1
|
Luo J, Jin H, Tian W, Niu Z, Zhang J, Wang T, Zhou M. The enhanced effect and mechanism of endogenous sigma factor RpoF on bioelectricity generation in Pseudomonas aeruginosa-inoculated Microbial fuel cells (MFCs). Biosens Bioelectron 2025; 278:117380. [PMID: 40112519 DOI: 10.1016/j.bios.2025.117380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/21/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025]
Abstract
Microbial fuel cells (MFCs) has attracted tremendous attention due to integrating clean energy generation and wastewater treatment. Electricigens are in charge of electron transfer and energy conversion, and therefore strain improvement is crucial for MFCs performance. Herein, the overexpression of sigma factor RpoF and the combined manipulation with other regulators (PmpR and RpoS) reinforced electricity generation of a model strain Pseudomonas aeruginosa PAO1. Next, RpoF was introduced into an isolate P. aeruginosa P2-A-12 with higher electroactivity, which not only yielded 3.2-fold increase in the maximal power density under non stress, but also generated 21.4 % improvement under 1.5 % NaCl. The comprehensive analysis at the levels of cells, metabolites and genes transcription ascertained its global regulatory mechanism, mainly including the enhanced biofilm formation by promoting cell attachment and cell-to-cell adhesion on the anode, more c-di-GMP and quorum sensing (QS) signal molecules accumulation, and the increase in phenazine-1-carboxamide (PCN), pyocyanin (PYO) and 1-hydroxyphenazine (1-OHPHZ) by controlling the expression levels of multiple genes involved in core biosynthesis and QS system. It was the first time to demonstrate the direct activation of RpoF on phzH responsible for PCN production and rhlR regulating N-butanoyl-HSL (C4-HSL) synthesis. Bioinformatic analysis indicated that the complex biological function of RpoF was closely linked with the conservation and diversity of sequences from various microorganisms. These findings strongly substantiated that RpoF acted as an efficient element to simultaneously optimize P. aeruginosa traits (such as electroactivity and stress tolerance) suitable for the practical MFCs, also broadened the theoretical recognition on its regulatory mechanism.
Collapse
Affiliation(s)
- Jianmei Luo
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science &Technology), Ministry of Education, Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China.
| | - Hongchen Jin
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science &Technology), Ministry of Education, Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Wanjun Tian
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science &Technology), Ministry of Education, Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Zhengshu Niu
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science &Technology), Ministry of Education, Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Jingmei Zhang
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science &Technology), Ministry of Education, Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Tingting Wang
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science &Technology), Ministry of Education, Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Minghua Zhou
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China.
| |
Collapse
|
2
|
Vargas López JM, Cruz Ramos JA, Carbajal Arizaga GG. Revisiting the characteristics of nanomaterials, composites, hybrid and functionalized materials in medical microbiology. Colloids Surf B Biointerfaces 2025; 250:114556. [PMID: 39956000 DOI: 10.1016/j.colsurfb.2025.114556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 02/18/2025]
Abstract
Unlike traditional materials designed to form large structures, many modern materials are presented in the form of powders resulting from a molecular level control of their composition and structure, making possible the miniaturization and fine-tuning of their properties to act in cellular dimensions with customized tasks. Several new materials for biomedical and microbiology applications appear every year. Although many of them are called nanomaterials, there may be a more precise description or classification. In this work, we review and detail the structural classification of nanometric, functionalized, hybrid and composite materials, mainly based on descriptions given by the International Union of Pure and Applied Chemistry (IUPAC). Besides we included smart and multifunctional materials, cassification based on performance. The second section shows how these materials are used in the area of medical microbiology, grouping these applications into barriers for microorganisms on surfaces, disinfectants in clinical practice, targeting of pathogens, detectors of microorganisms or their metabolites, and also as substrates to stabilize, transport, or nourish beneficial microorganisms. Finally, we will discuss some evidence that indicates the environmental risk and bacterial resistance alerts that should be taken into account with the use of these advanced powder materials.
Collapse
Affiliation(s)
- Jennifer Mariana Vargas López
- Doctor of Philosophy Program in Medical Microbiology. University Center of Health Sciences. Universidad de Guadalajara, Sierra Mojada 950, Guadalajara, Jalisco CP 44340, Mexico
| | - José Alfonso Cruz Ramos
- Instituto Jalisciense de Cancerología, Puerto Guaymas 418, Colonia Miramar, Zapopan, Jalisco, Mexico
| | | |
Collapse
|
3
|
Deo R, Lakra U, Ojha M, Nigam VK, Sharma SR. Exopolysaccharides in microbial interactions: signalling, quorum sensing, and community dynamics. Nat Prod Res 2025; 39:3224-3239. [PMID: 39311333 DOI: 10.1080/14786419.2024.2405867] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/24/2024] [Accepted: 09/12/2024] [Indexed: 05/31/2025]
Abstract
Microbial interactions within diverse ecosystems are intricately governed by the dynamic interplay of exopolysaccharides (EPSs) produced by microorganisms. This review delves into the multifaceted roles of EPS in microbial signalling, quorum sensing (QS), and community dynamics, highlighting their significance in orchestrating cooperative behaviours and shaping community structures. EPSs serve as pivotal signalling molecules, influencing chemical communication and promoting intricate interactions among microorganisms. The integration of EPS into QS mechanisms adds an additional layer of complexity, allowing microorganisms to assess population density and synchronise communal responses. Furthermore, EPSs actively contribute to community dynamics by influencing spatial organisation, adhesion, and resistance to environmental stressors. By providing comprehensive knowledge of EPS dynamics, this review offers valuable insights into microbial ecology, serving as a foundational resource for future research. It will benefit the research community by advancing our understanding of microbial ecosystems, with broad applications in biotechnology, environmental science, and beyond.
Collapse
Affiliation(s)
- Rachna Deo
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Usha Lakra
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Mihir Ojha
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Vinod Kumar Nigam
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Shubha Rani Sharma
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, India
| |
Collapse
|
4
|
Liaqat I, Qaiser I, Aftab MN, Ali S, Latif AA, Naseem S, Afzaal M, Khalid A. Anti-biofilm potential of some fish probiotics, alone and in combination with antibiotics against isolated aquaculture pathogens; A preliminary data. Microb Pathog 2025; 203:107437. [PMID: 40074047 DOI: 10.1016/j.micpath.2025.107437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/25/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025]
Abstract
This study aims to isolate and identify both diseased and healthy fish pathogens of Ctenopharyngodon idella, Labeo rohita and Oreochromis niloticus and assess their antibacterial and biofilm supressing activities against fish pathogens. It explores their potential to inhibit and degrade biofilms, serving as an alternative to antibiotics in aquaculture while enhancing fish health and disease resistance. Furthermore, the research endeavors to assess the biofilm degradation potential of antibiotics and probiotics, both individually and in combination. The biofilm-forming potential of pathogens was assessed both qualitatively and quantitatively using the Congo red assay, cover slip, and test tube methods. Additionally, genomic sequencing through 16S rRNA ribotyping revealed the species level identification of four pathogenic and twelve probiotic strains. Three pathogens, Staphylococcus sciuri, Pseudomonas aeruginosa, and Staphylococcus xylosus, showed significant biofilm formation at day 5, while the pathogen Niallia circulans expressed maximum biofilm formation on day 7. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of antibiotics were evaluated against pathogenic strains. Antibiotic susceptibility testing revealed significant inhibition zones. MIC and MBC values ranged from 0.10 mg/ml to 85.00 mg/ml, with the agar well and disk diffusion methods demonstrating strong inhibitory effects against the pathogenic strains. Notably, fish probiotics either alone or in combination with antibiotics exhibited significant inhibition and anti-biofouling activity across three different concentrations (1/2 MIC, 1MIC, 2XMIC). The biofilm eradication values were statistically significant (p < 0.005). The findings affirm the effectiveness of the antibiotics (ampicillin, levofloxacin, kanamycin and oxytetracycline) and probiotics (Bacullus altitudinis, Bacillus pumilus, Mammaliicoccus sciuri) employed in preventing and dispersing biofilms formed by isolated fish pathogens (S. sciuri, P. aeruginosa and N. circulans). The current study explores the use of probiotics to enhance fish immunity, reduce disease risk without promoting antibiotic resistance, and disrupt pathogenic biofilms to control infections. Unlike antibiotics, probiotics are biodegradable and eco-friendly, minimizing harm to aquatic ecosystems and beneficial microbes.
Collapse
Affiliation(s)
- Iram Liaqat
- Microbiology Lab, Department of Zoology, Government College University, Lahore, 54000, Pakistan.
| | - Ibtsam Qaiser
- Microbiology Lab, Department of Zoology, Government College University, Lahore, 54000, Pakistan.
| | - Muhammad Nauman Aftab
- Ikram-ul-Haq Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan.
| | - Sikander Ali
- Ikram-ul-Haq Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan.
| | - Asma Abdul Latif
- Department of Zoology, Lahore College for Women University, Lahore, Pakistan.
| | - Sajida Naseem
- Department of Zoology, University of Education, Lahore, Pakistan.
| | - Muhammad Afzaal
- Sustainable Development Study Centre, Government College University, Lahore, Pakistan.
| | - Awais Khalid
- Department of Physics, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia.
| |
Collapse
|
5
|
Zhang N, Zeng Y, Ye J, Lin C, Gong X, Long H, Chen H, Xie Z. RpoN mediates biofilm formation by directly controlling vps gene cluster and c-di-GMP synthetic metabolism in V. alginolyticus. Biofilm 2025; 9:100242. [PMID: 39802281 PMCID: PMC11722192 DOI: 10.1016/j.bioflm.2024.100242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/03/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
Vibrio alginolyticus is a prevalent pathogen in both humans and marine species, exhibiting high adaptability to various adverse environmental conditions. Our previous studies have shown that ΔrpoN formed three enhanced biofilm types, including spectacular surface-attached biofilm (SB), scattered pellicle biofilm (PB), and colony rugosity. However, the precise mechanism through which rpoN regulates biofilm formation has remained unclear. Based on the critical role of Vibrio exopolysaccharide (VPS) in biofilm formation, several genes related to the production and regulation of VPS were characterized in V. alginolyticus. Our findings from mutant strains indicated that VPS has complete control over the formation of rugose colony morphology and PB, while it only partially contributes to SB formation. Among the four transcriptional regulators of the vps gene cluster, vpsR and VA3545 act as promoters, whereas VA3546 and VA2703 function as repressors. Through transcriptome analysis and c-di-GMP concentration determination, VA0356 and VA3580 which encoded diguanylate cyclase were found to mediate the ΔrpoN biofilm formation. As a central regulator, rpoN governed biofilm formation through two regulatory pathways. Firstly, it directly bound to the upstream region of VA4206 to regulate the expression of the vps gene cluster (VA4206-VA4196). Secondly, it directly and indirectly modulated c-di-GMP synthesis gene VA3580 and VA0356, respectively, thereby affecting c-di-GMP concentration and subsequently influencing the expression of vps transcription activators vpsR and VA3545. Under conditions promoting SB formation, ΔrpoN was unable to thrive below the liquid level due to significantly reduced activities of three catalytic enzymes (ACK, ADH, and ALDH) involved in pyruvate metabolism, but tended to reproduce in air-liquid interface, a high oxygen niche compared to the liquid phase. In conclusion, both exopolysaccharide synthesis and oxygen-related metabolism contributed to ΔrpoN biofilm formation. The role of RpoN-mediated hypoxic metabolism and biofilm formation were crucial for comprehending the colonization and pathogenicity of V. alginolyticus in hosts, providing a novel target for treating V. alginolyticus in aquatic environments and hosts.
Collapse
Affiliation(s)
- Na Zhang
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, 570228, Hainan Province, China
- School of Life and Health Sciences, Hainan University, Haikou, 570228, Hainan Province, China
| | - Yanhua Zeng
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, 570228, Hainan Province, China
| | - Jiachengzi Ye
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, 570228, Hainan Province, China
- School of Marine Biology and Fisheries, Hainan University, Haikou, 570228, Hainan Province, China
| | - Chuancao Lin
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, 570228, Hainan Province, China
- School of Marine Biology and Fisheries, Hainan University, Haikou, 570228, Hainan Province, China
| | - Xiaoxiao Gong
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, 570228, Hainan Province, China
- School of Marine Biology and Fisheries, Hainan University, Haikou, 570228, Hainan Province, China
| | - Hao Long
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, 570228, Hainan Province, China
| | - Haimin Chen
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, 570228, Hainan Province, China
- School of Marine Biology and Fisheries, Hainan University, Haikou, 570228, Hainan Province, China
| | - Zhenyu Xie
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, 570228, Hainan Province, China
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, 570228, Hainan Province, China
- School of Marine Biology and Fisheries, Hainan University, Haikou, 570228, Hainan Province, China
| |
Collapse
|
6
|
Yan Q, Liu X, Liu Y, Cai K, Huang J, Zhang B, Wang Z, Han Z, Wen J, Li H. Decoy EPS layers for trapping and killing bacteria. Int J Biol Macromol 2025:144479. [PMID: 40412689 DOI: 10.1016/j.ijbiomac.2025.144479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 04/04/2025] [Accepted: 05/20/2025] [Indexed: 05/27/2025]
Abstract
Here we report a novel strategy using bacterial extracellular polymeric substances (EPS) as decoys to enhance bacterial adhesion and contact-based antimicrobial activity. EPS extracted from Staphylococcus aureus and Bacillus subtilis was used to coat wafers as a conditioning layer to alter surface properties and facilitate bacterial aggregation. Results show that EPS downregulates quorum sensing-related genes (agr and atl in Staphylococcus aureus by 80.5 % and 86.6 %, respectively; fliC in Escherichia coli by ~58.3 %), suggesting that EPS facilitates energy-efficient adhesion independent of quorum sensing signals. Loading antibiotics (erythromycin, linezolid, levofloxacin) into the EPS layer further enhances adhesion and contact killing. Especially, the surfaces loaded with a levofloxacin concentration of 2 μg/mL exhibit a significant antimicrobial effect. For Staphylococcus aureus, the antimicrobial rate reaches 83.66 % after 4 h incubation but drops to 39.9 % after 8 h incubation. In contract, Escherichia coli exhibits greater sensitivity, with antibacterial activity increasing to 92.97 % after 8 h incubation. Laser confocal microscopy characterization further reveals that the antibiotic-loaded EPS surfaces possess remarkable contact bacteria-killing activity. Our results show the promising recruiting-killing efficacy of the antibiotics-loaded EPS against bacteria, which would give insight into exploring new antibacterial strategies for enhanced contact-antibacterial performances.
Collapse
Affiliation(s)
- Qi Yan
- Zhejiang-Japan Joint Laboratory for Antibacterial and Antifouling Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; Zhejiang Engineering Research Center for Biomedical Materials Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo 315300, China
| | - Xiaomei Liu
- Zhejiang-Japan Joint Laboratory for Antibacterial and Antifouling Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; Zhejiang Engineering Research Center for Biomedical Materials Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| | - Yi Liu
- Zhejiang-Japan Joint Laboratory for Antibacterial and Antifouling Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; Zhejiang Engineering Research Center for Biomedical Materials Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Kedan Cai
- The Department of Nephrology, Ningbo No.2Hospital, Ningbo 315000, China
| | - Jing Huang
- Zhejiang-Japan Joint Laboratory for Antibacterial and Antifouling Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; Zhejiang Engineering Research Center for Biomedical Materials Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Botao Zhang
- Zhejiang-Japan Joint Laboratory for Antibacterial and Antifouling Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; Zhejiang Engineering Research Center for Biomedical Materials Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Zhijuan Wang
- Zhejiang-Japan Joint Laboratory for Antibacterial and Antifouling Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; Zhejiang Engineering Research Center for Biomedical Materials Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Zhuoyue Han
- Zhejiang-Japan Joint Laboratory for Antibacterial and Antifouling Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; Zhejiang Engineering Research Center for Biomedical Materials Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Jianxin Wen
- Zhejiang-Japan Joint Laboratory for Antibacterial and Antifouling Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; Zhejiang Engineering Research Center for Biomedical Materials Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Hua Li
- Zhejiang-Japan Joint Laboratory for Antibacterial and Antifouling Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; Zhejiang Engineering Research Center for Biomedical Materials Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| |
Collapse
|
7
|
Zhang T, Luo Z. Stimulus-responsive nanomaterials for ocular antimicrobial therapy. NANOSCALE 2025. [PMID: 40390637 DOI: 10.1039/d4nr05462h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
Nanomaterials exhibit a promising new avenue for treating infectious keratitis, having garnered considerable interest in the ophthalmic medical community due to their unique properties including higher target specificity, enhanced bioactivity of loaded agents, reduced drug dosage, and stimulus-responsive drug release. These stimulus-responsive nanomaterial-mediated therapeutic strategies offer innovative approaches for managing ocular antimicrobial diseases. In this review, we aim to summarize current applications of stimulus-responsive nanotherapeutics for ocular antimicrobial therapy. We briefly introduce the basic ocular structure, ocular barrier, infectious keratitis classification, and its microenvironment. Following this, we summarize the nanotherapeutic antimicrobial strategies employed in treating ocular infections including endogenous stimulus-responsive ocular nanodrugs, sonodynamic therapy, and wearable device-based therapy, focusing on their design principles, developmental progress, and advantages and limitations. Finally, we critically evaluate the biosafety profiles of responsive nanomaterials, specifically addressing cytotoxicity and immune interactions. To conclude, we discuss key challenges in this research field and future opportunities with explicit emphasis on clinical translation and practical medical applications.
Collapse
Affiliation(s)
- Tao Zhang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China.
- NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai 200031, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai 200031, China
| | - Zichao Luo
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China.
- NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai 200031, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai 200031, China
| |
Collapse
|
8
|
Khafagy ES, Saqr AA, Almutairy BK, Aldawsari MF, Lila ASA, Ibrahim TS, Hegazy WAH, Salem IM. Repurposing Nitroimidazoles: A New Frontier in Combatting Bacterial Virulence and Quorum Sensing via In Silico, In Vitro, and In Vivo Insights. Drug Dev Res 2025; 86:e70101. [PMID: 40384051 DOI: 10.1002/ddr.70101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2025] [Revised: 04/25/2025] [Accepted: 05/01/2025] [Indexed: 05/20/2025]
Abstract
The global antibiotic resistance crisis demands innovative strategies targeting bacterial virulence rather than survival. Quorum sensing (QS), a key regulator of virulence and biofilm formation, offers a promising avenue to mitigate resistance by disarming pathogens without bactericidal pressure. This study investigates the repurposing of nitroimidazoles as anti-QS and anti-virulence agents at subminimum inhibitory concentrations (sub-MICs). In Silico analyses, including molecular docking and molecular dynamics (MD) simulations, were performed to investigate ligand-receptor interactions with structurally distinct Lux-type QS receptors and assess binding stability and conformational dynamics over time. In Vitro assays evaluated the effects of representative nitroimidazoles, metronidazole (MET) and secnidazole (SEC), on QS-controlled phenotypes, including violacein production in Chromobacterium violaceum and biofilm formation and protease activity in Pseudomonas aeruginosa, Acinetobacter baumannii, Salmonella enterica, and Proteus mirabilis. In Vivo efficacy was assessed using a murine infection model and HeLa cell invasion assays. Molecular docking revealed high-affinity binding to QS receptors, corroborating their mechanistic interference. Sub-MIC MET/SEC significantly suppressed violacein synthesis, biofilm biomass, and protease secretion in Gram-negative pathogens. Both compounds reduced bacterial invasiveness in HeLa cells and In Vivo protected mice from lethal P. aeruginosa infections. Crucially, nitroimidazoles attenuated virulence without affecting bacterial viability, preserving microbial ecology. These findings position nitroimidazoles as dual-function agents; antimicrobial at bactericidal doses and anti-virulence at sub-MICs. Their validated efficacy across In Silico, In Vitro, and In Vivo models underscores their potential as adjunctive therapies, bridging the gap between drug repurposing and next-generation anti-infective development.
Collapse
Affiliation(s)
- El-Sayed Khafagy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Ahmed Al Saqr
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Bjad K Almutairy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mohammed F Aldawsari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Amr Selim Abu Lila
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Ha'il, Saudi Arabia
| | - Tarek S Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Wael A H Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
- Department of Pharmaceutical Sciences, Pharmacy Program, Oman College of Health Sciences, Muscat, Oman
| | - Ibrahim M Salem
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sphinx University, Assiut, Egypt
- Pharmaceutical Chemistry Department, College of Pharmacy, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
9
|
Gao W, Jing H, Qiu B, Zhang S, Zhang J, Xu L, Ba F, Xie S, Liu X, Li L, Yao M. Effects of Biofilm Formation on Gastrointestinal Tolerance, Mucoadhesion and Transcriptomic Responses of Probiotics. Food Sci Nutr 2025; 13:e70206. [PMID: 40370418 PMCID: PMC12076125 DOI: 10.1002/fsn3.70206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/18/2025] [Accepted: 04/14/2025] [Indexed: 05/16/2025] Open
Abstract
Probiotic health benefits may be affected by decreased viability during food storage and gastrointestinal transit. Although microencapsulation is an effective protective strategy, its application to probiotics is limited. Currently, research on probiotic biofilms is expanding, with these biofilms being recognized as the fourth generation of probiotics. This study aimed to investigate the effects of biofilm formation on gastrointestinal tolerance and mucoadhesion of three different probiotics: Ligilactobacillus salivarius Li01 (L. salivarius Li01), Bifidobacterium longum (B. longum), and Bifidobacterium pseudocatenulatum (B. pseudocatenulatum). Biofilm growth was markedly inhibited by low pH and high bile salt concentrations. The formation of biofilms greatly improved the survival of all three strains under simulated gastrointestinal conditions. The biofilms increased intestinal adhesion and surface hydrophobicity in B. longum and L. salivarius Li01, while reducing adhesion in B. pseudocatenulatum due to decreased hydrophobicity. Moreover, transcriptomic analysis of L. salivarius Li01 identified 157 differentially expressed genes, enriched in pathways including ABC transporters, quorum sensing, purine metabolism, arginine biosynthesis, the phosphotransferase system (PTS), RNA polymerase, and the NOD-like receptor signaling pathway. In conclusion, the formation of biofilms enhances gastrointestinal tolerance and intestinal adhesion of probiotics, presenting great applied potential in increasing the efficacy of probiotics.
Collapse
Affiliation(s)
- Wang Gao
- Jinan Microecological Biomedicine Shandong LaboratoryJinanChina
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Shandong First Medical University & Shandong Academy of Medical SciencesJinanChina
| | - Huijuan Jing
- Jinan Microecological Biomedicine Shandong LaboratoryJinanChina
| | - Bo Qiu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Shuobo Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Jingyi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Lvwan Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Furong Ba
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Siyuan Xie
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Xiao‐Man Liu
- Shandong First Medical University & Shandong Academy of Medical SciencesJinanChina
- Central LaboratoryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongPeople's Republic of China
| | - Lanjuan Li
- Jinan Microecological Biomedicine Shandong LaboratoryJinanChina
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Mingfei Yao
- Jinan Microecological Biomedicine Shandong LaboratoryJinanChina
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| |
Collapse
|
10
|
Liu J, Ma J, Wang Y, Hao H, Bi J, Hou H, Zhang G. Synergistic Antibacterial Mechanism of Benzyl Isothiocyanate and Resveratrol Against Staphylococcus aureus Revealed by Transcriptomic Analysis and Their Application in Beef. Foods 2025; 14:1610. [PMID: 40361692 PMCID: PMC12071323 DOI: 10.3390/foods14091610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/24/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
This study aims to elucidate the synergistic antibacterial mechanism of benzyl isothiocyanate (BITC) and resveratrol (RES) on Staphylococcus aureus (S. aureus) at the transcriptional level. Compared with the individuals, the combination of BITC and RES (BITC_RES) reduced S. aureus growth, inhibited biofilm formation, and increased cell membrane disruption. The transcriptomic results showed that the BITC_RES group presented 245 and 1150 more DEGs than the BITC group and the RES group, respectively. In addition, some other key genes in the BITC_RES group, including serine protease (splA, splE), Sae regulatory system (saeR, saeS, tsaE, sau300), accessory gene regulator protein C (agrC), cysteine protease (sspB), glutamyl endopeptidase (sspA), and hemolysin toxin family-related genes (hly, lukDv, lukEv), and the relative expression of these 12 genes was downregulated by 2.2-259.8-fold, 0.8-259.8-fold and 1.2-158.2-fold greater than those in the BITC group and the RES group, respectively. Finally, a synergistic antimicrobial effect of this combination was also observed in fresh lean beef at 4 °C and 25 °C. These findings provide information for future studies on the synergistic antimicrobial effects of BITC and RES on S. aureus.
Collapse
Affiliation(s)
- Jianan Liu
- School of Food Science and Technology, Dalian Polytechnic University, No. 1, Qinggongyuan, Ganjingzi District, Dalian 116034, China; (J.L.); (J.M.); (Y.W.); (J.B.); (H.H.)
- Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian Polytechnic University, No. 1, Qinggongyuan, Ganjingzi District, Dalian 116034, China
| | - Jinle Ma
- School of Food Science and Technology, Dalian Polytechnic University, No. 1, Qinggongyuan, Ganjingzi District, Dalian 116034, China; (J.L.); (J.M.); (Y.W.); (J.B.); (H.H.)
- Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian Polytechnic University, No. 1, Qinggongyuan, Ganjingzi District, Dalian 116034, China
| | - Yingrui Wang
- School of Food Science and Technology, Dalian Polytechnic University, No. 1, Qinggongyuan, Ganjingzi District, Dalian 116034, China; (J.L.); (J.M.); (Y.W.); (J.B.); (H.H.)
| | - Hongshun Hao
- Department of Inorganic Nonmetallic Materials Engineering, Dalian Polytechnic University, No. 1, Qinggongyuan, Ganjingzi District, Dalian 116034, China;
| | - Jingran Bi
- School of Food Science and Technology, Dalian Polytechnic University, No. 1, Qinggongyuan, Ganjingzi District, Dalian 116034, China; (J.L.); (J.M.); (Y.W.); (J.B.); (H.H.)
- Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian Polytechnic University, No. 1, Qinggongyuan, Ganjingzi District, Dalian 116034, China
| | - Hongman Hou
- School of Food Science and Technology, Dalian Polytechnic University, No. 1, Qinggongyuan, Ganjingzi District, Dalian 116034, China; (J.L.); (J.M.); (Y.W.); (J.B.); (H.H.)
- Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian Polytechnic University, No. 1, Qinggongyuan, Ganjingzi District, Dalian 116034, China
| | - Gongliang Zhang
- School of Food Science and Technology, Dalian Polytechnic University, No. 1, Qinggongyuan, Ganjingzi District, Dalian 116034, China; (J.L.); (J.M.); (Y.W.); (J.B.); (H.H.)
- Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian Polytechnic University, No. 1, Qinggongyuan, Ganjingzi District, Dalian 116034, China
| |
Collapse
|
11
|
Nava V, Dar JY, De Santis V, Fehlinger L, Pasqualini J, Adekolurejo OA, Burri B, Cabrerizo MJ, Chonova T, Cour M, Dory F, Drost AM, Figler A, Gionchetta G, Halabowski D, Harvey DR, Manzanares‐Vázquez V, Misteli B, Mori‐Bazzano L, Moser V, Rotta F, Schmid‐Paech B, Touchet CM, Gostyńska J. Zooming in the plastisphere: the ecological interface for phytoplankton-plastic interactions in aquatic ecosystems. Biol Rev Camb Philos Soc 2025; 100:834-854. [PMID: 39542439 PMCID: PMC11885710 DOI: 10.1111/brv.13164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 10/23/2024] [Accepted: 10/30/2024] [Indexed: 11/17/2024]
Abstract
Phytoplankton is an essential resource in aquatic ecosystems, situated at the base of aquatic food webs. Plastic pollution can impact these organisms, potentially affecting the functioning of aquatic ecosystems. The interaction between plastics and phytoplankton is multifaceted: while microplastics can exert toxic effects on phytoplankton, plastics can also act as a substrate for colonisation. By reviewing the existing literature, this study aims to address pivotal questions concerning the intricate interplay among plastics and phytoplankton/phytobenthos and analyse impacts on fundamental ecosystem processes (e.g. primary production, nutrient cycling). This investigation spans both marine and freshwater ecosystems, examining diverse organisational levels from subcellular processes to entire ecosystems. The diverse chemical composition of plastics, along with their variable properties and role in forming the "plastisphere", underscores the complexity of their influences on aquatic environments. Morphological changes, alterations in metabolic processes, defence and stress responses, including homoaggregation and extracellular polysaccharide biosynthesis, represent adaptive strategies employed by phytoplankton to cope with plastic-induced stress. Plastics also serve as potential habitats for harmful algae and invasive species, thereby influencing biodiversity and environmental conditions. Processes affected by phytoplankton-plastic interaction can have cascading effects throughout the aquatic food web via altered bottom-up and top-down processes. This review emphasises that our understanding of how these multiple interactions compare in impact on natural processes is far from complete, and uncertainty persists regarding whether they drive significant alterations in ecological variables. A lack of comprehensive investigation poses a risk of overlooking fundamental aspects in addressing the environmental challenges associated with widespread plastic pollution.
Collapse
Affiliation(s)
- Veronica Nava
- Department of Earth and Environmental SciencesUniversity of Milano‐BicoccaPiazza della Scienza 1Milan20126Italy
| | - Jaffer Y. Dar
- ICAR‐Central Soil Salinity Research InstituteKarnal132001India
- Department of Experimental LimnologyLeibniz Institute of Freshwater Ecology and Inland FisheriesMüggelseedamm 310Berlin12587Germany
| | - Vanessa De Santis
- Water Research Institute, National Research CouncilCorso Tonolli 50Verbania‐PallanzaVerbania28922Italy
| | - Lena Fehlinger
- GEA Aquatic Ecology GroupUniversity of Vic ‐ Central University of CataloniaCarrer de la Laura 13Catalonia08500 VicSpain
| | - Julia Pasqualini
- Department of River EcologyHelmholtz Centre for Environmental Research‐UFZBrückstr. 3aMagdeburg39114Germany
| | - Oloyede A. Adekolurejo
- Ecology and Evolution, School of BiologyUniversity of LeedsLeedsLS2 9JTUK
- Department of BiologyAdeyemi Federal University of EducationOndo CityOndoPMB 520Nigeria
| | - Bryan Burri
- Department F‐A. Forel for Environmental and Aquatic SciencesUniversity of Geneva, 30 Quai Ernest‐Ansermet Sciences IIGenèveCH‐1205Switzerland
| | - Marco J. Cabrerizo
- Department of Ecology & Institute of Water ResearchUniversity of GranadaCampus Fuentenueva s/nGranada18071Spain
- Estación de Fotobiología Playa Unióncasilla de correos 15RawsonChubut9103Argentina
| | - Teofana Chonova
- Department Environmental ChemistryEawag: Swiss Federal Institute of Aquatic Science and TechnologyÜberlandstr. 133DübendorfCH‐8600Switzerland
| | | | - Flavia Dory
- Department of Earth and Environmental SciencesUniversity of Milano‐BicoccaPiazza della Scienza 1Milan20126Italy
| | - Annemieke M. Drost
- Department of Aquatic EcologyNetherlands Institute of EcologyDroevendaalsesteeg 10Wageningen6708 PBThe Netherlands
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics (IBED)University of AmsterdamP.O. Box 94240Amsterdam1090 GEThe Netherlands
| | - Aida Figler
- Department of BioinformaticsSemmelweis UniversityTűzoltó utca 7‐9Budapest1094Hungary
| | - Giulia Gionchetta
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA)Spanish Council of Scientific Research (CSIC)Barcelona0803Spain
| | - Dariusz Halabowski
- Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental ProtectionUniversity of LodzBanacha 12/16Lodz90‐237Poland
| | - Daniel R. Harvey
- Lake Ecosystems Group, UK Centre for Ecology & HydrologyLancaster Environment CentreLibrary Avenue, BailriggLancasterLA1 4APUK
- Lancaster Environment CentreLancaster UniversityLancasterLA1 4YQUK
| | - Víctor Manzanares‐Vázquez
- Department of Research and DevelopmentCoccosphere Environmental AnalysisC/Cruz 39, 29120 Alhaurín el GrandeMálagaSpain
| | - Benjamin Misteli
- WasserCluster Lunz ‐ Biologische StationDr Carl Kupelwieser Promenade 5Lunz am See3293Austria
| | - Laureen Mori‐Bazzano
- Department F‐A. Forel for Environmental and Aquatic SciencesUniversity of Geneva, 30 Quai Ernest‐Ansermet Sciences IIGenèveCH‐1205Switzerland
| | - Valentin Moser
- Community Ecology, Swiss Federal Institute for ForestSnow and Landscape Research WSLZürcherstrasse 111BirmensdorfCH‐8903Switzerland
- Department of Aquatic EcologyEawag: Swiss Federal Institute of Aquatic Science and TechnologyÜberlandstrasse 133DübendorfCH‐8600Switzerland
| | - Federica Rotta
- Department of Earth and Environmental SciencesUniversity of PaviaVia Ferrata 1Pavia27100Italy
- Institute of Earth ScienceUniversity of Applied Science and Arts of Southern SwitzerlandVia Flora Ruchat‐Roncati 15MendrisioCH‐6850Switzerland
| | - Bianca Schmid‐Paech
- University Weihenstephan‐Triesdorf of Applied ScienceAm Hofgarten 4Freising85354Germany
| | - Camille M. Touchet
- Université Claude Bernard ‐ Lyon 1, “LEHNA UMR 5023, CNRS, ENTPE3‐6, rue Raphaël DuboisVilleurbanneF‐69622France
| | - Julia Gostyńska
- Department of Hydrobiology, Faculty of BiologyAdam Mickiewicz UniversityUniwersytetu Poznanskiego 6Poznan61‐614Poland
| |
Collapse
|
12
|
Wang YJ, Wang F, Jiang MH, Xu KZ, Dar OI, Tang S, Liu L, Chen SH, Jia AQ. Oxirapentyn A, Derived from Marine Amphichorda felina, Effectively Inhibits Quorum Sensing and Biofilm Formation Against Chromobacterium violaceum. Curr Microbiol 2025; 82:215. [PMID: 40146334 DOI: 10.1007/s00284-025-04202-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/19/2025] [Indexed: 03/28/2025]
Abstract
The emergence of multidrug-resistant Chromobacterium violaceum, an opportunistic pathogen, poses a significant threat to human, animal, and environmental health, underscoring the urgent need for innovative strategies. Marine-derived natural compounds have gained attention as a promising source of quorum sensing inhibitors (QSIs) that can attenuate C. violaceum virulence without inducing resistance. This study reports, for the first time, the anti-quorum sensing (anti-QS) and anti-biofilm activities of oxirapentyn A, one marine natural compound, against C. violaceum. Results demonstrate oxirapentyn A (200 μg/mL) significantly inhibits biofilm formation, violacein production, and hemolysin synthesis by 48.8, 21.7, and 22.3%, respectively. Scanning electron microscopy (SEM) further corroborated the disruption of biofilm architecture. LC-MS analysis revealed a concentration-dependent reduction in the production of N-decanoyl-homoserine lactone (C10-HSL), a key QS signaling molecule. Furthermore, RT-qPCR analysis indicated oxirapentyn A downregulated critical QS-related genes (cviI, cviR, vioA, chiA, and pykF) by 20.7, 36.6, 31.1, 66.6, and 30.7%, respectively. Notably, in vivo experiments demonstrated that oxirapentyn A significantly improved the survival of Galleria mellonella larvae infected with C. violaceum. Collectively, these findings highlight oxirapentyn A as a novel QSI with dual anti-QS and biofilm-disrupting activities, offering a promising strategy to combat drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Ying-Jie Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Fang Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Ming-Hua Jiang
- School of Marine Sciences, Sun Yat-Sen University, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Kai-Zhong Xu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Owias Iqbal Dar
- Department of Chemistry and Chemical Engineering, Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, Haikou, 570228, China.
| | - Shi Tang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Lan Liu
- School of Marine Sciences, Sun Yat-Sen University, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Sen-Hua Chen
- School of Marine Sciences, Sun Yat-Sen University, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| | - Ai-Qun Jia
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, China.
| |
Collapse
|
13
|
Gruszecka J, Filip R. Bacterial Biofilms-A Threat to Biliary Stents, Understanding Their Formation, Clinical Consequences and Management. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:512. [PMID: 40142322 PMCID: PMC11943510 DOI: 10.3390/medicina61030512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/09/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025]
Abstract
A biofilm is a community of microbial cells which are enclosed in an external matrix and separated by a network of water channels attached to natural or artificial surfaces. Biofilms formed inside biliary stents consist of a mixed spectrum of bacterial communities, most of which usually originate from the intestines. The patency of biliary stents is the most important problem. Stent occlusion can threaten the health and even life of patients. The main cause of this phenomenon is bile sludge, which is an excellent environment for the multiplication and existence of microorganisms. Due to the great clinical importance of maintaining the patency of biliary stents, several methods have been developed to prevent the accumulation of sludge and the subsequent formation of biofilm; these include, among others, the use of anti-adhesive materials, coating the inner surface of stents with metal cations (silver, copper) or other antimicrobial substances, the implementation of biodegradable drug-eluting biliary stents and the development of a new stent design with an anti-reflux effect. This article presents the latest information on the formation of biofilms in biliary stents, as well as historical and future methods of prevention.
Collapse
Affiliation(s)
- Jolanta Gruszecka
- Institute of Health Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
- Department of Clinical Microbiology, Clinical Hospital No. 2, 35-301 Rzeszow, Poland
| | - Rafał Filip
- Faculty of Medicine, University of Rzeszow, 35-959 Rzeszow, Poland
- Department of Gastroenterology with IBD Unit, Clinical Hospital No. 2, 35-301 Rzeszow, Poland
| |
Collapse
|
14
|
Ghanem R, Youf R, Haute T, Buin X, Riool M, Pourchez J, Montier T. The (re)emergence of aerosol delivery: Treatment of pulmonary diseases and its clinical challenges. J Control Release 2025; 379:421-439. [PMID: 39800241 DOI: 10.1016/j.jconrel.2025.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
Aerosol delivery represents a rapid and non-invasive way to directly reach the lungs while escaping the hepatic first-pass effect. The development of pulmonary drugs for respiratory diseases such as cystic fibrosis, lung infections, pulmonary fibrosis or lung cancer requires an enhanced understanding of the relationships between the natural physiology of the respiratory system and the pathophysiology of these conditions. This knowledge is crucial to better predict and thereby control drug deposition. Moreover, aerosol administration faces several challenges, including the pulmonary tract, immune system, mucociliary clearance, the presence of fluid on the airway surfaces, and, in some cases, bacterial colonisation. Each of them directly influences on the bioavailability of the active molecule. In addition to these challenges, particle size and the device used to administer the treatment are critical factors that can significantly impact the biodistribution of the drugs. Nanoparticles are very promising in the development of new formulations for aerosol drug delivery, as they can be fine-tuned to reach the entire pulmonary tract and overcome the difficulties encountered along the way. However, to properly assess drug delivery, preclinical studies need to be more thorough to efficiently enhance drug delivery.
Collapse
Affiliation(s)
- Rosy Ghanem
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200, Brest, France; CHU de Brest, Service de Génétique Médicale et de Biologie de la Reproduction, F-29200 Brest, France
| | - Raphaëlle Youf
- Department of Trauma Surgery, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Tanguy Haute
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200, Brest, France
| | - Xavier Buin
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200, Brest, France
| | - Martijn Riool
- Department of Trauma Surgery, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Jérémie Pourchez
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, F - 42023 Saint-Etienne, France
| | - Tristan Montier
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200, Brest, France; CHU de Brest, Service de Génétique Médicale et de Biologie de la Reproduction, F-29200 Brest, France.
| |
Collapse
|
15
|
Zhang L, Guo RB, Liu Y, Kong L, Zang J, Zhang ZX, Wang JH, Chen MH, Liu M, Yu Y, Li XT. Therapeutic effect of pH responsive Magainin II modified azithromycin plus curcumin micelles in different depth models of MRSA infection. Sci Rep 2025; 15:7383. [PMID: 40025264 PMCID: PMC11873114 DOI: 10.1038/s41598-025-92384-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/27/2025] [Indexed: 03/04/2025] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a major pathogen responsible for serious infections in humans. The overuse of antibiotics has led to the evolution of resistance genes in bacteria. This study aimed to develop a pH-responsive micelle, loaded with therapy drugs and modified with antimicrobial peptides, to treat drug-resistant bacterial infections at varying depths. pH-responsive micelles containing azithromycin and curcumin, modified with Magainin II, were prepared using the thin-film dispersion method. The physicochemical properties of the micelles were characterized, and their targeting properties and therapeutic effects on bacterial infections were investigated both in vivo and in vitro across various depths. The micelles demonstrated excellent targeting of bacterial infection sites and released drugs in response to degradation at the disease site. The combination of curcumin and azithromycin effectively mitigated bacterial resistance through multiple mechanisms, enhancing the antibacterial effect while reducing the required azithromycin dosage and associated toxicity. In infection models of varying depths-skin, muscle, and lungs-the micelles exhibited strong antibacterial, anti-biofilm, and anti-inflammatory effects with low toxicity. These findings provide a promising strategy for addressing drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Lu Zhang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Shengming 1 Road 77, Double D Port, Dalian, 116600, China
- Shenyang Key Laboratory of Targeted Delivery of Chinese Medicine, Shenyang, 110000, China
| | - Rui-Bo Guo
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Shengming 1 Road 77, Double D Port, Dalian, 116600, China
- Shenyang Key Laboratory of Targeted Delivery of Chinese Medicine, Shenyang, 110000, China
| | - Yang Liu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Shengming 1 Road 77, Double D Port, Dalian, 116600, China
- Shenyang Key Laboratory of Targeted Delivery of Chinese Medicine, Shenyang, 110000, China
| | - Liang Kong
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Shengming 1 Road 77, Double D Port, Dalian, 116600, China
- Shenyang Key Laboratory of Targeted Delivery of Chinese Medicine, Shenyang, 110000, China
| | - Juan Zang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Shengming 1 Road 77, Double D Port, Dalian, 116600, China
- Shenyang Key Laboratory of Targeted Delivery of Chinese Medicine, Shenyang, 110000, China
| | - Zi-Xu Zhang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Shengming 1 Road 77, Double D Port, Dalian, 116600, China
- Shenyang Key Laboratory of Targeted Delivery of Chinese Medicine, Shenyang, 110000, China
| | - Jia-Hua Wang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Shengming 1 Road 77, Double D Port, Dalian, 116600, China
- Shenyang Key Laboratory of Targeted Delivery of Chinese Medicine, Shenyang, 110000, China
| | - Mu-Han Chen
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Shengming 1 Road 77, Double D Port, Dalian, 116600, China
- Shenyang Key Laboratory of Targeted Delivery of Chinese Medicine, Shenyang, 110000, China
| | - Mo Liu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Shengming 1 Road 77, Double D Port, Dalian, 116600, China
- Shenyang Key Laboratory of Targeted Delivery of Chinese Medicine, Shenyang, 110000, China
| | - Yang Yu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Shengming 1 Road 77, Double D Port, Dalian, 116600, China.
- Shenyang Key Laboratory of Targeted Delivery of Chinese Medicine, Shenyang, 110000, China.
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Shenyang, 110000, China.
| | - Xue-Tao Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Shengming 1 Road 77, Double D Port, Dalian, 116600, China.
- Shenyang Key Laboratory of Targeted Delivery of Chinese Medicine, Shenyang, 110000, China.
| |
Collapse
|
16
|
Liu D, Lu Y, Li Z, Pang X, Gao X. Quorum Sensing: Not Just a Bridge Between Bacteria. Microbiologyopen 2025; 14:e70016. [PMID: 40159675 PMCID: PMC11955508 DOI: 10.1002/mbo3.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/18/2025] [Accepted: 03/07/2025] [Indexed: 04/02/2025] Open
Abstract
The study of quorum sensing (QS) has gained critical importance, offering insights into bacterial and microorganism communication. QS, regulated by autoinducers, synchronizes collective bacterial behaviors across diverse chemical signals and target genes. This review highlights innovative approaches to regulating QS, emphasizing the potential of quorum quenching and QS inhibitors to mitigate bacterial pathogenicity. These strategies have shown promise in aquaculture and plant resistance, disrupting QS pathways to combat infections. QS also provides opportunities for developing biosensors for early disease detection and preventing biofilm formation, which is critical to overcoming antimicrobial resistance. The applications of QS extend to cancer therapy, with targeted drug delivery systems utilizing QS mechanisms. Advancements in QS regulation, such as the use of nanomaterials, hydrogels, and microplastics, provide novel methods to modulate QS systems. This review explores the latest developments in QS, recognizing its significance in controlling bacterial behavior and its broad impacts on human health and disease management. Integrating these insights into therapeutic strategies and diagnostics represents a pivotal opportunity for medical progress.
Collapse
Affiliation(s)
- Derun Liu
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesjinanChina
| | - Yonglin Lu
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesjinanChina
| | - Ziyun Li
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoChina
| | - Xin Pang
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoChina
| | - Xueyan Gao
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesjinanChina
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoChina
| |
Collapse
|
17
|
Zeybek Sivas Z, Yıldırım N. The Possible Role of Biofilm Formation in Recidivism of Cholesteatomatous and Noncholesteatomatous Chronic Suppurative Otitis Media. Otol Neurotol 2025; 46:e74-e80. [PMID: 39951665 DOI: 10.1097/mao.0000000000004424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2025]
Abstract
OBJECTIVE Chronic suppurative otitis media (CSOM) is typically classified into two distinct types: CSOM (without cholestetoma) and CSOM with cholesteatoma (CCSOM). The main microbial agents in both types are Pseudomonas aeruginosa, Staphylococcus aureus, and Klebsiella pneumoniae. It is believed that the virulence of the infecting microorganisms and their biofilm production capacity play a role in the chronicity and persistence of the disease. The aim of this study was to investigate the pathogen microorganisms with their biofilm formation in CSOM, CCSOM, and their recidivism. MATERIALS AND METHODS A cohort of 57 patients was separated into four subgroups as primary CSOM (CSOM, CCSOM) and postoperatively recurring/residual CSOM [(R)CSOM, (R)CCSOM] groups. A control group was formed of 10 patients who underwent tympanotomy for conductive hearing loss without any known past/present ear inflammation. In all 67 patients, ear swabs for culture and the tissue samples for biofilm studies were obtained pre- or intraoperatively. RESULTS The most common bacteria grown in the culture mediums were Pseudomonas spp., S. aureus, coagulase-negative Staphylococcus, and coliform bacteria. In the SEM study, biofilms were detected in 9 of 15 CCSOM and 6 of 14 CSOM, and in 13 of 14 (R)CCSOM and 11 of 14 (R)CSOM ears. Statistical analysis showed significantly higher rates of biofilm formation in both recidivist cholesteatomatous and noncholesteatomatous CSOM groups than their primary counterpart groups. CONCLUSION The findings that biofilm is more prevalent in the recidivist cases substantiated that biofilm formation is correlated with the persistence and additionally aggressiveness of the disease in both CSOM types. S. aureus appeared as the leading biofilm-producing bacterium.
Collapse
Affiliation(s)
- Zuhal Zeybek Sivas
- Department of Otolaryngology, Evliya Çelebi Training and Research Hospital
| | - Nadir Yıldırım
- Department of Otolaryngology, Kütahya Sağlık Bilimleri Üniversitesi, Kütahya, Turkey
| |
Collapse
|
18
|
Zhang W, Hu J, Hu H, Zhang Z, Zhang W, Lu H, Lei X, Zeng Y, Xia J, Xu F. Trained Decoy Nanocages Confer Selective Cuproptosis and Metabolic Reprogramming for Drug-Resistant Bacterial Targeting Therapy. ACS NANO 2025; 19:5217-5239. [PMID: 39869308 DOI: 10.1021/acsnano.4c10708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Nonantibiotic strategies are urgently needed to treat acute drug-resistant bacterial pneumonia. Recently, nanomaterial-mediated bacterial cuproptosis has arisen widespread interest due to its superiority against antibiotic resistance. However, it may also cause indiscriminate and irreversible damage to healthy cells. Here, we synthesized trained decoy mCuS@lm nanocages, consisting of trained membranes, copper sulfide, mitoquinone, and luteolin for selective cuproptosis and targeted therapeutic strategies. The nanocages could amplify bacterial cuproptosis through quorum sensing inhibition that cuts off bacterial interactions and modulates virulence factors and biofilm formation. Meanwhile, the nanocages could protect cells from cuproptosis-induced damage through mitochondrial-targeted antioxidants. Trained biomimetic membranes facilitated broad-spectrum bacterial targeting ability and functioned as a decoy to neutralize cytokine storms during pneumonia. Moreover, the nanocages could reprogram the metabolic conditions of both bacteria and host cells. In conclusion, the nanocages provide an approach to treat challenging drug-resistant bacterial pneumonia.
Collapse
Affiliation(s)
- Wenting Zhang
- Department of Infectious Diseases, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Jiahao Hu
- Department of General Surgery, Sir Run-Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Huiqun Hu
- Department of Infectious Diseases, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Zengwen Zhang
- Department of Infectious Diseases, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Wanying Zhang
- Department of Infectious Diseases, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Huidan Lu
- Department of Infectious Diseases, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Xiaoyue Lei
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310006, China
| | - Yifei Zeng
- Department of Infectious Diseases, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Jingyan Xia
- Department of Radiation Therapy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Feng Xu
- Department of Infectious Diseases, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Key Laboratory of Multiple Organ Failure (Zhejiang University), Ministry of Education, Hangzhou 310053, China
| |
Collapse
|
19
|
Koshak AE, Elfaky MA, Albadawi DAI, Abdallah HM, Mohamed GA, Ibrahim SRM, Alzain AA, Khafagy ES, Elsayed EM, Hegazy WAH. Piceatannol: a renaissance in antibacterial innovation unveiling synergistic potency and virulence disruption against serious pathogens. Int Microbiol 2025; 28:213-225. [PMID: 38767683 DOI: 10.1007/s10123-024-00532-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/27/2024] [Accepted: 05/09/2024] [Indexed: 05/22/2024]
Abstract
In the relentless battle against multi-drug resistant Gram-negative bacteria, piceatannol emerges as a beacon of hope, showcasing unparalleled antibacterial efficacy and a unique ability to disrupt virulence factors. Our study illuminates the multifaceted prowess of piceatannol against prominent pathogens-Proteus mirabilis, Pseudomonas aeruginosa, Acinetobacter baumannii, and Klebsiella pneumoniae. Notably, piceatannol demonstrated a remarkable ability to inhibit biofilm formation, reduce bacterial mobility, and diminish extracellular enzyme synthesis.Mechanistic insights into piceatannol's activity unraveled its impact on membrane potential, proton motive force, and ATP production. Furthermore, our study delved into piceatannol's anti-quorum sensing (QS) activity, showcasing its potential to downregulate QS-encoding genes and affirming its affinity to critical QS receptors through molecular docking. Crucially, piceatannol exhibited a low propensity for resistance development, positioning it as a promising candidate for combating antibiotic-resistant strains. Its mild effect on red blood cells (RBCs) suggests safety even at higher concentrations, reinforcing its potential translational value. In an in vivo setting, piceatannol demonstrated protective capabilities, significantly reducing pathogenesis in mice infected with P. aeruginosa and P. mirabilis. This comprehensive analysis positions piceatannol as a renaissance in antibacterial innovation, offering a versatile and effective strategy to confront the evolving challenges posed by resilient Gram-negative pathogens.
Collapse
Affiliation(s)
- Abdulrahman E Koshak
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Mahmoud A Elfaky
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Dina A I Albadawi
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Hossam M Abdallah
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| | - Gamal A Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Sabrin R M Ibrahim
- Department of Chemistry, Batterjee Medical College, Preparatory Year Program, Jeddah, 21442, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Abdulrahim A Alzain
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Wad Madani, 21111, Sudan
| | - El-Sayed Khafagy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt
| | - Eslam M Elsayed
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, 35043, Germany
- Department of Biology, Philipps-Universität Marburg, Marburg, 35043, Germany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Wael A H Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
- Pharmacy Program, Department of Pharmaceutical Sciences, Oman College of Health Sciences, Muscat, 113, Oman
| |
Collapse
|
20
|
Wei R, Li G, Huang Y, Mi L, Wu J, Huang H, Yin N, Chen Y, Yang Q, Zhang W, Sun B, Sun R, Guo L, Feng M. Photo-curing hyaluronic acid-Janus antibacterial packs as O 2 generator precisely modulate the infectious microenvironment for antibiotic-free periodontal therapy. Mater Today Bio 2025; 30:101405. [PMID: 39807179 PMCID: PMC11729000 DOI: 10.1016/j.mtbio.2024.101405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/24/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025] Open
Abstract
Periodontal disease stands the leading cause of tooth loss in adults. While scaling and root planning is considered the "gold standard" treatment, it is often insufficient in efficiently eliminating anaerobic bacteria from deep periodontal pockets. In this work, an antibiotic-free and photo-curing hyaluronic acid-Janus (H-Janus) antibacterial pack was developed to inhibit the growth and colonization of residual bacteria within the pockets for reducing the recurrence of periodontitis. Our results demonstrated that a 4 wt% precursor solution of the antibacterial packs could be molded into various shapes by exposure to UV irradiation for less than 1 min, allowing the packs to seamlessly fill the irregular spaces of periodontal pockets. In vitro studies showed that the antibacterial packs gradually released lauric acid and oxygen over 7 days, exhibiting significant anti-biofilm effects against both aerobic and anaerobic bacteria. Notably, animal experiments confirmed that H-Janus antibacterial packs markedly improved the clinical scores in rats with periodontitis by inhibiting bacterial growth, alleviating inflammation, and fostering the regeneration of periodontal tissues. In light of their precise elimination of bacterial colonization and modulation of the infectious microenvironment, the H-Janus antibacterial packs show promising therapeutic potential for preventing the recurrence of periodontal pathogens following scaling and root planning.
Collapse
Affiliation(s)
- Runxiu Wei
- School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou, 510006, China
| | - Gaojie Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou, 510006, China
| | - Yuying Huang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou, 510006, China
| | - Linjing Mi
- School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou, 510006, China
| | - Jiamin Wu
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Huan Huang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou, 510006, China
| | - Na Yin
- School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou, 510006, China
| | - Yuling Chen
- School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou, 510006, China
| | - Qiang Yang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou, 510006, China
| | - Wenjun Zhang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou, 510006, China
| | - Bingzhi Sun
- School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou, 510006, China
| | - Ran Sun
- School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou, 510006, China
| | - Ling Guo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Min Feng
- School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou, 510006, China
| |
Collapse
|
21
|
Nishi K, Gondaira S, Hirano Y, Ohashi M, Sato A, Matsuda K, Iwasaki T, Kanda T, Uemura R, Higuchi H. Biofilm characterisation of Mycoplasma bovis co-cultured with Trueperella pyogenes. Vet Res 2025; 56:22. [PMID: 39885598 PMCID: PMC11783866 DOI: 10.1186/s13567-025-01468-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 11/12/2024] [Indexed: 02/01/2025] Open
Abstract
Mycoplasma pneumonia, caused by Mycoplasma bovis (Mycoplasmopsis bovis; M. bovis), is linked with severe inflammatory reactions in the lungs and can be challenging to treat with antibiotics. Biofilms play a significant role in bacterial persistence and contribute to the development of chronic lesions. A recent study has shown that polymicrobial interactions between species are an important factor in biofilm formation, yet the precise mechanism of biofilm formation in M. bovis remains unknown. By assuming multiple pathogen infections in the bovine respiratory disease complex (BRDC), this study examined the characterisation of the polymicrobial relationship between M. bovis and Trueperella pyogenes (T. pyogenes) during biofilm formation. Autopsies were performed on four Holstein calves (two chronic Mycoplasma pneumonia calves and two control calves). Bacterium-like aggregation structures (> 10 μm), which were assumed to be biofilms of M. bovis in vivo, were observed adhering to the cilia in calves with Mycoplasma pneumonia. M. bovis released an extracellular matrix to connect with neighbouring bacteria and form a mature biofilm on the plate. Biofilm formation in the co-culture of M. bovis and T. pyogenes (strain T1: 1 × 105 and 1 × 106 CFU/well) significantly increased (p < 0.05 and p < 0.01; 64.1% and 64.8% increase) compared to that in a single culture of these bacteria. Furthermore, some large aggregates (> 40 μm), composed of M. bovis and T. pyogenes, were observed. The morphological characteristics of this biofilm were similar to those observed in vivo compared to a single culture. In conclusion, the polymicrobial interaction between M. bovis and T. pyogenes induces biofilm formation, which is associated with increased resistance to antimicrobial agents, and this exacerbates the progression of chronic Mycoplasma pneumonia.
Collapse
Affiliation(s)
- Koji Nishi
- Animal Health Unit, Department of Veterinary Science, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
- Monbetsu Veterinary Clinic, Hokkaido Agricultural Mutual Aid Association, Monbetsu, Hokkaido, Japan
| | - Satoshi Gondaira
- Animal Health Unit, Department of Veterinary Science, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan.
| | - Yuki Hirano
- Animal Research Center, Agricultural Research Department, Hokkaido Research Organization, Shintoku, Hokkaido, Japan
| | - Masahide Ohashi
- Animal Health Unit, Department of Veterinary Science, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| | - Ayano Sato
- Large Animal Clinical Science, Department of Veterinary Science, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| | - Kazuya Matsuda
- Department of Veterinary Pathology, Department of Veterinary Science, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, 069-8501, Japan
| | - Tomohito Iwasaki
- Department of Food Science and Human Wellness, College of Agriculture, Food and Environment Science, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| | - Takuya Kanda
- Food Safety Laboratory, Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Ehime, Japan
| | - Ryoko Uemura
- Animal Health, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Hidetoshi Higuchi
- Animal Health Unit, Department of Veterinary Science, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan.
| |
Collapse
|
22
|
Xue Y, Kang X. Time-resolved compositional and dynamics analysis of biofilm maturation and dispersal via solid-state NMR spectroscopy. NPJ Biofilms Microbiomes 2025; 11:21. [PMID: 39880834 PMCID: PMC11779841 DOI: 10.1038/s41522-025-00655-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 01/20/2025] [Indexed: 01/31/2025] Open
Abstract
Dispersal plays a crucial role in the development and ecology of biofilms. While extensive studies focused on elucidating the molecular mechanisms governing this process, few have characterized the associated temporal changes in composition and structure. Here, we employed solid-state nuclear magnetic resonance (NMR) techniques to achieve time-resolved characterization of Bacillus subtilis biofilms over a 5-day period. The mature biofilm, established within 48 h, undergoes significant degradation in following 72 h. The steepest decline of proteins precedes that of exopolysaccharides, likely reflecting their distinct spatial distribution. Exopolysaccharide sugar units display clustered temporal patterns, suggesting the presence of distinct polysaccharide types. A sharp rise in aliphatic carbon signals on day 4 probably corresponds to a surge in biosurfactant production. Different dynamic regimes respond differently to dispersal: the mobile domain exhibits increased rigidity, while the rigid domain remains stable. These findings provide novel insights and perspectives on the complex process of biofilm dispersal.
Collapse
Affiliation(s)
- Yi Xue
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Xue Kang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, Zhejiang, China.
| |
Collapse
|
23
|
Roque‐Borda CA, Primo LMDG, Medina‐Alarcón KP, Campos IC, Nascimento CDF, Saraiva MMS, Berchieri Junior A, Fusco‐Almeida AM, Mendes‐Giannini MJS, Perdigão J, Pavan FR, Albericio F. Antimicrobial Peptides: A Promising Alternative to Conventional Antimicrobials for Combating Polymicrobial Biofilms. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410893. [PMID: 39530703 PMCID: PMC11714181 DOI: 10.1002/advs.202410893] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Polymicrobial biofilms adhere to surfaces and enhance pathogen resistance to conventional treatments, significantly contributing to chronic infections in the respiratory tract, oral cavity, chronic wounds, and on medical devices. This review examines antimicrobial peptides (AMPs) as a promising alternative to traditional antibiotics for treating biofilm-associated infections. AMPs, which can be produced as part of the innate immune response or synthesized therapeutically, have broad-spectrum antimicrobial activity, often disrupting microbial cell membranes and causing cell death. Many specifically target negatively charged bacterial membranes, unlike host cell membranes. Research shows AMPs effectively inhibit and disrupt polymicrobial biofilms and can enhance conventional antibiotics' efficacy. Preclinical and clinical research is advancing, with animal studies and clinical trials showing promise against multidrug-resistant bacteria and fungi. Numerous patents indicate increasing interest in AMPs. However, challenges such as peptide stability, potential cytotoxicity, and high production costs must be addressed. Ongoing research focuses on optimizing AMP structures, enhancing stability, and developing cost-effective production methods. In summary, AMPs offer a novel approach to combating biofilm-associated infections, with their unique mechanisms and synergistic potential with existing antibiotics positioning them as promising candidates for future treatments.
Collapse
Affiliation(s)
- Cesar Augusto Roque‐Borda
- Department of Biological SciencesSchool of Pharmaceutical SciencesUniversidade Estadual Paulista (UNESP)AraraquaraSao Paulo14800‐903Brazil
- iMed.ULisboa–Institute for Medicines ResearchFaculty of PharmacyUniversity of LisbonLisbon1649004Portugal
- Vicerrectorado de InvestigaciónUniversidad Católica de Santa MaríaArequipa04000Peru
| | - Laura Maria Duran Gleriani Primo
- Department of Biological SciencesSchool of Pharmaceutical SciencesUniversidade Estadual Paulista (UNESP)AraraquaraSao Paulo14800‐903Brazil
| | - Kaila Petronila Medina‐Alarcón
- Department of Clinical AnalysisSchool of Pharmaceutical SciencesUniversidade Estadual Paulista (UNESP)AraraquaraSao Paulo14800‐903Brazil
| | - Isabella C. Campos
- São Paulo State University (UNESP)School of Agricultural and Veterinarian SciencesJaboticabalSao Paulo14884‐900Brazil
| | - Camila de Fátima Nascimento
- São Paulo State University (UNESP)School of Agricultural and Veterinarian SciencesJaboticabalSao Paulo14884‐900Brazil
| | - Mauro M. S. Saraiva
- São Paulo State University (UNESP)School of Agricultural and Veterinarian SciencesJaboticabalSao Paulo14884‐900Brazil
| | - Angelo Berchieri Junior
- São Paulo State University (UNESP)School of Agricultural and Veterinarian SciencesJaboticabalSao Paulo14884‐900Brazil
| | - Ana Marisa Fusco‐Almeida
- Department of Clinical AnalysisSchool of Pharmaceutical SciencesUniversidade Estadual Paulista (UNESP)AraraquaraSao Paulo14800‐903Brazil
| | - Maria José Soares Mendes‐Giannini
- Department of Clinical AnalysisSchool of Pharmaceutical SciencesUniversidade Estadual Paulista (UNESP)AraraquaraSao Paulo14800‐903Brazil
| | - João Perdigão
- iMed.ULisboa–Institute for Medicines ResearchFaculty of PharmacyUniversity of LisbonLisbon1649004Portugal
| | - Fernando Rogério Pavan
- Department of Biological SciencesSchool of Pharmaceutical SciencesUniversidade Estadual Paulista (UNESP)AraraquaraSao Paulo14800‐903Brazil
| | - Fernando Albericio
- Peptide Science LaboratorySchool of Chemistry and PhysicsUniversity of KwaZulu‐NatalDurban4001South Africa
- CIBER‐BBNNetworking Centre on BioengineeringBiomaterials and Nanomedicineand Department of Organic ChemistryUniversity of BarcelonaBarcelona08028Spain
| |
Collapse
|
24
|
Omwenga EO, Awuor SO. The Bacterial Biofilms: Formation, Impacts, and Possible Management Targets in the Healthcare System. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2024; 2024:1542576. [PMID: 39717533 PMCID: PMC11666319 DOI: 10.1155/cjid/1542576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 11/04/2024] [Accepted: 11/18/2024] [Indexed: 12/25/2024]
Abstract
Introduction: The persistent increase in multidrug-resistant pathogens has catalyzed the creation of novel strategies to address antivirulence and anti-infective elements. Such methodologies aim to diminish the selective pressure exerted on bacterial populations, decreasing the likelihood of resistance emergence. This review explores the role of biofilm formation as a significant virulence factor and its impact on the development of antimicrobial resistance (AMR). Case Presentation: The ability of bacteria to form a superstructure-biofilm-has made resistance cases in the microbial world a big concern to public health and other sectors as it is a crucial virulence factor that causes difficulties in the management of infections, hence enhancing chronic infection occurrence. Biofilm formation dates to about 3.4 billion years when prokaryotes were discovered to be forming them and since then due to evolution and growth in science, they are more understood. Management and Outcome: The unique microenvironments within bacterial biofilms diminish antibiotic effectiveness and help bacteria evade the host immune system. Biofilm production is a widespread capability among diverse bacterial species. Biofilm formation is enhanced by quorum sensing (QS), reduction of nutrients, or harsh environments for the bacteria. Conclusion: The rise of severe, treatment-resistant biofilm infections poses major challenges in medicine and agriculture, yet much about how these biofilms form remains unknown.
Collapse
Affiliation(s)
- Eric Omori Omwenga
- Department of Medical Microbiology & Parasitology, School of Health Sciences, Kisii University, Kisii, Kenya
| | - Silas Onyango Awuor
- Department of Applied Health Sciences, School of Health Sciences, Kisii University, Kisii, Kenya
- Department of Medical Microbiology, Jaramogi Oginga Odinga Teaching and Referral Hospital, Kisumu, Kenya
| |
Collapse
|
25
|
Guliy OI, Evstigneeva SS. Bacterial Communities and Their Role in Bacterial Infections. Front Biosci (Elite Ed) 2024; 16:36. [PMID: 39736004 DOI: 10.31083/j.fbe1604036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/07/2024] [Accepted: 06/20/2024] [Indexed: 12/31/2024]
Abstract
Since infections associated with microbial communities threaten human health, research is increasingly focusing on the development of biofilms and strategies to combat them. Bacterial communities may include bacteria of one or several species. Therefore, examining all the microbes and identifying individual community bacteria responsible for the infectious process is important. Rapid and accurate detection of bacterial pathogens is paramount in healthcare, food safety, and environmental monitoring. Here, we analyze biofilm composition and describe the main groups of pathogens whose presence in a microbial community leads to infection (Staphylococcus aureus, Enterococcus spp., Cutibacterium spp., bacteria of the HACEK, etc.). Particular attention is paid to bacterial communities that can lead to the development of device-associated infections, damage, and disruption of the normal functioning of medical devices, such as cardiovascular implants, biliary stents, neurological, orthopedic, urological and penile implants, etc. Special consideration is given to tissue-located bacterial biofilms in the oral cavity, lungs and lower respiratory tract, upper respiratory tract, middle ear, cardiovascular system, skeletal system, wound surface, and urogenital system. We also describe methods used to analyze the bacterial composition in biofilms, such as microbiologically testing, staining, microcolony formation, cellular and extracellular biofilm components, and other methods. Finally, we present ways to reduce the incidence of biofilm-caused infections.
Collapse
Affiliation(s)
- Olga I Guliy
- Institute of Biochemistry and Physiology of Plants and Microorganisms - Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 Saratov, Russia
| | - Stella S Evstigneeva
- Institute of Biochemistry and Physiology of Plants and Microorganisms - Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 Saratov, Russia
| |
Collapse
|
26
|
Zhou J, Wu X, Feng Y, Huo T, Zhao Y, Pan J, Liu S. Bacterial communication intelligently regulates their interactions in anammox consortia under decreasing temperatures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176239. [PMID: 39277003 DOI: 10.1016/j.scitotenv.2024.176239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/28/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Bacterial communication could affect their interactions, but whether this regulation has "intelligence" is still unknown. Here, we operated an anammox reactor under temperature gradient from 35 °C to 15 °C. As results, expression abundance of bacterial communication genes increased by 12 % significantly after temperature declined. Division of labor among distinct signal molecules was evidenced by complementary roles of acyl-homoserine lactones (AHLs) and diffusible signal factor (DSF) in affecting bacterial interactions and niche differentiation respectively. DSF based inter-and intra-communication helped bacteria match their investments and rewards during cross-feedings. When temperature was below 25 °C, transcription regulator Clp governed by DSF inclined to promote folate and molybdenum cofactor biosynthesis, which coincidentally benefited one anammox species more than another. Meanwhile, for the anammox species with lower benefits, Clp also inclined to decrease biosynthesis of costly tryptophan and vitamin B1 rewarding others. Interestingly, bacterial communication inclined to influence the bacteria with many cooperators in the community or with high capacity to export cofactors for cross-feedings when temperature decreased. As results, these bacteria were enriched which could lead to closer interactions in whole community to adapt to low temperatures. The discovered intelligence of bacterial communication opened another window for understanding bacterial sociobiology.
Collapse
Affiliation(s)
- Jianhang Zhou
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Xiaogang Wu
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Yiming Feng
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Tangran Huo
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Yunpeng Zhao
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Juejun Pan
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Sitong Liu
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China.
| |
Collapse
|
27
|
Wang D, Liu N, Qiao M, Xu C. Gallic acid as biofilm inhibitor can improve transformation efficiency of Ruminiclostridium papyrosolvens. Biotechnol Lett 2024; 46:1143-1153. [PMID: 39162860 DOI: 10.1007/s10529-024-03522-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/26/2024] [Accepted: 08/03/2024] [Indexed: 08/21/2024]
Abstract
Ruminiclostridium papyrosolvens is an anaerobic, mesophilic, and cellulolytic clostridia, promising consolidated bioprocessing (CBP) candidate for producing renewable green chemicals from cellulose, but its genetic transformation has been severely impeded by extracellular biofilm. Here, we analyzed the effects of five different inhibitors with gradient concentrations on R. papyrosolvens growth and biofilm formation. Gallic acid was proved to be a potent inhibitor of biofilm synthesis of R. papyrosolvens. Furthermore, the transformation efficiency of R. papyrosolvens was significantly increased when the cells were treated by the gallic acid, and the mutant strain was successfully obtained by the improved transformation method. Thus, inhibition of biofilm formation of R. papyrosolvens by using gallic acid will contribute to its genetic transformation and efficient metabolic engineering.
Collapse
Affiliation(s)
- Duodong Wang
- School of Life Science, Shanxi University, Taiyuan, 030006, Shanxi, China
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, 311300, Zhejiang Province, China
| | - Na Liu
- School of Life Science, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Mingqiang Qiao
- School of Life Science, Shanxi University, Taiyuan, 030006, Shanxi, China.
| | - Chenggang Xu
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, 311300, Zhejiang Province, China.
| |
Collapse
|
28
|
Chen N, Li Y, Liang X, Qin K, Zhang Y, Wang J, Wu Q, Gupta TB, Ding Y. Bacterial extracellular vesicle: A non-negligible component in biofilm life cycle and challenges in biofilm treatments. Biofilm 2024; 8:100216. [PMID: 39184814 PMCID: PMC11341940 DOI: 10.1016/j.bioflm.2024.100216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/27/2024] Open
Abstract
Bacterial biofilms, especially those formed by pathogens, have been increasingly impacting human health. Bacterial extracellular vesicle (bEV), a kind of spherical membranous structure released by bacteria, has not only been reported to be a component of the biofilm matrix but also plays a non-negligible role in the biofilm life cycle. Nevertheless, a comprehensive overview of the bEVs functions in biofilms remains elusive. In this review, we summarize the biogenesis and distinctive features characterizing bEVs, and consolidate the current literature on their functions and proposed mechanisms in the biofilm life cycle. Furthermore, we emphasize the formidable challenges associated with vesicle interference in biofilm treatments. The primary objective of this review is to raise awareness regarding the functions of bEVs in the biofilm life cycle and lay the groundwork for the development of novel therapeutic strategies to control or even eliminate bacterial biofilms.
Collapse
Affiliation(s)
- Nuo Chen
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Yangfu Li
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Xinmin Liang
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Keyuan Qin
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Ying Zhang
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Qingping Wu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Tanushree B. Gupta
- Food System Integrity Team, AgResearch Ltd., Hopkirk Research Institute, Massey University, Palmerston North, 4474, New Zealand
| | - Yu Ding
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
29
|
Chen YY, Liu ZS, Chen BY, Tam HMH, Shia WY, Yu HH, Chen PW. Effects of Heat-Killed Probiotic Strains on Biofilm Formation, Transcription of Virulence-Associated Genes, and Prevention of UTIs in Mice. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10399-w. [PMID: 39579303 DOI: 10.1007/s12602-024-10399-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2024] [Indexed: 11/25/2024]
Abstract
Urinary tract infections (UTIs) pose a substantial healthcare challenge, exacerbated by the biofilm-forming abilities and antibiotic resistance of uropathogens. This study investigated the inhibition of biofilm formation (anti-biofilm) and dispersion of pre-established biofilm properties of 18 heat-killed probiotics and their supernatants against four antibiotic-resistant uropathogens: UPEC, Klebsiella pneumoniae (KP), Methicillin-resistant Escherichia coli (MREC), and Methicillin-resistant Staphylococcus pseudintermedius (MRSP). Supernatants from 14 probiotic strains significantly (P < 0.001) inhibited UPEC biofilm formation, reducing it by 20-80%, and also showed promise in removing existing biofilms by 10-60% (P < 0.001). Eight strains significantly (P < 0.05 to < 0.001) inhibited MREC biofilm formation, with four strains achieving 50-80% dispersion. Seventeen strains of heat-killed probiotics directly inhibited UPEC biofilm formation by 10-60% (P < 0.05 to < 0.001), but were less effective against MREC and MRSP (10-50% reduction; P < 0.05 to < 0.001) and had limited impact on KP (10% reduction; P < 0.05 to < 0.001). Notably, heat-killed probiotic like LGA, LGC, LGD, TP-8, and TP-4 showed the most significant inhibitory and dispersion of biofilm activity. RT-qPCR analysis further revealed these inactivated probiotics downregulated genes associated with pili and biofilm formation (fimA, csgA) and upregulated genes linked to quorum sensing (luxS, qseBC, sdiA). Therefore, these findings suggest that paraprobiotic treatment could inhibit the formation of pili and biofilms and promote biofilm dispersion. In an animal model, mice given paraprobiotic formulations I (16 strains) and II (a specific mixture) for 2 weeks showed reduced urinary bacterial load (P < 0.05). Paraprobiotic I notably reduced morbidity from bacteriuria (> 105 CFU/ml) by 5 to 30% within the first 5 days post-infection compared to placebo. These findings highlight the potential of specific heat-killed probiotics in combating biofilms and preventing UTIs.
Collapse
Affiliation(s)
- Yueh-Ying Chen
- Medical Department of Pathology and Laboratory, Yuanshan Branch, Taipei Veterans General Hospital, Yilan, Taiwan
| | - Zhen-Shu Liu
- Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi, 61363, Taiwan
- Center for Sustainability and Energy Technologies, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Bo-Yuan Chen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, No.145 Xingda Rd., South Dist., Taichung, 40227, Taiwan
| | - Hon-Man-Herman Tam
- Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, No.145 Xingda Rd., South Dist., Taichung, 40227, Taiwan
| | - Wei-Yau Shia
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, No.145 Xingda Rd., South Dist., Taichung, 40227, Taiwan
| | - Hsin-Hsuan Yu
- Medical Department of Pathology and Laboratory, Yuanshan Branch, Taipei Veterans General Hospital, Yilan, Taiwan
| | - Po-Wen Chen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, No.145 Xingda Rd., South Dist., Taichung, 40227, Taiwan.
| |
Collapse
|
30
|
Wang Z, Wu Y, Liu M, Chen L, Xiao K, Huang Z, Zhao Y, Wang H, Ding Y, Lin X, Zeng J, Peng F, Zhang J, Wang J, Wu Q. The Gene Cluster Cj0423- Cj0425 Negatively Regulates Biofilm Formation in Campylobacter jejuni. Int J Mol Sci 2024; 25:12116. [PMID: 39596184 PMCID: PMC11595200 DOI: 10.3390/ijms252212116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/02/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024] Open
Abstract
Campylobacter jejuni (C. jejuni) is a zoonotic foodborne pathogen that is widely distributed worldwide. Its optimal growth environment is microaerophilic conditions (5% O2, 10% CO2), but it can spread widely in the atmospheric environment. Biofilms are thought to play an important role in this process. However, there are currently relatively few research works on the regulatory mechanisms of C. jejuni biofilm formation. In this study, a pan-genome analysis, combined with the analysis of biofilm phenotypic information, revealed that the gene cluster Cj0423-Cj0425 is associated with the negative regulation of biofilm formation in C. jejuni. Through gene knockout experiments, it was observed that the Cj0423-Cj0425 mutant strain significantly increased biofilm formation and enhanced flagella formation. Furthermore, pull-down assay revealed that Cj0424 interacts with 93 proteins involved in pathways such as fatty acid synthesis and amino acid metabolism, and it also contains the quorum sensing-related gene luxS. This suggests that Cj0423-Cj0425 affects fatty acid synthesis and amino acid metabolism, influencing quorum sensing and strain motility, ultimately inhibiting biofilm formation.
Collapse
Affiliation(s)
- Zhi Wang
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510641, China; (Z.W.); (M.L.)
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (Y.W.); (L.C.); (K.X.); (Y.Z.); (H.W.); (X.L.); (J.Z.); (F.P.); (J.Z.)
| | - Yuwei Wu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (Y.W.); (L.C.); (K.X.); (Y.Z.); (H.W.); (X.L.); (J.Z.); (F.P.); (J.Z.)
| | - Ming Liu
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510641, China; (Z.W.); (M.L.)
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (Y.W.); (L.C.); (K.X.); (Y.Z.); (H.W.); (X.L.); (J.Z.); (F.P.); (J.Z.)
| | - Ling Chen
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (Y.W.); (L.C.); (K.X.); (Y.Z.); (H.W.); (X.L.); (J.Z.); (F.P.); (J.Z.)
| | - Kaishan Xiao
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (Y.W.); (L.C.); (K.X.); (Y.Z.); (H.W.); (X.L.); (J.Z.); (F.P.); (J.Z.)
- College of Food Science, South China Agricultural University, Guangzhou 510432, China
| | - Zhenying Huang
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (Y.W.); (L.C.); (K.X.); (Y.Z.); (H.W.); (X.L.); (J.Z.); (F.P.); (J.Z.)
- College of Food Science, South China Agricultural University, Guangzhou 510432, China
| | - Yibing Zhao
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (Y.W.); (L.C.); (K.X.); (Y.Z.); (H.W.); (X.L.); (J.Z.); (F.P.); (J.Z.)
- College of Food Science, South China Agricultural University, Guangzhou 510432, China
| | - Huixian Wang
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (Y.W.); (L.C.); (K.X.); (Y.Z.); (H.W.); (X.L.); (J.Z.); (F.P.); (J.Z.)
| | - Yu Ding
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China;
| | - Xiuhua Lin
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (Y.W.); (L.C.); (K.X.); (Y.Z.); (H.W.); (X.L.); (J.Z.); (F.P.); (J.Z.)
| | - Jiahui Zeng
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (Y.W.); (L.C.); (K.X.); (Y.Z.); (H.W.); (X.L.); (J.Z.); (F.P.); (J.Z.)
| | - Feiting Peng
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (Y.W.); (L.C.); (K.X.); (Y.Z.); (H.W.); (X.L.); (J.Z.); (F.P.); (J.Z.)
| | - Jumei Zhang
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (Y.W.); (L.C.); (K.X.); (Y.Z.); (H.W.); (X.L.); (J.Z.); (F.P.); (J.Z.)
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou 510432, China
| | - Qingping Wu
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510641, China; (Z.W.); (M.L.)
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (Y.W.); (L.C.); (K.X.); (Y.Z.); (H.W.); (X.L.); (J.Z.); (F.P.); (J.Z.)
| |
Collapse
|
31
|
Zhang L, Zhang Y, Tian L, Shen Q, Ma X. Doxifluridine effectively kills antibiotic-resistant Staphylococcus aureus in chronic obstructive pulmonary disease. Microbiol Spectr 2024; 12:e0180524. [PMID: 39530670 PMCID: PMC11619241 DOI: 10.1128/spectrum.01805-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/17/2024] [Indexed: 11/16/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a leading cause of morbidity and mortality globally, often exacerbated by infections such as methicillin-resistant Staphylococcus aureus (MRSA). The rise in antibiotic-resistant strains complicates treatment and underscores the need for novel therapeutic drugs. In this paper, we further investigated the antimicrobial potential of a fluoropyrimidine anticancer drug doxifluridine against multidrug-resistant S. aureus. Determination of minimum inhibitory concentration (MIC) or minimum bactericidal concentration (MBC), monitoring of growth curve, time-kill assays, biofilm bactericidal assays, and chequerboard studies were conducted to evaluate the antibacterial efficacy of doxifluridine. Safety was assessed via hemolysis and cytotoxicity assays, and an in vivo Galleria mellonella larvae model was employed to test protective effects. Doxifluridine demonstrated significant antibacterial activity against clinical multidrug resistance (MDR) S. aureus isolates, with MIC and MBC values ranging from 0.5 to 2 µg/mL and 1 to 4 µg/mL, respectively. The results revealed doxifluridine's potent bactericidal effects within 8 hours. Moreover, doxifluridine-treated bacteria showed a substantial reduction in biofilm mass and viability. Furthermore, chequerboard assays indicated synergistic interactions between doxifluridine and other antibiotics, reducing MIC values by two- to eightfold. More importantly, safety evaluations confirmed that doxifluridine did not exhibit hemolytic toxicity or cytotoxicity. Finally, doxifluridine significantly increased the survival rate of MRSA-infected G. mellonella larvae in vivo. In brief, doxifluridine exhibited promising in vitro and in vivo antibacterial activity against MRSA, suggesting its potential as a repurposed drug for treating resistant bacterial infections in COPD patients.IMPORTANCEThe study provides robust evidence for the antibacterial efficacy of doxifluridine against Methicillin-resistant Staphylococcus aureus in chronic obstructive pulmonary disease (COPD) patients. Its rapid action, ability to disrupt biofilms, and synergistic effects with other antibiotics, combined with a favorable safety profile, highlight its potential as a repurposed therapeutic agent. Future clinical trials will be essential to confirm these findings and pave the way for its integration into clinical practice. This work not only provides candidate for tackling the management of bacterial infections in COPD but also exemplifies the potential of drug repurposing in combating antibiotic-resistant infections.
Collapse
Affiliation(s)
- Lianshen Zhang
- Respiratory and Critical Care Medicine Department, Tongxiang Second People’s Hospital, Tongxiang, Zhejiang, China
| | - Yingzhang Zhang
- Respiratory and Critical Care Medicine Department, Tongxiang Second People’s Hospital, Tongxiang, Zhejiang, China
| | - Lijie Tian
- General Clinic, Chongfu Town Community Health Service Center, Tongxiang, Zhejiang, China
| | - Qiang Shen
- Respiratory and Critical Care Medicine Department, Tongxiang Second People’s Hospital, Tongxiang, Zhejiang, China
| | - Xiaolong Ma
- Department of Respiratory, The Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| |
Collapse
|
32
|
Zulfiqar M, Singh V, Steinbeck C, Sorokina M. Review on computer-assisted biosynthetic capacities elucidation to assess metabolic interactions and communication within microbial communities. Crit Rev Microbiol 2024; 50:1053-1092. [PMID: 38270170 DOI: 10.1080/1040841x.2024.2306465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 11/17/2023] [Accepted: 01/12/2024] [Indexed: 01/26/2024]
Abstract
Microbial communities thrive through interactions and communication, which are challenging to study as most microorganisms are not cultivable. To address this challenge, researchers focus on the extracellular space where communication events occur. Exometabolomics and interactome analysis provide insights into the molecules involved in communication and the dynamics of their interactions. Advances in sequencing technologies and computational methods enable the reconstruction of taxonomic and functional profiles of microbial communities using high-throughput multi-omics data. Network-based approaches, including community flux balance analysis, aim to model molecular interactions within and between communities. Despite these advances, challenges remain in computer-assisted biosynthetic capacities elucidation, requiring continued innovation and collaboration among diverse scientists. This review provides insights into the current state and future directions of computer-assisted biosynthetic capacities elucidation in studying microbial communities.
Collapse
Affiliation(s)
- Mahnoor Zulfiqar
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | - Vinay Singh
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University, Jena, Germany
| | - Christoph Steinbeck
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | - Maria Sorokina
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University, Jena, Germany
- Data Science and Artificial Intelligence, Research and Development, Pharmaceuticals, Bayer, Berlin, Germany
| |
Collapse
|
33
|
Zhang B, Hu X, Zhao D, Wang Y, Qu J, Tao Y, Kang Z, Yu H, Zhang J, Zhang Y. Harnessing microbial biofilms in soil ecosystems: Enhancing nutrient cycling, stress resilience, and sustainable agriculture. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122973. [PMID: 39437688 DOI: 10.1016/j.jenvman.2024.122973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/03/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
Soil ecosystems are complex networks of microorganisms that play pivotal roles in nutrient cycling, stress resilience, and the provision of ecosystem services. Among these microbial communities, soil biofilms, and complex aggregations of microorganisms embedded within extracellular polymeric substances (EPS) exert significant influence on soil health and function. This review delves into the dynamics of soil biofilms, highlighting their structural intricacies and the mechanisms by which they facilitate nutrient cycling, and discusses how biofilms enhance the degradation of pollutants through the action of extracellular enzymes and horizontal gene transfer, contributing to soil detoxification and fertility. Furthermore, the role of soil biofilms in stress resilience is underscored, as they form symbiotic relationships with plants, bolstering their growth and resistance to environmental stressors. The review also explores the ecological functions of biofilms in enhancing soil structure stability by promoting aggregate formation, which is crucial for water retention and aeration. By integrating these insights, we aim to provide a comprehensive understanding of the multifaceted benefits of biofilms in soil ecosystems. This knowledge is essential for developing strategies to manipulate soil biofilms to improve agricultural productivity and ecological sustainability. This review also identifies research gaps and emphasizes the need for practical applications of biofilms in sustainable agriculture.
Collapse
Affiliation(s)
- Bo Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xiaoying Hu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Donglin Zhao
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yuping Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Zhonghui Kang
- Longjiang Environmental Protection Group Co.,Ltd., Harbin, 150050, PR China
| | - Hongqi Yu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jingyi Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
34
|
Straub J, Baertl S, Verheul M, Walter N, Wong RMY, Alt V, Rupp M. Antimicrobial resistance: Biofilms, small colony variants, and intracellular bacteria. Injury 2024; 55 Suppl 6:111638. [PMID: 39482024 DOI: 10.1016/j.injury.2024.111638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 11/03/2024]
Abstract
Soft tissue and bone infections continue to be a serious complication in orthopedic and trauma surgery. Both can lead to a high burden for the patients and the healthcare system. Musculoskeletal infections can be induced by intraoperative contamination, bacterial contamination of open wounds or hematogenous bacterial spread. During the recent decades, advances were achieved in the understanding of pathogenesis and antibiotic resistance. Despite some progress in the diagnosis and advancing of therapeutic concepts, groundbreaking successful improvement of treatment concepts is still missing. Current therapy concepts are based on the two pillars consisting of surgical debridement with joint or bone reconstruction as well as prolonged antibiotic therapy. An improved understanding of both host and pathogen-related factors leading to treatment failure is essential in musculoskeletal infections. Therefore, this review aims to give an overview of pathogen-related pathophysiology in musculoskeletal infections. It describes defense strategies of pathogens such as (1) biofilm, its development, characteristics, and treatment options. In addition, (2) characteristics of small colony variants and (3) intracellular bacteria are highlighted. Lastly (4) an outlook for potential and promising future therapeutic strategies is provided.
Collapse
Affiliation(s)
- Josina Straub
- Department of Trauma Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Susanne Baertl
- Department of Trauma Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Marielle Verheul
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Nike Walter
- Department of Trauma Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Ronald Man Yeung Wong
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Volker Alt
- Department of Trauma Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Markus Rupp
- Department of Trauma Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany.
| |
Collapse
|
35
|
Liu X, Zou L, Li B, Di Martino P, Rittschof D, Yang JL, Maki J, Liu W, Gu JD. Chemical signaling in biofilm-mediated biofouling. Nat Chem Biol 2024; 20:1406-1419. [PMID: 39349970 DOI: 10.1038/s41589-024-01740-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 08/14/2024] [Indexed: 10/27/2024]
Abstract
Biofouling is the undesirable accumulation of living organisms and their metabolites on submerged surfaces. Biofouling begins with adhesion of biomacromolecules and/or microorganisms and can lead to the subsequent formation of biofilms that are predominantly regulated by chemical signals, such as cyclic dinucleotides and quorum-sensing molecules. Biofilms typically release chemical cues that recruit or repel other invertebrate larvae and algal spores. As such, harnessing the biochemical mechanisms involved is a promising avenue for controlling biofouling. Here, we discuss how chemical signaling affects biofilm formation and dispersion in model species. We also examine how this translates to marine biofouling. Both inductive and inhibitory effects of chemical cues from biofilms on macrofouling are also discussed. Finally, we outline promising mitigation strategies by targeting chemical signaling to foster biofilm dispersion or inhibit biofouling.
Collapse
Affiliation(s)
- Xiaobo Liu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China.
| | - Ling Zou
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Boqiao Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Patrick Di Martino
- Groupe Biofilm et Comportement Microbien aux Interfaces, Laboratoire ERRMECe, Cergy Paris Université, Cergy-Pontoise, France
| | - Daniel Rittschof
- Duke Marine Laboratory, Nicholas School of the Environment, Duke University, Beaufort, NC, USA
| | - Jin-Long Yang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - James Maki
- Department of Biological Sciences, Marquette University, Milwaukee, WI, USA
| | - Weijie Liu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China.
| | - Ji-Dong Gu
- Environmental Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou, China.
- Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion-Israel Institute of Technology, Shantou, China.
| |
Collapse
|
36
|
Lima EMF, Bueris V, Germano LG, Sircili MP, Pinto UM. Synergistic effect of the combination of phenolic compounds and tobramycin on the inhibition of Pseudomonas aeruginosa biofilm. Microb Pathog 2024; 197:107079. [PMID: 39454803 DOI: 10.1016/j.micpath.2024.107079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
Bacteria coordinate gene expression in a cell density-dependent manner using a communication process called quorum sensing (QS). The expression of virulence factors, biofilm formation and enzyme production are examples of QS-regulated phenotypes that can interfere with food quality and safety. Due to the importance of these phenotypes, the inhibition of bacterial communication as an anti-virulence strategy is of great interest. This work aimed to evaluate the effect of phenolic compounds on the inhibition of biofilm formation by Pseudomonas aeruginosa PAO1, using concentrations that do not interfere in bacterial growth. The synergistic effect of rosmarinic acid, baicalein, curcumin and resveratrol with tobramycin and between the phenolics themselves was evaluated. The tested combinations proved to be a good strategy for reducing the dose of antibiotics used in treatments and obtaining satisfactory results against P. aeruginosa biofilms. The combination of the four compounds at the highest concentration (500 μM) completely inhibited biofilm formation. The obtained results contribute to understanding the effect of phenolic compounds on QS inhibition, which may help to define the mechanism of inhibition, in addition to expanding the biotechnological potential of these compounds for future applications in the food, pharmaceutical and medical fields.
Collapse
Affiliation(s)
- Emília Maria França Lima
- Food Research Center (FoRC), Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Vanessa Bueris
- Microbiology Department, Institute of Biological Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | | | | | - Uelinton Manoel Pinto
- Food Research Center (FoRC), Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil.
| |
Collapse
|
37
|
Chen H, Zhang S, Wang H, Ma X, Wang M, Yu P, Shi B. Co-selective effect of dissolved organic matter and chlorine on the bacterial community and their antibiotic resistance in biofilm of drinking water distribution pipes. WATER RESEARCH 2024; 268:122664. [PMID: 39490093 DOI: 10.1016/j.watres.2024.122664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/04/2024] [Accepted: 10/17/2024] [Indexed: 11/05/2024]
Abstract
The proliferation of pathogenic bacteria and antibiotic resistance genes (ARGs) in the biofilm of drinking water distribution pipes poses a serious threat to human health. This work adopted 15 polyethylene (PE) pipes to study the co-selective effect of dissolved organic matter (DOM) and chlorine on the bacterial community and their antibiotic resistance in biofilm. The results indicated that ozone and granular activated carbon (O3-GAC) filtration effectively removed lignins and proteins from DOM, and chlorine disinfection eliminated carbohydrate and unsaturated hydrocarbons, which both contributed to the inhibition of bacterial growth and biofilm formation. After O3-GAC and disinfection treatment, Porphyrobacter, unclassified_d_bacteria, and Sphingopyxis dominated in the biofilm bacterial community. Correspondingly, the bacterial metabolism pathways, including the phosphotransferase system, phenylalanine, tyrosine and tryptophan biosynthesis, ABC transporters, and starch and sucrose metabolism, were downregulated significantly (p < 0.05), compared to the sand filtration treatment. Under such a situation, extracellular polymeric substances (EPS) secretion was inhibited in biofilm after O3-GAC and disinfection treatment, postponing the interaction between EPS protein and pipe surface, preventing bacteria, especially pathogens, from adhering to the pipe surface to form biofilm, and restraining the spread of ARGs. This study revealed the effects of various water filtration and disinfection processes on bacterial growth, metabolism, and biofilm formation on a molecular level, and validated that the O3-GAC filtration followed by chlorine disinfection is an effective and promising pathway to control the microbial risk of drinking water.
Collapse
Affiliation(s)
- Hui Chen
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuxin Zhang
- Department of Civil and Environmental Engineering, The George Washington University, Washington, DC 20052, USA
| | - Haibo Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xu Ma
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Min Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Pingfeng Yu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Baoyou Shi
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
38
|
Ragupathi H, Pushparaj MM, Gopi SM, Govindarajan DK, Kandaswamy K. Biofilm matrix: a multifaceted layer of biomolecules and a defensive barrier against antimicrobials. Arch Microbiol 2024; 206:432. [PMID: 39402397 DOI: 10.1007/s00203-024-04157-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/24/2024] [Accepted: 10/03/2024] [Indexed: 11/10/2024]
Abstract
Bacterial cells often exist in the form of sessile aggregates known as biofilms, which are polymicrobial in nature and can produce slimy Extracellular Polymeric Substances (EPS). EPS is often referred to as a biofilm matrix and is a heterogeneous mixture of various biomolecules such as polysaccharides, proteins, and extracellular DNA/RNA (eDNA/RNA). In addition, bacteriophage (phage) was also found to be an integral component of the matrix and can serve as a protective barrier. In recent years, the roles of proteins, polysaccharides, and phages in the virulence of biofilms have been well studied. However, a mechanistic understanding of the release of such biomolecules and their interactions with antimicrobials requires a thorough review. Therefore, this article critically reviews the various mechanisms of release of matrix polymers. In addition, this article also provides a contemporary understanding of interactions between various biomolecules to protect biofilms against antimicrobials. In summary, this article will provide a thorough understanding of the functions of various biofilm matrix molecules.
Collapse
Affiliation(s)
- Harini Ragupathi
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, Tamil Nadu, 641049, India
| | - Mahamahima Muthuswamy Pushparaj
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, Tamil Nadu, 641049, India
| | - Sarves Mani Gopi
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, Tamil Nadu, 641049, India
| | - Deenadayalan Karaiyagowder Govindarajan
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore, Singapore
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Drive, 637371, Singapore, Singapore
| | - Kumaravel Kandaswamy
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, Tamil Nadu, 641049, India.
| |
Collapse
|
39
|
Hindieh P, Yaghi J, Assaf JC, Chokr A, Atoui A, Louka N, Khoury AE. Unlocking the potential of lactic acid bacteria mature biofilm extracts as antibiofilm agents. AMB Express 2024; 14:112. [PMID: 39361085 PMCID: PMC11450114 DOI: 10.1186/s13568-024-01770-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/18/2024] [Indexed: 10/06/2024] Open
Abstract
The continuous growth of biofilm infections and their resilience to conventional cleaning methods and antimicrobial agents pose a worldwide challenge across diverse sectors. This persistent medical, industrial, and environmental issue contributes to treatment challenges and chronic diseases. Lactic acid bacteria have garnered global attention for their substantial antimicrobial effects against pathogens and established beneficial roles. Notably, their biofilms are also predicted to show a promising control strategy against pathogenic biofilm formation. The prevalence of biofilm-related problems underscores the need for extensive research and innovative solutions to tackle this global challenge. This novel study investigates the effect of different extracts (external, internal, and mixed extracts) obtained from Lactobacillus rhamnosus GG biofilm on pathogenic-formed biofilms. Subsequently, external extracts presented an important eradication effectiveness. Furthermore, a 6-fold concentration of these extracts led to eradication percentages of 57%, 67%, and 76% for Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa biofilms, respectively, and around 99.9% bactericidal effect of biofilm cells was observed for the three strains. The results of this research could mark a significant breakthrough in the field of anti-biofilm and antimicrobial strategies. Further studies and molecular research will be necessary to detect the molecules secreted by the biofilm, and their mechanisms of action engaged in new anti-biofilm strategies.
Collapse
Affiliation(s)
- Pamela Hindieh
- Centre d'Analyses et de Recherche (CAR), Unité de Recherche TVA, Laboratoire de mycologie et sécurité des aliments (LMSA), Faculté des Sciences, Université Saint-Joseph de Beyrouth, Campus des sciences et technologies, Mar Roukos, Matn, Lebanon
- Ecole Doctorale "Sciences et Santé", Université Saint-Joseph de Beyrouth, Campus des Sciences Médicales et Infirmières, Riad El Solh, Beirut, Lebanon
| | - Joseph Yaghi
- Centre d'Analyses et de Recherche (CAR), Unité de Recherche TVA, Laboratoire de mycologie et sécurité des aliments (LMSA), Faculté des Sciences, Université Saint-Joseph de Beyrouth, Campus des sciences et technologies, Mar Roukos, Matn, Lebanon
| | - Jean Claude Assaf
- Department of Chemical Engineering, Faculty of Engineering, University of Balamand, P.O. Box 100, Tripoli, 1300, Lebanon.
| | - Ali Chokr
- Research Laboratory of Microbiology (RLM), Department of Life and Earth Sciences, Faculty of Sciences I, Lebanese University, Hadat Campus, Beirut, Lebanon
- Platform of Research and Analysis in Environmental Sciences (PRASE), Doctoral School of Sciences and Technologies, Lebanese University, Hadat Campus, Beirut, Lebanon
| | - Ali Atoui
- Research Laboratory of Microbiology (RLM), Department of Life and Earth Sciences, Faculty of Sciences I, Lebanese University, Hadat Campus, Beirut, Lebanon
| | - Nicolas Louka
- Centre d'Analyses et de Recherche (CAR), Unité de Recherche TVA, Laboratoire de mycologie et sécurité des aliments (LMSA), Faculté des Sciences, Université Saint-Joseph de Beyrouth, Campus des sciences et technologies, Mar Roukos, Matn, Lebanon
| | - André El Khoury
- Centre d'Analyses et de Recherche (CAR), Unité de Recherche TVA, Laboratoire de mycologie et sécurité des aliments (LMSA), Faculté des Sciences, Université Saint-Joseph de Beyrouth, Campus des sciences et technologies, Mar Roukos, Matn, Lebanon
| |
Collapse
|
40
|
Corbella M, Bravo J, Demkiv AO, Calixto AR, Sompiyachoke K, Bergonzi C, Brownless ALR, Elias MH, Kamerlin SCL. Catalytic Redundancies and Conformational Plasticity Drives Selectivity and Promiscuity in Quorum Quenching Lactonases. JACS AU 2024; 4:3519-3536. [PMID: 39328773 PMCID: PMC11423328 DOI: 10.1021/jacsau.4c00404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/02/2024] [Accepted: 08/14/2024] [Indexed: 09/28/2024]
Abstract
Several enzymes from the metallo-β-lactamase-like family of lactonases (MLLs) degrade N-acyl L-homoserine lactones (AHLs). They play a role in a microbial communication system known as quorum sensing, which contributes to pathogenicity and biofilm formation. Designing quorum quenching (QQ) enzymes that can interfere with this communication allows them to be used in a range of industrial and biomedical applications. However, tailoring these enzymes for specific communication signals requires a thorough understanding of their mechanisms and the physicochemical properties that determine their substrate specificities. We present here a detailed biochemical, computational, and structural study of GcL, which is a highly proficient and thermostable MLL with broad substrate specificity. We show that GcL not only accepts a broad range of substrates but also hydrolyzes these substrates through at least two different mechanisms. Further, the preferred mechanism appears to depend on both the substrate structure and/or the nature of the residues lining the active site. We demonstrate that other lactonases, such as AiiA and AaL, show similar mechanistic promiscuity, suggesting that this is a shared feature among MLLs. Mechanistic promiscuity has been seen previously in the lactonase/paraoxonase PON1, as well as with protein tyrosine phosphatases that operate via a dual general acid mechanism. The apparent prevalence of this phenomenon is significant from both a biochemical and protein engineering perspective: in addition to optimizing for specific substrates, it may be possible to optimize for specific mechanisms, opening new doors not just for the design of novel quorum quenching enzymes but also of other mechanistically promiscuous enzymes.
Collapse
Affiliation(s)
- Marina Corbella
- Departament
de Química Inorgànica (Seeió de Química
Orgànica) & Institut de Química Teòrica i
Computacional (IQTCUB), Universitat de Barcelona, Martíi Franquès 1, 08028 Barcelona, Spain
- Department
of Chemistry − BMC, Uppsala University, BMC Box 576, S-751 23 Uppsala, Sweden
| | - Joe Bravo
- BioTechnology
Institute, University of Minnesota, Saint Paul, Minnesota 55108, United States
| | - Andrey O. Demkiv
- Department
of Chemistry − BMC, Uppsala University, BMC Box 576, S-751 23 Uppsala, Sweden
| | - Ana Rita Calixto
- Department
of Chemistry − BMC, Uppsala University, BMC Box 576, S-751 23 Uppsala, Sweden
- LAQV,
REQUIMTE, Departamento de Química e Bioquímica, Faculdade
de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Kitty Sompiyachoke
- Department
of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Saint
Paul, Minnesota 55108, United States
| | - Celine Bergonzi
- BioTechnology
Institute, University of Minnesota, Saint Paul, Minnesota 55108, United States
| | - Alfie-Louise R. Brownless
- School of
Chemistry and Biochemistry, Georgia Institute
of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| | - Mikael H. Elias
- BioTechnology
Institute, University of Minnesota, Saint Paul, Minnesota 55108, United States
- Department
of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Saint
Paul, Minnesota 55108, United States
| | - Shina Caroline Lynn Kamerlin
- Department
of Chemistry − BMC, Uppsala University, BMC Box 576, S-751 23 Uppsala, Sweden
- School of
Chemistry and Biochemistry, Georgia Institute
of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| |
Collapse
|
41
|
Rajkhowa S, Hussain SZ, Agarwal M, Zaheen A, Al-Hussain SA, Zaki MEA. Advancing Antibiotic-Resistant Microbe Combat: Nanocarrier-Based Systems in Combination Therapy Targeting Quorum Sensing. Pharmaceutics 2024; 16:1160. [PMID: 39339197 PMCID: PMC11434747 DOI: 10.3390/pharmaceutics16091160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
The increase in antibiotic-resistant bacteria presents a significant risk to worldwide public health, emphasizing the necessity of novel approaches to address infections. Quorum sensing, an essential method of communication among bacteria, controls activities like the formation of biofilms, the production of virulence factors, and the synthesis of secondary metabolites according to the number of individuals in the population. Quorum quenching, which interferes with these processes, emerges as a vital approach to diminish bacterial virulence and prevent biofilm formation. Nanocarriers, characterized by their small size, high surface-area-to-volume ratio, and modifiable surface chemistry, offer a versatile platform for the disruption of bacterial communication by targeting various stages within the quorum sensing pathway. These features allow nanocarriers to infiltrate biofilms, disrupt cell membranes, and inhibit bacterial proliferation, presenting a promising alternative to traditional antibiotics. Integrating nanocarrier-based systems into combination therapies provides a multi-pronged approach to infection control, enhancing both the efficacy and specificity of treatment regimens. Nonetheless, challenges related to the stability, safety, and clinical effectiveness of nanomaterial-based antimicrobial treatments remain. Continued research and development are essential to overcoming these obstacles and fully harnessing the potential of nano-antimicrobial therapies. This review emphasizes the importance of quorum sensing in bacterial behavior and highlights the transformative potential of nanotechnology in advancing antimicrobial treatments, offering innovative solutions to combat antibiotic-resistant pathogens.
Collapse
Affiliation(s)
- Sanchaita Rajkhowa
- Centre for Biotechnology and Bioinformatics, Dibrugarh University, Dibrugarh 786004, Assam, India; (S.Z.H.); (M.A.); (A.Z.)
| | - Safrina Zeenat Hussain
- Centre for Biotechnology and Bioinformatics, Dibrugarh University, Dibrugarh 786004, Assam, India; (S.Z.H.); (M.A.); (A.Z.)
| | - Manisha Agarwal
- Centre for Biotechnology and Bioinformatics, Dibrugarh University, Dibrugarh 786004, Assam, India; (S.Z.H.); (M.A.); (A.Z.)
| | - Alaiha Zaheen
- Centre for Biotechnology and Bioinformatics, Dibrugarh University, Dibrugarh 786004, Assam, India; (S.Z.H.); (M.A.); (A.Z.)
| | - Sami A. Al-Hussain
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia;
| | - Magdi E. A. Zaki
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia;
| |
Collapse
|
42
|
Wang X, Chen C, Hu J, Liu C, Ning Y, Lu F. Current strategies for monitoring and controlling bacterial biofilm formation on medical surfaces. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116709. [PMID: 39024943 DOI: 10.1016/j.ecoenv.2024.116709] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/03/2024] [Accepted: 07/07/2024] [Indexed: 07/20/2024]
Abstract
Biofilms, intricate microbial communities that attach to surfaces, especially medical devices, form an exopolysaccharide matrix, which enables bacteria to resist environmental pressures and conventional antimicrobial agents, leading to the emergence of multi-drug resistance. Biofilm-related infections associated with medical devices are a significant public health threat, compromising device performance. Therefore, developing effective methods for supervising and managing biofilm growth is imperative. This in-depth review presents a systematic overview of strategies for monitoring and controlling bacterial biofilms. We first outline the biofilm creation process and its regulatory mechanisms. The discussion then progresses to advancements in biosensors for biofilm detection and diverse treatment strategies. Lastly, this review examines the obstacles and new perspectives associated with this domain to facilitate the advancement of innovative monitoring and control solutions. These advancements are vital in combating the spread of multi drug-resistant bacteria and mitigating public health risks associated with infections from biofilm formation on medical instruments.
Collapse
Affiliation(s)
- Xiaoqi Wang
- Department of integrated traditional Chinese and Western Medicine, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan 410208, People's Republic of China
| | - Chunjing Chen
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan 410208, People's Republic of China
| | - Jue Hu
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan 410208, People's Republic of China
| | - Chang Liu
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan 410208, People's Republic of China
| | - Yi Ning
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan 410208, People's Republic of China.
| | - Fangguo Lu
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan 410208, People's Republic of China.
| |
Collapse
|
43
|
Wang J, Yang J, Durairaj P, Wang W, Wei D, Tang S, Liu H, Wang D, Jia AQ. Discovery of β-nitrostyrene derivatives as potential quorum sensing inhibitors for biofilm inhibition and antivirulence factor therapeutics against Serratia marcescens. MLIFE 2024; 3:445-458. [PMID: 39359676 PMCID: PMC11442132 DOI: 10.1002/mlf2.12135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/14/2024] [Accepted: 04/25/2024] [Indexed: 10/04/2024]
Abstract
Quorum sensing (QS) inhibition has emerged as a promising target for directed drug design, providing an appealing strategy for developing antimicrobials, particularly against infections caused by drug-resistant pathogens. In this study, we designed and synthesized a total of 33 β-nitrostyrene derivatives using 1-nitro-2-phenylethane (NPe) as the lead compound, to target the facultative anaerobic bacterial pathogen Serratia marcescens. The QS-inhibitory effects of these compounds were evaluated using S. marcescens NJ01 and the reporter strain Chromobacterium violaceum CV026. Among the 33 new β-nitrostyrene derivatives, (E)-1-methyl-4-(2-nitrovinyl)benzene (m-NPe, compound 28) was proven to be a potent inhibitor that reduced biofilm formation of S. marcescens NJ01 by 79%. Scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) results revealed that treatment with m-NPe (50 μg/ml) not only enhanced the susceptibility of the formed biofilms but also disrupted the architecture of biofilms by 84%. m-NPe (50 μg/ml) decreased virulence factors in S. marcescens NJ01, reducing the activity of protease, prodigiosin, and extracellular polysaccharide (EPS) by 36%, 72%, and 52%, respectively. In S. marcescens 4547, the activities of hemolysin and EPS were reduced by 28% and 40%, respectively, outperforming the positive control, vanillic acid (VAN). The study also found that the expression levels of QS- and biofilm-related genes (flhD, fimA, fimC, sodB, bsmB, pigA, pigC, and shlA) were downregulated by 1.21- to 2.32-fold. Molecular dynamics analysis showed that m-NPe could bind stably to SmaR, RhlI, RhlR, LasR, and CviR proteins in a 0.1 M sodium chloride solution. Importantly, a microscale thermophoresis (MST) test revealed that SmaR could be a target protein for the screening of a quorum sensing inhibitor (QSI) against S. marcescens. Overall, this study highlights the efficacy of m-NPe in suppressing the virulence factors of S. marcescens, identifying it as a new potential QSI and antibiofilm agent capable of restoring or improving antimicrobial drug sensitivity.
Collapse
Affiliation(s)
- Jiang Wang
- Hainan Affiliated Hospital of Hainan Medical University Hainan General Hospital Haikou China
- Center for Translational Research Shenzhen Bay Laboratory Shenzhen China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences Hainan University Haikou China
| | - Jingyi Yang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences Hainan University Haikou China
- Hainan Branch, Shanghai Children's Medical Center, School of Medicine Shanghai Jiao Tong University Sanya China
| | - Pradeepraj Durairaj
- Center for Translational Research Shenzhen Bay Laboratory Shenzhen China
- Present address: National High Magnetic Field Laboratory, FAMU-FSU College of Engineering Florida State University Tallahassee Florida USA
| | - Wei Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences Hainan University Haikou China
| | - Dongyan Wei
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences Hainan University Haikou China
| | - Shi Tang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences Hainan University Haikou China
| | - Haiqing Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences Hainan University Haikou China
| | - Dayong Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences Hainan University Haikou China
| | - Ai-Qun Jia
- Hainan Affiliated Hospital of Hainan Medical University Hainan General Hospital Haikou China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences Hainan University Haikou China
| |
Collapse
|
44
|
Rajabi A, Idrees M, Rahman A, Iyire A, Wyatt D, Koner J, Mohammed AR. Evaluating the role of amino acids and isothermal dry particle coating in modulating buccal permeation of large molecule drug vancomycin. Sci Rep 2024; 14:19678. [PMID: 39181891 PMCID: PMC11344821 DOI: 10.1038/s41598-024-69144-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/01/2024] [Indexed: 08/27/2024] Open
Abstract
The formulation and delivery of macromolecules through the oral route pose considerable challenges due to factors such as large molecular weight, pH sensitivity, and limited formulation approaches. This challenge is compounded if the drug is poorly permeable, necessitating innovative drug delivery strategies. Vancomycin, a widely prescribed glycopeptide antibiotic, has an oral bioavailability of less than 10%, leading to predominantly intravenous administration and potential patient discomfort. This study explores the potential of the buccal route as a non-invasive, highly vascularised alternative route of administration, offering a rapid onset of action while bypassing the first-pass metabolism. In this study, vancomycin was coated with L-glutamic acid using an isothermal dry particle coater to modulate permeation through the buccal cell line, TR146. Results confirm significant impact of both amino acid concentration and dry particle coating on the rate and extent of drug permeability. With the introduction of L-glutamic acid and utilisation of the isothermal dry particle coater, vancomycin's permeation profile increased six-fold compared to the control due to the formation of drug ion-pair complex. Imaging studies showed the presence of layered micronized glutamic acid particles on the surface of dry coated vancomycin particles which confirms the role of dry coating and amino acid concentration in modulating drug permeation. Microbiology experiments in Staphylococcus aureus, minimum inhibitory concentration and biofilm disruption studies, provided confirmatory evidence of antimicrobial activity of dry coated glutamic acid-vancomycin ion pair particulate structure. This study demonstrates, for the first-time, buccal delivery of dry coated large molecule drug, vancomycin, through controlled deposition of amino acid using innovative particle coating strategy.
Collapse
Affiliation(s)
- Anthony Rajabi
- Aston Pharmacy School, College of Health and Life Sciences, Aston University, Birmingham, B4 7ET, UK
| | - Muhammed Idrees
- Aston Pharmacy School, College of Health and Life Sciences, Aston University, Birmingham, B4 7ET, UK
| | - Ayesha Rahman
- School of Healthcare, University of Leicester, Leicester, UK
- Dentistry, School of Health Sciences, College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - Affiong Iyire
- Aston Pharmacy School, College of Health and Life Sciences, Aston University, Birmingham, B4 7ET, UK
| | - David Wyatt
- Aston Particle Technologies Ltd, Birmingham, UK
| | | | - Afzal R Mohammed
- Aston Pharmacy School, College of Health and Life Sciences, Aston University, Birmingham, B4 7ET, UK.
| |
Collapse
|
45
|
Nishikawa J, Fujii T, Fukuda S, Yoneda S, Tamura Y, Shimizu Y, Yanai A, Kobayashi Y, Harada K, Kawasaki K, Mishima K, Watanabe K, Mizukami Y, Yoshiyama H, Suehiro Y, Yamasaki T, Takami T. Far-ultraviolet irradiation at 222 nm destroys and sterilizes the biofilms formed by periodontitis pathogens. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2024; 57:533-545. [PMID: 38825404 DOI: 10.1016/j.jmii.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 01/28/2024] [Accepted: 05/19/2024] [Indexed: 06/04/2024]
Abstract
BACKGROUND Periodontal disease is the leading cause of tooth loss, and an association between periodontal disease and non-oral systemic diseases has been shown. Formation of biofilm by periodontal pathogens such as Fusobacterium nucleatum, Porphyromonas gingivalis, and Streptococcus mutans and their resistance to antimicrobial agents are at the root of persistent and chronic bacterial infections. METHODS The bactericidal effect of far-ultraviolet (F-UV) light irradiation at 222 nm on periodontal bacteria was assessed qualitatively and quantitatively. The effect of biofilm disruption by F-UV light on periodontal bacteria was examined by crystal violet staining, and the morphologic changes of the biofilm after F-UV irradiation were explored by confocal laser microscopy and scanning electron microscopy. We developed a thin fiber-type 222 nm F-UV irradiator and studied its safety and effect of reducing bacteria in rodent models. RESULTS F-UV light at 222 nm had a bactericidal effect on F. nucleatum, P. gingivalis, and S. mutans. Irradiation with F-UV light reduced the biofilm formed by the bacteria and sterilized them from within. Confocal laser microscopy showed a clear reduction in biofilm thickness, and scanning electron microscopy confirmed disintegration of the biofilm architecture. F-UV irradiation was less damaging to DNA and less cytotoxic than deep-ultraviolet light, and it reduced bacterial counts on the tooth surface. CONCLUSION F-UV irradiation has the potential to destroy biofilm and act as a bactericide against pathogenic bacteria in the biofilm.
Collapse
Affiliation(s)
- Jun Nishikawa
- Faculty of Laboratory Science, Yamaguchi University Graduate School of Medicine, Ube, Japan.
| | - Tomohiro Fujii
- Faculty of Laboratory Science, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Soichiro Fukuda
- Faculty of Laboratory Science, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Shoma Yoneda
- Faculty of Laboratory Science, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Yuta Tamura
- Faculty of Laboratory Science, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Yuki Shimizu
- Faculty of Laboratory Science, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Akie Yanai
- Faculty of Laboratory Science, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Yuki Kobayashi
- Faculty of Laboratory Science, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Koji Harada
- Department of Oral and Maxillofacial Surgery, Yamaguchi University Graduate School of Medicin, Ube, Japan
| | - Keisuke Kawasaki
- Department of Oral and Maxillofacial Surgery, Yamaguchi University Graduate School of Medicin, Ube, Japan
| | - Katsuaki Mishima
- Department of Oral and Maxillofacial Surgery, Yamaguchi University Graduate School of Medicin, Ube, Japan
| | - Kenji Watanabe
- Center for Gene Research, Yamaguchi University, Ube, Japan
| | | | - Hironori Yoshiyama
- Department of Microbiology, Shimane University School of Medicine, Izumo, Japan
| | - Yutaka Suehiro
- Department of Oncology and Laboratory Medicine, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Takahiro Yamasaki
- Department of Oncology and Laboratory Medicine, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Taro Takami
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| |
Collapse
|
46
|
Roscetto E, Di Gennaro D, Ascione T, Galdiero U, Aversa M, Festa E, Catania MR, Balato G. Antiseptics' Concentration, Combination, and Exposure Time on Bacterial and Fungal Biofilm Eradication. Arthroplast Today 2024; 28:101468. [PMID: 39139360 PMCID: PMC11320471 DOI: 10.1016/j.artd.2024.101468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/20/2024] [Accepted: 06/10/2024] [Indexed: 08/15/2024] Open
Abstract
Background This study aims to assess the activity of solutions containing povidone-iodine (PI) and hydrogen peroxide (H2O2) alone or combined on the biofilm of microbial species in the contest of periprosthetic joint infection (PJI). Methods Different antiseptic solutions were tested on 2-day-old biofilms of Gram-positive and Gram-negative bacteria and fungi at 1 and 3 minutes of exposure. The efficacy of these solutions was evaluated by measuring the biofilm metabolic activity by methoxynitrosulfophenyl-tetrazolium carboxanilide (XTT) reduction assay. The anti-biofilm effect of 5% PI and 0.3% PI + 0.5% H2O2 was tested on a 5-day-old biofilm using colony-forming unit counts and an XTT reduction assay. Results PI and H2O2 solutions showed concentration-dependent anti-biofilm activity except for E. faecalis. PI at 5% was the most active solution against the 2-day-old biofilm of all test microorganisms. The 0.3% PI + 0.5% H₂O₂ solution had a significant effect only at 3 minutes. The 5% PI and 0.3% PI + 0.5% H₂O₂ effect was evaluated on 5-day-old biofilms. PI at 5% produced a significant reduction in metabolic activity at both 1 and 3 minutes; 0.3% PI + 0.5% H₂O₂ caused a significant activity against all Gram-positive strains after 3 minutes, with a greater metabolic activity reduction than 5% PI. Conclusions In the case of PJI caused by Gram-positive bacteria, 0.3% PI + 0.5% H₂O₂ could be used for wound irrigation for 3 minutes of exposure. In the case of PJI with a different etiological agent or PJI with an unknown etiology, it is advisable to use 5% PI for 1 minute of exposure.
Collapse
Affiliation(s)
- Emanuela Roscetto
- Department Molecular Medicine and Medical Biotechnology, “Federico II” University, Naples, Italy
| | - Donato Di Gennaro
- Section of Orthopaedic Surgery, Department of Public Health, “Federico II” University, Naples, Italy
| | - Tiziana Ascione
- Department of Medicine, Service of Infectious Disease, Cardarelli Hospital Naples, Naples, Italy
| | - Umberto Galdiero
- Department Molecular Medicine and Medical Biotechnology, “Federico II” University, Naples, Italy
| | - Martina Aversa
- Department Molecular Medicine and Medical Biotechnology, “Federico II” University, Naples, Italy
| | - Enrico Festa
- Section of Orthopaedic Surgery, Department of Public Health, “Federico II” University, Naples, Italy
| | - Maria Rosaria Catania
- Department Molecular Medicine and Medical Biotechnology, “Federico II” University, Naples, Italy
| | - Giovanni Balato
- Section of Orthopaedic Surgery, Department of Public Health, “Federico II” University, Naples, Italy
| |
Collapse
|
47
|
Wang J, Yang JY, Durairaj P, Wen WH, Sabapathi N, Yang L, Wang B, Jia AQ. Discovery and evaluation of 3-(2-isocyanobenzyl)-1 H-indole derivatives as potential quorum sensing inhibitors for the control of Pseudomonas aeruginosa infections in vitro. RSC Med Chem 2024; 15:d4md00354c. [PMID: 39185452 PMCID: PMC11342129 DOI: 10.1039/d4md00354c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/17/2024] [Indexed: 08/27/2024] Open
Abstract
Quorum sensing (QS) inhibition stands out as an innovative therapeutic strategy for combating infections caused by drug-resistant pathogens. In this study, we assessed the potential of 3-(2-isocyanobenzyl)-1H-indole derivatives as novel quorum sensing inhibitors (QSIs). Initial screenings of their QS inhibitory activities were conducted against Pseudomonas aeruginosa PAO1 and Chromobacterium violaceum CV026. Notably, six 3-(2-isocyanobenzyl)-1H-indole derivatives (4, 12, 25, 28, 32, and 33) exhibited promising QS, biofilms, and pyocyanin inhibitory activities under minimum inhibitory concentrations (MICs) against P. aeruginosa PAO1. Among them, 3-(2-isocyano-6-methylbenzyl)-1H-indole (IMBI, 32) emerged as the most promising candidate, demonstrating superior biofilm and pyocyanin inhibition. Further comprehensive studies revealed that derivative 32 at 25 μg mL-1 inhibited biofilm formation by 70% against P. aeruginosa PAO1, as confirmed by scanning electron microscopy (SEM). Additionally, derivative 32 substantially increased the susceptibility of mature biofilms, leading to a 57% destruction of biofilm architecture. In terms of interfering with virulence factors in P. aeruginosa PAO1, derivative 32 (25 μg mL-1) displayed remarkable inhibitory effects on pyocyanin, protease, and extracellular polysaccharides (EPS) by 73%, 51%, and 37%, respectively, exceeding the positive control resveratrol (RSV). Derivative 32 at 25 μg mL-1 also exhibited effective inhibition of swimming and swarming motilities. Moreover, it downregulated the expressions of QS-related genes, including lasI, lasR, rhlI, rhlR, pqsR, sdhB, sucD, sodB, and PA5439, by 1.82- to 10.87-fold. Molecular docking, molecular dynamics simulations (MD), and energy calculations further supported the stable binding of 32 to LasR, RhlI, RhlR, EsaL, and PqsR antagonizing the expression of QS-linked traits. Evaluation of the toxicity of derivative 32 on HEK293T cells via CCK-8 assay demonstrated low cytotoxicity. Overall, this study underscores the efficacy of derivative 32 in inhibiting virulence factors in P. aeruginosa. Derivative 32 emerges as a potential QSI for controlling P. aeruginosa PAO1 infections in vitro and an anti-biofilm agent for restoring or enhancing drug sensitivity in drug-resistant pathogens.
Collapse
Affiliation(s)
- Jiang Wang
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University Haikou 570311 China +86 898 68622476
| | - Jing-Yi Yang
- Hainan Branch, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University Sanya 572022 China
| | - Pradeepraj Durairaj
- Center for Translational Research, Shenzhen Bay Laboratory Shenzhen 518132 China
- FAMU-FSU College of Engineering, National High Magnetic Field Laboratory, Florida State University Tallahassee Florida 32310 USA
| | - Wei-Huan Wen
- Center for Translational Research, Shenzhen Bay Laboratory Shenzhen 518132 China
| | - Nadana Sabapathi
- Center for Translational Research, Shenzhen Bay Laboratory Shenzhen 518132 China
| | - Liang Yang
- School of Medicine, Southern University of Science and Technology Shenzhen 518055 China
| | - Bo Wang
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University Haikou 570311 China +86 898 68622476
| | - Ai-Qun Jia
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University Haikou 570311 China +86 898 68622476
| |
Collapse
|
48
|
Aguilar-Vázquez R, Romero-Montero A, Del Prado-Audelo ML, Cariño-Calvo L, González-Del Carmen M, Vizcaíno-Dorado PA, Caballero-Florán IH, Peña-Corona SI, Chávez-Corona JI, Bernad-Bernad MJ, Magaña JJ, Cortés H, Leyva-Gómez G. Biopolymeric Insulin Membranes for Antimicrobial, Antioxidant, and Wound Healing Applications. Pharmaceutics 2024; 16:1012. [PMID: 39204356 PMCID: PMC11360745 DOI: 10.3390/pharmaceutics16081012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/12/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Delayed wound healing increases the wound's vulnerability to possible infections, which may have lethal outcomes. The treatments available can be effective, but the urgency is not fully encompassed. The drug repositioning strategy proposes effective alternatives for enhancing medical therapies for chronic diseases. Likewise, applying wound dressings as biodegradable membranes is extremely attractive due to their ease of application, therapeutic effectiveness, and feasibility in industrial manufacturing. This article aims to demonstrate the pleiotropic effects during insulin repositioning in wound closure by employing a biopolymeric membrane-type formulation with insulin. We prepared biopolymeric membranes with sodium alginate cross-linked with calcium chloride, supported in a mixture of xanthan gum and guar gum, and plasticized with glycerol and sorbitol. Human insulin was combined with poloxamer 188 as a protein stabilizing agent. Our investigation encompassed physicochemical and mechanical characterization, antioxidant and biological activity through antibacterial tests, cell viability assessments, and scratch assays as an in vitro and in vivo wound model. We demonstrated that our biopolymeric insulin membranes exhibited adequate manipulation and suitable mechanical resistance, transparency, high swelling capability (1100%), and 30% antioxidant activity. Furthermore, they exhibited antibacterial activity (growth inhibition of S. aureus at 85% and P. aeruginosa at 75%, respectively), and insulin promoted wound closure in vitro with a 5.5-fold increase and 72% closure at 24 h. Also, insulin promoted in vivo wound closure with a 3.2-fold increase and 92% closure at 10 days compared with the groups without insulin, and this is the first report that demonstrates this therapeutic effect with two administrations of 0.7 IU. In conclusion, we developed a multifunctional insulin-loaded biopolymeric membrane in this study, with the main activity derived from insulin's role in wound closure and antioxidant activity, augmented by the antimicrobial effect attributed to the polymer poloxamer 188. The synergistic combination of excipients enhances its usefulness and highlights our innovation as a promising material in wound healing materials.
Collapse
Affiliation(s)
- Rocío Aguilar-Vázquez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (R.A.-V.); (A.R.-M.); (S.I.P.-C.); (J.I.C.-C.); (M.J.B.-B.)
| | - Alejandra Romero-Montero
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (R.A.-V.); (A.R.-M.); (S.I.P.-C.); (J.I.C.-C.); (M.J.B.-B.)
| | - María L. Del Prado-Audelo
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Campus Ciudad de Mexico, Ciudad de Mexico 14380, Mexico; (M.L.D.P.-A.); (I.H.C.-F.); (J.J.M.)
| | | | | | - Pablo Adrián Vizcaíno-Dorado
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico; (P.A.V.-D.); (H.C.)
| | - Isaac Hiram Caballero-Florán
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Campus Ciudad de Mexico, Ciudad de Mexico 14380, Mexico; (M.L.D.P.-A.); (I.H.C.-F.); (J.J.M.)
| | - Sheila Iraís Peña-Corona
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (R.A.-V.); (A.R.-M.); (S.I.P.-C.); (J.I.C.-C.); (M.J.B.-B.)
| | - Juan Isaac Chávez-Corona
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (R.A.-V.); (A.R.-M.); (S.I.P.-C.); (J.I.C.-C.); (M.J.B.-B.)
- Laboratorio de Investigación y Posgrado en Tecnología Farmacéutica, Universidad Nacional Autónoma de México-FESC, Campus 1, Cuautitlán Izcalli 54714, Mexico
| | - María Josefa Bernad-Bernad
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (R.A.-V.); (A.R.-M.); (S.I.P.-C.); (J.I.C.-C.); (M.J.B.-B.)
| | - Jonathan J. Magaña
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Campus Ciudad de Mexico, Ciudad de Mexico 14380, Mexico; (M.L.D.P.-A.); (I.H.C.-F.); (J.J.M.)
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico; (P.A.V.-D.); (H.C.)
| | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico; (P.A.V.-D.); (H.C.)
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (R.A.-V.); (A.R.-M.); (S.I.P.-C.); (J.I.C.-C.); (M.J.B.-B.)
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 04510, Mexico
| |
Collapse
|
49
|
Li Y, Liang X, Chen N, Yuan X, Wang J, Wu Q, Ding Y. The promotion of biofilm dispersion: a new strategy for eliminating foodborne pathogens in the food industry. Crit Rev Food Sci Nutr 2024; 65:2976-3000. [PMID: 39054781 DOI: 10.1080/10408398.2024.2354524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Food safety is a critical global concern due to its direct impact on human health and overall well-being. In the food processing environment, biofilm formation by foodborne pathogens poses a significant problem as it leads to persistent and high levels of food contamination, thereby compromising the quality and safety of food. Therefore, it is imperative to effectively remove biofilms from the food processing environment to ensure food safety. Unfortunately, conventional cleaning methods fall short of adequately removing biofilms, and they may even contribute to further contamination of both equipment and food. It is necessary to develop alternative approaches that can address this challenge in food industry. One promising strategy in tackling biofilm-related issues is biofilm dispersion, which represents the final step in biofilm development. Here, we discuss the biofilm dispersion mechanism of foodborne pathogens and elucidate how biofilm dispersion can be employed to control and mitigate biofilm-related problems. By shedding light on these aspects, we aim to provide valuable insights and solutions for effectively addressing biofilm contamination issues in food industry, thus enhancing food safety and ensuring the well-being of consumers.
Collapse
Affiliation(s)
- Yangfu Li
- State Key Laboratory of Applied Microbiology Southern China, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xinmin Liang
- State Key Laboratory of Applied Microbiology Southern China, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Department of Food Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Nuo Chen
- State Key Laboratory of Applied Microbiology Southern China, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiaoming Yuan
- State Key Laboratory of Applied Microbiology Southern China, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Department of Food Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology Southern China, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yu Ding
- Department of Food Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
50
|
Liu Y, Zhou H, Wang J, Liu S, Xie GJ, Liu BF, Xing D. Regulatory Mechanisms of Quorum Sensing System of Bacteria in Response to Chlorine and Ozone Disinfection. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 38937254 DOI: 10.1021/acs.est.3c08305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Waterborne pathogens invariably present considerable threats to public health. The quorum sensing (QS) system is instrumental in coordinating bacterial growth and metabolisms. However, the responses and regulatory mechanisms of bacteria to various disinfection technologies through quorum sensing are still unclear. This study examines the inactivation effect of chlorination and ozonation on biofilms and planktonic cells of QS signaling-deficient mutants of Pseudomonas aeruginosa. Cell counting and viability assessment revealed that the combined disinfection of chlorine and ozone was the most effective for inactivating planktonic P. aeruginosa within 10 min of exposure. Additionally, microfluidic chip culture demonstrated that the secretion of quinolone signals escalated biofilms' disinfection resistance. Disinfection exposure significantly altered the gene expression of wild-type strains and QS signaling-deficient mutants. Moreover, the QS system triggered multilayered gene expression programs as a responsive protection to disinfectant exposure, including oxidative stress, ribosome synthesis, and the nutrient absorption of bacteria. These insights broaden our understanding of bacterial QS in response to disinfection, promising potential strategies toward efficient disinfection processes.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
- School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Huihui Zhou
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
- School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Jing Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
- School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Sitong Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
- School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Guo-Jun Xie
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
- School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Bing-Feng Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
- School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Defeng Xing
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
- School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| |
Collapse
|