1
|
Alkandari S, Zafar TA, Al-Sabah S, Abu Farha M, Abubaker J, Al-Mulla F. Parboiled Rice and Glycemic Control: Effects on Postprandial Glucose, Insulin Sensitivity, and Incretin Response in Healthy and Type 2 Diabetic Individuals, a Pilot Study. Foods 2025; 14:1905. [PMID: 40509433 PMCID: PMC12155248 DOI: 10.3390/foods14111905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2025] [Revised: 05/23/2025] [Accepted: 05/26/2025] [Indexed: 06/16/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM) represents a significant global health burden, especially in populations where rice constitutes a dietary staple. Parboiled rice (PBR), known for its lower glycemic index compared to conventional white rice (WR), may offer benefits in managing postprandial hyperglycemia. Nevertheless, the impact of PBR consumption on insulin sensitivity, β-cell function, and incretin hormone responses remains poorly understood. METHODS This randomized crossover pilot study aimed to assess and compare the acute effects of PBR and WR intake on postprandial glucose regulation, insulin sensitivity, β-cell functionality, and glucagon-like peptide-1 (GLP-1) responses in healthy subjects and individuals with T2DM. A total of 20 participants were recruited and evenly allocated into healthy (n = 10) and T2DM (n = 10) groups. Following the ingestion of either PBR or WR, blood samples were collected at fasting and various postprandial intervals to determine glucose, insulin, and GLP-1 levels. Insulin sensitivity and β-cell function were evaluated using HOMA-IR, Matsuda Index (MI), and Disposition Index (DI). RESULTS As expected, T2DM participants exhibited significantly elevated fasting glucose and insulin levels compared to healthy controls. Consumption of PBR led to significantly lower postprandial glucose responses in healthy subjects relative to WR. Although a similar trend of reduced glucose levels was observed in T2DM subjects after PBR intake, this reduction did not reach statistical significance. Parallel trends were observed in insulin secretion patterns. Moreover, GLP-1 responses were notably diminished in T2DM individuals compared to healthy participants. Importantly, MI and DI values significantly increased after PBR consumption in healthy individuals compared to those with T2DM, indicating improved insulin sensitivity and β-cell responsiveness. CONCLUSIONS These preliminary findings suggest that PBR consumption may confer beneficial effects by lowering postprandial glucose and enhancing insulin sensitivity. Further studies with larger cohorts are warranted to confirm these outcomes and elucidate the physiological mechanisms behind PBR's potential role in dietary management strategies for T2DM.
Collapse
Affiliation(s)
- Sara Alkandari
- Ahmadi Hospital, Kuwait Oil Company (KOC), Al-Ahmadi 61008, Kuwait;
| | - Tasleem A. Zafar
- Department of Food Science and Nutrition, College of Life Sciences, Kuwait University, Shadadiya 12037, Kuwait
| | - Suleiman Al-Sabah
- Department of Pharmacology & Toxicology, Faculty of Medicine, Kuwait University, Kuwait City 13060, Kuwait;
| | - Mohammed Abu Farha
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait City 15462, Kuwait; (M.A.F.); (J.A.)
| | - Jehad Abubaker
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait City 15462, Kuwait; (M.A.F.); (J.A.)
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait City 15462, Kuwait;
| |
Collapse
|
2
|
Singer B, Chaimovitz D, Bucek T, Dayon E, Abbott-Korumi A, Spatz M, Makkapati T, Petrosyan H, Delavaux L. Corticosteroid Use in Musculoskeletal and Neuraxial Interventions: Effects on Glycemic Control. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:936. [PMID: 40428894 PMCID: PMC12113388 DOI: 10.3390/medicina61050936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 05/01/2025] [Accepted: 05/16/2025] [Indexed: 05/29/2025]
Abstract
Effective multidisciplinary pain management involves an in-depth knowledge not only of diagnosis and treatment but of how interventional procedures affect patients across all health domains. One of the most common pharmacological tools utilized in patients suffering from chronic pain disorders is corticosteroids. Corticosteroids are leveraged for their anti-inflammatory properties across a wide range of disorders. This review examines the role of corticosteroids and pain management with a specific focus on their metabolic impact regarding glucose metabolism. Corticosteroids have been shown to increase gluconeogenesis, resulting in reduced insulin sensitivity and an impaired peripheral glucose uptake. These varied responses to corticosteroids are especially concerning given the high prevalence of diabetes mellitus in chronic pain patients. There is well-documented evidence of not only transient hyperglycemia but emerging literature on prolonged glycemic disturbances that may have a greater effect on patients than previously recognized. A review of the available literature reveals variations in hyperglycemia depending on corticosteroid type, dose, and various patient-specific factors. Some research does suggest that lower corticosteroid dosages can provide similar therapeutic benefits and potentially reduce glycemic aberrations. Given the current evidence, clinicians should closely monitor patients' hemoglobin A1C levels when determining the risks and benefits of an interventional procedure and consider alternative pain management strategies when appropriate. Future research should focus on optimizing corticosteroid selection and dosing to balance the safety, particularly in diabetic or prediabetic patient populations.
Collapse
Affiliation(s)
- Brian Singer
- Department of Physical Medicine and Rehabilitation, JFK Johnson Rehabilitation Institute at Hackensack Meridian Health, Edison, NJ 08820, USA; (B.S.); (T.B.); (A.A.-K.); (T.M.); (H.P.)
| | - Dovid Chaimovitz
- Rosalind Franklin University of Medicine and Science, Chicago, IL 60064, USA;
| | - Thomas Bucek
- Department of Physical Medicine and Rehabilitation, JFK Johnson Rehabilitation Institute at Hackensack Meridian Health, Edison, NJ 08820, USA; (B.S.); (T.B.); (A.A.-K.); (T.M.); (H.P.)
| | - Eli Dayon
- Burke Rehabilitation Hospital, White Plains, NY 10605, USA;
| | - Aimee Abbott-Korumi
- Department of Physical Medicine and Rehabilitation, JFK Johnson Rehabilitation Institute at Hackensack Meridian Health, Edison, NJ 08820, USA; (B.S.); (T.B.); (A.A.-K.); (T.M.); (H.P.)
| | - Moshe Spatz
- Rutgers New Jersey Medical School, Newark, NJ 07103, USA;
| | - Tejaswi Makkapati
- Department of Physical Medicine and Rehabilitation, JFK Johnson Rehabilitation Institute at Hackensack Meridian Health, Edison, NJ 08820, USA; (B.S.); (T.B.); (A.A.-K.); (T.M.); (H.P.)
| | - Hayk Petrosyan
- Department of Physical Medicine and Rehabilitation, JFK Johnson Rehabilitation Institute at Hackensack Meridian Health, Edison, NJ 08820, USA; (B.S.); (T.B.); (A.A.-K.); (T.M.); (H.P.)
| | - Laurent Delavaux
- Department of Physical Medicine and Rehabilitation, JFK Johnson Rehabilitation Institute at Hackensack Meridian Health, Edison, NJ 08820, USA; (B.S.); (T.B.); (A.A.-K.); (T.M.); (H.P.)
| |
Collapse
|
3
|
Datta S, Bhattacharjee S, Ghosh S, Ghosh AJ, Saha T, Sen A. Validating the antidiabetic potential of Nakima (Tupistra clarkei Hook.f.), a traditional food from eastern Himalayan region, through network pharmacology and in vivo experimentation. J Pharm Pharmacol 2025:rgaf014. [PMID: 40329835 DOI: 10.1093/jpp/rgaf014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 03/25/2025] [Indexed: 05/08/2025]
Abstract
OBJECTIVE To explore and understand the antidiabetic activity of Tupistra clarkei Hook.f. inflorescence, providing a scientific explanation to the ethnomedicinal properties. METHODS The constituents of the plant were determined through GC-MS analysis, which were used for target prediction and network pharmacology to understand how the plant regulates hyperglycaemia and other diabetes complications. These properties were validated in vivo along with further assessment of the antioxidant potential of the plant, both in vitro and in vivo. KEY FINDINGS The plant showed good phenol-flavonoid content, and antioxidant potential both in vitro and in vivo. GC-MS analysis identified 24 constituents of the plant. In silico analysis showed their ability to target 166 proteins that are associated with pathways in controlling hyperglycaemia and other diabetic consequences, protection of pancreatic tissue, insulin secretion, and insulin resistance. This was reflected in the in vivo experiment where T. clarkei showed ability to reduce FBG, LDL-C, VLDL-C levels, improve the levels of HDL-C, and also facilitate reversal of damage in pancreatic islets. CONCLUSION Our study validated the antidiabetic potential Tupistra clarkei inflorescence in the in silico and in vivo assessment, and has proved to have good antioxidant activity and potential against diabetes. However, further clinical trials are essential.
Collapse
Affiliation(s)
- Sutapa Datta
- Molecular Genetics Laboratory, Department of Botany, University of North Bengal, Raja Rammohanpur, Siliguri-734013, India
| | - Soumita Bhattacharjee
- Molecular Genetics Laboratory, Department of Botany, University of North Bengal, Raja Rammohanpur, Siliguri-734013, India
| | - Supriyo Ghosh
- Immunology and Microbiology Laboratory, Department of Zoology, University of North Bengal, Siliguri-734013, India
| | - Amlan Jyoti Ghosh
- Immunology and Microbiology Laboratory, Department of Zoology, University of North Bengal, Siliguri-734013, India
| | - Tilak Saha
- Immunology and Microbiology Laboratory, Department of Zoology, University of North Bengal, Siliguri-734013, India
| | - Arnab Sen
- Molecular Genetics Laboratory, Department of Botany, University of North Bengal, Raja Rammohanpur, Siliguri-734013, India
- Bioinformatics Facility, University of North Bengal, Raja Rammohanpur, Siliguri-734013, India
- Biswa Bangla Genome Centre, University of North Bengal, Raja Rammohanpur, Siliguri-734013, India
| |
Collapse
|
4
|
Zhang C, Xiang X, Liu J, Huang Y, Xue J, Sun Q, Leng S, Liu S, He X, Hu P, Zhan X, Qiu Q, Yang S, Brosius J, Deng C. Constitutively active glucagon receptor drives high blood glucose in birds. Nature 2025; 641:1287-1297. [PMID: 40031956 PMCID: PMC12119371 DOI: 10.1038/s41586-025-08811-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 02/19/2025] [Indexed: 03/05/2025]
Abstract
The maintenance of blood glucose, the body's primary source of energy, is indispensable for overall health and metabolic homeostasis. It is regulated predominantly by the glucagon receptor family which is highly conserved in vertebrates1-4. Compared with other vertebrates, avian blood glucose levels are relatively high5,6, and blood glucose regulatory mechanisms in birds have remained unclear. Here we show that high hepatic expression of the avian glucagon receptor (GCGR) in association with constitutively active Gs signalling is dependent on the interaction of different domains. In vivo experiments showed that expression of constitutively active GCGR in hepatic cells led to correspondingly high blood glucose, rapid hepatic lipid utilization and high metabolic rates via downstream signalling pathway activation in fish, reptiles, birds and mammals. Furthermore, we identified a point mutation proximal to the GCGR gene region in chicken that resulted in reduced GCGR mRNA expression and increased body weight. Overexpressing a natural human GCGR variant (HsGCGR(H339R)) with modest constitutive activity in mice demonstrated that high expression of this variant increased blood glucose concentration and reduced body weight. In sum, we find that high expression and constitutive activity of GCGR may have contributed to the evolution of flight in the ancestors of birds.
Collapse
Affiliation(s)
- Chang Zhang
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiangying Xiang
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jian Liu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yongjie Huang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jingwen Xue
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Qian Sun
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Song Leng
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Shaobo Liu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xuefei He
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Peng Hu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education), Shanghai Ocean University, Shanghai, China
| | - Xiangjiang Zhan
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qiang Qiu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Shilong Yang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Jürgen Brosius
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Cheng Deng
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
5
|
Ohira M, Kawagoe N, Kameyama C, Kondou Y, Igarashi M, Ueshiba H. Association of serum cortisol with insulin secretion and plasma aldosterone with insulin resistance in untreated type 2 diabetes: a cross-sectional study. Diabetol Metab Syndr 2025; 17:144. [PMID: 40296149 PMCID: PMC12036189 DOI: 10.1186/s13098-025-01706-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Accepted: 04/18/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Insulin secretion and resistance are key pathophysiological factors in type 2 diabetes. However, only 55% of patients achieve long-term blood glucose treatment goals, highlighting the need to clarify the pathophysiology of type 2 diabetes. While cortisol and aldosterone levels have been linked to insulin secretion and resistance in participants without type 2 diabetes, their role in patients with type 2 diabetes remains unclear. In this study, we aimed to investigate the relationships among insulin secretion, insulin resistance, and cortisol or aldosterone levels in patients with untreated type 2 diabetes. METHODS We retrospectively reviewed 121 patients with untreated type 2 diabetes mellitus. We analyzed the relationships between various clinical parameters, including adrenal hormones, and insulin secretion (homeostatic model assessment [HOMA2-%B]) or insulin resistance (HOMA2-IR). Multiple regression analysis was performed to identify parameters associated with HOMA2-%B or HOMA2-IR. RESULTS Spearman's rank correlation coefficient revealed that body weight (BW); body mass index (BMI); estimated glomerular filtration rate; and serum creatinine, uric acid, total cholesterol, high-density lipoprotein cholesterol (HDL-C), sodium, potassium, chloride, fasting blood glucose (FBG), glycated hemoglobin (HbA1c), serum C-peptide, and cortisol levels were significantly correlated with HOMA2-%B. Similarly, BW, BMI, aspartate transaminase levels, alanine transaminase (ALT) levels, triglyceride levels, HDL-C levels, FBG levels, serum C-peptide levels, renin activity, and plasma aldosterone concentration (PAC) were significantly correlated with HOMA2-IR. Multiple regression analysis revealed BMI, HbA1c levels, and cortisol levels as predictors of HOMA2-%B, whereas ALT levels and the PAC were predictors of HOMA2-IR. CONCLUSION Serum cortisol levels are associated with insulin secretion, and the PAC is associated with insulin resistance in patients with untreated type 2 diabetes. These findings suggest that aldosterone blockade may represent a potential therapeutic approach for reducing insulin resistance in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Masahiro Ohira
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Toho University Ohashi Medical Center, 2-22-36 Ohashi, Meguro-ku, Tokyo, 153-8515, Japan.
| | - Naoyuki Kawagoe
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Toho University Ohashi Medical Center, 2-22-36 Ohashi, Meguro-ku, Tokyo, 153-8515, Japan
| | - Chisato Kameyama
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Toho University Ohashi Medical Center, 2-22-36 Ohashi, Meguro-ku, Tokyo, 153-8515, Japan
| | - Yuko Kondou
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Toho University Ohashi Medical Center, 2-22-36 Ohashi, Meguro-ku, Tokyo, 153-8515, Japan
| | - Madoka Igarashi
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Toho University Ohashi Medical Center, 2-22-36 Ohashi, Meguro-ku, Tokyo, 153-8515, Japan
| | - Hajime Ueshiba
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Toho University Ohashi Medical Center, 2-22-36 Ohashi, Meguro-ku, Tokyo, 153-8515, Japan
| |
Collapse
|
6
|
Hu T, Fang Z. Explore potential immune-related targets of leeches in the treatment of type 2 diabetes based on network pharmacology and machine learning. Front Genet 2025; 16:1554622. [PMID: 40296871 PMCID: PMC12036332 DOI: 10.3389/fgene.2025.1554622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/25/2025] [Indexed: 04/30/2025] Open
Abstract
Introduction Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder that poses a significant global health burden due to its profound effects on systemic physiological homeostasis. Without timely intervention, the disease can progress insidiously, leading to multisystem complications such as cardiovascular, renal, and neuropathic pathologies. Consequently, pharmacological intervention becomes crucial in managing the condition. Leeches have been traditionally used in Chinese medicine for their potential to inhibit the progression of T2DM and its associated complications; however, the specific mechanisms underlying their action and target pathways remain poorly understood. The objective of this study was to predict potential therapeutic targets of leeches in the treatment of T2DM. Methods We collected active components and targets associated with leeches from four online databases, while disease-related targets were sourced from the GeneCards and OMIM databases. Following this, we performed Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Gene expression data were obtained from the GSE184050 dataset. Important immune cell types were identified through immunoinfiltration analysis in conjunction with single sample enrichment analysis (ssGSEA). Additionally, weighted co-expression network analysis (WGCNA) was utilized to identify significantly associated genes. Finally, we employed LASSO regression, SVM-RFE, XGBoost, and random forest algorithms to further predict potential targets, followed by validation through molecular docking. Results Leeches may influence cellular immunity by modulating immune receptor activity, particularly through the activation of RGS10, CAPS2, and OPA1, thereby impacting the pathology of Type 2 Diabetes Mellitus (T2DM). Discussion However, it is important to note that our results lack experimental validation; therefore, further research is warranted to substantiate these findings.
Collapse
Affiliation(s)
- Tairan Hu
- Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Zhaohui Fang
- Department of Cardioiogy, First Hospital Affiliated to Anhui University of Traditional Chinese Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Institution of Cardiovascular Disease, Anhui Academy of Chinese Medicine Sciences, Hefei, China
| |
Collapse
|
7
|
Di Giacomo Barbagallo F, Bosco G, Di Marco M, Scilletta S, Miano N, Musmeci M, Martedì M, González-Lleó AM, Ibarretxe D, De Francesco EM, Malaguarnera R, Di Pino A, Masana L, Purrello F, Piro S, Scicali R. Evaluation of glycemic status and subclinical atherosclerosis in familial hypercholesterolemia subjects with or without LDL receptor mutation. Cardiovasc Diabetol 2025; 24:126. [PMID: 40114220 PMCID: PMC11927314 DOI: 10.1186/s12933-025-02683-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND Familial hypercholesterolemia (FH) is a genetic condition characterized by elevated LDL-C and increased cardiovascular risk. Beyond LDL-C levels, the impact of genotype on glucose homeostasis has not been well evaluated. We aimed to evaluate the impact of genotype on glycemic status and on atherosclerotic injury in FH subjects. METHODS We conducted a cross-sectional study on 322 FH subjects not on lipid-lowering therapy and without history of cardiovascular disease. Biochemical and genetic analyses as well as vascular profile assessment were obtained from all subjects. The study population was divided into two groups according to genotype: LDL receptor (LDLR) group and non-LDLR (NLDLR) group. RESULTS The LDLR group exhibited a higher prevalence of low glycemic status (LGS) than the NLDLR group (44.1% vs. 26%, p < 0.01), whereas a high glycemic status (HGS) was more prevalent in the NLDLR group compared with LDLR group (74% vs. 55.9%, p < 0.01). The NLDLR group exhibited a higher prevalence of peripheral atherosclerotic plaques than the LDLR group (93.4% vs. 73%, p < 0.05), while coronary artery calcification (CAC) presence was more prevalent in the LDLR group compared with the NLDLR group (74.7% vs. 48%, p < 0.01). In a secondary analysis the study population was stratified into three groups based on LDLR genotype: NLDLR, LDLR defective, LDLR null groups. The prevalence of LGS progressively increased from the NLDLR to the LDLR null group, while HGS showed an inverse trend (p for trend < 0.05). Peripheral atherosclerotic plaque prevalence decreased from the NLDLR to the LDLR null group (p for trend < 0.05), while CAC prevalence increased progressively in the three groups (p for trend < 0.01). Logistic regression analysis showed that FH groups with an LDLR mutation were inversely associated with HGS (p for both < 0.01) and the LDLR null group exhibited the strongest association. CONCLUSIONS FH subjects with NLDLR mutations exhibited a worse glycemic profile, while null LDLR mutations showed the strongest inverse association with HGS. The integrations of genetic, lipid and glucose data could be useful to better identify the metabolic profile and the atherosclerosis distribution in FH subjects. RESEARCH INSIGHTS WHAT IS CURRENTLY KNOWN ABOUT THIS TOPIC?: Familial hypercholesterolemia (FH) is characterized by elevated LDL-C levels. LDLR null mutations protected pancreatic β-cells from cholesterol accumulation. NGS has improved FH diagnosis by analysis of all genes implicated in the lipid disorder. WHAT IS THE KEY RESEARCH QUESTION?: What is the impact of FH genotype (monogenic with or without LDLR mutation/polygenic) on glycemic status? WHAT IS NEW?: FH population was characterized by a heterogeneous glycemic profile according to LDLR mutation. LDL-C and plasma glucose could modulate the distribution of subclinical atherosclerosis. HOW MIGHT THIS STUDYINFLUENCE CLINICAL PRACTICE?: Genetic, lipid, glucose data could better identify the metabolic and atherosclerotic profiles in FH.
Collapse
Affiliation(s)
- Francesco Di Giacomo Barbagallo
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi Hospital, University of Catania, Via Palermo 636, 95122, Catania, Italy
- Department of Medicine and Surgery, "Kore" University of Enna, Enna, Italy
| | - Giosiana Bosco
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi Hospital, University of Catania, Via Palermo 636, 95122, Catania, Italy
- Department of Medicine and Surgery, "Kore" University of Enna, Enna, Italy
| | - Maurizio Di Marco
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi Hospital, University of Catania, Via Palermo 636, 95122, Catania, Italy
| | - Sabrina Scilletta
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi Hospital, University of Catania, Via Palermo 636, 95122, Catania, Italy
| | - Nicoletta Miano
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi Hospital, University of Catania, Via Palermo 636, 95122, Catania, Italy
| | - Marco Musmeci
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi Hospital, University of Catania, Via Palermo 636, 95122, Catania, Italy
| | - Marina Martedì
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi Hospital, University of Catania, Via Palermo 636, 95122, Catania, Italy
| | - Ana M González-Lleó
- Unitat Medicina Vascular I Metabolisme, Unitat de Recerca en Lìpids I Arterioslcerosi, Hospital Universitari Sant Joan, Universitat Rovira I Virgili, IISPV, Reus, Spain
| | - Daiana Ibarretxe
- Unitat Medicina Vascular I Metabolisme, Unitat de Recerca en Lìpids I Arterioslcerosi, Hospital Universitari Sant Joan, Universitat Rovira I Virgili, IISPV, Reus, Spain
| | | | | | - Antonino Di Pino
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi Hospital, University of Catania, Via Palermo 636, 95122, Catania, Italy
| | - Luís Masana
- Unitat Medicina Vascular I Metabolisme, Unitat de Recerca en Lìpids I Arterioslcerosi, Hospital Universitari Sant Joan, Universitat Rovira I Virgili, IISPV, Reus, Spain
| | - Francesco Purrello
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi Hospital, University of Catania, Via Palermo 636, 95122, Catania, Italy
| | - Salvatore Piro
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi Hospital, University of Catania, Via Palermo 636, 95122, Catania, Italy.
| | - Roberto Scicali
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi Hospital, University of Catania, Via Palermo 636, 95122, Catania, Italy
| |
Collapse
|
8
|
Staśkiewicz-Bartecka W, Masłoń K, Kołodziejczyk A, Białek-Dratwa A, Kiciak A, Jaruga-Sękowska S, Dobkowska-Szefer D, Grajek M, Kowalski O, Kardas M. Nutritional knowledge, insulin resistance, and the risk of orthorexia nervosa: a comparative cross-sectional study among polish women. Front Public Health 2025; 13:1562866. [PMID: 40177090 PMCID: PMC11962019 DOI: 10.3389/fpubh.2025.1562866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/07/2025] [Indexed: 04/05/2025] Open
Abstract
Background The global rise in insulin resistance has led to an increased emphasis on dietary modifications as a primary strategy for its management. While such interventions are essential for improving metabolic health, they can also contribute to heightened nutritional knowledge. However, this increased focus on diet may inadvertently lead to the development of disordered eating patterns, including orthorexia nervosa. This study aimed to determine the level of nutritional knowledge regarding proper eating habits among women with insulin resistance and to assess the relationship between this knowledge and the risk of developing orthorexia nervosa. Methods The study was using the Computer-Assisted Web Interview method, involving 133 female participants from a primary care clinic in Katowice, Poland. Of these, 101 women had a medically confirmed diagnosis of insulin resistance, and 32 were healthy controls. Data were collected using an online survey, which included a demographic section, a 15-item questionnaire to assess nutritional knowledge, and the ORTO-15 tool to evaluate orthorexia nervosa risk. Results Women with insulin resistance had significantly higher Body Mass Index values and demonstrated greater nutritional knowledge than their healthy counterparts. However, 56.44% of women with insulin resistance were at risk of orthorexia nervosa, compared to 15.63% of the control group. Increased dietary knowledge in women with insulin resistance was also associated with a higher risk of developing orthorexic behavior. Conclusion The findings indicate that while women with insulin resistance benefit from improved nutritional knowledge in managing their condition, this knowledge may simultaneously increase their risk of developing orthorexia nervosa. Balancing the promotion of healthy eating habits with strategies that prevent the emergence of distorted eating behaviors is crucial. Future interventions should emphasize flexibility, psychological support, and individualized guidance to ensure both metabolic and mental well-being.
Collapse
Affiliation(s)
- Wiktoria Staśkiewicz-Bartecka
- Department of Food Technology and Quality Evaluation, Department of Dietetics, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, Zabrze, Poland
| | - Karolina Masłoń
- Department of Food Technology and Quality Evaluation, Department of Dietetics, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, Zabrze, Poland
| | - Aleksandra Kołodziejczyk
- Department of Food Technology and Quality Evaluation, Department of Dietetics, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, Zabrze, Poland
| | - Agnieszka Białek-Dratwa
- Department of Human Nutrition, Department of Dietetics, School of Public Health in Bytom, Medical University of Silesia in Katowice, Zabrze, Poland
| | - Agata Kiciak
- Department of Food Technology and Quality Evaluation, Department of Dietetics, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, Zabrze, Poland
| | - Sylwia Jaruga-Sękowska
- Department of Health Promotion, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, Bytom, Poland
| | - Daria Dobkowska-Szefer
- Department of Food Technology and Quality Evaluation, Department of Dietetics, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, Zabrze, Poland
| | - Mateusz Grajek
- Department of Public Health, Department of Public Health Policy, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, Bytom, Poland
| | - Oskar Kowalski
- Department of Human Nutrition, Department of Dietetics, School of Public Health in Bytom, Medical University of Silesia in Katowice, Zabrze, Poland
| | - Marek Kardas
- Department of Food Technology and Quality Evaluation, Department of Dietetics, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, Zabrze, Poland
| |
Collapse
|
9
|
Pokharel P, Blekkenhorst LC, Bondonno CP, Murray K, Radavelli-Bagatini S, Magliano DJ, Daly RM, Shaw JE, Lewis JR, Hodgson JM, Bondonno NP. Associations of Vegetable and Potato Intakes With Markers of Type 2 Diabetes Risk in the AusDiab Cohort. J Clin Endocrinol Metab 2025; 110:e1068-e1083. [PMID: 38747471 PMCID: PMC11913086 DOI: 10.1210/clinem/dgae333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Indexed: 03/19/2025]
Abstract
CONTEXT The associations of vegetable and potato intakes with type 2 diabetes (T2D) appear to be nuanced, depending on vegetable types and preparation method, respectively. OBJECTIVE We investigated the associations of total vegetable, vegetable subgroup, and potato intakes with (1) markers of T2D at baseline and (2) incident T2D cumulative over a 12-year follow-up period in Australian adults. METHODS Using data from the Australian Diabetes, Obesity and Lifestyle Study, intakes of vegetables and potatoes were assessed via a food frequency questionnaire at baseline. Associations between vegetable intake and (1) fasting plasma glucose (FPG), 2-hour postload plasma glucose (PLG), updated homeostasis model assessment of β-cell function (HOMA2-%β), HOMA2 of insulin sensitivity (HOMA2-%S), and fasting insulin levels at baseline; and (2) cumulative incident T2D at the end of 12-year follow-up were examined using generalized linear and Cox proportional hazards models, respectively. RESULTS In total, 8009 participants were included having median age of 52 years, and vegetable intake of 132 g/day. Higher intake of total vegetable, green leafy, yellow/orange/red, and moderate intakes of cruciferous vegetables was associated with lower PLG. Additionally, higher green leafy vegetable intake was associated with lower HOMA2-%β and serum insulin. Conversely, higher potato fries/chips intakes were associated with higher FPG, HOMA2-%β, serum insulin, and lower HOMA2-%S. Participants with moderate cruciferous vegetables intake had a 25% lower risk of T2D at the end of 12 years of follow-up. CONCLUSION A higher intake of vegetables, particularly green leafy vegetables, may improve while consuming potato fries/chips, but not potatoes prepared in a healthy way, may worsen glucose tolerance and insulin sensitivity. Our findings suggest a nuanced relationship between vegetable subgroups and their impact on glucose tolerance.
Collapse
Affiliation(s)
- Pratik Pokharel
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia 6000, Australia
- Diet Cancer and Health Group, Danish Cancer Institute, Copenhagen 2100, Denmark
| | - Lauren C Blekkenhorst
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia 6000, Australia
- Medical School, University of Western Australia, Royal Perth Hospital, Perth, Western Australia 6000, Australia
| | - Catherine P Bondonno
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia 6000, Australia
- Medical School, University of Western Australia, Royal Perth Hospital, Perth, Western Australia 6000, Australia
| | - Kevin Murray
- School of Population and Global Health, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Simone Radavelli-Bagatini
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia 6000, Australia
| | - Dianna J Magliano
- Department of Diabetes and Population Health, Baker Heart and Diabetes Institute (HDI), Melbourne, Victoria 3004, Australia
| | - Robin M Daly
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria 3220, Australia
| | - Jonathan E Shaw
- Department of Diabetes and Population Health, Baker Heart and Diabetes Institute (HDI), Melbourne, Victoria 3004, Australia
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria 3170, Australia
| | - Joshua R Lewis
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia 6000, Australia
- Medical School, University of Western Australia, Royal Perth Hospital, Perth, Western Australia 6000, Australia
| | - Jonathan M Hodgson
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia 6000, Australia
- Medical School, University of Western Australia, Royal Perth Hospital, Perth, Western Australia 6000, Australia
| | - Nicola P Bondonno
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia 6000, Australia
- Diet Cancer and Health Group, Danish Cancer Institute, Copenhagen 2100, Denmark
- School of Biomedical Sciences, University of Western Australia, Royal Perth Hospital, Perth, Western Australia 6000, Australia
| |
Collapse
|
10
|
Perticone M, Shehaj E, Suraci E, Andreozzi F, Perticone F. Individuation of a cut-off value of triglyceride-glucose index for incident diabetes mellitus in patients with essential hypertension. Intern Emerg Med 2025; 20:423-429. [PMID: 39485603 DOI: 10.1007/s11739-024-03803-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/21/2024] [Indexed: 11/03/2024]
Abstract
The prevalence of obesity and diabetes, risk factors for atherosclerotic vascular diseases, is increasing worldwide; therefore, it is desirable to early identify them to reduce cardiovascular events. Thus, we investigated whether the triglyceride-glucose index (TyG index), a new marker of insulin resistance, is associated with incident diabetes in patients with newly diagnosed arterial hypertension. We selected 585 patients with newly diagnosed arterial hypertension referred to our tertiary Clinic of Catanzaro University Hospital for the evaluation of their cardiometabolic risk profile. None of the patients had diabetes mellitus at enrollment and took any drug known to affect glucose metabolism. Patients underwent medical history collection, clinical examination and laboratory tests. The TyG index was calculated as the ln [fasting TG (mg/dl) × FPG (mg/dl)/2], as previously suggested. During the follow-up [mean 8.5 years (range 3.1-10.7)], there were 78 new cases of incident diabetes (1.57% patient-year). Patients who developed diabetes mellitus were older and had a higher body mass index (BMI), baseline blood pressure, fasting glucose, insulin, homeostatis model sssessment (HOMA) index, triglyceride, creatinine and hs-CRP mean values, while estimated glomerular filtration rate values were lower. At the Cox regression analysis, covariates significantly associated with incident diabetes were: BMI (HR = 2.842, 95%CI = 2.299-3.514), TyG index (HR = 2.392, 95%CI = 1.745-3.192), age (HR = 1.944, 95%CI = 1.527-2.474), hs-CRP (HR = 1.409, 95%CI = 1.153-1.722), and HOMA (HR = 1.325, 95%CI = 1,079-1.756). The best estimated cut-off value of TyG index in predicting diabetes was 4.71. In addition, we documented a significant relationship between TyG index and HOMA (r = 0.575; p < 0.0001). Present data demonstrate that TyG index, a simple and cost-effective marker of insulin resistance, is useful in predicting incident diabetes in patients with arterial hypertension.
Collapse
Affiliation(s)
- Maria Perticone
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy.
| | - Ermal Shehaj
- Cardiology and CICU Unit, Giovanni Paolo II Hospital, Lamezia Terme (Catanzaro), Lamezia Terme, Italy
| | - Edoardo Suraci
- Internal Medicine, Azienda Ospedaliero-Universitaria Dulbecco, P.O. Pugliese-Ciaccio, Catanzaro, Italy
| | - Francesco Andreozzi
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Francesco Perticone
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| |
Collapse
|
11
|
Lee J, Yoon KH. Evolving Characteristics of Type 2 Diabetes Mellitus in East Asia. Endocrinol Metab (Seoul) 2025; 40:57-63. [PMID: 39814030 PMCID: PMC11898318 DOI: 10.3803/enm.2024.2193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/15/2024] [Accepted: 10/29/2024] [Indexed: 01/18/2025] Open
Abstract
In East Asians, type 2 diabetes mellitus (T2DM) is primarily characterized by significant defects in insulin secretion and comparatively low insulin resistance. Recently, the prevalence of T2DM has rapidly increased in East Asian countries, including Korea, occurring concurrently with rising obesity rates. This trend has led to an increase in the average body mass index among East Asian T2DM patients, highlighting the influence of insulin resistance in the development of T2DM within this group. Currently, the incidence of T2DM in Korea is declining, which may indicate potential adaptive changes in insulin secretory capacity. This review focuses on the changing epidemiology of T2DM in East Asia, with a particular emphasis on the characteristics of peak functional β-cell mass.
Collapse
Affiliation(s)
- Joonyub Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Kun-Ho Yoon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
12
|
Herrerías-García A, Jacobo-Tovar E, Hernández-Robles CM, Guardado-Mendoza R. Pancreatic beta cell function and insulin resistance profiles in first-degree relatives of patients with prediabetes and type 2 diabetes. Acta Diabetol 2025; 62:253-261. [PMID: 39150512 DOI: 10.1007/s00592-024-02352-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/30/2024] [Indexed: 08/17/2024]
Abstract
AIMS To evaluate insulin secretion and insulin resistance profiles in individuals with family history of prediabetes and type 2 diabetes. METHODS This was a cross-sectional study to evaluate clinical and metabolic profiles between individuals with type 2 diabetes, prediabetes and their relatives. There were 911 subjects divided into five groups: (i) normoglycemic (NG), (ii) type 2 diabetes, (iii) prediabetes, (iv) first-degree relatives of patients with type 2 diabetes (famT2D), and (v) first-degree relatives of patients with prediabetes (famPD); anthropometrical, biochemical and nutritional evaluation, as well as insulin resistance and pancreatic beta cell function measurement was performed by oral glucose tolerance to compare between groups. RESULTS The most prevalent type 2 diabetes risk factors were dyslipidemia (81%), family history of type 2 diabetes (76%), central obesity (73%), male sex (63%), and sedentary lifestyle (60%), and most of them were progressively associated to prediabetes and type 2 diabetes groups. Insulin sensitivity was lower in famT2D groups in comparison to NG group (p < 0.0001). FamPD and famT2D had a 10% lower pancreatic beta cell function (DI) than the NG group (NG group 2.78 ± 1.0, famPD 2.5 ± 0.85, famT2D 2.4 ± 0.75, p˂0.001). CONCLUSIONS FamPD and famT2D patients had lower pancreatic beta cell function than NG patients, highlighting that defects in insulin secretion and insulin sensitivity appear long time before the development of hyperglycemia in patients genetically predisposed.
Collapse
Affiliation(s)
- Anaid Herrerías-García
- Metabolic Research Laboratory, Department of Medicine and Nutrition, University of Guanajuato, Blvd. Milenio 1001, Predio San Carlos, 37670, León, Guanajuato, Mexico
| | - Emmanuel Jacobo-Tovar
- Metabolic Research Laboratory, Department of Medicine and Nutrition, University of Guanajuato, Blvd. Milenio 1001, Predio San Carlos, 37670, León, Guanajuato, Mexico
| | - Claudia Mariana Hernández-Robles
- Metabolic Research Laboratory, Department of Medicine and Nutrition, University of Guanajuato, Blvd. Milenio 1001, Predio San Carlos, 37670, León, Guanajuato, Mexico
| | - Rodolfo Guardado-Mendoza
- Metabolic Research Laboratory, Department of Medicine and Nutrition, University of Guanajuato, Blvd. Milenio 1001, Predio San Carlos, 37670, León, Guanajuato, Mexico.
| |
Collapse
|
13
|
Zhu H, Fu Q, Chen R, Luo L, Yu M, Zhou Y. Association of dietary decanoic acid intake with diabetes or prediabetes: an analysis from NHANES 2005-2016. Front Nutr 2025; 11:1483045. [PMID: 39839274 PMCID: PMC11747714 DOI: 10.3389/fnut.2024.1483045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/18/2024] [Indexed: 01/23/2025] Open
Abstract
Background With the increasing prevalence of prediabetes and diabetes, exploring dietary factors associated with prediabetes and diabetes has become a global health research priority. This study aimed to assess the relationship between dietary decanoic acid (DDA) intake and the risk of diabetes and prediabetes. Methods Data from the National Health and Nutrition Examination Survey (NHANES) 2005-2016 included 11,477 adult participants. DDA intake was assessed through two 24-h dietary recalls and participants were grouped according to the diagnostic criteria for diabetes and prediabetes. Multivariate regression models were applied to analyze the relationship between DDA intake and diabetes and prediabetes, with subgroup analyses conducted to explore potential interactions. Results Dietary decanoic acid intake was significantly negatively associated with the risk of diabetes. In the fully adjusted model, each 1 g/day increase in DDA intake was associated with a 19% reduction in the odds of developing diabetes from prediabetes (OR = 0.81, 95% CI: 0.68-0.96, p = 0.015) and this negative association was more pronounced in individuals with higher education level (P for interaction = 0.006). Compared with the DDA intake ≤0.18 g/day, DDA intake >0.58 g/day is related to reduced risk of progression to diabetes in prediabetic patients. However, the relationship between DDA intake and the risk of prediabetes was not statistically significant in the fully adjusted model (OR = 0.95, 95% CI: 0.84-1.07, p = 0.404). Conclusion This study found that higher DDA intake may be associated with lower prevalence of diabetes among prediabetic population, and high education level strengthen this relationship.
Collapse
Affiliation(s)
- Huangxin Zhu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qingan Fu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ruxin Chen
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Linfei Luo
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Miao Yu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yue Zhou
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
14
|
Lu J, Ni J, Su H, He X, Lu W, Zhu W, Wang Y, Ma X, Bao Y, Zhou J. One-Hour Postload Glucose Is a More Sensitive Marker of Impaired β-Cell Function Than Two-Hour Postload Glucose. Diabetes 2025; 74:36-42. [PMID: 39418325 DOI: 10.2337/db24-0652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024]
Abstract
There is evidence that 1-h plasma glucose (PG) concentration during the 75-g oral glucose tolerance test (OGTT) is superior to 2-h PG level in predicting diabetes. We investigated the characteristics of insulin sensitivity and β-cell function behind this observation. After age, sex, and BMI matching, 496 study participants selected from 3,965 individuals without diabetes who were at high risk of type 2 diabetes in a tertiary medical center were categorized into four groups in a 1:1:1:1 ratio based on OGTT results: 1) 1-h PG level <8.6 mmol/L and 2-h PG level <7.8 mmol/L (normal glucose tolerance [NGT]/1h-normal); 2) 1-h PG level ≥8.6 mmol/L and 2-h level <7.8 mmol/L (NGT/1h-high); 3) 1-h PG level <8.6 mmol/L and 2-h level ≥7.8 mmol/L (impaired glucose tolerance [IGT]/1h-normal); and 4) 1 h PG level ≥8.6 mmol/L and 2-h level ≥7.8 mmol/L. Compared with participants with IGT/1h-normal, those with NGT/1h-high had a similar extent of insulin resistance but lower early-phase insulin secretion. Additionally, participants with NGT/1h-high had a lower disposition index at both 0-30 min and 0-120 min than those with IGT/1h-normal. The fitted regression line relating PG to log-transformed disposition index (0-30 min and 0-120 min) was significantly steeper for 1-h than 2-h PG. In conclusion, 1-h PG seemed to be more sensitive to the deterioration in β-cell function than was 2-h PG. The use of 1-h PG may identify individuals at high risk of type 2 diabetes at an earlier stage. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Jingyi Lu
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiaying Ni
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hang Su
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xingxing He
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Emergency Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Lu
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Zhu
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yufei Wang
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaojing Ma
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuqian Bao
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Zhou
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
15
|
Luo X, Liu F, Zhu L, Liu C, Shen R, Ding X, Wang Y, Tang X, Peng Y, Zhang Z. Leupaxin promotes hepatic gluconeogenesis and glucose metabolism by coactivation with hepatic nuclear factor 4α. Mol Metab 2025; 91:102075. [PMID: 39603504 PMCID: PMC11647654 DOI: 10.1016/j.molmet.2024.102075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND As the primary source of glucose during fasting, hepatic gluconeogenesis is rigorously regulated to maintain euglycemia. Abnormal gluconeogenesis in the liver can lead to hyperglycemia, a key diagnostic marker and the primary pathological contributor to type 2 diabetes (T2D) and metabolic disorders. Hepatic nuclear factor-4 (HNF4α) is an important regulator of gluconeogenesis. In this study, we identify leupaxin (LPXN) as a novel coactivator for HNF4α. Although previous studies have shown that LPXN is highly correlated with cancer types such as B-cell differentiation and hepatocellular carcinoma progression, the role of LPXN in gluconeogenesis remains unknown. METHODS We initially used protein pull-down assays, mass spectrometry and luciferase assays to identify the coactivator that interacts with HNF4α in gluconeogenesis. We further leveraged cell cultures and mouse models to validate the functional importance of molecular pathway during gluconeogenesis by using adenovirus-mediated overexpression and adeno-associated virus shRNA-mediated knockdown both in vivo and ex vivo, such as in ob/db/DIO mice, HepG2 and primary hepatocytes. Following, we used CUT&Tag and chip qPCR to identify the LPXN-mediated mechanisms underlying the observed abnormal gluconeogenesis. Additionally, we assessed the translational relevance of our findings using human liver tissues from both healthy donors and patients with obesity/type 2 diabetes. RESULTS We found that LPXN interacts with HNF4α to participate in gluconeogenesis. Knockdown of LPXN expression in the liver effectively enhanced glucose metabolism, while its overexpression in the liver effectively inhibited it. Mechanistically, LPXN could translocate into the nucleus and was essential for regulating gluconeogenesis by binding to the PEPCK promoter, which controlled the expression of an enzyme involved in gluconeogenesis, mainly through the Gcg-cAMP-PKA pathway. Additionally, LPXN expression was found to be increased in the livers of patients with steatosis and diabetes, supporting a pathological role of LPXN. CONCLUSIONS Taken together, our study provides evidence that LPXN plays a critical role in modulating hepatic gluconeogenesis, thereby reinforcing the fact that targeting LPXN may be a potential approach for the treatment of diabetes and metabolic disorders.
Collapse
Affiliation(s)
- Xiaomin Luo
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fang Liu
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Lijun Zhu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China; Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Caizhi Liu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ruhui Shen
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyin Ding
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yufan Wang
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaofang Tang
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yongde Peng
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhijian Zhang
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
16
|
Corbin A, Aromolaran KA, Aromolaran AS. Leukotriene B4 is elevated in diabetes and promotes ventricular arrhythmogenesis in guinea pig. J Cell Physiol 2025; 240:e31467. [PMID: 39402808 PMCID: PMC11733858 DOI: 10.1002/jcp.31467] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/15/2024] [Accepted: 10/01/2024] [Indexed: 01/16/2025]
Abstract
Diabetes (DM) patients have an increased risk (~50%) for sudden cardiac death (SCD), mostly as a result of ventricular arrhythmias. The molecular mechanisms involved remain partially defined. The potent proinflammatory lipid mediator leukotriene (LT) B4, is pathologically elevated in DM compared to nondiabetic patients, resulting in increased LTB4 accumulation in heart, leading to an increased risk for life-threatening proarrhythmic signatures. We used electrophysiology, immunofluorescence, and confocal microscopy approaches to evaluate LTB4 cellular effects in guinea pig heart and ventricular myocytes. We have observed that LTB4 is increased in multiple mouse models (C57BL/6 J/Lepob/ob and PANIC-ATTAC) of DM, promotes profound cellular arrhythmogenesis (spontaneous beats and early after depolarizations, EADs), and severely depresses the rapidly activating delayed rectifier K current (hERG1/IKr) density in HEK293 cells and guinea pig ventricular myocytes. We have further found that guinea pigs challenged with LTB4 displayed a significantly prolonged QT interval, and that this can be prevented with LTB4R inhibition, suggesting that preventing such LTB4R effects may be therapeutically beneficial in DM. Our data suggests that a further elucidation of LTB4 vulnerable substrates, and how this leads to ventricular arrhythmias, is likely to lead to continued improvements in management options, and the development of new therapies for prevention of SCD in DM patients.
Collapse
Affiliation(s)
- Andrea Corbin
- Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI)University of Utah School of MedicineSalt Lake CityUtahUSA
- Department of Biomedical EngineeringUniversity of Utah School of MedicineSalt Lake CityUtahUSA
| | - Kelly A. Aromolaran
- Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI)University of Utah School of MedicineSalt Lake CityUtahUSA
| | - Ademuyiwa S. Aromolaran
- Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI)University of Utah School of MedicineSalt Lake CityUtahUSA
- Department of Biomedical EngineeringUniversity of Utah School of MedicineSalt Lake CityUtahUSA
- Department of Surgery, Division of Cardiothoracic Surgery, Nutrition & Integrative Physiology, Biochemistry & Molecular Medicine ProgramUniversity of Utah School of MedicineSalt Lake CityUtahUSA
- Department of Physiology & Cellular BiophysicsColumbia UniversityNew YorkNew YorkUSA
| |
Collapse
|
17
|
Baba T. Polycystic ovary syndrome: Criteria, phenotypes, race and ethnicity. Reprod Med Biol 2025; 24:e12630. [PMID: 39845478 PMCID: PMC11751892 DOI: 10.1002/rmb2.12630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 01/11/2025] [Indexed: 01/24/2025] Open
Abstract
Background Polycystic ovary syndrome (PCOS) is a complex endocrinopathy, which leads to ovulation dysfunction and infertility, as well as metabolic and mental disorders. Women with PCOS exhibit several characteristic symptoms, with marked heterogeneity across different races and ethnicities. Methods In this review, the author outlines the phenotypic disparities of PCOS among various racial and ethnic populations. First, the prevalence of major symptoms in different racial and ethnic groups with PCOS is summarized. Next, the effects of four phenotypes, derived from the Rotterdam criteria for PCOS, on metabolic and reproductive features are recapitulated. Main Findings A growing body of evidence suggests that East Asian populations exhibit less hirsutism and adiposity compared with other groups. However, hirsutism is more prevalent in South Asian, Middle Eastern, and Hispanic populations. Hispanic and African American populations have more frequent obesity and insulin resistance. With regard to the association between mental disorders and racial and ethnic differences, limited studies exist; therefore, no conclusions can be drawn. Conclusion Race and ethnicity-specific factors related to PCOS must be considered in clinical practice. The diagnostic criteria of PCOS should be specific to race and ethnicity to avoid missing treatment opportunities.
Collapse
Affiliation(s)
- Tsuyoshi Baba
- Department of Obstetrics and GynecologySapporo Medical UniversitySapporoHokkaidoJapan
| |
Collapse
|
18
|
Esteves JV, Stanford KI. The dual role of feimin in metabolism and exercise. Nat Metab 2025; 7:6-7. [PMID: 39747482 PMCID: PMC11966615 DOI: 10.1038/s42255-024-01173-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Affiliation(s)
- João Victor Esteves
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Surgery, Division of General and Gastrointestinal Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Kristin I Stanford
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
- Department of Surgery, Division of General and Gastrointestinal Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
19
|
Pang J, Yin L, Jiang W, Wang H, Cheng Q, Jiang Z, Cao Y, Zhu X, Li B, Qian S, Yin X, Wang T, Lu Q, Yang T. Sirt1-mediated deacetylation of PGC-1α alleviated hepatic steatosis in type 2 diabetes mellitus via improving mitochondrial fatty acid oxidation. Cell Signal 2024; 124:111478. [PMID: 39428026 DOI: 10.1016/j.cellsig.2024.111478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/03/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
Being activated by deacetylation, peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) has become an important regulator of metabolic-related diseases. The activation of Sirtuin 1 (Sirt1) by resveratrol was likely to deacetylate PGC-1α. However, the role of deacetylated PGC-1α in the alleviation of activated Sirt1 on type 2 diabetes mellitus (T2DM)-related fatty liver disease (FLD) remained unexplored. The aim of this study was to investigate the potential impact of Sirt1-mediated deacetylation of PGC-1α on T2DM-associated FLD and its underlying mechanisms. Our findings revealed that, along with the decreased Sirt1, the levels of acetylated PGC-1α were up-regulated in hepatocytes co-stimulated with high glucose (HG) and free fatty acids (FFA). Down-regulated Sirt1 inactivated PGC-1α by inhibiting its deacetylation, while activating Sirt1 improved hepatic injury by reducing lipid droplet accumulation through the deacetylation of PGC-1α. However, the beneficial effects of Sirt1 activation on hepatic steatosis were inhibited by PGC-1α antagonist in vitro. Mechanistically, activating Sirt1 enhanced mitochondrial function by promoting PGC-1α activity, thereby facilitating hepatic fatty acid oxidation (FAO). In conclusion, Sirt1-mediated deacetylation of PGC-1α mitigated hepatic lipotoxicity by enhancing mitochondrial FAO, which contributed to the restoration of mitochondrial function in T2DM. The activation of Sirt1-mediated PGC-1α deacetylation might represent a promising therapeutic approach for T2DM-associated FLD.
Collapse
Affiliation(s)
- Jiale Pang
- Department of Pharmacy, Jintan Affiliated Hospital of Jiangsu University, Changzhou 213200, China
| | - Longxiang Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Wenjie Jiang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Haiyan Wang
- Department of Biochemistry, Graduate School of Inovative Life Science, University of Toyama, Toyama 930-0194, Japan
| | - Qian Cheng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Zhenzhou Jiang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China, Pharmaceutical University, Nanjing 210009, China
| | - Yanjuan Cao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Xia Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Baojing Li
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Sitong Qian
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Tao Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China; Department of Pharmacy, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, China.
| | - Qian Lu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Tingting Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| |
Collapse
|
20
|
Hoca M, Becer E, Vatansever HS. Carvacrol is potential molecule for diabetes treatment. Arch Physiol Biochem 2024; 130:823-830. [PMID: 38019023 DOI: 10.1080/13813455.2023.2288537] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 11/30/2023]
Abstract
Diabetes is an important chronic disease that can lead to various negative consequences and complications. In recent years, several new alternative treatments have been developed to improve diabetes. Carvacrol found in essential oils of numerous plant species and has crucial potential effects on diabetes. The anti-diabetic effects of carvacrol have also been comprehensively studied in diabetic animal and cell models. In addition, carvacrol could improve diabetes through affecting diabetes-related enzymes, insulin resistance, insulin sensitivity, glucose uptake, anti-oxidant, and anti-inflammatory mechanisms. The use of carvacrol alone or in combination with anti-diabetic therapies could show a significant potential effect in the treatment of diabetes. This review contributes an overview of the effect of carvacrol in diabetes and anti-diabetic mechanisms.
Collapse
Affiliation(s)
- Mustafa Hoca
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Near East University, Nicosia, Mersin, Turkey
| | - Eda Becer
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, Mersin, Turkey
| | - Hafize Seda Vatansever
- DESAM Institute, Near East University, Nicosia, Mersin, Turkey
- Department of Histology and Embryology, Faculty of Medicine, Manisa Celal Bayar University, Manisa, Turkey
| |
Collapse
|
21
|
Kim JY, Lee J, Kim SG, Kim NH. Recent Glycemia Is a Major Determinant of β-Cell Function in Type 2 Diabetes Mellitus. Diabetes Metab J 2024; 48:1135-1146. [PMID: 38889769 PMCID: PMC11621653 DOI: 10.4093/dmj.2023.0359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/26/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGRUOUND Progressive deterioration of β-cell function is a characteristic of type 2 diabetes mellitus (T2DM). We aimed to investigate the relative contributions of clinical factors to β-cell function in T2DM. METHODS In a T2DM cohort of 470 adults (disease duration 0 to 41 years), β-cell function was estimated using insulinogenic index (IGI), disposition index (DI), oral disposition index (DIO), and homeostasis model assessment of β-cell function (HOMA-B) derived from a 75 g oral glucose tolerance test (OGTT). The relative contributions of age, sex, disease duration, body mass index, glycosylated hemoglobin (HbA1c) levels (at the time of the OGTT), area under the curve of HbA1c over time (HbA1c AUC), coefficient of variation in HbA1c (HbA1c CV), and antidiabetic agents use were compared by standardized regression coefficients. Longitudinal analyses of these indices were also performed. RESULTS IGI, DI, DIO, and HOMA-B declined over time (P<0.001 for all). Notably, HbA1c was the most significant factor affecting IGI, DI, DIO, and HOMA-B in the multivariable regression analysis. Compared with HbA1c ≥9%, DI was 1.9-, 2.5-, 3.7-, and 5.5-fold higher in HbA1c of 8%-<9%, 7%-<8%, 6%-<7%, and <6%, respectively, after adjusting for confounding factors (P<0.001). Conversely, β-cell function was not affected by the type or duration of antidiabetic agents, HbA1c AUC, or HbA1c CV. The trajectories of the IGI, DI, DIO, and HOMA-B mirrored those of HbA1c. CONCLUSION β-Cell function declines over time; however, it is flexible, being largely affected by recent glycemia in T2DM.
Collapse
Affiliation(s)
- Ji Yoon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jiyoon Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Sin Gon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Nam Hoon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
22
|
Noh SG, Kim HW, Kim S, Chung KW, Jung YS, Yoon JH, Yu BP, Lee J, Chung HY. Senoinflammation as the underlying mechanism of aging and its modulation by calorie restriction. Ageing Res Rev 2024; 101:102503. [PMID: 39284417 DOI: 10.1016/j.arr.2024.102503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/25/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
Senoinflammation is characterized by an unresolved low-grade inflammatory process that affects multiple organs and systemic functions. This review begins with a brief overview of the fundamental concepts and frameworks of senoinflammation. It is widely involved in the aging of various organs and ultimately leads to progressive systemic degeneration. Senoinflammation underlying age-related inflammation, is causally related to metabolic dysregulation and the formation of senescence-associated secretory phenotype (SASP) during aging and age-related diseases. This review discusses the biochemical evidence and molecular biology data supporting the concept of senoinflammation and its regulatory processes, highlighting the anti-aging and anti-inflammatory effects of calorie restriction (CR). Experimental data from CR studies demonstrated effective suppression of various pro-inflammatory cytokines and chemokines, lipid accumulation, and SASP during aging. In conclusion, senoinflammation represents the basic mechanism that creates a microenvironment conducive to aging and age-related diseases. Furthermore, it serves as a potential therapeutic target for mitigating aging and age-related diseases.
Collapse
Affiliation(s)
- Sang Gyun Noh
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Hyun Woo Kim
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Seungwoo Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Ki Wung Chung
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea; Department of Pharmacy, College of Pharmacy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Young-Suk Jung
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea; Department of Pharmacy, College of Pharmacy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Jeong-Hyun Yoon
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea; Department of Pharmacy, College of Pharmacy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Byung Pal Yu
- Department of Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jaewon Lee
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea; Department of Pharmacy, College of Pharmacy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea.
| | - Hae Young Chung
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea; Department of Pharmacy, College of Pharmacy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea.
| |
Collapse
|
23
|
McKay MJ, Weber KA, Wesselink EO, Smith ZA, Abbott R, Anderson DB, Ashton-James CE, Atyeo J, Beach AJ, Burns J, Clarke S, Collins NJ, Coppieters MW, Cornwall J, Crawford RJ, De Martino E, Dunn AG, Eyles JP, Feng HJ, Fortin M, Franettovich Smith MM, Galloway G, Gandomkar Z, Glastras S, Henderson LA, Hides JA, Hiller CE, Hilmer SN, Hoggarth MA, Kim B, Lal N, LaPorta L, Magnussen JS, Maloney S, March L, Nackley AG, O’Leary SP, Peolsson A, Perraton Z, Pool-Goudzwaard AL, Schnitzler M, Seitz AL, Semciw AI, Sheard PW, Smith AC, Snodgrass SJ, Sullivan J, Tran V, Valentin S, Walton DM, Wishart LR, Elliott JM. MuscleMap: An Open-Source, Community-Supported Consortium for Whole-Body Quantitative MRI of Muscle. J Imaging 2024; 10:262. [PMID: 39590726 PMCID: PMC11595196 DOI: 10.3390/jimaging10110262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/11/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024] Open
Abstract
Disorders affecting the neurological and musculoskeletal systems represent international health priorities. A significant impediment to progress in trials of new therapies is the absence of responsive, objective, and valid outcome measures sensitive to early disease changes. A key finding in individuals with neuromuscular and musculoskeletal disorders is the compositional changes to muscles, evinced by the expression of fatty infiltrates. Quantification of skeletal muscle composition by MRI has emerged as a sensitive marker for the severity of these disorders; however, little is known about the composition of healthy muscles across the lifespan. Knowledge of what is 'typical' age-related muscle composition is essential to accurately identify and evaluate what is 'atypical'. This innovative project, known as the MuscleMap, will achieve the first important steps towards establishing a world-first, normative reference MRI dataset of skeletal muscle composition with the potential to provide valuable insights into various diseases and disorders, ultimately improving patient care and advancing research in the field.
Collapse
Affiliation(s)
- Marnee J. McKay
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (D.B.A.); (C.E.A.-J.); (J.A.); (S.C.); (A.G.D.); (J.P.E.); (H.J.F.); (Z.G.); (S.G.); (L.A.H.); (C.E.H.); (S.N.H.); (B.K.); (S.M.); (L.M.); (M.S.); (J.S.); (J.M.E.)
| | - Kenneth A. Weber
- Division of Pain Medicine, Stanford University School of Medicine, Stanford University, Stanford, CA 94304, USA; (K.A.W.II); (E.O.W.)
| | - Evert O. Wesselink
- Division of Pain Medicine, Stanford University School of Medicine, Stanford University, Stanford, CA 94304, USA; (K.A.W.II); (E.O.W.)
- Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences—Program Musculoskeletal Health, Vrije Universiteit Amsterdam, 1081 BT Amsterdam, The Netherlands;
| | - Zachary A. Smith
- Department of Rehabilitation Medicine, University of Oklahoma, Norman, OK 73019, USA;
| | - Rebecca Abbott
- Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN 55455, USA;
| | - David B. Anderson
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (D.B.A.); (C.E.A.-J.); (J.A.); (S.C.); (A.G.D.); (J.P.E.); (H.J.F.); (Z.G.); (S.G.); (L.A.H.); (C.E.H.); (S.N.H.); (B.K.); (S.M.); (L.M.); (M.S.); (J.S.); (J.M.E.)
| | - Claire E. Ashton-James
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (D.B.A.); (C.E.A.-J.); (J.A.); (S.C.); (A.G.D.); (J.P.E.); (H.J.F.); (Z.G.); (S.G.); (L.A.H.); (C.E.H.); (S.N.H.); (B.K.); (S.M.); (L.M.); (M.S.); (J.S.); (J.M.E.)
| | - John Atyeo
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (D.B.A.); (C.E.A.-J.); (J.A.); (S.C.); (A.G.D.); (J.P.E.); (H.J.F.); (Z.G.); (S.G.); (L.A.H.); (C.E.H.); (S.N.H.); (B.K.); (S.M.); (L.M.); (M.S.); (J.S.); (J.M.E.)
| | - Aaron J. Beach
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie Park, NSW 2109, Australia; (A.J.B.); (J.S.M.)
| | - Joshua Burns
- Disability Prevention Program, Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Stephen Clarke
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (D.B.A.); (C.E.A.-J.); (J.A.); (S.C.); (A.G.D.); (J.P.E.); (H.J.F.); (Z.G.); (S.G.); (L.A.H.); (C.E.H.); (S.N.H.); (B.K.); (S.M.); (L.M.); (M.S.); (J.S.); (J.M.E.)
| | - Natalie J. Collins
- School of Health and Rehabilitation Sciences, University of Queensland, Brisbane, 4072 QLD, Australia; (N.J.C.); (M.M.F.S.); (S.P.O.); (L.R.W.)
| | - Michel W. Coppieters
- School of Health Sciences and Social Work, Griffith University, Brisbane, QLD 4111, Australia; (M.W.C.); (J.A.H.)
| | - Jon Cornwall
- Otago Medical School, University of Otago, Dunedin 9016, New Zealand; (J.C.); (P.W.S.)
| | | | - Enrico De Martino
- Department of Health Science and Technology, Aalborg University, Gistrup, 9260 North Jutland, Denmark;
| | - Adam G. Dunn
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (D.B.A.); (C.E.A.-J.); (J.A.); (S.C.); (A.G.D.); (J.P.E.); (H.J.F.); (Z.G.); (S.G.); (L.A.H.); (C.E.H.); (S.N.H.); (B.K.); (S.M.); (L.M.); (M.S.); (J.S.); (J.M.E.)
| | - Jillian P. Eyles
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (D.B.A.); (C.E.A.-J.); (J.A.); (S.C.); (A.G.D.); (J.P.E.); (H.J.F.); (Z.G.); (S.G.); (L.A.H.); (C.E.H.); (S.N.H.); (B.K.); (S.M.); (L.M.); (M.S.); (J.S.); (J.M.E.)
- Northern Sydney Local Health District, The Kolling Institute, St Leonards, NSW 2065, Australia
| | - Henry J. Feng
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (D.B.A.); (C.E.A.-J.); (J.A.); (S.C.); (A.G.D.); (J.P.E.); (H.J.F.); (Z.G.); (S.G.); (L.A.H.); (C.E.H.); (S.N.H.); (B.K.); (S.M.); (L.M.); (M.S.); (J.S.); (J.M.E.)
| | - Maryse Fortin
- Department of Health, Kinesiology & Applied Physiology, Concordia University, Montreal, QC H4B 1R6, Canada;
| | - Melinda M. Franettovich Smith
- School of Health and Rehabilitation Sciences, University of Queensland, Brisbane, 4072 QLD, Australia; (N.J.C.); (M.M.F.S.); (S.P.O.); (L.R.W.)
| | - Graham Galloway
- Herston Imaging Research Facility, University of Queensland, Brisbane, QLD 4072, Australia;
| | - Ziba Gandomkar
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (D.B.A.); (C.E.A.-J.); (J.A.); (S.C.); (A.G.D.); (J.P.E.); (H.J.F.); (Z.G.); (S.G.); (L.A.H.); (C.E.H.); (S.N.H.); (B.K.); (S.M.); (L.M.); (M.S.); (J.S.); (J.M.E.)
| | - Sarah Glastras
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (D.B.A.); (C.E.A.-J.); (J.A.); (S.C.); (A.G.D.); (J.P.E.); (H.J.F.); (Z.G.); (S.G.); (L.A.H.); (C.E.H.); (S.N.H.); (B.K.); (S.M.); (L.M.); (M.S.); (J.S.); (J.M.E.)
- Northern Sydney Local Health District, The Kolling Institute, St Leonards, NSW 2065, Australia
| | - Luke A. Henderson
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (D.B.A.); (C.E.A.-J.); (J.A.); (S.C.); (A.G.D.); (J.P.E.); (H.J.F.); (Z.G.); (S.G.); (L.A.H.); (C.E.H.); (S.N.H.); (B.K.); (S.M.); (L.M.); (M.S.); (J.S.); (J.M.E.)
| | - Julie A. Hides
- School of Health Sciences and Social Work, Griffith University, Brisbane, QLD 4111, Australia; (M.W.C.); (J.A.H.)
| | - Claire E. Hiller
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (D.B.A.); (C.E.A.-J.); (J.A.); (S.C.); (A.G.D.); (J.P.E.); (H.J.F.); (Z.G.); (S.G.); (L.A.H.); (C.E.H.); (S.N.H.); (B.K.); (S.M.); (L.M.); (M.S.); (J.S.); (J.M.E.)
| | - Sarah N. Hilmer
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (D.B.A.); (C.E.A.-J.); (J.A.); (S.C.); (A.G.D.); (J.P.E.); (H.J.F.); (Z.G.); (S.G.); (L.A.H.); (C.E.H.); (S.N.H.); (B.K.); (S.M.); (L.M.); (M.S.); (J.S.); (J.M.E.)
| | - Mark A. Hoggarth
- Department of Physical Therapy, North Central College, Naperville, IL 60540, USA;
| | - Brian Kim
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (D.B.A.); (C.E.A.-J.); (J.A.); (S.C.); (A.G.D.); (J.P.E.); (H.J.F.); (Z.G.); (S.G.); (L.A.H.); (C.E.H.); (S.N.H.); (B.K.); (S.M.); (L.M.); (M.S.); (J.S.); (J.M.E.)
- Northern Sydney Local Health District, The Kolling Institute, St Leonards, NSW 2065, Australia
| | - Navneet Lal
- Otago Medical School, University of Otago, Dunedin 9016, New Zealand; (J.C.); (P.W.S.)
| | - Laura LaPorta
- School of Rehabilitative and Health Sciences, Regis University, Denver, CO 80221, USA;
| | - John S. Magnussen
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie Park, NSW 2109, Australia; (A.J.B.); (J.S.M.)
| | - Sarah Maloney
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (D.B.A.); (C.E.A.-J.); (J.A.); (S.C.); (A.G.D.); (J.P.E.); (H.J.F.); (Z.G.); (S.G.); (L.A.H.); (C.E.H.); (S.N.H.); (B.K.); (S.M.); (L.M.); (M.S.); (J.S.); (J.M.E.)
| | - Lyn March
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (D.B.A.); (C.E.A.-J.); (J.A.); (S.C.); (A.G.D.); (J.P.E.); (H.J.F.); (Z.G.); (S.G.); (L.A.H.); (C.E.H.); (S.N.H.); (B.K.); (S.M.); (L.M.); (M.S.); (J.S.); (J.M.E.)
| | - Andrea G. Nackley
- Center for Translational Pain Medicine, Department of Anesthesiology, School of Medicine, Duke University, Durham, NC 27710, USA;
| | - Shaun P. O’Leary
- School of Health and Rehabilitation Sciences, University of Queensland, Brisbane, 4072 QLD, Australia; (N.J.C.); (M.M.F.S.); (S.P.O.); (L.R.W.)
| | - Anneli Peolsson
- Occupational and Environmental Medicine Centre, Department of Health Medicine and Caring Sciences, Unit of Clinical Medicine, Linköping University, 58183 Linköping, Sweden;
- Department of Health Medicine and Caring Sciences, Unit of Physiotherapy, Linköping University, 58183 Linköping, Sweden
| | - Zuzana Perraton
- School of Allied Health, La Trobe University, Melbourne, VIC 3086, Australia; (Z.P.); (A.I.S.)
| | - Annelies L. Pool-Goudzwaard
- Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences—Program Musculoskeletal Health, Vrije Universiteit Amsterdam, 1081 BT Amsterdam, The Netherlands;
| | - Margaret Schnitzler
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (D.B.A.); (C.E.A.-J.); (J.A.); (S.C.); (A.G.D.); (J.P.E.); (H.J.F.); (Z.G.); (S.G.); (L.A.H.); (C.E.H.); (S.N.H.); (B.K.); (S.M.); (L.M.); (M.S.); (J.S.); (J.M.E.)
| | - Amee L. Seitz
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Adam I. Semciw
- School of Allied Health, La Trobe University, Melbourne, VIC 3086, Australia; (Z.P.); (A.I.S.)
| | - Philip W. Sheard
- Otago Medical School, University of Otago, Dunedin 9016, New Zealand; (J.C.); (P.W.S.)
| | - Andrew C. Smith
- School of Medicine, University of Colorado, Aurora, CO 80045, USA;
| | - Suzanne J. Snodgrass
- Discipline of Physiotherapy, University of Newcastle, Callaghan, NSW 2308, Australia;
| | - Justin Sullivan
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (D.B.A.); (C.E.A.-J.); (J.A.); (S.C.); (A.G.D.); (J.P.E.); (H.J.F.); (Z.G.); (S.G.); (L.A.H.); (C.E.H.); (S.N.H.); (B.K.); (S.M.); (L.M.); (M.S.); (J.S.); (J.M.E.)
| | - Vienna Tran
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia;
| | - Stephanie Valentin
- School of Health & Social Care, Edinburgh Napier University, Edinburgh, Scotland EH11 4BN, UK;
| | - David M. Walton
- School of Physical Therapy, Western University, London, ON N6A 3K7, Canada;
| | - Laurelie R. Wishart
- School of Health and Rehabilitation Sciences, University of Queensland, Brisbane, 4072 QLD, Australia; (N.J.C.); (M.M.F.S.); (S.P.O.); (L.R.W.)
- School of Medicine and Dentistry, Griffith University, Brisbane, QLD 4111, Australia
| | - James M. Elliott
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (D.B.A.); (C.E.A.-J.); (J.A.); (S.C.); (A.G.D.); (J.P.E.); (H.J.F.); (Z.G.); (S.G.); (L.A.H.); (C.E.H.); (S.N.H.); (B.K.); (S.M.); (L.M.); (M.S.); (J.S.); (J.M.E.)
- Northern Sydney Local Health District, The Kolling Institute, St Leonards, NSW 2065, Australia
| |
Collapse
|
24
|
Yang Y, Wu J, Zhou W, Ji G, Dang Y. Protein posttranslational modifications in metabolic diseases: basic concepts and targeted therapies. MedComm (Beijing) 2024; 5:e752. [PMID: 39355507 PMCID: PMC11442990 DOI: 10.1002/mco2.752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 10/03/2024] Open
Abstract
Metabolism-related diseases, including diabetes mellitus, obesity, hyperlipidemia, and nonalcoholic fatty liver disease, are becoming increasingly prevalent, thereby posing significant threats to human health and longevity. Proteins, as the primary mediators of biological activities, undergo various posttranslational modifications (PTMs), including phosphorylation, ubiquitination, acetylation, methylation, and SUMOylation, among others, which substantially diversify their functions. These modifications are crucial in the physiological and pathological processes associated with metabolic disorders. Despite advancements in the field, there remains a deficiency in contemporary summaries addressing how these modifications influence processes of metabolic disease. This review aims to systematically elucidate the mechanisms through which PTM of proteins impact the progression of metabolic diseases, including diabetes, obesity, hyperlipidemia, and nonalcoholic fatty liver disease. Additionally, the limitations of the current body of research are critically assessed. Leveraging PTMs of proteins provides novel insights and therapeutic targets for the prevention and treatment of metabolic disorders. Numerous drugs designed to target these modifications are currently in preclinical or clinical trials. This review also provides a comprehensive summary. By elucidating the intricate interplay between PTMs and metabolic pathways, this study advances understanding of the molecular mechanisms underlying metabolic dysfunction, thereby facilitating the development of more precise and effective disease management strategies.
Collapse
Affiliation(s)
- Yunuo Yang
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Jiaxuan Wu
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Wenjun Zhou
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Guang Ji
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Yanqi Dang
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| |
Collapse
|
25
|
Caturano A, Vetrano E, Galiero R, Sardu C, Rinaldi L, Russo V, Monda M, Marfella R, Sasso FC. Advances in the Insulin-Heart Axis: Current Therapies and Future Directions. Int J Mol Sci 2024; 25:10173. [PMID: 39337658 PMCID: PMC11432093 DOI: 10.3390/ijms251810173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
The insulin-heart axis plays a pivotal role in the pathophysiology of cardiovascular disease (CVD) in insulin-resistant states, including type 2 diabetes mellitus. Insulin resistance disrupts glucose and lipid metabolism, leading to systemic inflammation, oxidative stress, and atherogenesis, which contribute to heart failure (HF) and other CVDs. This review was conducted by systematically searching PubMed, Scopus, and Web of Science databases for peer-reviewed studies published in the past decade, focusing on therapeutic interventions targeting the insulin-heart axis. Studies were selected based on their relevance to insulin resistance, cardiovascular outcomes, and the efficacy of pharmacologic treatments. Key findings from the review highlight the efficacy of lifestyle modifications, such as dietary changes and physical activity, which remain the cornerstone of managing insulin resistance and improving cardiovascular outcomes. Moreover, pharmacologic interventions, such as metformin, sodium-glucose cotransporter 2 inhibitors, glucagon-like peptide-1 receptor agonists, and dipeptidyl peptidase-4 inhibitors, have shown efficacy in reducing cardiovascular risk by addressing metabolic dysfunction, reducing inflammation, and improving endothelial function. Furthermore, emerging treatments, such as angiotensin receptor-neprilysin inhibitors, and mechanical interventions like ventricular assist devices offer new avenues for managing HF in insulin-resistant patients. The potential of these therapies to improve left ventricular ejection fraction and reverse pathological cardiac remodeling highlights the importance of early intervention. However, challenges remain in optimizing treatment regimens and understanding the long-term cardiovascular effects of these agents. Future research should focus on personalized approaches that integrate lifestyle and pharmacologic therapies to effectively target the insulin-heart axis and mitigate the burden of cardiovascular complications in insulin-resistant populations.
Collapse
Affiliation(s)
- Alfredo Caturano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (E.V.); (R.G.); (C.S.); (R.M.)
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy;
| | - Erica Vetrano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (E.V.); (R.G.); (C.S.); (R.M.)
| | - Raffaele Galiero
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (E.V.); (R.G.); (C.S.); (R.M.)
| | - Celestino Sardu
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (E.V.); (R.G.); (C.S.); (R.M.)
| | - Luca Rinaldi
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, University of Molise, 86100 Campobasso, Italy
| | - Vincenzo Russo
- Department of Biology, College of Science and Technology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA 19122, USA;
- Division of Cardiology, Department of Medical Translational Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Marcellino Monda
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy;
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (E.V.); (R.G.); (C.S.); (R.M.)
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (E.V.); (R.G.); (C.S.); (R.M.)
| |
Collapse
|
26
|
Liu H, Diep TN, Wang Y, Wang Y, Yan LJ. Diabetic Kidney Disease: Contribution of Phenyl Sulfate Derived from Dietary Tyrosine upon Gut Microbiota Catabolism. Biomolecules 2024; 14:1153. [PMID: 39334919 PMCID: PMC11429668 DOI: 10.3390/biom14091153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Deranged gut microbiota can release increased levels of uremic toxins leading to exacerbated kidney injury. In diabetic kidney disease (DKD), phenyl sulfate (PS) derived from tyrosine catabolism by gut microbiota has been demonstrated to be both an early diagnostic marker and a therapeutic target. In this perspective article, we summarize PS generation pathways and recent findings on PS and kidney injury in DKD. Increasing evidence has shown that the underlying mechanisms of PS-induced kidney injury mainly involve oxidative stress, redox imbalance, and mitochondrial dysfunction, which all may be targeted to attenuate PS-induced kidney injury. For future research directions, we think that a deeper understanding of the pathogenic role of PS in kidney injury using a variety of diabetic animal models should be investigated. Moreover, we also suggest beneficial approaches that could be used to mitigate the deleterious effect of PS on the kidney. These approaches include caloric restriction, tyrosine restriction, and administration of ketogenic drugs, ketogenic diets or natural products; all of which should be conducted under obese and diabetic conditions.
Collapse
Affiliation(s)
- Haoxin Liu
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Tram N Diep
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Ying Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Yucheng Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Liang-Jun Yan
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
27
|
Zhu J, Guo J, Liu Z, Liu J, Yuan A, Chen H, Qiu J, Dou X, Lu D, Le Y. Salvianolic acid A attenuates non-alcoholic fatty liver disease by regulating the AMPK-IGFBP1 pathway. Chem Biol Interact 2024; 400:111162. [PMID: 39047806 DOI: 10.1016/j.cbi.2024.111162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/01/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) affects approximately a quarter of the population and, to date, there is no approved drug therapy for this condition. Individuals with type 2 diabetes mellitus (T2DM) are at a significantly elevated risk of developing NAFLD, underscoring the urgency of identifying effective NAFLD treatments for T2DM patients. Salvianolic acid A (SAA) is a naturally occurring phenolic acid that is an important component of the water-soluble constituents isolated from the roots of Salvia miltiorrhiza Bunge. SAA has been demonstrated to possess anti-inflammatory and antioxidant stress properties. Nevertheless, its potential in ameliorating diabetes-associated NAFLD has not yet been fully elucidated. In this study, diabetic ApoE-/- mice were employed to establish a NAFLD model via a Western diet. Following this, they were treated with different doses of SAA (10 mg/kg, 20 mg/kg) via gavage. The study demonstrated a marked improvement in liver injury, lipid accumulation, inflammation, and the pro-fibrotic phenotype after the administration of SAA. Additionally, RNA-seq analysis indicated that the primary pathway by which SAA alleviates diabetes-induced NAFLD involves the cascade pathways of lipid metabolism. Furthermore, SAA was found to be effective in the inhibition of lipid accumulation, mitochondrial dysfunction and ferroptosis. A functional enrichment analysis of RNA-seq data revealed that SAA treatment modulates the AMPK pathway and IGFBP-1. Further experimental results demonstrated that SAA is capable of inhibiting lipid accumulation through the activation of the AMPK pathway and IGFBP-1.
Collapse
Affiliation(s)
- Ji Zhu
- The Third Affiliated Hospital of Zhejiang Chinese Medical University (Zhongshan Hospital of Zhejiang Province), Hangzhou, 330106, China; Lipid Metabolism Institute (Molecular Medicine Institute), Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Jianan Guo
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Lipid Metabolism Institute (Molecular Medicine Institute), Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Zhijun Liu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Lipid Metabolism Institute (Molecular Medicine Institute), Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Jing Liu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Lipid Metabolism Institute (Molecular Medicine Institute), Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Aini Yuan
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Lipid Metabolism Institute (Molecular Medicine Institute), Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Hang Chen
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Lipid Metabolism Institute (Molecular Medicine Institute), Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Jiannan Qiu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Lipid Metabolism Institute (Molecular Medicine Institute), Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Xiaobing Dou
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Lipid Metabolism Institute (Molecular Medicine Institute), Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Dezhao Lu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Lipid Metabolism Institute (Molecular Medicine Institute), Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Yifei Le
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Lipid Metabolism Institute (Molecular Medicine Institute), Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
28
|
Presta M, Zoratto F, Mulder D, Ottomana AM, Pisa E, Arias Vásquez A, Slattery DA, Glennon JC, Macrì S. Hyperglycemia and cognitive impairments anticipate the onset of an overt type 2 diabetes-like phenotype in TALLYHO/JngJ mice. Psychoneuroendocrinology 2024; 167:107102. [PMID: 38896988 DOI: 10.1016/j.psyneuen.2024.107102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/30/2024] [Accepted: 06/08/2024] [Indexed: 06/21/2024]
Abstract
Type 2 Diabetes mellitus (T2DM) is a metabolic disorder characterized by chronic hyperglycemia, resulting from deficits in insulin secretion, insulin action, or both. Whilst the role of insulin in the peripheral nervous system has been ascertained in countless studies, its role in the central nervous system (CNS) is emerging only recently. Brain insulin has been lately associated with brain disorders like Alzheimer's disease, obsessive compulsive disorder, and attention deficit hyperactivity disorder. Thus, understanding the role of insulin as a common risk factor for mental and somatic comorbidities may disclose novel preventative and therapeutic approaches. We evaluated general metabolism (glucose tolerance, insulin sensitivity, energy expenditure, lipid metabolism, and polydipsia) and cognitive capabilities (attention, cognitive flexibility, and memory), in adolescent, young adult, and adult male and female TALLYHO/JngJ mice (TH, previously reported to constitute a valid experimental model of T2DM due to impaired insulin signaling). Adult TH mice have also been studied for alterations in gut microbiota diversity and composition. While TH mice exhibited profound deficits in cognitive flexibility and altered glucose metabolism, we observed that these alterations emerged either much earlier (males) or independent of (females) a comprehensive constellation of symptoms, isomorphic to an overt T2DM-like phenotype (insulin resistance, polydipsia, higher energy expenditure, and altered lipid metabolism). We also observed significant sex-dependent alterations in gut microbiota alpha diversity and taxonomy in adult TH mice. Deficits in insulin signaling may represent a common risk factor for both T2DM and CNS-related deficits, which may stem from (partly) independent mechanisms.
Collapse
Affiliation(s)
- Martina Presta
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome 00161, Italy; Department of Physiology and Pharmacology, Sapienza University of Rome, Rome 00185, Italy
| | - Francesca Zoratto
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Danique Mulder
- Donders Institute for Brain, Cognition and Behaviour, Departments of Psychiatry and Human Genetics, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Angela Maria Ottomana
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome 00161, Italy; Neuroscience Unit, Department of Medicine, University of Parma, Parma 43100, Italy
| | - Edoardo Pisa
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Alejandro Arias Vásquez
- Donders Institute for Brain, Cognition and Behaviour, Departments of Psychiatry and Human Genetics, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - David A Slattery
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Jeffrey C Glennon
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Ireland
| | - Simone Macrì
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome 00161, Italy.
| |
Collapse
|
29
|
Xian J, Du R, Yuan H, Li J, Pei Q, Hao Y, Zeng X, Wang J, Ye T. The application of predictive value of diabetes autoantibody profile combined with clinical data and routine laboratory indexes in the classification of diabetes mellitus. Front Endocrinol (Lausanne) 2024; 15:1349117. [PMID: 39247917 PMCID: PMC11377899 DOI: 10.3389/fendo.2024.1349117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 07/24/2024] [Indexed: 09/10/2024] Open
Abstract
Objective Currently, distinct use of clinical data, routine laboratory indicators or the detection of diabetic autoantibodies in the diagnosis and management of diabetes mellitus is limited. Hence, this study was aimed to screen the indicators, and to establish and validate a multifactorial logistic regression model nomogram for the non-invasive differential prediction of type 1 diabetes mellitus. Methods Clinical data, routine laboratory indicators, and diabetes autoantibody profiles of diabetic patients admitted between September 2018 and December 2022 were retrospectively analyzed. Logistic regression was used to select the independent influencing factors, and a prediction nomogram based on the multiple logistic regression model was constructed using these independent factors. Moreover, the predictive accuracy and clinical application value of the nomogram were evaluated using Receiver Operating Characteristic (ROC) curves, calibration curves, decision curve analysis (DCA), and clinical impact curves (CIC). Results A total of 522 diabetic patients were included in this study. These patients were randomized into training and validation sets in a 7:3 ratio. The predictors screened included age, prealbumin (PA), high-density lipoprotein cholesterol (HDL-C), islet cells autoantibodies (ICA), islets antigen 2 autoantibodies (IA-2A), glutamic acid decarboxylase antibody (GADA), and C-peptide levels. Based on these factors, a multivariate model nomogram was constructed, which had an Area Under Curve (AUC) of 0.966 and 0.961 for the training set and validation set, respectively. Subsequently, the calibration curves demonstrated a strong accuracy of the graph; the DCA and CIC results indicated that the graph could be used as a non-invasive valid predictive tool for the differential diagnosis of type 1 diabetes mellitus, clinically. Conclusion The established prediction model combining patient's age, PA, HDL-C, ICA, IA-2A, GADA, and C-peptide can assist in differential diagnosis of type 1 diabetes mellitus and type 2 diabetes mellitus and provides a basis for the clinical as well as therapeutic management of the disease.
Collapse
Affiliation(s)
- Jiawen Xian
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Rongrong Du
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Hui Yuan
- School of Basic Medical Sciences and School of Stomatology, Mudanjiang Medical University, Heilongjiang, China
| | - Jingyuan Li
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Qin Pei
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Yongjie Hao
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Xi Zeng
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Jingying Wang
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Ting Ye
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| |
Collapse
|
30
|
Tran HT, Kondo T, Ashry A, Fu Y, Okawa H, Sawangmake C, Egusa H. Effect of circadian clock disruption on type 2 diabetes. Front Physiol 2024; 15:1435848. [PMID: 39165284 PMCID: PMC11333352 DOI: 10.3389/fphys.2024.1435848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/08/2024] [Indexed: 08/22/2024] Open
Abstract
Introduction Type 2 diabetes (T2D) is the predominant form of diabetes mellitus and is among the leading causes of death with an increasing prevalence worldwide. However, the pathological mechanism underlying T2D remains complex and unclear. An increasing number of studies have suggested an association between circadian clock disruption and high T2D prevalence. Method This review explores the physiological and genetic evidence underlying T2D symptoms associated with circadian clock disturbances, including insulin secretion and glucose metabolism. Results and Discussion Notably, circadian clock disruption reduces insulin secretion and insulin sensitivity and negatively affects glucose homeostasis. The circadian clock regulates the hypothalamic-pituitary-adrenal axis, an important factor that regulates glucose metabolism and influences T2D progression. Therefore, circadian clock regulation is an attractive, novel therapeutic approach for T2D, and various circadian clock stabilizers play therapeutic roles in T2D. Lastly, this review suggests novel therapeutic and preventive approaches using circadian clock regulators for T2D.
Collapse
Affiliation(s)
- Hong Thuan Tran
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Japan
- Stem Cell Institute, University of Science, Viet Nam National University Ho Chi Minh City, Ho Chi Minh, Vietnam
| | - Takeru Kondo
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Amal Ashry
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Yunyu Fu
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Hiroko Okawa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Chenphop Sawangmake
- Veterinary Clinical Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Stem Cell and Bioengineering Innovation Center, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Japan
| |
Collapse
|
31
|
Li HY, Li CF, Liu CH, Chen SC, Liu YF, Lv QH, Zhang W. Extract of Phyllanthus emblica L. fruit stimulates basal glucose uptake and ameliorates palmitate-induced insulin resistance through AMPK activation in C2C12 myotubes. BMC Complement Med Ther 2024; 24:296. [PMID: 39095777 PMCID: PMC11295889 DOI: 10.1186/s12906-024-04592-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 07/16/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND The fruit of Phyllanthus emblica L., a traditional medicine in China and India, is used to treat diabetes mellitus. Its water extract (WEPE) has demonstrated hypoglycemic effects in diabetic rats, but its mechanisms on glucose utilization and insulin resistance in skeletal muscle remain unclear. Therefore, this study aims to investigate the effects and underlying mechanisms of WEPE on glucose utilization and insulin resistance using C2C12 myotubes. METHODS Effects of WEPE on glucose uptake, GLUT4 translocation, and AMPK and AKT phosphorylation were investigated in C2C12 myotubes and palmitate-treated myotubes. An AMPK inhibitor and siRNA were used to explore the mechanisms of WEPE. Glucose uptake was determined using a 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino)-2-deoxyglucose (2-NBDG) uptake assay, and protein expression and GLUT4 translocation were assessed via western blotting. RESULTS In normal myotubes, WEPE significantly stimulated glucose uptake and GLUT4 translocation to the plasma membrane at concentrations of 125 and 250 µg/mL. This was accompanied by an increase in the phosphorylation of AMPK and its downstream targets. However, both compound C and AMPK siRNA blocked the WEPE-induced GLUT4 translocation and glucose uptake. Moreover, pretreatment with STO-609, a calcium/calmodulin-dependent protein kinase kinase β (CaMKKβ) inhibitor, inhibited WEPE-induced AMPK phosphorylation and attenuated the WEPE-stimulated glucose uptake and GLUT4 translocation. In myotubes treated with palmitate, WEPE prevented palmitate-induced insulin resistance by enhancing insulin-mediated glucose uptake and AKT phosphorylation. It also restored the insulin-mediated translocation of GLUT4 from cytoplasm to membrane. However, these effects of WEPE on glucose uptake and GLUT4 translocation were blocked by pretreatment with compound C. CONCLUSIONS WEPE significantly stimulated basal glucose uptake though CaMKKβ/AMPK pathway and markedly ameliorated palmitate-induced insulin resistance by activating the AMPK pathway in C2C12 myotubes.
Collapse
Affiliation(s)
- Hai-Yan Li
- School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Chun-Fei Li
- School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Chun-Hui Liu
- China National Institute of Standardization, 4 Zhichun Road, Beijing, 100191, China.
| | - Sun-Ce Chen
- School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Yi-Fan Liu
- School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Quan-He Lv
- School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Wen Zhang
- School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China.
| |
Collapse
|
32
|
Tsuruta H, Sugahara S, Kume S. Nutrient quality in dietary therapy for diabetes and diabetic kidney disease. J Diabetes Investig 2024; 15:973-981. [PMID: 38591876 PMCID: PMC11292394 DOI: 10.1111/jdi.14208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/17/2024] [Accepted: 03/21/2024] [Indexed: 04/10/2024] Open
Abstract
Dietary therapy is crucial for diabetes care with the aim of preventing the onset and progression of diabetes and its complications. The traditional approach to dietary therapy for diabetes has primarily focused on restricting the intake of the three major nutrients and rigorously controlling blood glucose levels. However, advancements in nutritional science have shown that within the three major nutrients - carbohydrates, proteins and lipids - there exist multiple types, each with distinct impacts on type 2 diabetes and its complications, sometimes even showing conflicting effects. In light of this, the present review shifts its focus from the quantity to the quality of the three major nutrients. It aims to provide an overview of how the differences in nutrient quality can influence onset and progression of type 2 diabetes and diabetic kidney disease, highlighting the diverse effects and, at times, contradictory impacts associated with each nutrient type.
Collapse
Affiliation(s)
- Hiroaki Tsuruta
- Department of MedicineShiga University of Medical ScienceOtsuShigaJapan
| | - Sho Sugahara
- Department of MedicineShiga University of Medical ScienceOtsuShigaJapan
| | - Shinji Kume
- Department of MedicineShiga University of Medical ScienceOtsuShigaJapan
| |
Collapse
|
33
|
Zhang H, Wang Z, Li Q, Cao C, Guo Y, Chen Y. IRTKS promotes osteogenic differentiation by inhibiting PTEN phosphorylation. Biomed Pharmacother 2024; 177:116872. [PMID: 38908202 DOI: 10.1016/j.biopha.2024.116872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/24/2024] Open
Abstract
Insulin stimulates osteoblast proliferation and differentiation as an anabolic agent in bone. Insulin Receptor Tyrosine Kinase Substrate (IRTKS) is involved in insulin signaling as an adapter for insulin receptors (IR). Here, we showed that IRTKS levels were significantly decreased in bone marrow mesenchymal stem cells (BMSCs) derived from the bone marrow of patients with osteoporosis. Based on relevant experiments, we observed that IRTKS promoted the proliferation, migration, and osteoblast differentiation of BMSCs and MC3T3-E1 cells. In addition, we identified a Phosphatase and Tensin homolog deleted on chromosome 10 (PTEN) as a potential active substrate of IRTKS. We demonstrated a direct interaction between IRTKS and PTEN using co-immunoprecipitation. Subsequently, we confirmed that the SH3 domain of IRTKS directly binds to the C-terminal tail of PTEN. Further experimental results demonstrated that PTEN attenuated the promoting effects of IRTKS on the proliferation, migration, and osteoblast differentiation of BMSCs and MC3T3-E1 cells. In conclusion, this study suggests that IRTKS contributes to osteogenic differentiation by inhibiting PTEN phosphorylation and provides a potential therapeutic target for osteoporosis patients.
Collapse
Affiliation(s)
- Hengshuo Zhang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China; The First Clinical College of Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Ziyu Wang
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, PR China
| | - Qinghui Li
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China; The First Clinical College of Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Congcong Cao
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China; The First Clinical College of Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Yongyuan Guo
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China.
| | - Yunzhen Chen
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China.
| |
Collapse
|
34
|
Zaimi M, Michalopoulou O, Stefanaki K, Kazakou P, Vasileiou V, Psaltopoulou T, Karagiannakis DS, Paschou SA. Gonadal dysfunction in women with diabetes mellitus. Endocrine 2024; 85:461-472. [PMID: 38353886 PMCID: PMC11291547 DOI: 10.1007/s12020-024-03729-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/02/2024] [Indexed: 08/03/2024]
Abstract
It is well known that both type 1 and type 2 diabetes mellitus (DM) are related to increased risk for cardiovascular (CV) and chronic kidney disease (CKD). However, besides these prominently presented complications, DM has also been associated with reproductive dysfunctions. It seems that these disorders are met in up to 40% of women with DM and consist of delayed menarche, all types of menstrual disorders, such as amenorrhea, oligomenorrhea, menstrual irregularity, as well as menorrhagia, infertility, characteristics of polycystic ovary syndrome (PCOS) and early (or rarely late) menopause. In type 1 DM (T1DM), insulin treatment, although it has reduced the rates of insulinopenic-induced hypogonadotropic hypogonadism, an entity commonly presented in many women with the disease in the past decades, when it is used in excess it can also promote hyperandrogenism. Regarding type 2 DM (T2DM), insulin resistance (IR) and hyperinsulinemia have mainly been implicated in the pathogenesis of reproductive dysfunctions, as insulin can act as gonadotropin on the theca cells of the ovary and can lead to hyperandrogenism and inhibition of proper ovulation. This review aims to detail the reproductive dysfunctions associated with DM and provide scientific data to enlighten the underlying pathogenetic mechanisms.
Collapse
Affiliation(s)
- Maria Zaimi
- School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Olympia Michalopoulou
- Department of Clinical Therapeutics, Endocrine Unit and Diabetes Centre, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Katerina Stefanaki
- Department of Clinical Therapeutics, Endocrine Unit and Diabetes Centre, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Paraskevi Kazakou
- Department of Clinical Therapeutics, Endocrine Unit and Diabetes Centre, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Theodora Psaltopoulou
- Department of Clinical Therapeutics, Endocrine Unit and Diabetes Centre, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios S Karagiannakis
- Academic Department of Gastroenterology, Laiko General Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Stavroula A Paschou
- Department of Clinical Therapeutics, Endocrine Unit and Diabetes Centre, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
35
|
Chan JCN, Yang A, Chu N, Chow E. Current type 2 diabetes guidelines: Individualized treatment and how to make the most of metformin. Diabetes Obes Metab 2024; 26 Suppl 3:55-74. [PMID: 38992869 DOI: 10.1111/dom.15700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 07/13/2024]
Abstract
Evidence-based guidelines provide the premise for the delivery of quality care to preserve health and prevent disabilities and premature death. The systematic gathering of observational, mechanistic and experimental data contributes to the hierarchy of evidence used to guide clinical practice. In the field of diabetes, metformin was discovered more than 100 years ago, and with 60 years of clinical use, it has stood the test of time regarding its value in the prevention and management of type 2 diabetes. Although some guidelines have challenged the role of metformin as the first-line glucose-lowering drug, it is important to point out that the cardiovascular-renal protective effects of sodium-glucose co-transporter-2 inhibitors and glucagon-like peptide-1 receptor agonists were gathered from patients with type 2 diabetes, the majority of whom were treated with metformin. Most national, regional and international guidelines recommend metformin as a foundation therapy with emphasis on avoidance of therapeutic inertia and early attainment of multiple treatment goals. Moreover, real-world evidence has confirmed the glucose-lowering and cardiovascular-renal benefits of metformin accompanied by an extremely low risk of lactic acidosis. In patients with type 2 diabetes and advanced chronic kidney disease (estimated glomerular filtration rate 15-30 mL/min/1.73m2), metformin discontinuation was associated with an increased risk of cardiovascular-renal events compared with metformin persistence. Meanwhile, it is understood that microbiota, nutrients and metformin can interact through the gut-brain-kidney axis to modulate homeostasis of bioactive molecules, systemic inflammation and energy metabolism. While these biological changes contribute to the multisystem effects of metformin, they may also explain the gastrointestinal side effects and vitamin B12 deficiency associated with metformin intolerance. By understanding the interactions between metformin, foods and microbiota, healthcare professionals are in a better position to optimize the use of metformin and mitigate potential side effects. The United Kingdom Prospective Diabetes Study and the Da Qing Diabetes Prevention Program commenced 40 years ago provided the first evidence that type 2 diabetes is preventable and treatable. To drive real-world impact from this evidence, payors, practitioners and planners need to co-design and implement an integrated, data-driven, metformin-based programme to detect people with undiagnosed diabetes and prediabetes (intermediate hyperglycaemia), notably impaired glucose tolerance, for early intervention. The systematic data collection will create real-world evidence to bring out the best of metformin and make healthcare sustainable, affordable and accessible.
Collapse
Affiliation(s)
- Juliana C N Chan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Aimin Yang
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Natural Chu
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Elaine Chow
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- Phase 1 Clinical Trial Centre, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| |
Collapse
|
36
|
Crugnola W, Cinquina A, Mattimore D, Bitzas S, Schwartz J, Zaidi S, Bergese SD. Impact of Diabetes Mellitus on Outcomes in Patients with Left Ventricular Assist Devices. Biomedicines 2024; 12:1604. [PMID: 39062177 PMCID: PMC11275105 DOI: 10.3390/biomedicines12071604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Heart failure (HF) represents a significant health burden in the United States, resulting in substantial mortality and healthcare costs. Through the array of treatment options available, including lifestyle modifications, medications, and implantable devices, HF management has evolved. Left ventricular assist devices (LVADs) have emerged as a crucial intervention, particularly in patients with advanced HF. However, the prevalence of comorbidities such as diabetes mellitus (DM) complicates treatment outcomes. By elucidating the impact of DM on LVAD outcomes, this review aims to inform clinical practice and enhance patient care strategies for individuals undergoing LVAD therapy. Patients with DM have higher rates of hypertension, dyslipidemia, peripheral vascular disease, and renal dysfunction, posing challenges to LVAD management. The macro/microvascular changes that occur in DM can lead to cardiomyopathy and HF. Glycemic control post LVAD implantation is a critical factor affecting patient outcomes. The recent literature has shown significant decreases in hemoglobin A1c following LVAD implantation, representing a possible bidirectional relationship between DM and LVADs; however, the clinical significance of this decrease is unclear. Furthermore, while some studies show increased short- and long-term mortality in patients with DM after LVAD implantation, there still is no literature consensus regarding either mortality or major adverse outcomes in DM patients.
Collapse
Affiliation(s)
- William Crugnola
- Department of Anesthesiology, Stony Brook University Hospital, Stony Brook, NY 11794, USA; (W.C.); (A.C.); (D.M.); (J.S.); (S.Z.)
| | - Andrew Cinquina
- Department of Anesthesiology, Stony Brook University Hospital, Stony Brook, NY 11794, USA; (W.C.); (A.C.); (D.M.); (J.S.); (S.Z.)
| | - Daniel Mattimore
- Department of Anesthesiology, Stony Brook University Hospital, Stony Brook, NY 11794, USA; (W.C.); (A.C.); (D.M.); (J.S.); (S.Z.)
| | - Savannah Bitzas
- School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA;
| | - Jonathon Schwartz
- Department of Anesthesiology, Stony Brook University Hospital, Stony Brook, NY 11794, USA; (W.C.); (A.C.); (D.M.); (J.S.); (S.Z.)
| | - Saleem Zaidi
- Department of Anesthesiology, Stony Brook University Hospital, Stony Brook, NY 11794, USA; (W.C.); (A.C.); (D.M.); (J.S.); (S.Z.)
| | - Sergio D. Bergese
- Department of Anesthesiology, Stony Brook University Hospital, Stony Brook, NY 11794, USA; (W.C.); (A.C.); (D.M.); (J.S.); (S.Z.)
| |
Collapse
|
37
|
Guo M, Huang X, Zhang J, Huang Y, Tang Y, Wen H, Xu Y, Zhang S, Wei X, Sun S, Zhu Q. Palmitic acid induces β-cell ferroptosis by activating ceramide signaling pathway. Exp Cell Res 2024; 440:114134. [PMID: 38901790 DOI: 10.1016/j.yexcr.2024.114134] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/02/2024] [Accepted: 06/15/2024] [Indexed: 06/22/2024]
Abstract
Individuals with type 2 diabetes mellitus frequently display heightened levels of palmitic acid (PA) in their serum, which may lead to β-cell damage. The involvement of ferroptosis, a form of oxidative cell death in lipotoxic β-cell injury remains uncertain. Here, we have shown that PA induces intracellular lipid peroxidation, increases intracellular Fe2+ content and decreases intracellular glutathione peroxidase 4 (GPX4) expression. Furthermore, PA causes distinct changes in pancreatic islets and INS-1 cells, such as mitochondrial atrophy and increased membrane density. Furthermore, the presence of the ferroptosis inhibitor has a significant mitigating effect on PA-induced β-cell damage. Mechanistically, PA increased ceramide content and c-Jun N-terminal kinase (JNK) phosphorylation. The ceramide synthase inhibitor effectively attenuated PA-induced β-cell damage and GPX4/Fe2+ abnormalities, while inhibiting JNK phosphorylation. Additionally, the JNK inhibitor SP600125 improved PA-induced cell damage. In conclusion, by promoting ceramide synthesis, PA inhibited GPX4 expression and increased intracellular Fe2+ to induce β-cell ferroptosis. Moreover, JNK may be a downstream mechanism of ceramide-triggered lipotoxic ferroptosis in β-cells.
Collapse
Affiliation(s)
- Maojun Guo
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, China
| | - Xiaolong Huang
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, China
| | - Junhan Zhang
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, China
| | - Ying Huang
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, China
| | - Ying Tang
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, China
| | - Honghua Wen
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, China
| | - Yanan Xu
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, China; Department of Endocrinology, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu, 222002, China
| | - Shaokun Zhang
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, China; Department of Infectious Diseases, Taizhou Second People's Hospital, Taizhou, Jiangsu, 225500, China
| | - Xiao Wei
- Department of Endocrinology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
| | - Shuoshuo Sun
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Qun Zhu
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, China.
| |
Collapse
|
38
|
Lee YM, Lin PR, Sia HK. Oral antidiabetic therapy versus early insulinization on glycemic control in newly diagnosed type 2 diabetes patients: a retrospective matched cohort study. Sci Rep 2024; 14:15491. [PMID: 38969701 PMCID: PMC11226661 DOI: 10.1038/s41598-024-66468-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024] Open
Abstract
Our study aims to compare the efficacy of oral antidiabetic therapy to early insulinization on glycemic control among newly diagnosed type 2 diabetes patients in real-world clinical practice. A retrospective cohort study conducted at a medical center in Taiwan analyzed 1256 eligible patients from January 2007 to December 2017. Propensity score matching resulted in well-balanced groups of 94 patients each in the oral antidiabetic drug (OAD) and early insulinization cohorts. Glycemic outcomes were assessed in both groups. Patients exclusively using OAD showed consistently lower glycated hemoglobin (HbA1c) levels at 3, 12, 24, and 36 months compared to insulin users. At later periods, 77.7% of OAD users achieved glycemic control versus 64.9% of insulin users, with a marginally significant difference. Subgroup analyses suggested a trend favoring well-controlled diabetes in the OAD group, though not statistically significant. Our study finds oral antidiabetic therapy is not inferior to early insulinization for glycemic control in newly diagnosed type 2 diabetes patients, irrespective of initial HbA1c levels. This supports oral therapy as a rational treatment option, even in cases with elevated HbA1c at diagnosis.
Collapse
Affiliation(s)
- Yang-Ming Lee
- Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan.
- Department of Endocrinology and Metabolism, Changhua Christian Hospital, 135 Nanhsiao Street, Changhua, 500, Taiwan.
| | - Pei Ru Lin
- Big Data Center, Changhua Christian Hospital, Changhua, 500, Taiwan
- Graduate Institute of Statistics and Information Science, National Changhua University of Education, Changhua, 500, Taiwan
| | - Hon-Ke Sia
- Department of Endocrinology and Metabolism, Changhua Christian Hospital, 135 Nanhsiao Street, Changhua, 500, Taiwan.
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
39
|
Murata N, Nishimura K, Harada N, Kitakaze T, Yoshihara E, Inui H, Yamaji R. Insulin reduces endoplasmic reticulum stress-induced apoptosis by decreasing mitochondrial hyperpolarization and caspase-12 in INS-1 pancreatic β-cells. Physiol Rep 2024; 12:e16106. [PMID: 38884322 PMCID: PMC11181300 DOI: 10.14814/phy2.16106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/18/2024] Open
Abstract
Pancreatic β-cell mass is a critical determinant of insulin secretion. Severe endoplasmic reticulum (ER) stress causes β-cell apoptosis; however, the mechanisms of progression and suppression are not yet fully understood. Here, we report that the autocrine/paracrine function of insulin reduces ER stress-induced β-cell apoptosis. Insulin reduced the ER-stress inducer tunicamycin- and thapsigargin-induced cell viability loss due to apoptosis in INS-1 β-cells. Moreover, the effect of insulin was greater than that of insulin-like growth factor-1 at physiologically relevant concentrations. Insulin did not attenuate the ER stress-induced increase in unfolded protein response genes. ER stress did not induce cytochrome c release from mitochondria. Mitochondrial hyperpolarization was induced by ER stress and prevented by insulin. The protonophore/mitochondrial oxidative phosphorylation uncoupler, but not the antioxidants N-acetylcysteine and α-tocopherol, exhibited potential cytoprotection during ER stress. Both procaspase-12 and cleaved caspase-12 levels increased under ER stress. The caspase-12 inhibitor Z-ATAD-FMK decreased ER stress-induced apoptosis. Caspase-12 overexpression reduced cell viability, which was diminished in the presence of insulin. Insulin decreased caspase-12 levels at the post-translational stages. These results demonstrate that insulin protects against ER stress-induced β-cell apoptosis in this cell line. Furthermore, mitochondrial hyperpolarization and increased caspase-12 levels are involved in ER stress-induced and insulin-suppressed β-cell apoptosis.
Collapse
Affiliation(s)
- Nanako Murata
- Department of Applied Biological Chemistry, Graduate School of AgricultureOsaka Metropolitan UniversitySakaiOsakaJapan
| | - Kana Nishimura
- Division of Applied Life Sciences, Graduate School of Life and Environmental SciencesOsaka Prefecture UniversitySakaiOsakaJapan
| | - Naoki Harada
- Department of Applied Biological Chemistry, Graduate School of AgricultureOsaka Metropolitan UniversitySakaiOsakaJapan
- Division of Applied Life Sciences, Graduate School of Life and Environmental SciencesOsaka Prefecture UniversitySakaiOsakaJapan
| | - Tomoya Kitakaze
- Department of Applied Biological Chemistry, Graduate School of AgricultureOsaka Metropolitan UniversitySakaiOsakaJapan
- Division of Applied Life Sciences, Graduate School of Life and Environmental SciencesOsaka Prefecture UniversitySakaiOsakaJapan
| | - Eiji Yoshihara
- The Lundquist Institute for Biomedical Innovation at Harbor‐UCLA Medical CenterTorranceCaliforniaUSA
- David Geffen School of Medicine at University of California Los AngelesLos AngelesCaliforniaUSA
| | - Hiroshi Inui
- Department of Applied Biological Chemistry, Graduate School of AgricultureOsaka Metropolitan UniversitySakaiOsakaJapan
- Division of Applied Life Sciences, Graduate School of Life and Environmental SciencesOsaka Prefecture UniversitySakaiOsakaJapan
- Department of Health and NutritionOtemae UniversityOsakaJapan
| | - Ryoichi Yamaji
- Department of Applied Biological Chemistry, Graduate School of AgricultureOsaka Metropolitan UniversitySakaiOsakaJapan
- Division of Applied Life Sciences, Graduate School of Life and Environmental SciencesOsaka Prefecture UniversitySakaiOsakaJapan
- Center for Research and Development of BioresourcesOsaka Metropolitan UniversitySakaiOsakaJapan
| |
Collapse
|
40
|
Guo T, Zhang H, Luo Y, Yang X, Wang L, Zhang G. Global Trends and Frontier in Research on Pancreatic Alpha Cells: A Bibliometric Analysis from 2013 to 2023. CLIN INVEST MED 2024; 47:23-39. [PMID: 38958477 DOI: 10.3138/cim-2024-2744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
PURPOSE Over the past 20 years, much of the research on diabetes has focused on pancreatic beta cells. In the last 10 years, interest in the important role of pancreatic alpha cells in the pathogenesis of diabetes, which had previously received little attention, has grown. We aimed to summarize and visualize the hotspot and development trends of pancreatic alpha cells through bibliometric analysis and to provide research direction and future ideas for the treatment of diabetes and other islet-related diseases. METHODS We used two scientometric software packages (CiteSpace 6.1.R6 and VOSviewer1.6.18) to visualize the information and connection of countries, institutions, authors, and keywords in this field. RESULTS A total of 532 publications, published in 752 institutions in 46 countries and regions, were included in this analysis. The United States showed the highest output, accounting for 39.3% of the total number of published papers. The most active institution was Vanderbilt University, and the authors with highest productivity came from Ulster University. In recent years, research hotspots have concentrated on transdifferentiation, gene expression, and GLP-1 regulatory function. Visualization analysis shows that research hotspots mainly focus on clinical diseases as well as physiological and pathological mechanisms and related biochemical indicators. CONCLUSIONS This study provides a review and summary of the literature on pancreatic alpha cells through bibliometric and visual methods and shows research hotspot and development trends, which can guide future directions for research.
Collapse
Affiliation(s)
- Teng Guo
- Department of Endocrinology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Haoling Zhang
- Institute of Clinical Pharmacology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yunpeng Luo
- Department of Endocrinology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Xi Yang
- Department of Endocrinology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Lidan Wang
- Department of Endocrinology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guangde Zhang
- Department of Endocrinology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
41
|
Zhu ML, Fan JX, Guo YQ, Guo LJ, Que HD, Cui BY, Li YL, Guo S, Zhang MX, Yin YL, Li P. Protective effect of alizarin on vascular endothelial dysfunction via inhibiting the type 2 diabetes-induced synthesis of THBS1 and activating the AMPK signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155557. [PMID: 38547622 DOI: 10.1016/j.phymed.2024.155557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/03/2024] [Accepted: 03/19/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND In this study, we investigated the protective effects of alizarin (AZ) on endothelial dysfunction (ED). AZ has inhibition of the type 2 diabetes mellitus (T2DM)-induced synthesis of thrombospondin 1 (THBS1). Adenosine 5'-monophosphate- activated protein kinase (AMPK), particularly AMPKα2 isoform, plays a critical role in maintaining cardiac homeostasis. PURPOSE The aim of this study was to investigate the ameliorative effect of AZ on vascular injury caused by T2DM and to reveal the potential mechanism of AZ in high glucose (HG)-stimulated human umbilical vein endothelial cells (HUVECs) and diabetic model rats. STUDY DESIGN HUVECs, rats and AMPK-/- transgenic mice were used to investigate the mitigating effects of AZ on vascular endothelial dysfunction caused by T2DM and its in vitro and in vivo molecular mechanisms. METHODS In type 2 diabetes mellitus rats and HUVECs, the inhibitory effect of alizarin on THBS1 synthesis was verified by immunohistochemistry (IHC), immunofluorescence (IF) and Western blot (WB) so that increase endothelial nitric oxide synthase (eNOS) content in vitro and in vivo. In addition, we verified protein interactions with immunoprecipitation (IP). To probe the mechanism, we also performed AMPKα2 transfection. AMPK's pivotal role in AZ-mediated prevention against T2DM-induced vascular endothelial dysfunction was tested using AMPKα2-/- mice. RESULTS We first demonstrated that THBS1 and AMPK are targets of AZ. In T2DM, THBS1 was robustly induced by high glucose and inhibited by AZ. Furthermore, AZ activates the AMPK signaling pathway, and recoupled eNOS in stressed endothelial cells which plays a protective role in vascular endothelial dysfunction. CONCLUSIONS The main finding of this study is that AZ can play a role in different pathways of vascular injury due to T2DM. Mechanistically, alizarin inhibits the increase in THBS1 protein synthesis after high glucose induction and activates AMPKα2, which increases NO release from eNOS, which is essential in the prevention of vascular endothelial dysfunction caused by T2DM.
Collapse
Affiliation(s)
- Mo-Li Zhu
- Henan international joint laboratory of cardiovascular remodeling and drug intervention, Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jia-Xin Fan
- Henan international joint laboratory of cardiovascular remodeling and drug intervention, Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Ya-Qi Guo
- Henan international joint laboratory of cardiovascular remodeling and drug intervention, Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Li-Juan Guo
- Department of Oncology, First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453119, China
| | - Hua-Dong Que
- Henan international joint laboratory of cardiovascular remodeling and drug intervention, Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Bao-Yue Cui
- Henan international joint laboratory of cardiovascular remodeling and drug intervention, Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yin-Lan Li
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Heilongjiang, 150040, China
| | - Shuang Guo
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437100, China
| | - Ming-Xiang Zhang
- Henan international joint laboratory of cardiovascular remodeling and drug intervention, Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Ya-Ling Yin
- Henan international joint laboratory of cardiovascular remodeling and drug intervention, Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China.
| | - Peng Li
- Henan international joint laboratory of cardiovascular remodeling and drug intervention, Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China; Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437100, China.
| |
Collapse
|
42
|
Zhao X, Cheng T, Xia H, Yang Y, Wang S. Effects of Garlic on Glucose Parameters and Lipid Profile: A Systematic Review and Meta-Analysis on Randomized Controlled Trials. Nutrients 2024; 16:1692. [PMID: 38892625 PMCID: PMC11174586 DOI: 10.3390/nu16111692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/18/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
(1) Background: The effect of garlic on glucose and lipid metabolism in humans remains controversial. The aim of this study was to investigate the effects of garlic on blood lipid levels and glucose levels in humans through a systematic review and meta-analysis. (2) Methods: We extensively searched four databases, including PubMed, Web of Science, Embase, and the Cochrane Library, up to February 2024. To assess the collective impact of garlic and its supplements on fasting blood glucose (FBG), glycosylated hemoglobin (HbA1c), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and triglycerides (TG), an analysis was conducted using a random effects model. Subgroup analyses were performed when I2 < 50%. (3) Result: We found that the garlic intervention was effective in controlling FBG (mean difference = -7.01; 95% CI: -8.53, -5.49, p < 0.001), HbA1c (mean deviation = -0.66; 95% CI: -0.76, -0.55, p < 0.001, I2 = 62.9%), TC (mean difference = -14.17; 95% CI: -19.31, -9.03, p < 0.001), and LDL-C (mean difference = -8.20; 95% CI: -15.58, -0.81, p = 0.03); moreover, it also increased the level of HDL-C in humans (mean difference = 2.06; 95% CI: 1.54, 2.59; p < 0.001). Nonetheless, the intervention involving garlic did not yield a substantial impact on triglyceride (TG) levels. (4) Conclusion: The intervention of garlic is beneficial to control blood glucose and blood lipids in humans.
Collapse
Affiliation(s)
- Xinyu Zhao
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (X.Z.); (H.X.); (Y.Y.)
| | - Tao Cheng
- Department of General Surgery, Zhongda Hospital of Southeast University, Nanjing 210009, China;
| | - Hui Xia
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (X.Z.); (H.X.); (Y.Y.)
| | - Yanhong Yang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (X.Z.); (H.X.); (Y.Y.)
| | - Shaokang Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (X.Z.); (H.X.); (Y.Y.)
- Clinical Medical Research Center for Plateau Gastroenterological Disease of Xizang Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang 712082, China
| |
Collapse
|
43
|
Chen Q, Xiong S, Ye T, Gao Y, Wang J, Li X, Li Y, Cui C, Liu H, Zhang Z, Cai L, Zheng J. Insulin resistance, coronary artery lesion complexity and adverse cardiovascular outcomes in patients with acute coronary syndrome. Cardiovasc Diabetol 2024; 23:172. [PMID: 38755609 PMCID: PMC11100181 DOI: 10.1186/s12933-024-02276-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/12/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Insulin resistance (IR) is linked to both the complexity of coronary artery lesions and the prognosis of acute coronary syndrome (ACS). However, the precise extent of this correlation and its impact on adverse cardiovascular outcomes in ACS patients remain unclear. Therefore, this study aims to investigate the intricate relationship between IR, coronary artery lesion complexity, and the prognosis of ACS through a cohort design analysis. METHOD A total of 986 patients with ACS who underwent percutaneous coronary intervention (PCI) were included in this analysis. IR was assessed using the triglyceride-glucose (TyG) index, while coronary artery lesion complexity was evaluated using the SYNTAX score. Pearson's correlation coefficients were utilized to analyze the correlations between variables. The association of the TyG index and SYNTAX score with major adverse cardiovascular events (MACEs) in ACS was investigated using the Kaplan-Meier method, restricted cubic splines (RCS), and adjusted Cox regression. Additionally, a novel 2-stage regression method for survival data was employed in mediation analysis to explore the mediating impact of the SYNTAX score on the association between the TyG index and adverse cardiovascular outcomes, including MACEs and unplanned revascularization. RESULTS During a median follow-up of 30.72 months, 167 cases of MACEs were documented, including 66 all-cause deaths (6.69%), 26 nonfatal myocardial infarctions (MIs) (2.64%), and 99 unplanned revascularizations (10.04%). The incidence of MACEs, all-cause death, and unplanned revascularization increased with elevated TyG index and SYNTAX score. Both the TyG index (non-linear, P = 0.119) and SYNTAX score (non-linear, P = 0.004) displayed a positive dose-response relationship with MACEs, as illustrated by the RCS curve. Following adjustment for multiple factors, both the TyG index and SYNTAX score emerged as significant predictors of MACEs across the total population and various subgroups. Mediation analysis indicated that the SYNTAX score mediated 25.03%, 18.00%, 14.93%, and 11.53% of the correlation between the TyG index and MACEs in different adjusted models, respectively. Similar mediating effects were observed when endpoint was defined as unplanned revascularization. CONCLUSION Elevated baseline TyG index and SYNTAX score were associated with a higher risk of MACEs in ACS. Furthermore, the SYNTAX score partially mediated the relationship between the TyG index and adverse cardiovascular outcomes.
Collapse
Affiliation(s)
- Qiang Chen
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, China
| | - Shiqiang Xiong
- Department of Cardiology, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Tao Ye
- Department of Cardiology, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Yanxiang Gao
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, China
| | - Jian Wang
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, China
| | - Xingliang Li
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, China
| | - Yike Li
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Caiyan Cui
- Department of Cardiology, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Hanxiong Liu
- Department of Cardiology, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Zhen Zhang
- Department of Cardiology, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Lin Cai
- Department of Cardiology, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China.
| | - Jingang Zheng
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, China.
| |
Collapse
|
44
|
Fabricius TW, Verhulst CEM, Kristensen PL, Holst JJ, Tack CJ, McCrimmon RJ, Heller SR, Evans ML, de Galan BE, Pedersen-Bjergaard U. Counterregulatory hormone and symptom responses to hypoglycaemia in people with type 1 diabetes, insulin-treated type 2 diabetes or without diabetes: the Hypo-RESOLVE hypoglycaemic clamp study. Acta Diabetol 2024; 61:623-633. [PMID: 38376580 PMCID: PMC11055751 DOI: 10.1007/s00592-024-02239-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/13/2024] [Indexed: 02/21/2024]
Abstract
AIM The sympathetic nervous and hormonal counterregulatory responses to hypoglycaemia differ between people with type 1 and type 2 diabetes and may change along the course of diabetes, but have not been directly compared. We aimed to compare counterregulatory hormone and symptom responses to hypoglycaemia between people with type 1 diabetes, insulin-treated type 2 diabetes and controls without diabetes, using a standardised hyperinsulinaemic-hypoglycaemic clamp. MATERIALS We included 47 people with type 1 diabetes, 15 with insulin-treated type 2 diabetes, and 32 controls without diabetes. Controls were matched according to age and sex to the people with type 1 diabetes or with type 2 diabetes. All participants underwent a hyperinsulinaemic-euglycaemic-(5.2 ± 0.4 mmol/L)-hypoglycaemic-(2.8 ± 0.13 mmol/L)-clamp. RESULTS The glucagon response was lower in people with type 1 diabetes (9.4 ± 0.8 pmol/L, 8.0 [7.0-10.0]) compared to type 2 diabetes (23.7 ± 3.7 pmol/L, 18.0 [12.0-28.0], p < 0.001) and controls (30.6 ± 4.7, 25.5 [17.8-35.8] pmol/L, p < 0.001). The adrenaline response was lower in type 1 diabetes (1.7 ± 0.2, 1.6 [1.3-5.2] nmol/L) compared to type 2 diabetes (3.4 ± 0.7, 2.6 [1.3-5.2] nmol/L, p = 0.001) and controls (2.7 ± 0.4, 2.8 [1.4-3.9] nmol/L, p = 0.012). Growth hormone was lower in people with type 2 diabetes than in type 1 diabetes, at baseline (3.4 ± 1.6 vs 7.7 ± 1.3 mU/L, p = 0.042) and during hypoglycaemia (24.7 ± 7.1 vs 62.4 ± 5.8 mU/L, p = 0.001). People with 1 diabetes had lower overall symptom responses than people with type 2 diabetes (45.3 ± 2.7 vs 58.7 ± 6.4, p = 0.018), driven by a lower neuroglycopenic score (27.4 ± 1.8 vs 36.7 ± 4.2, p = 0.012). CONCLUSION Acute counterregulatory hormone and symptom responses to experimental hypoglycaemia are lower in people with type 1 diabetes than in those with long-standing insulin-treated type 2 diabetes and controls.
Collapse
Affiliation(s)
- Therese W Fabricius
- Department of Endocrinology and Nephrology, Nordsjællands Hospital, Hillerød, Denmark.
| | - Clementine E M Verhulst
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Peter L Kristensen
- Department of Endocrinology and Nephrology, Nordsjællands Hospital, Hillerød, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Cees J Tack
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Rory J McCrimmon
- Systems Medicine, School of Medicine, University of Dundee, Dundee, UK
| | - Simon R Heller
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Mark L Evans
- Welcome MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Bastiaan E de Galan
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
- Department of Internal Medicine, Maastricht UMC+, Maastricht, The Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Ulrik Pedersen-Bjergaard
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
45
|
Mukherji AB, Idowu V, Zhao L, Leung LLK, Shen S, Palaniappan L, Morser J. Chemerin Levels in Individuals with Type 2 Diabetes and a Normal Weight versus Individuals with Type 2 Diabetes and Obesity: An Observational, Cross-Sectional Study. Biomedicines 2024; 12:983. [PMID: 38790945 PMCID: PMC11117893 DOI: 10.3390/biomedicines12050983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Chemerin acts as both a chemotactic agent and an adipokine that undergoes proteolytic cleavage, converting inactive precursors into their active forms before being subsequently inactivated. Elevated chemerin levels are linked to obesity and type 2 diabetes mellitus (T2D). This study aimed to elucidate the effects of T2D and obesity on chemerin levels by comparing plasma samples from individuals with a normal weight and T2D (BMI < 25; NWD group n = 22) with those from individuals who are overweight or obese and have T2D (BMI ≥ 25; OWD group n = 39). The total chemerin levels were similar in the NWD and OWD groups, suggesting that T2D may equalize the chemerin levels irrespective of obesity status. The cleavage of chemerin has been previously linked to myocardial infarction and stroke in NWD, with potential implications for inflammation and mortality. OWD plasma exhibited lower levels of cleaved chemerin than the NWD group, suggesting less inflammation in the OWD group. Here, we showed that the interaction between obesity and T2D leads to an equalization in the total chemerin levels. The cleaved chemerin levels and the associated inflammatory state, however, differ significantly, underscoring the complex relationship between chemerin, T2D, and obesity.
Collapse
Affiliation(s)
- Aishee B. Mukherji
- Division of Primary Care and Population Health, Stanford University School of Medicine, Stanford, CA 94305, USA;
| | - Victoria Idowu
- Division of Endocrinology, Gerontology and Metabolism, Stanford University School of Medicine, Stanford, CA 94305, USA;
| | - Lei Zhao
- Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA; (L.Z.); (L.L.K.L.)
- Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA 94304, USA
| | - Lawrence L. K. Leung
- Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA; (L.Z.); (L.L.K.L.)
- Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA 94304, USA
| | - Sa Shen
- Quantitative Sciences Unit, Stanford University School of Medicine, Stanford, CA 94305, USA;
| | - Latha Palaniappan
- Division of Primary Care and Population Health, Stanford University School of Medicine, Stanford, CA 94305, USA;
- Division of General Medical Disciplines, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - John Morser
- Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA; (L.Z.); (L.L.K.L.)
- Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA 94304, USA
| |
Collapse
|
46
|
Logesh R, Hari B, Chidambaram K, Das N. Molecular effects of Vitamin-D and PUFAs metabolism in skeletal muscle combating Type-II diabetes mellitus. Gene 2024; 904:148216. [PMID: 38307219 DOI: 10.1016/j.gene.2024.148216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 01/10/2024] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
Multiple post-receptor intracellular alterations such as impaired glucose transfer, glucose phosphorylation, decreased glucose oxidation, and glycogen production contribute to insulin resistance (IR) in skeletal muscle, manifested by diminished insulin-stimulated glucose uptake. Type-2 diabetes mellites (T2DM) has caused by IR, which is also seen in obese patients and those with metabolic syndrome. The Vitamin-D receptor (VDR) and poly unsaturated fatty acids (PUFAs) roles in skeletal muscle growth, shapes, and function for combating type-2 diabetes have been clarified throughout this research. VDR and PUFAs appears to show a variety of effects on skeletal muscle, in addition it shows a promising role on bone and mineral homeostasis. Individuals having T2DM are reported to suffer from severe muscular weakness and alterations in shape of the muscle. Several studies have investigated the effect on VDR on muscular strength and mass, which leads to Vitamin-D deficiency (VDD) in individuals, in which most commonly seen in elderly. VDR has been shown to affect skeletal cellular proliferation, intracellular calcium handling, as well as genomic activity in a variety of different ways such as muscle metabolism, insulin sensitivity, which is the major characteristic pathogenesis for IR in combating T2DM. The identified VDR gene polymorphisms are ApaI, TaqI, FokI, and BsmI that are associated with T2DM. This review collates informations on the mechanisms by which VDR activation takes place in skeletal muscles. Despite the significant breakthroughs made in recent decades, various studies show that IR affects VDR and PUFAs metabolism in skeletal muscle. Therefore, this review collates the data to show the role of VDR and PUFAs in the skeletal muscles to combat T2DM.
Collapse
Affiliation(s)
- Rajan Logesh
- Department of Pharmacognosy, JSS College of Pharmacy, Mysuru, JSS Academy of Higher Education & Research, Karnataka, India.
| | - Balaji Hari
- TIFAC CORE in Herbal Drugs, Department of Pharmacognosy, JSS Academy of Higher Education & Research, JSS College of Pharmacy, The Nilgiris, Ooty 643001, Tamil Nadu, India
| | - Kumarappan Chidambaram
- Department of Pharmacology, College of Pharmacy, King Khalid University, Al-Qara, Asir Province, Saudi Arabia
| | - Niranjan Das
- Department of Chemistry, Iswar Chandra Vidyasagar College, Belonia 799155, Tripura, India
| |
Collapse
|
47
|
Wilhelmsen A, Stephens FB, Bennett AJ, Karagounis LG, Jones SW, Tsintzas K. Skeletal muscle myostatin mRNA expression is upregulated in aged human adults with excess adiposity but is not associated with insulin resistance and ageing. GeroScience 2024; 46:2033-2049. [PMID: 37801203 PMCID: PMC10828472 DOI: 10.1007/s11357-023-00956-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/20/2023] [Indexed: 10/07/2023] Open
Abstract
Myostatin negatively regulates skeletal muscle growth and appears upregulated in human obesity and associated with insulin resistance. However, observations are confounded by ageing, and the mechanisms responsible are unknown. The aim of this study was to delineate between the effects of excess adiposity, insulin resistance and ageing on myostatin mRNA expression in human skeletal muscle and to investigate causative factors using in vitro models. An in vivo cross-sectional analysis of human skeletal muscle was undertaken to isolate effects of excess adiposity and ageing per se on myostatin expression. In vitro studies employed human primary myotubes to investigate the potential involvement of cross-talk between subcutaneous adipose tissue (SAT) and skeletal muscle, and lipid-induced insulin resistance. Skeletal muscle myostatin mRNA expression was greater in aged adults with excess adiposity than age-matched adults with normal adiposity (2.0-fold higher; P < 0.05) and occurred concurrently with altered expression of genes involved in the maintenance of muscle mass but did not differ between younger and aged adults with normal adiposity. Neither chronic exposure to obese SAT secretome nor acute elevation of fatty acid availability (which induced insulin resistance) replicated the obesity-mediated upregulation of myostatin mRNA expression in vitro. In conclusion, skeletal muscle myostatin mRNA expression is uniquely upregulated in aged adults with excess adiposity and insulin resistance but not by ageing alone. This does not appear to be mediated by the SAT secretome or by lipid-induced insulin resistance. Thus, factors intrinsic to skeletal muscle may be responsible for the obesity-mediated upregulation of myostatin, and future work to establish causality is required.
Collapse
Affiliation(s)
- Andrew Wilhelmsen
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | | | - Andrew J Bennett
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Leonidas G Karagounis
- Mary MacKillop Institute for Health Research (MMIHR), Melbourne, Australian Catholic University, Melbourne, Australia
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland
| | - Simon W Jones
- Institute of Inflammation and Ageing, MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, Queen Elizabeth Hospital, The University of Birmingham, Birmingham, UK
| | - Kostas Tsintzas
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK.
| |
Collapse
|
48
|
Hassell Sweatman CZW. Modelling remission from overweight type 2 diabetes reveals how altering advice may counter relapse. Math Biosci 2024; 371:109180. [PMID: 38518862 DOI: 10.1016/j.mbs.2024.109180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/22/2024] [Accepted: 03/13/2024] [Indexed: 03/24/2024]
Abstract
The development or remission of diet-induced overweight type 2 diabetes involves many biological changes which occur over very different timescales. Remission, defined by HbA1c<6.5%, or fasting plasma glucose concentration G<126 mg/dl, may be achieved rapidly by following weight loss guidelines. However, remission is often short-term, followed by relapse. Mathematical modelling provides a way of investigating a typical situation, in which patients are advised to lose weight and then maintain fat mass, a slow variable. Remission followed by relapse, in a modelling sense, is equivalent to changing from a remission trajectory with steady state G<126 mg/dl, to a relapse trajectory with steady state G≥126 mg/dl. Modelling predicts that a trajectory which maintains weight will be a relapse trajectory, if the fat mass chosen is too high, the threshold being dependent on the lipid to carbohydrate ratio of the diet. Modelling takes into account the effects of hepatic and pancreatic lipid on hepatic insulin sensitivity and β-cell function, respectively. This study leads to the suggestion that type 2 diabetes remission guidelines be given in terms of model parameters, not variables; that is, the patient should adhere to a given nutrition and exercise plan, rather than achieve a certain subset of variable values. The model predicts that calorie restriction, not weight loss, initiates remission from type 2 diabetes; and that advice of the form 'adhere to the diet and exercise plan' rather than 'achieve a certain weight loss' may help counter relapse.
Collapse
Affiliation(s)
- Catherine Z W Hassell Sweatman
- School of Engineering, Computer and Mathematical Sciences, Auckland University of Technology, 55 Wellesley Street East, Auckland 1010, New Zealand.
| |
Collapse
|
49
|
Mittal R, McKenna K, Keith G, Lemos JRN, Mittal J, Hirani K. A systematic review of the association of Type I diabetes with sensorineural hearing loss. PLoS One 2024; 19:e0298457. [PMID: 38335215 PMCID: PMC10857576 DOI: 10.1371/journal.pone.0298457] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
OBJECTIVES Type 1 diabetes (T1D) has been associated with several comorbidities such as ocular, renal, and cardiovascular complications. However, the effect of T1D on the auditory system and sensorineural hearing loss (SNHL) is still not clear. The aim of this study was to conduct a systematic review to evaluate whether T1D is associated with hearing impairment. METHODS The databases PubMed, Science Direct, Scopus, and EMBASE were searched in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria. Three reviewers independently screened, selected, and extracted data. The Joanna Briggs Institute (JBI) Critical Appraisal Tools for Analytical cross-sectional and case-control studies were used to perform quality assessment and risk of bias analysis on eligible studies. RESULTS After screening a total of 463 studies, 11 eligible original articles were included in the review to analyze the effects of T1D on the auditory system. The included studies comprised cross-sectional and case-control investigations. A total of 5,792 patients were evaluated across the 11 articles included. The majority of the studies showed that T1D was associated with hearing impairment compared to controls, including differences in PTAs and OAEs, increased mean hearing thresholds, altered acoustic reflex thresholds, and problems with the medial olivocochlear (MOC) reflex inhibitory effect. Significant risk factors included older age, increased disease duration, and higher HbA1C levels. CONCLUSIONS This systematic review suggests that there is a correlation between T1D and impairment on the auditory system. A multidisciplinary collaboration between endocrinologists, otolaryngologists, and audiologists will lead to early detection of hearing impairment in people with T1D resulting in early intervention and better clinical outcomes in pursuit of improving the quality of life of affected individuals. REGISTRATION This systematic review is registered in PROSPERO (CRD42023438576).
Collapse
Affiliation(s)
- Rahul Mittal
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Keelin McKenna
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, United States of America
| | - Grant Keith
- School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Joana R. N. Lemos
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Jeenu Mittal
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Khemraj Hirani
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| |
Collapse
|
50
|
Jin T, Park EY, Kim B, Oh JK. Environmental exposure to lead and cadmium are associated with triglyceride glucose index. Sci Rep 2024; 14:2496. [PMID: 38291186 PMCID: PMC10827717 DOI: 10.1038/s41598-024-52994-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/25/2024] [Indexed: 02/01/2024] Open
Abstract
The triglyceride glucose (TyG) index was suggested as a novel reliable surrogate marker for insulin resistance and related cardiovascular-metabolic diseases. We aimed to evaluate the association between the TyG index and environmental exposure to lead (Pb), mercury (Hg), and cadmium (Cd). A total of 9645 adults who enrolled in the Korea National Health and Nutrition Examination Survey in 2005, 2008-2013, and 2016 were included. Fasting plasma glucose and triglyceride levels were used to calculate the TyG index. Multivariate logistic regression model was used to estimate odds ratios (ORs) and 95% confidence intervals (CIs). We noted an increasing trend in the TyG index with increment of blood Pb and Cd concentrations. Participants in the highest quartile of blood Pb and Cd concentrations had higher TyG index values than those in the lowest quartile, with ORs (95% CIs) of 1.32 (1.07-1.63) and 1.29 (1.04-1.59) for Pb and Cd, respectively. Strong associations between blood Pb and Cd concentrations and the TyG index were found in men. Blood Hg concentrations did not show a significant association with the TyG index. Our study suggests that public health strategies for cardiovascular-metabolic disorder prevention should be directed toward individuals exposed to priority heavy metals.
Collapse
Affiliation(s)
- Taiyue Jin
- Division of Cancer Prevention, National Cancer Control Institute, National Cancer Center, Goyang-si, 10408, Gyeonggi-do, Korea
| | - Eun Young Park
- Department of Preventive Medicine, Korea University College of Medicine, 73 Goryeodae-ro, Seongbuk-gu, Seoul, 02841, Korea.
| | - Byungmi Kim
- Division of Cancer Prevention, National Cancer Control Institute, National Cancer Center, Goyang-si, 10408, Gyeonggi-do, Korea
- Department of Cancer Control and Population Health, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, 10408, Gyeonggi-do, Korea
| | - Jin-Kyoung Oh
- Division of Cancer Prevention, National Cancer Control Institute, National Cancer Center, Goyang-si, 10408, Gyeonggi-do, Korea
- Department of Cancer Control and Population Health, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, 10408, Gyeonggi-do, Korea
| |
Collapse
|