1
|
de Oliveira PHC, da Silva Rodrigues MJ, da Silva CC, de Barros Moraes Cardoso C, Faria FD, Cosme-Silva L, Ervolino E, Gomes-Filho JE, Sivieri-Araújo G, Cintra LTA. Influence of melatonin supplementation on tissue response of endodontic sealers in Wistar rats. Odontology 2025; 113:358-371. [PMID: 39060895 DOI: 10.1007/s10266-024-00982-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024]
Abstract
OBJECTIVE This study evaluated the influence of melatonin supplementation on tissue's response of endodontic sealers in Wistar rats. METHODOLOGY Forty-eight rats received subcutaneous implants of four polyethylene tubes: one empty (control) and three filled with endodontic sealers (AH Plus, Endofill and Sealapex). Half of the animals were supplemented with melatonin (ME) and the remaining treated with water (WA) for 15 days before the implantation until euthanasia, forming the groups: control-WA, AH Plus-WA, Endofill-WA, Sealapex-WA, Control-ME, AH Plus-ME, Endofill-ME and Sealapex-ME. After 5, 15 and 30 days, (n = 8) tubes were removed and evaluated in H&E., immunohistochemistry, PSR, VK and POL. The results were statistically analyzed (p < 0.05). RESULTS In animals treated with water, Endofill-WA evoked more intense inflammatory infiltrate compared to AH Plus-WA and Control-WA in a 30-day period (p < 0.05). In animals supplemented with melatonin, there was any difference among endodontic sealers' response in any period of analysis (p > 0.05). Comparing the individual response of each sealer, over a 30-day period, Endofill-ME and Sealapex-ME showed less inflammatory infiltrate compared to Endofill-WA and Sealapex-WA, respectively (p < 0.05). Immunostaining for IL-6 and TNF-α was less intense for all groups in animals supplemented with melatonin, in most periods, except for the Endofill sealer (p < 0.05). Furthermore, Endofill-ME at 5 days and AH-Plus-ME at 30 days showed a higher percentage of mature collagen fibers compared to the Endofill-WA and AH Plus-WA, respectively (p < 0.05). Positive structures for von Kossa staining and birefringent to polarized light were observed only for Sealapex-WA and Sealapex-ME in all periods. CONCLUSIONS It can be concluded that melatonin influences the tissue response to endodontic sealers, modulating the inflammatory and reparative process.
Collapse
Affiliation(s)
- Pedro Henrique Chaves de Oliveira
- Endodontic Section, Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, SP, Brazil
| | - Michael Júnio da Silva Rodrigues
- Endodontic Section, Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, SP, Brazil
| | - Cristiane Cantiga da Silva
- Endodontic Section, Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, SP, Brazil
| | - Carolina de Barros Moraes Cardoso
- Endodontic Section, Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, SP, Brazil
| | - Flávio Duarte Faria
- Endodontic Section, Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, SP, Brazil
| | - Leopoldo Cosme-Silva
- Endodontic Section, Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, SP, Brazil
- Departament of Endodontics, School of Dentistry, Alagoas Federal University (UFAL), Maceió, AL, Brazil
| | - Edilson Ervolino
- Department of Basic Science, School of Dentistry, São Paulo State University (UNESP), Araçatuba, SP, Brazil
| | - João Eduardo Gomes-Filho
- Endodontic Section, Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, SP, Brazil
| | - Gustavo Sivieri-Araújo
- Endodontic Section, Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, SP, Brazil
| | - Luciano Tavares Angelo Cintra
- Endodontic Section, Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, SP, Brazil.
| |
Collapse
|
2
|
Zhang C, Ma Y, Zhao Y, Guo N, Han C, Wu Q, Mu C, Zhang Y, Tan S, Zhang J, Liu X. Systematic review of melatonin in cerebral ischemia-reperfusion injury: critical role and therapeutic opportunities. Front Pharmacol 2024; 15:1356112. [PMID: 38375039 PMCID: PMC10875093 DOI: 10.3389/fphar.2024.1356112] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/22/2024] [Indexed: 02/21/2024] Open
Abstract
Cerebral ischemia-reperfusion (I/R) injury is the predominant causes for the poor prognosis of ischemic stroke patients after reperfusion therapy. Currently, potent therapeutic interventions for cerebral I/R injury are still very limited. Melatonin, an endogenous hormone, was found to be valid in preventing I/R injury in a variety of organs. However, a systematic review covering all neuroprotective effects of melatonin in cerebral I/R injury has not been reported yet. Thus, we perform a comprehensive overview of the influence of melatonin on cerebral I/R injury by collecting all available literature exploring the latent effect of melatonin on cerebral I/R injury as well as ischemic stroke. In this systematic review, we outline the extensive scientific studies and summarize the beneficial functions of melatonin, including reducing infarct volume, decreasing brain edema, improving neurological functions and attenuating blood-brain barrier breakdown, as well as its key protective mechanisms on almost every aspect of cerebral I/R injury, including inhibiting oxidative stress, neuroinflammation, apoptosis, excessive autophagy, glutamate excitotoxicity and mitochondrial dysfunction. Subsequently, we also review the predictive and therapeutic implications of melatonin on ischemic stroke reported in clinical studies. We hope that our systematic review can provide the most comprehensive introduction of current advancements on melatonin in cerebral I/R injury and new insights into personalized diagnosis and treatment of ischemic stroke.
Collapse
Affiliation(s)
- Chenguang Zhang
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yumei Ma
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yating Zhao
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Na Guo
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Chen Han
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qian Wu
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Changqing Mu
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yue Zhang
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shutong Tan
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jian Zhang
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, Shenyang, Liaoning, China
- Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning, China
| | - Xu Liu
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
3
|
Shao Y, Wu W, Fan F, Liu H, Ming Y, Liao W, Bai C, Gao Y. Extracellular Vesicle Content Changes Induced by Melatonin Promote Functional Recovery of Pancreatic Beta Cells in Acute Pancreatitis. J Inflamm Res 2023; 16:6397-6413. [PMID: 38161354 PMCID: PMC10757806 DOI: 10.2147/jir.s430916] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/14/2023] [Indexed: 01/03/2024] Open
Abstract
Aim Acute pancreatitis is an inflammatory disorder of the pancreas, which causes abnormal activation of immune cells. The macrophages were accumulated in pancreas and infiltrated into islets during the AP process to induce abnormal glucose metabolism. However, the role of macrophages in abnormal glucose metabolism remains understood. Extracellular vesicles act in the regulation of intercellular function, but whether EVs secreted by macrophages contribute to β cell failure and apoptosis in AP is unclear. Based on this, the aim of this study was to reveal the role of macrophages-EVs in AP and develop a treatment for symptoms of hyperglycemia in AP. Methods The AP model was established and treated by various doses of melatonin to analyze the therapeutic effect. The accumulation and polarization of macrophages in the AP pancreas were observed, and the β cells were incubated with pancreatic derived EVs to analyze the role in β cell failure and apoptosis. Results The results showed that macrophages were recruited and polarized to M1 phenotype macrophages in the pancreas of AP mice, which obtained inflammatory EVs that contained specific miRNAs to induce β cell failure and apoptosis. Then, the EVs derived from M1 macrophages triggered β cell failure and apoptosis. Melatonin prevented polarization of macrophages to the M1 phenotype in vivo, which reduced the secretion of inflammatory EVs, changed the abundance of miRNAs in EVs, and therefore decreased inflammatory EV-mediated β cell failure and apoptosis. Conclusion Our results demonstrate that similar to 20S proteasome inhibitor MG132, analyses indicated that melatonin prevented degradation of IκBα through the ubiquitylation pathway to restrict p50 subunits to the cytoplasm of macrophages, inhibited activation of the NF-κB pathway to downregulate the transcription of specific miRNAs, and reduced miRNA transport into EVs.
Collapse
Affiliation(s)
- Yuming Shao
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Forensic Science Center of Jining Medical University, Jining, Shandong, 272067, People’s Republic of China
| | - Wenxiang Wu
- Precision Medicine Laboratory for Chronic Non-Communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining, Shandong, 272067, People’s Republic of China
| | - Fangzhou Fan
- Precision Medicine Laboratory for Chronic Non-Communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining, Shandong, 272067, People’s Republic of China
| | - Haifeng Liu
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272067, People’s Republic of China
| | - Yongliang Ming
- Precision Medicine Laboratory for Chronic Non-Communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining, Shandong, 272067, People’s Republic of China
| | - Wangwei Liao
- Precision Medicine Laboratory for Chronic Non-Communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining, Shandong, 272067, People’s Republic of China
| | - Chunyu Bai
- Precision Medicine Laboratory for Chronic Non-Communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining, Shandong, 272067, People’s Republic of China
| | - Yuhua Gao
- Precision Medicine Laboratory for Chronic Non-Communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining, Shandong, 272067, People’s Republic of China
| |
Collapse
|
4
|
Fernández-Martínez J, Ramírez-Casas Y, Yang Y, Aranda-Martínez P, Martínez-Ruiz L, Escames G, Acuña-Castroviejo D. From Chronodisruption to Sarcopenia: The Therapeutic Potential of Melatonin. Biomolecules 2023; 13:1779. [PMID: 38136651 PMCID: PMC10741491 DOI: 10.3390/biom13121779] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Sarcopenia is an age-related condition that involves a progressive decline in muscle mass and function, leading to increased risk of falls, frailty, and mortality. Although the exact mechanisms are not fully understood, aging-related processes like inflammation, oxidative stress, reduced mitochondrial capacity, and cell apoptosis contribute to this decline. Disruption of the circadian system with age may initiate these pathways in skeletal muscle, preceding the onset of sarcopenia. At present, there is no pharmacological treatment for sarcopenia, only resistance exercise and proper nutrition may delay its onset. Melatonin, derived from tryptophan, emerges as an exceptional candidate for treating sarcopenia due to its chronobiotic, antioxidant, and anti-inflammatory properties. Its impact on mitochondria and organelle, where it is synthesized and crucial in aging skeletal muscle, further highlights its potential. In this review, we discuss the influence of clock genes in muscular aging, with special reference to peripheral clock genes in the skeletal muscle, as well as their relationship with melatonin, which is proposed as a potential therapy against sarcopenia.
Collapse
Affiliation(s)
- José Fernández-Martínez
- Centro de Investigación Biomédica, Facultad de Medicina, Departamento de Fisiología, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain; (J.F.-M.); (Y.R.-C.); (P.A.-M.); (L.M.-R.); (G.E.)
- Instituto de Investigación Biosanitaria (Ibs.Granada), Hospital Universitario San Cecilio, 18016 Granada, Spain
| | - Yolanda Ramírez-Casas
- Centro de Investigación Biomédica, Facultad de Medicina, Departamento de Fisiología, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain; (J.F.-M.); (Y.R.-C.); (P.A.-M.); (L.M.-R.); (G.E.)
- Instituto de Investigación Biosanitaria (Ibs.Granada), Hospital Universitario San Cecilio, 18016 Granada, Spain
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi’an 710069, China;
| | - Paula Aranda-Martínez
- Centro de Investigación Biomédica, Facultad de Medicina, Departamento de Fisiología, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain; (J.F.-M.); (Y.R.-C.); (P.A.-M.); (L.M.-R.); (G.E.)
- Instituto de Investigación Biosanitaria (Ibs.Granada), Hospital Universitario San Cecilio, 18016 Granada, Spain
| | - Laura Martínez-Ruiz
- Centro de Investigación Biomédica, Facultad de Medicina, Departamento de Fisiología, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain; (J.F.-M.); (Y.R.-C.); (P.A.-M.); (L.M.-R.); (G.E.)
- Instituto de Investigación Biosanitaria (Ibs.Granada), Hospital Universitario San Cecilio, 18016 Granada, Spain
| | - Germaine Escames
- Centro de Investigación Biomédica, Facultad de Medicina, Departamento de Fisiología, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain; (J.F.-M.); (Y.R.-C.); (P.A.-M.); (L.M.-R.); (G.E.)
- Instituto de Investigación Biosanitaria (Ibs.Granada), Hospital Universitario San Cecilio, 18016 Granada, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Darío Acuña-Castroviejo
- Centro de Investigación Biomédica, Facultad de Medicina, Departamento de Fisiología, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain; (J.F.-M.); (Y.R.-C.); (P.A.-M.); (L.M.-R.); (G.E.)
- Instituto de Investigación Biosanitaria (Ibs.Granada), Hospital Universitario San Cecilio, 18016 Granada, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- UGC de Laboratorios Clínicos, Hospital Universitario San Cecilio, 18016 Granada, Spain
| |
Collapse
|
5
|
Fan Y, Wang H, Yu Z, Liang Z, Li Y, You G. Inhibition of proteasome, but not lysosome, upregulates organic anion transporter 3 in vitro and in vivo. Biochem Pharmacol 2023; 208:115387. [PMID: 36549459 PMCID: PMC9877193 DOI: 10.1016/j.bcp.2022.115387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/10/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Organic anion transporter 3 (OAT3), an indispensable basolateral membrane transporter predominantly distributed in the kidney proximal tubules, mediated the systemic clearance of substrates including clinical drugs, nutrients, endogenous and exogenous metabolites, toxins, and critically sustains body homeostasis. Preliminary data in this study showed that classical proteasome inhibitors (e.g., MG132), but not lysosome inhibitors, significantly increased the OAT3 ubiquitination and OAT3-mediated transport of estrone sulfate (ES) in OAT3 stable expressing cells, indicating that proteasome rather than lysosome is involved in the intracellular fate of OAT3. Next, bortezomib and carfilzomib, two FDA-approved and widely applied anticancer agents through selective targeting proteasome, were further used to define the role of inhibiting proteasome in OAT3 regulation and related molecular mechanisms. The results showed that 20S proteasome activity in cell lysates was suppressed with bortezomib and carfilzomib treatment, leading to the increased OAT3 ubiquitination, stimulated transport activity of ES, enhanced OAT3 surface and total expression. The upregulated OAT3 function by proteasome inhibition was attributed to the augment in maximum transport velocity and stability of membrane OAT3. Lastly, in vivo study using Sprague Dawley rats validated that proteasome inhibition using bortezomib induced enhancement of OAT3 ubiquitination and membrane expression in kidney. These data suggest that activity of proteasome but not lysosome could have an impact on the physiological function of OAT3, and proteasome displayed a promising target for OAT3 regulation in vitro and in vivo, and could be used in restoring OAT3 impairment under pathological conditions, avoiding OAT3-associated toxicity and diseases, ensuring drug efficacy and safety.
Collapse
Affiliation(s)
- Yunzhou Fan
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Haoxun Wang
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Zhou Yu
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Zhengxuan Liang
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Yufan Li
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Guofeng You
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
| |
Collapse
|
6
|
Role of Melatonin in Cancer: Effect on Clock Genes. Int J Mol Sci 2023; 24:ijms24031919. [PMID: 36768253 PMCID: PMC9916653 DOI: 10.3390/ijms24031919] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
The circadian clock is a regulatory system, with a periodicity of approximately 24 h, that generates rhythmic changes in many physiological processes. Increasing evidence links chronodisruption with aberrant functionality in clock gene expression, resulting in multiple diseases, including cancer. In this context, tumor cells have an altered circadian machinery compared to normal cells, which deregulates the cell cycle, repair mechanisms, energy metabolism and other processes. Melatonin is the main hormone produced by the pineal gland, whose production and secretion oscillates in accordance with the light:dark cycle. In addition, melatonin regulates the expression of clock genes, including those in cancer cells, which could play a key role in the numerous oncostatic effects of this hormone. This review aims to describe and clarify the role of clock genes in cancer, as well as the possible mechanisms of the action of melatonin through which it regulates the expression of the tumor's circadian machinery, in order to propose future anti-neoplastic clinical treatments.
Collapse
|
7
|
Torres FF, Bernardo VS, de Paula CP, da Silva JPMDO, de Almeida EA, da Cunha AF, da Silva DGH. Influence of Melatonin Treatment on Cellular Mechanisms of Redox Adaptation in K562 Erythroleukemic Cells. Genes (Basel) 2022; 13:genes13122337. [PMID: 36553603 PMCID: PMC9778059 DOI: 10.3390/genes13122337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/07/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Melatonin (MEL) presents well-documented pleiotropic actions against oxidative stress (OS), acting indirectly through activation of transcription factors, e.g., FoxO3 and Nrf2. Thus, this study aimed to investigate the possible modulating effects of MEL on the redox signaling pathways PI3K/AKT/FoxO3 and Keap1/Nrf2/ARE in K562 erythroleukemic cells subjected to OS induction. For this, the viability, and transcript levels of genes involved in redox adaptation were evaluated in K562 cells in different periods of erythroid differentiation: under OS induction by hydrogen peroxide (100 µM H2O2); treated with 1 nM (C1) and 1 mM (C2) MEL; and associated or not with stress induction. We observed a restoration of physiological levels of Nrf2 in both MEL concentrations under OS. The C1 was related to enhanced expression of antioxidant and proteasome genes through the Nrf2-ARE pathway, while C2 to the induction of FOXO3 expression, suggesting an involvement with apoptotic pathway, according to BIM transcript levels. The effects of MEL administration in these cells showed a period and dose-dependent pattern against induced-OS, with direct and indirect actions through different pathways of cellular adaptation, reinforcing the importance of this indolamine in the regulation of cellular homeostasis, being a promising therapeutic alternative for diseases that present an exacerbated OS.
Collapse
Affiliation(s)
- Flaviene Felix Torres
- Department of Biology, Universidade Estadual Paulista (UNESP), São José do Rio Preto 15054-000, SP, Brazil
| | - Victoria Simões Bernardo
- Department of Biology, Universidade Estadual Paulista (UNESP), São José do Rio Preto 15054-000, SP, Brazil
| | - Carla Peres de Paula
- Department of Genetics and Evolution, Universidade Federal de São Carlos (UFSCar), São Carlos 13565-905, SP, Brazil
| | | | - Eduardo Alves de Almeida
- Department of Natural Sciences, Fundação Universidade Regional de Blumenau (FURB), Blumenau 89030-000, SC, Brazil
| | - Anderson Ferreira da Cunha
- Department of Genetics and Evolution, Universidade Federal de São Carlos (UFSCar), São Carlos 13565-905, SP, Brazil
| | - Danilo Grünig Humberto da Silva
- Campus de Três Lagoas, Universidade Federal de Mato Grosso do Sul (CPTL/UFMS), Três Lagoas 79613-000, MS, Brazil
- Correspondence:
| |
Collapse
|
8
|
Moradian F, Pourhanifeh MH, Mehrzadi S, Karimi‐Behnagh A, Hosseinzadeh A. Therapeutic potentials of melatonin in the treatment of lymphoma: A review of current evidence. Fundam Clin Pharmacol 2022; 36:777-789. [DOI: 10.1111/fcp.12780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/03/2022] [Accepted: 04/04/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Farid Moradian
- Departement of General Surgery Alborz University of Medical Science Alborz Iran
| | - Mohammad Hossein Pourhanifeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences Kashan University of Medical Sciences Kashan Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center Iran University of Medical Sciences Tehran Iran
| | | | - Azam Hosseinzadeh
- Razi Drug Research Center Iran University of Medical Sciences Tehran Iran
| |
Collapse
|
9
|
Xie X, Shen TT, Bi HL, Su ZL, Liao ZQ, Zhang Y, Shi L, Xia YL. Melatonin inhibits angiotensin II-induced atrial fibrillation through preventing degradation of Ang II Type I Receptor-Associated Protein (ATRAP). Biochem Pharmacol 2022; 202:115146. [PMID: 35710020 DOI: 10.1016/j.bcp.2022.115146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/18/2022] [Accepted: 06/08/2022] [Indexed: 11/29/2022]
Abstract
Angiotensin II (Ang II) induced Atrial fibrillation (AF) often accompanied with reduced ATRAP which is a negative modulator of Ang II type 1 receptor (AT1R). Melatonin can protect against AF, but the underlying molecular mechanism remains poorly understood. In this study, Ang II was used to induce AF, and AF inducibility and duration were documented telemetrically. Ang II-infused mice had a higher AF incidence, which was associated with atrial fibrosis, inflammation, and oxidative stress. Melatonin partially inhibited these effects, and enforced expression of siRNA-ATRAP in atria counteracted the beneficial role of melatonin. Specifically, melatonin inhibited expression of Ang II-induced proteasome and immunoproteasome subunits β2, β2i, β5, and β5i as well as their corresponding trypsin-like and chymotrypsin-like activities and blocked ATRAP degradation. In turn, this inhibited AT1R-mediated NF-κB signaling, transforming growth factor (TGF)-β1/Smad signaling in the atria, and thereby affected atrial remodeling and AF. Melatonin receptor inhibition by the chemical inhibitor luzindole partially inhibited the inhibitory effects of melatonin on proteasome activity and also Ang II-induced pathological changes in the atria. Overall, our study demonstrates that melatonin protects against Ang II-induced AF by inhibiting proteasome activity and stabilizing ATRAP expression, and these effects are partially dependent on melatonin receptor activation.
Collapse
Affiliation(s)
- Xin Xie
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116021, China
| | - Ting-Ting Shen
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Hai-Lian Bi
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116021, China
| | - Zhuo-Lin Su
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116021, China
| | - Zi-Qi Liao
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116021, China
| | - Ying Zhang
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116021, China
| | - Lei Shi
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China.
| | - Yun-Long Xia
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116021, China.
| |
Collapse
|
10
|
Farid A, Moussa P, Youssef M, Haytham M, Shamy A, Safwat G. Melatonin relieves diabetic complications and regenerates pancreatic beta cells by the reduction in NF-kB expression in streptozotocin induced diabetic rats. Saudi J Biol Sci 2022; 29:103313. [PMID: 35707823 PMCID: PMC9189213 DOI: 10.1016/j.sjbs.2022.103313] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 04/18/2022] [Accepted: 05/18/2022] [Indexed: 12/25/2022] Open
Abstract
Melatonin, a pleiotropic hormone, has many regulatory effects on the circadian and seasonal rhythms, sleep and body immune system. It is used in the treatment of blind circadian rhythm sleep disorders, delayed sleep phase and insomnia. It is a potent antioxidant, anti-inflammatory, free radical scavenger, helpful in fighting infectious disease and cancer treatment. Decreased level of circulating melatonin was associated with an increased blood glucose level, losing the anti-oxidant protection and anti-inflammatory responses. We aimed to evaluate the effect of melatonin administration, in streptozotocin (STZ) induced diabetic rats, on blood glucose level and pancreatic beta (β) cells. Diabetes mellitus was induced in Sprague dawley male rats by the intravenous (i.v) injection of 65 mg/kg of STZ. Diabetic rats received melatonin at a dose of 10 mg/kg daily for 8 weeks by oral routes. The results showed, after 8 weeks of melatonin administration, a reduction in: 1- fasting blood glucose (FBG) and fructosamine (FTA) levels, 2- kidney and liver function parameters, 3- levels of serum triglycerides, cholesterol and LDL-C, 4- malondialdehyde (MDA), 5- NF-κB expression in treated group, 6- pro-inflammatory cytokines (IL-1β and IL-12) and immunoglobulins (IgA, IgE and IgG). Furthermore, an elevation in insulin secretion was noticed in melatonin treated group that indicated β cells regeneration. Therefore, melatonin administration, in STZ induced diabetic rats; reduced hyperglycemia, hyperlipidemia and oxidative stress. Melatonin acted as an anti-inflammatory agent that reduced pro-inflammatory cytokines (IL-1β and IL-12) and oxidative stress biomarkers (MDA). Melatonin succeeded in protecting β cells under severe inflammatory situations, which was apparent by the regeneration of islets of Langerhans in treated diabetic rats. Moreover, these results can open a gate for diabetes management and treatment.
Collapse
Affiliation(s)
- Alyaa Farid
- Zoology Dep., Faculty of Science, Cairo University, Giza, Egypt
| | - Passant Moussa
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Manar Youssef
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Merna Haytham
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Ali Shamy
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Gehan Safwat
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| |
Collapse
|
11
|
Su WL, Wu CC, Wu SFV, Lee MC, Liao MT, Lu KC, Lu CL. A Review of the Potential Effects of Melatonin in Compromised Mitochondrial Redox Activities in Elderly Patients With COVID-19. Front Nutr 2022; 9:865321. [PMID: 35795579 PMCID: PMC9251345 DOI: 10.3389/fnut.2022.865321] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/23/2022] [Indexed: 12/17/2022] Open
Abstract
Melatonin, an endogenous indoleamine, is an antioxidant and anti-inflammatory molecule widely distributed in the body. It efficiently regulates pro-inflammatory and anti-inflammatory cytokines under various pathophysiological conditions. The melatonin rhythm, which is strongly associated with oxidative lesions and mitochondrial dysfunction, is also observed during the biological process of aging. Melatonin levels decline considerably with age and are related to numerous age-related illnesses. The signs of aging, including immune aging, increased basal inflammation, mitochondrial dysfunction, significant telomeric abrasion, and disrupted autophagy, contribute to the increased severity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. These characteristics can worsen the pathophysiological response of the elderly to SARS-CoV-2 and pose an additional risk of accelerating biological aging even after recovery. This review explains that the death rate of coronavirus disease (COVID-19) increases with chronic diseases and age, and the decline in melatonin levels, which is closely related to the mitochondrial dysfunction in the patient, affects the virus-related death rate. Further, melatonin can enhance mitochondrial function and limit virus-related diseases. Hence, melatonin supplementation in older people may be beneficial for the treatment of COVID-19.
Collapse
Affiliation(s)
- Wen-Lin Su
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chia-Chao Wu
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Shu-Fang Vivienne Wu
- School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Mei-Chen Lee
- School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Min-Tser Liao
- Department of Pediatrics, Taoyuan Armed Forces General Hospital Hsinchu Branch, Hsinchu City, Taiwan
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Kuo-Cheng Lu
- Division of Nephrology, Department of Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- Division of Nephrology, Department of Medicine, Fu Jen Catholic University Hospital, School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Chien-Lin Lu
- Division of Nephrology, Department of Medicine, Fu Jen Catholic University Hospital, School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| |
Collapse
|
12
|
Liu J, Zhao R, Jiang X, Li Z, Zhang B. Progress on the Application of Bortezomib and Bortezomib-Based Nanoformulations. Biomolecules 2021; 12:biom12010051. [PMID: 35053199 PMCID: PMC8773474 DOI: 10.3390/biom12010051] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 12/12/2022] Open
Abstract
Bortezomib (BTZ) is the first proteasome inhibitor approved by the Food and Drug Administration. It can bind to the amino acid residues of the 26S proteasome, thereby causing the death of tumor cells. BTZ plays an irreplaceable role in the treatment of mantle cell lymphoma and multiple myeloma. Moreover, its use in the treatment of other hematological cancers and solid tumors has been investigated in numerous clinical trials and preclinical studies. Nevertheless, the applications of BTZ are limited due to its insufficient specificity, poor permeability, and low bioavailability. Therefore, in recent years, different BTZ-based drug delivery systems have been evaluated. In this review, we firstly discussed the functions of proteasome inhibitors and their mechanisms of action. Secondly, the properties of BTZ, as well as recent advances in both clinical and preclinical research, were reviewed. Finally, progress in research regarding BTZ-based nanoformulations was summarized.
Collapse
Affiliation(s)
| | | | | | | | - Bo Zhang
- Correspondence: ; Tel.: +86-636-8462490
| |
Collapse
|
13
|
Mehrzadi S, Karimi MY, Fatemi A, Reiter RJ, Hosseinzadeh A. SARS-CoV-2 and other coronaviruses negatively influence mitochondrial quality control: beneficial effects of melatonin. Pharmacol Ther 2021; 224:107825. [PMID: 33662449 PMCID: PMC7919585 DOI: 10.1016/j.pharmthera.2021.107825] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/25/2020] [Accepted: 02/22/2021] [Indexed: 12/19/2022]
Abstract
Coronaviruses (CoVs) are a group of single stranded RNA viruses, of which some of them such as SARS-CoV, MERS-CoV, and SARS-CoV-2 are associated with deadly worldwide human diseases. Coronavirus disease-2019 (COVID-19), a condition caused by SARS-CoV-2, results in acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) associated with high mortality in the elderly and in people with underlying comorbidities. Results from several studies suggest that CoVs localize in mitochondria and interact with mitochondrial protein translocation machinery to target their encoded products to mitochondria. Coronaviruses encode a number of proteins; this process is essential for viral replication through inhibiting degradation of viral proteins and host misfolded proteins including those in mitochondria. These viruses seem to maintain their replication by altering mitochondrial dynamics and targeting mitochondrial-associated antiviral signaling (MAVS), allowing them to evade host innate immunity. Coronaviruses infections such as COVID-19 are more severe in aging patients. Since endogenous melatonin levels are often dramatically reduced in the aged and because it is a potent anti-inflammatory agent, melatonin has been proposed to be useful in CoVs infections by altering proteasomal and mitochondrial activities. Melatonin inhibits mitochondrial fission due to its antioxidant and inhibitory effects on cytosolic calcium overload. The collective data suggests that melatonin may mediate mitochondrial adaptations through regulating both mitochondrial dynamics and biogenesis. We propose that melatonin may inhibit SARS-CoV-2-induced cell damage by regulating mitochondrial physiology.
Collapse
Affiliation(s)
- Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Alireza Fatemi
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Jin H, Xie W, Hu P, Tang K, Wang X, Wu Y, He M, Yu D, Li Y. The role of melatonin in sarcopenia: Advances and application prospects. Exp Gerontol 2021; 149:111319. [PMID: 33753178 DOI: 10.1016/j.exger.2021.111319] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/04/2021] [Accepted: 03/16/2021] [Indexed: 12/24/2022]
Abstract
Sarcopenia is an age-related disease that has gradually become a serious health problem for elderly individuals. It not only greatly increases the risk of falls, weakness, and disability but also reduces the ability of patients to take care of themselves. Sarcopenia can directly affect the quality of life and disease prognosis of elderly individuals. However, drug interventions for this disease are lacking. Melatonin is a biological hormone produced by the body that has good free radical scavenging effects, antioxidant effects and other effects. It was originally used as a sleep aid and is now being used for an increasing number of new indications. Its effect on sarcopenia has also begun to attract attention. It is currently known that it can protect the mitochondria of skeletal muscle cells, maintain the number of muscle fibres, partially reverse the pathological changes of ageing muscle tissue, and increase muscle strength in patients with sarcopenia. A large number of microRNAs are expressed during cell ageing, that in turn provides a biological background to age-related diseases, like sarcopenia. Increasing studies have found an interaction between melatonin and miRNAs, suggesting that melatonin can be used in the treatment of sarcopenia. The increased expression of inflammation-associated miRNA-483 in elderly patients may be the basis for the age-dependent decrease in melatonin secretion,that may play a role in the morbidity of sarcopenia. Melatonin is closely related to sarcopenia. It has a wide range of effects on sarcopenia and has good application prospects for the prevention and treatment of sarcopenia.
Collapse
Affiliation(s)
- Hongfu Jin
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Wenqing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Peiwu Hu
- Department of Scientific Research, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Kun Tang
- Discipline Construction Office, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Xiuhua Wang
- Xiang Ya Nursing School, The Central South University, Changsha, China
| | - Yuxiang Wu
- School of Kinesiology, Jianghan University, Wuhan 430056, China
| | - Miao He
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Dengjie Yu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| |
Collapse
|
15
|
Bonmati-Carrion MA, Tomas-Loba A. Melatonin and Cancer: A Polyhedral Network Where the Source Matters. Antioxidants (Basel) 2021; 10:antiox10020210. [PMID: 33535472 PMCID: PMC7912767 DOI: 10.3390/antiox10020210] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 12/11/2022] Open
Abstract
Melatonin is one of the most phylogenetically conserved signals in biology. Although its original function was probably related to its antioxidant capacity, this indoleamine has been “adopted” by multicellular organisms as the “darkness signal” when secreted in a circadian manner and is acutely suppressed by light at night by the pineal gland. However, melatonin is also produced by other tissues, which constitute its extrapineal sources. Apart from its undisputed chronobiotic function, melatonin exerts antioxidant, immunomodulatory, pro-apoptotic, antiproliferative, and anti-angiogenic effects, with all these properties making it a powerful antitumor agent. Indeed, this activity has been demonstrated to be mediated by interfering with various cancer hallmarks, and different epidemiological studies have also linked light at night (melatonin suppression) with a higher incidence of different types of cancer. In 2007, the World Health Organization classified night shift work as a probable carcinogen due to circadian disruption, where melatonin plays a central role. Our aim is to review, from a global perspective, the role of melatonin both from pineal and extrapineal origin, as well as their possible interplay, as an intrinsic factor in the incidence, development, and progression of cancer. Particular emphasis will be placed not only on those mechanisms related to melatonin’s antioxidant nature but also on the recently described novel roles of melatonin in microbiota and epigenetic regulation.
Collapse
Affiliation(s)
- Maria-Angeles Bonmati-Carrion
- Chronobiology Laboratory, Department of Physiology, IMIB-Arrixaca, University of Murcia, 30100 Murcia, Spain
- Ciber Fragilidad y Envejecimiento Saludable, 28090 Madrid, Spain
- Correspondence: (M.-A.B.-C.); (A.T.-L.)
| | - Antonia Tomas-Loba
- Circadian Rhythm and Cancer Laboratory, Department of Physiology, IMIB-Arrixaca, University of Murcia, 30120 Murcia, Spain
- Correspondence: (M.-A.B.-C.); (A.T.-L.)
| |
Collapse
|
16
|
Role of Melatonin on Virus-Induced Neuropathogenesis-A Concomitant Therapeutic Strategy to Understand SARS-CoV-2 Infection. Antioxidants (Basel) 2021; 10:antiox10010047. [PMID: 33401749 PMCID: PMC7823793 DOI: 10.3390/antiox10010047] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/23/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022] Open
Abstract
Viral infections may cause neurological disorders by directly inducing oxidative stress and interrupting immune system function, both of which contribute to neuronal death. Several reports have described the neurological manifestations in Covid-19 patients where, in severe cases of the infection, brain inflammation and encephalitis are common. Recently, extensive research-based studies have revealed and acknowledged the clinical and preventive roles of melatonin in some viral diseases. Melatonin has been shown to have antiviral properties against several viral infections which are accompanied by neurological symptoms. The beneficial properties of melatonin relate to its properties as a potent antioxidant, anti-inflammatory, and immunoregulatory molecule and its neuroprotective effects. In this review, what is known about the therapeutic role of melatonin in virus-induced neuropathogenesis is summarized and discussed.
Collapse
|
17
|
Ramirez AVG, Filho DR, de Sá LBPC. Melatonin and its Relationships with Diabetes and Obesity: A Literature Review. Curr Diabetes Rev 2021; 17:e072620184137. [PMID: 32718296 DOI: 10.2174/1573399816666200727102357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Obesity is an important clinical entity, causing many public health issues. Around two billion people in the world are overweight and obese. Almost 40% of American adults are obese and Brazil has about 18 million obese people. Nowadays, 415 million people have diabetes, around 1 in every 11 adults. These numbers will rise to 650 million people within 20 years. Melatonin shows a positive profile on the regulation of the metabolism of the human body. OBJECTIVE This study aimed to carry out a broad narrative review of the metabolic profile and associations between melatonin, diabetes and obesity. METHODS Article reviews, systematic reviews, prospective studies, retrospective studies, randomized, double-blind, and placebo-controlled trials in humans recently published were selected and analyzed. A total of 368 articles were collated and submitted to the eligibility analysis. Subsequently, 215 studies were selected to compose the content part of the paper, and 153 studies composed the narrative review. RESULTS Studies suggest a possible role of melatonin in metabolic diseases such as obesity, T2DM and metabolic syndrome. Intervention studies using this hormone in metabolic diseases are still unclear regarding the possible benefit of it. There is so far no consensus about the possible role of melatonin as an adjuvant in the treatment of metabolic diseases. More studies are necessary to define possible risks and benefits of melatonin as a therapeutic agent.
Collapse
Affiliation(s)
- Ana V G Ramirez
- Clinic Ana Valeria (CAV)- Clinic of Nutrition and Health Science, Street Antônio José Martins Filho, 300, Sao Jose do Rio Preto SP, 15092-230, Brazil
| | - Durval R Filho
- Associacao Brasileira de Nutrologia (ABRAN)/Brazilian Association of Nutrology, Catanduva/SP, Rua Belo Horizonte, 909 - Centro, Catanduva SP, Brazil
| | | |
Collapse
|
18
|
Yousefi-Manesh H, Dejban P, Mumtaz F, Abdollahi A, Chamanara M, Dehpour A, Hasanvand A, Rashidian A. Risperidone attenuates acetic acid-induced colitis in rats through inhibition of TLR4/NF-kB signaling pathway. Immunopharmacol Immunotoxicol 2020; 42:464-472. [PMID: 32787472 DOI: 10.1080/08923973.2020.1808987] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AIM The purpose of the present study is to explore the anti-inflammatory potential of risperidone in acetic acid-induced rat colitis through inhibition of TLR4/NF-kB pathway. METHODS Acute colitis induction was done by intra-rectal administration of 2 mL of 4% diluted acetic acid solution. Two h after colitis induction, dexamethasone (2 mg/kg) as standard drugorrisperidone (2, 4 and 6 mg/kg) were administered orally to wistar rats for five consecutive days. 24 h after the last treatment, animals were sacrificed by cervical dislocation. Macroscopic and microscopic damage evaluation was done. Biochemical and ELISA methods were used to assess myeloid peroxidase (MPO) enzyme activity and tumor necrosis factor-α (TNF-α) level respectively. Moreover, immunohistochemistry (IHC) was performed to detect the expression of TLR4 and pNF-kBproteins. RESULTS Dexamethasone (2 mg/kg) or risperidone (2, 4 and 6 mg/kg) improved acetic acid-induced macroscopic (p < .001) and microscopic lesions. Additionally, risperidone (2, 4 and 6 mg/kg) inhibited the activity of MPO and TNF-α (p < .01, p < .001) in the colon tissue compared to acetic acid group. Furthermore, bothdexamethasone and risperidone (2, 4 and 6 mg/kg) significantly reduced acetic acid-induced expression of TLR4and pNF-kB proteins (p < .05, p < .01, p < .001). CONCLUSION The anti-inflammatory effect of risperidone on acetic acid-induced colitis in rats may involve inhibition of TLR4 and NF-kB signaling pathway.
Collapse
Affiliation(s)
- Hasan Yousefi-Manesh
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Pegah Dejban
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Faiza Mumtaz
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Abdollahi
- Department of Pathology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Chamanara
- Department of Pharmacology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amin Hasanvand
- Department of Pharmacology, School of Medicine, Lorestan University of Medical Sciences, Lorestan, Iran
| | - Amir Rashidian
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Goudarzi R, Partoazar A, Mumtaz F, Yousefi-Manesh H, Abdollahi A, Dehpour A, Rashidian A. Arthrocen, an avocado-soy unsaponifiable agent, improves acetic acid-induced colitis in rat by inhibition of NF-kB signaling pathway. J Food Biochem 2020; 44:e13244. [PMID: 32441355 DOI: 10.1111/jfbc.13244] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 03/29/2020] [Accepted: 03/29/2020] [Indexed: 12/14/2022]
Abstract
The goal of the current study was to evaluate the anti-inflammatory effect of Arthrocen against acetic acid-induced colitis in rats. Acute inflammation was produced through intrarectal administration of 2 ml diluted acetic acid (4%) solution. All interventions were carried out for 5 days after colitis induction. Arthrocen was administered orally at doses of 30, 60, and 120 mg kg-1 day-1 . Then, macroscopic and microscopic studies were performed. Myeloperoxidase (MPO) activity and tumor necrosis factor-α (TNF-α) activity were measured by biochemical and ELISA methods, respectively. Immunohistochemistry was done to investigate the expression of pNF-κB. The results of this study demonstrated that Arthrocen reduced macroscopic and microscopic damage compared to the acetic acid group. Furthermore, Arthrocen decreased the activity of MPO and TNF-α as well as the protein expression of pNF-kB in rat colon tissue. The results of the current study revealed the anti-inflammatory activity of Arthrocen in acetic acid mediated colon inflammation through suppressing the NF-κB pathway. PRACTICAL APPLICATIONS: Inflammatory bowel disease (IBD) is an immune-mediated chronic relapsing disorder affecting the gastrointestinal tract (GIT) characterized by chronic bowel inflammation. A plant-based dietary supplement containing avocado and soy unsaponifiable extracts in a ratio of 1:2 is known as Arthrocen. Arthrocen can be used as a complementary drug beside current drugs in clinical trials for the treatment of IBD.
Collapse
Affiliation(s)
- Ramin Goudarzi
- Division of Research and Development, Pharmin USA, LLC, San Jose, CA, USA
| | - Alireza Partoazar
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Faiza Mumtaz
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hasan Yousefi-Manesh
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Abdollahi
- Department of Pathology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Rashidian
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Lei L, Li X, Yuan YJ, Chen ZL, He JH, Wu JH, Cai XS. Inhibition of proprotein convertase subtilisin/kexin type 9 attenuates 2,4,6-trinitrobenzenesulfonic acid-induced colitis via repressing toll-like receptor 4/nuclear factor-kappa B. Kaohsiung J Med Sci 2020; 36:705-711. [PMID: 32396274 DOI: 10.1002/kjm2.12225] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/13/2020] [Accepted: 04/16/2020] [Indexed: 12/16/2022] Open
Abstract
Inflammatory bowel disease (IBD) is characterized by recurring inflammatory disorders in digestive system, and devoid of effective treatment. Proprotein convertase subtilisin/kexin type 9 (PCSK9), stimulated via inflammation whose inhibition could decrease secretion of inflammatory factors. We then determined whether inhibition of PCSK9 could improve the inflammation. First, rats model of colitis was first established via administration of 2,4,6-trinitrobenzenesulfonic acid (TNBS), and then verified via determination of body weight loss, myeloperoxidase (MPO) activity, and histopathological analysis of colonic damage. Results showed that treatment with TNBS induced a great body weight loss, MPO activity increase, and serious colonic damage, showing an obviously character of IBD. PCSK9 was elevated in TNBS-induced rats, and PCSK9 inhibition delivered by adenovirus vector increased the body weight, decreased MPO activity, and ameliorated histological change of colon. Second, the protective effect of PCSK9 inhibition against TNBS-induced colitis was accompanied by decrease of proinflammatory factors secretion, including tumor necrosis factor-α, interleukin-1β, interleukin-6, intercellular adhesion molecule 1, and monocyte chemoattractant protein-1. TNBS could activate toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB) signaling pathway, while PCSK9 inhibition suppressed activation of TLR4/NF-κB in TNBS-induced rats. In conclusion, PCSK9 inhibition attenuated TNBS-induced rat colitis through anti-inflammatory effect under inactivation of TLR4/NF-κB, suggesting potential therapeutic strategy in IBD.
Collapse
Affiliation(s)
- Lei Lei
- GI Medicine, The Central Hospital of Enshi Autonomous Prefecture, Enshi, China
| | - Xu Li
- Cardiothoracic Surgery, The Central Hospital of Enshi Autonomous Prefecture, Enshi, China
| | - You-Jun Yuan
- Department of Emergency, WenZhou Central Hospital, Wenzhou City, China
| | - Zhi-Li Chen
- Department of Emergency, WenZhou Central Hospital, Wenzhou City, China
| | - Jian-Hua He
- GI Medicine, The Central Hospital of Enshi Autonomous Prefecture, Enshi, China
| | - Jian-Hua Wu
- Department of Emergency, WenZhou Central Hospital, Wenzhou City, China
| | - Xiao-Sheng Cai
- Department of Emergency, WenZhou Central Hospital, Wenzhou City, China
| |
Collapse
|
21
|
Evaluation of the protective effects of amifostine and melatonin against cisplatin induced testis injury via oxidative stress and apoptosis in rats. Exp Mol Pathol 2020; 112:104324. [DOI: 10.1016/j.yexmp.2019.104324] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 10/11/2019] [Accepted: 10/22/2019] [Indexed: 11/20/2022]
|
22
|
Tran D, Perrigault M, Ciret P, Payton L. Bivalve mollusc circadian clock genes can run at tidal frequency. Proc Biol Sci 2020; 287:20192440. [PMID: 31910786 DOI: 10.1098/rspb.2019.2440] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Marine coastal habitats are complex cyclic environments as a result of sun and moon interactions. In contrast with the well-known circadian orchestration of the terrestrial animal rhythmicity (approx. 24 h), the mechanism responsible for the circatidal rhythm (approx. 12.4 h) remains largely elusive in marine organisms. We revealed in subtidal field conditions that the oyster Crassostrea gigas exhibits tidal rhythmicity of circadian clock genes and clock-associated genes. A free-running (FR) experiment showed an endogenous circatidal rhythm. In parallel, we showed in the field that oysters' valve behaviour exhibited a strong tidal rhythm combined with a daily rhythm. In the FR experiment, all behavioural rhythms were circatidal, and half of them were also circadian. Our results fuel the debate on endogenous circatidal mechanisms. In contrast with the current hypothesis on the existence of an independent tidal clock, we suggest that a single 'circadian/circatidal' clock in bivalves is sufficient to entrain behavioural patterns at tidal and daily frequencies.
Collapse
Affiliation(s)
- Damien Tran
- EPOC, University of Bordeaux, UMR 5805, 33120 Arcachon, France.,EPOC, CNRS, UMR 5805, 33120 Arcachon, France
| | - Mickael Perrigault
- EPOC, University of Bordeaux, UMR 5805, 33120 Arcachon, France.,EPOC, CNRS, UMR 5805, 33120 Arcachon, France
| | - Pierre Ciret
- EPOC, University of Bordeaux, UMR 5805, 33120 Arcachon, France.,EPOC, CNRS, UMR 5805, 33120 Arcachon, France
| | - Laura Payton
- EPOC, University of Bordeaux, UMR 5805, 33120 Arcachon, France.,EPOC, CNRS, UMR 5805, 33120 Arcachon, France
| |
Collapse
|
23
|
Bizzarri M. Advances in Characterizing Recently-Identified Molecular Actions of Melatonin: Clinical Implications. APPROACHING COMPLEX DISEASES 2020. [PMCID: PMC7164543 DOI: 10.1007/978-3-030-32857-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Melatonin, N-acetyl-5-methoxy-tryptamine, was discovered to be a product of serotonin metabolism in the mammalian pineal gland where its synthesis is under control of the light:dark cycle. Besides its regulatory pathway involving ganglion cells in the retina, the neural connections between the eyes and the pineal gland include the master circadian clock, the suprachiasmatic nuclei, and the central and peripheral nervous systems. Since pineal melatonin is released into the blood and into the cerebrospinal fluid, it has access to every cell in an organism and it mediates system-wide effects. Subsequently, melatonin was found in several extrapineal organs and, more recently, perhaps in every cell of every organ. In contrast to the pinealocytes, non-pineal cells do not discharge melatonin into the blood; rather it is used locally in an intracrine, autocrine, or paracrine manner. Melatonin levels in non-pineal cells do not exhibit a circadian rhythm and do not depend on circulating melatonin concentrations although when animals are treated with exogenous melatonin it is taken up by presumably all cells. Mitochondria are the presumed site of melatonin synthesis in all cells; the enzymatic machinery for melatonin synthesis has been identified in mitochondria. The association of melatonin with mitochondria, because of its ability to inhibit oxidative stress, is very fortuitous since these organelles are a major site of damaging reactive oxygen species generation. In this review, some of the actions of non-pineal-derived melatonin are discussed in terms of cellular and subcellular physiology.
Collapse
Affiliation(s)
- Mariano Bizzarri
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
24
|
Fang J, Yan Y, Teng X, Wen X, Li N, Peng S, Liu W, Donadeu FX, Zhao S, Hua J. Melatonin prevents senescence of canine adipose-derived mesenchymal stem cells through activating NRF2 and inhibiting ER stress. Aging (Albany NY) 2019; 10:2954-2972. [PMID: 30362962 PMCID: PMC6224246 DOI: 10.18632/aging.101602] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 10/15/2018] [Indexed: 12/23/2022]
Abstract
Transplantation of adipose-derived mesenchymal stem cells (ADMSCs) can aid in the treatment of numerous diseases in animals. However, natural aging during in vitro expansion of ADMSCs prior to their use in transplantation restricts their beneficial effects. Melatonin is reported to exert biorhythm regulation, anti-oxidation, and anti-senescence effects in various animal and cell models. Herein, by using a senescent canine ADMSCs (cADMSCs) cell model subjected to multiple passages in vitro, we investigated the effects of melatonin on ADMSCs senescence. We found that melatonin alleviates endoplasmic reticulum stress (ERS) and cell senescence. MT1/MT2 melatonin receptor inhibitor, luzindole, diminished the mRNA expression levels and rhythm expression amplitude of Bmal1 and Nrf2 genes. Nrf2 knockdown blocked the stimulatory effects of melatonin on endoplasmic reticulum-associated degradation (ERAD)-related gene expression and its inhibitory effects on ERS-related gene expression. At the same time, the inhibitory effects of melatonin on the NF-κB signaling pathway and senescence-associated secretory phenotype (SASP) were blocked by Nrf2 knockdown in cADMSCs. Melatonin pretreatment improved the survival of cADMSCs and enhanced the beneficial effects of cADMSCs transplantation in canine acute liver injury. These results indicate that melatonin activates Nrf2 through the MT1/MT2 receptor pathway, stimulates ERAD, inhibits NF-κB and ERS, alleviates cADMSCs senescence, and improves the efficacy of transplanted cADMSCs.
Collapse
Affiliation(s)
- Jia Fang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A and F University, Yangling, Shaanxi Province, China
| | - Yuan Yan
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A and F University, Yangling, Shaanxi Province, China
| | - Xin Teng
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A and F University, Yangling, Shaanxi Province, China
| | - Xinyu Wen
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A and F University, Yangling, Shaanxi Province, China
| | - Na Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A and F University, Yangling, Shaanxi Province, China
| | - Sha Peng
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A and F University, Yangling, Shaanxi Province, China
| | - Wenshuai Liu
- Department of Pathology, Yangling Demonstration Zone Hospital, Yangling, Shaanxi Province, China
| | - F Xavier Donadeu
- Division of Developmental Biology, The Roslin Institute Reader, Royal (Dick) School of Veterinary Studies University of Edinburgh, Easter Bush, Midlothian, EH25 9RG Scotland, UK
| | - Shanting Zhao
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A and F University, Yangling, Shaanxi Province, China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A and F University, Yangling, Shaanxi Province, China
| |
Collapse
|
25
|
Rashidian A, Rashki A, Abdollahi A, Haddadi NS, Chamanara M, Mumtaz F, Dehpour AR. Dapsone reduced acetic acid-induced inflammatory response in rat colon tissue through inhibition of NF-kB signaling pathway. Immunopharmacol Immunotoxicol 2019; 41:607-613. [DOI: 10.1080/08923973.2019.1678635] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Amir Rashidian
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Asma Rashki
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Abdollahi
- Department of Pathology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nazgol-Sadat Haddadi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Chamanara
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Aja University of Medical Sciences, Tehran, Iran
| | - Faiza Mumtaz
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Evidence that melatonin downregulates Nedd4-1 E3 ligase and its role in cellular survival. Toxicol Appl Pharmacol 2019; 379:114686. [DOI: 10.1016/j.taap.2019.114686] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/14/2019] [Accepted: 07/16/2019] [Indexed: 01/06/2023]
|
27
|
Cipolla-Neto J, Amaral FGD. Melatonin as a Hormone: New Physiological and Clinical Insights. Endocr Rev 2018; 39:990-1028. [PMID: 30215696 DOI: 10.1210/er.2018-00084] [Citation(s) in RCA: 361] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/21/2018] [Indexed: 02/07/2023]
Abstract
Melatonin is a ubiquitous molecule present in almost every live being from bacteria to humans. In vertebrates, besides being produced in peripheral tissues and acting as an autocrine and paracrine signal, melatonin is centrally synthetized by a neuroendocrine organ, the pineal gland. Independently of the considered species, pineal hormone melatonin is always produced during the night and its production and secretory episode duration are directly dependent on the length of the night. As its production is tightly linked to the light/dark cycle, melatonin main hormonal systemic integrative action is to coordinate behavioral and physiological adaptations to the environmental geophysical day and season. The circadian signal is dependent on its daily production regularity, on the contrast between day and night concentrations, and on specially developed ways of action. During its daily secretory episode, melatonin coordinates the night adaptive physiology through immediate effects and primes the day adaptive responses through prospective effects that will only appear at daytime, when melatonin is absent. Similarly, the annual history of the daily melatonin secretory episode duration primes the central nervous/endocrine system to the seasons to come. Remarkably, maternal melatonin programs the fetuses' behavior and physiology to cope with the environmental light/dark cycle and season after birth. These unique ways of action turn melatonin into a biological time-domain-acting molecule. The present review focuses on the above considerations, proposes a putative classification of clinical melatonin dysfunctions, and discusses general guidelines to the therapeutic use of melatonin.
Collapse
Affiliation(s)
- José Cipolla-Neto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
28
|
Favero G, Moretti E, Bonomini F, Reiter RJ, Rodella LF, Rezzani R. Promising Antineoplastic Actions of Melatonin. Front Pharmacol 2018; 9:1086. [PMID: 30386235 PMCID: PMC6198052 DOI: 10.3389/fphar.2018.01086] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/06/2018] [Indexed: 12/19/2022] Open
Abstract
Melatonin is an endogenous indoleamine with an incredible variety of properties and activities. In recent years, an increasing number of studies have investigated this indoleamine’s interaction with cancerous cells. In particular, it seems that melatonin not only has the ability to improve the efficacy of many drugs used in chemotherapy but also has a direct inhibitory action on neoplastic cells. Many publications underlined the ability of melatonin to suppress the proliferation of various cancer cells or to modulate the expression of membrane receptors on these cells, thereby reducing tumor aggressiveness to metastasize. In addition, while melatonin has antiapoptotic actions in normal cells, in many cancer cells it has proapoptotic effects; these dichotomous actions have gained the interest of researchers. The increasing focus on melatonin in the field of oncology and the growing number of studies on this topic require a deep understanding of what we already know about the antineoplastic actions of melatonin. This information would be of value for potential use of melatonin against neoplastic diseases.
Collapse
Affiliation(s)
- Gaia Favero
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Enrico Moretti
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Francesca Bonomini
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.,Interdipartimental University Center of Research "Adaption and Regeneration of Tissues and Organs," University of Brescia, Brescia, Italy
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health Science Center, San Antonio, TX, United States
| | - Luigi Fabrizio Rodella
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.,Interdipartimental University Center of Research "Adaption and Regeneration of Tissues and Organs," University of Brescia, Brescia, Italy
| | - Rita Rezzani
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.,Interdipartimental University Center of Research "Adaption and Regeneration of Tissues and Organs," University of Brescia, Brescia, Italy
| |
Collapse
|
29
|
Golabchi A, Wu B, Li X, Carlisle DL, Kozai TDY, Friedlander RM, Cui XT. Melatonin improves quality and longevity of chronic neural recording. Biomaterials 2018; 180:225-239. [PMID: 30053658 PMCID: PMC6179369 DOI: 10.1016/j.biomaterials.2018.07.026] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/06/2018] [Accepted: 07/13/2018] [Indexed: 12/17/2022]
Abstract
The chronic performance of implantable neural electrodes is hindered by inflammatory brain tissue responses, including microglia activation, glial scarring, and neuronal loss. Melatonin (MT) has shown remarkable neuroprotective and neurorestorative effects in treating central nervous system (CNS) injuries and degeneration by inhibiting caspase-1, -3, and -9 activation and mitochondrial cytochrome c release, as well as reducing oxidative stress and neuroinflammation. This study examined the effect of MT administration on the quality and longevity of neural recording from an implanted microelectrode in the visual cortex of mice for 16 weeks. MT (30 mg/kg) was administered via daily intraperitoneal injection for acute (3 days before and 14 days post-implantation) and chronic (3 days before and 16 weeks post-implantation) exposures. During the first 4 weeks, both MT groups showed significantly higher single-unit (SU) yield, signal-to-noise ratio (SNR), and amplitude compared to the vehicle control group. However, after 4 weeks of implantation, the SU yield of the acute treatment group dropped to the same level as the control group, while the chronic treatment group maintained significantly higher SU yield compared to both acute (week 5-16) and control (week 0-16) mice. Histological studies revealed a significant increase in neuronal viability and decrease in neuronal apoptosis around the implanted electrode at week 16 in the chronic group in comparison to control and acute subjects, which is correlated with reduced oxidative stress and increased number of pro-regeneration arginase-1 positive microglia cells. These results demonstrate the potent effect of MT treatment in maintaining a high-quality electrode-tissue interface and suggest that MT promotes neuroprotection possibly through its anti-apoptotic, anti-inflammatory, and anti-oxidative properties.
Collapse
Affiliation(s)
- Asiyeh Golabchi
- Department of Bioengineering, University of Pittsburgh, USA; Center for Neural Basis of Cognition, USA
| | - Bingchen Wu
- Department of Bioengineering, University of Pittsburgh, USA; Center for Neural Basis of Cognition, USA
| | - Xia Li
- Department of Bioengineering, University of Pittsburgh, USA
| | - Diane L Carlisle
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh School of Medicine, USA
| | - Takashi D Y Kozai
- Department of Bioengineering, University of Pittsburgh, USA; Center for Neural Basis of Cognition, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, USA; Neurotechnology Division of the University of Pittsburgh Brain Institute, USA
| | - Robert M Friedlander
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh School of Medicine, USA
| | - Xinyan Tracy Cui
- Department of Bioengineering, University of Pittsburgh, USA; Center for Neural Basis of Cognition, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, USA.
| |
Collapse
|
30
|
Melatonin ameliorates TNBS-induced colitis in rats through the melatonin receptors: involvement of TLR4/MyD88/NF-κB signalling pathway. Inflammopharmacology 2018; 27:361-371. [PMID: 30143913 DOI: 10.1007/s10787-018-0523-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 02/07/2018] [Indexed: 12/13/2022]
Abstract
AIM The aim of the present study is to investigate the anti-inflammatory effect of melatonin in trinitrobenzene sulfonic acid (TNBS)-induced rat colitis through the inhibition of Toll-like receptor 4 (TLR4)/nuclear factor kappa B (NF-κB) signalling pathway and activation of melatonin receptor. METHODS Colitis was induced in Wistar rats by administration of 100 mg/kg TNBS dissolved in 0.25 ml of 50% ethanol solution using a flexible plastic rubber catheter into the colon via the anus. This resulted in incidence of colitis on the first day, and all treatments were conducted for 10 days after induction of colitis. Melatonin was administered intraperitoneally (i.p.) at doses of 1, 5, and 10 mg/kg/day. Luzindole (non-selective MT1/MT2 receptor antagonist) was administered i.p. at dose of 5 mg/kg/day 15 min prior to melatonin injection. During the experiment, animals were monitored for the appearance of diarrhoea, body weight loss, and rectal bleeding. Myeloid peroxidase enzyme and tumour necrosis factor-α (TNF-α) activities were detected by immunohistochemistry. The protein expression level of TLR4, myeloid differentiation factor 88 (MyD88), NF-κB p65, and inhibitor of kappa B (I-κB) were detected by western blotting analysis. RESULTS Treatment with melatonin improved weight loss, mucosal, and histological damage compared with TNBS group. In addition, melatonin decreased TNBS-induced up-regulation of TLR4, MyD88, and NF-κB p65, and increased down-regulation of I-κB proteins. On the other hand, the administration of luzindole resulted in the inhibition of melatonin effects. CONCLUSIONS It seems that the inhibition of TLR4/NF-κB signalling pathway may mediate the anti-inflammatory effects of melatonin in TNBS-induced rat colitis.
Collapse
|
31
|
Ruiz L, Gurlo T, Ravier MA, Wojtusciszyn A, Mathieu J, Brown MR, Broca C, Bertrand G, Butler PC, Matveyenko AV, Dalle S, Costes S. Proteasomal degradation of the histone acetyl transferase p300 contributes to beta-cell injury in a diabetes environment. Cell Death Dis 2018; 9:600. [PMID: 29789539 PMCID: PMC5964068 DOI: 10.1038/s41419-018-0603-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 03/09/2018] [Accepted: 04/17/2018] [Indexed: 12/25/2022]
Abstract
In type 2 diabetes, amyloid oligomers, chronic hyperglycemia, lipotoxicity, and pro-inflammatory cytokines are detrimental to beta-cells, causing apoptosis and impaired insulin secretion. The histone acetyl transferase p300, involved in remodeling of chromatin structure by epigenetic mechanisms, is a key ubiquitous activator of the transcriptional machinery. In this study, we report that loss of p300 acetyl transferase activity and expression leads to beta-cell apoptosis, and most importantly, that stress situations known to be associated with diabetes alter p300 levels and functional integrity. We found that proteasomal degradation is the mechanism subserving p300 loss in beta-cells exposed to hyperglycemia or pro-inflammatory cytokines. We also report that melatonin, a hormone produced in the pineal gland and known to play key roles in beta-cell health, preserves p300 levels altered by these toxic conditions. Collectively, these data imply an important role for p300 in the pathophysiology of diabetes.
Collapse
Affiliation(s)
- Lucie Ruiz
- IGF, CNRS, INSERM, University of Montpellier, Montpellier, France
| | - Tatyana Gurlo
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Magalie A Ravier
- IGF, CNRS, INSERM, University of Montpellier, Montpellier, France
| | - Anne Wojtusciszyn
- IGF, CNRS, INSERM, University of Montpellier, Montpellier, France.,Laboratory of Cell Therapy for Diabetes (LTCD), Institute for Regenerative Medicine and Biotherapy (IRMB), University Hospital of Montpellier, Montpellier, France.,Department of Endocrinology, Diabetes, and Nutrition, University Hospital of Montpellier, Montpellier, France
| | - Julia Mathieu
- IGF, CNRS, INSERM, University of Montpellier, Montpellier, France
| | - Matthew R Brown
- Department of Physiology and Biomedical Engineering, Mayo Clinic School of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Christophe Broca
- Laboratory of Cell Therapy for Diabetes (LTCD), Institute for Regenerative Medicine and Biotherapy (IRMB), University Hospital of Montpellier, Montpellier, France
| | | | - Peter C Butler
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Aleksey V Matveyenko
- Department of Physiology and Biomedical Engineering, Mayo Clinic School of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Stéphane Dalle
- IGF, CNRS, INSERM, University of Montpellier, Montpellier, France
| | - Safia Costes
- IGF, CNRS, INSERM, University of Montpellier, Montpellier, France.
| |
Collapse
|
32
|
Mortezaee K. Human hepatocellular carcinoma: Protection by melatonin. J Cell Physiol 2018; 233:6486-6508. [DOI: 10.1002/jcp.26586] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/08/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine Kurdistan University of Medical Sciences Sanandaj Iran
| |
Collapse
|
33
|
Melatonin as a potential anticarcinogen for non-small-cell lung cancer. Oncotarget 2018; 7:46768-46784. [PMID: 27102150 PMCID: PMC5216835 DOI: 10.18632/oncotarget.8776] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 03/31/2016] [Indexed: 12/23/2022] Open
Abstract
Non-small-cell lung cancer (NSCLC) is a leading cause of death from cancer worldwide. Melatonin, an indoleamine discovered in the pineal gland, exerts pleiotropic anticancer effects against a variety of cancer types. In particular, melatonin may be an important anticancer drug in the treatment of NSCLC. Herein, we review the correlation between the disruption of the melatonin rhythm and NSCLC incidence; we also evaluate the evidence related to the effects of melatonin in inhibiting lung carcinogenesis. Special focus is placed on the oncostatic effects of melatonin, including anti-proliferation, induction of apoptosis, inhibition of invasion and metastasis, and enhancement of immunomodulation. We suggest the drug synergy of melatonin with radio- or chemotherapy for NSCLC could prove to be useful. Taken together, the information complied herein may serve as a comprehensive reference for the anticancer mechanisms of melatonin against NSCLC, and may be helpful for the design of future experimental research and for advancing melatonin as a therapeutic agent for NSCLC.
Collapse
|
34
|
Favero G, Franceschetti L, Bonomini F, Rodella LF, Rezzani R. Melatonin as an Anti-Inflammatory Agent Modulating Inflammasome Activation. Int J Endocrinol 2017; 2017:1835195. [PMID: 29104591 PMCID: PMC5643098 DOI: 10.1155/2017/1835195] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 08/27/2017] [Indexed: 12/22/2022] Open
Abstract
Inflammation may be defined as the innate response to harmful stimuli such as pathogens, injury, and metabolic stress; its ultimate function is to restore the physiological homeostatic state. The exact aetiology leading to the development of inflammation is not known, but a combination of genetic, epigenetic, and environmental factors seems to play an important role in the pathogenesis of many inflammation-related clinical conditions. Recent studies suggest that the pathogenesis of different inflammatory diseases also involves the inflammasomes, intracellular multiprotein complexes that mediate activation of inflammatory caspases thereby inducing the secretion of proinflammatory cytokines. Melatonin, an endogenous indoleamine, is considered an important multitasking molecule with fundamental clinical applications. It is involved in mood modulation, sexual behavior, vasomotor control, and immunomodulation and influences energy metabolism; moreover, it acts as an oncostatic and antiaging molecule. Melatonin is an important antioxidant and also a widespread anti-inflammatory molecule, modulating both pro- and anti-inflammatory cytokines in different pathophysiological conditions. This review, first, gives an overview concerning the growing importance of melatonin in the inflammatory-mediated pathological conditions and, then, focuses on its roles and its protective effects against the activation of the inflammasomes and, in particular, of the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Gaia Favero
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Lorenzo Franceschetti
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Francesca Bonomini
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
- Interdepartmental University Center of Research “Adaption and Regeneration of Tissues and Organs (ARTO)”, University of Brescia, Brescia, Italy
| | - Luigi Fabrizio Rodella
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
- Interdepartmental University Center of Research “Adaption and Regeneration of Tissues and Organs (ARTO)”, University of Brescia, Brescia, Italy
| | - Rita Rezzani
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
- Interdepartmental University Center of Research “Adaption and Regeneration of Tissues and Organs (ARTO)”, University of Brescia, Brescia, Italy
| |
Collapse
|
35
|
Chen LY, Renn TY, Liao WC, Mai FD, Ho YJ, Hsiao G, Lee AW, Chang HM. Melatonin successfully rescues hippocampal bioenergetics and improves cognitive function following drug intoxication by promoting Nrf2-ARE signaling activity. J Pineal Res 2017; 63. [PMID: 28480587 DOI: 10.1111/jpi.12417] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/02/2017] [Indexed: 12/25/2022]
Abstract
Prolonged exposure to gamma-hydroxybutyric acid (GHB) would cause drug intoxication in which impaired cognitive function results from enhanced hippocampal oxidative stress may serve as a major symptom in this deficiency. Considering melatonin possesses significant anti-oxidative efficacy, this study aimed to determine whether melatonin would successfully promote the nuclear factor erythroid 2-related factor 2 and antioxidant responsive element (Nrf2-ARE) signaling, depress oxidative stress, and rescue hippocampal bioenergetics and cognitive function following drug intoxication injury. Adolescent rats subjected to 10 days of GHB were received melatonin at doses of either 10 or 100 mg/kg. Time-of-flight secondary ion mass spectrometry, biochemical assay, quantitative histochemistry, [14 C]-2-deoxyglucose analysis, together with Morris water maze were employed to detect the molecular signaling, oxidative status, bioenergetic level, as well as the cognitive performances, respectively. Results indicated that in GHB-intoxicated rats, enhanced oxidative stress, increased cholesterol level, and decreased anti-oxidative enzymes activities were detected in hippocampal regions. Intense oxidative stress paralleled well with reduced bioenergetics and poor performance in behavioral testing. However, in rats treated with melatonin following GHB intoxication, all above parameters and cognitive function were gradually returned to nearly normal levels. Melatonin also remarkably promoted the translocation of Nrf2 from cytoplasm to nucleus in a dose-dependent manner, thereby increased the Nrf2-ARE signaling-related downstream anti-oxidative enzymes activities. As melatonin effectively rescues hippocampal bioenergetics through depressing the oxidative stress by promoting Nrf2-ARE molecular machinery, this study thus highlights for the first time that clinical use of melatonin may serve as a therapeutic strategy to improve the cognitive function in unsuspecting victims suffered from GHB intoxication injury.
Collapse
Affiliation(s)
- Li-You Chen
- Department of Anatomy, School of Medicine, College of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Education, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Ting-Yi Renn
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wen-Chieh Liao
- Department of Anatomy, School of Medicine, College of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Fu-Der Mai
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ying-Jui Ho
- School of Psychology, College of Medical Science and Technology, Chung Shan Medical University, Taichung, Taiwan
| | - George Hsiao
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ai-Wei Lee
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hung-Ming Chang
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
36
|
Simko F, Pechanova O, Repova K, Aziriova S, Krajcirovicova K, Celec P, Tothova L, Vrankova S, Balazova L, Zorad S, Adamcova M. Lactacystin-Induced Model of Hypertension in Rats: Effects of Melatonin and Captopril. Int J Mol Sci 2017; 18:E1612. [PMID: 28757582 PMCID: PMC5578004 DOI: 10.3390/ijms18081612] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/10/2017] [Accepted: 07/13/2017] [Indexed: 12/15/2022] Open
Abstract
Lactacystin is a proteasome inhibitor that interferes with several factors involved in heart remodelling. The aim of this study was to investigate whether the chronic administration of lactacystin induces hypertension and heart remodelling and whether these changes can be modified by captopril or melatonin. In addition, the lactacystin-model was compared with NG-nitro-l-arginine-methyl ester (L-NAME)- and continuous light-induced hypertension. Six groups of three-month-old male Wistar rats (11 per group) were treated for six weeks as follows: control (vehicle), L-NAME (40 mg/kg/day), continuous light (24 h/day), lactacystin (5 mg/kg/day) alone, and lactacystin with captopril (100 mg/kg/day), or melatonin (10 mg/kg/day). Lactacystin treatment increased systolic blood pressure (SBP) and induced fibrosis of the left ventricle (LV), as observed in L-NAME-hypertension and continuous light-hypertension. LV weight and the cross-sectional area of the aorta were increased only in L-NAME-induced hypertension. The level of oxidative load was preserved or reduced in all three models of hypertension. Nitric oxide synthase (NOS) activity in the LV and kidney was unchanged in the lactacystin group. Nuclear factor-kappa B (NF-κB) protein expression in the LV was increased in all treated groups in the cytoplasm, however, in neither group in the nucleus. Although melatonin had no effect on SBP, only this indolamine (but not captopril) reduced the concentration of insoluble and total collagen in the LV and stimulated the NO-pathway in the lactacystin group. We conclude that chronic administration of lactacystin represents a novel model of hypertension with collagenous rebuilding of the LV, convenient for testing antihypertensive drugs or agents exerting a cardiovascular benefit beyond blood pressure reduction.
Collapse
Affiliation(s)
- Fedor Simko
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 81108 Bratislava, Slovakia.
- 3rd Clinic of Internal Medicine, Faculty of Medicine, Comenius University, 83305 Bratislava, Slovakia.
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia.
| | - Olga Pechanova
- Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, 81371 Bratislava, Slovakia.
| | - Kristina Repova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 81108 Bratislava, Slovakia.
| | - Silvia Aziriova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 81108 Bratislava, Slovakia.
| | - Kristina Krajcirovicova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 81108 Bratislava, Slovakia.
| | - Peter Celec
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 81108 Bratislava, Slovakia.
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia.
| | - Lubomira Tothova
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia.
| | - Stanislava Vrankova
- Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, 81371 Bratislava, Slovakia.
| | - Lucia Balazova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia.
| | - Stefan Zorad
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia.
| | - Michaela Adamcova
- Department of Physiology, Faculty of Medicine, Charles University, 50003 Hradec Kralove, Czech Republic.
| |
Collapse
|
37
|
Abstract
Memory is an adaptation to particular temporal properties of past events, such as the frequency of occurrence of a stimulus or the coincidence of multiple stimuli. In neurons, this adaptation can be understood in terms of a hierarchical system of molecular and cellular time windows, which collectively retain information from the past. We propose that this system makes various timescales of past experience simultaneously available for future adjustment of behavior. More generally, we propose that the ability to detect and respond to temporally structured information underlies the nervous system's capacity to encode and store a memory at molecular, cellular, synaptic, and circuit levels.
Collapse
Affiliation(s)
| | - Thomas James Carew
- Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003, USA.
| |
Collapse
|
38
|
Coto-Montes A, Boga JA, Tan DX, Reiter RJ. Melatonin as a Potential Agent in the Treatment of Sarcopenia. Int J Mol Sci 2016; 17:ijms17101771. [PMID: 27783055 PMCID: PMC5085795 DOI: 10.3390/ijms17101771] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/17/2016] [Accepted: 10/17/2016] [Indexed: 12/31/2022] Open
Abstract
Considering the increased speed at which the world population is aging, sarcopenia could become an epidemic in this century. This condition currently has no means of prevention or treatment. Melatonin is a highly effective and ubiquitously acting antioxidant and free radical scavenger that is normally produced in all organisms. This molecule has been implicated in a huge number of biological processes, from anticonvulsant properties in children to protective effects on the lung in chronic obstructive pulmonary disease. In this review, we summarize the data which suggest that melatonin may be beneficial in attenuating, reducing or preventing each of the symptoms that characterize sarcopenia. The findings are not limited to sarcopenia, but also apply to osteoporosis-related sarcopenia and to age-related neuromuscular junction dysfunction. Since melatonin has a high safety profile and is drastically reduced in advanced age, its potential utility in the treatment of sarcopenic patients and related dysfunctions should be considered.
Collapse
Affiliation(s)
- Ana Coto-Montes
- Department of Morphology and Cellular Biology, Medicine Faculty, University of Oviedo, Julian Claveria, s/n, Oviedo 33006, Spain.
- Department of Cellular and Structural Biology, UTHSCSA, San Antonio, TX 78229, USA.
| | - Jose A Boga
- Department of Cellular and Structural Biology, UTHSCSA, San Antonio, TX 78229, USA.
- Service of Microbiology, Hospital Universitario Central de Asturias, Avenida de Roma, s/n, Oviedo 33011, Spain.
| | - Dun X Tan
- Department of Cellular and Structural Biology, UTHSCSA, San Antonio, TX 78229, USA.
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UTHSCSA, San Antonio, TX 78229, USA.
| |
Collapse
|
39
|
Chen X, Hao A, Li X, Du Z, Li H, Wang H, Yang H, Fang Z. Melatonin inhibits tumorigenicity of glioblastoma stem-like cells via the AKT-EZH2-STAT3 signaling axis. J Pineal Res 2016; 61:208-17. [PMID: 27121240 DOI: 10.1111/jpi.12341] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 04/26/2016] [Indexed: 01/10/2023]
Abstract
Glioblastoma stem-like cells (GSCs) displaying self-renewing and tumor-propagating capacity play a particularly important role in maintaining tumor growth, therapeutic resistance, and tumor recurrence. Therefore, new therapeutic strategies focusing on impairing GSC maintenance are urgently needed. Here, we used GSCs isolated from surgical specimens from patients with glioblastoma multiforme (GBM) to study the roles and underlying mechanisms associated with melatonin in GSC biology. The results showed that melatonin directly targeted glioma tumor cells by altering GSC biology and inhibiting GSC proliferation. Additionally, melatonin altered profile of transcription factors to inhibit tumor initiation and propagation. Furthermore, EZH2 S21 phosphorylation and EZH2-STAT3 interaction in GSCs were impaired following melatonin treatment. These results suggested that melatonin attenuated multiple key signals involved in GSC self-renewal and survival, and further supported melatonin as a promising GBM therapeutic.
Collapse
Affiliation(s)
- Xueran Chen
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
- Cancer Hospital, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Aijun Hao
- Department of Histology and Embryology, Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Xian Li
- Department of Histology and Embryology, Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Zhaoxia Du
- Department of Histology and Embryology, Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Hao Li
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Hongzhi Wang
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
- Cancer Hospital, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Haoran Yang
- Cancer Hospital, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Zhiyou Fang
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
- Cancer Hospital, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| |
Collapse
|
40
|
Esteban-Zubero E, García-Gil FA, López-Pingarrón L, Alatorre-Jiménez MA, Ramírez JM, Tan DX, García JJ, Reiter RJ. Melatonin role preventing steatohepatitis and improving liver transplantation results. Cell Mol Life Sci 2016; 73:2911-2927. [PMID: 27022943 PMCID: PMC11108472 DOI: 10.1007/s00018-016-2185-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 03/18/2016] [Indexed: 12/18/2022]
Abstract
Liver steatosis is a prevalent process that is induced due to alcoholic or non-alcoholic intake. During the course of these diseases, the generation of reactive oxygen species, followed by molecular damage to lipids, protein and DMA occurs generating organ cell death. Transplantation is the last-resort treatment for the end stage of both acute and chronic hepatic diseases, but its success depends on ability to control ischemia-reperfusion injury, preservation fluids used, and graft quality. Melatonin is a powerful endogenous antioxidant produced by the pineal gland and a variety of other because of its efficacy in organs; melatonin has been investigated to improve the outcome of organ transplantation by reducing ischemia-reperfusion injury and due to its synergic effect with organ preservation fluids. Moreover, this indolamine also prevent liver steatosis. That is important because this disease may evolve leading to an organ transplantation. This review summarizes the observations related to melatonin beneficial actions in organ transplantation and ischemic-reperfusion models.
Collapse
Affiliation(s)
- Eduardo Esteban-Zubero
- Department of Pharmacology and Physiology, University of Zaragoza, Calle Domingo Miral s/n, 50009, Saragossa, Spain.
| | - Francisco Agustín García-Gil
- Department of Surgery, Gynaecology and Obstetrics, University of Zaragoza, Calle Domingo Miral s/n, 50009, Saragossa, Spain
| | - Laura López-Pingarrón
- Department of Medicine, Psychiatry and Dermatology, University of Zaragoza, Calle Domingo Miral s/n, 50009, Saragossa, Spain
| | - Moisés Alejandro Alatorre-Jiménez
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - José Manuel Ramírez
- Department of Surgery, Gynaecology and Obstetrics, University of Zaragoza, Calle Domingo Miral s/n, 50009, Saragossa, Spain
| | - Dun-Xian Tan
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - José Joaquín García
- Department of Pharmacology and Physiology, University of Zaragoza, Calle Domingo Miral s/n, 50009, Saragossa, Spain
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA.
| |
Collapse
|
41
|
de Luxán-Delgado B, Potes Y, Rubio-González A, Caballero B, Solano JJ, Fernández-Fernández M, Bermúdez M, Rodrigues Moreira Guimarães M, Vega-Naredo I, Boga JA, Coto-Montes A. Melatonin reduces endoplasmic reticulum stress and autophagy in liver of leptin-deficient mice. J Pineal Res 2016; 61:108-23. [PMID: 27090356 DOI: 10.1111/jpi.12333] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/12/2016] [Indexed: 12/17/2022]
Abstract
The sedentary lifestyle of modern society along with the high intake of energetic food has made obesity a current worldwide health problem. Despite great efforts to study the obesity and its related diseases, the mechanisms underlying the development of these diseases are not well understood. Therefore, identifying novel strategies to slow the progression of these diseases is urgently needed. Experimental observations indicate that melatonin has an important role in energy metabolism and cell signalling; thus, the use of this molecule may counteract the pathologies of obesity. In this study, wild-type and obese (ob/ob) mice received daily intraperitoneal injections of melatonin at a dose of 500 μg/kg body weight for 4 weeks, and the livers of these mice were used to evaluate the oxidative stress status, proteolytic (autophagy and proteasome) activity, unfolded protein response, inflammation and insulin signalling. Our results show, for the first time, that melatonin could significantly reduce endoplasmic reticulum stress in leptin-deficient obese animals and ameliorate several symptoms that characterize this disease. Our study supports the potential of melatonin as a therapeutic treatment for the most common type of obesity and its liver-associated disorders.
Collapse
Affiliation(s)
- Beatriz de Luxán-Delgado
- Department of Morphology and Cellular Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain
| | - Yaiza Potes
- Department of Morphology and Cellular Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain
| | - Adrian Rubio-González
- Department of Morphology and Cellular Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain
| | - Beatriz Caballero
- Department of Morphology and Cellular Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain
| | | | | | | | - Marcela Rodrigues Moreira Guimarães
- Department of Morphology and Cellular Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain
- Neurology, Laboratory of Nutritional Investigation and Degenerative-Chronic Diseases (LINDCD), Federal University of Rio de Janeiro State - UNIRIO, Rio de Janeiro, Brazil
| | - Ignacio Vega-Naredo
- Department of Morphology and Cellular Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Cantanhede, Portugal
| | - José Antonio Boga
- Microbiology Department, Hospital Universitario Central de Asturias, Asturias, Oviedo, Spain
| | - Ana Coto-Montes
- Department of Morphology and Cellular Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain
| |
Collapse
|
42
|
Esteban-Zubero E, García-Gil FA, López-Pingarrón L, Alatorre-Jiménez MA, Iñigo-Gil P, Tan DX, García JJ, Reiter RJ. Potential benefits of melatonin in organ transplantation: a review. J Endocrinol 2016; 229:R129-R146. [PMID: 27068700 DOI: 10.1530/joe-16-0117] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 04/11/2016] [Indexed: 12/14/2022]
Abstract
Organ transplantation is a useful therapeutic tool for patients with end-stage organ failure; however, graft rejection is a major obstacle in terms of a successful treatment. Rejection is usually a consequence of a complex immunological and nonimmunological antigen-independent cascade of events, including free radical-mediated ischemia-reperfusion injury (IRI). To reduce the frequency of this outcome, continuing improvements in the efficacy of antirejection drugs are a top priority to enhance the long-term survival of transplant recipients. Melatonin (N-acetyl-5-methoxytryptamine) is a powerful antioxidant and ant-inflammatory agent synthesized from the essential amino acid l-tryptophan; it is produced by the pineal gland as well as by many other organs including ovary, testes, bone marrow, gut, placenta, and liver. Melatonin has proven to be a potentially useful therapeutic tool in the reduction of graft rejection. Its benefits are based on its direct actions as a free radical scavenger as well as its indirect antioxidative actions in the stimulation of the cellular antioxidant defense system. Moreover, it has significant anti-inflammatory activity. Melatonin has been found to improve the beneficial effects of preservation fluids when they are enriched with the indoleamine. This article reviews the experimental evidence that melatonin is useful in reducing graft failure, especially in cardiac, bone, otolaryngology, ovarian, testicular, lung, pancreas, kidney, and liver transplantation.
Collapse
Affiliation(s)
| | | | - Laura López-Pingarrón
- Department of MedicinePsychiatry and Dermatology, University of Zaragoza, Zaragoza, Spain
| | | | - Pablo Iñigo-Gil
- Department of MedicinePsychiatry and Dermatology, University of Zaragoza, Zaragoza, Spain
| | - Dun-Xian Tan
- Department of Cellular and Structural BiologyUniversity of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - José Joaquín García
- Department of Pharmacology and PhysiologyUniversity of Zaragoza, Zaragoza, Spain
| | - Russel J Reiter
- Department of Cellular and Structural BiologyUniversity of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
43
|
Melatonin, an inhibitory agent in breast cancer. Breast Cancer 2016; 24:42-51. [PMID: 27017208 DOI: 10.1007/s12282-016-0690-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/15/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND The heterogeneous nature of breast cancer makes it one of the most challenging cancers to treat. Due to the stimulatory effect of estrogen in mammary cancer progression, anti-estrogenic agents like melatonin have found their way into breast cancer treatment. Further studies confirmed a reverse correlation between nocturnal melatonin levels and the development of mammary cancer. In this study we reviewed the molecular inhibitory effects of melatonin in breast cancer therapy. METHODS To open access the articles, Google scholar and science direct were used as a motor search. We used from valid external and internal databases. To reach the search formula, we determined mean key words like breast cancer, melatonin, cell proliferation and death. To retrieval the related articles, we continuously search the articles from 1984 to 2015. The relevance and the quality of the 480 articles were screened; at least we selected 80 eligible articles about melatonin molecular mechanism in breast cancer. RESULT The results showed that melatonin not only inhibits breast cancer cell growth, but also is capable of inhibiting angiogenesis, cancer cell invasion, and telomerase activity. Interestingly this hormone is able to induce apoptosis through the suppression or induction of a wide range of signaling pathways. Moreover, it seems that the concomitant administration of melatonin with other conventional chemotherapy agents had beneficial effects for patients with breast cancer, by alleviating unfavorable effects of those agents and enhancing their efficacy. CONCLUSION The broad inhibitory effects of melatonin in breast cancer make it a promising agent and may add it to the list of potential drugs in treatment of this cancer.
Collapse
|
44
|
Owino S, Contreras-Alcantara S, Baba K, Tosini G. Melatonin Signaling Controls the Daily Rhythm in Blood Glucose Levels Independent of Peripheral Clocks. PLoS One 2016; 11:e0148214. [PMID: 26824606 PMCID: PMC4732609 DOI: 10.1371/journal.pone.0148214] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 01/14/2016] [Indexed: 01/01/2023] Open
Abstract
Melatonin is rhythmically secreted by both the pineal gland and retina in a circadian fashion, with its peak synthesis occurring during the night. Once synthesized, melatonin exerts its effects by binding to two specific G-protein coupled receptors-melatonin receptor type 1(MT1) and melatonin receptor type 2(MT2). Recent studies suggest the involvement of MT1 and MT2 in the regulation of glucose homeostasis; however the ability of melatonin signaling to impart timing cues on glucose metabolism remains poorly understood. Here we report that the removal of MT1 or MT2 in mice abolishes the daily rhythm in blood glucose levels. Interestingly, removal of melatonin receptors produced small effects on the rhythmic expression patterns of clock genes within skeletal muscle, liver, and adipose tissue. Taken together, our data suggest that the loss of the daily rhythm in blood glucose observed in MT1(-/-) and MT2(-/-) mice does not occur as a consequence of 'disrupted' clocks within insulin sensitive tissues. Finally our results highlight a diurnal contribution of melatonin receptor signaling in the daily regulation of blood glucose levels.
Collapse
MESH Headings
- Adipose Tissue/metabolism
- Animals
- Blood Glucose/metabolism
- CLOCK Proteins/genetics
- CLOCK Proteins/metabolism
- Circadian Rhythm/genetics
- Gene Expression Regulation
- Homeostasis
- Liver/metabolism
- Male
- Melatonin/metabolism
- Mice
- Mice, Knockout
- Muscle, Skeletal/metabolism
- Pineal Gland/metabolism
- Receptor, Melatonin, MT1/deficiency
- Receptor, Melatonin, MT1/genetics
- Receptor, Melatonin, MT2/deficiency
- Receptor, Melatonin, MT2/genetics
- Retina/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Sharon Owino
- Neuroscience Institute and Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Susana Contreras-Alcantara
- Neuroscience Institute and Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Kenkichi Baba
- Neuroscience Institute and Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
- * E-mail: (KB); (GT)
| | - Gianluca Tosini
- Neuroscience Institute and Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
- * E-mail: (KB); (GT)
| |
Collapse
|
45
|
Melatonin, bone regulation and the ubiquitin-proteasome connection: A review. Life Sci 2015; 145:152-60. [PMID: 26706287 DOI: 10.1016/j.lfs.2015.12.031] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 12/02/2015] [Accepted: 12/14/2015] [Indexed: 01/07/2023]
Abstract
Recently, investigators have shown that ubiquitin-proteasome-mediated protein degradation is critical in regulating the balance between bone formation and bone resorption. The major signal transduction pathways regulating bone formation are the RANK/NF-κB pathway and the Wnt/β-catenin pathway. These signal transduction pathways regulate the activity of mature osteoblasts and osteoclasts. In addition, the Wnt/β-catenin pathway is one of the major signaling pathways in the differentiation of osteoblasts. The ubiquitin ligases that are reported to be of major significance in regulating these pathways are the ubiquitin SCF(B-TrCP) ligase (which regulates activation of NF-κB via degradation of IkBα in osteoclasts, and regulates bone transcription factors via degradation of β-catenin), the Keap-Cul3-Rbx1 ligase (which regulates degradation of IkB kinase, Nrf2, and the antiapoptotic factor Bcl-2), and Smurf1. Also of significance in regulating osteoclastogenesis is the deubiquitinase, CYLD (cylindramatosis protein), which facilitates the separation of NF-κB from IkBα. The degradation of CYLD is also under the regulation of SCF(B-TrCP). Proteasome inhibitors influence the activity of mature osteoblasts and osteoclasts, but also modulate the differentiation of precursor cells into osteoblasts. Preclinical studies show that melatonin also influences bone metabolism by stimulating bone growth and inhibiting osteoclast activity. These actions of melatonin could be interpreted as being mediated by the ubiquitin ligases SCF(B-TrCP) and Keap-Cul3-Rbx, or as an inhibitory effect on proteasomes. Clinical trials of the use of melatonin in the treatment of bone disease, including multiple myeloma, using both continuous and intermittent modes of administration, are warranted.
Collapse
|
46
|
Vriend J, Reiter RJ. Breast cancer cells: Modulation by melatonin and the ubiquitin-proteasome system--a review. Mol Cell Endocrinol 2015; 417:1-9. [PMID: 26363225 DOI: 10.1016/j.mce.2015.09.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 09/01/2015] [Indexed: 02/07/2023]
Abstract
Melatonin inhibits human breast cancer cells stimulated with estrogen. This antiproliferative action depends on the presence of the estrogen receptor alpha (ERα) in the human MCF-7 cell line and is strictly dose-dependent. Since researchers concerned with melatonin and breast cancer have not considered the relevance of the ubiquitin-proteasome system to this research in this review we do so. The fact that the first breast cancer susceptibility gene to be identified, Brca1, functions as a ubiquitin ligase indicates that the ubiquitin-proteasome system has a role in regulating susceptibility to breast cancer. While mutations of this gene increase the incidence of breast cancer, the wild type gene suppresses estrogen-dependent transcriptional events relying on the estrogen receptor ERα. Three other ubiquitin ligases, SCF(Skp2), E6AP and APC, interact directly with ERα at the ERE and AP-1 promoters of ERα target genes. Melatonin, like proteasome inhibitors, decreases estrogen-induced gene transcription. Indeed, it has been reported that melatonin specifically inhibits estrogen-induced transcription mediated by ERα at the ERE and AP1 gene promoters. Herein, we present a model in which the inhibitory action of melatonin on MCF-7 cells is mediated, directly or indirectly, by the ubiquitin-proteasome system. In this model ERα, apoptotic proteins, and cell cycle proteins, all influenced by melatonin, are substrates of key ubiquitin ligases including SCF(Skp2), E6AP, and SCF(B-TrCP). Since dysfunction of the ubiquitin-proteasome system is a risk factor for breast cancer, this model provides a context in which to test the clinical potential, and limitations, of melatonin and proteasome inhibitors.
Collapse
Affiliation(s)
- Jerry Vriend
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada.
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center San Antonio, TX, USA
| |
Collapse
|
47
|
Manchester LC, Coto-Montes A, Boga JA, Andersen LPH, Zhou Z, Galano A, Vriend J, Tan DX, Reiter RJ. Melatonin: an ancient molecule that makes oxygen metabolically tolerable. J Pineal Res 2015; 59:403-19. [PMID: 26272235 DOI: 10.1111/jpi.12267] [Citation(s) in RCA: 674] [Impact Index Per Article: 67.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/10/2015] [Indexed: 12/11/2022]
Abstract
Melatonin is remarkably functionally diverse with actions as a free radical scavenger and antioxidant, circadian rhythm regulator, anti-inflammatory and immunoregulating molecule, and as an oncostatic agent. We hypothesize that the initial and primary function of melatonin in photosynthetic cyanobacteria, which appeared on Earth 3.5-3.2 billion years ago, was as an antioxidant. The evolution of melatonin as an antioxidant by this organism was necessary as photosynthesis is associated with the generation of toxic-free radicals. The other secondary functions of melatonin came about much later in evolution. We also surmise that mitochondria and chloroplasts may be primary sites of melatonin synthesis in all eukaryotic cells that possess these organelles. This prediction is made on the basis that mitochondria and chloroplasts of eukaryotes developed from purple nonsulfur bacteria (which also produce melatonin) and cyanobacteria when they were engulfed by early eukaryotes. Thus, we speculate that the melatonin-synthesizing actions of the engulfed bacteria were retained when these organelles became mitochondria and chloroplasts, respectively. That mitochondria are likely sites of melatonin formation is supported by the observation that this organelle contains high levels of melatonin that are not impacted by blood melatonin concentrations. Melatonin has a remarkable array of means by which it thwarts oxidative damage. It, as well as its metabolites, is differentially effective in scavenging a variety of reactive oxygen and reactive nitrogen species. Moreover, melatonin and its metabolites modulate a large number of antioxidative and pro-oxidative enzymes, leading to a reduction in oxidative damage. The actions of melatonin on radical metabolizing/producing enzymes may be mediated by the Keap1-Nrf2-ARE pathway. Beyond its direct free radical scavenging and indirect antioxidant effects, melatonin has a variety of physiological and metabolic advantages that may enhance its ability to limit oxidative stress.
Collapse
Affiliation(s)
- Lucien C Manchester
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
| | - Ana Coto-Montes
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
| | - Jose Antonio Boga
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
| | - Lars Peter H Andersen
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
| | - Zhou Zhou
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
| | - Annia Galano
- Departamento de Quimica, Universidad Autonoma Metropolitana-Iztapalapa, Mexico DF, Mexico
| | - Jerry Vriend
- Department of Human Anatomy and Cell Biology, University of Manitoba, Winnipeg, MA, Canada
| | - Dun-Xian Tan
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
| |
Collapse
|
48
|
Fernández A, Ordóñez R, Reiter RJ, González-Gallego J, Mauriz JL. Melatonin and endoplasmic reticulum stress: relation to autophagy and apoptosis. J Pineal Res 2015. [PMID: 26201382 DOI: 10.1111/jpi.12264] [Citation(s) in RCA: 392] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Endoplasmic reticulum (ER) is a dynamic organelle that participates in a number of cellular functions by controlling lipid metabolism, calcium stores, and proteostasis. Under stressful situations, the ER environment is compromised, and protein maturation is impaired; this causes misfolded proteins to accumulate and a characteristic stress response named unfolded protein response (UPR). UPR protects cells from stress and contributes to cellular homeostasis re-establishment; however, during prolonged ER stress, UPR activation promotes cell death. ER stressors can modulate autophagy which in turn, depending of the situation, induces cell survival or death. Interactions of different autophagy- and apoptosis-related proteins and also common signaling pathways have been found, suggesting an interplay between these cellular processes, although their dynamic features are still unknown. A number of pathologies including metabolic, neurodegenerative and cardiovascular diseases, cancer, inflammation, and viral infections are associated with ER stress, leading to a growing interest in targeting components of the UPR as a therapeutic strategy. Melatonin has a variety of antioxidant, anti-inflammatory, and antitumor effects. As such, it modulates apoptosis and autophagy in cancer cells, neurodegeneration and the development of liver diseases as well as other pathologies. Here, we review the effects of melatonin on the main ER stress mechanisms, focusing on its ability to regulate the autophagic and apoptotic processes. As the number of studies that have analyzed ER stress modulation by this indole remains limited, further research is necessary for a better understanding of the crosstalk between ER stress, autophagy, and apoptosis and to clearly delineate the mechanisms by which melatonin modulates these responses.
Collapse
Affiliation(s)
- Anna Fernández
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), León, Spain
| | - Raquel Ordóñez
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), León, Spain
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Javier González-Gallego
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), León, Spain
| | - José L Mauriz
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), León, Spain
| |
Collapse
|
49
|
Favero G, Rodella LF, Nardo L, Giugno L, Cocchi MA, Borsani E, Reiter RJ, Rezzani R. A comparison of melatonin and α-lipoic acid in the induction of antioxidant defences in L6 rat skeletal muscle cells. AGE (DORDRECHT, NETHERLANDS) 2015; 37:9824. [PMID: 26250907 PMCID: PMC5005823 DOI: 10.1007/s11357-015-9824-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 07/28/2015] [Indexed: 06/04/2023]
Abstract
Aging is characterized by a progressive deterioration in physiological functions and metabolic processes. The loss of cells during aging in vital tissues and organs is related to several factors including oxidative stress and inflammation. Skeletal muscle degeneration is common in elderly people; in fact, this tissue is particularly vulnerable to oxidative stress since it requires large amounts of oxygen, and thus, oxidative damage is abundant and accumulates with increasing age. Melatonin (N-acetyl-5-methoxytryptamine) is a highly efficient scavenger of reactive oxygen species and it also exhibits beneficial anti-inflammatory and anti-aging effects. This study investigated the susceptibility of rat L6 skeletal muscle cells to an induced oxidative stress following their exposure to hydrogen peroxide (50 μM) and evaluating the potential protective effects of pre-treatment with melatonin (10 nM) compared to the known beneficial effect of alpha-lipoic acid (300 μM). Hydrogen peroxide-induced obvious oxidative stress; it increased the expression of tumour necrosis factor-alpha and in turn promoted nuclear factor kappa-B and overrode the endogenous defence mechanisms. Conversely, pre-treatment of the hydrogen peroxide-exposed cells to melatonin or alpha-lipoic acid increased endogenous antioxidant enzymes, including superoxide dismutase-2 and heme oxygenase-1; moreover, they ameliorated significantly oxidative stress damage and partially reduced alterations in the muscle cells, which are typical of aging. In conclusion, melatonin was equally effective as alpha-lipoic acid; it exhibited marked antioxidant and anti-aging effects at the level of skeletal muscle in vitro even when it was given in a much lower dose than alpha-lipoic acid.
Collapse
Affiliation(s)
- Gaia Favero
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Luigi Fabrizio Rodella
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
- University of Brescia, Brescia, Italy
| | - Lorenzo Nardo
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 185 Berry Street, Suite 350, San Francisco, CA 94107 USA
| | - Lorena Giugno
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Marco Angelo Cocchi
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Elisa Borsani
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
- University of Brescia, Brescia, Italy
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229 USA
| | - Rita Rezzani
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
- University of Brescia, Brescia, Italy
| |
Collapse
|
50
|
Vriend J, Reiter RJ. The Keap1-Nrf2-antioxidant response element pathway: a review of its regulation by melatonin and the proteasome. Mol Cell Endocrinol 2015; 401:213-20. [PMID: 25528518 DOI: 10.1016/j.mce.2014.12.013] [Citation(s) in RCA: 192] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 12/12/2014] [Indexed: 12/20/2022]
Abstract
Both melatonin and proteasome inhibitors upregulate antioxidant enzymes including superoxide dismutase (SOD), glutathione peroxidase (GP), hemoxygenase 1 (HO-1), and NADPH:quinone oxidoreductase (NQO1). Recent evidence suggests that the antioxidant action of both melatonin and proteasome inhibitors involves the Keap1-ARE (Keap1 antioxidant response element) pathway via the upregulation of Nrf2. Melatonin and proteasome inhibitors suppress the degradation of Nrf2 and also enhance its nuclear translocation. In the nucleus Nrf2, together with a cofactor, stimulates the transcription of antioxidant enzymes and detoxifying enzymes. The ligase (E3) complex (Keap1-Cul3-Rbx1) responsible for ubiquitinating Nrf2, prior to proteasomal degradation, also ubiquitinates IkB kinase and the antiapoptotic factor Bcl-2, and possibly additional proteins. In various systems, NF-κB, which is inhibited by IkBα, is downregulated by proteasome inhibitors as well as by melatonin. Similarly in leukemic cells, Bcl-2 is down-regulated by the proteasome inhibitor, bortezomib, and also by melatonin. Thus melatonin administration modulates the activity of three separate substrates of the Keap1-Cul3-Rbx1 ubiquitin ligase. These facts could be accounted for by the hypothesis that melatonin interacts with the ubiquitin ligase complex or, more likely, by the hypothesis that melatonin acts as a proteasome inhibitor. A recent study documented that melatonin acts as a proteasome inhibitor in cancer cells as well as inhibiting chymotrypsin-like activity in cell-free systems of these cells. Further studies, however, are needed to clarify the interaction of melatonin and the ubiquitin-proteasome system as they relate to oxidative stress.
Collapse
Affiliation(s)
- Jerry Vriend
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada.
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, TX, United States
| |
Collapse
|