1
|
Kozyra I, Kocki J, Rzeżutka A. Detection of Porcine-Human Reassortant and Zoonotic Group A Rotaviruses in Humans in Poland. Transbound Emerg Dis 2024; 2024:4232389. [PMID: 40303033 PMCID: PMC12017087 DOI: 10.1155/2024/4232389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/05/2024] [Accepted: 08/13/2024] [Indexed: 01/05/2025]
Abstract
Group A rotaviruses (RVAs) are widespread in humans and many animal species and represent the most epidemiologically important rotavirus group. The aim of the study was the identification of the genotype pattern of human RVA strains circulating in Poland, assessment of their phylogenetic relationships to pig RVAs and identification of reassortant and zoonotic virus strains. Human stool samples which were RVA positive (n = 166) were collected from children and adults at the age of 1 month to 74 years with symptoms of diarrhoea. Identification of the G and P genotypes of human RVAs as well as the complete genotype of reassortant and zoonotic virus strains was performed by the use of an RT-PCR method. The G (G1-G4, G8 or G9) and/or P (P[4], P[6], P[8] or P[9]) genotypes were determined for 148 (89.2%) out of 166 RVA strains present in human stool. G1P[8] RVA strains prevailed, and G4P[8] (20.5%), G9P[8] (15.7%) and G2P[4] (13.3%) human RVA strains were also frequently identified. The full genome analysis of human G4P[6] as well as pig G1P[8] and G5P[6] RVAs revealed the occurrence of porcine-human reassortants and zoonotic RVAs. Detection of G4P[6] in pigs confirms their role as a reservoir of zoonotic RVAs.
Collapse
Affiliation(s)
- Iwona Kozyra
- Department of Food and Environmental VirologyNational Veterinary Research Institute, Al. Partyzantów 57, Puławy 24-100, Poland
| | - Janusz Kocki
- Department of Medical GeneticsMedical University of Lublin, ul. Radziwiłłowska 11, Lublin 20-080, Poland
| | - Artur Rzeżutka
- Department of Food and Environmental VirologyNational Veterinary Research Institute, Al. Partyzantów 57, Puławy 24-100, Poland
| |
Collapse
|
2
|
Zhou X, Hou X, Xiao G, Liu B, Jia H, Wei J, Mi X, Guo Q, Wei Y, Zhai SL. Emergence of a Novel G4P[6] Porcine Rotavirus with Unique Sequence Duplication in NSP5 Gene in China. Animals (Basel) 2024; 14:1790. [PMID: 38929409 PMCID: PMC11200575 DOI: 10.3390/ani14121790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Rotavirus is a major causative agent of diarrhoea in children, infants, and young animals around the world. The associated zoonotic risk necessitates the serious consideration of the complete genetic information of rotavirus. A segmented genome makes rotavirus prone to rearrangement and the formation of a new viral strain. Monitoring the molecular epidemiology of rotavirus is essential for its prevention and control. The quantitative RT-PCR targeting the NSP5 gene was used to detect rotavirus group A (RVA) in pig faecal samples, and two pairs of universal primers and protocols were used for amplifying the G and P genotype. The genotyping and phylogenetic analysis of 11 genes were performed by RT-PCR and a basic bioinformatics method. A unique G4P[6] rotavirus strain, designated S2CF (RVA/Pig-tc/CHN/S2CF/2023/G4P[6]), was identified in one faecal sample from a piglet with severe diarrhoea in Guangdong, China. Whole genome sequencing and analysis suggested that the 11 segments of the S2CF strain showed a unique Wa-like genotype constellation and a typical porcine RVA genomic configuration of G4-P[6]-I1-R1-C1-M1-A8-N1-T1-E1-H1. Notably, 4 of the 11 gene segments (VP4, VP6, VP2, and NSP5) clustered consistently with human-like RVAs, suggesting independent human-to-porcine interspecies transmission. Moreover, a unique 344-nt duplicated sequence was identified for the first time in the untranslated region of NSP5. This study further reveals the genetic diversity and potential inter-species transmission of porcine rotavirus.
Collapse
Affiliation(s)
- Xia Zhou
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou 510640, China; (X.Z.); (X.H.); (G.X.); (B.L.); (H.J.)
| | - Xueyan Hou
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou 510640, China; (X.Z.); (X.H.); (G.X.); (B.L.); (H.J.)
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China;
| | - Guifa Xiao
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou 510640, China; (X.Z.); (X.H.); (G.X.); (B.L.); (H.J.)
| | - Bo Liu
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou 510640, China; (X.Z.); (X.H.); (G.X.); (B.L.); (H.J.)
| | - Handuo Jia
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou 510640, China; (X.Z.); (X.H.); (G.X.); (B.L.); (H.J.)
| | - Jie Wei
- Xinjiang Key Laboratory of Animal Infectious Diseases, Institute of Veterinary Medicine, Xinjiang Academy of Animal Sciences, Urumqi 830013, China; (J.W.); (X.M.)
| | - Xiaoyun Mi
- Xinjiang Key Laboratory of Animal Infectious Diseases, Institute of Veterinary Medicine, Xinjiang Academy of Animal Sciences, Urumqi 830013, China; (J.W.); (X.M.)
| | - Qingyong Guo
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China;
| | - Yurong Wei
- Xinjiang Key Laboratory of Animal Infectious Diseases, Institute of Veterinary Medicine, Xinjiang Academy of Animal Sciences, Urumqi 830013, China; (J.W.); (X.M.)
| | - Shao-Lun Zhai
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou 510640, China; (X.Z.); (X.H.); (G.X.); (B.L.); (H.J.)
| |
Collapse
|
3
|
Dong HJ, Liu LY, Jia LP, Zhao LQ, Jin FH, Zhou L, Qian Y. Prevalence and genomic analysis of t203-like G9 (G9-VI) rotaviruses circulating in children with gastroenteritis in Beijing, China. Arch Virol 2023; 168:257. [PMID: 37755543 PMCID: PMC10533636 DOI: 10.1007/s00705-023-05860-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 07/24/2023] [Indexed: 09/28/2023]
Abstract
Our previous surveillance revealed that t203-like G9 (tentatively designated subtype G9-VI) rotaviruses re-emerged in 2010 in Beijing and rapidly prevailed over the G9-III subtype (the most common G9 subtype globally) and previously predominant G genotypes over the following two years. G9-VI belongs to the VP7 evolutionary lineage VI, which includes unusual and sporadic human rotaviruses from China (t203) and Japan. To obtain insight into the epidemiology, evolution, and transmission advantages of G9-VI rotavirus, we performed follow-up surveillance (2014-2017) and whole-genome analysis of 12 representative G9 strains. The results showed that the G9 genotype was predominant (77.4%), with a marked increase in prevalence (previously 43.5%). Within the G9 genotype, subtype G9-VI accounted for the majority (98.3%) of cases. The most prevalent P-genotype was P[8] (93.7%), within which subtype P[8]b was rare (0.7%). Phylogenetically, the G9-VI subtype strains in this study clustered closely with contemporary emerging human rotaviruses from many other countries in VP7 lineage VI, indicating that this subtype is capable of spreading globally. These currently emerging G9-VI rotaviruses formed a distinct monophyletic subcluster when compared to early G9-VI rotaviruses. Furthermore, four specific amino acid substitutions and synonymous codon substitutions were observed in the VP7 genes between the current G9-VI and globally common G9-III rotaviruses. The remaining nine genes of all of the analyzed representative G9 strains, whether G9-VI or G9-III, combined with the P[8]a, P[8]b, or P[6] genotype and exhibited the same Wa-like backbone constellation.
Collapse
Affiliation(s)
- Hui-Jin Dong
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Li-Ying Liu
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Li-Ping Jia
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Lin-Qing Zhao
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Feng-Hua Jin
- Department of Infectious Diseases, Affiliated Children's Hospital to Capital Institute of Pediatrics, Beijing, 100020, China
| | - Lin Zhou
- Department of Clinical Laboratory, Affiliated Children's Hospital to Capital Institute of Pediatrics, Beijing, 100020, China
| | - Yuan Qian
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing, 100020, China.
| |
Collapse
|
4
|
Ndebe J, Harima H, Chambaro HM, Sasaki M, Yamagishi J, Kalonda A, Shawa M, Qiu Y, Kajihara M, Takada A, Sawa H, Saasa N, Simulundu E. Prevalence and Genomic Characterization of Rotavirus A from Domestic Pigs in Zambia: Evidence for Possible Porcine-Human Interspecies Transmission. Pathogens 2023; 12:1199. [PMID: 37887715 PMCID: PMC10609906 DOI: 10.3390/pathogens12101199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023] Open
Abstract
Rotavirus is a major cause of diarrhea globally in animals and young children under 5 years old. Here, molecular detection and genetic characterization of porcine rotavirus in smallholder and commercial pig farms in the Lusaka Province of Zambia were conducted. Screening of 148 stool samples by RT-PCR targeting the VP6 gene revealed a prevalence of 22.9% (34/148). Further testing of VP6-positive samples with VP7-specific primers produced 12 positives, which were then Sanger-sequenced. BLASTn of the VP7 positives showed sequence similarity to porcine and human rotavirus strains with identities ranging from 87.5% to 97.1%. By next-generation sequencing, the full-length genetic constellation of the representative strains RVA/pig-wt/ZMB/LSK0137 and RVA/pig-wt/ZMB/LSK0147 were determined. Genotyping of these strains revealed a known Wa-like genetic backbone, and their genetic constellations were G4-P[6]-I5-R1-C1-M1-A8-N1-T1-E1-H1 and G9-P[13]-I5-R1-C1-M1-A8-N1-T1-E1-H1, respectively. Phylogenetic analysis revealed that these two viruses might have their ancestral origin from pigs, though some of their gene segments were related to human strains. The study shows evidence of reassortment and possible interspecies transmission between pigs and humans in Zambia. Therefore, the "One Health" surveillance approach for rotavirus A in animals and humans is recommended to inform the design of effective control measures.
Collapse
Affiliation(s)
- Joseph Ndebe
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia; (A.T.); (H.S.); (N.S.)
| | - Hayato Harima
- Laboratory of Veterinary Public Health, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Saiwai-cho 3-5-8, Fuchu, Tokyo 183-8509, Japan;
| | - Herman Moses Chambaro
- Central Veterinary Research Institute (CVRI), Ministry of Fisheries and Livestock, Lusaka 10101, Zambia;
| | - Michihito Sasaki
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, N20 W10, Sapporo 001-0020, Japan;
| | - Junya Yamagishi
- Division of Collaboration and Education, International Institute for Zoonosis Control, Hokkaido University, N20 W10, Sapporo 001-0020, Japan;
| | - Annie Kalonda
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka 10101, Zambia;
| | - Misheck Shawa
- Hokudai Center for Zoonosis Control in Zambia, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia; (M.S.); (M.K.)
- Division of International Research Promotion, International Institute for Zoonosis Control, Hokkaido University, N20 W10, Sapporo 001-0020, Japan
| | - Yongjin Qiu
- National Institute of Infectious Diseases, Management Department of Biosafety, Laboratory Animal, and Pathogen Bank, Toyama 1-23-1, Tokyo 162-8640, Japan
- Department of Virology-I, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Masahiro Kajihara
- Hokudai Center for Zoonosis Control in Zambia, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia; (M.S.); (M.K.)
- Division of International Research Promotion, International Institute for Zoonosis Control, Hokkaido University, N20 W10, Sapporo 001-0020, Japan
| | - Ayato Takada
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia; (A.T.); (H.S.); (N.S.)
- Africa Centre of Excellence for Infectious Diseases of Humans and Animals, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, N20 W10, Sapporo 001-0020, Japan
- One Health Research Center, Hokkaido University, N18 W9, Sapporo 001-0020, Japan
| | - Hirofumi Sawa
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia; (A.T.); (H.S.); (N.S.)
- Africa Centre of Excellence for Infectious Diseases of Humans and Animals, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia
- One Health Research Center, Hokkaido University, N18 W9, Sapporo 001-0020, Japan
- Hokkaido University, Institute for Vaccine Research and Development (HU-IVReD), N21 W11, Sapporo 001-0020, Japan
- Global Virus Network, 725 W Lombard Street, Baltimore, MD 21201, USA
| | - Ngonda Saasa
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia; (A.T.); (H.S.); (N.S.)
| | - Edgar Simulundu
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia; (A.T.); (H.S.); (N.S.)
- Macha Research Trust, Choma 20100, Zambia
| |
Collapse
|
5
|
Prevalence and genomic characterization of rotavirus group A genotypes in piglets from in southern highlands and eastern Tanzania. Heliyon 2022; 8:e11750. [DOI: 10.1016/j.heliyon.2022.e11750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/27/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022] Open
|
6
|
Wandera EA, Hatazawa R, Tsutsui N, Kurokawa N, Kathiiko C, Mumo M, Waithira E, Wachira M, Mwaura B, Nyangao J, Khamadi SA, Njau J, Fukuda S, Murata T, Taniguchi K, Ichinose Y, Kaneko S, Komoto S. Genomic characterization of an African G4P[6] human rotavirus strain identified in a diarrheic child in Kenya: Evidence for porcine-to-human interspecies transmission and reassortment. INFECTION GENETICS AND EVOLUTION 2021; 96:105133. [PMID: 34767977 DOI: 10.1016/j.meegid.2021.105133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 01/04/2023]
Abstract
Human rotavirus strains having the unconventional G4P[6] genotype have been sporadically identified in diarrheic patients in different parts of the world. However, the whole genome of only one human G4P[6] strain from Africa (central Africa) has been sequenced and analyzed, and thus the exact origin and evolutionary pattern of African G4P[6] strains remain to be elucidated. In this study, we characterized the full genome of an African G4P[6] strain (RVA/Human-wt/KEN/KCH148/2019/G4P[6]) identified in a stool specimen from a diarrheic child in Kenya. Full genome analysis of strain KCH148 revealed a unique Wa-like genogroup constellation: G4-P[6]-I1-R1-C1-M1-A1-N1-T7-E1-H1. NSP3 genotype T7 is commonly found in porcine rotavirus strains. Furthermore, phylogenetic analysis showed that 10 of the 11 genes of strain KCH148 (VP7, VP4, VP6, VP1-VP3, NSP1, and NSP3-NSP5) appeared to be of porcine origin, the remaining NSP2 gene appearing to be of human origin. Therefore, strain KCH148 was found to have a porcine rotavirus backbone and thus is likely to be of porcine origin. Furthermore, strain KCH148 is assumed to have been derived through interspecies transmission and reassortment events involving porcine and human rotavirus strains. To our knowledge, this is the first report on full genome-based characterization of a human G4P[6] strain from east Africa. Our observations demonstrated the diversity of human G4P[6] strains in Africa, and provide important insights into the origin and evolutionary pattern of zoonotic G4P[6] strains on the African continent.
Collapse
Affiliation(s)
- Ernest Apondi Wandera
- Kenya Research Station, Institute of Tropical Medicine (NEKKEN), Kenya Medical Research Institute (KEMRI)/Nagasaki University, Nairobi 19993-00202, Kenya
| | - Riona Hatazawa
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Naohisa Tsutsui
- Department of Project Planning and Management, Mitsubishi Tanabe Pharma Corporation, Chuo-ku, Tokyo 103-8405, Japan
| | - Natsuki Kurokawa
- Department of Project Planning and Management, Mitsubishi Tanabe Pharma Corporation, Chuo-ku, Tokyo 103-8405, Japan
| | - Cyrus Kathiiko
- Kenya Research Station, Institute of Tropical Medicine (NEKKEN), Kenya Medical Research Institute (KEMRI)/Nagasaki University, Nairobi 19993-00202, Kenya
| | - Maurine Mumo
- Kenya Research Station, Institute of Tropical Medicine (NEKKEN), Kenya Medical Research Institute (KEMRI)/Nagasaki University, Nairobi 19993-00202, Kenya
| | - Eunice Waithira
- Kenya Research Station, Institute of Tropical Medicine (NEKKEN), Kenya Medical Research Institute (KEMRI)/Nagasaki University, Nairobi 19993-00202, Kenya
| | - Mary Wachira
- Kenya Research Station, Institute of Tropical Medicine (NEKKEN), Kenya Medical Research Institute (KEMRI)/Nagasaki University, Nairobi 19993-00202, Kenya
| | - Boniface Mwaura
- Kenya Research Station, Institute of Tropical Medicine (NEKKEN), Kenya Medical Research Institute (KEMRI)/Nagasaki University, Nairobi 19993-00202, Kenya
| | - James Nyangao
- Center for Virus Research, KEMRI, Nairobi 54840-00200, Kenya
| | | | - Joseph Njau
- Department of Pediatrics, Kiambu County Referral Hospital, Kiambu 39-00900, Kenya
| | - Saori Fukuda
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Takayuki Murata
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Koki Taniguchi
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Yoshio Ichinose
- Kenya Research Station, Institute of Tropical Medicine (NEKKEN), Kenya Medical Research Institute (KEMRI)/Nagasaki University, Nairobi 19993-00202, Kenya
| | - Satoshi Kaneko
- Kenya Research Station, Institute of Tropical Medicine (NEKKEN), Kenya Medical Research Institute (KEMRI)/Nagasaki University, Nairobi 19993-00202, Kenya
| | - Satoshi Komoto
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan.
| |
Collapse
|
7
|
Tacharoenmuang R, Guntapong R, Upachai S, Singchai P, Fukuda S, Ide T, Hatazawa R, Sutthiwarakom K, Kongjorn S, Onvimala N, Luechakham T, Ruchusatsawast K, Kawamura Y, Sriwanthana B, Motomura K, Tatsumi M, Takeda N, Yoshikawa T, Murata T, Uppapong B, Taniguchi K, Komoto S. Full genome-based characterization of G4P[6] rotavirus strains from diarrheic patients in Thailand: Evidence for independent porcine-to-human interspecies transmission events. Virus Genes 2021; 57:338-357. [PMID: 34106412 DOI: 10.1007/s11262-021-01851-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/17/2021] [Indexed: 12/18/2022]
Abstract
The exact evolutionary patterns of human G4P[6] rotavirus strains remain to be elucidated. Such strains possess unique and strain-specific genotype constellations, raising the question of whether G4P[6] strains are primarily transmitted via independent interspecies transmission or human-to-human transmission after interspecies transmission. Two G4P[6] rotavirus strains were identified in fecal specimens from hospitalized patients with severe diarrhea in Thailand, namely, DU2014-259 (RVA/Human-wt/THA/DU2014-259/2014/G4P[6]) and PK2015-1-0001 (RVA/Human-wt/THA/PK2015-1-0001/2015/G4P[6]). Here, we analyzed the full genomes of the two human G4P[6] strains, which provided the opportunity to study and confirm their evolutionary origin. On whole genome analysis, both strains exhibited a unique Wa-like genotype constellation of G4-P[6]-I1-R1-C1-M1-A8-N1-T1-E1-H1. The NSP1 genotype A8 is commonly found in porcine rotavirus strains. Furthermore, on phylogenetic analysis, each of the 11 genes of strains DU2014-259 and PK2015-1-0001 appeared to be of porcine origin. On the other hand, the two study strains consistently formed distinct clusters for nine of the 11 gene segments (VP4, VP6, VP1-VP3, and NSP2-NSP5), strongly indicating the occurrence of independent porcine-to-human interspecies transmission events. Our observations provide important insights into the origin of zoonotic G4P[6] strains, and into the dynamic interaction between porcine and human rotavirus strains.
Collapse
Affiliation(s)
- Ratana Tacharoenmuang
- National Institute of Health, Department of Medical Sciences, Nonthaburi, 11000, Thailand
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, 470-1192, Japan
| | - Ratigorn Guntapong
- National Institute of Health, Department of Medical Sciences, Nonthaburi, 11000, Thailand
| | - Sompong Upachai
- National Institute of Health, Department of Medical Sciences, Nonthaburi, 11000, Thailand
| | - Phakapun Singchai
- National Institute of Health, Department of Medical Sciences, Nonthaburi, 11000, Thailand
| | - Saori Fukuda
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, 470-1192, Japan
| | - Tomihiko Ide
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, 470-1192, Japan
| | - Riona Hatazawa
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, 470-1192, Japan
| | - Karun Sutthiwarakom
- National Institute of Health, Department of Medical Sciences, Nonthaburi, 11000, Thailand
| | - Santip Kongjorn
- National Institute of Health, Department of Medical Sciences, Nonthaburi, 11000, Thailand
| | - Napa Onvimala
- National Institute of Health, Department of Medical Sciences, Nonthaburi, 11000, Thailand
| | - Tipsuda Luechakham
- National Institute of Health, Department of Medical Sciences, Nonthaburi, 11000, Thailand
| | | | - Yoshiki Kawamura
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Aichi, 470-1192, Japan
| | - Busarawan Sriwanthana
- Medical Sciences Technical Office, Department of Medical Sciences, Nonthaburi, 11000, Thailand
| | - Kazushi Motomura
- Thailand-Japan Research Collaboration Center on Emerging and Re-Emerging Infections, Nonthaburi, 11000, Thailand
- Osaka Institute of Public Health, Osaka, 537-0025, Japan
| | - Masashi Tatsumi
- Thailand-Japan Research Collaboration Center on Emerging and Re-Emerging Infections, Nonthaburi, 11000, Thailand
| | - Naokazu Takeda
- Thailand-Japan Research Collaboration Center on Emerging and Re-Emerging Infections, Nonthaburi, 11000, Thailand
| | - Tetsushi Yoshikawa
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Aichi, 470-1192, Japan
| | - Takayuki Murata
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, 470-1192, Japan
| | - Ballang Uppapong
- National Institute of Health, Department of Medical Sciences, Nonthaburi, 11000, Thailand
| | - Koki Taniguchi
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, 470-1192, Japan
| | - Satoshi Komoto
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, 470-1192, Japan.
| |
Collapse
|
8
|
Molecular Characterisation of a Rare Reassortant Porcine-Like G5P[6] Rotavirus Strain Detected in an Unvaccinated Child in Kasama, Zambia. Pathogens 2020; 9:pathogens9080663. [PMID: 32824526 PMCID: PMC7460411 DOI: 10.3390/pathogens9080663] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/14/2020] [Accepted: 08/14/2020] [Indexed: 11/25/2022] Open
Abstract
A human-porcine reassortant strain, RVA/Human-wt/ZMB/UFS-NGS-MRC-DPRU4723/2014/G5P[6], was identified in a sample collected in 2014 from an unvaccinated 12 month old male hospitalised for gastroenteritis in Zambia. We sequenced and characterised the complete genome of this strain which presented the constellation: G5-P[6]-I1-R1-C1-M1-A8-N1-T1-E1-H1. The genotype A8 is often observed in porcine strains. Phylogenetic analyses showed that VP6, VP7, NSP2, NSP4, and NSP5 genes were closely related to cognate gene sequences of porcine strains (e.g., RVA/Pig-wt/CHN/DZ-2/2013/G5P[X] for VP7) from the NCBI database, while VP1, VP3, VP4, and NSP3 were closely related to porcine-like human strains (e.g., RVA/Human-wt/CHN/E931/2008/G4P[6] for VP1, and VP3). On the other hand, the origin of the VP2 was not clear from our analyses, as it was not only close to both porcine (e.g., RVA/Pig-tc/CHN/SWU-1C/2018/G9P[13]) and porcine-like human strains (e.g., RVA/Human-wt/LKA/R1207/2009/G4P[6]) but also to three human strains (e.g., RVA/Human-wt/USA/1476/1974/G1P[8]). The VP7 gene was located in lineage II that comprised only porcine strains, which suggests the occurrence of independent porcine-to-human reassortment events. The study strain may have collectively been derived through interspecies transmission, or through reassortment event(s) involving strains of porcine and porcine-like human origin. The results of this study underline the importance of whole-genome characterisation of rotavirus strains and provide insights into interspecies transmissions from porcine to humans.
Collapse
|
9
|
Logeshwaran G, Ravishankar C, Nandhakumar D, Sebastian SR, Rajasekhar R, Sumod K, Mani BK, Benjamin ED, Jayakrishnan TR, John K, Mini M. Detection and molecular characterization of rotavirus of pigs in Kerala, India. Virusdisease 2020; 31:554-559. [PMID: 33381628 DOI: 10.1007/s13337-020-00621-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 07/30/2020] [Indexed: 11/28/2022] Open
Abstract
Group A rotaviruses (GAR) are an important cause of diarrhoea in infants and newborn animals especially pigs. In this paper, we report the detection, G and P typing and phylogenetic analysis of GAR of pigs in Kerala. A total of 100 fecal samples from diarrhoeic piglets were collected from organized farms in Wayanad, Ernakulam, Thrissur, and Palakkad districts of Kerala. The samples were tested for the presence of GAR employing reverse transcriptase polymerase chain reaction (RT-PCR) targeting VP6 gene. Positive samples were tested by G and P genotyping primers and representative amplicons were sequenced. Of the 100 samples, 12 were positive for GAR. The G and P types detected were G2, G4, G5, G6, G9, P[6] and P[19]. An untypable P type (P21-5 like) was also detected. In some of the samples more than one G type was detected. The nucleotide sequences of G2, G4 and G5 types were similar to those seen in pigs and that of G6 was similar to bovine sequences. G9, P[6] and P[19] sequences showed similarity to human rotavirus sequences. The findings of this study provide the first information on the G and P genotypes of GAR of pigs in Kerala.
Collapse
Affiliation(s)
- G Logeshwaran
- Department of Veterinary Microbiology, College of Veterinary and Animal Sciences, Lakkidi P.O., Pookode, Kerala 673576 India
| | - Chintu Ravishankar
- Department of Veterinary Microbiology, College of Veterinary and Animal Sciences, Lakkidi P.O., Pookode, Kerala 673576 India
| | - D Nandhakumar
- Department of Veterinary Microbiology, College of Veterinary and Animal Sciences, Lakkidi P.O., Pookode, Kerala 673576 India
| | - Stephy Rose Sebastian
- Department of Veterinary Microbiology, College of Veterinary and Animal Sciences, Lakkidi P.O., Pookode, Kerala 673576 India
| | - R Rajasekhar
- Department of Veterinary Microbiology, College of Veterinary and Animal Sciences, Lakkidi P.O., Pookode, Kerala 673576 India
| | - K Sumod
- Department of Veterinary Microbiology, College of Veterinary and Animal Sciences, Lakkidi P.O., Pookode, Kerala 673576 India
| | - Binu K Mani
- Department of Veterinary Microbiology, College of Veterinary and Animal Sciences, Lakkidi P.O., Pookode, Kerala 673576 India
| | - E D Benjamin
- Department of Animal Reproduction, Gynaecology and Obstetrics, College of Veterinary and Animal Sciences, Lakkidi P.O., Pookode, Kerala 673576 India
| | | | - Koshy John
- Department of Veterinary Microbiology, College of Veterinary and Animal Sciences, Lakkidi P.O., Pookode, Kerala 673576 India
| | - M Mini
- Department of Veterinary Microbiology, College of Veterinary and Animal Sciences, Mannuthy, Thrissur, Kerala 680651 India
| |
Collapse
|
10
|
Genetic diversity of species A rotaviruses detected in clinical and environmental samples, including porcine-like rotaviruses from hospitalized children in the Philippines. INFECTION GENETICS AND EVOLUTION 2020; 85:104465. [PMID: 32687980 DOI: 10.1016/j.meegid.2020.104465] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 12/14/2022]
Abstract
Rotaviruses are the major cause of severe acute diarrhea in infants and young children. Rotaviruses exhibit zoonosis and thereby infect both humans and animals. Viruses detected in urban rivers possibly reflect the presence of circulating viruses in the catchment. The present study investigates the genetic diversity of species A rotaviruses detected from river water and stool of hospitalized children with acute diarrhea in Tacloban City, the Philippines. Species A rotaviruses were detected by real-time RT-PCR and their genotypes were identified by multiplex PCR and sequencing of partial regions of VP7 and VP4. Rotaviruses were detected in 85.7% (30/35) of the river water samples and 62.7% (151/241) of the clinical samples. Genotypes of VP7 in the river water samples were G1, G2, G3, G4, G5, and G9, and those of VP4 were P[3], P[4], P[6], P[8], and P[13]. Genotypes of viruses from the clinical samples were G2P[4], G1P[8], G3P[8], G4P[6], G5P[6], and G9P[8]. Among those, G2P[4] in clinical samples (77.9%, 81/104) and P[4] of VP4 in river water samples (67.5%, 56/83)) were the most frequently detected rotavirus genotypes. However, G5 was the more frequently detected than G2 in the river water samples (42% vs. 13%) which may be originated from porcine rotavirus. Sequence analyses of eleven gene segments revealed one G5P[6] and two G4P[6] rotaviruses in the clinical samples, wherein, several gene segments were closely related to porcine rotaviruses. The constellation of these rotavirus genes suggests the emergence of reassortment between human and porcine rotavirus due to interspecies transmission. Although two commercial rotavirus vaccines are available now, these vaccines are designed to confer immunity against the major human rotaviruses. Constant monitoring of viral variety in populated areas where humans and domestic animals live in close proximity provides vital information related to the diversity of rotaviruses in a human population.
Collapse
|
11
|
Sakpaisal P, Silapong S, Yowang A, Boonyasakyothin G, Yuttayong B, Suksawad U, Sornsakrin S, Lertsethtakarn P, Bodhidatta L, Crawford JM, Mason CJ. Prevalence and Genotypic Distribution of Rotavirus in Thailand: A Multicenter Study. Am J Trop Med Hyg 2020; 100:1258-1265. [PMID: 30915947 DOI: 10.4269/ajtmh.18-0763] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Rotavirus has been one of the major etiological agents causing severe diarrhea in infants and young children worldwide. In Thailand, rotavirus contributes to one-third of reported pediatric diarrheal cases. We studied stool samples from 1,709 children with acute gastroenteritis and 1,761 children with no reported gastroenteritis whose age ranged from 3 months to 5 years from four different regions in Thailand between March 2008 and August 2010. The samples were tested for the presence of rotavirus by real-time reverse transcription-polymerase chain reaction (RT-PCR) amplification of vp6 gene and enzyme-linked immunosorbent assay. The positive samples were further characterized for their G and P genotypes (vp7 and vp4 genes) by conventional RT-PCR. From all four regions, 26.8% of cases and 1.6% of controls were positive for rotavirus, and G1P[8] was the most predominant genotype, followed by G2P[4], G3P[8], and G9P[8]. In addition, the uncommon genotypes including G1P[4], G1P[6], G2P[6], G2P[8], G4P[6], G9P[4], G9P[6], G12P[6], and G12P[8] were also detected at approximately 14% of all samples tested. Interestingly, G5P[19], a recombinant genotype between human and animal strains, and G1P7[5], a reassortant vaccine strain which is closely related to four human-bovine reassortant strains of RotaTeq™ vaccine, were detected in control samples. Data reported in this study will provide additional information on molecular epidemiology of rotavirus infection in Thailand before the impending national implementation of rotavirus vaccination program.
Collapse
Affiliation(s)
- Pimmada Sakpaisal
- Department of Enteric Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Sasikorn Silapong
- Department of Enteric Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Amara Yowang
- Department of Medical Sciences, Ministry of Public Health, Bangkok, Thailand
| | | | - Boonyaorn Yuttayong
- Department of Medical Sciences, Ministry of Public Health, Bangkok, Thailand
| | - Umaporn Suksawad
- Department of Enteric Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Siriporn Sornsakrin
- Department of Enteric Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Paphavee Lertsethtakarn
- Department of Enteric Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Ladaporn Bodhidatta
- Department of Enteric Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - John M Crawford
- Department of Enteric Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Carl J Mason
- Department of Enteric Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| |
Collapse
|
12
|
Sarkar S, Esona MD, Gautam R, Castro CJ, Ng TFF, Haque W, Khan SU, Hossain ME, Rahman MZ, Gurley ES, Kennedy ED, Bowen MD, Parashar UD, Rahman M. Outbreak of diarrhoea in piglets caused by novel rotavirus genotype G4P[49] in north-western district of Bangladesh, February 2014. Transbound Emerg Dis 2019; 67:442-449. [PMID: 31469933 DOI: 10.1111/tbed.13343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/04/2019] [Accepted: 08/22/2019] [Indexed: 01/09/2023]
Abstract
Group A rotavirus (RVA) associated diarrhoea in piglets represents one of the major causes of morbidity and mortality in pig farms worldwide. A diarrhoea outbreak occurred among nomadic piglets in north-western district of Bangladesh in February 2014. Outbreak investigation was performed to identify the cause, epidemiologic and clinical features of the outbreak. Rectal swabs and clinical information were collected from diarrhoeic piglets (n = 36). Rectal swabs were tested for RVA RNA by real-time reverse transcription polymerase chain reaction (rRT-PCR) using NSP3-specific primers. The G (VP7) and P (VP4) genes were typed by conventional RT-PCR and sanger sequencing and full genome sequences were determined using next-generation sequencing. We found the attack rate was 61% (50/82) among piglets in the nomadic pig herd, and the case fatality rate was 20% (10/50) among piglets with diarrhoea. All study piglets cases had watery diarrhoea, lack of appetite or reluctance to move. A novel RVA strain with a new P[49] genotype combined with G4 was identified among all piglets with diarrhoea. The genome constellation of the novel RVA strains was determined to be G4-P[49]-I1-R1-C1-M1-A8-N1-T7-E1-H1. Genetic analysis shows that the novel G4P[49] strain is similar to Indian and Chinese porcine or porcine-like G4 human strains and is genetically distant from Bangladeshi human G4 strains. Identification of this novel RVA strain warrants further exploration for disease severity and zoonotic potential.
Collapse
Affiliation(s)
- Shamim Sarkar
- Programme for Emerging Infections, Infectious Disease Division, ICDDR,B, Dhaka, Bangladesh
| | | | | | | | - Terry Fei Fan Ng
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Warda Haque
- Programme for Emerging Infections, Infectious Disease Division, ICDDR,B, Dhaka, Bangladesh
| | - Salah Uddin Khan
- Programme for Emerging Infections, Infectious Disease Division, ICDDR,B, Dhaka, Bangladesh.,University of Guelph, Guelph, ON, Canada
| | | | - Mohammed Ziaur Rahman
- Programme for Emerging Infections, Infectious Disease Division, ICDDR,B, Dhaka, Bangladesh
| | - Emily S Gurley
- Programme for Emerging Infections, Infectious Disease Division, ICDDR,B, Dhaka, Bangladesh
| | - Erin D Kennedy
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Michael D Bowen
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Umesh D Parashar
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Mustafizur Rahman
- Programme for Emerging Infections, Infectious Disease Division, ICDDR,B, Dhaka, Bangladesh
| |
Collapse
|
13
|
Malasao R, Khamrin P, Kumthip K, Ushijima H, Maneekarn N. Complete genome sequence analysis of rare G4P[6] rotavirus strains from human and pig reveals the evidence for interspecies transmission. INFECTION GENETICS AND EVOLUTION 2018; 65:357-368. [PMID: 30144568 DOI: 10.1016/j.meegid.2018.08.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 08/15/2018] [Accepted: 08/21/2018] [Indexed: 02/07/2023]
Abstract
Two rare human rotavirus strains, RVA/Human-wt/THA/CMH-N016-10/2010/G4P[6] and RVA/Human-wt/THA/CMH-N014-11/2011/G4P[6], were detected during the surveillance of group A rotavirus (RVA) in Chiang Mai, Thailand. Complete genome sequences of both strains were analyzed in comparison with that of the representative porcine G4P[6] RVA strain (RVA/Pig-wt/THA/CMP-011-09/2009/G4P[6]) detected in the same geographical area. Human RVA strain CMH-N016-10 containing the genotype constellation of G4-P[6]-I1-R1-C1-M1-A8-N1-T1-E1-H1 was identical to that of porcine RVA strain CMP-011-09. Another human RVA strain (CMH-N014-11) was also contained the genotype constellation of ten segments identical to those of CMH-N016-10 and of porcine RVA strain CMP-011-09 except for genotype I of VP6 gene which contained I5 instead of I1. The genotype constellation of CMH-N014-11, G4-P[6]-I5-R1-C1-M1-A8-N1-T1-E1-H1 was a novel genotype constellation that has not been reported previously in both human and pig. Phylogenetic analysis of all 11 genome segments revealed that both strains of human RVA were more closely related to porcine and porcine-like human than to human RVA reference strains, particularly those reported from Thailand and other Asian countries with very high nucleotide sequence identities ranging from 91.1-100% except for NSP4 gene from 86.1-92.2%. Based on complete genome constellation and overall phylogenetic analyses suggested that these two human G4P[6] strains may have probably originated from porcine RVA strains of independent ancestor. This study provided an evidence for direct interspecies transmission of porcine RVA from pig to human.
Collapse
Affiliation(s)
- Rungnapa Malasao
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Emerging and Re-emerging Diarrheal Viruses, Chiang Mai University, Chiang Mai, Thailand
| | - Pattara Khamrin
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Emerging and Re-emerging Diarrheal Viruses, Chiang Mai University, Chiang Mai, Thailand
| | - Kattareeya Kumthip
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Emerging and Re-emerging Diarrheal Viruses, Chiang Mai University, Chiang Mai, Thailand
| | - Hiroshi Ushijima
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Niwat Maneekarn
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Emerging and Re-emerging Diarrheal Viruses, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
14
|
Yahiro T, Takaki M, Chandrasena TGAN, Rajindrajith S, Iha H, Ahmed K. Human-porcine reassortant rotavirus generated by multiple reassortment events in a Sri Lankan child with diarrhea. INFECTION GENETICS AND EVOLUTION 2018; 65:170-186. [PMID: 30055329 DOI: 10.1016/j.meegid.2018.07.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/11/2018] [Accepted: 07/12/2018] [Indexed: 01/22/2023]
Abstract
A human-porcine reassortant rotavirus, strain R1207, was identified from 74 group A rotaviruses detected in 197 (37.6%) stool samples collected from patients who attended a tertiary care hospital in Ragama, Sri Lanka. This is the first report of a human-porcine reassortant rotavirus in Sri Lanka. The patient was a 12-month-old boy who had been hospitalized with fever and acute diarrhea with a duration of 6 days. The family had pigs at home before the birth of this boy. However, the neighbors still practice pig farming. The genotype constellation of R1207 was G4-P[6]-I1-R1-C1-M1-A1-N1-T1-E1-H1. This is based on the assignment of all the eleven gene segments a full genome-based genotyping system. R1207 showed a 4-2-3-2 genomic electrophoretic migration pattern, which is characteristic of group A rotaviruses. Our analyses revealed that five (NSP2, NSP4, VP1, VP2, and VP7) of the 11 genes were closely related to the respective genes of porcine strains. Although the remaining six genes (NSP1, NSP3, NSP5, VP3, VP4, and VP6) were related to human strains, with the exception of the gene sequence of NSP1, all of these human strains were human-porcine reassortants. With a genogroup 1 genetic backbone, this strain was possibly formed via multiple genetic reassortments. We do not know whether this strain is circulating in pigs, as no data are available on porcine rotaviruses in Sri Lanka. Surveillance should be strengthened to determine the epidemiology of this genotype of rotavirus in Sri Lanka and to assess whether the infection was limited or sustained by ongoing human-to-human transmission.
Collapse
Affiliation(s)
- Takaaki Yahiro
- Department of Pathobiology and Medical Diagnostics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Minako Takaki
- Department of Microbiology, Oita University, Yufu-shi, Oita, Japan
| | | | | | - Hidekatsu Iha
- Department of Microbiology, Oita University, Yufu-shi, Oita, Japan
| | - Kamruddin Ahmed
- Department of Pathobiology and Medical Diagnostics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia; Borneo Medical and Health Research Centre, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia.
| |
Collapse
|
15
|
Kozyra I, Rzeżutka A. Farmed and companion animals as reservoirs of zoonotic rotavirus strains. POSTĘPY MIKROBIOLOGII - ADVANCEMENTS OF MICROBIOLOGY 2018; 57:156-166. [DOI: 10.21307/pm-2018.57.2.156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Abstract
Rotavirus (RV) infections are a major epidemiological problem in humans and farm animals. So far, a number of human and animal RV strains have been identified. Based on the antigenic properties of the VP6 capsid protein, they have been classified into eight serogroups (A-H). The most important of them are viruses from group A (RVA), which are responsible for more than 90% of cases of rotaviral diarrhoea. The segmented structure of the virus genome and the presence of animals in human neighbourhood favour genetic reassortment between RV strains originating from different hosts. This could result in an emergence of zoonotic virus strains. The increasing number of human infections caused by virus strains having genotypes which have only been identified in animals indicates the need for epidemiological surveillance of infections. Additionally, the identification of epidemic virus strains in the outbreaks of disease in humans should be conducted. The identification of RVA strains circulating in humans and animals will allow the assessment of the impact of vaccination on the selection and emergence of zoonotic RVA strains.
1. Introduction. 2. General characteristics and classification of rotaviruses. 3. Group A rotavirus infection in humans. 4. Group A rotavirus infection in animals. 5. Genetic changes and reassortment as factors leading to the formation of zoonotic rotavirus strains. 6. Impact of human immunization on changes in genotype profile of circulating rotavirus strains. 7. Conclusions
Collapse
Affiliation(s)
- Iwona Kozyra
- Zakład Wirusologii Żywności i Środowiska , Państwowy Instytut Weterynaryjny – Państwowy Instytut Badawczy , Poland , Poland
| | - Artur Rzeżutka
- Zakład Wirusologii Żywności i Środowiska , Państwowy Instytut Weterynaryjny – Państwowy Instytut Badawczy , Poland , Poland
| |
Collapse
|
16
|
Bwogi J, Jere KC, Karamagi C, Byarugaba DK, Namuwulya P, Baliraine FN, Desselberger U, Iturriza-Gomara M. Whole genome analysis of selected human and animal rotaviruses identified in Uganda from 2012 to 2014 reveals complex genome reassortment events between human, bovine, caprine and porcine strains. PLoS One 2017. [PMID: 28640820 PMCID: PMC5480867 DOI: 10.1371/journal.pone.0178855] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Rotaviruses of species A (RVA) are a common cause of diarrhoea in children and the young of various other mammals and birds worldwide. To investigate possible interspecies transmission of RVAs, whole genomes of 18 human and 6 domestic animal RVA strains identified in Uganda between 2012 and 2014 were sequenced using the Illumina HiSeq platform. The backbone of the human RVA strains had either a Wa- or a DS-1-like genetic constellation. One human strain was a Wa-like mono-reassortant containing a DS-1-like VP2 gene of possible animal origin. All eleven genes of one bovine RVA strain were closely related to those of human RVAs. One caprine strain had a mixed genotype backbone, suggesting that it emerged from multiple reassortment events involving different host species. The porcine RVA strains had mixed genotype backbones with possible multiple reassortant events with strains of human and bovine origin.Overall, whole genome characterisation of rotaviruses found in domestic animals in Uganda strongly suggested the presence of human-to animal RVA transmission, with concomitant circulation of multi-reassortant strains potentially derived from complex interspecies transmission events. However, whole genome data from the human RVA strains causing moderate and severe diarrhoea in under-fives in Uganda indicated that they were primarily transmitted from person-to-person.
Collapse
Affiliation(s)
- Josephine Bwogi
- EPI laboratory, Uganda Virus Research Institute, Entebbe, Uganda
- Department of Paediatrics and Child Health, College of Health Sciences, Makerere University, Kampala, Uganda
- * E-mail:
| | - Khuzwayo C. Jere
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme / Department of Medical Laboratory Sciences, University of Malawi, College of Medicine, Blantyre, Malawi
| | - Charles Karamagi
- Department of Paediatrics and Child Health, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Denis K. Byarugaba
- Department of Microbiology, College of Veterinary Medicine and Biosecurity, Makerere University, Kampala, Uganda
| | - Prossy Namuwulya
- EPI laboratory, Uganda Virus Research Institute, Entebbe, Uganda
| | - Frederick N. Baliraine
- Department of Biology and Kinesiology, LeTourneau University, Longview, Texas, United States of America
| | | | - Miren Iturriza-Gomara
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
17
|
Group A Rotaviruses in Chinese Bats: Genetic Composition, Serology, and Evidence for Bat-to-Human Transmission and Reassortment. J Virol 2017; 91:JVI.02493-16. [PMID: 28381569 DOI: 10.1128/jvi.02493-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 03/08/2017] [Indexed: 01/24/2023] Open
Abstract
Bats are natural reservoirs for many pathogenic viruses, and increasing evidence supports the notion that bats can also harbor group A rotaviruses (RVAs), important causative agents of diarrhea in children and young animals. Currently, 8 RVA strains possessing completely novel genotype constellations or genotypes possibly originating from other mammals have been identified from African and Chinese bats. However, all the data were mainly based on detection of RVA RNA, present only during acute infections, which does not permit assessment of the true exposure of a bat population to RVA. To systematically investigate the genetic diversity of RVAs, 547 bat anal swabs or gut samples along with 448 bat sera were collected from five South Chinese provinces. Specific reverse transcription-PCR (RT-PCR) screening found four RVA strains. Strain GLRL1 possessed a completely novel genotype constellation, whereas the other three possessed a constellation consistent with the MSLH14-like genotype, a newly characterized group of viruses widely prevalent in Chinese insectivorous bats. Among the latter, strain LZHP2 provided strong evidence of cross-species transmission of RVAs from bats to humans, whereas strains YSSK5 and BSTM70 were likely reassortants between typical MSLH14-like RVAs and human RVAs. RVA-specific antibodies were detected in 10.7% (48/448) of bat sera by an indirect immunofluorescence assay (IIFA). Bats in Guangxi and Yunnan had a higher RVA-specific antibody prevalence than those from Fujian and Zhejiang provinces. These observations provide evidence for cross-species transmission of MSLH14-like bat RVAs to humans, highlighting the impact of bats as reservoirs of RVAs on public health.IMPORTANCE Bat viruses, such as severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), Ebola, Hendra, and Nipah viruses, are important pathogens causing outbreaks of severe emerging infectious diseases. However, little is known about bat viruses capable of causing gastroenteritis in humans, even though 8 group A viruses (RVAs) have been identified from bats so far. In this study, another 4 RVA strains were identified, with one providing strong evidence for zoonotic transmission from bats to humans. Serological investigation has also indicated that RVA infection in bats is far more prevalent than expected based on the detection of viral RNA.
Collapse
|
18
|
Komoto S, Tacharoenmuang R, Guntapong R, Ide T, Sinchai P, Upachai S, Fukuda S, Yoshikawa T, Tharmaphornpilas P, Sangkitporn S, Taniguchi K. Identification and characterization of a human G9P[23] rotavirus strain from a child with diarrhoea in Thailand: evidence for porcine-to-human interspecies transmission. J Gen Virol 2017; 98:532-538. [PMID: 28382902 DOI: 10.1099/jgv.0.000722] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An unusual rotavirus strain with the G9P[23] genotype (RVA/Human-wt/THA/KKL-117/2014/G9P[23]) was identified in a stool specimen from a 10-month-old child hospitalized with severe diarrhoea. In this study, we sequenced and characterized the complete genome of strain KKL-117. On full-genomic analysis, strain KKL-117 was found to have the following genotype constellation: G9-P[23]-I5-R1-C1-M1-A8-N1-T1-E1-H1. The non-G/P genotype constellation of this strain (I5-R1-C1-M1-A8-N1-T1-E1-H1) is commonly shared with rotavirus strains from pigs. Furthermore, phylogenetic analysis indicated that each of the 11 genes of strain KKL-117 appeared to be of porcine origin. Our observations provide important insights into the dynamic interactions between human and porcine rotavirus strains.
Collapse
Affiliation(s)
- Satoshi Komoto
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Ratana Tacharoenmuang
- Department of Medical Sciences, National Institute of Health, Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Ratigorn Guntapong
- Department of Medical Sciences, National Institute of Health, Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Tomihiko Ide
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Phakapun Sinchai
- Department of Medical Sciences, National Institute of Health, Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Sompong Upachai
- Department of Medical Sciences, National Institute of Health, Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Saori Fukuda
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Tetsushi Yoshikawa
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | | | - Somchai Sangkitporn
- Department of Medical Sciences, National Institute of Health, Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Koki Taniguchi
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| |
Collapse
|
19
|
Vlasova AN, Amimo JO, Saif LJ. Porcine Rotaviruses: Epidemiology, Immune Responses and Control Strategies. Viruses 2017; 9:v9030048. [PMID: 28335454 PMCID: PMC5371803 DOI: 10.3390/v9030048] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/13/2017] [Accepted: 03/13/2017] [Indexed: 12/13/2022] Open
Abstract
Rotaviruses (RVs) are a major cause of acute viral gastroenteritis in young animals and children worldwide. Immunocompetent adults of different species become resistant to clinical disease due to post-infection immunity, immune system maturation and gut physiological changes. Of the 9 RV genogroups (A–I), RV A, B, and C (RVA, RVB, and RVC, respectively) are associated with diarrhea in piglets. Although discovered decades ago, porcine genogroup E RVs (RVE) are uncommon and their pathogenesis is not studied well. The presence of porcine RV H (RVH), a newly defined distinct genogroup, was recently confirmed in diarrheic pigs in Japan, Brazil, and the US. The complex epidemiology, pathogenicity and high genetic diversity of porcine RVAs are widely recognized and well-studied. More recent data show a significant genetic diversity based on the VP7 gene analysis of RVB and C strains in pigs. In this review, we will summarize previous and recent research to provide insights on historic and current prevalence and genetic diversity of porcine RVs in different geographic regions and production systems. We will also provide a brief overview of immune responses to porcine RVs, available control strategies and zoonotic potential of different RV genotypes. An improved understanding of the above parameters may lead to the development of more optimal strategies to manage RV diarrheal disease in swine and humans.
Collapse
Affiliation(s)
- Anastasia N Vlasova
- Food Animal Health Research Program, CFAES, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH 44691, USA.
| | - Joshua O Amimo
- Department of Animal Production, Faculty of Veterinary Medicine, University of Nairobi, Nairobi 30197, Kenya.
- Bioscience of Eastern and Central Africa, International Livestock Research Institute (BecA-ILRI) Hub, Nairobi 30709, Kenya.
| | - Linda J Saif
- Food Animal Health Research Program, CFAES, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH 44691, USA.
| |
Collapse
|
20
|
Do LP, Kaneko M, Nakagomi T, Gauchan P, Agbemabiese CA, Dang AD, Nakagomi O. Molecular epidemiology of Rotavirus A, causing acute gastroenteritis hospitalizations among children in Nha Trang, Vietnam, 2007-2008: Identification of rare G9P[19] and G10P[14] strains. J Med Virol 2016; 89:621-631. [PMID: 27611738 DOI: 10.1002/jmv.24685] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2016] [Indexed: 12/17/2022]
Abstract
Rotavirus A (RVA) causes acute diarrhea in children as well as animals. As part of a cross-sectional study of children less than 5 years of age hospitalized for acute diarrhea in Vietnam during a 15-month period (2007-2008), 322 (43.5%) of 741 fecal specimens contained RVA with 92% either G1P[8] or G3P[8]. This study was undertaken to further characterize strains that remained untypeable to complete the G and P genotypes of the 322 rotavirus-positive specimens. While 307 (95.3%) strains possessed the common human RVA genotypes: G1P[8] (45.0%), G2P[4] (2.8%), G3P[8] (46.9%), and G9P[8] (0.6%), sequencing of initially untypeable specimens revealed the presence of two unusual strains designated NT0073 and NT0082 possessing G9P[19] and G10P[14], respectively. The genotype constellation of NT0073 (G9-P[19]-I5-R1-C1-M1-A8-N1-T7-E1-H1) and the phylogenetic trees suggested its origin as a porcine RVA strain causing diarrhea in a 24-month-old girl whereas the genotype constellation of NT0082 (G10-P[14]-I2-R2-C2-M2-A3-N2-T6-E2-H3) and the phylogenetic trees suggested its origin as an RVA strain of artiodactyl origin (such as cattle, sheep and goats) causing diarrhea in a 13-month-old boy. This study showed that RVA strains of animal host origin were not necessarily attenuated in humans. A hypothesis may be postulated that P[19] and P[14] VP4 spike proteins helped the virus to replicate in the human intestine but that efficient onward human-to-human spread after crossing the host species barrier may require the virus to obtain some additional features as there was no evidence of widespread transmission with the limited sampling performed over the study period. J. Med. Virol. 89:621-631, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Loan Phuong Do
- Department of Hygiene and Molecular Epidemiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.,National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Miho Kaneko
- Department of Hygiene and Molecular Epidemiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Toyoko Nakagomi
- Department of Hygiene and Molecular Epidemiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.,Centre for Bioinformatics and Molecular Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Punita Gauchan
- Department of Hygiene and Molecular Epidemiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Chantal Ama Agbemabiese
- Department of Hygiene and Molecular Epidemiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Anh Duc Dang
- National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Osamu Nakagomi
- Department of Hygiene and Molecular Epidemiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.,Centre for Bioinformatics and Molecular Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
21
|
Dong HJ, Qian Y, Zhang Y, Zhao LQ, Zhu RN, Nong Y, Mo ZJ, Li RC. G2 rotavirus within an emergent VP7 evolutionary lineage circulating in children with acute diarrhea in Guangxi Province of China, 2014. Arch Virol 2016; 161:1987-92. [PMID: 27101073 DOI: 10.1007/s00705-016-2852-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 03/30/2016] [Indexed: 01/21/2023]
Abstract
Routine surveillance revealed that the prevalence of P[4] rotaviruses circulating in children with acute diarrhea in Guangxi Province, China, increased in 2014. However, VP7 genotyping for these P[4] rotaviruses was unsuccessful. Exhaustive database searching and sequence analysis indicated that the G genotype of these P[4] rotaviruses was G2, and the VP7 genes clustered with recently emerging G2 strains in several countries within an emergent evolutionary lineage that was distinct from the previously designated lineages I-IV as well as lineage V including porcine rotaviruses. Further studies are essential to monitor the potential global spread of this emerging G2 rotavirus.
Collapse
Affiliation(s)
- Hui Jin Dong
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Yuan Qian
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing, 100020, China.
| | - You Zhang
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Lin Qing Zhao
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Ru Nan Zhu
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Yi Nong
- Centers for Disease Control and Prevention of Guangxi Province, Nanning, 530028, Guangxi, China
| | - Zhao Jun Mo
- Centers for Disease Control and Prevention of Guangxi Province, Nanning, 530028, Guangxi, China
| | - Rong Cheng Li
- Centers for Disease Control and Prevention of Guangxi Province, Nanning, 530028, Guangxi, China
| |
Collapse
|
22
|
Do LP, Nakagomi T, Otaki H, Agbemabiese CA, Nakagomi O, Tsunemitsu H. Phylogenetic inference of the porcine Rotavirus A origin of the human G1 VP7 gene. INFECTION GENETICS AND EVOLUTION 2016; 40:205-213. [PMID: 26961591 DOI: 10.1016/j.meegid.2016.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 02/25/2016] [Accepted: 03/01/2016] [Indexed: 01/15/2023]
Abstract
Rotavirus A (RVA) is an important cause of acute gastroenteritis in children worldwide. The most common VP7 genotype of human RVA is G1, but G1 is rarely detected in porcine strains. To understand the evolutionary relationships between human and porcine G1 VP7 genes, we sequenced the VP7 genes of three Japanese G1 porcine strains; the first two (PRV2, S80B) were isolated in 1980 and the third (Kyusyu-14) was isolated in 2001. Then, we performed phylogenetic and in-silico structural analyses. All three VP7 sequences clustered into lineage VI, and the mean nucleotide sequence identity between any pair of porcine G1 VP7 sequences belonging to lineage VI was 91.9%. In contrast, the mean nucleotide sequence identity between any pair of human G1 VP7 sequences belonging to lineages I-V was 95.5%. While the mean nucleotide sequence identity between any pair of porcine lineage VI strain and human lineage I-V strain was 85.4%, the VP7 genes of PRV2 and a rare porcine-like human G1P[6] strain (AU19) were 98% identical, strengthening the porcine RVA origin of AU19. The phylogenetic tree suggests that human G1 VP7 genes originated from porcine G1 VP7 genes. The time of their most recent common ancestor was estimated to be 1948, and human and porcine RVA strains evolved along independent pathways. In-silico structural analyses identified 7 amino acid residues within the known neutralisation epitopes that show differences in electric charges and shape between different porcine and human G1 strains. When compared with much divergent porcine G1 VP7 lineages, monophyletic, less divergent human G1 VP7 lineages support the hypothesis that all human G1 VP7 genes included in this study originated from a rare event of a porcine RVA transmitting to humans that was followed by successful adaptation to the human host. By contrast, AU19 represents interspecies transmission that terminated in dead-end infection.
Collapse
Affiliation(s)
- Loan Phuong Do
- Department of Hygiene and Molecular Epidemiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan; Department of Virology, National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Toyoko Nakagomi
- Department of Hygiene and Molecular Epidemiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan; Centre for Bioinformatics and Molecular Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Hiroki Otaki
- Centre for Bioinformatics and Molecular Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Chantal Ama Agbemabiese
- Department of Hygiene and Molecular Epidemiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Osamu Nakagomi
- Department of Hygiene and Molecular Epidemiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan; Centre for Bioinformatics and Molecular Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.
| | - Hiroshi Tsunemitsu
- Dairy Hygiene Research Division, Hokkaido Research Station, National Institute of Animal Health, Sapporo, Hokkaido, Japan
| |
Collapse
|
23
|
Chieochansin T, Vutithanachot V, Phumpholsup T, Posuwan N, Theamboonlers A, Poovorawan Y. The prevalence and genotype diversity of Human Rotavirus A circulating in Thailand, 2011-2014. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2016; 37:129-136. [PMID: 26593177 DOI: 10.1016/j.meegid.2015.11.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 11/06/2015] [Accepted: 11/14/2015] [Indexed: 01/11/2023]
Abstract
Human rotavirus A (RVA) is the major infectious virus causing acute watery diarrhea in children, especially those younger than 5 years of age, and is a major public health problem in Thailand. Outbreaks of this virus have been reported worldwide. Besides the common genotypes, unusual genotypes providing evidence of inter-species transmission have also been described. Therefore, the aim of this study was to investigate the prevalence and genotypes of RVA in Thailand. A total of 688 samples were collected from children who were hospitalized with acute diarrhea in Chumphae Hospital in Khon Kaen and Chulalongkorn Hospital in Bangkok. RVA was detected using one-step RT-PCR and the genotypes were evaluated by sequencing. Overall, 204 of the 688 samples (30%) were positive for RVA. Nine genotypes were identified: three common in humans (G1P[8] [53%], G2P[4] [18%], G3P[8] [12%]), one feline-like (G3P[9] [1%]), four porcine-like (G4P[6] [0.5%], G5P[6] [0.5%], G9P[8] [0.5%], G12P[6] [1.5%]), and one bovine-like (G8P[8] [13%]). The variation in virus genotypes and the animal-like genotypes detected in this study suggested that a high diversity of RVA types is circulating in the Thai population. Therefore, continuous molecular epidemiological monitoring of RVA is essential and has implications for the national vaccination program.
Collapse
Affiliation(s)
- Thaweesak Chieochansin
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10300, Thailand; Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | | | - Tikumporn Phumpholsup
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10300, Thailand
| | - Nawarat Posuwan
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10300, Thailand
| | - Apiradee Theamboonlers
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10300, Thailand
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10300, Thailand.
| |
Collapse
|
24
|
Ghosh S, Navarro R, Malik YS, Willingham AL, Kobayashi N. Whole genomic analysis of a porcine G6P[13] rotavirus strain. Vet Microbiol 2015; 180:286-98. [DOI: 10.1016/j.vetmic.2015.09.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 09/14/2015] [Accepted: 09/20/2015] [Indexed: 01/26/2023]
|
25
|
Otto PH, Rosenhain S, Elschner MC, Hotzel H, Machnowska P, Trojnar E, Hoffmann K, Johne R. Detection of rotavirus species A, B and C in domestic mammalian animals with diarrhoea and genotyping of bovine species A rotavirus strains. Vet Microbiol 2015. [DOI: 10.1016/j.vetmic.2015.07.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
26
|
Genomic characterization of G3P[6], G4P[6] and G4P[8] human rotaviruses from Wuhan, China: Evidence for interspecies transmission and reassortment events. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2015; 33:55-71. [PMID: 25891280 DOI: 10.1016/j.meegid.2015.04.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/26/2015] [Accepted: 04/09/2015] [Indexed: 12/22/2022]
Abstract
We report here the whole genomic analyses of two G4P[6] (RVA/Human-wt/CHN/E931/2008/G4P[6], RVA/Human-wt/CHN/R1954/2013/G4P[6]), one G3P[6] (RVA/Human-wt/CHN/R946/2006/G3P[6]) and one G4P[8] (RVA/Human-wt/CHN/E2484/2011/G4P[8]) group A rotavirus (RVA) strains detected in sporadic cases of diarrhea in humans in the city of Wuhan, China. All the four strains displayed a Wa-like genotype constellation. Strains E931 and R1954 shared a G4-P[6]-I1-R1-C1-M1-A8-N1-T1-E1-H1 constellation, whilst the 11 gene segments of strains R946 and E2484 were assigned to G3-P[6]-I1-R1-C1-M1-A1-N1-T1-E1-H1 and G4-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1 genotypes, respectively. Phylogenetically, the VP7 gene of R946, NSP3 gene of E931, and 10 of 11 gene segments of E2484 (except for VP7 gene) belonged to lineages of human RVAs. On the other hand, based on available data, it was difficult to ascertain porcine or human origin of VP3 genes of strains E931 and R946, and NSP2 genes of strains R946 and R1954. The remaining genes of E2484, E931, R946 and R1954 were close to those of porcine RVAs from China, and/or porcine-like human RVAs. Taken together, our observations suggested that strain R1954 might have been derived from porcine RVAs, whilst strains R946 and E931 might be reassortants possessing human RVA-like gene segments on a porcine RVA genetic backbone. Strain E2484 might be derived from reassortment events involving acquisition of a porcine-like VP7 gene by a Wa-like human RVA strain. The present study provided important insights into zoonotic transmission and complex reassortment events involving human and porcine RVAs, reiterating the significance of whole-genomic analysis of RVA strains.
Collapse
|
27
|
Di Fiore IJM, Pane JA, Holloway G, Coulson BS. NSP1 of human rotaviruses commonly inhibits NF-κB signalling by inducing β-TrCP degradation. J Gen Virol 2015; 96:1768-76. [PMID: 25701827 DOI: 10.1099/vir.0.000093] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Rotavirus is a leading cause of severe gastroenteritis in infants worldwide. Rotavirus nonstructural protein 1 (NSP1) is a virulence factor that inhibits innate host immune responses. NSP1 from some rotaviruses targets host interferon response factors (IRFs), leading to inhibition of type I interferon expression. A few rotaviruses encode an NSP1 that inhibits the NF-κB pathway by targeting β-TrCP, a protein required for IκB degradation and NF-κB activation. Available evidence suggests that these NSP1 properties involve proteosomal degradation of target proteins. We show here that NSP1 from several human rotaviruses and porcine rotavirus CRW-8 inhibits the NF-κB pathway, but cannot degrade IRF3. Furthermore, β-TrCP levels were much reduced in cells infected with these rotaviruses. This provides strong evidence that β-TrCP degradation is required for NF-κB pathway inhibition by NSP1 and demonstrates the relevance of β-TrCP degradation to rotavirus infection. C-terminal regions of NSP1, including a serine-containing motif resembling the β-TrCP recognition motif of IκB, were required for NF-κB inhibition. CRW-8 infection of HT-29 intestinal epithelial cells induced significant levels of IFN-β and CCL5 but not IL-8. This contrasts with monkey rotavirus SA11-4F, whose NSP1 inhibits IRF3 but not NF-κB. Substantial amounts of IL-8 but not IFN-β or CCL5 were secreted from HT-29 cells infected with SA11-4F. Our results show that human rotaviruses commonly inhibit the NF-κB pathway by degrading β-TrCP and thus stabilizing IκB. They suggest that NSP1 plays an important role during human rotavirus infection by inhibiting the expression of NF-κB-dependent cytokines, such as IL-8.
Collapse
Affiliation(s)
- Izabel J M Di Fiore
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Jessica A Pane
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Gavan Holloway
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Barbara S Coulson
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| |
Collapse
|
28
|
Review of global rotavirus strain prevalence data from six years post vaccine licensure surveillance: is there evidence of strain selection from vaccine pressure? INFECTION GENETICS AND EVOLUTION 2014; 28:446-61. [PMID: 25224179 DOI: 10.1016/j.meegid.2014.08.017] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 08/13/2014] [Accepted: 08/14/2014] [Indexed: 11/23/2022]
Abstract
Comprehensive reviews of pre licensure rotavirus strain prevalence data indicated the global importance of six rotavirus genotypes, G1P[8], G2P[4], G3P[8], G4P[8], G9P[8] and G12P[8]. Since 2006, two vaccines, the monovalent Rotarix (RV1) and the pentavalent RotaTeq (RV5) have been available in over 100 countries worldwide. Of these, 60 countries have already introduced either RV1 or RV5 in their national immunization programs. Post licensure vaccine effectiveness is closely monitored worldwide. This review aimed at describing the global changes in rotavirus strain prevalence over time. The genotype distribution of the nearly 47,000 strains that were characterized during 2007-2012 showed similar picture to that seen in the preceding period. An intriguing finding was the transient predominance of heterotypic strains, mainly in countries using RV1. Unusual and novel antigen combinations continue to emerge, including some causing local outbreaks, even in vaccinated populations. In addition, vaccine strains have been found in both vaccinated infants and their contacts and there is evidence for genetic interaction between vaccine and wild-type strains. In conclusion, the post-vaccine introduction strain prevalence data do not show any consistent pattern indicative of selection pressure resulting from vaccine use, although the increased detection rate of heterotypic G2P[4] strains in some countries following RV1 vaccination is unusual and this issue requires further monitoring.
Collapse
|
29
|
Martinez M, Galeano ME, Akopov A, Palacios R, Russomando G, Kirkness EF, Parra GI. Whole-genome analyses reveals the animal origin of a rotavirus G4P[6] detected in a child with severe diarrhea. INFECTION GENETICS AND EVOLUTION 2014; 27:156-62. [PMID: 25075468 DOI: 10.1016/j.meegid.2014.07.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/12/2014] [Accepted: 07/16/2014] [Indexed: 12/15/2022]
Abstract
Group A rotaviruses are a major cause of severe gastroenteritis in children worldwide. Currently, two rotavirus vaccines are being used in vaccination programs, and one of the factors involved in lower vaccine efficacy is the mismatch among the circulating strains and the vaccine strains. Thus, the emergence of animal strains in the human population could affect the efficacy of vaccination programs. Here we report the presence of a G4P[6] strain in a Paraguayan child presenting acute gastroenteritis in 2009. Genomic analyses revealed that the strain presents a porcine-like genome (G4-P[6]-I1-R1-C1-M1-A8-N1-T7-E1-H1), suggesting a direct animal-to-human transmission. Continuous surveillance of rotaviruses in humans and animals will help us to better understand rotavirus epidemiology and evolution.
Collapse
Affiliation(s)
- Magaly Martinez
- Departamento de Biología Molecular y Genética, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, Asunción, Paraguay
| | - Maria E Galeano
- Departamento de Biología Molecular y Genética, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, Asunción, Paraguay
| | - Asmik Akopov
- The J. Craig Venter Institute, Rockville, MD, USA
| | - Ruth Palacios
- Departamento de Biología Molecular y Genética, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, Asunción, Paraguay
| | - Graciela Russomando
- Departamento de Biología Molecular y Genética, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, Asunción, Paraguay
| | | | - Gabriel I Parra
- Departamento de Biología Molecular y Genética, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, Asunción, Paraguay.
| |
Collapse
|
30
|
Heylen E, Batoko Likele B, Zeller M, Stevens S, De Coster S, Conceição-Neto N, Van Geet C, Jacobs J, Ngbonda D, Van Ranst M, Matthijnssens J. Rotavirus surveillance in Kisangani, the Democratic Republic of the Congo, reveals a high number of unusual genotypes and gene segments of animal origin in non-vaccinated symptomatic children. PLoS One 2014; 9:e100953. [PMID: 24968018 PMCID: PMC4072759 DOI: 10.1371/journal.pone.0100953] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 04/27/2014] [Indexed: 12/26/2022] Open
Abstract
Group A rotavirus (RVA) infections form a major public health problem, especially in low-income countries like the Democratic Republic of the Congo (COD). However, limited data on RVA diversity is available from sub-Saharan Africa in general and the COD in particular. Therefore, the first aim of this study was to determine the genetic diversity of 99 RVAs detected during 2007–2010 in Kisangani, COD. The predominant G-type was G1 (39%) and the most predominant P-type was P[6] (53%). A total of eight different G/P-combinations were found: G1P[8] (28%), G8P[6] (26%), G2P[4] (14%), G12P[6] (13%), G1P[6] (11%), G9P[8] (4%), G4P[6] (2%) and G8P[4] (1%). The second aim of this study was to gain insight into the diversity of P[6] RVA strains in the COD. Therefore, we selected five P[6] RVA strains in combination with the G1, G4, G8 (2x) or G12 genotype for complete genome analysis. Complete genome analysis showed that the genetic background of the G1P[6] and G12P[6] strains was entirely composed of genotype 1 (Wa-like), while the segments of the two G8P[6] strains were identified as genotype 2 (DS-1-like). Interestingly, all four strains possessed a NSP4 gene of animal origin. The analyzed G4P[6] RVA strain was found to possess the unusual G4-P[6]-I1-R1-C1-M1-A1-N1-T7-E1-H1 constellation. Although the majority of its genes (if not all), were presumably of porcine origin, this strain was able to cause gastro-enteritis in humans. The high prevalence of unusual RVA strains in the COD highlights the need for continued surveillance of RVA diversity in the COD. These results also underline the importance of complete genetic characterization of RVA strains and indicate that reassortments and interspecies transmission among human and animal RVAs strains occur regularly. Based on these data, RVA vaccines will be challenged with a wide variety of different RVA strain types in the COD.
Collapse
Affiliation(s)
- Elisabeth Heylen
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Bibi Batoko Likele
- Department of pediatrics, University Hospital Kisangani, Kisangani, the Democratic Republic of the Congo
| | - Mark Zeller
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Stijn Stevens
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Sarah De Coster
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Nádia Conceição-Neto
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Christel Van Geet
- Department of pediatrics, University Hospital Leuven, Leuven, Belgium
| | - Jan Jacobs
- Department of Clinical Sciences, Institute of Tropical Medicine (ITM), Antwerp, Belgium
| | - Dauly Ngbonda
- Department of pediatrics, University Hospital Kisangani, Kisangani, the Democratic Republic of the Congo
| | - Marc Van Ranst
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Jelle Matthijnssens
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
- * E-mail:
| |
Collapse
|
31
|
Wang YH, Pang BB, Ghosh S, Zhou X, Shintani T, Urushibara N, Song YW, He MY, Liu MQ, Tang WF, Peng JS, Hu Q, Zhou DJ, Kobayashi N. Molecular epidemiology and genetic evolution of the whole genome of G3P[8] human rotavirus in Wuhan, China, from 2000 through 2013. PLoS One 2014; 9:e88850. [PMID: 24676363 PMCID: PMC3967987 DOI: 10.1371/journal.pone.0088850] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 01/11/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Rotaviruses are a major etiologic agent of gastroenteritis in infants and young children worldwide. Since the latter of the 1990s, G3 human rotaviruses referred to as "new variant G3" have emerged and spread in China, being a dominant genotype until 2010, although their genomic evolution has not yet been well investigated. METHODS The complete genomes of 33 G3P[8] human rotavirus strains detected in Wuhan, China, from 2000 through 2013 were analyzed. Phylogenetic trees of concatenated sequences of all the RNA segments and individual genes were constructed together with published rotavirus sequences. RESULTS Genotypes of 11 gene segments of all the 33 strains were assigned to G3-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1, belonging to Wa genogroup. Phylogenetic analysis of the concatenated full genome sequences indicated that all the modern G3P[8] strains were assigned to Cluster 2 containing only one clade of G3P[8] strains in the US detected in the 1970s, which was distinct from Cluster 1 comprising most of old G3P[8] strains. While main lineages of all the 11 gene segments persisted during the study period, different lineages appeared occasionally in RNA segments encoding VP1, VP4, VP6, and NSP1-NSP5, exhibiting various allele constellations. In contrast, only a single lineage was detected for VP7, VP2, and VP3 genes. Remarkable lineage shift was observed for NSP1 gene; lineage A1-2 emerged in 2007 and became dominant in 2008-2009 epidemic season, while lineage A1-1 persisted throughout the study period. CONCLUSION Chinese G3P[8] rotavirus strains have evolved since 2000 by intra-genogroup reassortment with co-circulating strains, accumulating more reassorted genes over the years. This is the first large-scale whole genome-based study to assess the long-term evolution of common human rotaviruses (G3P[8]) in an Asian country.
Collapse
Affiliation(s)
- Yuan-Hong Wang
- Virology section, Wuhan Centers for Disease Prevention and Control, Wuhan, Hubei Province, P.R. China
| | - Bei-Bei Pang
- Virology section, Wuhan Centers for Disease Prevention and Control, Wuhan, Hubei Province, P.R. China
| | - Souvik Ghosh
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Xuan Zhou
- Virology section, Wuhan Centers for Disease Prevention and Control, Wuhan, Hubei Province, P.R. China
| | - Tsuzumi Shintani
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Noriko Urushibara
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yu-Wei Song
- College of Life Sciences, Central China Normal University, Wuhan, Hubei Province, P.R. China
| | - Ming-Yang He
- College of Life Sciences, Central China Normal University, Wuhan, Hubei Province, P.R. China
| | - Man-Qing Liu
- Virology section, Wuhan Centers for Disease Prevention and Control, Wuhan, Hubei Province, P.R. China
| | - Wei-Feng Tang
- Virology section, Wuhan Centers for Disease Prevention and Control, Wuhan, Hubei Province, P.R. China
| | - Jin-Song Peng
- Virology section, Wuhan Centers for Disease Prevention and Control, Wuhan, Hubei Province, P.R. China
| | - Quan Hu
- Virology section, Wuhan Centers for Disease Prevention and Control, Wuhan, Hubei Province, P.R. China
| | - Dun-Jin Zhou
- Virology section, Wuhan Centers for Disease Prevention and Control, Wuhan, Hubei Province, P.R. China
| | - Nobumichi Kobayashi
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|