IL-6, we used recombinant human PEDF protein. PEDF at 100 nM recovered the TNF-α-mediated loss of cell viability and repressed IL-6 gene expression as determined by RT-PCR. PEDF at 10-100 nM attenuated the IL-6 protein secretion in a dose dependent fashion (IC50 = 65 nM), being abolished with 100 nM PEDF. To map the region that confers the IL-6 blocking effect to the PEDF polypeptide, we used chemically synthesized peptides designed from its biologically active domains, pro-death 34-mer, and pro-survival 44-mer and 17-mer (H105A), to challenge the IL-6 overproduction. The pro-survival peptides recovered the TNF-α-mediated cell viability loss, and inhibited IL-6 secretion, while the 34-mer did not have an effect, suggesting a role for the pro-survival domain in blocking TNF-α-mediated cell death and IL-6 stimulation. Our findings position PEDF as a novel antagonistic agent of IL-6 production in RPE cells, underscoring its use for the management of retinal disease-related inflammation.
Collapse
Affiliation(s)
| | | | - S. Patricia Becerra
- Laboratory of Retinal Cell and Molecular Biology, Section of Protein Structure and Function, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
37
|
Ho TC, Fan NW, Yeh SI, Chen SL, Tsao YP. The Therapeutic Effects of a PEDF-Derived Short Peptide on Murine Experimental Dry Eye Involves Suppression of MMP-9 and Inflammation. Transl Vis Sci Technol 2022; 11:12. [PMID: 36201200 PMCID: PMC9554226 DOI: 10.1167/tvst.11.10.12] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To evaluate the efficacy of a pigment epithelium-derived factor (PEDF)-derived short peptide 29-mer, on the treatment and prevention of experimental dry eye (EDE). Methods C57BL/6 mice were housed in a low humidity controlled environment chamber for 14 days to induce EDE. The 29-mer was administered topically to their eyes, for treatment or dosing, from the point of housing in the controlled environment chamber. The efficacy of the 29-mer on EDE was evaluated in terms of corneal epithelial integrity, tear secretion, and the density of conjunctival goblet cells. PEDF and inflammatory factors, including tumor necrosis factor-α, IL-1β, IL-6, monocyte chemotactic protein (MCP)-1, matrix metalloproteinase-9, and macrophage infiltration, were examined by real-time polymerase chain reaction, Western blotting, and immunostaining. The involvement of the PEDF receptor/PNPLA2 on the 29-mer effects was evaluated by a specific inhibitor, atglistatin. Rabbit corneal epithelial cells were exposed to hyperosmotic medium to induce inflammatory responses. Results The levels of PEDF protein increased in the corneal epithelium of EDE, compared with the nonstressed mice. The 29-mer showed a therapeutic effect on EDE and prevented the development of EDE, accompanied by amelioration of the inflammatory factors. The 29-mer effects of inflammatory relief were dramatically reversed by atglistatin. The 29-mer also suppressed the expression of matrix metalloproteinase-9 and proinflammatory cytokines in rabbit corneal epithelial cells induced by hyperosmolarity. Conclusions Through this animal study, we provide a proof of concept of the anti-inflammatory domain of PEDF having potential to treat dry eye disease. Translational Relevance This study shows the 29-mer has novel potential as an ophthalmic drop treatment for dry eye disease.
Collapse
Affiliation(s)
- Tsung-Chuan Ho
- Department of Medical Research, Mackay Memorial Hospital, New Taipei City, Taiwan
| | - Nai-Wen Fan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Shu-I Yeh
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan.,Department of Ophthalmology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Show-Li Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yeou-Ping Tsao
- Department of Medical Research, Mackay Memorial Hospital, New Taipei City, Taiwan.,Department of Medicine, Mackay Medical College, New Taipei City, Taiwan.,Department of Ophthalmology, Mackay Memorial Hospital, Taipei, Taiwan
| |
Collapse
|
38
|
Li C, Zhang Y, Gao F. Serum Pigment Epithelium-Derived Factor Levels are Associated with Estradiol and Decrease After Adjusting for Alanine Aminotransferase in Chinese Women Based on Multiple Linear Regression Analysis. Diabetes Metab Syndr Obes 2022; 15:2901-2909. [PMID: 36177339 PMCID: PMC9514778 DOI: 10.2147/dmso.s378561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/13/2022] [Indexed: 01/10/2023] Open
Abstract
PURPOSE To assess changes in pigment epithelium-derived factor (PEDF) levels in patients with metabolic syndrome (MetS) and to investigate sexual dimorphism in serum PEDF levels and their relationships with estradiol. METHODS A total of 318 individuals (145 men, 173 women) who underwent health examinations in our department were selected. Serum PEDF, estradiol and other metabolic parameters were determined. Homeostasis model assessment of insulin resistance (HOMA- IR) and homeostasis model assessment of β-cell function (HOMA-β) were calculated to evaluate insulin resistance and β-cell function, respectively. Multiple linear regression analysis was used to analyse the factors influencing serum PEDF. RESULTS Serum PEDF levels were significantly higher in subjects with MetS in both men and women (12.09±2.75 vs 8.97±3.19 μg/mL in men and 11.31±2.79 vs 8.40±2.32 μg/mL in women, MetS vs non-MetS, P<0.001). Correlation analysis showed that serum PEDF levels were significantly correlated with body mass index (BMI), waist circumference, waist-to-hip ratio, diastolic blood pressure (DBP), fasting and 2-h postprandial glucose, fasting and 2-h postprandial insulin, HOMA-β, HOMA-IR, hemoglobin A1c (HbA1c), alanine aminotransferase (ALT), aspartate aminotransferase (AST), uric acid (UA), triacylglycerol (TG) and high-density lipoprotein cholesterol (HDL-C). Elevated ALT, HOMA-IR and TG were significant predictors of increased PEDF concentrations. In women, estradiol was inversely correlated with PEDF levels (r=-0.25, P=0.011), and the association was no longer significant after adjustment for ALT. CONCLUSION PEDF could be used as a biomarker of MetS in both men and women. This study reported for the first time that circulating PEDF displays sexual dimorphism, which could be related to estrogen. The association between estrogen and circulating PEDF levels was attenuated after adjusting for ALT.
Collapse
Affiliation(s)
- Cuiliu Li
- The Second Department of Endocrinology, Cangzhou Central Hospital, Cangzhou, 061001, People’s Republic of China
| | - Yunna Zhang
- The Second Department of Endocrinology, Cangzhou Central Hospital, Cangzhou, 061001, People’s Republic of China
| | - Fang Gao
- The Second Department of Endocrinology, Cangzhou Central Hospital, Cangzhou, 061001, People’s Republic of China
| |
Collapse
|
39
|
Proteases and Their Potential Role as Biomarkers and Drug Targets in Dry Eye Disease and Ocular Surface Dysfunction. Int J Mol Sci 2022; 23:ijms23179795. [PMID: 36077189 PMCID: PMC9456293 DOI: 10.3390/ijms23179795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022] Open
Abstract
Dry eye disease (DED) is a multifactorial disorder that leads to ocular discomfort, visual disturbance, and tear film instability. DED is accompanied by an increase in tear osmolarity and ocular surface inflammation. The diagnosis and treatment of DED still present significant challenges. Therefore, novel biomarkers and treatments are of great interest. Proteases are present in different tissues on the ocular surface. In a healthy eye, proteases are highly regulated. However, dysregulation occurs in various pathologies, including DED. With this review, we provide an overview of the implications of different families of proteases in the development and severity of DED, along with studies involving protease inhibitors as potential therapeutic tools. Even though further research is needed, this review aims to give suggestions for identifying novel biomarkers and developing new protease inhibitors.
Collapse
|
40
|
Ameliorative Potential of Resveratrol in Dry Eye Disease by Restoring Mitochondrial Function. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1013444. [PMID: 35664941 PMCID: PMC9162831 DOI: 10.1155/2022/1013444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/29/2022] [Accepted: 04/18/2022] [Indexed: 11/30/2022]
Abstract
Methods The mitochondrial dysfunction of HCE-2 human corneal epithelial cells was induced by high osmotic pressure exposure and treated with resveratrol (50 μM). Western blotting was used to detect the expression of the antioxidant proteins SOD2, GPx, and SIRT1, and flow cytometry was used to detect cell apoptosis and ROS production. The DED mouse model was induced by 0.2% benzalkonium chloride (BAC) and treated with resveratrol. The tear yield was measured by the phenol cotton thread test, the density of cup cells in the conjunctiva was measured by periodic acid-Schiff (PAS) staining, and the expression levels of SIRT1, GPx, and SOD2 in lacrimal glands were detected by Western blotting. Results In hypertonic conditions, the apoptosis of HCE-2 cells increased, the expression of the antioxidant proteins SOD2 and GPx decreased, ROS production increased, and the expression of SIRT1 protein, an essential regulator of mitochondrial function, was downregulated. Treatment with resveratrol reversed the mitochondrial dysfunction mediated by high osmotic pressure. In the DED mouse model, resveratrol treatment promoted tear production and goblet cell number in DED mice, decreased corneal fluorescein staining, upregulated SIRT1 expression, and induced SOD2 and GPx expression in DED mice. Conclusion Resveratrol alleviates mitochondrial dysfunction by promoting SIRT1 expression, thus reducing ocular surface injury in mice with dry eye. This study suggests a new path against DED.
Collapse
|
41
|
Yu C, Chen P, Xu J, Wei S, Cao Q, Guo C, Wu X, Di G. Corneal Epithelium-Derived Netrin-1 Alleviates Dry Eye Disease via Regulating Dendritic Cell Activation. Invest Ophthalmol Vis Sci 2022; 63:1. [PMID: 35648640 PMCID: PMC9172049 DOI: 10.1167/iovs.63.6.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 05/16/2022] [Indexed: 12/12/2022] Open
Abstract
Purpose To investigate the expression of corneal epithelium-derived netrin-1 (NTN-1) and its immunoregulatory function in dry eye disease (DED) using a DED mouse model. Methods We generated DED mouse models with desiccating stress under scopolamine treatment. RNA sequencing was performed to identify differentially expressed genes (DEGs) in the corneal epithelium of DED mice. NTN-1 expression was analyzed via real-time PCR, immunofluorescence staining, and immunoblotting. The DED mice were then treated with recombinant NTN-1 or neutralizing antibodies to investigate the severity of the disease, dendritic cell (DC) activation, and inflammatory cytokine expression. Results A total of 347 DEGs (292 upregulated and 55 downregulated) were identified in the corneal epithelium of DED mice: corneal epithelium-derived NTN-1 expression was significantly decreased in DED mice compared to that in control mice. Topical recombinant NTN-1 application alleviated the severity of the disease, accompanied by restoration of tear secretion and goblet cell density. In addition, NTN-1 decreased the number of DCs, inhibited the activation of the DCs and Th17 cells, and reduced the expression of inflammatory factors in DED mice. In contrast, blocking endogenous NTN-1 activity with an anti-NTN-1 antibody aggravated the disease, enhanced DC activation, and upregulated the inflammatory factors in the conjunctivae of DED mice. Conclusions We identified decreased NTN-1 expression in the corneal epithelium of DED mice. Our findings elucidate the role of NTN-1 in alleviating DED and impeding DC activation, thereby indicating its therapeutic potential in suppressing ocular inflammation in DED.
Collapse
Affiliation(s)
- Chaoqun Yu
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Peng Chen
- Department of Anthropotomy and Histo-Embryology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Jing Xu
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Susu Wei
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Qilong Cao
- Qingdao Haier Biotech Co. Ltd., Qingdao, China
| | - Chuanlong Guo
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Xianggen Wu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Guohu Di
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
42
|
Zha Z, Chen Q, Xiao D, Pan C, Xu W, Shen L, Shen J, Chen W. Mussel-Inspired Microgel Encapsulated NLRP3 Inhibitor as a Synergistic Strategy Against Dry Eye. Front Bioeng Biotechnol 2022; 10:913648. [PMID: 35721850 PMCID: PMC9198461 DOI: 10.3389/fbioe.2022.913648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 04/18/2022] [Indexed: 11/13/2022] Open
Abstract
The inflammatory response mediated by oxidative stress is the main pathogenesis of dry eye, but clinical observations have shown that scavenging oxygen-free radicals alone has limited therapeutic effect. Moreover, the unique anatomy and physiology of the ocular surface result in low bioavailability of drugs, and higher concentration is required to achieve the desired efficacy, which, however, may bring systemic side effects. These problems pose a challenge, but the revelation of the ROS-NLRP3-IL-1β signaling axis opens up new possibilities. In this investigation, an NLRP3 inhibitor was successfully encapsulated in polydopamine-based microgels and used for dry eye treatment. It was demonstrated that the well-designed microgels exhibited good biocompatibility, prolonged drug retention time on the ocular surface, and effective inhibition of corneal epithelial damage and cell apoptosis. In addition, due to the synergistic effect, the NLRP3 inhibitor–loaded microgels could exert enhanced oxygen radical scavenging and inflammation-inhibiting effects at a lower dose than monotherapy. These findings suggest that polydopamine-based microgels have advantages as ocular surface drug delivery platforms and have promising applications in oxidative damage–related inflammatory diseases in synergy with anti-inflammatory drugs.
Collapse
Affiliation(s)
- Zhiwei Zha
- Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Qiumeng Chen
- Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Decheng Xiao
- Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Chengjie Pan
- Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Wei Xu
- Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Liangliang Shen
- Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Liangliang Shen, ; Jianliang Shen, ; Wei Chen,
| | - Jianliang Shen
- Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, China
- *Correspondence: Liangliang Shen, ; Jianliang Shen, ; Wei Chen,
| | - Wei Chen
- Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Liangliang Shen, ; Jianliang Shen, ; Wei Chen,
| |
Collapse
|
43
|
Edvardsson Rasmussen J, Lundström P, Eriksson PO, Rask-Andersen H, Liu W, Laurell G. The Acute Effects of Furosemide on Na-K-Cl Cotransporter-1, Fetuin-A and Pigment Epithelium-Derived Factor in the Guinea Pig Cochlea. Front Mol Neurosci 2022; 15:842132. [PMID: 35392272 PMCID: PMC8981210 DOI: 10.3389/fnmol.2022.842132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/22/2022] [Indexed: 11/28/2022] Open
Abstract
Background Furosemide is a loop diuretic used to treat edema; however, it also targets the Na-K-Cl cotransporter-1 (NKCC1) in the inner ear. In very high doses, furosemide abolishes the endocochlear potential (EP). The aim of the study was to gain a deeper understanding of the temporal course of the acute effects of furosemide in the inner ear, including the protein localization of Fetuin-A and PEDF in guinea pig cochleae. Material and Method Adult guinea pigs were given an intravenous injection of furosemide in a dose of 100 mg per kg of body weight. The cochleae were studied using immunohistochemistry in controls and at four intervals: 3 min, 30 min, 60 min and 120 min. Also, cochleae of untreated guinea pigs were tested for Fetuin-A and PEDF mRNA using RNAscope® technology. Results At 3 min, NKCC1 staining was abolished in the type II fibrocytes in the spiral ligament, followed by a recovery period of up to 120 min. In the stria vascularis, the lowest staining intensity of NKCC1 presented after 30 min. The spiral ganglion showed a stable staining intensity for the full 120 min. Fetuin-A protein and mRNA were detected in the spiral ganglion type I neurons, inner and outer hair cells, pillar cells, Deiters cells and the stria vascularis. Furosemide induced an increased staining intensity of Fetuin-A at 120 min. PEDF protein and mRNA were found in the spiral ganglia type I neurons, the stria vascularis, and in type I and type II fibrocytes of the spiral ligament. PEDF protein staining intensity was high in the pillar cells in the organ of Corti. Furosemide induced an increased staining intensity of PEDF in type I neurons and pillar cells after 120 min. Conclusion The results indicate rapid furosemide-induced changes of NKCC1 in the type II fibrocytes. This could be part of the mechanism that causes reduction of the EP within minutes after high dose furosemide injection. Fetuin-A and PEDF are present in many cells of the cochlea and probably increase after furosemide exposure, possibly as an otoprotective response.
Collapse
|
44
|
He T, Liu W, Shen CA. Anti-inflammatory properties of pigment epithelium-derived factor. EUR J INFLAMM 2022. [DOI: 10.1177/1721727x221138857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Inflammation is part of the complex biological response to harmful stimuli, such as cell damage, pathogens, or irritants. An excessive inflammatory response can lead to a variety of diseases. Pigment epithelium-derived factor (PEDF) is an endogenous glycoprotein that belongs to the superfamily of serine protease inhibitors and has multiple biological activities. Accumulating evidence suggests that PEDF participates in various inflammatory-related diseases, such as diabetic retinopathy, atherosclerosis, nonalcoholic steatohepatitis, and retinal diseases. However, the mechanism is still incompletely understood. In this paper, we review the anti-inflammatory properties of PEDF and discuss the underlying mechanisms. PEDF can exert its anti-inflammatory effects by downregulating the expression of inflammatory factors, promoting the synthesis of anti-inflammatory factors, inhibiting the activation of proinflammatory pathways and activating anti-inflammatory pathways. Examining the function of PEDF in inflammation addresses the need for further investigation and subsequent target-specific strategies for inflammatory disorders.
Collapse
Affiliation(s)
- Ting He
- The Fourth Medical Center of Chinese PLA General Hospital, Senior Department of Burns and Plastic Surgery, Beijing, China
| | - Wei Liu
- The Fourth Medical Center of Chinese PLA General Hospital, Senior Department of Burns and Plastic Surgery, Beijing, China
| | - Chuan-an Shen
- The Fourth Medical Center of Chinese PLA General Hospital, Senior Department of Burns and Plastic Surgery, Beijing, China
| |
Collapse
|
45
|
The link module of human TSG-6 (Link_TSG6) promotes wound healing, suppresses inflammation and improves glandular function in mouse models of Dry Eye Disease. Ocul Surf 2021; 24:40-50. [PMID: 34968766 DOI: 10.1016/j.jtos.2021.12.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/16/2022]
Abstract
PURPOSE To investigate the potential of the Link_TSG6 polypeptide comprising the Link module of human TSG-6 (TNF-stimulated gene/protein-6) as a novel treatment for dry eye disease (DED). METHODS We analyzed the therapeutic effects of topical application of Link_TSG6 in two murine models of DED, the NOD.B10.H2b mouse model and the desiccating stress model. The effects of Link_TSG6 on the ocular surface and DED were compared with those of full-length TSG-6 (FL_TSG6) and of 0.05% cyclosporine (Restasis®). Additionally, the direct effect of Link_TSG6 on wound healing of the corneal epithelium was evaluated in a mouse model of corneal epithelial debridement. RESULTS Topical Link_TSG6 administration dose-dependently reduced corneal epithelial defects in DED mice while increasing tear production and conjunctival goblet cell density. At the highest dose, no corneal lesions remained in ∼50% of eyes treated. Also, Link_TSG6 significantly suppressed the levels of inflammatory cytokines at the ocular surface and inhibited the infiltration of T cells in the lacrimal glands and draining lymph nodes. Link_TSG6 was more effective in decreasing corneal epithelial defects than an equimolar concentration of FL_TSG6. Link_TSG6 was significantly more potent than Restasis® at ameliorating clinical signs and reducing inflammation. Link_TSG6 markedly and rapidly facilitated epithelial healing in mice with corneal epithelial debridement wounds. CONCLUSION Link_TSG6 holds promise as a novel therapeutic agent for DED through its effects on the promotion of corneal epithelial healing and tear secretion, the preservation of conjunctival goblet cells and the suppression of inflammation.
Collapse
|
46
|
Liu S, Miyaji M, Hosoya O, Matsuo T. Effect of NK-5962 on Gene Expression Profiling of Retina in a Rat Model of Retinitis Pigmentosa. Int J Mol Sci 2021; 22:ijms222413276. [PMID: 34948073 PMCID: PMC8703378 DOI: 10.3390/ijms222413276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 11/18/2022] Open
Abstract
Purpose: NK-5962 is a key component of photoelectric dye-coupled polyethylene film, designated Okayama University type-retinal prosthesis (OUReP™). Previously, we found that NK-5962 solution could reduce the number of apoptotic photoreceptors in the eyes of the Royal College of Surgeons (RCS) rats by intravitreal injection under a 12 h light/dark cycle. This study aimed to explore possible molecular mechanisms underlying the anti-apoptotic effect of NK-5962 in the retina of RCS rats. Methods: RCS rats received intravitreal injections of NK-5962 solution in the left eye at the age of 3 and 4 weeks, before the age of 5 weeks when the speed in the apoptotic degeneration of photoreceptors reaches its peak. The vehicle-treated right eyes served as controls. All rats were housed under a 12 h light/dark cycle, and the retinas were dissected out at the age of 5 weeks for RNA sequence (RNA-seq) analysis. For the functional annotation of differentially expressed genes (DEGs), the Metascape and DAVID databases were used. Results: In total, 55 up-regulated DEGs, and one down-regulated gene (LYVE1) were found to be common among samples treated with NK-5962. These DEGs were analyzed using Gene Ontology (GO) term enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG), and Reactome pathway analyses. We focused on the up-regulated DEGs that were enriched in extracellular matrix organization, extracellular exosome, and PI3K–Akt signaling pathways. These terms and pathways may relate to mechanisms to protect photoreceptor cells. Moreover, our analyses suggest that SERPINF1, which encodes pigment epithelium-derived factor (PEDF), is one of the key regulatory genes involved in the anti-apoptotic effect of NK-5962 in RCS rat retinas. Conclusions: Our findings suggest that photoelectric dye NK-5962 may delay apoptotic death of photoreceptor cells in RCS rats by up-regulating genes related to extracellular matrix organization, extracellular exosome, and PI3K–Akt signaling pathways. Overall, our RNA-seq and bioinformatics analyses provide insights in the transcriptome responses in the dystrophic RCS rat retinas that were induced by NK-5962 intravitreal injection and offer potential target genes for developing new therapeutic strategies for patients with retinitis pigmentosa.
Collapse
Affiliation(s)
- Shihui Liu
- Department of Ophthalmology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama City 700-8558, Japan;
| | - Mary Miyaji
- Department of Medical Neurobiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama City 700-8558, Japan; (M.M.); (O.H.)
| | - Osamu Hosoya
- Department of Medical Neurobiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama City 700-8558, Japan; (M.M.); (O.H.)
| | - Toshihiko Matsuo
- Department of Ophthalmology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama City 700-8558, Japan;
- Correspondence:
| |
Collapse
|
47
|
Rahman MM, Kim DH, Park CK, Kim YH. Experimental Models, Induction Protocols, and Measured Parameters in Dry Eye Disease: Focusing on Practical Implications for Experimental Research. Int J Mol Sci 2021; 22:12102. [PMID: 34830010 PMCID: PMC8622350 DOI: 10.3390/ijms222212102] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 12/20/2022] Open
Abstract
Dry eye disease (DED) is one of the major ophthalmological healthcare challenges worldwide. DED is a multifactorial disease characterized by a loss of homeostasis of the tear film, and its main pathogenesis is chronic ocular surface inflammation related with various cellular and molecular signaling cascades. The animal model is a reliable and effective tool for understanding the various pathological mechanisms and molecular cascades in DED. Considerable experimental research has focused on developing new strategies for the prevention and treatment of DED. Several experimental models of DED have been developed, and different animal species such as rats, mice, rabbits, dogs, and primates have been used for these models. Although the basic mechanisms of DED in animals are nearly identical to those in humans, proper knowledge about the induction of animal models is necessary to obtain better and more reliable results. Various experimental models (in vitro and in vivo DED models) were briefly discussed in this review, along with pathologic features, analytical approaches, and common measurements, which will help investigators to use the appropriate cell lines, animal, methods, and evaluation parameters depending on their study design.
Collapse
Affiliation(s)
- Md Mahbubur Rahman
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon 21999, Korea
| | - Dong Hyun Kim
- Gil Medical Center, Department of Ophthalmology, Gachon University College of Medicine, Incheon 21565, Korea
| | - Chul-Kyu Park
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon 21999, Korea
| | - Yong Ho Kim
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon 21999, Korea
| |
Collapse
|
48
|
Yu L, Yu C, Dong H, Mu Y, Zhang R, Zhang Q, Liang W, Li W, Wang X, Zhang L. Recent Developments About the Pathogenesis of Dry Eye Disease: Based on Immune Inflammatory Mechanisms. Front Pharmacol 2021; 12:732887. [PMID: 34421626 PMCID: PMC8375318 DOI: 10.3389/fphar.2021.732887] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/26/2021] [Indexed: 01/18/2023] Open
Abstract
Dry eye disease is a common and frequently occurring ophthalmology with complex and diverse causes, and its incidence is on the upward trend. The pathogenesis of DED is still completely clear. However, the immune response based on inflammation has been recognized as the core basis of this disease. In this review, we will systematically review the previous research on the treatment of DED in immune inflammation, analyze the latest views and research hotspots, and provide reference for the prevention and treatment of DED.
Collapse
Affiliation(s)
- Lifei Yu
- Department of Ophthalmology, The Third People’s Hospital of Dalian, Non-Directly Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Chunjing Yu
- Department of Ophthalmology, The Third People’s Hospital of Dalian, Non-Directly Affiliated Hospital of Dalian Medical University, Dalian, China
| | - He Dong
- Department of Ophthalmology, The Third People’s Hospital of Dalian, Non-Directly Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yanan Mu
- Department of Ophthalmology, The Third People’s Hospital of Dalian, Non-Directly Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Rui Zhang
- Department of Ophthalmology, The Third People’s Hospital of Dalian, Non-Directly Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qiaosi Zhang
- Department of Ophthalmology, The Third People’s Hospital of Dalian, Non-Directly Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Wei Liang
- Department of Ophthalmology, The Third People’s Hospital of Dalian, Non-Directly Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Wenjia Li
- Department of Ophthalmology, The Third People’s Hospital of Dalian, Non-Directly Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xun Wang
- Department of Neurosurgery, The Third People’s Hospital of Dalian, Non-Directly Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Lijun Zhang
- Department of Ophthalmology, The Third People’s Hospital of Dalian, Non-Directly Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
49
|
Delivery Systems of Retinoprotective Proteins in the Retina. Int J Mol Sci 2021; 22:ijms22105344. [PMID: 34069505 PMCID: PMC8160820 DOI: 10.3390/ijms22105344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 12/26/2022] Open
Abstract
Retinoprotective proteins play important roles for retinal tissue integrity. They can directly affect the function and the survival of photoreceptors, and/or indirectly target the retinal pigment epithelium (RPE) and endothelial cells that support these tissues. Retinoprotective proteins are used in basic, translational and in clinical studies to prevent and treat human retinal degenerative disorders. In this review, we provide an overview of proteins that protect the retina and focus on pigment epithelium-derived factor (PEDF), and its effects on photoreceptors, RPE cells, and endothelial cells. We also discuss delivery systems such as pharmacologic and genetic administration of proteins to achieve photoreceptor survival and retinal tissue integrity.
Collapse
|