1
|
Lara M, Casimiro-Soriguer CS, Pedrosa-Corral I, Gómez-Camarasa C, Lorusso N, Navarro-Marí JM, Dopazo J, Perez-Florido J, Sanbonmatsu-Gámez S. First autochthonous transmission of West Nile virus (WNV) lineage 2 to humans in Spain. One Health 2025; 20:101036. [PMID: 40276693 PMCID: PMC12018207 DOI: 10.1016/j.onehlt.2025.101036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/07/2025] [Accepted: 04/10/2025] [Indexed: 04/26/2025] Open
Abstract
West Nile Virus (WNV) lineage 2, primarily endemic to parts of Africa and Europe, has recently emerged as a public health concern in new geographic regions. In 2024, the first autochthonous human case of neuroinvasive disease caused by WNV lineage 2 was identified in Andalusia, Southern Spain. Molecular testing and whole-genome sequencing confirmed WNV lineage 2 as the causative agent. Phylogenetic analysis revealed a close relationship with strains circulating in Central Europe, distinct from previous WNV lineage 2 detections in Spain. Concurrently, WNV lineage 2 RNA was detected in an imperial eagle near the case location, suggesting local viral circulation. This case marks a significant shift in WNV epidemiology in Spain, where lineage 1 has historically been dominant. The findings underscore the expanding range of WNV lineage 2 and the necessity for enhanced vector surveillance, genomic monitoring, and strengthened One Health strategies to mitigate future outbreaks and protect public health.
Collapse
Affiliation(s)
- Maria Lara
- Platform of Computational Medicine, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocio, 41013 Sevilla, Spain
| | - Carlos S. Casimiro-Soriguer
- Platform of Computational Medicine, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocio, 41013 Sevilla, Spain
- Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Sevilla, 41013 Sevilla, Spain
| | - Irene Pedrosa-Corral
- Laboratorio de Referencia de Virus de Andalucía, Servicio de Microbiología, Hospital Virgen de las Nieves, 18014 Granada, Spain
- Instituto de investigación biosanitaria, ibs.GRANADA, 18012 Granada, Spain
| | - Cristina Gómez-Camarasa
- Laboratorio de Referencia de Virus de Andalucía, Servicio de Microbiología, Hospital Virgen de las Nieves, 18014 Granada, Spain
- Instituto de investigación biosanitaria, ibs.GRANADA, 18012 Granada, Spain
| | - Nicola Lorusso
- Dirección General de Salud Pública y Ordenación Farmacéutica, Consejería de Salud y Consumo. Junta de Andalucía, 41020 Sevilla, Spain
| | - Jose M. Navarro-Marí
- Laboratorio de Referencia de Virus de Andalucía, Servicio de Microbiología, Hospital Virgen de las Nieves, 18014 Granada, Spain
- Instituto de investigación biosanitaria, ibs.GRANADA, 18012 Granada, Spain
| | - Joaquin Dopazo
- Platform of Computational Medicine, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocio, 41013 Sevilla, Spain
- Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Sevilla, 41013 Sevilla, Spain
| | - Javier Perez-Florido
- Platform of Computational Medicine, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocio, 41013 Sevilla, Spain
- Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Sevilla, 41013 Sevilla, Spain
| | - Sara Sanbonmatsu-Gámez
- Laboratorio de Referencia de Virus de Andalucía, Servicio de Microbiología, Hospital Virgen de las Nieves, 18014 Granada, Spain
- Instituto de investigación biosanitaria, ibs.GRANADA, 18012 Granada, Spain
| |
Collapse
|
2
|
Romiti F, Scicluna MT, Censi F, Micarelli F, Puccica S, Carvelli A, Sala MG, Del Lesto I, Casini R, De Liberato C, Tofani S. Is it time to consider west Nile and Usutu viruses endemic in central Italy? Virus Res 2025; 355:199557. [PMID: 40081763 PMCID: PMC11957532 DOI: 10.1016/j.virusres.2025.199557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
West Nile (WNV) and Usutu (USUV) viruses co-circulated in a region of Central Italy (Lazio) in 2018, as evidenced by the detection of WNV in the nervous tissues of symptomatic horses and USUV in blood donors and mosquito pools. To assess whether these viruses were endemic in the region, we analysed: 1) diapausing Culex pipiens mosquitoes collected during the winter seasons 2022-2023 and 2023-2024, 2) Cx. pipiens mosquitoes collected during the adult activity period from April to November in 2022 and 2023 across 4 provinces, and 3) sera from 52 horses and tissues from 537 birds. Field-collected Cx. pipiens, including both diapausing and non-diapausing individuals, were tested in pools for WNV and USUV using real-time RT-PCR. Serum samples from horses were tested with two WNV ELISA assays, IgM and IgG, while bird tissues were tested for both viruses via real-time RT-PCR. A total of 18,834 Cx. pipiens females were collected, including 9,812 mosquitoes during the winter seasons and 9,022 during the adult activity periods. Mosquitoes were tested in 623 pools, with all pools of diapausing mosquitoes testing negative for both viruses and 12 pools of non-diapausing mosquitoes positive to USUV. The WNV IgG positivity of 7 horse sera, which were negative at the beginning of the study period, was not confirmed by the virus neutralization test. All tissue samples were negative for WNV and USUV. Since WNV and USUV were not detected in diapausing mosquitoes, there was no evidence of the two viruses endemicity in the study area.
Collapse
Affiliation(s)
- Federico Romiti
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana M. Aleandri, Via Appia Nuova 1411, 00178, Rome, Italy.
| | - Maria Teresa Scicluna
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana M. Aleandri, Via Appia Nuova 1411, 00178, Rome, Italy
| | - Francesco Censi
- ASL Latina, Sanità Animale e Igiene degli Allevamenti, Via Nettunense, 04011 Aprilia (LT), Italy
| | - Florindo Micarelli
- ASL Latina, Sanità Animale e Igiene degli Allevamenti, Via Nettunense, 04011 Aprilia (LT), Italy
| | - Silvia Puccica
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana M. Aleandri, Via Appia Nuova 1411, 00178, Rome, Italy
| | - Andrea Carvelli
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana M. Aleandri, Via Appia Nuova 1411, 00178, Rome, Italy
| | - Marcello Giovanni Sala
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana M. Aleandri, Via Appia Nuova 1411, 00178, Rome, Italy
| | - Irene Del Lesto
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana M. Aleandri, Via Appia Nuova 1411, 00178, Rome, Italy
| | - Riccardo Casini
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana M. Aleandri, Via Appia Nuova 1411, 00178, Rome, Italy
| | - Claudio De Liberato
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana M. Aleandri, Via Appia Nuova 1411, 00178, Rome, Italy
| | - Silvia Tofani
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana M. Aleandri, Via Appia Nuova 1411, 00178, Rome, Italy
| |
Collapse
|
3
|
Rapi MC, Martin AMM, Lelli D, Lavazza A, Raimondi S, Farioli M, Chiari M, Grilli G. Virological Passive Surveillance of Avian Influenza and Arboviruses in Wild Birds: A Two-Year Study (2023-2024) in Lombardy, Italy. Microorganisms 2025; 13:958. [PMID: 40431131 PMCID: PMC12114497 DOI: 10.3390/microorganisms13050958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/15/2025] [Accepted: 04/19/2025] [Indexed: 05/29/2025] Open
Abstract
Avian influenza (AI), caused by Alphainfluenzavirus (family Orthomyxoviridae), poses significant threats to poultry, biodiversity, and public health. AI outbreaks in poultry lead to severe economic losses, while highly pathogenic strains (HPAIVs) severely impact wild bird populations, with implications for biodiversity and potential zoonotic risks. Similarly, arboviruses such as West Nile virus (WNV) and Usutu virus (USUV) are emerging zoonoses. WNV can cause severe neurological diseases in birds, humans, and other animals, while USUV significantly affects blackbird populations and has zoonotic potential, though human cases remain rare. This study investigated avian viruses in 1654 wild birds from 75 species that died at the Wildlife Rescue Center in Vanzago, Lombardy, during 2023-2024. Necropsies were conducted, and virological analyses were performed to detect avian influenza viruses, WNV, and USUV. Among the tested birds, 15 were positive for H5N1 HPAIV clade 2.3.4.4b, all in 2023, including 13 Chroicocephalus ridibundus, one Coturnix coturnix, and one Columba palumbus. Additionally, 16 tested positive for WNV (15 for lineage 2 and one for lineage 1), one for USUV, and 11 co-infections WNV/USUV were recorded in 2023-2024. These findings underscore the importance of avian viral passive surveillance in identifying epidemiological trends and preventing transmission to other species, including mammals and humans.
Collapse
Affiliation(s)
- Maria Cristina Rapi
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy;
| | - Ana Maria Moreno Martin
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini” (IZSLER), Via Antonio Bianchi 7/9, 25124 Brescia, Italy; (A.M.M.M.); (D.L.); (A.L.)
| | - Davide Lelli
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini” (IZSLER), Via Antonio Bianchi 7/9, 25124 Brescia, Italy; (A.M.M.M.); (D.L.); (A.L.)
| | - Antonio Lavazza
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini” (IZSLER), Via Antonio Bianchi 7/9, 25124 Brescia, Italy; (A.M.M.M.); (D.L.); (A.L.)
| | - Stefano Raimondi
- Centro Recupero Fauna Selvatica (CRAS)—“Bosco WWF di Vanzago”, Via delle 3 Campane, 20043 Vanzago, Italy;
| | - Marco Farioli
- S.C. Animali, Ambiente e One Health, Dipartimento Veterinario e Sicurezza degli Alimenti di Origine Animale, ATS Insubria, Via Ottorino Rossi 9, 21100 Varese, Italy;
| | - Mario Chiari
- U.O. Veterinaria, Direzione Generale Welfare, Regione Lombardia, Piazza Città di Lombardia 1, 20124 Milano, Italy;
| | - Guido Grilli
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy;
| |
Collapse
|
4
|
Gobbo F, Chiarello G, Sgubin S, Toniolo F, Gradoni F, Danca LI, Carlin S, Capello K, De Conti G, Bortolami A, Varotto M, Favero L, Brichese M, Russo F, Mutinelli F, Vogiatzis S, Pacenti M, Barzon L, Montarsi F. Integrated One Health Surveillance of West Nile Virus and Usutu Virus in the Veneto Region, Northeastern Italy, from 2022 to 2023. Pathogens 2025; 14:227. [PMID: 40137712 PMCID: PMC11945005 DOI: 10.3390/pathogens14030227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/18/2025] [Accepted: 02/24/2025] [Indexed: 03/29/2025] Open
Abstract
West Nile virus (WNV) and Usutu virus (USUV) are neurotropic mosquito-borne orthoflaviviruses maintained in an enzootic cycle, in which birds are amplifying/reservoir hosts, while humans and equids are dead-end hosts. As northern Italy, especially the Veneto Region, is considered an endemic area for WNV and USUV circulation, a surveillance plan based on a One Health approach has been implemented since 2008. This work reports the results of entomological, veterinary and human surveillances for WNV and USUV in the Veneto Region in 2022 and 2023, through virological and/or serological examinations. In 2022, 531 human WNV infections were recorded, and 93,213 mosquitoes and 2193 birds were virologically tested, showing infection rates (IRs) of 4.85% and 8.30%, respectively. The surveillance effort in 2023 provided these results: 56 human WNV infections were confirmed, and 133,648 mosquitoes and 1812 birds were virologically tested, showing IRs of 1.78% and 4.69%, respectively. This work highlights the exceptional circulation of WNV in the Veneto Region, due to the new re-introduction of WNV lineage 1 and co-circulation with WNV lineage 2. This paper confirms the efficacy of integrated surveillance for early warning of viral circulation and gives new insights about avian hosts involved in the enzootic cycle of orthoflavivirus in the endemic region of Italy.
Collapse
Affiliation(s)
- Federica Gobbo
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Legnaro, Italy; (G.C.); (S.S.); (F.T.); (F.G.); (L.I.D.); (S.C.); (K.C.); (G.D.C.); (A.B.); (M.V.); (F.M.); (F.M.)
| | - Giulia Chiarello
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Legnaro, Italy; (G.C.); (S.S.); (F.T.); (F.G.); (L.I.D.); (S.C.); (K.C.); (G.D.C.); (A.B.); (M.V.); (F.M.); (F.M.)
| | - Sofia Sgubin
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Legnaro, Italy; (G.C.); (S.S.); (F.T.); (F.G.); (L.I.D.); (S.C.); (K.C.); (G.D.C.); (A.B.); (M.V.); (F.M.); (F.M.)
| | - Federica Toniolo
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Legnaro, Italy; (G.C.); (S.S.); (F.T.); (F.G.); (L.I.D.); (S.C.); (K.C.); (G.D.C.); (A.B.); (M.V.); (F.M.); (F.M.)
| | - Francesco Gradoni
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Legnaro, Italy; (G.C.); (S.S.); (F.T.); (F.G.); (L.I.D.); (S.C.); (K.C.); (G.D.C.); (A.B.); (M.V.); (F.M.); (F.M.)
| | - Lidia Iustina Danca
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Legnaro, Italy; (G.C.); (S.S.); (F.T.); (F.G.); (L.I.D.); (S.C.); (K.C.); (G.D.C.); (A.B.); (M.V.); (F.M.); (F.M.)
| | - Sara Carlin
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Legnaro, Italy; (G.C.); (S.S.); (F.T.); (F.G.); (L.I.D.); (S.C.); (K.C.); (G.D.C.); (A.B.); (M.V.); (F.M.); (F.M.)
| | - Katia Capello
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Legnaro, Italy; (G.C.); (S.S.); (F.T.); (F.G.); (L.I.D.); (S.C.); (K.C.); (G.D.C.); (A.B.); (M.V.); (F.M.); (F.M.)
| | - Giacomo De Conti
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Legnaro, Italy; (G.C.); (S.S.); (F.T.); (F.G.); (L.I.D.); (S.C.); (K.C.); (G.D.C.); (A.B.); (M.V.); (F.M.); (F.M.)
| | - Alessio Bortolami
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Legnaro, Italy; (G.C.); (S.S.); (F.T.); (F.G.); (L.I.D.); (S.C.); (K.C.); (G.D.C.); (A.B.); (M.V.); (F.M.); (F.M.)
| | - Maria Varotto
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Legnaro, Italy; (G.C.); (S.S.); (F.T.); (F.G.); (L.I.D.); (S.C.); (K.C.); (G.D.C.); (A.B.); (M.V.); (F.M.); (F.M.)
| | - Laura Favero
- Department of Prevention, Food Safety and Veterinary, Veneto Region, 30123 Venice, Italy; (L.F.); (M.B.); (F.R.)
| | - Michele Brichese
- Department of Prevention, Food Safety and Veterinary, Veneto Region, 30123 Venice, Italy; (L.F.); (M.B.); (F.R.)
| | - Francesca Russo
- Department of Prevention, Food Safety and Veterinary, Veneto Region, 30123 Venice, Italy; (L.F.); (M.B.); (F.R.)
| | - Franco Mutinelli
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Legnaro, Italy; (G.C.); (S.S.); (F.T.); (F.G.); (L.I.D.); (S.C.); (K.C.); (G.D.C.); (A.B.); (M.V.); (F.M.); (F.M.)
| | - Stefania Vogiatzis
- Department of Molecular Medicine, University of Padua, Via A. Gabelli 63, 35121 Padova, Italy; (S.V.); (M.P.); (L.B.)
| | - Monia Pacenti
- Department of Molecular Medicine, University of Padua, Via A. Gabelli 63, 35121 Padova, Italy; (S.V.); (M.P.); (L.B.)
| | - Luisa Barzon
- Department of Molecular Medicine, University of Padua, Via A. Gabelli 63, 35121 Padova, Italy; (S.V.); (M.P.); (L.B.)
| | - Fabrizio Montarsi
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Legnaro, Italy; (G.C.); (S.S.); (F.T.); (F.G.); (L.I.D.); (S.C.); (K.C.); (G.D.C.); (A.B.); (M.V.); (F.M.); (F.M.)
| |
Collapse
|
5
|
Jurisic L, Auerswald H, Marcacci M, Di Giallonardo F, Coetzee LM, Curini V, Averaimo D, Ortiz-Baez AS, Cammà C, Di Teodoro G, Richt JA, Holmes EC, Lorusso A. Insect-specific Alphamesonivirus-1 ( Mesoniviridae) in lymph node and lung tissues from two horses with acute respiratory syndrome. J Virol 2025; 99:e0214424. [PMID: 39853116 PMCID: PMC11852760 DOI: 10.1128/jvi.02144-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 01/03/2025] [Indexed: 01/26/2025] Open
Abstract
Members of the RNA virus order Nidovirales infect hosts ranging from marine invertebrates to terrestrial mammals. As such, understanding the determinants of host range in this group of viruses, as well as their patterns of emergence and disease potential, is of clear importance. The Mesoniviridae are a recently documented family within the Nidovirales. To date, mesoniviruses have only been associated with the infection of arthropod species, particularly mosquitoes, and hence are regarded as insect-specific viruses (ISVs). Herein, we report the first detection of a mesonivirus-Alphamesonivirus-1 -in mammals. Specifically, we utilized genomic and histological techniques to identify Alphamesonivirus-1 in lung and lymph node tissues of two horses (a mare and its foal) from Italy that succumbed to an acute respiratory syndrome. The genome sequences of Alphamesonivirus-1 obtained from the two horses were closely related to each other and to those from a local Culex mosquito pool and an Alphamesonivirus-1 previously identified in Italy, indicative of ongoing local transmission. The discovery of Alphamesonivirus-1 in horse tissues prompts further investigation into the host range of mesoniviruses, the possible role of insect-specific viruses in mammalian disease processes, the determinants of and barriers to cross-species virus transmission, and the potential epizootic threats posed by understudied viral families. IMPORTANCE Alphamesoniviruses, members of the family Mesoniviridaeare, are considered insect-specific RNA viruses with no known association with vertebrate hosts. Herein, we report the identification of Alphamesonivirus-1 in mammals. Using detailed molecular and histological analyses, we identified Alphamesonivirus-1 in lung and lymph node tissues of two horses that presented with an acute respiratory syndrome and that was phylogenetically related to virus sequences found in local Culex mosquitoes. Hence, Alphamesoniviruses may possess a broader host range than previously believed, prompting the investigation of their possible role in mammalian disease. This work highlights the need for increased surveillance of atypical viruses in association with unexplained respiratory illness, including those commonly assumed to be insect-specific, and may have implications for epizootic disease emergence.
Collapse
Affiliation(s)
- Lucija Jurisic
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Heidi Auerswald
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | - Maurilia Marcacci
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | | | - Laureen M. Coetzee
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
- School of Veterinary Medicine, Faculty of Health Sciences and Veterinary Medicine, Neudamm Campus, University of Namibia, Windhoek, Namibia
| | - Valentina Curini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | - Daniela Averaimo
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | | | - Cesare Cammà
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | - Giovanni Di Teodoro
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | - Juergen A. Richt
- College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Edward C. Holmes
- School of Medical Sciences, The University of Sydney, Sydney, Australia
| | - Alessio Lorusso
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| |
Collapse
|
6
|
Sohier C, Breman FC, Vervaeke M, De Regge N. West Nile Virus Monitoring in Flanders (Belgium) During 2022-2023 Reveals Endemic Usutu Virus Circulation in Birds. Transbound Emerg Dis 2024; 2024:4146156. [PMID: 40303116 PMCID: PMC12017172 DOI: 10.1155/tbed/4146156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 11/27/2024] [Indexed: 05/02/2025]
Abstract
The recent emergence of West Nile virus (WNV) and Usutu virus (USUV) in some European countries has triggered an increase in animal and human cases across Europe. Wild birds, serving as key reservoirs for WNV and USUV, often act as crucial indicators for the introduction and spread of these viruses. Currently, there is no durable large-scale monitoring for WNV in Belgium, and specific monitoring for USUV is lacking. In Flanders, passive WNV monitoring in birds has been in place for many years, while initial efforts to initiate active monitoring started in 2022. Here, we present the results of a limited study conducted during the vector seasons of 2022 and 2023 in Flemish bird populations to actively and passively monitor the prevalence of WNV and additionally assess the presence of USUV. Several real-time reverse transcription-PCR tests were employed for virus detection, revealing the absence of WNV-RNA during both vector seasons. Conversely, USUV-RNA was identified in 2022 through active surveillance, affecting two (5.5%) out of 36 birds (Corvus corone), and in passive surveillance, impacting eight (72.7%) out of 11 birds (Turdus merula [6] and Rhea pennata [2]). In 2023, active surveillance was more extensive and identified 16 (7.2%) USUV-RNA positive birds (Buteo buteo [1], T. merula [14] and Athene noctua [1]) out of 222 examined birds, while passive surveillance detected two (7.1%) positive birds (T. merula [1], and Larus marinus [1]) out of 28. Viral sequence information was obtained from seven USUV-positive birds using whole genome sequencing or Sanger sequencing. Phylogenetic analysis placed all identified strains within the Africa 3 lineage. This restricted WVN monitoring effort in Flanders did not reveal WNV presence, but found indications of an endemic USUV circulation in Belgium. It is crucial to intensify monitoring efforts for WNV in the coming years, considering its endemic status in several European countries and its expanding geographical range in northern Europe.
Collapse
Affiliation(s)
- C. Sohier
- Unit Exotic and Vector Borne Diseases, Sciensano 1180, Ukkel, Belgium
| | - F. C. Breman
- Unit Exotic and Vector Borne Diseases, Sciensano 1180, Ukkel, Belgium
| | - M. Vervaeke
- Agency for Nature and Forests, Brussels 1000, Belgium
| | - N. De Regge
- Unit Exotic and Vector Borne Diseases, Sciensano 1180, Ukkel, Belgium
| |
Collapse
|
7
|
Silverj A, Mencattelli G, Monaco F, Iapaolo F, Teodori L, Leone A, Polci A, Curini V, Di Domenico M, Secondini B, Di Lollo V, Ancora M, Di Gennaro A, Morelli D, Perrotta MG, Marini G, Rosà R, Segata N, Rota-Stabelli O, Rizzoli A, Savini G, West Nile Virus Working Group. Origin and evolution of West Nile virus lineage 1 in Italy. Epidemiol Infect 2024; 152:e150. [PMID: 39620707 PMCID: PMC11626449 DOI: 10.1017/s0950268824001420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 07/10/2024] [Accepted: 09/03/2024] [Indexed: 12/11/2024] Open
Abstract
West Nile virus (WNV) is a mosquito-borne pathogen that can infect humans, equids, and many bird species, posing a threat to their health. It consists of eight lineages, with Lineage 1 (L1) and Lineage 2 (L2) being the most prevalent and pathogenic. Italy is one of the hardest-hit European nations, with 330 neurological cases and 37 fatalities in humans in the 2021-2022 season, in which the L1 re-emerged after several years of low circulation. We assembled a database comprising all publicly available WNV genomes, along with 31 new Italian strains of WNV L1 sequenced in this study, to trace their evolutionary history using phylodynamics and phylogeography. Our analysis suggests that WNV L1 may have initially entered Italy from Northern Africa around 1985 and indicates a connection between European and Western Mediterranean countries, with two distinct strains circulating within Italy. Furthermore, we identified new genetic mutations that are typical of the Italian strains and that can be tested in future studies to assess their pathogenicity. Our research clarifies the dynamics of WNV L1 in Italy, provides a comprehensive dataset of genome sequences for future reference, and underscores the critical need for continuous and coordinated surveillance efforts between Europe and Africa.
Collapse
Affiliation(s)
- Andrea Silverj
- Centre Agriculture Food Environment, University of Trento, San Michele all’Adige, Trento, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
- Department CIBIO, University of Trento, Trento, Italy
| | - Giulia Mencattelli
- Centre Agriculture Food Environment, University of Trento, San Michele all’Adige, Trento, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo, Italy
| | - Federica Monaco
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo, Italy
| | - Federica Iapaolo
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo, Italy
| | - Liana Teodori
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo, Italy
| | - Alessandra Leone
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo, Italy
| | - Andrea Polci
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo, Italy
| | - Valentina Curini
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo, Italy
| | - Marco Di Domenico
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo, Italy
| | - Barbara Secondini
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo, Italy
| | - Valeria Di Lollo
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo, Italy
| | - Massimo Ancora
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo, Italy
| | - Annapia Di Gennaro
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo, Italy
| | - Daniela Morelli
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo, Italy
| | | | - Giovanni Marini
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| | - Roberto Rosà
- Centre Agriculture Food Environment, University of Trento, San Michele all’Adige, Trento, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy
| | - Omar Rota-Stabelli
- Centre Agriculture Food Environment, University of Trento, San Michele all’Adige, Trento, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
- Department CIBIO, University of Trento, Trento, Italy
| | - Annapaola Rizzoli
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Giovanni Savini
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo, Italy
| | - West Nile Virus Working Group
- The members of the West Nile virus working group are listed in the group authorship list, located in supplementary materials
| |
Collapse
|
8
|
Brandolini M, De Pascali AM, Zaghi I, Dirani G, Zannoli S, Ingletto L, Lavazza A, Lelli D, Dottori M, Calzolari M, Guerra M, Biagetti C, Cristini F, Bassi P, Biguzzi R, Cricca M, Scagliarini A, Sambri V. Advancing West Nile virus monitoring through whole genome sequencing: Insights from a One Health genomic surveillance study in Romagna (Italy). One Health 2024; 19:100937. [PMID: 39650147 PMCID: PMC11621796 DOI: 10.1016/j.onehlt.2024.100937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 12/11/2024] Open
Abstract
In the last 6 years, Italy accounted for 36 % of the total autochthonous European West Nile virus (WNV) cases reported to ECDC. Since 2001, the country put in place a multi-species national surveillance plan. The plan was enhanced in 2020 by adopting a fully integrated "One Health" approach, including human, wild bird, equine, and mosquito surveillance for the early detection of WNV. In this context, the systematic acquisition of whole viral genetic information from human patients and animals is fundamental to obtain an in-depth knowledge on the patterns of virus evolution and transmission and to gain insights on the role virus genetics in morbidity and mortality, The purpose of this pilot study was thus to design a One-Health surveillance framework based on the genomic surveillance of WNV circulating at the vector-human-animal interface, in the endemic territory of Romagna (North-Eastern Italy) during the 2023 transmission season. Whole genome sequencing (WGS) analyses confirmed the circulation of WNV lineage 2 showing high nucleotide and amino acid identity of 99.82 % and 99.92 % respectively among viral sequences from human patients, vectors and birds. All the sequences clustered with other Italian strains in the Central and Southern European clade with robust bootstrap support and BLASTn identity exceeding 99.7 %. The highest nucleotide identity was observed with sequences from Emilia-Romagna and Veneto regions (Italy), confirming a local virus circulation and overwintering of WNV lineage 2 with a confined virus spread and no (or limited) external introduction of viral strains. Our results, support the adoption of a One Health approach to WNV surveillance, based on WGS and integrating the clinical diagnosis, epidemiology, and genomic characterisation, to create a suitable operational process for the characterisation of autochthonous and imported Arboviruses circulating in Romagna to effectively integrate the already established surveillance plan.
Collapse
Affiliation(s)
- Martina Brandolini
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, Piazza della Liberazione 60, 47522 Cesena, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Giuseppe Massarenti 9, 40138 Bologna, Italy
| | - Alessandra Mistral De Pascali
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, Piazza della Liberazione 60, 47522 Cesena, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Giuseppe Massarenti 9, 40138 Bologna, Italy
| | - Irene Zaghi
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, Piazza della Liberazione 60, 47522 Cesena, Italy
| | - Giorgio Dirani
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, Piazza della Liberazione 60, 47522 Cesena, Italy
| | - Silvia Zannoli
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, Piazza della Liberazione 60, 47522 Cesena, Italy
| | - Ludovica Ingletto
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Giuseppe Massarenti 9, 40138 Bologna, Italy
| | - Antonio Lavazza
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna “Bruno Ubertini” (IZSLER), Via Antonio Bianchi 7/9, 25124 Brescia, Italy
| | - Davide Lelli
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna “Bruno Ubertini” (IZSLER), Via Antonio Bianchi 7/9, 25124 Brescia, Italy
| | - Michele Dottori
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna “Bruno Ubertini” (IZSLER), Via Antonio Bianchi 7/9, 25124 Brescia, Italy
| | - Mattia Calzolari
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna “Bruno Ubertini” (IZSLER), Via Antonio Bianchi 7/9, 25124 Brescia, Italy
| | - Massimiliano Guerra
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, Piazza della Liberazione 60, 47522 Cesena, Italy
| | - Carlo Biagetti
- Unit of Infectious Diseases, Infermi Hospital, Viale Luigi Settembrini 2, 47923 Rimini, Italy
| | - Francesco Cristini
- Unit of Infectious Diseases, Morgagni-Pierantoni Hospital, Via Carlo Forlanini 34, 47121 Forlì, Italy
| | - Paolo Bassi
- Unit of Infectious Diseases, Santa Maria delle Croci Hospital, Viale Vincenzo Randi 5, 48121 Ravenna, Italy
| | - Rino Biguzzi
- Unit of Transfusion Medicine, The Greater Romagna Area Hub Laboratory, Piazza della Liberazione 60, 47522 Cesena, Italy
| | - Monica Cricca
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, Piazza della Liberazione 60, 47522 Cesena, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Giuseppe Massarenti 9, 40138 Bologna, Italy
| | - Alessandra Scagliarini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Giuseppe Massarenti 9, 40138 Bologna, Italy
| | - Vittorio Sambri
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, Piazza della Liberazione 60, 47522 Cesena, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Giuseppe Massarenti 9, 40138 Bologna, Italy
| |
Collapse
|
9
|
Zuddas C, Piras S, Cappai S, Loi F, Murgia G, Puggioni G, Savini G, Monaco F, Polci A, Valleriani F, Amatori G, Curini V, Marcacci M, Orrù G, Ledda A, Poma E, Cappai R, Coghe F. First Detection of West Nile Virus by Nasopharyngeal Swab, Followed by Phylogenetic Analysis. Pathogens 2024; 13:1023. [PMID: 39599576 PMCID: PMC11597865 DOI: 10.3390/pathogens13111023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
West Nile Virus, an arthropod-borne RNA virus, may result in severe neurological disease. West Nile neuroinvasive disease is characterized by meningitis, encephalitis, and possible acute flaccid paralysis. Here, we report a case of neuroinvasive WNV in a 65-year-old woman hospitalized for hyperpyrexia, chills, intense asthenia, and continuous vomiting. Within days, her clinical condition worsened with the onset of severe neurological symptoms, leading to her death within 10 days despite supportive therapies being administered. The diagnosis of West Nile disease was made through nucleic acid amplification testing (NAAT) on blood and cerebrospinal fluid. However, in the final stages of the illness, cerebrospinal fluid collection was not possible due to the patient's critical condition, and a nasopharyngeal swab was used instead. The nasopharyngeal swab facilitated the collection of a sample, which was subsequently analyzed for the presence of the virus and allowed for sequencing, showing that it was a strain that had been circulating in Sardinia for some time and had demonstrated its pathogenicity by causing the death of a hawk in 2021. This case report highlights the rapid progression and severity of WNV infection, particularly in vulnerable individuals, and suggests the potential utility of nasopharyngeal swabs as a less invasive option for sample collection. It also underscores the potential for the zoonotic transmission of the virus from birds to humans through vectors, emphasizing the importance of monitoring and controlling WNV outbreaks, especially in regions where such circulation is observed.
Collapse
Affiliation(s)
- Carlo Zuddas
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (G.M.); (G.P.)
| | - Sergio Piras
- Laboratorio Analisi Chimico Cliniche e Microbiologia, Presidio Ospedaliero Duilio Casula, Azienda Ospedaliero Universitaria di Cagliari, Monserrato, 09042 Cagliari, Italy; (S.P.); (E.P.); (R.C.); (F.C.)
| | - Stefano Cappai
- Osservatorio Epidemiologico Regionale della Sardegna, Istituto Zooprofilattico Sperimentale della Sardegna, 09125 Cagliari, Italy; (S.C.); (F.L.)
| | - Federica Loi
- Osservatorio Epidemiologico Regionale della Sardegna, Istituto Zooprofilattico Sperimentale della Sardegna, 09125 Cagliari, Italy; (S.C.); (F.L.)
| | - Giulia Murgia
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (G.M.); (G.P.)
| | - Giantonella Puggioni
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (G.M.); (G.P.)
| | - Giovanni Savini
- WOAH Reference Laboratory for WND, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Campo Boario, 64100 Teramo, Italy; (G.S.); (F.M.); (A.P.); (F.V.); (G.A.); (V.C.); (M.M.)
| | - Federica Monaco
- WOAH Reference Laboratory for WND, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Campo Boario, 64100 Teramo, Italy; (G.S.); (F.M.); (A.P.); (F.V.); (G.A.); (V.C.); (M.M.)
| | - Andrea Polci
- WOAH Reference Laboratory for WND, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Campo Boario, 64100 Teramo, Italy; (G.S.); (F.M.); (A.P.); (F.V.); (G.A.); (V.C.); (M.M.)
| | - Fabrizia Valleriani
- WOAH Reference Laboratory for WND, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Campo Boario, 64100 Teramo, Italy; (G.S.); (F.M.); (A.P.); (F.V.); (G.A.); (V.C.); (M.M.)
| | - Giorgia Amatori
- WOAH Reference Laboratory for WND, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Campo Boario, 64100 Teramo, Italy; (G.S.); (F.M.); (A.P.); (F.V.); (G.A.); (V.C.); (M.M.)
| | - Valentina Curini
- WOAH Reference Laboratory for WND, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Campo Boario, 64100 Teramo, Italy; (G.S.); (F.M.); (A.P.); (F.V.); (G.A.); (V.C.); (M.M.)
| | - Maurilia Marcacci
- WOAH Reference Laboratory for WND, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Campo Boario, 64100 Teramo, Italy; (G.S.); (F.M.); (A.P.); (F.V.); (G.A.); (V.C.); (M.M.)
| | - Germano Orrù
- Dipartimento di Scienze Chirurgiche, Università degli Studi di Cagliari, 09125 Cagliari, Italy;
| | - Antonio Ledda
- Dipartimento di Ematologia/CTMO, Ospedale A. Businco, 09121 Cagliari, Italy;
| | - Elena Poma
- Laboratorio Analisi Chimico Cliniche e Microbiologia, Presidio Ospedaliero Duilio Casula, Azienda Ospedaliero Universitaria di Cagliari, Monserrato, 09042 Cagliari, Italy; (S.P.); (E.P.); (R.C.); (F.C.)
| | - Riccardo Cappai
- Laboratorio Analisi Chimico Cliniche e Microbiologia, Presidio Ospedaliero Duilio Casula, Azienda Ospedaliero Universitaria di Cagliari, Monserrato, 09042 Cagliari, Italy; (S.P.); (E.P.); (R.C.); (F.C.)
| | - Ferdinando Coghe
- Laboratorio Analisi Chimico Cliniche e Microbiologia, Presidio Ospedaliero Duilio Casula, Azienda Ospedaliero Universitaria di Cagliari, Monserrato, 09042 Cagliari, Italy; (S.P.); (E.P.); (R.C.); (F.C.)
| |
Collapse
|
10
|
Aguilera-Sepúlveda P, Cano-Gómez C, Villalba R, Borges V, Agüero M, Bravo-Barriga D, Frontera E, Jiménez-Clavero MÁ, Fernández-Pinero J. The key role of Spain in the traffic of West Nile virus lineage 1 strains between Europe and Africa. Infect Dis (Lond) 2024; 56:743-758. [PMID: 38836293 DOI: 10.1080/23744235.2024.2348633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND West Nile Virus (WNV) is a zoonotic arbovirus worldwide spread. Seasonal WNV outbreaks occur in the Mediterranean basin since the late 1990's with ever-increasing incidence. In Southern Spain WNV is endemic, as disease foci - caused by WNV lineage 1 (WNV-L1) strains - occur every year. On the contrary, WNV-L2 is the dominant lineage in Europe, so most European WNV sequences available belong to this lineage, WNV-L1 sequences being still scarce. METHODS To fill this gap, this study reports the genetic characterisation of 27 newly described WNV-L1 strains, involved in outbreaks affecting wild birds and horses during the last decade in South-Western Spain. RESULTS All strains except one belong to the Western Mediterranean-1 sub-cluster (WMed-1), related phylogenetically to Italian, French, Portuguese, Moroccan and, remarkably, Senegalese strains. This sub-cluster persisted, spread and evolved into three distinguishable WMed-1 phylogenetic groups that co-circulated, notably, in the same province (Cádiz). They displayed different behaviours: from long-term persistence and rapid spread to neighbouring regions within Spain, to long-distance spread to different countries, including transcontinental spread to Africa. Among the different introductions of WNV in Spain revealed in this study, some of them succeeded to get established, some extinguished from the territory shortly afterwards. Furthermore, Spain's southernmost province, Cádiz, constitutes a hotspot for virus incursion. CONCLUSION Southern Spain seems a likely scenario for emergence of exotic pathogens of African origin. Therefore, circulation of diverse WNV-L1 variants in Spain prompts for an extensive surveillance under a One Health approach.
Collapse
Affiliation(s)
| | - Cristina Cano-Gómez
- Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, Valdeolmos, Spain
| | - Rubén Villalba
- Laboratorio Central de Veterinaria (LCV), Ministry of Agriculture, Fisheries and Food (MAPA), Algete, Spain
| | - Vítor Borges
- Genomics and Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| | - Montserrat Agüero
- Laboratorio Central de Veterinaria (LCV), Ministry of Agriculture, Fisheries and Food (MAPA), Algete, Spain
| | - Daniel Bravo-Barriga
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
| | - Eva Frontera
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
| | - Miguel Ángel Jiménez-Clavero
- Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, Valdeolmos, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | | |
Collapse
|
11
|
Calzolari M, Callegari E, Grisendi A, Munari M, Russo S, Sgura D, Giannini A, Dalmonte G, Scremin M, Dottori M. Arbovirus screening of mosquitoes collected in 2022 in Emilia-Romagna, Italy, with the implementation of a real-time PCR for the detection of Tahyna virus. One Health 2024; 18:100670. [PMID: 38274566 PMCID: PMC10809124 DOI: 10.1016/j.onehlt.2023.100670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/22/2023] [Indexed: 01/27/2024] Open
Abstract
Several Arboviruses (Arthropod-borne virus) are a concrete health risk. While some arboviruses, such as the West Nile virus (WNV) and the Usutu virus (USUV) are actively surveyed, others are neglected, including the Tahyna virus (TAHV). In this work, we tested - searching for all the three viruses - 37,995 mosquitoes collected in 95 attractive traps, baited by carbon dioxide, distributed in the lowlands of Emilia-Romagna, northern Italy, between 19 July and 12 August 2022. Among the 668 pools obtained, WNV was detected in 45 pools of Culex (Cx.) pipiens and USUV was recorded in 24 pools of the same mosquito; ten of these Cx. pipiens pools tested positive for both WNV and USUV. Interestingly, we recorded a significant circulation of both WNV lineage 1 (WNV-L1) and lineage 2 (WNV-L2): WNV-L1 strains were detected in 40 pools, WNV-L2 strains in three pools and both lineages were detected in two pools. TAHV was detected in 8 different species of mosquitoes in a total of 37 pools: Aedes (Ae.) caspius (25), Ae. albopictus (5), Ae. vexans (3), Cx. pipiens (2), Ae. cinereus (1) and Anopheles maculipennis sl (1). The significant number of Ae. caspius-pools tested positive and the estimated viral load suggest that this mosquito is the principal vector in the surveyed area. The potential involvement of other mosquito species in the TAHV cycle could usefully be the subject of further experimental investigation. The results obtained demonstrate that, with adequate sampling effort, entomological surveillance is able to detect arboviruses circulating in a given area. Further efforts must be made to better characterise the TAHV cycle in the surveyed area and to define health risk linked to this virus.
Collapse
Affiliation(s)
- Mattia Calzolari
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna “Bruno Ubertini”, via Bianchi, 9-25124 Brescia, Italy
| | - Emanuele Callegari
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna “Bruno Ubertini”, via Bianchi, 9-25124 Brescia, Italy
| | - Annalisa Grisendi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna “Bruno Ubertini”, via Bianchi, 9-25124 Brescia, Italy
| | - Martina Munari
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna “Bruno Ubertini”, via Bianchi, 9-25124 Brescia, Italy
| | - Simone Russo
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna “Bruno Ubertini”, via Bianchi, 9-25124 Brescia, Italy
| | - Danilo Sgura
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna “Bruno Ubertini”, via Bianchi, 9-25124 Brescia, Italy
| | - Antonio Giannini
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna “Bruno Ubertini”, via Bianchi, 9-25124 Brescia, Italy
| | - Gastone Dalmonte
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna “Bruno Ubertini”, via Bianchi, 9-25124 Brescia, Italy
| | - Mara Scremin
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna “Bruno Ubertini”, via Bianchi, 9-25124 Brescia, Italy
| | - Michele Dottori
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna “Bruno Ubertini”, via Bianchi, 9-25124 Brescia, Italy
| |
Collapse
|
12
|
Tamba M, Bonilauri P, Galletti G, Casadei G, Santi A, Rossi A, Calzolari M. West Nile virus surveillance using sentinel birds: results of eleven years of testing in corvids in a region of northern Italy. Front Vet Sci 2024; 11:1407271. [PMID: 38818494 PMCID: PMC11138491 DOI: 10.3389/fvets.2024.1407271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/06/2024] [Indexed: 06/01/2024] Open
Abstract
The natural transmission cycle of West Nile virus (WNV) involves birds as primary hosts and mosquitoes as vectors, but this virus can spread to mammals, human beings included. Asymptomatic infected donors pose a risk to the safety of blood transfusions and organ transplants, as WNV can be transmitted through these medical procedures. Since 2009, the region of Emilia-Romagna in northern Italy has been implementing an integrated surveillance system in order to detect WNV circulation in the environment at an early stage. Here we report the results of the two components of the surveillance system, the active testing of corvids and humans, and demonstrate that bird surveillance alone improves a surveillance system based solely on human case detection. As WNV risk reduction measures are applied on a provincial basis, we assessed the ability of this surveillance system component to detect virus circulation prior to the notification of the first human case for each province. Overall, 99 epidemic seasons were evaluated as a result of 11 years (2013-2023) of surveillance in the nine provinces of the region. In this period, 22,314 corvids were tested for WNV and 642 (2.9%) were found to be infected. WNV was generally first detected in birds in July, with sample prevalence peaks occurring between August and September. During the same period, 469 autochthonous human cases were notified, about 60% of which were reported in August. WNV was detected 79 times out of the 99 seasons considered. The virus was notified in birds 73 times (92.4%) and 60 times (75.9%) in humans. WNV was first or only notified in birds in 57 seasons (72.1%), while it was first or only notified in humans in 22 seasons (27.8%). Active surveillance in corvids generally allows the detection of WNV before the onset of human cases. Failure of virus detection occurred mainly in seasons where the number of birds tested was low. Our results show that active testing of a minimum of 3.8 corvids per 100 km2 provides a satisfactory timeliness in the virus detection, but for early detection of WNV it is crucial to test birds between mid-June and mid-August.
Collapse
Affiliation(s)
- Marco Tamba
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, Brescia, Italy
| | | | | | | | | | | | | |
Collapse
|
13
|
Ateutchia-Ngouanet S, Nanfack-Minkeu F, Mavridis K, Wanji S, Demanou M, Vontas J, Djouaka R. Monitoring Aedes populations for arboviruses, Wolbachia, insecticide resistance and its mechanisms in various agroecosystems in Benin. Acta Trop 2024; 253:107178. [PMID: 38461924 DOI: 10.1016/j.actatropica.2024.107178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
Aedes mosquitoes are the main vectors of arboviruses in Benin. Cases of dengue have been reported in Benin with all four serotypes of the virus actively circulating in this region. Some agricultural settings are known to harbor Aedes vectors responsible for the transmission of arboviruses. The massive use of certain insecticides in agricultural settings has probably contributed to insecticide resistance in these vectors. In Benin, the susceptibility of arbovirus vectors to insecticides is poorly studied. In addition, the distribution of Wolbachia spp., which is used against some arboviruses is unknown. Moreover, there is limited information regarding the vectors responsible for the transmission of arboviruses in Benin. This present study monitored the species composition, arboviruses, and Wolbachia symbiont status, as well as the phenotypic and molecular insecticide resistance profile of Aedes populations from three agroecosystems in Benin. Aedes species identification was performed morphologically and confirmed using qPCR. (RT)-qPCR assay was applied for monitoring the presence of DENV, CHIKV, ZIKV, and WNV pathogens as well as for naturally occurring Wolbachia symbionts. Insecticide resistance was assessed phenotypically, by permethrin (0.75%) exposure of Adults (F0) using World Health Organization (WHO) bioassay protocols, and at the molecular level, using TaqMan (RT)-qPCR assays for assessing knock-down resistance (kdr) mutations (F1534C, V1016G/I, and S989P) and the expression levels of eight detoxification genes (P450s from the CYP9 and CYP6 families, carboxylesterases and glutathione-S-transferases). Aedes aegypti (Ae. aegypti) mosquitoes were the most abundant (93.9%) in the three agroecosystems studied, followed by Aedes albopictus (Ae. albopictus) mosquitoes (6.1%). No arboviruses were detected in the study's mosquito populations. Naturally occurring Wolbachia symbionts were present in 7 pools out of 15 pools tested. This could influence the effectiveness of vector control strategies based on exogenously introduced Wolbachia, all present in the three agroecosystems. Full susceptibility to permethrin was observed in all tested populations of Ae. albopictus. On the contrary, Ae. aegypti were found to be resistant in all three agroecosystem sites except for banana plantation sites, where full susceptibility was observed. Molecular analysis revealed that individual target site resistance kdr mutations F1534C and V1016G/I were detected in most Ae. aegypti populations. Additionally, double mutant (F1534C + V1016G/I) mosquitoes were found in some populations, and in one case, triple mutant (F1534C + V1016G/I + S989P) mosquitoes were detected. Metabolic resistance, as reflected by overexpression of three P450 genes (CYP6BB2, CYP9J26, and CYP9J32), was also detected in Ae. aegypti mosquitoes. Our study provides information that could be used to strategize future vector control strategies and highlights the importance of continuing vector surveillance. Future studies should assess the effect of piperonyl butoxide (PBO) on metabolic resistance and identify the different strains of Wolbachia spp., to choose the best vector control strategies in Benin.
Collapse
Affiliation(s)
- S Ateutchia-Ngouanet
- International Institute of Tropical Agriculture (IITA), 08 Tri-Postal, P.O. Box 0932, Cotonou, Benin; Department Microbiology and Parasitology, Faculty of Science, University of Buea, P.O. BOX 63, Buea, Cameroon.
| | - F Nanfack-Minkeu
- International Institute of Tropical Agriculture (IITA), 08 Tri-Postal, P.O. Box 0932, Cotonou, Benin; Department of Biology, The College of Wooster, OH, USA
| | - K Mavridis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece
| | - S Wanji
- Department Microbiology and Parasitology, Faculty of Science, University of Buea, P.O. BOX 63, Buea, Cameroon
| | - M Demanou
- Regional Yellow Fever Laboratory Coordinator World Health Organization, Inter-Country Support Team West Africa, 03 PO BOX 7019 Ouagadougou 03, Burkina Faso
| | - J Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece; Department of Crop Science, Pesticide Science Laboratory, Agricultural University of Athens, Athens 11855, Greece
| | - R Djouaka
- International Institute of Tropical Agriculture (IITA), 08 Tri-Postal, P.O. Box 0932, Cotonou, Benin
| |
Collapse
|
14
|
de Martinis C, Cardillo L, Pesce F, Viscardi M, Cozzolino L, Paradiso R, Cavallo S, De Ascentis M, Goffredo M, Monaco F, Savini G, D’Orilia F, Pinto R, Fusco G. Reoccurrence of West Nile virus lineage 1 after 2-year decline: first equine outbreak in Campania region. Front Vet Sci 2023; 10:1314738. [PMID: 38098986 PMCID: PMC10720362 DOI: 10.3389/fvets.2023.1314738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/10/2023] [Indexed: 12/17/2023] Open
Abstract
West Nile virus (WNV) is the most widespread arbovirus worldwide, responsible for severe neurological symptoms in humans as well as in horses and birds. The main reservoir and amplifier of the virus are birds, and migratory birds seem to have a key role in the introduction and spread of WNV during their migratory routes. WNV lineage 1 (L1) has been missing in Italy for almost 10 years, only to reappear in 2020 in two dead raptor birds in southern Italy. The present study reports the first equine outbreak in the Campania region. A 7-year-old horse died because of worsening neurological signs and underwent necropsy and biomolecular analyses. WNV-L1 was detected by real-time RT-PCR in the heart, brain, gut, liver, and spleen. Next Generation Sequence and phylogenetic analysis revealed that the strain responsible for the outbreak showed a nucleotide identity of over 98% with the strain found in Accipiter gentilis 2 years earlier in the same area, belonging to the WNV-L1 Western-Mediterranean sub-cluster. These results underline that WNV-L1, after reintroduction in 2020, has probably silently circulated during a 2-year eclipse, with no positive sample revealed by both serological and biomolecular examinations in horses, birds, and mosquitoes. The climate changes that have occurred in the last decades are evolving the epidemiology of WNV, with introductions or re-introductions of the virus in areas that were previously considered low risk. Thereby, the virus may easily amplify and establish itself to reappear with sporadic evident cases in susceptible hosts after several months or even years.
Collapse
Affiliation(s)
- Claudio de Martinis
- Department of Animal Health, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Italy
| | - Lorena Cardillo
- Department of Animal Health, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Italy
| | - Federica Pesce
- Department of Animal Health, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Italy
| | - Maurizio Viscardi
- Department of Animal Health, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Italy
| | - Loredana Cozzolino
- Department of Animal Health, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Italy
| | - Rubina Paradiso
- Department of Animal Health, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Italy
| | - Stefania Cavallo
- Department of Epidemiologic and Biostatistics Regional Observatory (OREB), Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Italy
| | - Matteo De Ascentis
- Istituto Zooprofilattico Sperimentale di Abruzzo e Molise, Teramo, Italy
| | - Maria Goffredo
- Istituto Zooprofilattico Sperimentale di Abruzzo e Molise, Teramo, Italy
| | - Federica Monaco
- Istituto Zooprofilattico Sperimentale di Abruzzo e Molise, Teramo, Italy
| | - Giovanni Savini
- Istituto Zooprofilattico Sperimentale di Abruzzo e Molise, Teramo, Italy
| | | | - Renato Pinto
- U.O.D. Prevenzione e sanità pubblica veterinaria, Regione Campania, Napoli, Italy
| | - Giovanna Fusco
- Department of Animal Health, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Italy
| |
Collapse
|
15
|
Rau J, Köchling K, Schäfer M, Tews BA, Wylezich C, Schaub GA, Werner D, Kampen H. Viral RNA in Mosquitoes (Diptera: Culicidae) Collected between 2019 and 2021 in Germany. Viruses 2023; 15:2298. [PMID: 38140539 PMCID: PMC10746995 DOI: 10.3390/v15122298] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
Due to globalisation and climate change, mosquito-borne pathogens are emerging in new areas on all continents, including Europe, which has recently faced outbreaks of dengue, chikungunya and West Nile fever. The present study complements previous investigations to evaluate the circulation of mosquito-borne viruses in Germany, with the aim of identifying potential vector species and risk areas. Mosquitoes collected from 2019 to 2021 and identified to species or species group level were screened for viruses of the families Flaviviridae, Peribunyaviridae and the genus Alphavirus of the family Togaviridae. In total, 22,528 mosquitoes were examined, thus providing the most comprehensive study on West Nile virus (WNV) circulation so far in the German mosquito population. Usutu virus (USUV) RNA was detected in six samples, Sindbis virus (SINV) RNA in 21 samples and WNV RNA in 11 samples. Samples containing RNA of USUV and WNV consisted of mosquitoes collected in the East German federal states of Brandenburg, Saxony and Saxony-Anhalt, while samples with RNA of SINV originated from more widespread locations. Although minimum infection rates have remained relatively low, the intensity of virus circulation appears to be increasing compared to previous studies. Continuous mosquito screening contributes to the early detection of the introduction and spread of mosquito-borne pathogens.
Collapse
Affiliation(s)
- Janine Rau
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald, Germany; (M.S.); (B.A.T.); (C.W.); (H.K.)
| | - Katharina Köchling
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald, Germany; (M.S.); (B.A.T.); (C.W.); (H.K.)
| | - Mandy Schäfer
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald, Germany; (M.S.); (B.A.T.); (C.W.); (H.K.)
| | - Birke A. Tews
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald, Germany; (M.S.); (B.A.T.); (C.W.); (H.K.)
| | - Claudia Wylezich
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald, Germany; (M.S.); (B.A.T.); (C.W.); (H.K.)
| | - Günter A. Schaub
- Zoology/Parasitology Department, Ruhr-University, Universitätsstr. 150, 44801 Bochum, Germany;
| | - Doreen Werner
- Leibniz Centre for Agricultural Landscape Research, Eberswalder Str. 84, 15374 Müncheberg, Germany;
| | - Helge Kampen
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald, Germany; (M.S.); (B.A.T.); (C.W.); (H.K.)
| |
Collapse
|
16
|
Mencattelli G, Ndione MHD, Silverj A, Diagne MM, Curini V, Teodori L, Di Domenico M, Mbaye R, Leone A, Marcacci M, Gaye A, Ndiaye E, Diallo D, Ancora M, Secondini B, Di Lollo V, Mangone I, Bucciacchio A, Polci A, Marini G, Rosà R, Segata N, Fall G, Cammà C, Monaco F, Diallo M, Rota-Stabelli O, Faye O, Rizzoli A, Savini G. Spatial and temporal dynamics of West Nile virus between Africa and Europe. Nat Commun 2023; 14:6440. [PMID: 37833275 PMCID: PMC10575862 DOI: 10.1038/s41467-023-42185-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
It is unclear whether West Nile virus (WNV) circulates between Africa and Europe, despite numerous studies supporting an African origin and high transmission in Europe. We integrated genomic data with geographic observations and phylogenetic and phylogeographic inferences to uncover the spatial and temporal viral dynamics of WNV between these two continents. We focused our analysis towards WNV lineages 1 (L1) and 2 (L2), the most spatially widespread and pathogenic WNV lineages. Our study shows a Northern-Western African origin of L1, with back-and-forth exchanges between West Africa and Southern-Western Europe; and a Southern African origin of L2, with one main introduction from South Africa to Europe, and no back introductions observed. We also noticed a potential overlap between L1 and L2 Eastern and Western phylogeography and two Afro-Palearctic bird migratory flyways. Future studies linking avian and mosquito species susceptibility, migratory connectivity patterns, and phylogeographic inference are suggested to elucidate the dynamics of emerging viruses.
Collapse
Affiliation(s)
- Giulia Mencattelli
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy.
- Centre Agriculture Food Environment, University of Trento, San Michele all'Adige, Italy.
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy.
| | | | - Andrea Silverj
- Centre Agriculture Food Environment, University of Trento, San Michele all'Adige, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
- Department CIBIO, University of Trento, Trento, Italy
| | | | - Valentina Curini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | - Liana Teodori
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | - Marco Di Domenico
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | - Rassoul Mbaye
- Virology Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Alessandra Leone
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | - Maurilia Marcacci
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | - Alioune Gaye
- Medical Zoology Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - ElHadji Ndiaye
- Medical Zoology Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Diawo Diallo
- Medical Zoology Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Massimo Ancora
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | - Barbara Secondini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | - Valeria Di Lollo
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | - Iolanda Mangone
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | - Andrea Bucciacchio
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | - Andrea Polci
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | - Giovanni Marini
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Roberto Rosà
- Centre Agriculture Food Environment, University of Trento, San Michele all'Adige, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy
| | - Gamou Fall
- Virology Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Cesare Cammà
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | - Federica Monaco
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | - Mawlouth Diallo
- Medical Zoology Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Omar Rota-Stabelli
- Centre Agriculture Food Environment, University of Trento, San Michele all'Adige, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
- Department CIBIO, University of Trento, Trento, Italy
| | - Oumar Faye
- Virology Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Annapaola Rizzoli
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Giovanni Savini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| |
Collapse
|
17
|
Musto C, Tamba M, Calzolari M, Rossi A, Grisendi A, Marzani K, Bonilauri P, Delogu M. Detection of West Nile and Usutu Virus RNA in Autumn Season in Wild Avian Hosts in Northern Italy. Viruses 2023; 15:1771. [PMID: 37632113 PMCID: PMC10458002 DOI: 10.3390/v15081771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
West Nile (WNV) and Usutu (USUV) viruses are two mosquito-borne viruses belonging to the family Flaviviridae and genus Flavivirus. The natural transmission cycle of WNV and USUV involves mosquitoes and birds, while mammals are thought to be accidental hosts. The goal of this study was to report-in the context of "off-season monitoring" and passive surveillance-the detection of WNV and USUV RNA in wild birds. To this end, we analyzed biological samples of wild birds in Northern Italy, from October to May, hence outside of the regional monitoring period (June-September). The virological investigations for the detection of USUV and WNV RNA were performed using real-time PCR on frozen samples of the brain, myocardium, kidney, and spleen. In a total sample of 164 wild birds belonging to 27 different species, sequences of both viruses were detected: four birds (2.44%) were positive for WNV and five (3.05%) for USUV. Off-season infections of WNV and especially USUV are still widely discussed and only a few studies have been published to date. To the best of our knowledge, this study is the first report on the detection of USUV RNA until December 22nd. Although further studies are required, our results confirm the viral circulation out-of-season of Flavivirus in wild birds, suggesting reconsidering the epidemiological monitoring period based on each individual climate zone and taking into consideration global warming which will play an important role in the epidemiology of vector-borne diseases.
Collapse
Affiliation(s)
- Carmela Musto
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Bologna, Italy;
| | - Marco Tamba
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna, 25124 Brescia, Italy; (M.T.); (M.C.); (A.R.); (A.G.); (K.M.); (P.B.)
| | - Mattia Calzolari
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna, 25124 Brescia, Italy; (M.T.); (M.C.); (A.R.); (A.G.); (K.M.); (P.B.)
| | - Arianna Rossi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna, 25124 Brescia, Italy; (M.T.); (M.C.); (A.R.); (A.G.); (K.M.); (P.B.)
| | - Annalisa Grisendi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna, 25124 Brescia, Italy; (M.T.); (M.C.); (A.R.); (A.G.); (K.M.); (P.B.)
| | - Katia Marzani
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna, 25124 Brescia, Italy; (M.T.); (M.C.); (A.R.); (A.G.); (K.M.); (P.B.)
| | - Paolo Bonilauri
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna, 25124 Brescia, Italy; (M.T.); (M.C.); (A.R.); (A.G.); (K.M.); (P.B.)
| | - Mauro Delogu
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Bologna, Italy;
| |
Collapse
|
18
|
Niczyporuk JS, Kozdrun W, Czujkowska A, Blanchard Y, Helle M, Dheilly NM, Gonzalez G. West Nile Virus Lineage 2 in Free-Living Corvus cornix Birds in Poland. Trop Med Infect Dis 2023; 8:417. [PMID: 37624355 PMCID: PMC10459098 DOI: 10.3390/tropicalmed8080417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023] Open
Abstract
The summer temperatures recorded in Poland in 2022 were among the highest in over 30 years and, combined with higher-than-expected rainfall, gave the impression of an almost tropical climate. Such climatic conditions were ideal for the transmission of vector-borne zoonotic diseases such as West Nile fever. In northeastern Poland, in the Mazowieckie region, the Polish event-based surveillance network reported increased fatalities of free-living hooded crows (Corvus corone cornix). West Nile virus (WNV) lineage 2 was identified for the first time as the etiological agent responsible for the death of the birds. WNV was detected in 17 out of the 99 (17.17%) free-living birds tested in this study. All the WNV-infected dead birds were collected in the same area and were diagnosed in September by the NVRI and confirmed by the EURL for equine diseases, ANSES, in October 2022. Unnaturally high temperatures recorded in Poland in 2022 likely favored the infection and spread of the virus in the avian population. A nationwide alert and awareness raising of blood transfusion centers and hospitals was carried out to prevent human infections by WNV.
Collapse
Affiliation(s)
- Jowita S. Niczyporuk
- National Veterinary Research Institute Pulawy (NVRI), Department of Poultry Diseases, Al. Partyzantow 57, 24-100 Pulawy, Poland
| | - Wojciech Kozdrun
- National Veterinary Research Institute Pulawy (NVRI), Department of Poultry Diseases, Al. Partyzantow 57, 24-100 Pulawy, Poland
| | - Agnieszka Czujkowska
- Rehabilitation Center for Protected National Birds “Bird Asylum”, Av. Ratuszowa 1/3, 03-461 Warszawa, Poland;
| | - Yannick Blanchard
- Génétique Virale et Biosécurité, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Laboratoire de Ploufragan-Plouzané-Niort, Université de Rennes 1, 22440 Ploufragan, France;
| | - Mariteragi Helle
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR VIROLOGIE, Laboratoire de Santé Animale, 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort, France (N.M.D.)
| | - Nolwenn M. Dheilly
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR VIROLOGIE, Laboratoire de Santé Animale, 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort, France (N.M.D.)
| | - Gaelle Gonzalez
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR VIROLOGIE, Laboratoire de Santé Animale, 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort, France (N.M.D.)
| |
Collapse
|
19
|
Llorente F, Gutiérrez-López R, Pérez-Ramirez E, Sánchez-Seco MP, Herrero L, Jiménez-Clavero MÁ, Vázquez A. Experimental infections in red-legged partridges reveal differences in host competence between West Nile and Usutu virus strains from Southern Spain. Front Cell Infect Microbiol 2023; 13:1163467. [PMID: 37396301 PMCID: PMC10308050 DOI: 10.3389/fcimb.2023.1163467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/23/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction West Nile virus (WNV) and Usutu virus (USUV) are emerging zoonotic arboviruses sharing the same life cycle with mosquitoes as vectors and wild birds as reservoir hosts. The main objective of this study was to characterize the pathogenicity and course of infection of two viral strains (WNV/08 and USUV/09) co-circulating in Southern Spain in a natural host, the red-legged partridge (Alectoris rufa), and to compare the results with those obtained with the reference strain WNV/NY99. Methods WNV inoculated birds were monitored for clinical and analytical parameters (viral load, viremia, and antibodies) for 15 days post-inoculation. Results and discussion Partridges inoculated with WNV/NY99 and WNV/08 strains showed clinical signs such as weight loss, ruffled feathers, and lethargy, which were not observed in USUV/09-inoculated individuals. Although statistically significant differences in mortality were not observed, partridges inoculated with WNV strains developed significantly higher viremia and viral loads in blood than those inoculated with USUV. In addition, the viral genome was detected in organs and feathers of WNV-inoculated partridges, while it was almost undetectable in USUV-inoculated ones. These experimental results indicate that red-legged partridges are susceptible to the assayed Spanish WNV with pathogenicity similar to that observed for the prototype WNV/NY99 strain. By contrast, the USUV/09 strain was not pathogenic for this bird species and elicited extremely low viremia levels, demonstrating that red-legged partridges are not a competent host for the transmission of this USUV strain.
Collapse
Affiliation(s)
- Francisco Llorente
- Centro de Investigación en Sanidad Animal (CISA-INIA), Consejo Superior de Investigaciones Científicas (CSIC), Valdeolmos, Madrid, Spain
| | - Rafael Gutiérrez-López
- Centro de Investigación en Sanidad Animal (CISA-INIA), Consejo Superior de Investigaciones Científicas (CSIC), Valdeolmos, Madrid, Spain
| | - Elisa Pérez-Ramirez
- Centro de Investigación en Sanidad Animal (CISA-INIA), Consejo Superior de Investigaciones Científicas (CSIC), Valdeolmos, Madrid, Spain
| | - María Paz Sánchez-Seco
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Laura Herrero
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Miguel Ángel Jiménez-Clavero
- Centro de Investigación en Sanidad Animal (CISA-INIA), Consejo Superior de Investigaciones Científicas (CSIC), Valdeolmos, Madrid, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Ana Vázquez
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
20
|
Diagne MM, Ndione MHD, Mencattelli G, Diallo A, Ndiaye EH, Di Domenico M, Diallo D, Kane M, Curini V, Top NM, Marcacci M, Mbanne M, Ancora M, Secondini B, Di Lollo V, Teodori L, Leone A, Puglia I, Gaye A, Sall AA, Loucoubar C, Rosà R, Diallo M, Monaco F, Faye O, Cammà C, Rizzoli A, Savini G, Faye O. Novel Amplicon-Based Sequencing Approach to West Nile Virus. Viruses 2023; 15:1261. [PMID: 37376561 DOI: 10.3390/v15061261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/14/2023] [Accepted: 05/17/2023] [Indexed: 06/29/2023] Open
Abstract
West Nile virus is a re-emerging arbovirus whose impact on public health is increasingly important as more and more epidemics and epizootics occur, particularly in America and Europe, with evidence of active circulation in Africa. Because birds constitute the main reservoirs, migratory movements allow the diffusion of various lineages in the world. It is therefore crucial to properly control the dispersion of these lineages, especially because some have a greater health impact on public health than others. This work describes the development and validation of a novel whole-genome amplicon-based sequencing approach to West Nile virus. This study was carried out on different strains from lineage 1 and 2 from Senegal and Italy. The presented protocol/approach showed good coverage using samples derived from several vertebrate hosts and may be valuable for West Nile genomic surveillance.
Collapse
Affiliation(s)
| | | | - Giulia Mencattelli
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, 64100 Teramo, Italy
- Centre Agriculture Food Environment, University of Trento, 38010 San Michele all'Adige, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all'Adige, Italy
| | - Amadou Diallo
- Epidemiology, Clinical Research and Data Science Department, Institut Pasteur de Dakar, Dakar BP220, Senegal
| | - El Hadji Ndiaye
- Medical Zoology Department, Institut Pasteur de Dakar, Dakar BP220, Senegal
| | - Marco Di Domenico
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, 64100 Teramo, Italy
| | - Diawo Diallo
- Medical Zoology Department, Institut Pasteur de Dakar, Dakar BP220, Senegal
| | - Mouhamed Kane
- Virology Department, Institut Pasteur de Dakar, Dakar BP220, Senegal
| | - Valentina Curini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, 64100 Teramo, Italy
| | - Ndeye Marieme Top
- Epidemiology, Clinical Research and Data Science Department, Institut Pasteur de Dakar, Dakar BP220, Senegal
| | - Maurilia Marcacci
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, 64100 Teramo, Italy
| | - Maïmouna Mbanne
- Virology Department, Institut Pasteur de Dakar, Dakar BP220, Senegal
| | - Massimo Ancora
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, 64100 Teramo, Italy
| | - Barbara Secondini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, 64100 Teramo, Italy
| | - Valeria Di Lollo
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, 64100 Teramo, Italy
| | - Liana Teodori
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, 64100 Teramo, Italy
| | - Alessandra Leone
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, 64100 Teramo, Italy
| | - Ilaria Puglia
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, 64100 Teramo, Italy
| | - Alioune Gaye
- Medical Zoology Department, Institut Pasteur de Dakar, Dakar BP220, Senegal
| | - Amadou Alpha Sall
- Virology Department, Institut Pasteur de Dakar, Dakar BP220, Senegal
| | - Cheikh Loucoubar
- Epidemiology, Clinical Research and Data Science Department, Institut Pasteur de Dakar, Dakar BP220, Senegal
| | - Roberto Rosà
- Centre Agriculture Food Environment, University of Trento, 38010 San Michele all'Adige, Italy
| | - Mawlouth Diallo
- Medical Zoology Department, Institut Pasteur de Dakar, Dakar BP220, Senegal
| | - Federica Monaco
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, 64100 Teramo, Italy
| | - Ousmane Faye
- Virology Department, Institut Pasteur de Dakar, Dakar BP220, Senegal
| | - Cesare Cammà
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, 64100 Teramo, Italy
| | - Annapaola Rizzoli
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all'Adige, Italy
| | - Giovanni Savini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, 64100 Teramo, Italy
| | - Oumar Faye
- Virology Department, Institut Pasteur de Dakar, Dakar BP220, Senegal
| |
Collapse
|
21
|
Prioteasa FL, Dinu S, Tiron GV, Stancu IG, Fălcuță E, Ceianu CS, Cotar AI. First Detection and Molecular Characterization of Usutu Virus in Culex pipiens Mosquitoes Collected in Romania. Microorganisms 2023; 11:microorganisms11030684. [PMID: 36985256 PMCID: PMC10054730 DOI: 10.3390/microorganisms11030684] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
Usutu virus (USUV) is an emergent arbovirus in Europe causing mortality in bird populations. Similar to West Nile virus (WNV), USUV is maintained in sylvatic cycles between mosquito vectors and bird reservoirs. Spillover events may result in human neurological infection cases. Apart from indirect evidence provided by a recent serological study in wild birds, the circulation of USUV in Romania was not assessed. We aimed to detect and molecular characterize USUV circulating in mosquito vectors collected in South-Eastern Romania-a well-known WNV endemic region-during four transmission seasons. Mosquitoes were collected from Bucharest metropolitan area and Danube Delta, pooled, and screened by real-time RT-PCR for USUV. Partial genomic sequences were obtained and used for phylogeny. USUV was detected in Culex pipiens s.l. female mosquitoes collected in Bucharest, in 2019. The virus belonged to Europe 2 lineage, sub-lineage EU2-A. Phylogenetic analysis revealed high similarity with isolates infecting mosquito vectors, birds, and humans in Europe starting with 2009, all sharing common origin in Northern Italy. To our knowledge, this is the first study characterizing a strain of USUV circulating in Romania.
Collapse
Affiliation(s)
- Florian Liviu Prioteasa
- Medical Entomology Laboratory, Cantacuzino National Military Medical Institute for Research and Development, 103 Splaiul Independenței, 050096 Bucharest, Romania
| | - Sorin Dinu
- Molecular Epidemiology for Communicable Diseases Laboratory, Cantacuzino National Military Medical Institute for Research and Development, 103 Splaiul Independenței, 050096 Bucharest, Romania
| | - Georgiana Victorița Tiron
- Vector-Borne Infections Laboratory, Cantacuzino National Military Medical Institute for Research and Development, 103 Splaiul Independenței, 050096 Bucharest, Romania
- Department of Microbiology, Faculty of Biology, University of Bucharest, 1-3 Aleea Portocalelor, 060101 Bucharest, Romania
| | - Ioana Georgeta Stancu
- Vector-Borne Infections Laboratory, Cantacuzino National Military Medical Institute for Research and Development, 103 Splaiul Independenței, 050096 Bucharest, Romania
- Department of Genetics, Faculty of Biology, University of Bucharest, 1-3 Aleea Portocalelor, 060101 Bucharest, Romania
| | - Elena Fălcuță
- Medical Entomology Laboratory, Cantacuzino National Military Medical Institute for Research and Development, 103 Splaiul Independenței, 050096 Bucharest, Romania
| | - Cornelia Svetlana Ceianu
- Vector-Borne Infections Laboratory, Cantacuzino National Military Medical Institute for Research and Development, 103 Splaiul Independenței, 050096 Bucharest, Romania
| | - Ani Ioana Cotar
- Vector-Borne Infections Laboratory, Cantacuzino National Military Medical Institute for Research and Development, 103 Splaiul Independenței, 050096 Bucharest, Romania
| |
Collapse
|
22
|
Bravo-Barriga D, Ferraguti M, Magallanes S, Aguilera-Sepúlveda P, Llorente F, Pérez-Ramírez E, Vázquez A, Guerrero-Carvajal F, Sánchez-Seco MP, Jiménez-Clavero MÁ, Mora-Rubio C, Marzal A, Frontera E, de Lope F. Identification of Usutu Virus Africa 3 Lineage in a Survey of Mosquitoes and Birds from Urban Areas of Western Spain. Transbound Emerg Dis 2023; 2023:6893677. [PMID: 40303749 PMCID: PMC12016895 DOI: 10.1155/2023/6893677] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 05/02/2025]
Abstract
Usutu virus (USUV) is an emerging zoonotic arbovirus that has caused an increasing number of animal and human cases in Europe in recent years. Understanding the vector species and avian hosts involved in the USUV enzootic cycle in an area of active circulation is vital to anticipate potential outbreaks. Mosquitoes were captured in 2020, while wild birds were sampled in both 2020 and 2021 in Extremadura, southwestern Spain. The presence of USUV in the mosquito vectors was assessed by a real-time reverse transcription-polymerase chain reaction (rRT-PCR) assay and confirmed by sequencing amplicons from two generic RT-PCR sets for flaviviruses. Sequences were analysed phylogenetically. Bird sera were screened for flavivirus antibodies with a blocking ELISA kit and subsequently tested for virus-specific antibodies with a micro-virus-neutralization test. Overall, 6,004 mosquitoes belonging to 13 species were captured, including some well-known flavivirus vectors (Culex pipiens, Cx. perexiguus, and Cx. univittatus). Of the 438 pools tested, USUV was detected in two pools of Cx. pipiens. Phylogenetic analysis using a fragment of the NS5 gene assigned the USUV detected the Africa 3 lineage. Out of 1,413 wild birds tested, USUV-specific antibodies were detected in 17 birds (1.2%, 10 males and 7 females) from eight species. The first detection of USUV Africa 3 lineage in mosquitoes from Spain, together with serologically positive resident wild birds in urban and rural areas, indicates active circulation and a possible risk of exposure for the human population, with necessity to establish specific surveillance plans.
Collapse
Affiliation(s)
- Daniel Bravo-Barriga
- Universidad de Extremadura, Facultad de Veterinaria, Departamento de Sanidad Animal, Parasitología, Avda. Universidad s/n, Cáceres 10003, Spain
- Universidad de Extremadura, Facultad de Biología, Departamento de Anatomía, Biología celular y Zoología, Avenida de Elvas s/n, Badajoz 06006, Spain
| | - Martina Ferraguti
- Universidad de Extremadura, Facultad de Biología, Departamento de Anatomía, Biología celular y Zoología, Avenida de Elvas s/n, Badajoz 06006, Spain
- University of Amsterdam, Department of Theoretical and Computational Ecology (TCE), Institute for Biodiversity and Ecosystem Dynamics (IBED), Science Park 904, Amsterdam 1098 XH, Netherlands
| | - Sergio Magallanes
- Universidad de Extremadura, Facultad de Biología, Departamento de Anatomía, Biología celular y Zoología, Avenida de Elvas s/n, Badajoz 06006, Spain
- Estación Biológica de Doñana (EBD-CSIC), Departamento de Ecología de los Humedales, Avda. Américo Vespucio 26, Sevilla 41092, Spain
| | | | - Francisco Llorente
- Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, Valdeolmos 28130, Spain
| | - Elisa Pérez-Ramírez
- Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, Valdeolmos 28130, Spain
| | - Ana Vázquez
- Laboratorio de Arbovirus y Enfermedades Víricas Importadas, CNM-Instituto de Salud Carlos III, Majadahonda 28220, Madrid, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Fátima Guerrero-Carvajal
- Universidad de Extremadura, Facultad de Veterinaria, Departamento de Sanidad Animal, Parasitología, Avda. Universidad s/n, Cáceres 10003, Spain
| | - María Paz Sánchez-Seco
- Laboratorio de Arbovirus y Enfermedades Víricas Importadas, CNM-Instituto de Salud Carlos III, Majadahonda 28220, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Miguel Ángel Jiménez-Clavero
- Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, Valdeolmos 28130, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Carlos Mora-Rubio
- Universidad de Extremadura, Facultad de Biología, Departamento de Anatomía, Biología celular y Zoología, Avenida de Elvas s/n, Badajoz 06006, Spain
| | - Alfonso Marzal
- Universidad de Extremadura, Facultad de Biología, Departamento de Anatomía, Biología celular y Zoología, Avenida de Elvas s/n, Badajoz 06006, Spain
- Grupo de Investigación y Sostenibilidad Ambiental, Universidad Nacional Federico Villarreal, Lima, Peru
| | - Eva Frontera
- Universidad de Extremadura, Facultad de Veterinaria, Departamento de Sanidad Animal, Parasitología, Avda. Universidad s/n, Cáceres 10003, Spain
| | - Florentino de Lope
- Universidad de Extremadura, Facultad de Biología, Departamento de Anatomía, Biología celular y Zoología, Avenida de Elvas s/n, Badajoz 06006, Spain
| |
Collapse
|
23
|
Casades-Martí L, Holgado-Martín R, Aguilera-Sepúlveda P, Llorente F, Pérez-Ramírez E, Jiménez-Clavero MÁ, Ruiz-Fons F. Risk Factors for Exposure of Wild Birds to West Nile Virus in A Gradient of Wildlife-Livestock Interaction. Pathogens 2023; 12:pathogens12010083. [PMID: 36678431 PMCID: PMC9864363 DOI: 10.3390/pathogens12010083] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
West Nile virus (WNV) transmission rate is shaped by the interaction between virus reservoirs and vectors, which may be maximized in farm environments. Based on this hypothesis, we screened for WNV in wild birds in three scenarios with decreasing gradient of interaction with horses: (i) the farm (A1); (ii) the neighborhood (A2); and (iii) a wild area (A3). We captured wild birds and analyzed their sera for WNV antibodies by blocking ELISA and micro-virus neutralization test. Flavivirus infections were tested with generic and specific PCR protocols. We parameterized linear mixed models with predictors (bird abundance and diversity, vector abundance, vector host abundance, and weather quantities) to identify Flavivirus spp. and WNV exposure risk factors. We detected a low rate of Flavivirus infections by PCR (0.8%) and 6.9% of the birds were seropositive by ELISA. Exposure to Flavivirus spp. was higher in A1 (9%) than in A2 and A3 (5.6% and 5.8%, respectively). Bird diversity was the most relevant predictor of exposure risk and passerines dominated the on-farm bird community. Our results suggest that measures deterring the use of the farm by passerines should be implemented because the environmental favorability of continental Mediterranean environments for WNV is increasing and more outbreaks are expected.
Collapse
Affiliation(s)
- Laia Casades-Martí
- Health & Biotechnology (SaBio) Group, Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, 13005 Ciudad Real, Spain
| | - Rocío Holgado-Martín
- Health & Biotechnology (SaBio) Group, Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, 13005 Ciudad Real, Spain
| | | | - Francisco Llorente
- Centro de Investigación en Sanidad Animal (CISA), INIA-CSIC, 28130 Valdeolmos, Spain
| | - Elisa Pérez-Ramírez
- Centro de Investigación en Sanidad Animal (CISA), INIA-CSIC, 28130 Valdeolmos, Spain
| | - Miguel Ángel Jiménez-Clavero
- Centro de Investigación en Sanidad Animal (CISA), INIA-CSIC, 28130 Valdeolmos, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Francisco Ruiz-Fons
- Health & Biotechnology (SaBio) Group, Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, 13005 Ciudad Real, Spain
- CIBERINFEC—CIBER de Enfermedades Infecciosas, Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence:
| |
Collapse
|
24
|
Mencattelli G, Silverj A, Iapaolo F, Ippoliti C, Teodori L, Di Gennaro A, Curini V, Candeloro L, Conte A, Polci A, Morelli D, Perrotta MG, Marini G, Rosà R, Monaco F, Segata N, Rizzoli A, Rota-Stabelli O, Savini G, West Nile Working Group. Epidemiological and Evolutionary Analysis of West Nile Virus Lineage 2 in Italy. Viruses 2022; 15:35. [PMID: 36680076 PMCID: PMC9866873 DOI: 10.3390/v15010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
West Nile virus (WNV) is a mosquito-borne virus potentially causing serious illness in humans and other animals. Since 2004, several studies have highlighted the progressive spread of WNV Lineage 2 (L2) in Europe, with Italy being one of the countries with the highest number of cases of West Nile disease reported. In this paper, we give an overview of the epidemiological and genetic features characterising the spread and evolution of WNV L2 in Italy, leveraging data obtained from national surveillance activities between 2011 and 2021, including 46 newly assembled genomes that were analysed under both phylogeographic and phylodynamic frameworks. In addition, to better understand the seasonal patterns of the virus, we used a machine learning model predicting areas at high-risk of WNV spread. Our results show a progressive increase in WNV L2 in Italy, clarifying the dynamics of interregional circulation, with no significant introductions from other countries in recent years. Moreover, the predicting model identified the presence of suitable conditions for the 2022 earlier and wider spread of WNV in Italy, underlining the importance of using quantitative models for early warning detection of WNV outbreaks. Taken together, these findings can be used as a reference to develop new strategies to mitigate the impact of the pathogen on human and other animal health in endemic areas and new regions.
Collapse
Affiliation(s)
- Giulia Mencattelli
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy
- Centre Agriculture Food Environment, University of Trento, 38010 San Michele all’Adige, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy
| | - Andrea Silverj
- Centre Agriculture Food Environment, University of Trento, 38010 San Michele all’Adige, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy
- Department CIBIO, University of Trento, 38123 Trento, Italy
| | - Federica Iapaolo
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy
| | - Carla Ippoliti
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy
| | - Liana Teodori
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy
| | - Annapia Di Gennaro
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy
| | - Valentina Curini
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy
| | - Luca Candeloro
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy
| | - Annamaria Conte
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy
| | - Andrea Polci
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy
| | - Daniela Morelli
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy
| | | | - Giovanni Marini
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy
| | - Roberto Rosà
- Centre Agriculture Food Environment, University of Trento, 38010 San Michele all’Adige, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy
| | - Federica Monaco
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy
| | - Nicola Segata
- Department CIBIO, University of Trento, 38123 Trento, Italy
| | - Annapaola Rizzoli
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy
| | - Omar Rota-Stabelli
- Centre Agriculture Food Environment, University of Trento, 38010 San Michele all’Adige, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy
| | - Giovanni Savini
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy
| | | |
Collapse
|
25
|
Cardeti G, Cersini A, Manna G, De Santis P, Scicluna MT, Albani A, Simula M, Sittinieri S, De Santis L, De Liberato C, Ngakan PO, Wahid I, Carosi M. Detection of viruses from feces of wild endangered Macaca maura: a potential threat to moor macaque survival and for zoonotic infection. BMC Vet Res 2022; 18:418. [PMID: 36447236 PMCID: PMC9706849 DOI: 10.1186/s12917-022-03506-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/07/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND To date, there is a scarcity of information and literature on Macaca maura health status relative to viral diseases. The objectives of the present study were to investigate on the potential spread of enteric and non-enteric viruses shed in the environment through a wild macaque feces and to understand the possible interrelation in the spread of zoonotic viruses in a poorly studied geographical area, the Sulawesi Island. This study will also contribute providing useful information on potential threats to the health of this endangered species. METHODS The sampling was conducted between 2014 and 2016 in the Bantimurung Bulusaraung National Park, in the south of the Sulawesi Island and non-invasive sampling methods were used to collect fresh stools of the M. maura, one of the seven macaque species endemic to the island of Sulawesi, Indonesia. The population under study consisted in two wild, neighboring social macaque groups with partially overlapping home ranges; twenty-four samples were collected and examined using negative staining electron microscopy and a panel of PCR protocols for the detection of ten RNA and two DNA viruses. RESULTS Viral particles resembling parvovirus (5 samples), picornavirus (13 samples) and calicivirus (13 samples) were detected by electron microscopy whereas the PCR panel was negative for the 12 viruses investigated, except for one sample positive for a mosquito flavivirus. The results did not correlate with animal sex; furthermore, because all of the animals were clinically healthy, it was not possible to correlate feces consistency with viral presence. CONCLUSIONS As information on viral infections in wild moor macaques remains limited, further studies are yet required to identify the fecal-oral and blood transmitted potentially zoonotic viruses, which may infect the moor macaque and other macaque species endemic to the South Sulawesi Island.
Collapse
Affiliation(s)
- Giusy Cardeti
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Rome, Italy
| | - Antonella Cersini
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Rome, Italy
| | - Giuseppe Manna
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Rome, Italy
| | - Paola De Santis
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Rome, Italy
| | - Maria Teresa Scicluna
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Rome, Italy
| | - Alessandro Albani
- grid.8509.40000000121622106Department of Sciences, Roma Tre University, Rome, Italy ,Royal Society for the Protection of Birds/Gola Rainforest National Park, Kenema, Sierra Leone
| | - Massimiliano Simula
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Rome, Italy
| | - Stefania Sittinieri
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Rome, Italy
| | - Laura De Santis
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Rome, Italy
| | - Claudio De Liberato
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Rome, Italy
| | - Putu Oka Ngakan
- grid.412001.60000 0000 8544 230XFaculty of Forestry, Hasanuddin University, Makassar, Sulawesi Indonesia
| | - Isra Wahid
- grid.412001.60000 0000 8544 230XFaculty of Medicine, Hasanuddin University, Makassar, Sulawesi Indonesia
| | - Monica Carosi
- grid.8509.40000000121622106Department of Sciences, Roma Tre University, Rome, Italy
| |
Collapse
|
26
|
Barzon L, Pacenti M, Montarsi F, Fornasiero D, Gobbo F, Quaranta E, Monne I, Fusaro A, Volpe A, Sinigaglia A, Riccetti S, Dal Molin E, Satto S, Lisi V, Gobbi F, Galante S, Feltrin G, Valeriano V, Favero L, Russo F, Mazzucato M, Bortolami A, Mulatti P, Terregino C, Capelli G. Rapid spread of a new West Nile virus lineage 1 associated with increased risk of neuroinvasive disease during a large outbreak in northern Italy, 2022: One Health analysis. J Travel Med 2022; 31:taac125. [PMID: 36331269 PMCID: PMC11646088 DOI: 10.1093/jtm/taac125] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND A new strain of WNV lineage 1 (WNV - 1) emerged in the Veneto Region, northern Italy, in 2021, eight years after the last outbreak of WNV - 1 in Italy. The virus, which co-circulates with WNV-2, has become endemic in the Region, where, in 2022, most human cases of neuroinvasive disease (WNND) reported in Europe have occurred. METHODS Comparative analysis of the epidemiology and clinical presentation of WNV-1 and WNV-2 infection in humans, as well as the temporal and geographic distribution of WNV-1 and WNV-2 among wild birds and Culex pipiens mosquitoes in Veneto, from May 16th to August 21st, 2022, to determine if the high number of WNND cases was associated with WNV-1. RESULTS As of August 21st, 2022, 222 human cases of WNV infection were confirmed by molecular testing, including 103 with fever (WNF) and 119 with WNND. WNV lineage was determined in 201 (90.5%) cases, comprising 138 WNV-1 and 63 WNV-2 infections. During the same period, 35 blood donors tested positive, including 30 in whom WNV lineage was determined (13 WNV-1 and 17 WNV-2). Comparative analysis of the distribution of WNV-1 and WNV-2 infections among WNND cases, WNF cases and WNV-positive blood donors showed that patients with WNND were more likely to have WNV-1 infection than blood donors (odds ratio 3.44; 95% CI 95% 1.54 to 8.24; p = 0.0043). As observed in humans, in wild birds WNV-1 had higher infectious rate (IR) and showed a more rapid expansion than WNV-2. At variance, the distribution of the two lineages was more even in mosquitoes, but with a trend of rapid increase of WNV-1 IR over WNV-2. CONCLUSIONS Comparative analysis of WNV-1 vs WNV-2 infection in humans, wild birds, and mosquitos showed a rapid expansion of WNV-1 and suggested that WNV-1 infected patients might have an increased risk to develop severe disease.
Collapse
Affiliation(s)
- Luisa Barzon
- Department of Molecular Medicine, University of Padova, via A Gabelli 63, Padova 35121, Italy
- Microbiology and Virology Unit, Padova University Hospital, via Giustiniani 2, Padova 35128, Italy
| | - Monia Pacenti
- Microbiology and Virology Unit, Padova University Hospital, via Giustiniani 2, Padova 35128, Italy
| | - Fabrizio Montarsi
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università, 10 - Legnaro (PD), Italy
| | - Diletta Fornasiero
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università, 10 - Legnaro (PD), Italy
| | - Federica Gobbo
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università, 10 - Legnaro (PD), Italy
| | - Erika Quaranta
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università, 10 - Legnaro (PD), Italy
| | - Isabella Monne
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università, 10 - Legnaro (PD), Italy
| | - Alice Fusaro
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università, 10 - Legnaro (PD), Italy
| | - Andrea Volpe
- Department of Molecular Medicine, University of Padova, via A Gabelli 63, Padova 35121, Italy
| | - Alessandro Sinigaglia
- Department of Molecular Medicine, University of Padova, via A Gabelli 63, Padova 35121, Italy
| | - Silvia Riccetti
- Department of Molecular Medicine, University of Padova, via A Gabelli 63, Padova 35121, Italy
| | - Emanuela Dal Molin
- Department of Molecular Medicine, University of Padova, via A Gabelli 63, Padova 35121, Italy
| | - Sorsha Satto
- Microbiology and Virology Unit, Padova University Hospital, via Giustiniani 2, Padova 35128, Italy
| | - Vittoria Lisi
- Microbiology and Virology Unit, Padova University Hospital, via Giustiniani 2, Padova 35128, Italy
| | - Federico Gobbi
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, Italy
| | - Silvia Galante
- UOC Medicina Trasfusionale, Sede di Camposampiero, Azienda ULSS6 Euganea, via Cosma, 1 - Camposampiero (PD), Italy
| | - Giuseppe Feltrin
- Regional Transplant Centre, Padova University Hospital, Via Giustiniani 2, Padova 35128, Italy
| | - Valerio Valeriano
- Dipartimento di Prevenzione, Azienda ULSS6 Euganea, Servizio di Igiene e Sanità Pubblica, UOSD Epidemiologia e Ambiente, Via Ospedale Civile, 22, Padova 35100, Italy
| | - Laura Favero
- Direzione Prevenzione, Sicurezza Alimentare, Veterinaria, Regione Veneto, Dorsoduro, 3493 - Rio Novo, Venezia 30123, Italy
| | - Francesca Russo
- Direzione Prevenzione, Sicurezza Alimentare, Veterinaria, Regione Veneto, Dorsoduro, 3493 - Rio Novo, Venezia 30123, Italy
| | - Matteo Mazzucato
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università, 10 - Legnaro (PD), Italy
| | - Alessio Bortolami
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università, 10 - Legnaro (PD), Italy
| | - Paolo Mulatti
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università, 10 - Legnaro (PD), Italy
| | - Calogero Terregino
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università, 10 - Legnaro (PD), Italy
| | - Gioia Capelli
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università, 10 - Legnaro (PD), Italy
| |
Collapse
|
27
|
Calzolari M, Bonilauri P, Grisendi A, Dalmonte G, Vismarra A, Lelli D, Chiapponi C, Bellini R, Lavazza A, Dottori M. Arbovirus Screening in Mosquitoes in Emilia-Romagna (Italy, 2021) and Isolation of Tahyna Virus. Microbiol Spectr 2022; 10:e0158722. [PMID: 36165787 PMCID: PMC9602283 DOI: 10.1128/spectrum.01587-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/30/2022] [Indexed: 12/31/2022] Open
Abstract
Several viruses can be transmitted by mosquitoes. We searched some of these viruses in 20,778 mosquitoes, collected in 95 traps on the plains of Emilia-Romagna (North of Italy) in 2021. We detected West Nile virus (WNV) and Usutu virus (USUV) in pools of Culex (Cx.) pipiens. In addition, we detected two insect-specific flaviviruses in three pools of Aedes (Ae.) caspius and in two of Ae. vexans. Tahyna virus (TAHV) was detected in six pools, three of Ae. caspius and three of Cx. pipiens, and one isolated strain was obtained from one of the Ae. caspius pools. Moreover, we detected TAHV in pools of several mosquito species (Ae. caspius, Ae. vexans, Ae. albopictus, Anopheles maculipennis s.l.) collected in the previous year of surveillance. Our data indicate Ae. caspius as the species most infected with TAHV in the surveyed area. Together with the likely plasticity of the cycle, we reported strong genome stability of the TAHV, probably linked to a successful adaptation of the virus to its ecological niche. Interestingly, in six pools of Cx. pipiens we detected two associated viruses among USUV, WNV, TAHV and all the three viruses in two pools. This result allows us to assume the presence of particular conditions that prompt the circulation of arboviruses, creating the conditions for viral hot spots. While no human diseases related to Tahyna virus were reported in Italy, its detection over the years suggests that it is worth investigating this virus as a potential cause of disease in humans in order to assess its health burden. IMPORTANCE We reported in this work the detection of three Arboviruses (Arthropod-borne viruses) in mosquitoes collected in Emilia-Romagna in 2021. In addition to West Nile and Usutu viruses, which were reported from more than 10 years in the study area, we detected and isolated Tahyna virus (TAHV). We also reported detections of TAHV obtained in previous years of surveillance in different species of mosquitoes. TAHV is the potential causative agent of summer influenza-like diseases and also of meningitis. Even if human cases of disease referable to this virus are not reported in Italy, its relevant presence in mosquitoes suggests investigating the possibility they could.
Collapse
Affiliation(s)
- Mattia Calzolari
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna “B. Ubertini” (IZSLER), Brescia, Italy
| | - Paolo Bonilauri
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna “B. Ubertini” (IZSLER), Brescia, Italy
| | - Annalisa Grisendi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna “B. Ubertini” (IZSLER), Brescia, Italy
| | - Gastone Dalmonte
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna “B. Ubertini” (IZSLER), Brescia, Italy
| | - Alice Vismarra
- Dipartimento di Scienze Medico-Veterinarie, UO di Parassitologia e Malattie Parassitarie, Università di Parma, Parma, Italy
| | - Davide Lelli
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna “B. Ubertini” (IZSLER), Brescia, Italy
| | - Chiara Chiapponi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna “B. Ubertini” (IZSLER), Brescia, Italy
| | - Romeo Bellini
- Centro Agricoltura Ambiente “G.Nicoli,” Crevalcore, Italy
| | - Antonio Lavazza
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna “B. Ubertini” (IZSLER), Brescia, Italy
| | - Michele Dottori
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna “B. Ubertini” (IZSLER), Brescia, Italy
| |
Collapse
|
28
|
Cruciani D, Crotti S, Paoloni D, La Morgia V, Felici A, Papa P, Cosseddu GM, Moscati L, Gobbi P. Health Status of the Eastern Grey Squirrel ( Sciurus carolinensis) Population in Umbria: Results of the LIFE Project 'U-SAVEREDS'. Animals (Basel) 2022; 12:ani12202741. [PMID: 36290127 PMCID: PMC9597752 DOI: 10.3390/ani12202741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/09/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022] Open
Abstract
Simple Summary Invasive alien species are non-native species introduced deliberately or unintentionally beyond their past or present natural distribution, and their introduction and spread threatens local biological diversity. The Eastern grey squirrel is native to North America and was introduced to the British Islands, Italy, and South Africa. Around the year 2000, a new population of grey squirrels was recorded in Perugia, central Italy, where the species populated an area of approximately 50 km2, both in woodland and urban areas. The Eastern grey squirrel represents a huge threat to the conservation of the native Eurasian red squirrel when the two species coexist. Moreover, given their confident behaviour with humans, the non-native squirrels can negatively impact public health. The U-SAVEREDS Project was set up for Eurasian red squirrel conservation in Umbria through the eradication of the alien species and it also provided information on the health status of the Eastern grey squirrel to identify any infectious agents. The recovery of zoonotic pathogens allowed to assess the Eastern grey squirrel’s impact on human and domestic and wild animals’ health, provide helpful feedback for the management and eradication procedures, and raise public awareness through environmental education. Abstract The introduction of the Eastern grey squirrel (Sciurus carolinensis) in Europe is one of the best-known cases of invasive alien species (IAS) colonisation, that poses a severe risk to the conservation of biodiversity. In 2003, it was released in a private wildlife park near the city of Perugia (Italy), where it is replacing the native Eurasian red squirrel (Sciurus vulgaris). The LIFE13 BIO/IT/000204 Project (U-SAVEREDS) was set up for the Sciurus vulgaris conservation in Umbria through an eradication campaign of grey squirrels. One hundred and fifty-four animals were analysed for bacteriological, mycological, virological, and serological investigations (C4 action). Sanitary screening showed that Sciurus carolinensis is a dermatophyte carrier, and therefore, it could cause public health issues for humans, considering its confident behaviour. Moreover, it has been marginally responsible for the spreading of Candida albicans, Coxiella burnetii, and Borrelia lusitaniae. Health status evaluation conducted on the Sciurus carolinensis population indicated that it is necessary to raise awareness of its impacts on biodiversity and human health. Moreover, the health status and behaviours of the IAS must be considered when control or eradication campaigns are planned.
Collapse
Affiliation(s)
- Deborah Cruciani
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati” (IZSUM), Via G. Salvemini 1, 06126 Perugia, Italy
- Correspondence:
| | - Silvia Crotti
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati” (IZSUM), Via G. Salvemini 1, 06126 Perugia, Italy
| | | | - Valentina La Morgia
- Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Via Vitaliano Brancati 48, 00144 Roma, Italy
| | - Andrea Felici
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati” (IZSUM), Via G. Salvemini 1, 06126 Perugia, Italy
| | - Paola Papa
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati” (IZSUM), Via G. Salvemini 1, 06126 Perugia, Italy
| | - Gian Mario Cosseddu
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri” (IZSLT), Via Appia Nuova 1411, 00178 Roma, Italy
- Istituto Zooprofilattico Sperimentale Abruzzo e Molise “G. Caporale” (IZSAM), Campo Boario, 64100 Teramo, Italy
| | - Livia Moscati
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati” (IZSUM), Via G. Salvemini 1, 06126 Perugia, Italy
| | - Paola Gobbi
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati” (IZSUM), Via G. Salvemini 1, 06126 Perugia, Italy
| |
Collapse
|
29
|
Direct and Indirect Role of Migratory Birds in Spreading CCHFV and WNV: A Multidisciplinary Study on Three Stop-Over Islands in Italy. Pathogens 2022; 11:pathogens11091056. [PMID: 36145488 PMCID: PMC9505975 DOI: 10.3390/pathogens11091056] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
The annual movements of migratory birds can contribute to the spread of African ticks and tick-borne pathogens of potential public health concern across Europe. The aim of the study was to investigate their role in the possible introduction of African ticks and tick-borne pathogens into European countries during spring migration. A total of 2344 ticks were collected during three spring seasons from 1079 birds captured on three Italian stop-over islands during their northbound migration. Once identified, each tick was tested by RT-PCR for the presence of Crimean-Congo hemorrhagic fever (CCHFV), West Nile (WNV), and Usutu (USUV) viruses. Moreover, carcasses of birds found dead were collected and tested for the possible presence of WNV and USUV. Results confirmed a higher contribution of trans-Saharan migrants compared to intra-Palearctic ones and the prevalence of African tick species in the sample. CCHFV was detected for the second time in Italy in a Hyalomma rufipes, and WNV was found in two ticks of the same genus, all carried by trans-Saharan birds. WNV lineage 1 was also found in the organs of a Garden warbler. These results confirm the role of migratory birds in carrying African ticks, as well as viruses of zoonotic importance, from Africa into Europe.
Collapse
|
30
|
Giglia G, Mencattelli G, Lepri E, Agliani G, Gobbi M, Gröne A, van den Brand JMA, Savini G, Mandara MT. West Nile Virus and Usutu Virus: A Post-Mortem Monitoring Study in Wild Birds from Rescue Centers, Central Italy. Viruses 2022; 14:v14091994. [PMID: 36146800 PMCID: PMC9503110 DOI: 10.3390/v14091994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/29/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
West Nile virus (WNV) and Usutu virus (USUV) are mosquito-borne flaviviruses that have been associated with neurological diseases in humans and wild birds. Wild bird rescue centers are potential significant hot spots for avian infection surveillance, as recognized in the Italian Integrate National Surveillance Plan for Arboviruses. Here we report the results of a post-mortem active monitoring study conducted from November 2017 to October 2020 on animals hosted in five wild bird rescue centers of Central Italy. Five hundred seventy-six (n = 576) wild birds were tested by real-time polymerase chain reaction (RT-PCR) for the presence of WNV or USUV RNA fragments. No birds tested positive for USUV RNA (n = 0; 0.00%). Evidence of WNV RNA (Ct value = 34.36) was found in one bird (n = 1; 0.17%), an adult little grebe (Tachybaptus ruficollis subsp. ruficollis), that tested WNV positive in December 2019. This study highlights the strategic role of wildlife rescue centers in monitoring both the introduction and circulation of avian emerging zoonotic diseases. In addition, the presence of WNV during the cold season evidences the possible role of birds in overwintering mechanisms in the Italian territory and requires further investigations.
Collapse
Affiliation(s)
- Giuseppe Giglia
- Division of Pathology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy
- Correspondence:
| | - Giulia Mencattelli
- OIE National Reference Center for West Nile Disease, Istituto Zooprofilattico Sperimentale, dell’Abruzzo e Molise “G. Caporale”, 64100 Teramo, Italy
- Center Agriculture Food Environment, University of Trento, 38098 San Michele all’Adige, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, 38098 San Michele all’Adige, Italy
| | - Elvio Lepri
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy
| | - Gianfilippo Agliani
- Division of Pathology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | - Marco Gobbi
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “T. Rosati”, 06126 Perugia, Italy
| | - Andrea Gröne
- Division of Pathology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
- Dutch Wildlife Health Centre, Utrecht University, 3584 CL Utrecht, The Netherlands
| | - Judith M. A. van den Brand
- Division of Pathology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
- Dutch Wildlife Health Centre, Utrecht University, 3584 CL Utrecht, The Netherlands
| | - Giovanni Savini
- OIE National Reference Center for West Nile Disease, Istituto Zooprofilattico Sperimentale, dell’Abruzzo e Molise “G. Caporale”, 64100 Teramo, Italy
| | | |
Collapse
|
31
|
Mencattelli G, Iapaolo F, Polci A, Marcacci M, Di Gennaro A, Teodori L, Curini V, Di Lollo V, Secondini B, Scialabba S, Gobbi M, Manuali E, Cammà C, Rosà R, Rizzoli A, Monaco F, Savini G. West Nile Virus Lineage 2 Overwintering in Italy. Trop Med Infect Dis 2022; 7:160. [PMID: 36006252 PMCID: PMC9414329 DOI: 10.3390/tropicalmed7080160] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 12/24/2022] Open
Abstract
In January 2022, West Nile virus (WNV) lineage 2 (L2) was detected in an adult female goshawk rescued near Perugia in the region of Umbria (Italy). The animal showed neurological symptoms and died 15 days after its recovery in a wildlife rescue center. This was the second case of WNV infection recorded in birds in the Umbria region during the cold season, when mosquitoes, the main WNV vectors, are usually not active. According to the National Surveillance Plan, the Umbria region is included amongst the WNV low-risk areas. The necropsy evidenced generalized pallor of the mucous membranes, mild splenomegaly, and cerebral edema. WNV L2 was detected in the brain, heart, kidney, and spleen homogenate using specific RT-PCR. Subsequently, the extracted viral RNA was sequenced. A Bayesian phylogenetic analysis performed through a maximum-likelihood tree showed that the genome sequence clustered with the Italian strains within the European WNV strains among the central-southern European WNV L2 clade. These results, on the one hand, confirmed that the WNV L2 strains circulating in Italy are genetically stable and, on the other hand, evidenced a continuous WNV circulation in Italy throughout the year. In this report case, a bird-to-bird WNV transmission was suggested to support the virus overwintering. The potential transmission through the oral route in a predatory bird may explain the relatively rapid spread of WNV, as well as other flaviviruses characterized by similar transmission patterns. However, rodent-to-bird transmission or mosquito-to-bird transmission cannot be excluded, and further research is needed to better understand WNV transmission routes during the winter season in Italy.
Collapse
Affiliation(s)
- Giulia Mencattelli
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (F.I.); (A.P.); (M.M.); (A.D.G.); (L.T.); (V.C.); (V.D.L.); (B.S.); (S.S.); (C.C.); (F.M.); (G.S.)
- Center Agriculture Food Environment, University of Trento, 38098 Trento, Italy;
- Fondazione Edmund Mach, Research and Innovation Centre, San Michele all’Adige, 38098 Trento, Italy;
| | - Federica Iapaolo
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (F.I.); (A.P.); (M.M.); (A.D.G.); (L.T.); (V.C.); (V.D.L.); (B.S.); (S.S.); (C.C.); (F.M.); (G.S.)
| | - Andrea Polci
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (F.I.); (A.P.); (M.M.); (A.D.G.); (L.T.); (V.C.); (V.D.L.); (B.S.); (S.S.); (C.C.); (F.M.); (G.S.)
| | - Maurilia Marcacci
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (F.I.); (A.P.); (M.M.); (A.D.G.); (L.T.); (V.C.); (V.D.L.); (B.S.); (S.S.); (C.C.); (F.M.); (G.S.)
| | - Annapia Di Gennaro
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (F.I.); (A.P.); (M.M.); (A.D.G.); (L.T.); (V.C.); (V.D.L.); (B.S.); (S.S.); (C.C.); (F.M.); (G.S.)
| | - Liana Teodori
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (F.I.); (A.P.); (M.M.); (A.D.G.); (L.T.); (V.C.); (V.D.L.); (B.S.); (S.S.); (C.C.); (F.M.); (G.S.)
| | - Valentina Curini
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (F.I.); (A.P.); (M.M.); (A.D.G.); (L.T.); (V.C.); (V.D.L.); (B.S.); (S.S.); (C.C.); (F.M.); (G.S.)
| | - Valeria Di Lollo
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (F.I.); (A.P.); (M.M.); (A.D.G.); (L.T.); (V.C.); (V.D.L.); (B.S.); (S.S.); (C.C.); (F.M.); (G.S.)
| | - Barbara Secondini
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (F.I.); (A.P.); (M.M.); (A.D.G.); (L.T.); (V.C.); (V.D.L.); (B.S.); (S.S.); (C.C.); (F.M.); (G.S.)
| | - Silvia Scialabba
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (F.I.); (A.P.); (M.M.); (A.D.G.); (L.T.); (V.C.); (V.D.L.); (B.S.); (S.S.); (C.C.); (F.M.); (G.S.)
| | - Marco Gobbi
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, 06126 Perugia, Italy; (M.G.); (E.M.)
| | - Elisabetta Manuali
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, 06126 Perugia, Italy; (M.G.); (E.M.)
| | - Cesare Cammà
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (F.I.); (A.P.); (M.M.); (A.D.G.); (L.T.); (V.C.); (V.D.L.); (B.S.); (S.S.); (C.C.); (F.M.); (G.S.)
| | - Roberto Rosà
- Center Agriculture Food Environment, University of Trento, 38098 Trento, Italy;
| | - Annapaola Rizzoli
- Fondazione Edmund Mach, Research and Innovation Centre, San Michele all’Adige, 38098 Trento, Italy;
| | - Federica Monaco
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (F.I.); (A.P.); (M.M.); (A.D.G.); (L.T.); (V.C.); (V.D.L.); (B.S.); (S.S.); (C.C.); (F.M.); (G.S.)
| | - Giovanni Savini
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (F.I.); (A.P.); (M.M.); (A.D.G.); (L.T.); (V.C.); (V.D.L.); (B.S.); (S.S.); (C.C.); (F.M.); (G.S.)
| |
Collapse
|
32
|
Sofia M, Giannakopoulos A, Giantsis IA, Touloudi A, Birtsas P, Papageorgiou K, Athanasakopoulou Z, Chatzopoulos DC, Vrioni G, Galamatis D, Diamantopoulos V, Mpellou S, Petridou E, Kritas SK, Palli M, Georgakopoulos G, Spyrou V, Tsakris A, Chaskopoulou A, Billinis C. West Nile Virus Occurrence and Ecological Niche Modeling in Wild Bird Species and Mosquito Vectors: An Active Surveillance Program in the Peloponnese Region of Greece. Microorganisms 2022; 10:1328. [PMID: 35889046 PMCID: PMC9320058 DOI: 10.3390/microorganisms10071328] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
West Nile Virus (WNV) is maintained in nature in a bird-mosquito cycle and human infections follow a seasonal pattern, favored by climatic conditions. Peloponnese Region, located in Southern Greece, initiated an active WNV surveillance program to protect public health during 2019-2020. The project included monitoring of avian hosts and mosquito vectors, while sampling locations were prioritized after consideration of WNV circulation in birds, mosquitos and humans during previous seasons. Biological materials were collected from 493 wild birds of 25 species and 678 mosquito pools, which were molecularly screened for WNV presence. In this case, 14 environmental variables were associated with WNV detection in wild birds and mosquitos by using two separate MaxEnt models. Viral RNA was not detected in the target species during 2019, although in 2020, it was reported on 46 wild birds of ten species and 22 mosquito pools (Culex pipiens and Aedes albopictus). Altitude and land uses were significant predictors for both models and in fact, suitable conditions for virus occurrence were identified in low altitude zones. Bird- and mosquito-based surveillance systems yielded similar results and allowed for targeted vector control applications in cases of increased virus activity. Human cases were not reported on Peloponnese in 2020.
Collapse
Affiliation(s)
- Marina Sofia
- Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece; (M.S.); (A.G.); (A.T.); (Z.A.)
| | - Alexios Giannakopoulos
- Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece; (M.S.); (A.G.); (A.T.); (Z.A.)
| | - Ioannis A. Giantsis
- European Biological Control Laboratory, USDA-ARS—U.S. Department of Agriculture Agricultural Research Service, 57001 Thessaloniki, Greece; (I.A.G.); (A.C.)
| | - Antonia Touloudi
- Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece; (M.S.); (A.G.); (A.T.); (Z.A.)
| | - Periklis Birtsas
- Faculty of Forestry, Wood Science and Design, 43100 Karditsa, Greece;
| | - Kontantinos Papageorgiou
- Faculty of Public and One Health, University of Thessaly, 43100 Karditsa, Greece; (K.P.); (D.C.C.)
- Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.P.); (S.K.K.)
| | - Zoi Athanasakopoulou
- Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece; (M.S.); (A.G.); (A.T.); (Z.A.)
| | - Dimitris C. Chatzopoulos
- Faculty of Public and One Health, University of Thessaly, 43100 Karditsa, Greece; (K.P.); (D.C.C.)
| | - Georgia Vrioni
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, 15772 Athens, Greece; (G.V.); (A.T.)
| | - Dimitrios Galamatis
- Hellenic Agricultural Organization DIMITRA (ELGO DIMITRA), 54248 Thessaloniki, Greece;
| | | | - Spyridoula Mpellou
- Bioefarmoges Eleftheriou LP-Integrated Mosquito Control, 19007 Marathon, Greece;
| | - Evanthia Petridou
- Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.P.); (S.K.K.)
| | - Spyridon K. Kritas
- Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.P.); (S.K.K.)
| | - Matina Palli
- Wildlife Protection & Rehabilitation Center, 24400 Gargalianoi, Greece; (M.P.); (G.G.)
| | | | - Vassiliki Spyrou
- Faculty of Animal Science, University of Thessaly, 41110 Larissa, Greece;
| | - Athanassios Tsakris
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, 15772 Athens, Greece; (G.V.); (A.T.)
| | - Alexandra Chaskopoulou
- European Biological Control Laboratory, USDA-ARS—U.S. Department of Agriculture Agricultural Research Service, 57001 Thessaloniki, Greece; (I.A.G.); (A.C.)
| | - Charalambos Billinis
- Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece; (M.S.); (A.G.); (A.T.); (Z.A.)
- Faculty of Public and One Health, University of Thessaly, 43100 Karditsa, Greece; (K.P.); (D.C.C.)
| |
Collapse
|
33
|
Musto C, Tamba M, Calzolari M, Torri D, Marzani K, Cerri J, Bonilauri P, Delogu M. Usutu virus in blackbirds (Turdus merula) with clinical signs, a case study from northern Italy. EUR J WILDLIFE RES 2022. [DOI: 10.1007/s10344-022-01572-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
AbstractUsutu virus (USUV) is a mosquito-borne virus belonging to the family Flaviviridae, genus Flavivirus. Natural transmission cycle of USUV involves mosquitoes and birds, so humans and other mammals are considered incidental hosts. In this study, USUV infection was diagnosed in all wild blackbirds, collected from July to September 2018 in a wildlife recovery center in the province of Bologna, in the Emilia-Romagna region, northern Italy. All blackbirds showed neurological clinical signs, such as overturning, pedaling, and incoordination. Moreover, the subjects died shortly after arriving at the hospitalization center. Virological investigations were performed by real-time PCR on frozen samples of the spleen, kidney, myocardium, and brain for the detection of Usutu (USUV) and West Nile (WNV) viruses. The small and large intestine were used as a matrix for the detection of Newcastle disease virus (NDV). All 56 subjects with neurological clinical signs were positive for USUV, only one subject (1.8%) tested positive for WNV, and no subject was positive for NDV. The most represented age class was class 1 J (58.9%), followed by class 3 (25.0%), and lastly from class 4 (16.1%). Most of the blackbirds before dying were in good (51.8%) and fair (39.3%) nutritional status, while only five subjects (8.9%) were cachectic. The USUV genomes detected in the blackbirds of this study fall within the sub-clade already called EU2 that has been detected since 2009 in the Emilia-Romagna region. Neurological clinical signs in USUV-affected blackbirds are still widely discussed and there are few works in the literature. Although our results require further studies, we believe them to be useful for understanding the clinical signs of Usutu virus in blackbirds, helping to increase the knowledge of this zoonotic agent in wild species and to understand its effect on the ecosystem. The goal of this study was to report—in the context of the regional passive surveillance program—the detection of USUV RNA in its most important amplifying host, the common blackbird, when showing clinical signs before death.
Collapse
|
34
|
West Nile and Usutu Virus Introduction via Migratory Birds: A Retrospective Analysis in Italy. Viruses 2022; 14:v14020416. [PMID: 35216009 PMCID: PMC8880244 DOI: 10.3390/v14020416] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/31/2022] [Accepted: 02/15/2022] [Indexed: 02/03/2023] Open
Abstract
The actual contribution of migratory birds in spreading West Nile (WNV) and Usutu virus (USUV) across Europe and from Africa to old countries is still controversial. In this study, we reported the results of molecular and serological surveys on migrating birds sampled during peaks of spring and autumn migration at 11 Italian sites located along important flyways, from 2012 to 2014. A total of 1335 specimens made of individual or pooled sera, and organs from 275 dead birds were tested for WNV and USUV RNA by real time PCR (RT-PCR). Furthermore, sera were tested by serum neutralization assay for detecting WNV and USUV neutralizing antibodies. Molecular tests detected WNV lineage 2 RNA in a pool made of three Song Thrush (Turdus philomelos) sera sampled in autumn, and lineage 1 in kidneys of six trans-Saharan birds sampled in spring. Neutralizing antibodies against WNV and USUV were found in 5.80% (n = 72; 17 bird species) and 0.32% (n = 4; 4 bird species) of the tested sera, respectively. Our results do not exclude the role of migratory birds as potential spreaders of WNV and USUV from Africa and Central Europe to Mediterranean areas and highlight the importance of a more extensive active surveillance of zoonotic viruses.
Collapse
|
35
|
Fotakis EA, Mavridis K, Kampouraki A, Balaska S, Tanti F, Vlachos G, Gewehr S, Mourelatos S, Papadakis A, Kavalou M, Nikolakakis D, Moisaki M, Kampanis N, Loumpounis M, Vontas J. Mosquito population structure, pathogen surveillance and insecticide resistance monitoring in urban regions of Crete, Greece. PLoS Negl Trop Dis 2022; 16:e0010186. [PMID: 35176020 PMCID: PMC8890720 DOI: 10.1371/journal.pntd.0010186] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 03/02/2022] [Accepted: 01/21/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND In Greece vector borne diseases (VBD) and foremost West Nile virus (WNV) pose an important threat to public health and the tourist industry, the primary sector of contribution to the national economy. The island of Crete, is one of Greece's major tourist destinations receiving annually over 5 million tourists making regional VBD control both a public health and economic priority. METHODOLOGY Under the auspices of the Region of Crete, a systematic integrative surveillance network targeting mosquitoes and associated pathogens was established in Crete for the years 2018-2020. Using conventional and molecular diagnostic tools we investigated the mosquito species composition and population dynamics, pathogen infection occurrences in vector populations and in sentinel chickens, and the insecticide resistance status of the major vector species. PRINCIPAL FINDINGS Important disease vectors were recorded across the island including Culex pipiens, Aedes albopictus, and Anopheles superpictus. Over 75% of the sampled specimens were collected in the western prefectures potentially attributed to the local precipitation patterns, with Cx. pipiens being the most dominant species. Although no pathogens (flaviviruses) were detected in the analysed mosquito specimens, chicken blood serum analyses recorded a 1.7% WNV antibody detection rate in the 2018 samples. Notably detection of the first WNV positive chicken preceded human WNV occurrence in the same region by approximately two weeks. The chitin synthase mutation I1043F (associated with high diflubenzuron resistance) was recorded at an 8% allelic frequency in Lasithi prefecture Cx. pipiens mosquitoes (sampled in 2020) for the first time in Greece. Markedly, Cx. pipiens populations in all four prefectures were found harboring the kdr mutations L1014F/C/S (associated with pyrethroid resistance) at a close to fixation rate, with mutation L1014C being the most commonly found allele (≥74% representation). Voltage gated sodium channel analyses in Ae. albopictus revealed the presence of the kdr mutations F1534C and I1532T (associated with putative mild pyrethroid resistance phenotypes) yet absence of V1016G. Allele F1534C was recorded in all prefectures (at an allelic frequency range of 25-46.6%) while I1532T was detected in populations from Chania, Rethymnon and Heraklion (at frequencies below 7.1%). Finally, no kdr mutations were detected in the Anopheles specimens included in the analyses. CONCLUSIONS/SIGNIFICANCE The findings of our study are of major concern for VBD control in Crete, highlighting (i) the necessity for establishing seasonal integrated entomological/pathogen surveillance programs, supporting the design of targeted vector control responses and; ii) the need for establishing appropriate insecticide resistance management programs ensuring the efficacy and sustainable use of DFB and pyrethroid based products in vector control.
Collapse
Affiliation(s)
- Emmanouil A. Fotakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Konstantinos Mavridis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Anastasia Kampouraki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
- Department of Crop Science, Pesticide Science Laboratory, Agricultural University of Athens, Athens, Greece
| | - Sofia Balaska
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
- Department Biology, University of Crete, Heraklion, Greece
| | - Filianna Tanti
- Department of Crop Science, Pesticide Science Laboratory, Agricultural University of Athens, Athens, Greece
| | - George Vlachos
- EcoDevelopment SA-Integrated Mosquito Control, Thessaloniki, Greece
| | - Sandra Gewehr
- EcoDevelopment SA-Integrated Mosquito Control, Thessaloniki, Greece
| | | | - Antonios Papadakis
- General Directorate of Public Health & Social Care of Region of Crete, Heraklion, Greece
| | - Maria Kavalou
- General Directorate of Public Health & Social Care of Region of Crete, Heraklion, Greece
| | - Dimitrios Nikolakakis
- General Directorate of Public Health & Social Care of Region of Crete, Heraklion, Greece
| | - Maria Moisaki
- General Directorate of Public Health & Social Care of Region of Crete, Heraklion, Greece
| | - Nikolaos Kampanis
- General Directorate of Public Health & Social Care of Region of Crete, Heraklion, Greece
| | - Manolis Loumpounis
- General Directorate of Public Health & Social Care of Region of Crete, Heraklion, Greece
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
- Department of Crop Science, Pesticide Science Laboratory, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
36
|
Mencattelli G, Iapaolo F, Monaco F, Fusco G, de Martinis C, Portanti O, Di Gennaro A, Curini V, Polci A, Berjaoui S, Di Felice E, Rosà R, Rizzoli A, Savini G. West Nile Virus Lineage 1 in Italy: Newly Introduced or a Re-Occurrence of a Previously Circulating Strain? Viruses 2021; 14:v14010064. [PMID: 35062268 PMCID: PMC8780300 DOI: 10.3390/v14010064] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/18/2021] [Accepted: 12/28/2021] [Indexed: 12/13/2022] Open
Abstract
In Italy, West Nile virus (WNV) appeared for the first time in the Tuscany region in 1998. After 10 years of absence, it re-appeared in the areas surrounding the Po River delta, affecting eight provinces in three regions. Thereafter, WNV epidemics caused by genetically divergent isolates have been documented every year in the country. Since 2018, only WNV Lineage 2 has been reported in the Italian territory. In October 2020, WNV Lineage 1 (WNV-L1) re-emerged in Italy, in the Campania region. This is the first occurrence of WNV-L1 detection in the Italian territory since 2017. WNV was detected in the internal organs of a goshawk (Accipiter gentilis) and a kestrel (Falco tinnunculus). The RNA extracted in the goshawk tissue samples was sequenced, and a Bayesian phylogenetic analysis was performed by a maximum-likelihood tree. Genome analysis, conducted on the goshawk WNV complete genome sequence, indicates that the strain belongs to the WNV-L1 Western-Mediterranean (WMed) cluster. Moreover, a close phylogenetic similarity is observed between the goshawk strain, the 2008-2011 group of Italian sequences, and European strains belonging to the Wmed cluster. Our results evidence the possibility of both a new re-introduction or unnoticed silent circulation in Italy, and the strong importance of keeping the WNV surveillance system in the Italian territory active.
Collapse
Affiliation(s)
- Giulia Mencattelli
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (F.I.); (F.M.); (O.P.); (A.D.G.); (V.C.); (A.P.); (S.B.); (E.D.F.); (G.S.)
- Center Agriculture Food Environment, University of Trento, 38098 Trento, Italy;
- Fondazione Edmund Mach, San Michele all’Adige, 38098 Trento, Italy;
- Correspondence:
| | - Federica Iapaolo
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (F.I.); (F.M.); (O.P.); (A.D.G.); (V.C.); (A.P.); (S.B.); (E.D.F.); (G.S.)
| | - Federica Monaco
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (F.I.); (F.M.); (O.P.); (A.D.G.); (V.C.); (A.P.); (S.B.); (E.D.F.); (G.S.)
| | - Giovanna Fusco
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Napoli, Italy; (G.F.); (C.d.M.)
| | - Claudio de Martinis
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Napoli, Italy; (G.F.); (C.d.M.)
| | - Ottavio Portanti
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (F.I.); (F.M.); (O.P.); (A.D.G.); (V.C.); (A.P.); (S.B.); (E.D.F.); (G.S.)
| | - Annapia Di Gennaro
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (F.I.); (F.M.); (O.P.); (A.D.G.); (V.C.); (A.P.); (S.B.); (E.D.F.); (G.S.)
| | - Valentina Curini
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (F.I.); (F.M.); (O.P.); (A.D.G.); (V.C.); (A.P.); (S.B.); (E.D.F.); (G.S.)
| | - Andrea Polci
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (F.I.); (F.M.); (O.P.); (A.D.G.); (V.C.); (A.P.); (S.B.); (E.D.F.); (G.S.)
| | - Shadia Berjaoui
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (F.I.); (F.M.); (O.P.); (A.D.G.); (V.C.); (A.P.); (S.B.); (E.D.F.); (G.S.)
| | - Elisabetta Di Felice
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (F.I.); (F.M.); (O.P.); (A.D.G.); (V.C.); (A.P.); (S.B.); (E.D.F.); (G.S.)
| | - Roberto Rosà
- Center Agriculture Food Environment, University of Trento, 38098 Trento, Italy;
| | | | - Giovanni Savini
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (F.I.); (F.M.); (O.P.); (A.D.G.); (V.C.); (A.P.); (S.B.); (E.D.F.); (G.S.)
| |
Collapse
|
37
|
Trogu T, Canziani S, Salvato S, Tolini C, Grilli G, Chiari M, Farioli M, Alborali L, Gaffuri A, Sala G, Bianchi A, Rosignoli C, Prati P, Gradassi M, Sozzi E, Lelli D, Lavazza A, Moreno A. Survey on the Presence of Viruses of Economic and Zoonotic Importance in Avifauna in Northern Italy. Microorganisms 2021; 9:1957. [PMID: 34576852 PMCID: PMC8471648 DOI: 10.3390/microorganisms9091957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/01/2021] [Accepted: 09/08/2021] [Indexed: 11/21/2022] Open
Abstract
Wild birds play an important role in the circulation and spread of pathogens that are potentially zoonotic or of high economic impact on zootechnical production. They include, for example, West Nile virus (WNV), Usutu virus (USUV), avian influenza virus (AIV), and Newcastle disease virus (NDV), which, despite having mostly an asymptomatic course in wild birds, have a strong impact on public health and zootechnical production. This study investigated the presence of these viruses in several wild bird species from North Italy during the biennium 2019-2020. Wild birds derived from 76 different species belonging to 20 orders. Out of 679 birds, 27 were positive for WNV (lineage 2) with a prevalence of 4%; all birds were negative for USUV; one gull was positive for H13N6 influenza virus, and 12 samples were positive for NDV with a prevalence of 2%. Despite the low prevalence observed, the analyses performed on these species provide further data, allowing a better understanding of the diffusion and evolution of diseases of both economic and zoonotic importance.
Collapse
Affiliation(s)
- Tiziana Trogu
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini” (IZSLER), Via Antonio Bianchi 7/9, 25124 Brescia, Italy; (T.T.); (S.S.); (C.T.); (L.A.); (A.G.); (G.S.); (A.B.); (C.R.); (P.P.); (M.G.); (E.S.); (D.L.); (A.L.); (A.M.)
| | - Sabrina Canziani
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini” (IZSLER), Via Antonio Bianchi 7/9, 25124 Brescia, Italy; (T.T.); (S.S.); (C.T.); (L.A.); (A.G.); (G.S.); (A.B.); (C.R.); (P.P.); (M.G.); (E.S.); (D.L.); (A.L.); (A.M.)
| | - Sara Salvato
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini” (IZSLER), Via Antonio Bianchi 7/9, 25124 Brescia, Italy; (T.T.); (S.S.); (C.T.); (L.A.); (A.G.); (G.S.); (A.B.); (C.R.); (P.P.); (M.G.); (E.S.); (D.L.); (A.L.); (A.M.)
| | - Clara Tolini
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini” (IZSLER), Via Antonio Bianchi 7/9, 25124 Brescia, Italy; (T.T.); (S.S.); (C.T.); (L.A.); (A.G.); (G.S.); (A.B.); (C.R.); (P.P.); (M.G.); (E.S.); (D.L.); (A.L.); (A.M.)
| | - Guido Grilli
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy;
| | - Mario Chiari
- Direzione Generale Welfare, Regional Health Authority of Lombardy, 20124 Milan, Italy; (M.C.); (M.F.)
| | - Marco Farioli
- Direzione Generale Welfare, Regional Health Authority of Lombardy, 20124 Milan, Italy; (M.C.); (M.F.)
| | - Loris Alborali
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini” (IZSLER), Via Antonio Bianchi 7/9, 25124 Brescia, Italy; (T.T.); (S.S.); (C.T.); (L.A.); (A.G.); (G.S.); (A.B.); (C.R.); (P.P.); (M.G.); (E.S.); (D.L.); (A.L.); (A.M.)
| | - Alessandra Gaffuri
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini” (IZSLER), Via Antonio Bianchi 7/9, 25124 Brescia, Italy; (T.T.); (S.S.); (C.T.); (L.A.); (A.G.); (G.S.); (A.B.); (C.R.); (P.P.); (M.G.); (E.S.); (D.L.); (A.L.); (A.M.)
| | - Giovanni Sala
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini” (IZSLER), Via Antonio Bianchi 7/9, 25124 Brescia, Italy; (T.T.); (S.S.); (C.T.); (L.A.); (A.G.); (G.S.); (A.B.); (C.R.); (P.P.); (M.G.); (E.S.); (D.L.); (A.L.); (A.M.)
| | - Alessandro Bianchi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini” (IZSLER), Via Antonio Bianchi 7/9, 25124 Brescia, Italy; (T.T.); (S.S.); (C.T.); (L.A.); (A.G.); (G.S.); (A.B.); (C.R.); (P.P.); (M.G.); (E.S.); (D.L.); (A.L.); (A.M.)
| | - Carlo Rosignoli
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini” (IZSLER), Via Antonio Bianchi 7/9, 25124 Brescia, Italy; (T.T.); (S.S.); (C.T.); (L.A.); (A.G.); (G.S.); (A.B.); (C.R.); (P.P.); (M.G.); (E.S.); (D.L.); (A.L.); (A.M.)
| | - Paola Prati
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini” (IZSLER), Via Antonio Bianchi 7/9, 25124 Brescia, Italy; (T.T.); (S.S.); (C.T.); (L.A.); (A.G.); (G.S.); (A.B.); (C.R.); (P.P.); (M.G.); (E.S.); (D.L.); (A.L.); (A.M.)
| | - Matteo Gradassi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini” (IZSLER), Via Antonio Bianchi 7/9, 25124 Brescia, Italy; (T.T.); (S.S.); (C.T.); (L.A.); (A.G.); (G.S.); (A.B.); (C.R.); (P.P.); (M.G.); (E.S.); (D.L.); (A.L.); (A.M.)
| | - Enrica Sozzi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini” (IZSLER), Via Antonio Bianchi 7/9, 25124 Brescia, Italy; (T.T.); (S.S.); (C.T.); (L.A.); (A.G.); (G.S.); (A.B.); (C.R.); (P.P.); (M.G.); (E.S.); (D.L.); (A.L.); (A.M.)
| | - Davide Lelli
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini” (IZSLER), Via Antonio Bianchi 7/9, 25124 Brescia, Italy; (T.T.); (S.S.); (C.T.); (L.A.); (A.G.); (G.S.); (A.B.); (C.R.); (P.P.); (M.G.); (E.S.); (D.L.); (A.L.); (A.M.)
| | - Antonio Lavazza
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini” (IZSLER), Via Antonio Bianchi 7/9, 25124 Brescia, Italy; (T.T.); (S.S.); (C.T.); (L.A.); (A.G.); (G.S.); (A.B.); (C.R.); (P.P.); (M.G.); (E.S.); (D.L.); (A.L.); (A.M.)
| | - Ana Moreno
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini” (IZSLER), Via Antonio Bianchi 7/9, 25124 Brescia, Italy; (T.T.); (S.S.); (C.T.); (L.A.); (A.G.); (G.S.); (A.B.); (C.R.); (P.P.); (M.G.); (E.S.); (D.L.); (A.L.); (A.M.)
| |
Collapse
|
38
|
Macaluso G, Gucciardi F, Guercio A, Blanda V, La Russa F, Torina A, Mira F, Bella SD, Lastra A, Giacchino I, Castronovo C, Vitale G, Purpari G. First neuroinvasive human case of West Nile Disease in Southern Italy: Results of the 'One Health' approach. Vet Med Sci 2021; 7:2463-2472. [PMID: 34505400 PMCID: PMC8604128 DOI: 10.1002/vms3.591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Background West Nile Disease (WND) is a zoonotic mosquito‐borne infection involving viral pathogens, human and animal hosts, vectors and environment. Cooperation among medical, veterinary and entomological fields has been promoted by the Italian Public Health Authorities, and an integrated West Nile Virus (WNV) Surveillance Plan has been in force in Italy since 2016 to prevent the transmission risk of WND to humans through an early detection of viral circulation by animal and entomological surveillance. This managing model is unique in Europe. Objectives This survey aimed at presenting the ‘One Health’ approach applied in 2016 to the first autochthonous human case of West Nile Neuroinvasive Disease (WNND) in Sicily (Southern Italy). Methods Serological (anti‐WNV IgM and IgG ELISA, anti‐WNV neutralizing antibodies) and molecular tests were conducted on blood, liquor and urine of a 38‐year‐old man with encephalitis and meningitis. Overall, 2704 adult culicides from 160 mosquito catches were morphologically identified. Female mosquitoes were analysed in pools for WNV RNA detection. Serological (anti‐WNV IgM and IgG ELISA) and molecular analyses for WNV were carried out in 11 horses, 271 chickens and two dogs sampled in farms around the man's residence. Results and conclusions WNND was confirmed by serological analysis on patient's liquor and serum. Collected mosquito species included Culex pipiens (93.56%, CI95% 92.64%–94.49%), Aedes albopictus (5.25%, CI95% 4.41%–6.09%), Culex hortensis (0.59%, CI95% 0.30%–0.88%), Culiseta longiareolata (0.55%, CI95% 0.27%–0.83%) and Anopheles maculipennis s.l. (0.04%, CI95% –0.04% to 0.11%). Mosquito pools were negative for WNV RNA. Two dogs (100%) and two horses (18.18%, CI95% –4.61 to 40.97%) resulted positive for anti‐WNV specific antibodies. The ‘One Health’ approach allowed to report the first human neuroinvasive WND in Sicily and to confirm the local circulation of WNV in animals of the same area where the clinical case occurred, defining the autochthonous origin of the infection.
Collapse
Affiliation(s)
- Giusi Macaluso
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Palermo, Italy
| | - Francesca Gucciardi
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Palermo, Italy
| | - Annalisa Guercio
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Palermo, Italy
| | - Valeria Blanda
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Palermo, Italy
| | - Francesco La Russa
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Palermo, Italy
| | - Alessandra Torina
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Palermo, Italy
| | - Francesco Mira
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Palermo, Italy
| | - Santina Di Bella
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Palermo, Italy
| | - Antonio Lastra
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Palermo, Italy
| | - Ilenia Giacchino
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Palermo, Italy
| | - Calogero Castronovo
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Palermo, Italy
| | - Giustina Vitale
- U.O. Dipartimento Diagnostica Specialistica Patologie Diffusive, Regional Reference Center for diseases transmitted by arthropods, Azienda Ospedaliera Universitaria "P. Giaccone", Palermo, Italy
| | - Giuseppa Purpari
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Palermo, Italy
| |
Collapse
|
39
|
Warang A, Zhang M, Zhang S, Shen Z. A panel of real-time PCR assays for the detection of Bourbon virus, Heartland virus, West Nile virus, and Trypanosoma cruzi in major disease-transmitting vectors. J Vet Diagn Invest 2021; 33:1115-1122. [PMID: 34414840 DOI: 10.1177/10406387211039549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Vector-borne pathogens, such as Bourbon virus (BRBV), Heartland virus (HRTV), West Nile virus (WNV), and Trypanosoma cruzi (TCZ) are a great threat to public health and animal health. We developed a panel of TaqMan real-time PCR assays for pathogen surveillance. PCR targets were selected based on nucleic acid sequences deposited in GenBank. Primers and probes were either designed de novo or selected from publications. The coverages and specificities of the primers and probes were extensively evaluated by performing BLAST searches. Synthetic DNA or RNA fragments (gBlocks) were used as PCR templates in initial assay development and PCR positive controls in subsequent assay validation. For operational efficiency, the same thermocycling profile was used in BRBV, HRTV, and WNV reverse-transcription quantitative PCR (RT-qPCR) assays, and a similar thermocycling profile without the initial reverse-transcription step was used in TCZ qPCR. The assays were optimized by titrating primer and probe concentrations. The analytical sensitivities were 100, 100, 10, and 10 copies of gBlock per reaction for BRBV (Cq = 36.0 ± 0.7), HRTV (Cq = 36.6 ± 0.9), WNV (Cq = 35.5 ± 0.4), and TCZ (Cq = 38.8 ± 0.3), respectively. PCR sensitivities for vector genomic DNA or RNA spiked with gBlock reached 100, 100, 10, and 10 copies per reaction for BRBV, HRTV, WNV, and TCZ, respectively. PCR specificity evaluated against a panel of non-target pathogens showed no significant cross-reactivity. Our BRBV, HRTV, WNV, and TCZ PCR panel could support epidemiologic studies and pathogen surveillance.
Collapse
Affiliation(s)
- Anushri Warang
- Veterinary Medical Diagnostic Laboratory and Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri-Columbia, Columbia, MO, USA
| | - Michael Zhang
- Veterinary Medical Diagnostic Laboratory and Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri-Columbia, Columbia, MO, USA
| | - Shuping Zhang
- Veterinary Medical Diagnostic Laboratory and Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri-Columbia, Columbia, MO, USA
| | - Zhenyu Shen
- Veterinary Medical Diagnostic Laboratory and Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri-Columbia, Columbia, MO, USA
| |
Collapse
|
40
|
West Nile and Usutu Viruses' Surveillance in Birds of the Province of Ferrara, Italy, from 2015 to 2019. Viruses 2021; 13:v13071367. [PMID: 34372573 PMCID: PMC8310148 DOI: 10.3390/v13071367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 01/03/2023] Open
Abstract
West Nile (WNV) and Usutu (USUV) viruses are mosquito-borne flaviviruses. Thanks to their importance as zoonotic diseases, a regional plan for surveillance of Arboviruses was implemented in Emilia-Romagna in 2009. The province of Ferrara belongs to the Emilia-Romagna region, and it is an endemic territory for these viruses, with favorable ecological conditions for abundance of mosquitoes and wild birds. From 2015 to 2019, we collected 1842 dead-found birds at a wildlife rehabilitation center, which were analysed by three different PCRs for the detection of WNV and USUV genomes. August was characterized by the highest infection rate for both viruses. Columbiformes scored the highest USUV prevalence (8%), while Galliformes and Strigiformes reported the highest prevalence for WNV (13%). Among Passeriformes (the most populated Order), Turdus merula was the most abundant species and scored the highest prevalence for both viruses. To optimize passive surveillance plans, monitoring should be focused on the summer and towards the avian species more prone to infection by both viruses.
Collapse
|
41
|
Scaramozzino P, Carvelli A, Bruni G, Cappiello G, Censi F, Magliano A, Manna G, Ricci I, Rombolà P, Romiti F, Rosone F, Sala MG, Scicluna MT, Vaglio S, De Liberato C. West Nile and Usutu viruses co-circulation in central Italy: outcomes of the 2018 integrated surveillance. Parasit Vectors 2021; 14:243. [PMID: 33962673 PMCID: PMC8103664 DOI: 10.1186/s13071-021-04736-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/21/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND West Nile (WNV) and Usutu (USUV) are emerging vector-borne zoonotic flaviviruses. They are antigenically very similar, sharing the same life cycle with birds as amplification host, Culicidae as vector, and man/horse as dead-end host. They can co-circulate in an overlapping geographic range. In Europe, surveillance plans annually detect several outbreaks. METHODS In Italy, a WNV/USUV surveillance plan is in place through passive and active surveillance. After a 2018 WNV outbreak, a reinforced integrated risk-based surveillance was performed in four municipalities through clinical and serological surveillance in horses, Culicidae catches, and testing on human blood-based products for transfusion. RESULTS Eight WNV cases in eight equine holdings were detected. Twenty-three mosquitoe catches were performed and 2367 specimens of Culex pipiens caught; 17 pools were USUV positive. A total of 8889 human blood donations were tested, and two asymptomatic donors were USUV positive. CONCLUSIONS Different surveillance components simultaneously detected WNV only in horses and USUV only in humans and mosquitoes. While in endemic areas (i.e. northern Italy) entomological surveillance is successfully used as an early detection warning, this method in central Italy seems ineffective. To achieve a high level of sensitivity, the entomological trapping effort should probably exceed a reasonable balance between cost and performance. Besides, WNV/USUV early detection can be addressed by horses and birds. Further research is needed to adapt the surveillance components in different epidemiological contexts.
Collapse
Affiliation(s)
- Paola Scaramozzino
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178, Roma, Italy
| | - Andrea Carvelli
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178, Roma, Italy.
| | - Gianpaolo Bruni
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178, Roma, Italy
| | | | - Francesco Censi
- Azienda Sanitaria Locale di Latina, Via Pier Luigi Nervi, Latina Fiori, 04100, Latina, Italy
| | - Adele Magliano
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178, Roma, Italy
| | - Giuseppe Manna
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178, Roma, Italy
| | - Ida Ricci
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178, Roma, Italy
| | - Pasquale Rombolà
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178, Roma, Italy
| | - Federico Romiti
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178, Roma, Italy
| | - Francesca Rosone
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178, Roma, Italy
| | - Marcello Giovanni Sala
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178, Roma, Italy
| | - Maria Teresa Scicluna
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178, Roma, Italy
| | - Stefania Vaglio
- Università degli Studi di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185, Roma, Italy
| | - Claudio De Liberato
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178, Roma, Italy
| |
Collapse
|
42
|
Das A, Wang Y, Babiuk S, Bai J, Dodd K, Jia W. Development of multiplex real-time PCR assays for differential detection of capripoxvirus, parapoxvirus and foot-and-mouth disease virus. Transbound Emerg Dis 2021; 69:1326-1337. [PMID: 33837669 DOI: 10.1111/tbed.14099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 11/29/2022]
Abstract
This study reports the development of multiplex real-time PCR assays for differential detection of capripoxvirus (CaPV), parapoxvirus (PaPV) and foot-and-mouth disease virus (FMDV) in sheep, goats and cattle. Three multiplex assays were developed, a capripox (CaP) rule-out assay for simultaneous detection and differentiation of CaPV and PaPV, a FMD rule-out assay for simultaneous detection and differentiation of FMDV and PaPV, and a FMD/CaP rule-out assay for simultaneous detection and differentiation of CaPV, PaPV and FMDV. All multiplex assays included β-actin gene ACTB as an internal positive control to monitor PCR inhibition and accuracy of nucleic acid extractions. The optimized assays were highly specific to the target viruses (CaPV, PaPV and FMDV) with no cross-reactivity against other viruses that cause similar clinical signs. Using positive control plasmids as template, the limit of detection (LOD) of the multiplex assays were estimated as 2 CaPV, 7 PaPV and 15 FMDV copies per assay. The amplification efficiency (AE) and correlation coefficient (R2 ), estimated from the standard curves (Ct vs. log10 template dilution), were 94%-106% and >0.99, respectively, for CaP and FMD rule-out assays, 96%-116% (AE) and >0.98 (R2 ), respectively, for CaP/FMD rule-out assays and 91%-102% and >0.99, respectively, for the corresponding singleplex assays. The diagnostic sensitivity (DSe) of the multiplex assays was assessed on 35 CaPV and 39 FMDV clinical specimens from experimentally infected (CS-E) animals, and 29 CaPV (LSDV), 28 FMDV and 36 PaPV clinical specimens from naturally infected (CS-N) animals; all tested positive (DSe 100%) except two CS-E FMDV specimens that were tested negative by FMD rule-out and the corresponding singleplex (FMDV) assays (37/39; DSe 95%). The newly developed multiplex assays offer a valuable tool for differential detection of clinically indistinguishable CaPV, PaPV and FMDV in suspected animals and animals with mixed infections.
Collapse
Affiliation(s)
- Amaresh Das
- Foreign Animal Disease Diagnostic Laboratory, NVSL, APHIS, USDA, Plum Island Animal Disease Center, Orient, NY, USA
| | - Yin Wang
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS, USA
| | - Shawn Babiuk
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada
| | - Jianfa Bai
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS, USA
| | - Kimberly Dodd
- Foreign Animal Disease Diagnostic Laboratory, NVSL, APHIS, USDA, Plum Island Animal Disease Center, Orient, NY, USA
| | - Wei Jia
- Foreign Animal Disease Diagnostic Laboratory, NVSL, APHIS, USDA, Plum Island Animal Disease Center, Orient, NY, USA
| |
Collapse
|
43
|
Bravo-Barriga D, Aguilera-Sepúlveda P, Guerrero-Carvajal F, Llorente F, Reina D, Pérez-Martín JE, Jiménez-Clavero MÁ, Frontera E. West Nile and Usutu virus infections in wild birds admitted to rehabilitation centres in Extremadura, western Spain, 2017-2019. Vet Microbiol 2021; 255:109020. [PMID: 33677369 DOI: 10.1016/j.vetmic.2021.109020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/22/2021] [Indexed: 12/11/2022]
Abstract
West Nile virus (WNV) is an emerging flavivirus transmitted generally by mosquitoes of Culex genus. It is maintained in an enzootic life cycle where birds act as reservoir hosts. Humans and horses are also susceptible to infection, and occasionally, they suffer from neurological complications. However, they do not transmit the virus to other vectors, behaving as dead-end hosts. Sporadic WNV outbreaks observed in horses and wild birds from Extremadura (western Spain) during 2016 and 2017 seasons prompted to carry out this survey in wild birds, focused on specimens coming from two wildlife rehabilitation centres. Between October 2017 and December 2019, samples from 391 wild birds, belonging to 56 different species were collected and analysed in search of evidence of WNV infection. The analysis of serum samples for WNV-specific antibodies by ELISA, whose specificity was subsequently confirmed by virus-neutralisation test (VNT) showed positive results in 18.23 % birds belonging to 18 different species. Pelecaniformes (33.33 %), Accipitriformes (25.77 %) and Strigiformes (22.92 %) orders had the higher seroprevalences. Remarkably, WNV-specific antibodies were found in a black stork for the first time in Europe. Analysis by real time RT-PCR in symptomatic birds confirmed the presence of WNV lineage 1 RNA in griffon vulture and little owls. Specificity analysis of ELISA positive and doubtful sera was performed by differential VNT titration against WNV and two other cross-reacting avian flaviviruses found in Spain: Usutu virus (USUV) and Bagaza virus (BAGV). Only four samples showed USUV-specific antibodies (1.04 %) corresponding to three species: Eurasian eagle-owl, griffon vulture and great bustard (first detection in Europe) whereas no samples were found reactive to BAGV. Differential VNT yielded undetermined flavivirus result in 16 samples (4.17 %). This is the first study carried out on wild birds from Extremadura (western Spain). It highlights the widespread circulation of WNV in the region and its co-circulation with USUV.
Collapse
Affiliation(s)
- Daniel Bravo-Barriga
- Animal Health Department, Veterinary Faculty, University of Extremadura (UEx), Cáceres, Spain.
| | - Pilar Aguilera-Sepúlveda
- Animal Health Research Centre, National Institute for Agricultural and Food Research and Technology (INIA-CISA), Valdeolmos, Madrid, Spain.
| | | | - Francisco Llorente
- Animal Health Research Centre, National Institute for Agricultural and Food Research and Technology (INIA-CISA), Valdeolmos, Madrid, Spain.
| | - David Reina
- Animal Health Department, Veterinary Faculty, University of Extremadura (UEx), Cáceres, Spain.
| | - J Enrique Pérez-Martín
- Animal Health Department, Veterinary Faculty, University of Extremadura (UEx), Cáceres, Spain.
| | - Miguel Ángel Jiménez-Clavero
- Animal Health Research Centre, National Institute for Agricultural and Food Research and Technology (INIA-CISA), Valdeolmos, Madrid, Spain; Centro de Investigación Biomédica en Red de Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain.
| | - Eva Frontera
- Animal Health Department, Veterinary Faculty, University of Extremadura (UEx), Cáceres, Spain.
| |
Collapse
|
44
|
VectorDisk: A Microfluidic Platform Integrating Diagnostic Markers for Evidence-Based Mosquito Control. Processes (Basel) 2020. [DOI: 10.3390/pr8121677] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Effective mosquito monitoring relies on the accurate identification and characterization of the target population. Since this process requires specialist knowledge and equipment that is not widely available, automated field-deployable systems are highly desirable. We present a centrifugal microfluidic cartridge, the VectorDisk, which integrates TaqMan PCR assays in two feasibility studies, aiming to assess multiplexing capability, specificity, and reproducibility in detecting disk-integrated vector-related assays. In the first study, pools of 10 mosquitoes were used as samples. We tested 18 disks with 27 DNA and RNA assays each, using a combination of multiple microfluidic chambers and detection wavelengths (geometric and color multiplexing) to identify mosquito and malaria parasite species as well as insecticide resistance mechanisms. In the second study, purified nucleic acids served as samples to test arboviral and malaria infective mosquito assays. Nine disks were tested with 14 assays each. No false positive results were detected on any of the disks. The coefficient of variation in reproducibility tests was <10%. The modular nature of the platform, the easy adaptation of the primer/probe panels, the cold chain independence, the rapid (2–3 h) analysis, and the assay multiplexing capacity are key features, rendering the VectorDisk a potential candidate for automated vector analysis.
Collapse
|
45
|
Evaluation of West Nile Virus Diagnostic Capacities in Veterinary Laboratories of the Mediterranean and Black Sea Regions. Pathogens 2020; 9:pathogens9121038. [PMID: 33322276 PMCID: PMC7763240 DOI: 10.3390/pathogens9121038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 01/18/2023] Open
Abstract
The increasing incidence of West Nile virus (WNV) in the Euro-Mediterranean area warrants the implementation of effective surveillance programs in animals. A crucial step in the fight against the disease is the evaluation of the capacity of the veterinary labs to accurately detect the infection in animal populations. In this context, the animal virology network of the MediLabSecure project organized an external quality assessment (EQA) to evaluate the WNV molecular and serological diagnostic capacities of beneficiary veterinary labs. Laboratories from 17 Mediterranean and Black Sea countries participated. The results of the triplex real time RT-PCR for simultaneous detection and differentiation of WNV lineage 1 (L1), lineage 2 (L2) and Usutu virus (USUV) were highly satisfactory, especially for L1 and L2, with detection rates of 97.9% and 100%, respectively. For USUV, 75% of the labs reported correct results. More limitations were observed for the generic detection of flaviviruses using conventional reverse-transcription polymerase chain reaction (RT-PCR), since only 46.1% reported correct results in the whole panel. As regards the serological panel, the results were excellent for the generic detection of WNV antibodies. More variability was observed for the specific detection of IgM antibodies with a higher percentage of incorrect results mainly in samples with low titers. This EQA provides a good overview of the WNV (and USUV) diagnostic performance of the involved veterinary labs and demonstrates that the implemented training program was successful in upgrading their diagnostic capacities.
Collapse
|
46
|
Tomar PS, Kumar JS, Patel S, Sharma S. Polymerase Spiral Reaction Assay for Rapid and Real Time Detection of West Nile Virus From Clinical Samples. Front Cell Infect Microbiol 2020; 10:426. [PMID: 32984063 PMCID: PMC7492713 DOI: 10.3389/fcimb.2020.00426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 07/13/2020] [Indexed: 12/02/2022] Open
Abstract
West Nile virus (WNV) is a mosquito-borne virus of public health importance. Currently, there is no FDA approved vaccine available against WNV infection in humans. Therefore, the early diagnosis of the WNV infection is important for epidemiologic control and timely clinical management in areas where multiple Flaviviruses are endemic. The present study aimed to develop reverse transcription polymerase spiral reaction (RT-PSR) assay that rapidly and accurately detects the envelope (env) gene of WNV. RT-PSR assay was optimized at 63°C for 60 min using real-time turbidimeter or visual detection by the addition of SYBR Green I dye. The standard curve for RT-PSR assay was generated using the 10-fold serial dilutions of in vitro transcribed WNV RNA. To determine the detection limit of RT-PSR assay, an amplified product of conventional RT-PCR was in vitro transcribed as per standard protocol. The detection limit of the newly developed RT-PSR assay was compared with that of conventional RT-PCR and CDC reported TaqMan real-time RT-PCR using a serial 10-fold dilution of IVT WNV RNA. The detection limit of RT-PSR was found to be 1 RNA copy, which is 100-fold higher than that of conventional RT-PCR (100 copies). This suggests that RT-PSR assay is a valuable diagnostic tool for rapid and real-time detection of WNV in acute-phase serum samples. The assay was validated with a panel of 107 WNV suspected human clinical samples with signs of acute posterior uveitis and onset of febrile illness. Out of 107 samples, 30 were found positive by RT-PSR assay. The specificities of the selected primer sets were established by the absence of cross-reactivity with other closely related members viruses of the Flaviviruses, Alphaviruses, and Morbilliviruses groups. No cross-reactivity was observed with other viruses. To best of our knowledge, this is the first report describing the RT-PSR assay for the detection of RNA virus (WNV) in clinical samples. RT-PSR is a high throughput method and more than 30 reactions can be run at once in real-time turbidimeter. PSR assay has potential to be used for a rapid screening of large number of clinical samples in endemic areas during an outbreak.
Collapse
Affiliation(s)
- Priyanka Singh Tomar
- Division of Virology, Defence Research and Development Establishment, Gwalior, India
| | - Jyoti S Kumar
- Division of Virology, Defence Research and Development Establishment, Gwalior, India
| | - Sapan Patel
- School of Studies in Botany, Jiwaji University, Gwalior, India
| | - Shashi Sharma
- Division of Virology, Defence Research and Development Establishment, Gwalior, India
| |
Collapse
|
47
|
Guerrero-Carvajal F, Bravo-Barriga D, Martín-Cuervo M, Aguilera-Sepúlveda P, Ferraguti M, Jiménez-Clavero MÁ, Llorente F, Alonso JM, Frontera E. Serological evidence of co-circulation of West Nile and Usutu viruses in equids from western Spain. Transbound Emerg Dis 2020; 68:1432-1444. [PMID: 32853452 DOI: 10.1111/tbed.13810] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 12/24/2022]
Abstract
West Nile virus (WNV) is a mosquito-borne emerging virus in Europe with capacity to cause neurological complications such as encephalitis or meningoencephalitis in humans, birds or equids. In Spain, WNV is actively circulating in mosquitoes, birds and horses in different regions, but never has been deeply studied in Extremadura. Therefore, the aim of this study was to evaluate the seroprevalence of WNV in equids of those areas and to analyse the risk factors associated with exposure to the virus. A total of 199 out of 725 equids presented antibodies against WNV by competition ELISA (27.45%), while 22 were doubtful (3.03%). Anti-WNV IgM antibodies were detected in 16 equids (2.21%), and 3 animals were doubtful (0.41%). All ELISA-reactive positive/doubtful sera (N = 226) were further tested by micro-virus neutralization test (VNT), and a total of 143 horses were confirmed as positive for WNV, obtaining a seroprevalence of 19.72% in equids of western Spain. In addition, specific antibodies against USUV were confirmed in 11 equids. In 24 equids, a specific flavivirus species (detected by ELISA test) could not be determined. The generalized linear mixed-effects models showed that the significant risk factors associated with individual WNV infection in equids were the age (adults) and hair coat colour (light), whereas in USUV infections, it was the breed (pure). Data demonstrated that WNV and USUV are circulating in regions of western Spain. Given the high WNV seroprevalence found in equids from the studied areas, it is important to improve the surveillance programmes of public health to detect undiagnosed human cases and to establish a vaccination programme in equid herds in these regions.
Collapse
Affiliation(s)
| | - Daniel Bravo-Barriga
- Animal Health Department, Veterinary Faculty, University of Extremadura (UEx), Cáceres, Spain
| | - María Martín-Cuervo
- Animal Medicine Department, Veterinary Faculty, University of Extremadura (UEx), Cáceres, Spain
| | - Pilar Aguilera-Sepúlveda
- Animal Health Research Centre, National Institute for Agricultural and Food Research and Technology (INIA-CISA), Valdeolmos, Madrid, Spain
| | - Martina Ferraguti
- Anatomy, Cellular Biology and Zoology Department, Science Faculty, University of Extremadura (UEx), Badajoz, Spain
| | - Miguel Ángel Jiménez-Clavero
- Animal Health Research Centre, National Institute for Agricultural and Food Research and Technology (INIA-CISA), Valdeolmos, Madrid, Spain.,Centro de Investigación Biomédica en Red de Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain
| | - Francisco Llorente
- Animal Health Research Centre, National Institute for Agricultural and Food Research and Technology (INIA-CISA), Valdeolmos, Madrid, Spain
| | - Juan Manuel Alonso
- Animal Health Department, Veterinary Faculty, University of Extremadura (UEx), Cáceres, Spain
| | - Eva Frontera
- Animal Health Department, Veterinary Faculty, University of Extremadura (UEx), Cáceres, Spain
| |
Collapse
|
48
|
Reusken C, Baronti C, Mögling R, Papa A, Leitmeyer K, Charrel RN. Toscana, West Nile, Usutu and tick-borne encephalitis viruses: external quality assessment for molecular detection of emerging neurotropic viruses in Europe, 2017. ACTA ACUST UNITED AC 2020; 24. [PMID: 31847946 PMCID: PMC6918591 DOI: 10.2807/1560-7917.es.2019.24.50.1900051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BackgroundNeurotropic arboviruses are increasingly recognised as causative agents of neurological disease in Europe but underdiagnosis is still suspected. Capability for accurate diagnosis is a prerequisite for adequate clinical and public health response.AimTo improve diagnostic capability in EVD-LabNet laboratories, we organised an external quality assessment (EQA) focusing on molecular detection of Toscana (TOSV), Usutu (USUV), West Nile (WNV) and tick-borne encephalitis viruses (TBEV).MethodsSixty-nine laboratories were invited. The EQA panel included two WNV RNA-positive samples (lineages 1 and 2), two TOSV RNA-positive samples (lineages A and B), one TBEV RNA-positive sample (Western subtype), one USUV RNA-positive sample and four negative samples. The EQA focused on overall capability rather than sensitivity of the used techniques. Only detection of one, clinically relevant, concentration per virus species and lineage was assessed.ResultsThe final EQA analysis included 51 laboratories from 35 countries; 44 of these laboratories were from 28 of 31 countries in the European Union/European Economic Area (EU/EEA). USUV diagnostic capability was lowest (28 laboratories in 18 countries), WNV detection capacity was highest (48 laboratories in 32 countries). Twenty-five laboratories were able to test the whole EQA panel, of which only 11 provided completely correct results. The highest scores were observed for WNV and TOSV (92%), followed by TBEV (86%) and USUV (75%).ConclusionWe observed wide variety in extraction methods and RT-PCR tests, showing a profound absence of standardisation across European laboratories. Overall, the results were not satisfactory; capacity and capability need to be improved in 40 laboratories.
Collapse
Affiliation(s)
- Chantal Reusken
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands.,Department of Viroscience, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Cecile Baronti
- Unite des Virus Emergents (UVE: Aix Marseille Univ, IRD 190, INSERM 1207, IHU Mediterranee Infection), Marseille, France
| | - Ramona Mögling
- Department of Viroscience, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Anna Papa
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Katrin Leitmeyer
- European Centre for Disease Prevention and Control (ECDC), Solna, Sweden
| | - Remi N Charrel
- Unite des Virus Emergents (UVE: Aix Marseille Univ, IRD 190, INSERM 1207, IHU Mediterranee Infection), Marseille, France
| |
Collapse
|
49
|
Puleio R, Manno C, Valenza A, Tolone M, Loria GR. Laboratory findings on the health status of the endemic rock‐partridge (
Alectoris graeca whitakeri
) population during a two‐year conservation programme in Sicily. VETERINARY RECORD CASE REPORTS 2020. [DOI: 10.1136/vetreccr-2020-001100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Roberto Puleio
- Histopathology and Immunohistochemistry LaboratoryIstituto Zooprofilattico Sperimentale della Sicilia Adelmo MirriPalermoSiciliaItaly
| | - Claudia Manno
- Area Diagnostica SpecialisticaIstituto Zooprofilattico Sperimentale della Sicilia Adelmo MirriPalermoSiciliaItaly
| | - Andrea Valenza
- Area Diagnostica SpecialisticaIstituto Zooprofilattico Sperimentale della Sicilia Adelmo MirriPalermoSiciliaItaly
| | - Marco Tolone
- Dipartimento di Scienze AgrarieAlimentari e ForestaliUniversita degli Studi di PalermoPalermoItaly
| | - Guido Ruggero Loria
- Area Diagnostica SpecialisticaIstituto Zooprofilattico Sperimentale della Sicilia Adelmo MirriPalermoSiciliaItaly
| |
Collapse
|
50
|
Detection of Astrovirus in a Cow with Neurological Signs by Nanopore Technology, Italy. Viruses 2020; 12:v12050530. [PMID: 32403368 PMCID: PMC7290991 DOI: 10.3390/v12050530] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 01/16/2023] Open
Abstract
In this study, starting from nucleic acids purified from the brain tissue, Nanopore technology was used to identify the etiological agent of severe neurological signs observed in a cow which was immediately slaughtered. Histological examination revealed acute non-suppurative encephalomyelitis affecting the brainstem, cerebrum, cerebellum, and medulla oblongata, while by using PCR-based assays, the nucleic acids of major agents for neurological signs were not detected. By using Nanopore technology, 151 sequence reads were assigned to Bovine Astrovirus (BoAstV). Real-time RT-PCR and in situ hybridization (ISH) confirmed the presence of viral RNA in the brain. Moreover, using the combination of fluorescent ISH and immunofluorescence (IF) techniques, it was possible to detect BoAstV RNA and antigens in the same cells, suggesting the active replication of the virus in infected neurons. The nearly whole genome of the occurring strain (BoAstV PE3373/2019/Italy), obtained by Illumina NextSeq 500, showed the highest nucleotide sequence identity (94.11%) with BoAstV CH13/NeuroS1 26,730 strain, an encephalitis-associated bovine astrovirus. Here, we provide further evidence of the role of AstV as a neurotropic agent. Considering that in a high proportion of non-suppurative encephalitis cases, which are mostly indicative of a viral infection, the etiologic agent remains unknown, our result underscores the value and versatility of Nanopore technology for a rapid diagnosis when the PCR-based algorithm gives negative results.
Collapse
|