1
|
Silva EB, Jiang Z, Liu C, Fajtová P, Teixeira TR, de Castro Fiorini Maia G, Liu LJ, El‐Sakkary N, Skinner DE, Syed A, Wang SC, Caffrey CR, O'Donoghue AJ. Enhancing schistosomiasis drug discovery approaches with optimized proteasome substrates. Protein Sci 2025; 34:e70180. [PMID: 40411405 PMCID: PMC12102734 DOI: 10.1002/pro.70180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/30/2025] [Accepted: 05/09/2025] [Indexed: 05/26/2025]
Abstract
Schistosomiasis, a neglected tropical disease infecting over 200 million people globally, has limited therapeutic options. The 20S proteasome is a validated drug target for many parasitic infections, including those caused by Plasmodium and Leishmania, and we have previously demonstrated antischistosomal activity with inhibitors targeting Schistosoma mansoni 20S proteasome (Sm20S). Here, we developed optimized subunit-specific substrates for Sm20S based on data generated by Multiplex Substrate Profiling by Mass Spectrometry (MSP-MS). These substrates exhibit 9-fold or more improved activity compared to traditional human constitutive 20S proteasome (c20S) substrates. The optimized substrates also eliminated the need for extensive Sm20S purification, as robust enzyme activity could be detected in parasite extracts following an ammonium sulfate precipitation step. Finally, we show that the substrate and inhibition profiles for the 20S proteasome from the three medically important schistosome species are similar. This suggests that Sm20S-focused inhibitor development can be efficiently extrapolated to the other schistosome species, leading to significant time and resource savings.
Collapse
Affiliation(s)
- Elany B. Silva
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California San DiegoLa JollaCaliforniaUSA
- Department of Biochemistry & ImmunologyFederal University of Minas GeraisBelo HorizonteBrazil
| | - Zhenze Jiang
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Chenxi Liu
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Pavla Fajtová
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Thaiz R. Teixeira
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California San DiegoLa JollaCaliforniaUSA
| | | | - Lawrence J. Liu
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Nelly El‐Sakkary
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Danielle E. Skinner
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Ali Syed
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Steven C Wang
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Conor R. Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Anthony J. O'Donoghue
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
2
|
Hendawy AS, Sabra ANA, George MY, Rashad E, El-Demerdash E, Botros SS. The antifibrotic effect of Vildagliptin and Diaminodiphenyl Sulfone in murine schistosomiasis mansoni. Sci Rep 2025; 15:10084. [PMID: 40128243 PMCID: PMC11933376 DOI: 10.1038/s41598-025-91955-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 02/24/2025] [Indexed: 03/26/2025] Open
Abstract
Schistosomiasis drastically affects human health, where S. mansoni-induced hepatic fibrosis remains a serious problem with no available drug yet. The current study aimed to evaluate the hepatoprotective effects of Vildagliptin (Vilda), Diaminodiphenyl Sulfone (DDS), and their combination (Vilda/DDS) against S. mansoni-induced hepatic fibrosis and elucidate their underlying molecular mechanisms. S.mansoni-infected mice were administered praziquantel (PZQ) for two consecutive days, or Vilda, DDS, and Vilda/DDS for 14 consecutive days. Schistosomiasis-induced hepatic fibrosis was assessed parasitologically, biochemically, and pathologically. Results revealed that Vilda, DDS, and Vida/DDS treatments significantly reduced worm count, oogram stages, ova count, and ameliorated the granulomatous inflammatory reactions and hepatotoxicity indices. Moreover, they enhanced hepatic Nrf2/HO-1 pathway with significant increasing SOD and reducing MDA levels. Furthermore, they significantly downregulated the hepatic TLR4/NF-κB and NLRP3 inflammasome pathways leading to a significant reduction in TNF-α and caspase-1 levels which is important in the activation of IL-1β and caspase-3. Notably, significant downregulation in hepatic TGF-β1, α-SMA, and MMP-9 expressions were also recorded. In conclusion, Vilda/DDS showed antioxidant, anti-inflammatory and antifibrotic activities in comparison to either Vilda or DDS alone against S. mansoni-induced hepatic fibrosis. Therefore, Vilda/DDS is a promising approach for managing S. mansoni infection, liver fibrosis, and associated disease morbidity.
Collapse
Affiliation(s)
- Amira S Hendawy
- Department of Pharmacology, Theodor Bilharz Research Institute, Warrak El-Hadar, P.O. Box 30, Imbaba, Giza, 12411, Egypt
| | - Abdel-Nasser A Sabra
- Department of Pharmacology, Theodor Bilharz Research Institute, Warrak El-Hadar, P.O. Box 30, Imbaba, Giza, 12411, Egypt
| | - Mina Y George
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Abasia, Cairo, 11566, Egypt
| | - Eman Rashad
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Ebtehal El-Demerdash
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Abasia, Cairo, 11566, Egypt.
| | - Sanaa S Botros
- Department of Pharmacology, Theodor Bilharz Research Institute, Warrak El-Hadar, P.O. Box 30, Imbaba, Giza, 12411, Egypt
| |
Collapse
|
3
|
Gebremedhin DM, Teka H, Tsehaye KF. Female Genital Schistosomiasis as a Cause of Tubal Ectopic Pregnancy and Recurrent Pregnancy Loss: A Case Report. Case Rep Pathol 2025; 2025:7652671. [PMID: 40223846 PMCID: PMC11991787 DOI: 10.1155/crip/7652671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 02/14/2025] [Indexed: 04/15/2025] Open
Abstract
Background: Schistosomiasis is a widespread parasitic disease that affects various organs, including the female genital tract. Female genital schistosomiasis can lead to significant reproductive morbidity, such as ectopic pregnancies and infertility. Case Presentation: A 27-year-old woman with a history of recurrent spontaneous abortions presented with acute abdominal pain. She was diagnosed with a ruptured left ectopic pregnancy. Histopathologic examination of the resected tissue revealed numerous Schistosoma haematobium eggs within the ovarian parenchyma and fallopian tube, surrounded by granulomatous inflammation. The patient was treated with praziquantel and informed about the possible effects of schistosomiasis on her reproductive health. Conclusion: This case emphasizes the importance of considering female genital schistosomiasis in women from endemic areas with ectopic pregnancies and recurrent pregnancy loss. Early diagnosis and treatment are essential to prevent long-term reproductive sequelae.
Collapse
Affiliation(s)
- Dirar Medhanie Gebremedhin
- Department of Pathology, School of Medicine, Ayder Comprehensive Specialized Hospital, Mekelle University, Mekelle, Ethiopia
| | - Hale Teka
- Department of Gynecology and Obstetrics, School of Medicine, Ayder Comprehensive Specialized Hospital, Mekelle University, Mekelle, Ethiopia
| | - Kidan Fssaha Tsehaye
- Department of Internal Medicine, School of Medicine, Ayder Comprehensive Specialized Hospital, Mekelle University, Mekelle, Ethiopia
| |
Collapse
|
4
|
Ueberall ME, Berchthold M, Häberli C, Lindemann S, Spangenberg T, Keiser J, Grevelding CG. Merck Open Global Health Library in vitro screening against Schistosoma mansoni identified two new substances with antischistosomal activities for further development. Parasit Vectors 2025; 18:40. [PMID: 39905554 PMCID: PMC11796224 DOI: 10.1186/s13071-024-06648-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/27/2024] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND Schistosomiasis, which is caused by the parasite Schistosoma mansoni as well as other species of the trematode genus Schistosoma, leads to chronic inflammation and finally to liver fibrosis. If untreated, the disease can cause life-threatening complications. The current treatment of schistosomiasis relies on a single drug, praziquantel (PZQ). However, there is increasing concern about emerging resistance to PZQ due to its frequent use. METHODS To identify potential alternative drugs for repurposing, the Open Global Health Library (OGHL) was screened in vitro, using two different screening workflows at two institutions, against adult S. mansoni couples and newly transformed schistosomula. This was followed by confirmation of the effects of the lead structures against adult worms. RESULTS In vitro screening at one of the institutions identified two fast-acting substances affecting worm physiology (OGHL00022, OGHL00121). The effects of the two lead structures were investigated in more detail by confocal laser scanning microscopy and 5-ethynyl 2´-deoxyuridine (EdU) assays to assess morphological effects and stem cell effects. Both substances showed negative effects on stem cell proliferation in S. mansoni but no further morphological changes. The EC50values of both compounds were determined, with values for compound OGHL00022 of 5.955 µM for pairing stability, 10.88 µM for attachment, and 18.77 µM for motility, while the values for compound OGHL00121 were 7.088 µM for pairing stability, 8.065 µM for attachment, and 6.297 µM for motility 24 h after treatment. Furthermore, S. mansoni couples were treated in vitro with these two lead structures simultaneously to check for additive effects, which were found with respect to reduced motility. The second in vitro screening, primarily against newly transformed schistosomula and secondarily against adult worms, identified four lead structures in total (OGHL00006, OGHL00022, OGHL00169, OGHL00217). In addition, one of the tested analogues of the hits OGHL00006, OGHL00169, and OGHL00217 showed effects on both stages. CONCLUSIONS In two independent in vitro screening approaches against two stages of S. mansoni one common interesting structure with rapid effects was identified, OGHL00022, which provides opportunities for further development.
Collapse
Affiliation(s)
| | - Martina Berchthold
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Cécile Häberli
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | | | - Thomas Spangenberg
- Global Health R&D of the healthcare business of Merck KGaA, Darmstadt, Germany, Ares Trading S.A., (an affiliate of Merck KGaA, Darmstadt, Germany, Route de Crassier 1, 1262 Eysins, Switzerland
| | - Jennifer Keiser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland.
- University of Basel, Basel, Switzerland.
| | | |
Collapse
|
5
|
Du X, Saleh B, Li X, Zheng X, Shu X, Liu R, He L. LC-MS/MS Analyzing Praziquantel and 4-Hydroxypraziquantel Enantiomers in Black Goat Plasma and Mechanism of Stereoselective Pharmacokinetics. Biomed Chromatogr 2025; 39:e6082. [PMID: 39797720 DOI: 10.1002/bmc.6082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/19/2024] [Accepted: 12/28/2024] [Indexed: 01/13/2025]
Abstract
Praziquantel (PZQ) is the most effective treatment for schistosomiasis, commonly administered as a racemic mixture of the two enantiomers. Despite many reports on the pharmacokinetics of PZQ, the stereoselective pharmacokinetics of PZQ and its major metabolite 4-hydroxypraziquantel (4-OH-PZQ) remain poorly understood in goats. In this study, the chiral LC-MS/MS method was further optimized for separating and quantifying PZQ, trans-4-OH-PZQ, and cis-4-OH-PZQ and their enantiomers and then applied for the molecular pharmacokinetics of three analytes in black goat plasma. The findings showed that PZQ was rapidly absorbed and metabolized to 4-OH-PZQ. The Cmax of trans-4-OH-PZQ was about 3 times and 6 times higher than those of cis-4-OH-PZQ and PZQ, respectively. The stereoselectivity of the PZQ and cis-4-OH-PZQ enantiomers was insignificant in black goat plasma (p > 0.05), whereas the trans-4-OH-PZQ enantiomers exhibited obvious stereoselectivity (p < 0.05). The Cmax of S-trans-4-OH-PZQ were ~3.1 times higher than that of R-trans-4-OH-PZQ. Further computer simulations indicated that these differences in the stereoselectivity might mainly stem from the different binding energies of the corresponding R- and S-enantiomers of the target analytes to black goat plasma albumin. It has guiding significance for the research on the stereoselectivity of chiral veterinary drugs and their precision medication.
Collapse
Affiliation(s)
- Xiaoxi Du
- Guangdong Provincial key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Basma Saleh
- National Reference Laboratory of Veterinary Drug Residues (SCAU), College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiarong Li
- Guangdong Provincial key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Xiantong Zheng
- Guangdong Provincial key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Xiaogui Shu
- National Reference Laboratory of Veterinary Drug Residues (SCAU), College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Rong Liu
- Guangdong Provincial key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Limin He
- Guangdong Provincial key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- National Reference Laboratory of Veterinary Drug Residues (SCAU), College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
6
|
de Oliveira FM, Lopes GFM, Ribeiro RIMA, Villar JAFP, Fonseca CT, Lopes DDO. Evaluating the Immunoprotective and Diagnostic Potential of Schistosoma mansoni Epitopes from Sm050890 and Sm141290 Proteins Identified Through Reverse Vaccinology. Acta Parasitol 2025; 70:14. [PMID: 39775981 DOI: 10.1007/s11686-024-00981-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/08/2024] [Indexed: 01/11/2025]
Abstract
PURPOSE Schistosomiasis remains a parasitic disease affecting millions of people worldwide, requiring interventions like vaccination. In previous work, our group used reverse vaccinology to identify two epitopes from the Schistosoma mansoni proteins, Sm050890 (44-58) and Sm141290 (225-239). This study evaluated the immune response profile and protection induced by peptides, as a mixture of immunogens, in murine vaccination trials. Additionally, the diagnostic potential of these peptides was assessed on immunoassays. METHODS Mice were immunized with a formulation containing the mixture of the peptides, subsequently infected, and perfused for worm burden recovery and quantification. Liver and blood samples from animals were used to evaluate the effect of immunization on the formation of granulomas and specific anti-peptide antibodies (IgG). Additionally, cytokine measurement was performed in splenocyte cultures from immunized mice, and peripheral blood serum from individuals infected with S. mansoni was used to assess the recognition of the peptides by IgG antibodies. RESULTS The vaccine stimulated an increase in the production of IgG and IgG2c antibodies, associated with a significant reduction of 44 - 29% in worm burden. Although the vaccine did not reduce liver pathology, it enhanced the production of IFN-γ while decreasing IL-10 production by splenocytes. Furthermore, the peptides Sm050890 (44-58) and Sm141290 (225-239) were not recognized by IgG antibodies in the serum from infected individuals. CONCLUSION Overall, our data suggest that the peptides Sm050890 (44-58) and Sm141290 (225-239) are promising vaccine candidates against schistosomiasis and can be used to compose a multiepitope/chimeric vaccine in future studies.
Collapse
Affiliation(s)
| | | | | | | | - Cristina Toscano Fonseca
- Research Group on Biology and Immunology of Infectious and Parasitic Diseases, René Rachou Institute, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brasil
| | | |
Collapse
|
7
|
Ardpairin J, Subkrasae C, Dumidae A, Pansri S, Homkaew C, Meesil W, Kumchantuek T, Phoungpetchara I, Dillman AR, Pavesi C, Bode HB, Tandhavanant S, Thanwisai A, Vitta A. Symbiotic bacteria associated with entomopathogenic nematodes showed molluscicidal activity against Biomphalaria glabrata, an intermediate host of Schistosoma mansoni. Parasit Vectors 2024; 17:529. [PMID: 39710701 DOI: 10.1186/s13071-024-06605-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/27/2024] [Indexed: 12/24/2024] Open
Abstract
BACKGROUND Biomphalaria glabrata acts as the intermediate host of schistosomes that causes human schistosomiasis. Symbiotic bacteria, Xenorhabdus and Photorhabdus associated with Steinernema and Heterorhabditis, produce secondary metabolites with several biological activities. Controlling B. glabrata is a potential strategy to limit the transmission of schistosomiasis. The aims of this study were to identify Xenorhabdus and Photorhabdus bacteria based on recA sequencing and evaluate their molluscicidal activity against B. glabrata snail. RESULTS A total of 31 bacterial isolates belonging to Xenorhabdus (n = 19) and Photorhabdus (n = 12) (X. ehlersii, X. stockiae, X. indica, X. griffinae, P. luminescens, P. akhurstii, and P. laumondii subsp. laumondii were molecularly identified based on recA sequencing. Five isolates of bacterial extracts showed potential molluscicide, with 100% snail mortality. P. laumondii subsp. laumondii (bALN19.5_TH) showed the highest effectiveness with lethal concentration (LC) values of 54.52 µg/mL and 89.58 µg/mL for LC50 and LC90, respectively. Histopathological changes of the snail were observed in the head-foot region, which showed ruptures of the epithelium covering the foot and deformation of the muscle fiber. A hemocyte of the treated snails was observed in the digestive tubules of the digestive glands. The hermaphrodite glands of treated snails showed a reduction in the number of spermatozoa, degeneration of oocytes, and deformation and destruction in the hermaphrodite gland. In addition, liquid chromatography-tandem mass spectrometry (LC-MS/MS) of three symbiotic bacteria contained compounds such as GameXPeptide, Xenofuranone, and Rhabdopeptide. CONCLUSIONS Five bacterial extracts showed good activity against B. glabrata, especially P. laumondii subsp. laumondii and X. stockiae, which produced virulent secondary metabolites resulting in the death of the snails. They also caused histopathological alterations in the foot, digestive glands, and hermaphrodite glands of the snails. This study suggests that extracts from these bacteria show promise as molluscicides for the control of B. glabrata.
Collapse
Affiliation(s)
- Jiranun Ardpairin
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Chanakan Subkrasae
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Abdulhakam Dumidae
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Supawan Pansri
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Chanatinat Homkaew
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Wipanee Meesil
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Tewarat Kumchantuek
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Ittipon Phoungpetchara
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Adler R Dillman
- Department of Nematology, University of California, Riverside, CA, 92521, USA
| | - Coralie Pavesi
- Max-Planck-Institut für Terrestrische Mikrobiologie Abteilung Naturstoffe in organismischen Interaktionen, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany
| | - Helge B Bode
- Max-Planck-Institut für Terrestrische Mikrobiologie Abteilung Naturstoffe in organismischen Interaktionen, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany
- Department of Natural Products in Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, 35043, Marburg, Germany
- Molecular Biotechnology, Department of Biosciences, Goethe University, Frankfurt, 60438, Frankfurt am Main, Germany
- Chemical Biology, Department of Chemistry, Philipps University Marburg, 35032, Marburg, Germany
- Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
- SYNMIKRO (Zentrum für Synthetische Mikrobiologie), 35032, Marburg, Germany
| | - Sarunporn Tandhavanant
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Aunchalee Thanwisai
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
- Centre of Excellence in Medical Biotechnology (CEMB), Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
- Centre of Excellence for Biodiversity, Faculty of Sciences, Naresuan University, Phitsanulok, 65000, Thailand
| | - Apichat Vitta
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand.
- Centre of Excellence in Medical Biotechnology (CEMB), Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand.
- Centre of Excellence for Biodiversity, Faculty of Sciences, Naresuan University, Phitsanulok, 65000, Thailand.
| |
Collapse
|
8
|
Osawa R, Jo TS, Nakamura R, Futami K, Itayama T, Chadeka EA, Ngetich B, Nagi S, Kikuchi M, Njenga SM, Ouma C, Sonye GO, Hamano S, Minamoto T. Methodological assessment for efficient collection of Schistosoma mansoni environmental DNA and improved schistosomiasis surveillance in tropical wetlands. Acta Trop 2024; 260:107402. [PMID: 39270921 DOI: 10.1016/j.actatropica.2024.107402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/27/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024]
Abstract
Schistosomiasis, caused by trematodes of genus Schistosoma, is among the most seriously neglected tropical diseases. Although rapid surveillance of risk areas for Schistosoma transmission is vital to control schistosomiasis, the habitat and infection status of this parasite are difficult to assess. Environmental DNA (eDNA) analysis, involving the detection of extra-organismal DNA in water samples, facilitates cost-efficient and sensitive biomonitoring of aquatic environments and is a promising tool to identify Schistosoma habitat and infection risk areas. However, in tropical wetlands, highly turbid water causes filter clogging, thereby decreasing the filtration volume and increasing the risk of false negatives. Therefore, in this study, we aimed to conduct laboratory experiments and field surveys in Lake Victoria, Mbita, to determine the appropriate filter pore size for S. mansoni eDNA collection in terms of particle size and filtration volume. In the laboratory experiment, aquarium water was sequentially filtered using different pore size filters. Targeting >3 µm size fraction was found to be sufficient to capture S. mansoni eDNA particles, regardless of their life cycle stage (egg, miracidia, and cercaria). In the field surveys, GF/D (2.7 µm nominal pore size) filter yielded 2.5-times the filtration volume obtained with a smaller pore size filter and pre-filtration methods under the same time constraints. Moreover, a site-occupancy model was applied to the field detection results to estimate S. mansoni eDNA occurrence and detection probabilities and assess the number of water samples and PCR replicates necessary for efficient eDNA detection. Overall, this study reveals an effective method for S. mansoni eDNA detection in turbid water, facilitating the rapid and sensitive monitoring of its distribution and cost-effective identification of schistosomiasis transmission risk areas.
Collapse
Affiliation(s)
- Ryosuke Osawa
- Graduate School of Human Development and Environment, Kobe University: 3-11, Tsurukabuto, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Toshiaki S Jo
- Graduate School of Human Development and Environment, Kobe University: 3-11, Tsurukabuto, Nada-ku, Kobe, Hyogo, 657-8501, Japan; Research Fellow of Japan Society for the Promotion of Science: 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan; Faculty of Advanced Science and Technology, Ryukoku University: 1-5, Yokotani, Oe-cho, Seta, Otsu City, Shiga 520-2194, Japan
| | - Risa Nakamura
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), Nagasaki University: 1-12-4, Sakamoto, Nagasaki, 852-8523, Japan; Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University: 1-12-4, Sakamoto, Nagasaki, 852-8523, Japan; The Joint Usage/Research Center on Tropical Disease, Institute of Tropical Medicine (NEKKEN), Nagasaki University: 1-12-4, Sakamoto, Nagasaki, 852-8523, Japan
| | - Kyoko Futami
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University: 1-12-4, Sakamoto, Nagasaki, 852-8523, Japan; The Joint Usage/Research Center on Tropical Disease, Institute of Tropical Medicine (NEKKEN), Nagasaki University: 1-12-4, Sakamoto, Nagasaki, 852-8523, Japan; Department of Vector Ecology and Environment, Institute of Tropical Medicine (NEKKEN), Nagasaki University: 1-12-4, Sakamoto, Nagasaki, 852-8523, Japan
| | - Tomoaki Itayama
- Graduate School of Engineering, Nagasaki University: 1-12-4, Bunkyo-cyo, Nagasaki, 852-8131, Japan
| | - Evans Asena Chadeka
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), Nagasaki University: 1-12-4, Sakamoto, Nagasaki, 852-8523, Japan; The Joint Usage/Research Center on Tropical Disease, Institute of Tropical Medicine (NEKKEN), Nagasaki University: 1-12-4, Sakamoto, Nagasaki, 852-8523, Japan; Institute of Tropical Medicine (NUITM), Kenya Medical Research Institute (KEMRI): P O Box 19993-00202, Nairobi, Kenya
| | - Benard Ngetich
- Institute of Tropical Medicine (NUITM), Kenya Medical Research Institute (KEMRI): P O Box 19993-00202, Nairobi, Kenya
| | - Sachiyo Nagi
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), Nagasaki University: 1-12-4, Sakamoto, Nagasaki, 852-8523, Japan; Department of Hygiene and Public Health, Tokyo Women's Medical University: 8-1 Kawada-machi, Shinjuku-ku, Tokyo 162-0054, Japan
| | - Mihoko Kikuchi
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University: 1-12-4, Sakamoto, Nagasaki, 852-8523, Japan; The Joint Usage/Research Center on Tropical Disease, Institute of Tropical Medicine (NEKKEN), Nagasaki University: 1-12-4, Sakamoto, Nagasaki, 852-8523, Japan; Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University: 1-12-4, Sakamoto, Nagasaki, 852-8523, Japan
| | - Sammy M Njenga
- Eastern and Southern Africa Centre of International Parasite Control (ESACIPAC), Kenya Medical Research Institute (KEMRI): P O Box 19993-00202, Nairobi, Kenya
| | - Collins Ouma
- Department of Biomedical Sciences and Technology, School of Public Health and Community Development, Maseno University: Maseno, Kenya
| | - George O Sonye
- Ability to solve by Knowledge (ASK) Community Based Organization: P.O. Box 30, Mbita, Kenya
| | - Shinjiro Hamano
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), Nagasaki University: 1-12-4, Sakamoto, Nagasaki, 852-8523, Japan; Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University: 1-12-4, Sakamoto, Nagasaki, 852-8523, Japan; The Joint Usage/Research Center on Tropical Disease, Institute of Tropical Medicine (NEKKEN), Nagasaki University: 1-12-4, Sakamoto, Nagasaki, 852-8523, Japan; Institute of Tropical Medicine (NUITM), Kenya Medical Research Institute (KEMRI): P O Box 19993-00202, Nairobi, Kenya
| | - Toshifumi Minamoto
- Graduate School of Human Development and Environment, Kobe University: 3-11, Tsurukabuto, Nada-ku, Kobe, Hyogo, 657-8501, Japan.
| |
Collapse
|
9
|
Mahdy A, Mostafa OMS, Aboueldahab MM, Nigm AH. Antiparasitic activity of Cerastes cerastes venom on Schistosoma mansoni infected mice. Exp Parasitol 2024; 268:108866. [PMID: 39617195 DOI: 10.1016/j.exppara.2024.108866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/17/2024] [Accepted: 11/26/2024] [Indexed: 12/09/2024]
Abstract
This study investigates whether Cerastes cerastes venom (CCV) administrated at different doses (3 and 6μg/mouse) and times (a week pre-infection, the first week post-infection, and the fifth week post-infection) possesses antischistosomal activity on Schistosoma mansoni infected mice. The results showed that treatment with half lethal dose (6 μg/mouse) of CCV, at various time schedules, led to a significant decrease in the total worm burden. However, quarter lethal dose (3μg/mouse) of CCV showed a significant decrease in the total worm burden only when administered a week pre-infection. The total number of deposited eggs by females of S. mansoni was significantly decreased in the liver and the intestine of mice treated with 3μg/mouse or 6μg/mouse CCV, associated with significant alterations in the oogram pattern with significant elevation in dead eggs levels and significant decrease in the number of mature eggs. Histological examinations illustrated a significant decrease in the number and diameter of hepatic granulomas in high dose (6μg/mouse) CCV-treated groups, while it was significant only a week pre-infection in low dose (3μg/mouse) CCV-treated groups. CCV also caused several tegumental changes in treated female and male worms, including loss of the normal surface architecture, tubercular destruction, loss of tubercles' spines, oedema, erosion, membrane blebbing, and swelling. S. mansoni-infected mice groups treated with CCV (6μg/mouse) a week before infection and at fifth week post-infection had, in all individuals up to a dilution of 1:1600, higher levels of antibodies against adult worm antigen. The current investigation found that C. cerastes venom has potential antischistosomal action in a time and dose-dependent manner (more enhanced antischistosomal effects at a dose of 6 μg and in the group treated in a week before infection), in addition to its potential immunomodulatory effect against schistosomiasis infection. More studies will be required to identify the venom's active ingredients that affect the host's immunology. This information could be used in the future to develop novel antischistosomal therapies.
Collapse
Affiliation(s)
- Asmaa Mahdy
- Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt.
| | - Osama M S Mostafa
- Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt.
| | - Marwa M Aboueldahab
- Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt.
| | - Ahmed H Nigm
- Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt.
| |
Collapse
|
10
|
Mahmoud M, Allam AF, Essawy AE, Shalaby TI, El-Sherif SS. Therapeutic efficacy of praziquantel loaded-chitosan nanoparticles on juvenile Schistosoma mansoni worms in murine model. Exp Parasitol 2024; 266:108843. [PMID: 39369770 DOI: 10.1016/j.exppara.2024.108843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Praziquantel (PZQ) is the standard treatment for schistosomiasis; however, it is poorly effective on immature and juvenile worms. The present study aimed to evaluate the therapeutic efficacy of praziquantel loaded-chitosan nanoparticles (PZQ-CSNPs) on the 25 days old juvenile Schistosoma mansoni worms compared to PZQ and chitosan nanoparticles (CSNPs). It was conducted on 60 Swiss albino mice, including 20 control and 40 experimental mice. The control groups included healthy uninfected and infected non-treated mice. The experimental groups included mice infected treated on the 25th day with 400 mg/kg PZQ, 30 mg/kg CSNPs, 100 mg/kg, and 400 mg/kg PZQ-CSNPs. The results revealed that PZQ-CSNPs (100, 400 mg/kg) gave the best results substantiated by a remarkable decrease in worm burden, egg count, granuloma count and size compared to the other treatments. Moreover, it induced severe deformations of worm morphology regarding oral and ventral suckers, tegument, spines distribution, and male gynaecophoric canal. Liver enzymes and oxidative stress markers were significantly decreased while antioxidant activities were increased compared to control and other treated groups. In conclusion, a single dose of PZQ-CSNPs had significant antischistosomal therapeutic effects during the early maturation phase.
Collapse
Affiliation(s)
- Mai Mahmoud
- Zoology Department, Faculty of Science, Alexandria University, Egypt
| | - Amal Farahat Allam
- Parasitology Department, Medical Research Institute, Alexandria University, Egypt.
| | | | | | | |
Collapse
|
11
|
Eastham G, Fausnacht D, Becker MH, Gillen A, Moore W. Praziquantel resistance in schistosomes: a brief report. FRONTIERS IN PARASITOLOGY 2024; 3:1471451. [PMID: 39817170 PMCID: PMC11732111 DOI: 10.3389/fpara.2024.1471451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/10/2024] [Indexed: 01/18/2025]
Abstract
Schistosomiasis is a group of both acute and chronic parasitic trematode infections of the genus Schistosoma. Research into schistosomiasis has been minimal, leading to its classification as a neglected tropical disease, yet more than 140 million people are infected with schistosomes globally. There are no treatments available for early-stage infections, schistosomal dermatitis, or Katayama syndrome, other than symptomatic control with steroids and antihistamines, as the maturing organisms seem to be mostly resistant to typical antiparasitics. However, praziquantel (PZQ) has been the drug of choice for schistosomiasis for decades in the latter stages of the disease. Though it is effective against all three clinically relevant species, heavy reliance on PZQ has led to concerns of schistosome resistance, especially in areas that have implemented this drug in mass drug administration (MDA) programs. This article summarizes the available literature concerning the available evidence for and against a warranted concern for PZQ resistance, genomic studies in schistosomes, proposed mechanisms of resistance, and future research in alternative methods of schistosomiasis treatment.
Collapse
Affiliation(s)
- Gabriela Eastham
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA, United States
| | - Dane Fausnacht
- Department of Biology, School of Sciences and Agriculture, Ferrum College, Ferrum, VA, United States
| | - Matthew H. Becker
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA, United States
| | - Alan Gillen
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA, United States
| | - William Moore
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA, United States
| |
Collapse
|
12
|
Dannenhaus TA, Winkelmann F, Reinholdt C, Bischofsberger M, Dvořák J, Grevelding CG, Löbermann M, Reisinger EC, Sombetzki M. Intra-specific variations in Schistosoma mansoni and their possible contribution to inconsistent virulence and diverse clinical outcomes. PLoS Negl Trop Dis 2024; 18:e0012615. [PMID: 39466851 PMCID: PMC11542895 DOI: 10.1371/journal.pntd.0012615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 11/07/2024] [Accepted: 10/08/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Schistosoma mansoni was introduced from Africa to the Americas during the transatlantic slave trade and remains a major public health problem in parts of South America and the Caribbean. This study presents a comprehensive comparative analysis of three S. mansoni strains with different geographical origins-from Liberia, Belo Horizonte and Puerto Rico. We demonstrated significant variation in virulence and host-parasite interactions. METHODS We investigated the phenotypic characteristics of the parasite and its eggs, as well as the immunopathologic effects on laboratory mouse organ systems. RESULTS Our results show significant differences in worm morphology, worm burden, egg size, and pathologic organ changes between these strains. The Puerto Rican strain showed the highest virulence, as evidenced by marked liver and spleen changes and advanced liver fibrosis indicated by increased collagen content. In contrast, the strains from Liberia and Belo Horizonte had a less pathogenic profile with less liver fibrosis. We found further variations in granuloma formation, cytokine expression and T-cell dynamics, indicating different immune responses. CONCLUSION Our study emphasizes the importance of considering intra-specific variations of S. mansoni for the development of targeted therapies and public health strategies. The different virulence patterns, host immune responses and organ pathologies observed in these strains provide important insights for future research and could inform region-specific interventions for schistosomiasis control.
Collapse
Affiliation(s)
- Tim A. Dannenhaus
- Division of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, Rostock University Medical Center, Germany
| | - Franziska Winkelmann
- Division of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, Rostock University Medical Center, Germany
| | - Cindy Reinholdt
- Division of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, Rostock University Medical Center, Germany
| | - Miriam Bischofsberger
- Division of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, Rostock University Medical Center, Germany
| | - Jan Dvořák
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
- Department of Ecology, Center of Infectious Animal Diseases, Faculty of Environmental Sciences, Czech University of Life Sciences, Czechia Institute of Parasitology, Prague, Czechia
| | - Christoph G. Grevelding
- Biomedizinisches Forschungszentrum Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Micha Löbermann
- Division of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, Rostock University Medical Center, Germany
| | - Emil C. Reisinger
- Division of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, Rostock University Medical Center, Germany
| | - Martina Sombetzki
- Division of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, Rostock University Medical Center, Germany
| |
Collapse
|
13
|
Liu M, Wang Y, Deng W, Xie J, He Y, Wang L, Zhang J, Cui M. Combining network pharmacology, machine learning, molecular docking and molecular dynamic to explore the mechanism of Chufeng Qingpi decoction in treating schistosomiasis. Front Cell Infect Microbiol 2024; 14:1453529. [PMID: 39310787 PMCID: PMC11413488 DOI: 10.3389/fcimb.2024.1453529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 08/05/2024] [Indexed: 09/25/2024] Open
Abstract
Background Although the Chufeng Qingpi Decoction (CQD) has demonstrated clinical effectiveness in the treatment of schistosomiasis, the precise active components and the underlying mechanisms of its therapeutic action remain elusive. To achieve a profound comprehension, we incorporate network pharmacology, bioinformatics analysis, molecular docking, and molecular dynamics simulations as investigative methodologies within our research framework. Method Utilizing TCMSP and UniProt, we identified formula components and targets. Cytoscape 3.10.0 was used to construct an herb-target interaction network. Genecards, DisGeNET, and OMIM databases were examined for disease-related objectives. A Venn diagram identified the intersection of compound and disease targets. Using Draw Venn, overlapping targets populated STRING for PPI network. CytoNCA identified schistosomiasis treatment targets. GO & KEGG enrichment analysis followed High-scoring genes in PPI were analyzed by LASSO, RF, SVM-RFE. Molecular docking & simulations investigated target-compound interactions. Result The component's target network encompassed 379 nodes, 1629 edges, highlighting compounds such as wogonin, kaempferol, luteolin, and quercetin. Amongst the proteins within the PPI network, PTGS2, TNF, TGFB1, BCL2, TP53, IL10, JUN, MMP2, IL1B, and MYC stood out as the most prevalent entities. GO and KEGG revealed that mainly involved the responses to UV, positive regulation of cell migration and motility. The signal pathways encompassed Pathways in cancer, Lipid and atherosclerosis, Fluid shear stress and atherosclerosis, as well as the AGE-RAGE. Bioinformatics analysis indicated TP53 was the core gene. Ultimately, the molecular docking revealed that wogonin, kaempferol, luteolin, and quercetin each exhibited significant affinity in their respective interactions with TP53. Notably, kaempferol exhibited the lowest binding energy, indicating a highly stable interaction with TP53. Lastly, we validated the stability of the binding interaction between the four small molecules and the TP53 through molecular dynamics simulations. The molecular dynamics simulation further validated the strongest binding between TP53 and kaempferol. In essence, our research groundbreaking in its nature elucidates for the first time the underlying molecular mechanism of CQD in the therapeutic management of schistosomiasis, thereby providing valuable insights and guidance for the treatment of this disease. Conclusion This study uncovered the efficacious components and underlying molecular mechanisms of the Chufeng Qingpi Decoction in the management of schistosomiasis, thereby offering valuable insights for future fundamental research endeavors.
Collapse
Affiliation(s)
- Minglu Liu
- Emergency Department, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yuxin Wang
- Research and Teaching Department of Comparative Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Wen Deng
- College of Pharmacy, Dalian Medical University, Dalian, Liaoning, China
| | - Jiahao Xie
- Emergency Department, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yanyao He
- Research and Teaching Department of Comparative Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Liang Wang
- Research and Teaching Department of Comparative Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Jianbin Zhang
- College of Pharmacy, Dalian Medical University, Dalian, Liaoning, China
| | - Ming Cui
- Emergency Department, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
14
|
Mulate ST, Nur AM, Tasamma AT, Annose RT, Dawud EM, Ekubazgi KW, Mekonnen HD, Mohammed HY, Hailemeskel MB, Yimer SA. Colonic schistosomiasis mimicking cancer, polyp, and inflammatory bowel disease: Five case reports and review of literature. World J Gastrointest Endosc 2024; 16:472-482. [PMID: 39155995 PMCID: PMC11325876 DOI: 10.4253/wjge.v16.i8.472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/16/2024] [Accepted: 06/26/2024] [Indexed: 08/01/2024] Open
Abstract
BACKGROUND Schistosomiasis, officially named as a neglected tropical disease by The World Health Organization, is a serious parasitic disease caused by trematode flukes of the genus Schistosoma. It is a common infectious disease, endemic in more than 78 countries. The disease can involve various organs and poses far-reaching public health challenges. CASE SUMMARY Here, we present a series of five patients with variable presentations: an asymptomatic patient who was diagnosed with colonic schistosomiasis upon screening colonoscopy; 2 patients with clinical suspicion of colonic cancer; and 2 patients with a clinical diagnosis of inflammatory bowel disease. All patients were subsequently confirmed to have colonic schistosomiasis after colonoscopy and histopathologic examination. The clinical manifestations, colonoscopy features and histologic findings of the patients are described. Most of the patients showed significant clinical improvement following administration of oral praziquantel. CONCLUSION Intestinal schistosomiasis can present with features mimicking other gastrointestinal conditions. This disease should be a diagnostic consideration in patients who live in or have traveled to endemic areas.
Collapse
Affiliation(s)
- Sebhatleab T Mulate
- Department of Internal Medicine, Addis Ababa University, College of Health Science, Addis Ababa 9086, Ethiopia
| | - Abdulsemed M Nur
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Addis Ababa University, College of Health Science, Addis Ababa 9086, Ethiopia
| | - Abel T Tasamma
- Department of Internal Medicine, Addis Ababa University, College of Health Science, Addis Ababa 9086, Ethiopia
| | - Rodas T Annose
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Addis Ababa University, College of Health Science, Addis Ababa 9086, Ethiopia
| | - Esmael M Dawud
- Department of Internal Medicine, St Paul’s Hospital Millennium Medical College, Addis Ababa 9086, Ethiopia
| | - Kinfe W Ekubazgi
- Department of Internal Medicine, Hawassa University, Hawassa PO Box 05, Ethiopia
| | - Hailemichael D Mekonnen
- Department of Internal Medicine, St Paul’s Hospital Millennium Medical College, Addis Ababa 1271, Ethiopia
| | - Hidaya Y Mohammed
- Department of Pathology, Addis Ababa University, College of Health Science, Addis Ababa 9086, Ethiopia
| | - Meron B Hailemeskel
- Department of Pathology, St Paul’s Hospital Millennium Medical College, Addis Ababa 1271, Ethiopia
| | - Shimelis A Yimer
- Department of Pathology, Ethio Tebib General Hospital, Addis Ababa 1111, Ethiopia
| |
Collapse
|
15
|
Xu J, Wang JY, Huang P, Liu ZH, Wang YX, Zhang RZ, Ma HM, Zhou BY, Ni XY, Xiong CR, Xia CM. Schistosomicidal effects of histone acetyltransferase inhibitors against Schistosoma japonicum juveniles and adult worms in vitro. PLoS Negl Trop Dis 2024; 18:e0012428. [PMID: 39159234 PMCID: PMC11361729 DOI: 10.1371/journal.pntd.0012428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 08/29/2024] [Accepted: 08/02/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND Schistosomiasis is a relatively neglected parasitic disease that afflicts more than 250 million people worldwide, for which the control strategy relies mainly on mass treatment with the only available drug, praziquantel (PZQ). This approach is not sustainable and is a priority for developing novel drug candidates for the treatment and control of schistosomiasis. METHODOLOGYS/PRINCIPAL FINDINGS In our previous study, we found that DW-3-15, a kind of PZQ derivative, could significantly downregulate the expression of the histone acetyltransferase of Schistosoma japonicum (SjHAT). In this study, several commercially available HAT inhibitors, A485, C646 and curcumin were screened in vitro to verify their antischistosomal activities against S. japonicum juveniles and adults. Parasitological studies and scanning electron microscopy were used to study the primary action characteristics of HAT inhibitors in vitro. Quantitative real-time PCR was employed to detect the mRNA level of SjHAT after treatment with different HAT inhibitors. Our results demonstrated that curcumin was the most effective inhibitor against both juveniles and adults of S. japonicum, and its schistosomicidal effects were time- and dose dependent. However, A485 and C646 had limited antischistosomal activity. Scanning electron microscopy demonstrated that in comparison with DW-3-15, curcumin caused similar tegumental changes in male adult worms. Furthermore, both curcumin and DW-3-15 significantly decreased the SjHAT mRNA level, and curcumin dose-dependently reduced the SjHAT expression level in female, male and juvenile worms. CONCLUSIONS Among the three commercially available HATs, curcumin was the most potent against schistosomes. Both curcumin and our patent compound DW-3-15 markedly downregulated the expression of SjHAT, indicating that SjHAT may be a potential therapeutic target for developing novel antischistosomal drug candidates.
Collapse
Affiliation(s)
- Jing Xu
- Department of Parasitology, School of Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou City, P. R. China
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, Suzhou Medical College, Soochow University, Suzhou City, P. R. China
| | - Jing-Yi Wang
- Department of Parasitology, School of Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou City, P. R. China
| | - Ping Huang
- Department of Parasitology, School of Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou City, P. R. China
| | - Zi-Hao Liu
- Department of Parasitology, School of Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou City, P. R. China
| | - Yu-Xin Wang
- Department of Parasitology, School of Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou City, P. R. China
| | - Run-Ze Zhang
- Department of Parasitology, School of Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou City, P. R. China
| | - Hui-Min Ma
- Department of Parasitology, School of Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou City, P. R. China
| | - Bi-Yue Zhou
- Department of Parasitology, School of Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou City, P. R. China
| | - Xiao-Yan Ni
- Department of Parasitology, School of Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou City, P. R. China
| | - Chun-Rong Xiong
- Jiangsu Institute of Parasitic Diseases, Wuxi City, P. R. China
| | - Chao-Ming Xia
- Department of Parasitology, School of Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou City, P. R. China
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, Suzhou Medical College, Soochow University, Suzhou City, P. R. China
| |
Collapse
|
16
|
Kim J, Davis J, Lee J, Cho SN, Yang K, Yang J, Bae S, Son J, Kim B, Whittington D, Siddiqui AA, Carter D, Gray SA. An assessment of a GMP schistosomiasis vaccine (SchistoShield ®). FRONTIERS IN TROPICAL DISEASES 2024; 5:1404943. [PMID: 39483645 PMCID: PMC11525685 DOI: 10.3389/fitd.2024.1404943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024] Open
Abstract
Introduction Schistosomiasis is a neglected tropical disease that puts over 200 million people at risk, and prevention options are sparse with no approved vaccine. Our vaccine candidate, SchistoShield®, is based on an approximately 87 kDa large subunit of calcium activated neutral protease - termed Sm-p80 - combined with a potent TLR4 agonist-based adjuvant. SchistoShield® has been shown to prevent disease throughout the parasitic life cycle - including egg, juvenile, and adult worm stages - in numerous animal models up to and including baboons. SchistoShield® has been shown safe in both preclinical toxicology studies in rabbits and in a Phase 1 clinical trial in the USA. A Phase 1b trial was initiated in 2023 in endemic regions of Africa, and to date no serious safety signals have been reported. Methods In preparation for large-scale Phase 2 clinical trials and eventual vaccine deployment, the Sm-p80 antigen production process has been transferred to a manufacturing organization, Quratis Corporation in South Korea, which specializes in preparation of vaccines for large-scale European and African trials. The process of scaling from our current production level of ~2000 vaccine doses, to a process that will generate more than 100 million doses has required multiple improvement steps in the process including fermentation, downstream purification of the protein antigen, lyophilization, and fill and finish. Results In this study, we detail the large-scale production process of the SchistoShield® protein product by Quratis. In addition, an effort was made to analyze and compare the Quratis-made lot of Sm-p80, referred to as QTP-105, to the cGMP lot of Sm-p80 which is in use in human trials in the USA and Africa, referred to as Sm-p80 DP (made in USA). We show that QTP-105 demonstrates excellent potency, purity, identity, and endotoxin levels compared to our Phase 1 Sm-p80 DP and is suitable for use in Phase 2 studies and beyond.
Collapse
Affiliation(s)
- Jiho Kim
- PAI Life Sciences, Seattle, WA, United States
| | - Jenn Davis
- PAI Life Sciences, Seattle, WA, United States
| | - Jinhee Lee
- Quratis Corp, Cheongju, Republic of Korea
| | - Sang-Nae Cho
- Quratis Corp, Cheongju, Republic of Korea
- Department of Microbiology, Yonsei University, Seoul, Republic of Korea
| | | | | | | | - Joohee Son
- Quratis Corp, Cheongju, Republic of Korea
| | | | - Dale Whittington
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, United States
| | - Afzal A. Siddiqui
- Department of Immunology & Molecular Microbiology, Center for Tropical Medicine & Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Darrick Carter
- PAI Life Sciences, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
| | - Sean A. Gray
- PAI Life Sciences, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
| |
Collapse
|
17
|
Ekloh W, Asafu-Adjaye A, Tawiah-Mensah CNL, Ayivi-Tosuh SM, Quartey NKA, Aiduenu AF, Gayi BK, Koudonu JAM, Basing LA, Yamoah JAA, Dofuor AK, Osei JHN. A comprehensive exploration of schistosomiasis: Global impact, molecular characterization, drug discovery, artificial intelligence and future prospects. Heliyon 2024; 10:e33070. [PMID: 38988508 PMCID: PMC11234110 DOI: 10.1016/j.heliyon.2024.e33070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 07/12/2024] Open
Abstract
Schistosomiasis, one of the neglected tropical diseases which affects both humans and animals, is caused by trematode worms of the genus Schistosoma. The disease is caused by several species of Schistosoma which affect several organs such as urethra, liver, bladder, intestines, skin and bile ducts. The life cycle of the disease involves an intermediate host (snail) and a mammalian host. It affects people who are in close proximity to water bodies where the intermediate host is abundant. Common clinical manifestations of the disease at various stages include fever, chills, headache, cough, dysuria, hyperplasia and hydronephrosis. To date, most of the control strategies are dependent on effective diagnosis, chemotherapy and public health education on the biology of the vectors and parasites. Microscopy (Kato-Katz) is considered the golden standard for the detection of the parasite, while praziquantel is the drug of choice for the mass treatment of the disease since no vaccines have yet been developed. Most of the previous reviews on schistosomiasis have concentrated on epidemiology, life cycle, diagnosis, control and treatment. Thus, a comprehensive review that is in tune with modern developments is needed. Here, we extend this domain to cover historical perspectives, global impact, symptoms and detection, biochemical and molecular characterization, gene therapy, current drugs and vaccine status. We also discuss the prospects of using plants as potential and alternative sources of novel anti-schistosomal agents. Furthermore, we highlight advanced molecular techniques, imaging and artificial intelligence that may be useful in the future detection and treatment of the disease. Overall, the proper detection of schistosomiasis using state-of-the-art tools and techniques, as well as development of vaccines or new anti-schistosomal drugs may aid in the elimination of the disease.
Collapse
Affiliation(s)
- William Ekloh
- Department of Biochemistry, School of Biological Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Andy Asafu-Adjaye
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Christopher Nii Laryea Tawiah-Mensah
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | | | - Naa Kwarley-Aba Quartey
- Department of Food Science and Technology, Faculty of Biosciences, College of Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Albert Fynn Aiduenu
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Accra, Ghana
| | - Blessing Kwabena Gayi
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Accra, Ghana
| | | | - Laud Anthony Basing
- Department of Medical Diagnostics, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Jennifer Afua Afrifa Yamoah
- Animal Health Division, Council for Scientific and Industrial Research-Animal Research Institute, Adenta-Frafraha, Accra, Ghana
| | - Aboagye Kwarteng Dofuor
- Department of Biological Sciences, School of Natural and Environmental Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| | - Joseph Harold Nyarko Osei
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| |
Collapse
|
18
|
Mureşan-Pop M, Simon S, Bodoki E, Simon V, Turza A, Todea M, Vulpoi A, Magyari K, Iacob BC, Bărăian AI, Gołdyn M, Gomes CSB, Susana M, Duarte MT, André V. Mechanochemical Synthesis of New Praziquantel Cocrystals: Solid-State Characterization and Solubility. CRYSTAL GROWTH & DESIGN 2024; 24:4668-4681. [PMID: 38855579 PMCID: PMC11157481 DOI: 10.1021/acs.cgd.4c00296] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 06/11/2024]
Abstract
New cocrystals of praziquantel with suberic, 3-hydroxybenzoic, benzene-1,2,4,5-tetracarboxylic, trimesic, and 5-hydroxyisophthalic acids were obtained through ball milling experiments. The optimal conditions for the milling process were chosen by changing the solvent volume and the mechanical action time. Supramolecular interactions in the new cocrystals are detailed based on single-crystal X-ray diffraction analysis, confirming the expected formation of hydrogen bonds between the praziquantel carbonyl group and the carboxyl (or hydroxyl) moieties of the coformers. Different structural characterization techniques were performed for all samples, but the praziquantel:suberic acid cocrystal includes a wider range of investigations such as thermal analysis, infrared and X-ray photoelectron spectroscopies, and SEM microscopy. The stability for up to five months was established by keeping it under extreme conditions of temperature and humidity. Solubility studies were carried out for all the new forms disclosed herein and compared with the promising cocrystals previously reported with salicylic, 4-aminosalicylic, vanillic, and oxalic acids. HPLC analyses revealed a higher solubility for most of the new cocrystal forms, as compared to pure praziquantel.
Collapse
Affiliation(s)
- Marieta Mureşan-Pop
- Nanostructured
Materials and Bio-Nano Interfaces Department, Interdisciplinary Research
Institute on Bio-Nano-Sciences, Babes-Bolyai
University, 42, Treboniu
Laurian, Cluj-Napoca 400271, Romania
- INSPIRE
Research Platform, Babes-Bolyai University, 11, Arany Janos, Cluj-Napoca 400028, Romania
| | - Simion Simon
- Nanostructured
Materials and Bio-Nano Interfaces Department, Interdisciplinary Research
Institute on Bio-Nano-Sciences, Babes-Bolyai
University, 42, Treboniu
Laurian, Cluj-Napoca 400271, Romania
- INSPIRE
Research Platform, Babes-Bolyai University, 11, Arany Janos, Cluj-Napoca 400028, Romania
| | - Ede Bodoki
- Analytical
Chemistry Department, Faculty of Pharmacy, Iuliu Haţieganu University of Medicine and Pharmacy, 4, Louis Pasteur, Cluj-Napoca 400349, Romania
| | - Viorica Simon
- Nanostructured
Materials and Bio-Nano Interfaces Department, Interdisciplinary Research
Institute on Bio-Nano-Sciences, Babes-Bolyai
University, 42, Treboniu
Laurian, Cluj-Napoca 400271, Romania
| | - Alexandru Turza
- Mass
Spectrometry, Chromatography and Applied Physics Department, National Institute for Research and Development of
Isotopic and Molecular Technologies, Cluj-Napoca 400293, Romania
| | - Milica Todea
- Nanostructured
Materials and Bio-Nano Interfaces Department, Interdisciplinary Research
Institute on Bio-Nano-Sciences, Babes-Bolyai
University, 42, Treboniu
Laurian, Cluj-Napoca 400271, Romania
- INSPIRE
Research Platform, Babes-Bolyai University, 11, Arany Janos, Cluj-Napoca 400028, Romania
- Molecular
Sciences Department, Faculty of Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, 4, Louis Pasteur, Cluj-Napoca 400349, Romania
| | - Adriana Vulpoi
- Nanostructured
Materials and Bio-Nano Interfaces Department, Interdisciplinary Research
Institute on Bio-Nano-Sciences, Babes-Bolyai
University, 42, Treboniu
Laurian, Cluj-Napoca 400271, Romania
- INSPIRE
Research Platform, Babes-Bolyai University, 11, Arany Janos, Cluj-Napoca 400028, Romania
| | - Klara Magyari
- Nanostructured
Materials and Bio-Nano Interfaces Department, Interdisciplinary Research
Institute on Bio-Nano-Sciences, Babes-Bolyai
University, 42, Treboniu
Laurian, Cluj-Napoca 400271, Romania
| | - Bogdan C. Iacob
- Analytical
Chemistry Department, Faculty of Pharmacy, Iuliu Haţieganu University of Medicine and Pharmacy, 4, Louis Pasteur, Cluj-Napoca 400349, Romania
| | - Alexandra Iulia Bărăian
- Analytical
Chemistry Department, Faculty of Pharmacy, Iuliu Haţieganu University of Medicine and Pharmacy, 4, Louis Pasteur, Cluj-Napoca 400349, Romania
| | - Mateusz Gołdyn
- Faculty of
Chemistry, Adam Mickiewicz University in
Poznań, Uniwersytetu
Poznańskiego 8, Poznań 61-614, Poland
- Center
for Advanced Technology, Adam Mickiewicz
University in Poznań, Uniwersytetu Poznańskiego 10, Poznań 61-614, Poland
| | - Clara S. B. Gomes
- LAQV-REQUIMTE,
Department of Chemistry, NOVA School of Science and Technology (NOVA
FCT), NOVA University of Lisbon, Caparica 2829-516, Portugal
| | - Margarida Susana
- Centro
de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de
Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal
| | - M. Teresa Duarte
- Centro
de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de
Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal
| | - Vânia André
- Centro
de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de
Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal
- Associação
do Instituto Superior Técnico para a Investigação
e Desenvolvimento (IST-ID), Avenida António José de Almeida, 12, Lisboa 1000-043, Portugal
| |
Collapse
|
19
|
Elguindy DAS, Ashour DS, Elmarhoumy SM, El-Guindy DM, Ismail HIH. The efficacy of cercarial antigen loaded on nanoparticles as a potential vaccine candidate in Schistosoma mansoni-infected mice. J Parasit Dis 2024; 48:381-399. [PMID: 38840868 PMCID: PMC11147980 DOI: 10.1007/s12639-024-01677-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/21/2024] [Indexed: 06/07/2024] Open
Abstract
Schistosomiasis is one of the most common causes of morbidity and mortality from parasitic diseases. Mass treatment has proven to be insufficient because of repeated infection after treatment and the appearance of strains resistant to drug therapy. Hence, immunization is a new approach to control the disease and limit the pathological consequences of schistosomiasis. To evaluate the prophylactic effect of Cercarial antigen (CAP) loaded on chitosan nanoparticles (CSNPs) as a potential vaccine against Schistosoma mansoni-infected mice. 130 mice divided into 2 groups were used: Group I: Control groups (50 mice) subdivided into subgroup Ia (10 mice): Non-infected mice (normal control), subgroup Ib (20 mice): Schistosoma infected mice (infected control) and subgroup Ic (20 mice): Non-infected mice receiving NPs only. Group II: Vaccinated group (80 mice) subdivided equally into subgroup IIa (CAP): Received cercarial antigen and subgroup IIb (CAP + CSNP): Received cercarial antigen loaded on chitosan NPs then both vaccinated groups were infected with S. mansoni 3 weeks following the initial vaccination dose. CAP + CSNP and CAP groups showed significant reduction in adult worms count, hepatic egg count, hepatic granulomas number and size in comparison to the infected control group. Elevation of serum IgG and IgM levels, CD4+ and CD8+ T cell frequencies, IL-4, IL-10 and INF-γ levels was more significant in CAP + CSNP group than CAP group. CAP + CSNP is a promising new preparation of Schistosomal antigens that gave better results than immunization with CAP alone. CSNPs enhanced the immune and protective effect of CAP as validated by parasitological, histopathological and immunohistochemical studies.
Collapse
Affiliation(s)
- Dina A. S. Elguindy
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Dalia S. Ashour
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Sirria M. Elmarhoumy
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Dina M. El-Guindy
- Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Howaida I. H. Ismail
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
20
|
Hong A, Umar A, Chen H, Yu Z, Huang J. Advances in the study of the interaction between schistosome infections and the host's intestinal microorganisms. Parasit Vectors 2024; 17:185. [PMID: 38600604 PMCID: PMC11007984 DOI: 10.1186/s13071-024-06245-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/12/2024] [Indexed: 04/12/2024] Open
Abstract
Schistosomiasis, also called bilharziasis, is a neglected tropical disease induced by schistosomes that infects hundreds of millions of people worldwide. In the life cycle of schistosomiasis, eggs are regarded as the main pathogenic factor, causing granuloma formation in the tissues and organs of hosts, which can cause severe gastrointestinal and liver granulomatous immune responses and irreversible fibrosis. Increasing evidence suggests that the gut microbiome influences the progression of schistosomiasis and plays a central role in liver disease via the gut-liver axis. When used as pharmaceutical supplements or adjunctive therapy, probiotics have shown promising results in preventing, mitigating, and even treating schistosomiasis. This review elucidates the potential mechanisms of this three-way parasite-host-microbiome interaction by summarizing schistosome-mediated intestinal flora disorders, local immune changes, and host metabolic changes, and elaborates the important role of the gut microbiome in liver disease after schistosome infection through the gut-liver axis. Understanding the mechanisms behind this interaction may aid in the discovery of probiotics as novel therapeutic targets and sustainable control strategies for schistosomiasis.
Collapse
Affiliation(s)
- Ao Hong
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Abdulrahim Umar
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Hao Chen
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Zheng Yu
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan, China
| | - Jing Huang
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China.
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan, China.
| |
Collapse
|
21
|
Ja'afaru SC, Uzairu A, Chandra A, Sallau MS, Ndukwe GI, Ibrahim MT, Qamar I. Ligand based-design of potential schistosomiasis inhibitors through QSAR, homology modeling, molecular dynamics, pharmacokinetics, and DFT studies. J Taibah Univ Med Sci 2024; 19:429-446. [PMID: 38440085 PMCID: PMC10909894 DOI: 10.1016/j.jtumed.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/03/2024] [Accepted: 02/19/2024] [Indexed: 03/06/2024] Open
Abstract
Objectives Schistosomiasis, a neglected tropical disease, is a leading cause of mortality in affected geographic areas. Currently, because no vaccine for schistosomiasis is available, control measures rely on widespread administration of the drug praziquantel (PZQ). The mass administration of PZQ has prompted concerns regarding the emergence of drug resistance. Therefore, new therapeutic targets and potential compounds are necessary to combat schistosomiasis. Methods Twenty-four potent derivatives of PZQ were optimized via density functional theory (DFT) at the B3LYP/6-31G∗ level. Quantitative structureactivity relationship (QSAR) models were generated and statistically validated, and a lead candidate was selected to develop therapeutic options with improved efficacy against schistosomiasis. The biological and binding energies of the designed compounds were evaluated. In addition, molecular dynamics; drug-likeness; absorption, distribution, metabolism, excretion, and toxicity (ADMET); and DFT studies were performed on the newly designed compounds. Results Five QSAR models were generated, among which model 1 had favorable validation parameters (R2train: 0.957, R2adj: 0.941, LOF: 0.101, Q2cv: 0.906, and R2test: 0.783) and was chosen to identify a lead candidate. Other statistical parameters for the chosen model included variance inflation factor values ranging from 1.242 to 1.678, and a Y-scrambling coefficient (cRp2) of 0.747. Five new compounds were designed with improved predicted activity (ranging from 5.081 to 7.022) surpassing those of both the lead compound and PZQ (predicted pEC50 of 5.545). Molecular dynamics simulation revealed high binding affinity of the proposed compounds toward the target receptor. ADMET and drug-likeness assessments indicated adherence to Lipinski's rule of five criteria, thereby suggesting pharmacological and oral safety. In addition, DFT analysis indicated resistance to electronic alteration during chemical reactions. Conclusion The proposed compounds exhibited potential drug characteristics, thus indicating their suitability for further investigation to enhance schistosomiasis treatment options.
Collapse
Affiliation(s)
- Saudatu C. Ja'afaru
- Department of Chemistry, Ahmadu Bello University Zaria, Nigeria
- Department of Chemistry, Aliko Dangote University of Science and Technology, Wudil, Kano, Nigeria
| | - Adamu Uzairu
- Department of Chemistry, Ahmadu Bello University Zaria, Nigeria
| | - Anshuman Chandra
- School of Physical Sciences, JawaharLal Nehru University, New Delhi, India
| | | | | | | | - Imteyaz Qamar
- School of Biotechnology, Gautam Buddha University, Greater Noida, India
| |
Collapse
|
22
|
Loredan DG, Devlin JC, Khanna KM, Loke P. Recruitment and Maintenance of CX3CR1+CD4+ T Cells during Helminth Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:632-644. [PMID: 38180236 PMCID: PMC10954162 DOI: 10.4049/jimmunol.2300451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 12/06/2023] [Indexed: 01/06/2024]
Abstract
Distinct subsets of T lymphocytes express CX3CR1 under inflammatory conditions, but little is known about CX3CR1+CD4+ T cells during type 2 inflammation in helminth infections. In this study, we used a fate-mapping mouse model to characterize CX3CR1+CD4+ T cells during both acute Nippostrongylus brasiliensis and chronic Schistosoma mansoni murine models of helminth infections, revealing CX3CR1+CD4+ T cells to be an activated tissue-homing subset with varying capacity for cytokine production. Tracking these cells over time revealed that maintenance of CX3CR1 itself along with a TH2 phenotype conferred a survival advantage in the inflamed tissue. Single-cell RNA sequencing analysis of fate-mapped CX3CR1+CD4+ T cells from both the peripheral tissue and the spleen revealed a considerable level of diversity and identified a distinct population of BCL6+TCF-1+PD1+CD4+ T cells in the spleen during helminth infections. Conditional deletion of BCL6 in CX3CR1+ cells resulted in fewer CX3CR1+CD4+ T cells during infection, indicating a role in sustaining CD4+ T cell responses to helminth infections. Overall, our studies revealed the behavior and heterogeneity of CX3CR1+CD4+ T cells during type 2 inflammation in helminth infections and identified BCL6 to be important in their maintenance.
Collapse
Affiliation(s)
- Denis G. Loredan
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Vilcek Institute of Graduate Biomedical Sciences, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Joseph C. Devlin
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Kamal M. Khanna
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - P’ng Loke
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
23
|
Gimmelli R, Papoff G, Saccoccia F, Lalli C, Gemma S, Campiani G, Ruberti G. Effects of structurally distinct human HDAC6 and HDAC6/HDAC8 inhibitors against S. mansoni larval and adult worm stages. PLoS Negl Trop Dis 2024; 18:e0011992. [PMID: 38416775 PMCID: PMC10927086 DOI: 10.1371/journal.pntd.0011992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 03/11/2024] [Accepted: 02/13/2024] [Indexed: 03/01/2024] Open
Abstract
Schistosomiasis is a major neglected parasitic disease that affects more than 240 million people worldwide caused by Platyhelminthes of the genus Schistosoma. The treatment of schistosomiasis relies on the long-term application of a single safe drug, praziquantel (PZQ). Unfortunately, PZQ is very effective on adult parasites and poorly on larval stage and immature juvenile worms; this can partially explain the re-infection in endemic areas where patients are likely to host parasites at different developmental stages concurrently. Moreover, the risk of development of drug resistance because of the widespread use of a single drug in a large population is nowadays a serious threat. Hence, research aimed at identifying novel drugs to be used alone or in combination with PZQ is needed. Schistosomes display morphologically distinct stages during their life cycle and epigenetic mechanisms are known to play important roles in parasite growth, survival, and development. Histone deacetylase (HDAC) enzymes, particularly HDAC8, are considered valuable for therapeutic intervention for the treatment of schistosomiasis. Herein, we report the phenotypic screening on both larvae and adult Schistosoma mansoni stages of structurally different HDAC inhibitors selected from the in-house Siena library. All molecules have previously shown inhibition profiles on human HDAC6 and/or HDAC8 enzymes. Among them we identified a quinolone-based HDAC inhibitor, NF2839, that impacts larval and adult parasites as well as egg viability and maturation in vitro. Importantly, this quinolone-based compound also increases histone and tubulin acetylation in S. mansoni parasites, thus representing a leading candidate for the development of new generation anti-Schistosoma chemotherapeutics.
Collapse
Affiliation(s)
- Roberto Gimmelli
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Adriano Buzzati-Traverso Campus, Monterotondo, Rome, Italy
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Roma, Italy
| | - Giuliana Papoff
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Adriano Buzzati-Traverso Campus, Monterotondo, Rome, Italy
| | - Fulvio Saccoccia
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Adriano Buzzati-Traverso Campus, Monterotondo, Rome, Italy
| | - Cristiana Lalli
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Adriano Buzzati-Traverso Campus, Monterotondo, Rome, Italy
| | - Sandra Gemma
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Giovina Ruberti
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Adriano Buzzati-Traverso Campus, Monterotondo, Rome, Italy
| |
Collapse
|
24
|
Li X, Weth O, Haimann M, Möscheid MF, Huber TS, Grevelding CG. Rhodopsin orphan GPCR20 interacts with neuropeptides and directs growth, sexual differentiation, and egg production in female Schistosoma mansoni. Microbiol Spectr 2024; 12:e0219323. [PMID: 38047698 PMCID: PMC10783048 DOI: 10.1128/spectrum.02193-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/17/2023] [Indexed: 12/05/2023] Open
Abstract
IMPORTANCE Schistosomes cause schistosomiasis, one of the neglected tropical diseases as defined by the WHO. For decades, the treatment of schistosomiasis relies on a single drug, praziquantel. Due to its wide use, there is justified fear of resistance against this drug, and a vaccine is not available. Besides its biological relevance in signal transduction processes, the class of G protein-coupled receptors (GPCRs) is also well suited for drug design. Against this background, we characterized one GPCR of Schistosoma mansoni, SmGPCR20, at the molecular and functional level. We identified two potential neuropeptides (NPPs) as ligands, SmNPP26 and SmNPP40, and unraveled their roles, in combination with SmGPCR20, in neuronal processes controlling egg production, oogenesis, and growth of S. mansoni females. Since eggs are closely associated with the pathogenesis of schistosomiasis, our results contribute to the understanding of processes leading to egg production in schistosomes, which is under the control of pairing in this exceptional parasite.
Collapse
Affiliation(s)
- Xuesong Li
- Institute for Parasitology, BFS, Justus Liebig University Giessen, Giessen, Germany
| | - Oliver Weth
- Institute for Parasitology, BFS, Justus Liebig University Giessen, Giessen, Germany
| | - Martin Haimann
- Institute for Parasitology, BFS, Justus Liebig University Giessen, Giessen, Germany
| | - Max F. Möscheid
- Institute for Parasitology, BFS, Justus Liebig University Giessen, Giessen, Germany
| | - Theresa S. Huber
- Institute for Parasitology, BFS, Justus Liebig University Giessen, Giessen, Germany
| | | |
Collapse
|
25
|
Woellner-Santos D, Tahira AC, Malvezzi JVM, Mesel V, Morales-Vicente DA, Trentini MM, Marques-Neto LM, Matos IA, Kanno AI, Pereira ASA, Teixeira AAR, Giordano RJ, Leite LCC, Pereira CAB, DeMarco R, Amaral MS, Verjovski-Almeida S. Schistosoma mansoni vaccine candidates identified by unbiased phage display screening in self-cured rhesus macaques. NPJ Vaccines 2024; 9:5. [PMID: 38177171 PMCID: PMC10767053 DOI: 10.1038/s41541-023-00803-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024] Open
Abstract
Schistosomiasis, a challenging neglected tropical disease, affects millions of people worldwide. Developing a prophylactic vaccine against Schistosoma mansoni has been hindered by the parasite's biological complexity. In this study, we utilized the innovative phage-display immunoprecipitation followed by a sequencing approach (PhIP-Seq) to screen the immune response of 10 infected rhesus macaques during self-cure and challenge-resistant phases, identifying vaccine candidates. Our high-throughput S. mansoni synthetic DNA phage-display library encoded 99.6% of 119,747 58-mer peptides, providing comprehensive coverage of the parasite's proteome. Library screening with rhesus macaques' antibodies, from the early phase of establishment of parasite infection, identified significantly enriched epitopes of parasite extracellular proteins known to be expressed in the digestive tract, shifting towards intracellular proteins during the late phase of parasite clearance. Immunization of mice with a selected pool of PhIP-Seq-enriched phage-displayed peptides from MEG proteins, cathepsins B, and asparaginyl endopeptidase significantly reduced worm burden in a vaccination assay. These findings enhance our understanding of parasite-host immune responses and provide promising prospects for developing an effective schistosomiasis vaccine.
Collapse
Affiliation(s)
- Daisy Woellner-Santos
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo, SP, Brazil
- Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Ana C Tahira
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo, SP, Brazil
| | - João V M Malvezzi
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo, SP, Brazil
- Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Vinicius Mesel
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo, SP, Brazil
| | - David A Morales-Vicente
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo, SP, Brazil
- Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Monalisa M Trentini
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, SP, Brazil
| | - Lázaro M Marques-Neto
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, SP, Brazil
| | - Isaac A Matos
- Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Alex I Kanno
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, SP, Brazil
| | - Adriana S A Pereira
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo, SP, Brazil
- Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - André A R Teixeira
- Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
- Institute for Protein Innovation, Boston, MA, USA
| | | | - Luciana C C Leite
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, SP, Brazil
| | - Carlos A B Pereira
- Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Ricardo DeMarco
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil
| | - Murilo S Amaral
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo, SP, Brazil
| | - Sergio Verjovski-Almeida
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo, SP, Brazil.
- Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
26
|
Carvalho L, Sarcinelli M, Patrício B. Nanotechnological approaches in the treatment of schistosomiasis: an overview. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:13-25. [PMID: 38213572 PMCID: PMC10777326 DOI: 10.3762/bjnano.15.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/06/2023] [Indexed: 01/13/2024]
Abstract
Schistosomiasis causes over 200,000 deaths annually. The current treatment option, praziquantel, presents limitations, including low bioavailability and resistance. In this context, nanoparticles have emerged as a promising option for improving schistosomiasis treatment. Several narrative reviews have been published on this topic. Unfortunately, the lack of clear methodologies presented in these reviews leads to the exclusion of many important studies without apparent justification. This integrative review aims to examine works published in this area with a precise and reproducible method. To achieve this, three databases (i.e., Pubmed, Web of Science, and Scopus) were searched from March 31, 2022, to March 31, 2023. The search results included only original research articles that used nanoparticles smaller than 1 µm in the treatment context. Additionally, a search was conducted in the references of the identified articles to retrieve works that could not be found solely using the original search formula. As a result, 65 articles that met the established criteria were identified. Inorganic and polymeric nanoparticles were the most prevalent nanosystems used. Gold was the primary material used to produce inorganic nanoparticles, while poly(lactic-co-glycolic acid) and chitosan were commonly used to produce polymeric nanoparticles. None of these identified works presented results in the clinical phase. Finally, based on our findings, the outlook appears favorable, as there is a significant diversity of new substances with schistosomicidal potential. However, financial efforts are required to advance these nanoformulations.
Collapse
Affiliation(s)
- Lucas Carvalho
- Laboratory of Parasitic Diseases, FIOCRUZ, Avenida Brasil, 4365, Rio de Janeiro, Brazil
- Post-Graduate Program in Industrial Pharmaceutical Technology, Farmanguinhos, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Michelle Sarcinelli
- Post-Graduate Program in Industrial Pharmaceutical Technology, Farmanguinhos, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Beatriz Patrício
- Post-Graduate Program in Industrial Pharmaceutical Technology, Farmanguinhos, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
- Pharmaceutical and Technological Innovation Laboratory - Department of Physiological Sciences, Biomedical Institute, R. Frei Caneca, 94, Rio de Janeiro, Brazil
| |
Collapse
|
27
|
Maharjan S, Kirk RS, Lawton SP, Walker AJ. Human growth factor-mediated signalling through lipid rafts regulates stem cell proliferation, development and survival of Schistosoma mansoni. Open Biol 2024; 14:230262. [PMID: 38195062 PMCID: PMC10776228 DOI: 10.1098/rsob.230262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/16/2023] [Indexed: 01/11/2024] Open
Abstract
Although the mechanisms by which schistosomes grow and develop in humans are poorly defined, their unique outer tegument layer, which interfaces with host blood, is considered vital to homeostasis of the parasite. Here, we investigated the importance of tegument lipid rafts to the biology of Schistosoma mansoni in the context of host-parasite interactions. We demonstrate the temporal clustering of lipid rafts in response to human epidermal growth factor (EGF) during early somule development, concomitant with the localization of anteriorly orientated EGF receptors (EGFRs) and insulin receptors, mapped using fluorescent EGF/insulin ligand. Methyl-β-cyclodextrin (MβCD)-mediated depletion of cholesterol from lipid rafts abrogated the EGFR/IR binding at the parasite surface and led to modulation of protein kinase C, extracellular signal-regulated kinase, p38 mitogen-activated protein kinase and Akt signalling pathways within the parasite. Furthermore, MβCD-mediated lipid raft disruption, and blockade of EGFRs using canertinib, profoundly reduced somule motility and survival, and attenuated stem cell proliferation and somule growth and development particularly to the fast-growing liver stage. These findings provide a novel paradigm for schistosome development and vitality in the host, driven through host-parasite interactions at the tegument, that might be exploitable for developing innovative therapeutic approaches to combat human schistosomiasis.
Collapse
Affiliation(s)
- Shradha Maharjan
- Molecular Parasitology Laboratory, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames KT1 2EE, UK
| | - Ruth S. Kirk
- Molecular Parasitology Laboratory, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames KT1 2EE, UK
| | - Scott P. Lawton
- Centre for Epidemiology and Planetary Health, SRUC School of Veterinary Medicine, Scotland's Rural College, West Mains Road, Edinburgh EH9 3JG, UK
| | - Anthony J. Walker
- Molecular Parasitology Laboratory, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames KT1 2EE, UK
| |
Collapse
|
28
|
Park SK, Sprague DJ, Rohr CM, Chulkov EG, Petrow I, Kumar S, Marchant JS. The anthelmintic meclonazepam activates a schistosome transient receptor potential channel. J Biol Chem 2024; 300:105528. [PMID: 38043794 PMCID: PMC10788528 DOI: 10.1016/j.jbc.2023.105528] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/15/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023] Open
Abstract
Parasitic flatworms cause various clinical and veterinary infections that impart a huge burden worldwide. The most clinically impactful infection is schistosomiasis, a neglected tropical disease caused by parasitic blood flukes. Schistosomiasis is treated with praziquantel (PZQ), an old drug introduced over 40 years ago. New drugs are urgently needed, as while PZQ is broadly effective it suffers from several limitations including poor efficacy against juvenile worms, which may prevent it from being completely curative. An old compound that retains efficacy against juvenile worms is the benzodiazepine meclonazepam (MCLZ). However, host side effects caused by benzodiazepines preclude development of MCLZ as a drug and MCLZ lacks an identified parasite target to catalyze rational drug design for engineering out human host activity. Here, we identify a transient receptor potential ion channel of the melastatin subfamily, named TRPMMCLZ, as a parasite target of MCLZ. MCLZ potently activates Schistosoma mansoni TRPMMCLZ through engagement of a binding pocket within the voltage-sensor-like domain of the ion channel to cause worm paralysis, tissue depolarization, and surface damage. TRPMMCLZ reproduces all known features of MCLZ action on schistosomes, including a lower activity versus Schistosoma japonicum, which is explained by a polymorphism within this voltage-sensor-like domain-binding pocket. TRPMMCLZ is distinct from the TRP channel targeted by PZQ (TRPMPZQ), with both anthelmintic chemotypes targeting unique parasite TRPM paralogs. This advances TRPMMCLZ as a novel druggable target that could circumvent any target-based resistance emerging in response to current mass drug administration campaigns centered on PZQ.
Collapse
Affiliation(s)
- Sang-Kyu Park
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Daniel J Sprague
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Program in Chemical Biology, Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Claudia M Rohr
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Evgeny G Chulkov
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Ian Petrow
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Sushil Kumar
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jonathan S Marchant
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| |
Collapse
|
29
|
LoVerde PT. Schistosomiasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1454:75-105. [PMID: 39008264 DOI: 10.1007/978-3-031-60121-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Schistosomiasis is a major cause of morbidity in the world and almost 800 million people worldwide are at risk for schistosomiasis; it is second only to malaria as a major infectious disease. Globally, it is estimated that the disease affects more than 250 million people in 78 countries of the world and is responsible for some 280,000-500,000 deaths each year. The three major schistosomes infecting humans are Schistosoma mansoni, S. japonicum, and S. haematobium. This chapter covers a wide range of aspects of schistosomiasis, including basic biology of the parasites, epidemiology, immunopathology, treatment, control, vaccines, and genomics/proteomics. In this chapter, the reader will understand the significant toll this disease takes in terms of mortality and morbidity. A description of the various life stages of schistosomes is presented, which will be informative for both those unfamiliar with the disease and experienced scientists. Clinical and public health aspects are addressed that cover acute and chronic disease, diagnosis, current treatment regimens and alternative drugs, and schistosomiasis control programs. A brief overview of genomics and proteomics is included that details recent advances in the field that will help scientists investigate the molecular biology of schistosomes. The reader will take away an appreciation for general aspects of schistosomiasis and the current research advances.
Collapse
Affiliation(s)
- Philip T LoVerde
- Department of Biochemistry and Structural Biology, University of Texas Health, San Antonio, TX, USA.
| |
Collapse
|
30
|
Dos Santos Nascimento IJ, Albino SL, da Silva Menezes KJ, de Azevedo Teotônio Cavalcanti M, de Oliveira MS, Mali SN, de Moura RO. Targeting SmCB1: Perspectives and Insights to Design Antischistosomal Drugs. Curr Med Chem 2024; 31:2264-2284. [PMID: 37921174 DOI: 10.2174/0109298673255826231011114249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/01/2023] [Accepted: 09/14/2023] [Indexed: 11/04/2023]
Abstract
Neglected tropical diseases (NTDs) are prevalent in tropical and subtropical countries, and schistosomiasis is among the most relevant diseases worldwide. In addition, one of the two biggest problems in developing drugs against this disease is related to drug resistance, which promotes the demand to develop new drug candidates for this purpose. Thus, one of the drug targets most explored, Schistosoma mansoni Cathepsin B1 (SmCB1 or Sm31), provides new opportunities in drug development due to its essential functions for the parasite's survival. In this way, here, the latest developments in drug design studies targeting SmCB1 were approached, focusing on the most promising analogs of nitrile, vinyl sulphones, and peptidomimetics. Thus, it was shown that despite being a disease known since ancient times, it remains prevalent throughout the world, with high mortality rates. The therapeutic arsenal of antischistosomal drugs (ASD) consists only of praziquantel, which is widely used for this purpose and has several advantages, such as efficacy and safety. However, it has limitations, such as the impossibility of acting on the immature worm and exploring new targets to overcome these limitations. SmCB1 shows its potential as a cysteine protease with a catalytic triad consisting of Cys100, His270, and Asn290. Thus, design studies of new inhibitors focus on their catalytic mechanism for designing new analogs. In fact, nitrile and sulfonamide analogs show the most significant potential in drug development, showing that these chemical groups can be better exploited in drug discovery against schistosomiasis. We hope this manuscript guides the authors in searching for promising new antischistosomal drugs.
Collapse
Affiliation(s)
- Igor José Dos Santos Nascimento
- Pharmacy Department, Cesmac University Center, Maceió, 57051-160, Brazil
- Laboratório de Desenvolvimento e Síntese de Fármacos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, Brazil
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba, Campina Grande, 58429-500, Brazil
| | - Sonaly Lima Albino
- Laboratório de Desenvolvimento e Síntese de Fármacos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, Brazil
| | - Karla Joane da Silva Menezes
- Laboratório de Desenvolvimento e Síntese de Fármacos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, Brazil
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba, Campina Grande, 58429-500, Brazil
| | - Misael de Azevedo Teotônio Cavalcanti
- Laboratório de Desenvolvimento e Síntese de Fármacos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, Brazil
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba, Campina Grande, 58429-500, Brazil
| | - Mozaniel Santana de Oliveira
- Coordination of Botany-Laboratory Adolpho Ducke, Avenida Perimetral, Museu Paraense Emílio Goeldi, 1901, Belém, 66077-530, PA Brazil
| | - Suraj N Mali
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga East, Mumbai, 400019, India
| | - Ricardo Olimpio de Moura
- Laboratório de Desenvolvimento e Síntese de Fármacos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, Brazil
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba, Campina Grande, 58429-500, Brazil
| |
Collapse
|
31
|
de Luna Rocha TC, Dos Santos Lima MJ, Nunes do Nascimento JL, Ferreira de Oliveira J, de Oliveira Silva E, Barbosa Dos Santos VH, de Lima Aires A, de Albuquerque Wanderley Sales V, Atanazio Rosa T, Rolim Neto PJ, Camelo Pessôa de Azevedo Albuquerque M, Alves de Lima MDC, Ferreira da Silva RM. Development and evaluation of the in vitro schistosomicidal activity of solid dispersions based on 2-(-5-bromo-1-H-indole-3-yl-methylene)-N-(naphthalene-1-ylhydrazine-carbothiamide. Exp Parasitol 2024; 256:108626. [PMID: 37972848 DOI: 10.1016/j.exppara.2023.108626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 09/11/2023] [Accepted: 09/25/2023] [Indexed: 11/19/2023]
Abstract
Among all the neglected diseases, schistosomiasis is considered the second most important parasitic infection after malaria. Praziquantel is the most widely used drug for this disease, but its exclusive use may result in the development of drug-resistant schistosomiasis. To increase the control of the disease, new drugs have been developed as alternative treatments, among them 2-(-5-bromo-1-h-indole-3-yl-methylene)-N-(naphthalene-1-ylhydrazine-carbothiamide (LQIT/LT-50), which showed promising schistosomicidal activity in nonclinical studies. However, LQIT/LT-50 presents low solubility in water, resulting in reduced bioavailability. To overcome this solubility problem, the present study aimed to develop LQIT/LT-50 solid dispersions for the treatment of schistosomiasis. Solid dispersions were prepared through the solvent method using Soluplus©, polyethylene glycol (PEG) or polyvinylpyrrolidone (PVP K-30) as hydrophilic carriers. The formulations with the best results in the compatibility tests, aqueous solubility and preliminary stability studies have undergone solubility tests and physicochemical characterizations by Fourier-transform infrared spectroscopy (FTIR), x-ray diffractometry (XRD), exploratory differential calorimetry (DSC), thermogravimetry (TG) and Raman spectroscopy. Finally, the schistosomicidal activity was evaluated in vitro. The phycochemical analyzes showed that when using PVP K-30, there was an interaction between the PVP K-30 and LQIT/LT-50, proving the successful development of the solid dispersion. Furthermore, an increase in the solubility of the new system was observed (LQIT/LT-50:PVP K-30) in addition to the improvement in the in vitro shistosomidal activity at 1:4 (w/w) molar ratio (i.e., 20% drug loading) when compared to LQIT/LT-50 alone. The development of the LQIT/LT-50:PVP K-30 1:4 solid dispersion is encouraging for the future development of new pharmaceutical solid formulations, aiming the schistosomicidal treatment.
Collapse
Affiliation(s)
| | | | | | - Jamerson Ferreira de Oliveira
- Institute of Health Sciences, University of International Integration of Afro-Brazilian Lusophony, Redenção, Ceará, Brazil
| | | | | | - André de Lima Aires
- Department of Tropical Medicine, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | | | - Talita Atanazio Rosa
- Department of Pharmacy, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Pedro José Rolim Neto
- Department of Pharmacy, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | | | | | | |
Collapse
|
32
|
D’Abbrunzo I, Procida G, Perissutti B. Praziquantel Fifty Years on: A Comprehensive Overview of Its Solid State. Pharmaceutics 2023; 16:27. [PMID: 38258039 PMCID: PMC10821272 DOI: 10.3390/pharmaceutics16010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
This review discusses the entire progress made on the anthelmintic drug praziquantel, focusing on the solid state and, therefore, on anhydrous crystalline polymorphs, amorphous forms, and multicomponent systems (i.e., hydrates, solvates, and cocrystals). Despite having been extensively studied over the last 50 years, new polymorphs and the greater part of their cocrystals have only been identified in the past decade. Progress in crystal engineering science (e.g., the use of mechanochemistry as a solid form screening tool and more strategic structure-based methods), along with the development of analytical techniques, including Synchrotron X-ray analyses, spectroscopy, and microscopy, have furthered the identification of unknown crystal structures of the drug. Also, computational modeling has significantly contributed to the prediction and design of new cocrystals by considering structural conformations and interactions energy. Whilst the insights on praziquantel polymorphs discussed in the present review will give a significant contribution to controlling their formation during manufacturing and drug formulation, the detailed multicomponent forms will help in designing and implementing future praziquantel-based functional materials. The latter will hopefully overcome praziquantel's numerous drawbacks and exploit its potential in the field of neglected tropical diseases.
Collapse
Affiliation(s)
| | | | - Beatrice Perissutti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy (G.P.)
| |
Collapse
|
33
|
Tadele T, Astatkie A, Tadesse BT, Makonnen E, Aklillu E, Abay SM. Efficacy and safety of praziquantel treatment against Schistosoma mansoni infection among pre-school age children in southern Ethiopia. Trop Med Health 2023; 51:72. [PMID: 38124206 PMCID: PMC10731898 DOI: 10.1186/s41182-023-00562-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Preventive chemotherapy with a single dose of praziquantel given to an all-at-risk population through mass drug administration is the cornerstone intervention to control and eliminate schistosomiasis as a public health problem. This intervention mainly targets school age children, and pre-school age children (pre-SAC) are excluded from receiving preventive chemotherapy, partly due to scarcity of data on praziquantel treatment outcomes. METHODS We conducted active efficacy and safety surveillance of praziquantel treatment among 240 Schistosoma mansoni-infected pre-SAC who received a single dose of praziquantel (40 mg/kg) in southern Ethiopia. The study outcomes were egg reduction rates (ERR) and cure rates (CRs) four weeks after treatment using the Kato-Katz technique and treatment-associated adverse events (AEs) that occurred within 8 days post-treatment. RESULTS The overall ERR was 93.3% (WHO reference threshold ≥ 90%), while the CR was 85.2% (95% CI = 80.0-89.5%). Baseline S. mansoni infection intensity was significantly associated with CRs, 100% among light infected than moderate (83.4%) or heavy (29.4%) infected children. An increase of 100 in baseline S. mansoni egg count per gram of stool resulted in a 26% (95% CI: 17%, 34%) reduction in the odds of cure. The incidence of experiencing at least one type of AE was 23.1% (95% CI: 18.0%, 29.0%). Stomachache, diarrhea, and nausea were the most common AEs. AEs were mild-to-moderate grade and transient. Pre-treatment moderate (ARR = 3.2, 95% CI: 1.69, 6.14) or heavy infection intensity (ARR = 6.5, 95% CI: 3.62, 11.52) was a significant predictor of AEs (p < 0.001). Sex, age, or soil-transmitted helminth coinfections were not significant predictors of CR or AEs. CONCLUSIONS Single-dose praziquantel is tolerable and effective against S. mansoni infection among pre-SAC, and associated AEs are mostly mild-to-moderate and transient. However, the reduced CR in heavily infected and AEs in one-fourth of S. mansoni-infected pre-SAC underscores the need for safety and efficacy monitoring, especially in moderate-to-high infection settings. Integrating pre-SACs in the national deworming programs is recommended to accelerate the elimination of schistosomiasis as a public health problem.
Collapse
Affiliation(s)
- Tafese Tadele
- School of Public Health, College of Medicine and Health Sciences, Hawassa University, P.O. Box 1560, Hawassa, Ethiopia
| | - Ayalew Astatkie
- School of Public Health, College of Medicine and Health Sciences, Hawassa University, P.O. Box 1560, Hawassa, Ethiopia
| | - Birkneh Tilahun Tadesse
- Department of Pediatrics, College of Medicine and Health Sciences, Hawassa University, P.O. Box 1560, Hawassa, Ethiopia
| | - Eyasu Makonnen
- Center for Innovative Drug Development and Therapeutic Trials for Africa, College of Health Sciences, Addis Ababa University, P.O. Box 9086, Addis Ababa, Ethiopia
- Department of Pharmacology and Clinical Pharmacy, College of Health Sciences, Addis Ababa University, P.O. Box 9086, Addis Ababa, Ethiopia
| | - Eleni Aklillu
- Department of Global Public Health, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| | - Solomon Mequanente Abay
- Department of Pharmacology and Clinical Pharmacy, College of Health Sciences, Addis Ababa University, P.O. Box 9086, Addis Ababa, Ethiopia
| |
Collapse
|
34
|
Haapanen S, Angeli A, Tolvanen M, Emameh RZ, Supuran CT, Parkkila S. Cloning, characterization, and inhibition of the novel β-carbonic anhydrase from parasitic blood fluke, Schistosoma mansoni. J Enzyme Inhib Med Chem 2023; 38:2184299. [PMID: 36856011 PMCID: PMC9980027 DOI: 10.1080/14756366.2023.2184299] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
Schistosoma mansoni is an intestinal parasite with one β-class carbonic anhydrase, SmaBCA. We report the sequence enhancing, production, catalytic activity, and inhibition results of the recombinant SmaBCA. It showed significant catalytic activity on CO2 hydration in vitro with kcat 1.38 × 105 s-1 and kcat/Km 2.33 × 107 M-1 s-1. Several sulphonamide inhibitors, from which many are clinically used, showed submicromolar or nanomolar inhibitory effects on SmaBCA. The most efficient inhibitor with a KI of 43.8 nM was 4-(2-amino-pyrimidine-4-yl)-benzenesulfonamide. Other effective inhibitors with KIs in the range of 79.4-95.9 nM were benzolamide, brinzolamide, topiramate, dorzolamide, saccharin, epacadostat, celecoxib, and famotidine. The other tested compounds showed at least micromolar range inhibition against SmaBCA. Our results introduce SmaBCA as a novel target for drug development against schistosomiasis, a highly prevalent parasitic disease.
Collapse
Affiliation(s)
- Susanna Haapanen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland,CONTACT Susanna Haapanen Faculty of Medicine and Health Technology, Tampere University, Tampere, 33520, Finland
| | - Andrea Angeli
- Neurofarba Department, Sezione di Chimica Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Sesto Fiorentino, Italy
| | - Martti Tolvanen
- Department of Computing, University of Turku, Turku, Finland
| | - Reza Zolfaghari Emameh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Claudiu T. Supuran
- Neurofarba Department, Sezione di Chimica Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Sesto Fiorentino, Italy
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland,Fimlab Ltd, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
35
|
Xie S, Lu Y, Wang J, Lin C, Ye P, Liu X, Xiong W, Zeng Z, Zeng D. Development and validation of an LC-MS/MS method for the simultaneous quantification of milbemycin oxime and praziquantel in plasma: application to a pharmacokinetic study in cats. Front Vet Sci 2023; 10:1285932. [PMID: 37964913 PMCID: PMC10642303 DOI: 10.3389/fvets.2023.1285932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/13/2023] [Indexed: 11/16/2023] Open
Abstract
Introduction Milbemycin oxime (MBO) and praziquantel (PZQ) have a broad spectrum of biological activity and are commonly used to treat the parasitic infection in the veterinary clinic. In this study, a fast and efficient LC-MS/MS method was established and validated for the simultaneous determination of MBO, PZQ, cis-4-hydroxylated-PZQ (C-4-OH-PZQ) and trans-4-hydroxylated-PZQ (T-4-OH-PZQ) and in cat plasma. Methods Extraction of analytes and internal standards from cat plasma by acetonitrile protein precipitation, allows rapid processing of large batches of samples. MBO, PZQ, C-4-OH-PZQ, T-4-OH-PZQ, and internal standard (IS) were eluted for 13.5 min on a C18 column with a 0.1% formic acid water/acetonitrile mixture as the mobile phase. Results Results showed that the method had good precision, accuracy, recovery, and linearity. The linearity range was 2.5-250 ng/mL for MBO, and 10-1000 ng/mL for PZQ, C-4-OH-PZQ, and T-4-OH-PZQ. The intra-day and inter-day precision CV values of the tested components were within 15%. The extraction recoveries of the four components ranged from 98.09% to 107.46%. The analytes in plasma remained stable for 6 h at room temperature, 26 h in the autosampler (4 °C), after freeze-thaw (-20°C) cycles, and 60 days in a -20°C freezer. Method sensitivity sufficed for assessing pharmacokinetic parameters of MBO, PZQ, C-4-OH-PZQ, and T-4-OH-PZQ in plasma samples with LLOQ of 2.5 ng/mL for MBO and 10 ng/mL for PZQ, C-4-OH-PZQ, and T-4-OH-PZQ. Conclusion In this study, a selective and sensitive LC-MS/MS method for the simultaneous quantification of MBO, PZQ, C-4-OH-PZQ, and T-4-OH-PZQ in cat plasma was developed and validated.This method had been successfully applied to evaluate the pharmacokinetics of MBO, PZQ, C-4-OH-PZQ, and T-4-OH-PZQ after a single oral administration of 8 mg MBO and 20 mg PZQ in cats.
Collapse
Affiliation(s)
- Shiting Xie
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, Guangzhou, China
| | - Yixing Lu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, Guangzhou, China
| | - Jun Wang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, Guangzhou, China
| | - Changcheng Lin
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, Guangzhou, China
| | - Peiyu Ye
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, Guangzhou, China
| | - Xiaolin Liu
- Livcare (Guangdong) Animal Health Co., Ltd, Qingyuan, China
| | - Wenguang Xiong
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, Guangzhou, China
| | - Zhenling Zeng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, Guangzhou, China
| | - Dongping Zeng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, Guangzhou, China
| |
Collapse
|
36
|
Aboagye IF, Addison YAA. Praziquantel efficacy, urinary and intestinal schistosomiasis reinfection - a systematic review. Pathog Glob Health 2023; 117:623-630. [PMID: 36394218 PMCID: PMC10498796 DOI: 10.1080/20477724.2022.2145070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Praziquantel (PZQ) has been extensively used as the drug of choice for the treatment of schistosomiasis on account of its safety and effectiveness against all major forms of schistosomiasis. However, low cure rate, reduced susceptibility of Schistosoma mansoni to PZQ and treatment failures in S. haematobium infections have been reported, raising concerns about its efficacy. Using the search terms, 'praziquantel efficacy, schistosomiasis, school children, reinfection' as well as defined inclusion criteria, and guided by the PRISMA guidelines, articles from 2001 to 2022 were selected from the PubMed and Google Scholar databases and reviewed to assess their importance to the research question. This review assessed the efficacy of PZQ against schistosomiasis and reinfection rates following treatment of Schistosoma infections in children. Majority of both intestinal and urinary schistosomiasis studies reported comparable egg reduction rates (ERRs) of 94.2% to 99.9% and 91.9% to 98%, respectively. However, ERRs suggestive of sub-optimal PZQ efficacy as well as generally high and comparable cure rates for intestinal (81.2%-99.1%) and urinary (79%-93.7%) schistosomiasis studies were reported. Schistosomiasis reinfection rates varied widely for urinary (8.1%-39.6%) and intestinal (13.9%-63.4%) studies within eight to 28 weeks following PZQ treatment. Praziquantel treatment of urinary and intestinal schistosomiasis should be accompanied by the provision of potable water, toilet, and recreational facilities to reduce reinfection and egg reduction rates and increase cure rate to expedite schistosomiasis elimination.
Collapse
Affiliation(s)
- Isaac Frimpong Aboagye
- Department of Animal Biology and Conservation Science, University of Ghana, Legon-Accra, Ghana
| | | |
Collapse
|
37
|
Otarigho B, Falade MO. Natural Perylenequinone Compounds as Potent Inhibitors of Schistosoma mansoni Glutathione S-Transferase. Life (Basel) 2023; 13:1957. [PMID: 37895339 PMCID: PMC10608284 DOI: 10.3390/life13101957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
The existing treatment strategy for Schistosomiasis centers on praziquantel, a single drug, but its effectiveness is limited due to resistance and lack of preventive benefits. Thus, there is an urgent need for novel antischistosomal agents. Schistosoma glutathione S-transferase (GST) is an essential parasite enzyme, with a high potential for targeted drug discovery. In this study, we conducted a screening of compounds possessing antihelminth properties, focusing on their interaction with the Schistosoma mansoni glutathione S-transferase (SmGST) protein. We demonstrated the unique nature of SmGST in comparison to human GST. Evolutionary analysis indicated its close relationship with other parasitic worms, setting it apart from free-living worms such as C. elegans. Through an assessment of binding pockets and subsequent protein-ligand docking, we identified Scutiaquinone A and Scutiaquinone B, both naturally derived Perylenequinones, as robust binders to SmGST. These compounds have exhibited effectiveness against similar parasites and offer promising potential as antischistosomal agents.
Collapse
Affiliation(s)
- Benson Otarigho
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA
| | | |
Collapse
|
38
|
D'Abbrunzo I, Bianco E, Gigli L, Demitri N, Birolo R, Chierotti MR, Škorić I, Keiser J, Häberli C, Voinovich D, Hasa D, Perissutti B. Praziquantel meets Niclosamide: A dual-drug Antiparasitic Cocrystal. Int J Pharm 2023; 644:123315. [PMID: 37579827 DOI: 10.1016/j.ijpharm.2023.123315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/06/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
In this paper we report a successful example of combining drugs through cocrystallization. Specifically, the novel solid is formed by two anthelminthic drugs, namely praziquantel (PZQ) and niclosamide (NCM) in a 1:3 molar ratio, and it can be obtained through a sustainable one-step mechanochemical process in the presence of micromolar amounts of methanol. The novel solid phase crystallizes in the monoclinic space group of P21/c, showing one PZQ and three NCM molecules linked through homo- and heteromolecular hydrogen bonds in the asymmetric unit, as also attested by SSNMR and FT-IR results. A plate-like habitus is evident from scanning electron microscopy analysis with a melting point of 202.89 °C, which is intermediate to those of the parent compounds. The supramolecular interactions confer favorable properties to the cocrystal, preventing NCM transformation into the insoluble monohydrate both in the solid state and in aqueous solution. Remarkably, the PZQ - NCM cocrystal exhibits higher anthelmintic activity against in vitro S. mansoni models than corresponding physical mixture of the APIs. Finally, due to in vitro promising results, in vivo preliminary tests on mice were also performed through the administration of minicapsules size M.
Collapse
Affiliation(s)
- Ilenia D'Abbrunzo
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, P.le Europa 1, 34127 Trieste, Italy.
| | - Emma Bianco
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, P.le Europa 1, 34127 Trieste, Italy
| | - Lara Gigli
- Elettra-Sincrotrone Trieste, S.S. 14 Km 163.5 in Area Science Park, Basovizza-Trieste, Italy.
| | - Nicola Demitri
- Elettra-Sincrotrone Trieste, S.S. 14 Km 163.5 in Area Science Park, Basovizza-Trieste, Italy.
| | - Rebecca Birolo
- Department of Chemistry and NIS Centre, University of Torino, V. Giuria 7, 10125 Torino, Italy
| | - Michele R Chierotti
- Department of Chemistry and NIS Centre, University of Torino, V. Giuria 7, 10125 Torino, Italy.
| | - Irena Škorić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Jennifer Keiser
- Department of Medical Parasitology, Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland; University of Basel, Basel 4000, Switzerland
| | - Cécile Häberli
- Department of Medical Parasitology, Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland; University of Basel, Basel 4000, Switzerland
| | - Dario Voinovich
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, P.le Europa 1, 34127 Trieste, Italy
| | - Dritan Hasa
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, P.le Europa 1, 34127 Trieste, Italy.
| | - Beatrice Perissutti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, P.le Europa 1, 34127 Trieste, Italy.
| |
Collapse
|
39
|
Faiad SM, Williams MA, Goodman M, Sokolow S, Olden JD, Mitchell K, Andriantsoa R, Gordon Jones JP, Andriamaro L, Ravoniarimbinina P, Rasamy J, Ravelomanana T, Ravelotafita S, Ravo R, Rabinowitz P, De Leo GA, Wood CL. Temperature affects predation of schistosome-competent snails by a novel invader, the marbled crayfish Procambarus virginalis. PLoS One 2023; 18:e0290615. [PMID: 37703262 PMCID: PMC10499222 DOI: 10.1371/journal.pone.0290615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 08/12/2023] [Indexed: 09/15/2023] Open
Abstract
The human burden of environmentally transmitted infectious diseases can depend strongly on ecological factors, including the presence or absence of natural enemies. The marbled crayfish (Procambarus virginalis) is a novel invasive species that can tolerate a wide range of ecological conditions and colonize diverse habitats. Marbled crayfish first appeared in Madagascar in 2005 and quickly spread across the country, overlapping with the distribution of freshwater snails that serve as the intermediate host of schistosomiasis-a parasitic disease of poverty with human prevalence ranging up to 94% in Madagascar. It has been hypothesized that the marbled crayfish may serve as a predator of schistosome-competent snails in areas where native predators cannot and yet no systematic study to date has been conducted to estimate its predation rate on snails. Here, we experimentally assessed marbled crayfish consumption of uninfected and infected schistosome-competent snails (Biomphalaria glabrata and Bulinus truncatus) across a range of temperatures, reflective of the habitat range of the marbled crayfish in Madagascar. We found that the relationship between crayfish consumption and temperature is unimodal with a peak at ~27.5°C. Per-capita consumption increased with body size and was not affected either by snail species or their infectious status. We detected a possible satiation effect, i.e., a small but significant reduction in per-capita consumption rate over the 72-hour duration of the predation experiment. Our results suggest that ecological parameters, such as temperature and crayfish weight, influence rates of consumption and, in turn, the potential impact of the marbled crayfish invasion on snail host populations.
Collapse
Affiliation(s)
- Sara M. Faiad
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, United States of America
| | - Maureen A. Williams
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, United States of America
- Department of Biology, McDaniel College, Westminster, MD, United States of America
| | - Maurice Goodman
- Hopkins Marine Station, Dept. of Oceans and of Earth System Science, Doerr School of Sustainability, Stanford University, Stanford, CA, United States of America
| | - Susanne Sokolow
- Hopkins Marine Station, Dept. of Oceans and of Earth System Science, Doerr School of Sustainability, Stanford University, Stanford, CA, United States of America
- Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, United States of America
| | - Julian D. Olden
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, United States of America
| | - Kaitlyn Mitchell
- Hopkins Marine Station, Dept. of Oceans and of Earth System Science, Doerr School of Sustainability, Stanford University, Stanford, CA, United States of America
| | - Ranja Andriantsoa
- Réseau International Schistosomiase Environnement Aménagement et Lutte (RISEAL) Madagascar, Madagascar
| | | | - Luciano Andriamaro
- Réseau International Schistosomiase Environnement Aménagement et Lutte (RISEAL) Madagascar, Madagascar
| | | | - Jeanne Rasamy
- Réseau International Schistosomiase Environnement Aménagement et Lutte (RISEAL) Madagascar, Madagascar
- Department of Zoology and Animal Biodiversity, University of Antananarivo, Antananarivo, Madagascar
| | - Tsilavina Ravelomanana
- Réseau International Schistosomiase Environnement Aménagement et Lutte (RISEAL) Madagascar, Madagascar
- Department of Zoology and Animal Biodiversity, University of Antananarivo, Antananarivo, Madagascar
| | - Salohy Ravelotafita
- Department of Zoology and Animal Biodiversity, University of Antananarivo, Antananarivo, Madagascar
| | - Ranaivosolo Ravo
- Department of Zoology and Animal Biodiversity, University of Antananarivo, Antananarivo, Madagascar
| | - Peter Rabinowitz
- Department of Environmental/Occupational Health Sciences, Global Health, University of Washington, Seattle, WA, United States of America
- Center for One Health Research (COHR), University of Washington, Seattle, WA, United States of America
| | - Giulio A. De Leo
- Hopkins Marine Station, Dept. of Oceans and of Earth System Science, Doerr School of Sustainability, Stanford University, Stanford, CA, United States of America
- Woods Institute for the Environment, Stanford University, Stanford, CA, United States of America
| | - Chelsea L. Wood
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, United States of America
| |
Collapse
|
40
|
Wit J, Dilks CM, Zhang G, Guisbert KSK, Zdraljevic S, Guisbert E, Andersen EC. Praziquantel inhibits Caenorhabditis elegans development and species-wide differences might be cct-8-dependent. PLoS One 2023; 18:e0286473. [PMID: 37561720 PMCID: PMC10414639 DOI: 10.1371/journal.pone.0286473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/21/2023] [Indexed: 08/12/2023] Open
Abstract
Anthelmintic drugs are used to treat parasitic roundworm and flatworm infections in humans and other animals. Caenorhabditis elegans is an established model to investigate anthelmintics used to treat roundworms. In this study, we use C. elegans to examine the mode of action and the mechanisms of resistance against the flatworm anthelmintic drug praziquantel (PZQ), used to treat trematode and cestode infections. We found that PZQ inhibited development and that this developmental delay varies by genetic background. Interestingly, both enantiomers of PZQ are equally effective against C. elegans, but the right-handed PZQ (R-PZQ) is most effective against schistosome infections. We conducted a genome-wide association mapping with 74 wild C. elegans strains to identify a region on chromosome IV that is correlated with differential PZQ susceptibility. Five candidate genes in this region: cct-8, znf-782, Y104H12D.4, Y104H12D.2, and cox-18, might underlie this variation. The gene cct-8, a subunit of the protein folding complex TRiC, has variation that causes a putative protein coding change (G226V), which is correlated with reduced developmental delay. Gene expression analysis suggests that this variant correlates with slightly increased expression of both cct-8 and hsp-70. Acute exposure to PZQ caused increased expression of hsp-70, indicating that altered TRiC function might be involved in PZQ responses. To test if this variant affects development upon exposure to PZQ, we used CRISPR-Cas9 genome editing to introduce the V226 allele into the N2 genetic background (G226) and the G226 allele into the JU775 genetic background (V226). These experiments revealed that this variant was not sufficient to explain the effects of PZQ on development. Nevertheless, this study shows that C. elegans can be used to study PZQ mode of action and resistance mechanisms. Additionally, we show that the TRiC complex requires further evaluation for PZQ responses in C. elegans.
Collapse
Affiliation(s)
- Janneke Wit
- Molecular Biosciences, Northwestern University, Evanston, IL, United States of America
| | - Clayton M. Dilks
- Molecular Biosciences, Northwestern University, Evanston, IL, United States of America
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, United States of America
| | - Gaotian Zhang
- Molecular Biosciences, Northwestern University, Evanston, IL, United States of America
| | - Karen S. Kim Guisbert
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, United States of America
| | - Stefan Zdraljevic
- Molecular Biosciences, Northwestern University, Evanston, IL, United States of America
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, United States of America
| | - Eric Guisbert
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, United States of America
| | - Erik C. Andersen
- Molecular Biosciences, Northwestern University, Evanston, IL, United States of America
| |
Collapse
|
41
|
Kasago FM, Häberli C, Keiser J, Masamba W. Design, Synthesis and Evaluation of Praziquantel Analogues and New Molecular Hybrids as Potential Antimalarial and Anti-Schistosomal Agents. Molecules 2023; 28:5184. [PMID: 37446846 DOI: 10.3390/molecules28135184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Malaria and schistosomiasis are two of the neglected tropical diseases that persistently wreak havoc worldwide. Although many antimalarial drugs such as chloroquine are readily available, the emergence of drug resistance necessitates the development of new therapies to combat this disease. Conversely, Praziquantel (PZQ) remains the sole effective drug against schistosomiasis, but its extensive use raises concerns about the potential for drug resistance to develop. In this project, the concept of molecular hybridization was used as a strategy to design the synthesis of new molecular hybrids with potential antimalarial and antischistosomal activity. A total of seventeen molecular hybrids and two PZQ analogues were prepared by coupling 6-alkylpraziquanamines with cinnamic acids and cyclohexane carboxylic acid, respectively. The synthesised compounds were evaluated for their antimalarial and antischistosomal activity; while all of the above compounds were inactive against Plasmodium falciparum (IC50 > 6 µM), many were active against schistosomiasis with four particular compounds exhibiting up to 100% activity against newly transformed schistosomula and adult worms at 50 µM. Compared to PZQ, the reference drug, the activity of which is 91.7% at 1 µM, one particular molecular hybrid, compound 32, which bears a para-isopropyl group on the cinnamic acid moiety, exhibited a notable activity at 10 µM (78.2% activity). This compound has emerged as the front runner candidate that might, after further optimization, hold promise as a potential lead compound in the fight against schistosomiasis.
Collapse
Affiliation(s)
- Freddy Mugisho Kasago
- Department of Chemical and Physical Sciences, Faculty of Natural Sciences, Walter Sisulu University, Nelson Mandela Drive, Mthatha 5117, South Africa
| | - Cécile Häberli
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Kreuzstr. 2, CH-4123 Allschwil, Switzerland
| | - Jennifer Keiser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Kreuzstr. 2, CH-4123 Allschwil, Switzerland
| | - Wayiza Masamba
- Department of Chemical and Physical Sciences, Faculty of Natural Sciences, Walter Sisulu University, Nelson Mandela Drive, Mthatha 5117, South Africa
| |
Collapse
|
42
|
Zhu P, Wu K, Zhang C, Batool SS, Li A, Yu Z, Huang J. Advances in new target molecules against schistosomiasis: A comprehensive discussion of physiological structure and nutrient intake. PLoS Pathog 2023; 19:e1011498. [PMID: 37498810 PMCID: PMC10374103 DOI: 10.1371/journal.ppat.1011498] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023] Open
Abstract
Schistosomiasis, a severe parasitic disease, is primarily caused by Schistosoma mansoni, Schistosoma japonicum, or Schistosoma haematobium. Currently, praziquantel is the only recommended drug for human schistosome infection. However, the lack of efficacy of praziquantel against juvenile worms and concerns about the emergence of drug resistance are driving forces behind the research for an alternative medication. Schistosomes are obligatory parasites that survive on nutrients obtained from their host. The ability of nutrient uptake depends on their physiological structure. In short, the formation and maintenance of the structure and nutrient supply are mutually reinforcing and interdependent. In this review, we focus on the structural features of the tegument, esophagus, and intestine of schistosomes and their roles in nutrient acquisition. Moreover, we introduce the significance and modes of glucose, lipids, proteins, and amino acids intake in schistosomes. We linked the schistosome structure and nutrient supply, introduced the currently emerging targets, and analyzed the current bottlenecks in the research and development of drugs and vaccines, in the hope of providing new strategies for the prevention and control of schistosomiasis.
Collapse
Affiliation(s)
- Peng Zhu
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
| | - Kaijuan Wu
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
| | - Chaobin Zhang
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
| | - Syeda Sundas Batool
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Anqiao Li
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
| | - Zheng Yu
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Jing Huang
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| |
Collapse
|
43
|
Petukhova VZ, Aboagye SY, Ardini M, Lullo RP, Fata F, Byrne ME, Gabriele F, Martin LM, Harding LNM, Gone V, Dangi B, Lantvit DD, Nikolic D, Ippoliti R, Effantin G, Ling WL, Johnson JJ, Thatcher GRJ, Angelucci F, Williams DL, Petukhov PA. Non-covalent inhibitors of thioredoxin glutathione reductase with schistosomicidal activity in vivo. Nat Commun 2023; 14:3737. [PMID: 37349300 PMCID: PMC10287695 DOI: 10.1038/s41467-023-39444-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 06/12/2023] [Indexed: 06/24/2023] Open
Abstract
Only praziquantel is available for treating schistosomiasis, a disease affecting more than 200 million people. Praziquantel-resistant worms have been selected for in the lab and low cure rates from mass drug administration programs suggest that resistance is evolving in the field. Thioredoxin glutathione reductase (TGR) is essential for schistosome survival and a validated drug target. TGR inhibitors identified to date are irreversible and/or covalent inhibitors with unacceptable off-target effects. In this work, we identify noncovalent TGR inhibitors with efficacy against schistosome infections in mice, meeting the criteria for lead progression indicated by WHO. Comparisons with previous in vivo studies with praziquantel suggests that these inhibitors outperform the drug of choice for schistosomiasis against juvenile worms.
Collapse
Grants
- R33 AI127635 NIAID NIH HHS
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases (Division of Intramural Research of the NIAID)
- Oncomelania hupensis subsp. hupensis, Chinese strain, infected with S. japonicum, Chinese strain, and Biomphalaria glabrata, strain NMRI, infected with S. mansoni, strain NMRI, were provided by the NIAID Schistosomiasis Resource Center for distribution through BEI Resources, NIAID, NIH. We are grateful to Dr. Guy Schoehn (Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, Grenoble, France), Prof. Beatrice Vallone (Sapienza University of Rome, Italy) and Dr. Linda C. Montemiglio (IBPM, National Research Council, Italy) for helpful discussions of the cryo-EM studies. We acknowledge the Elettra-Sincrotrone Trieste (Italy) for support in X-ray data collections and the European Synchrotron Radiation Facility for provision of microscope time on CM01. The study was funded in part by US NIH/NIAID R33AI127635 to F.A., P.A.P., G.R.T. and D.L.W. This work benefited from access to Research Resources Centre and UICentre at University of Illinois at Chicago and used the platforms of the Grenoble Instruct-ERIC center (ISBG; UAR 3518 CNRS-CEA-UGA-EMBL) within the Grenoble Partnership for Structural Biology (PSB), supported by FRISBI (ANR-10-INBS-0005-02) and GRAL, financed within the University Grenoble Alpes graduate school (Ecoles Universitaires de Recherche) CBH-EUR-GS (ANR-17-EURE-0003). The IBS Electron Microscope facility is supported by the Auvergne Rhône-Alpes Region, the Fonds Feder, the Fondation pour la Recherche Médicale and GIS-IBiSA. The IBS acknowledges integration into the Interdisciplinary Research Institute of Grenoble (IRIG, CEA). M.A. has been supported by MIUR - Ministero dell'Istruzione Ministero dell'Università e della Ricerca (Ministry of Education, University and Research) under the national project FSE/FESR - PON Ricerca e Innovazione 2014-2020 (N° AIM1887574, CUP: E18H19000350007). We acknowledge OpenEye/Cadence for providing us with an academic license for the software used in these studies.
Collapse
Affiliation(s)
- Valentina Z Petukhova
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Sammy Y Aboagye
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA
| | - Matteo Ardini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Rachel P Lullo
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA
| | - Francesca Fata
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Margaret E Byrne
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA
| | - Federica Gabriele
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Lucy M Martin
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA
| | - Luke N M Harding
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Vamshikrishna Gone
- UICentre, Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Bikash Dangi
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Daniel D Lantvit
- UICentre, Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Dejan Nikolic
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Rodolfo Ippoliti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Grégory Effantin
- University of Grenoble Alpes, CEA, CNRS, IBS, F-38000, Grenoble, France
| | - Wai Li Ling
- University of Grenoble Alpes, CEA, CNRS, IBS, F-38000, Grenoble, France
| | - Jeremy J Johnson
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Gregory R J Thatcher
- Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, AZ, USA
| | - Francesco Angelucci
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.
| | - David L Williams
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA.
| | - Pavel A Petukhov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
44
|
Alghamdi T, Salem DA, El-Refaei MF. Anti-angiogenic and anti-proliferative activity of ziziphus leaf extract as a novel potential therapeutic agent for reducing hepatic injury in experimental hamster schistosomiasis. PLoS Negl Trop Dis 2023; 17:e0011426. [PMID: 37339146 DOI: 10.1371/journal.pntd.0011426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/30/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND Schistosomiasis is one of the most prevalent helminthic infections worldwide. Praziquantel (PZQ) resistance poses a possible danger to the disease's ability to be controlled. Little is known about the role of Ziziphus spina-christi leaf extract (ZLE) in the treatment of hepatic schistosomiasis. However, no study has explored ZLE's anti-angiogenic and anti-proliferative activity as a possible mechanism for reducing hepatic injury in this context. Therefore, this study aimed to evaluate the therapeutic potential of ZLE as an anti-angiogenic, and anti-proliferative agent in hamsters infected with S. mansoni. METHODS Fifty hamsters were used and divided into 5 groups (10 hamsters each); noninfected untreated (controls), noninfected treated with ZLE, infected untreated, infected treated with PZQ- and infected treated with ZLE. Anti-angiogenic and anti-fibrotic effects of the drugs were assessed pathologically through the immunohistochemical expression of VEGF, Ki-67, and TGF β1 in liver sections. Some oxidative stress parameters were measured in hepatic homogenates (NO, GSH, GST, and SOD), and serum liver enzymes were also assessed. RESULTS A significant decrease in worm burden, granuloma size, granuloma area, and numbers in the ZLE- and PZQ-treated groups compared to the infected untreated group, and the decrease in granulomas number and tissue egg load was significantly lower in PZQ treated group compared to ZLE treated group (p<0.05). ZLE exhibited significant anti-angiogenic and anti-fibrotic effects on granulomas, illustrated by significantly lower expression of VEGF and TGF-β1 than infected untreated and PZQ-treated groups. ZLE exhibits antiproliferative activity evidenced by a significant reduction of positive Ki-67 hepatocytes percentage compared to the infected untreated group. Moreover, ZLE exhibits potent antioxidant effects evidenced by a significantly lowered NO and conservation of hepatic GSH, GST, and SOD in hepatic homogenates compared to infected untreated and PZQ-treated groups (p<0.05). CONCLUSION Our results point to ZLE as a promising hepatoprotective therapeutic tool in the treatment of schistosome hepatic fibrosis as it has anti-angiogenic, anti-proliferative, anti-fibrotic, and antioxidant effects in hamsters infected with S. mansoni, providing scientific support for its use in conventional medicine.
Collapse
Affiliation(s)
- Thamer Alghamdi
- Department of Surgery, Division of Hepatobiliary Surgery, Faculty of Medicine, Al-Baha University, Al-Baha, Saudi Arabia
| | - Doaa A Salem
- Department of Medical Parasitology, Faculty of Medicine, Al-Baha University, Al-Baha, Saudi Arabia
- Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed F El-Refaei
- Department of Medical Biochemistry, Faculty of Medicine, Al-Baha University, Al-Baha Saudi Arabia
- Genetic Institute, Sadat City University, Sadat City, Egypt
| |
Collapse
|
45
|
Costa DDS, Leal CM, Cajas RA, Gazolla MC, Silva LM, Carvalho LSAD, Lemes BL, Moura ROD, Almeida JD, de Moraes J, da Silva Filho AA. Antiparasitic properties of 4-nerolidylcatechol from Pothomorphe umbellata (L.) Miq. (Piperaceae) in vitro and in mice models with either prepatent or patent Schistosoma mansoni infections. JOURNAL OF ETHNOPHARMACOLOGY 2023; 313:116607. [PMID: 37149066 DOI: 10.1016/j.jep.2023.116607] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Roots of Pothomorphe umbellata (L.) Miq. are used in traditional medicine of Africa and South America for the treatment of malaria and helminthiasis. However, neither P. umbellata nor its isolated compounds have been evaluated against Schistosoma species. AIMS OF THIS STUDY To investigate the antischistosomal effects of P. umbellata root extracts and the isolated compound 4-nerolidylcatechol (4-NC) against Schistosoma mansoni ex vivo and in murine models of schistosomiasis. MATERIALS AND METHODS The crude hydroalcoholic (PuE) and hexane (PuH) extracts of P. umbellata roots were prepared and initially submitted to an ex vivo phenotypic screening against adult S. mansoni. PuH was analyzed by HPLC-DAD, characterized by UHPLC-HRMS/MS, and submitted to chromatographic fractionation, leading to the isolation of 4-NC. The anthelmintic properties of 4-NC were assayed ex vivo against adult schistosomes and in murine models of schistosomiasis for both patent and prepatent S. mansoni infections. Praziquantel (PZQ) was used as a reference compound. RESULTS PuE (EC50: 18.7 μg/mL) and PuH (EC50: 9.2 μg/mL) kill adult schistosomes ex vivo. The UHPLC-HRMS/MS analysis of PuH, the most active extract, revealed the presence of 4-NC, peltatol A, and peltatol B or C. After isolation from PuH, 4-NC presented remarkable in vitro schistosomicidal activity with EC50 of 2.9 μM (0.91 μg/mL) and a selectivity index higher than 68 against Vero mammalian cells, without affecting viability of nematode Caenorhabditis elegans. In patent S. mansoni infection, the oral treatment with 4-NC decreased worm burden and egg production in 52.1% and 52.3%, respectively, also reducing splenomegaly and hepatomegaly. 4-NC, unlike PZQ, showed in vivo efficacy against juvenile S. mansoni, decreasing worm burden in 52.4%. CONCLUSIONS This study demonstrates that P. umbellata roots possess antischistosomal activity, giving support for the medicinal use of this plant against parasites. 4-NC was identified from P. umbellata roots as one of the effective in vitro and in vivo antischistosomal compound and as a potential lead for the development of novel anthelmintics.
Collapse
Affiliation(s)
- Danilo de Souza Costa
- Faculdade de Farmácia, Departamento de Ciências Farmacêuticas, Universidade Federal de Juiz de Fora, R. José Lourenço Kelmer s/n, Campus Universitário, Juiz de Fora, MG, 36036-900, Brazil.
| | - Carla Monteiro Leal
- Faculdade de Farmácia, Departamento de Ciências Farmacêuticas, Universidade Federal de Juiz de Fora, R. José Lourenço Kelmer s/n, Campus Universitário, Juiz de Fora, MG, 36036-900, Brazil.
| | - Rayssa A Cajas
- Núcleo de Pesquisa em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, SP, 07023-070, Brazil.
| | - Matheus Coutinho Gazolla
- Faculdade de Farmácia, Departamento de Ciências Farmacêuticas, Universidade Federal de Juiz de Fora, R. José Lourenço Kelmer s/n, Campus Universitário, Juiz de Fora, MG, 36036-900, Brazil.
| | - Lívia Mara Silva
- Faculdade de Farmácia, Departamento de Ciências Farmacêuticas, Universidade Federal de Juiz de Fora, R. José Lourenço Kelmer s/n, Campus Universitário, Juiz de Fora, MG, 36036-900, Brazil.
| | - Lara Soares Aleixo de Carvalho
- Faculdade de Farmácia, Departamento de Ciências Farmacêuticas, Universidade Federal de Juiz de Fora, R. José Lourenço Kelmer s/n, Campus Universitário, Juiz de Fora, MG, 36036-900, Brazil.
| | - Bruna L Lemes
- Núcleo de Pesquisa em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, SP, 07023-070, Brazil.
| | - Renato Oliveira de Moura
- Faculdade de Farmácia, Departamento de Ciências Farmacêuticas, Universidade Federal de Juiz de Fora, R. José Lourenço Kelmer s/n, Campus Universitário, Juiz de Fora, MG, 36036-900, Brazil.
| | - Juliana de Almeida
- Faculdade de Farmácia, Departamento de Ciências Farmacêuticas, Universidade Federal de Juiz de Fora, R. José Lourenço Kelmer s/n, Campus Universitário, Juiz de Fora, MG, 36036-900, Brazil.
| | - Josué de Moraes
- Núcleo de Pesquisa em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, SP, 07023-070, Brazil.
| | - Ademar A da Silva Filho
- Faculdade de Farmácia, Departamento de Ciências Farmacêuticas, Universidade Federal de Juiz de Fora, R. José Lourenço Kelmer s/n, Campus Universitário, Juiz de Fora, MG, 36036-900, Brazil.
| |
Collapse
|
46
|
Zheng Y, Schroeder S, Kanev GK, Botros SS, William S, Sabra ANA, Maes L, Caljon G, Gil C, Martinez A, Salado IG, Augustyns K, Edink E, Sijm M, de Heuvel E, de Esch IJP, van der Meer T, Siderius M, Sterk GJ, Brown D, Leurs R. To Target or Not to Target Schistosoma mansoni Cyclic Nucleotide Phosphodiesterase 4A? Int J Mol Sci 2023; 24:ijms24076817. [PMID: 37047792 PMCID: PMC10095301 DOI: 10.3390/ijms24076817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 04/14/2023] Open
Abstract
Schistosomiasis is a neglected tropical disease with high morbidity. Recently, the Schistosoma mansoni phosphodiesterase SmPDE4A was suggested as a putative new drug target. To support SmPDE4A targeted drug discovery, we cloned, isolated, and biochemically characterized the full-length and catalytic domains of SmPDE4A. The enzymatically active catalytic domain was crystallized in the apo-form (PDB code: 6FG5) and in the cAMP- and AMP-bound states (PDB code: 6EZU). The SmPDE4A catalytic domain resembles human PDE4 more than parasite PDEs because it lacks the parasite PDE-specific P-pocket. Purified SmPDE4A proteins (full-length and catalytic domain) were used to profile an in-house library of PDE inhibitors (PDE4NPD toolbox). This screening identified tetrahydrophthalazinones and benzamides as potential hits. The PDE inhibitor NPD-0001 was the most active tetrahydrophthalazinone, whereas the approved human PDE4 inhibitors roflumilast and piclamilast were the most potent benzamides. As a follow-up, 83 benzamide analogs were prepared, but the inhibitory potency of the initial hits was not improved. Finally, NPD-0001 and roflumilast were evaluated in an in vitro anti-S. mansoni assay. Unfortunately, both SmPDE4A inhibitors were not effective in worm killing and only weakly affected the egg-laying at high micromolar concentrations. Consequently, the results with these SmPDE4A inhibitors strongly suggest that SmPDE4A is not a suitable target for anti-schistosomiasis therapy.
Collapse
Affiliation(s)
- Yang Zheng
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | | | - Georgi K Kanev
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Sanaa S Botros
- Pharmacology Department, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, P.O. Box 30, Giza 12411, Egypt
| | - Samia William
- Parasitology Department, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, P.O. Box 30, Giza 12411, Egypt
| | - Abdel-Nasser A Sabra
- Pharmacology Department, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, P.O. Box 30, Giza 12411, Egypt
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Carmen Gil
- Centro de Investigaciones Biologicas (CIB-CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Ana Martinez
- Centro de Investigaciones Biologicas (CIB-CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Irene G Salado
- Medicinal Chemistry, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Koen Augustyns
- Medicinal Chemistry, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Ewald Edink
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Maarten Sijm
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Erik de Heuvel
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Iwan J P de Esch
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Tiffany van der Meer
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Marco Siderius
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Geert Jan Sterk
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - David Brown
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Rob Leurs
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
47
|
Siddiqui AJ, Bhardwaj J, Saxena J, Jahan S, Snoussi M, Bardakci F, Badraoui R, Adnan M. A Critical Review on Human Malaria and Schistosomiasis Vaccines: Current State, Recent Advancements, and Developments. Vaccines (Basel) 2023; 11:vaccines11040792. [PMID: 37112704 PMCID: PMC10146311 DOI: 10.3390/vaccines11040792] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/07/2023] Open
Abstract
Malaria and schistosomiasis are two major parasitic diseases that remain leading causes of morbidity and mortality worldwide. Co-infections of these two parasites are common in the tropics, where both diseases are endemic. The clinical consequences of schistosomiasis and malaria are determined by a variety of host, parasitic, and environmental variables. Chronic schistosomiasis causes malnutrition and cognitive impairments in children, while malaria can cause fatal acute infections. There are effective drugs available to treat malaria and schistosomiasis. However, the occurrence of allelic polymorphisms and the rapid selection of parasites with genetic mutations can confer reduced susceptibility and lead to the emergence of drug resistance. Moreover, the successful elimination and complete management of these parasites are difficult due to the lack of effective vaccines against Plasmodium and Schistosoma infections. Therefore, it is important to highlight all current vaccine candidates undergoing clinical trials, such as pre-erythrocytic and erythrocytic stage malaria, as well as a next-generation RTS,S-like vaccine, the R21/Matrix-M vaccine, that conferred 77% protection against clinical malaria in a Phase 2b trial. Moreover, this review also discusses the progress and development of schistosomiasis vaccines. Furthermore, significant information is provided through this review on the effectiveness and progress of schistosomiasis vaccines currently under clinical trials, such as Sh28GST, Sm-14, and Sm-p80. Overall, this review provides insights into recent progress in malarial and schistosomiasis vaccines and their developmental approaches.
Collapse
Affiliation(s)
- Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia
| | - Jyoti Bhardwaj
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Juhi Saxena
- Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, Gharuan, NH-95, Ludhiana—Chandigarh State Hwy, Mohali 140413, India
| | - Sadaf Jahan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia
- Laboratory of Genetics, Biodiversity and Valorization of Bio-Resources (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue TaharHaddas BP74, Monastir 5000, Tunisia
| | - Fevzi Bardakci
- Department of Biology, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia
| | - Riadh Badraoui
- Department of Biology, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia
- Section of Histology-Cytology, Medicine Faculty of Tunis, University of Tunis El Manar, Tunis 1017, Tunisia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia
| |
Collapse
|
48
|
Pandya N, Kumar A. Immunoinformatics analysis for design of multi-epitope subunit vaccine by using heat shock proteins against Schistosoma mansoni. J Biomol Struct Dyn 2023; 41:1859-1878. [PMID: 35040367 DOI: 10.1080/07391102.2021.2025430] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The development of T cell and B cell that able provide long-term immune response against the schistosomiasisis to the people belongs to the epidemic area. Heat Shock Proteins (HSPs) are up-regulated in schistosomes as their environment changes owing to the developmental cycle, assisting the parasite in living with the adverse circumstances related with its life cycle. Schistosomiasis is still a severe health problem in the people of many countries in worldwide. In this work, to develop a chimeric antigen, we used an advanced and powerful immunoinformatics technique that targeted Schistosoma mansoni (S. mansoni) Heat shock protein (HSPs). Antigenicity, immunogenicity, allergenicity, and physicochemical characteristics were all assessed in silico for the developed subunit vaccine. The 3D structure of the vaccine was constructed and the stability of the vaccine construct was increased by using disulphide engineering. The protein-protein docking and simulation were performed between the vaccine construct and Toll-like receptor-4. The antigenicity probability value obtained for the vaccine construct was 0.93, which indicates that vaccine is non-allergenic and safe for human consumption. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nirali Pandya
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | - Amit Kumar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| |
Collapse
|
49
|
Salmonella Typhimurium expressing chromosomally integrated Schistosoma mansoni Cathepsin B protects against schistosomiasis in mice. NPJ Vaccines 2023; 8:27. [PMID: 36849453 PMCID: PMC9969381 DOI: 10.1038/s41541-023-00599-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/13/2023] [Indexed: 03/01/2023] Open
Abstract
Schistosomiasis threatens hundreds of millions of people worldwide. The larval stage of Schistosoma mansoni migrates through the lung and adult worms reside adjacent to the colonic mucosa. Several candidate vaccines are in preclinical development, but none is designed to elicit both systemic and mucosal responses. We have repurposed an attenuated Salmonella enterica Typhimurium strain (YS1646) to express Cathepsin B (CatB), a digestive enzyme important for the juvenile and adult stages of the S. mansoni life cycle. Previous studies have demonstrated the prophylactic and therapeutic efficacy of our plasmid-based vaccine. Here, we have generated chromosomally integrated (CI) YS1646 strains that express CatB to produce a viable candidate vaccine for eventual human use (stability, no antibiotic resistance). 6-8-week-old C57BL/6 mice were vaccinated in a multimodal oral (PO) and intramuscular (IM) regimen, and then sacrificed 3 weeks later. The PO + IM group had significantly higher anti-CatB IgG titers with greater avidity and mounted significant intestinal anti-CatB IgA responses compared to PBS control mice (all P < 0.0001). Multimodal vaccination generated balanced TH1/TH2 humoral and cellular immune responses. Production of IFNγ by both CD4+ and CD8+ T cells was confirmed by flow cytometry (P < 0.0001 & P < 0.01). Multimodal vaccination reduced worm burden by 80.4%, hepatic egg counts by 75.2%, and intestinal egg burden by 78.4% (all P < 0.0001). A stable and safe vaccine that has both prophylactic and therapeutic activity would be ideal for use in conjunction with praziquantel mass treatment campaigns.
Collapse
|
50
|
Beutler M, Harnischfeger J, Weber MHW, Hahnel SR, Quack T, Blohm A, Ueberall ME, Timm T, Lochnit G, Rennar GA, Gallinger TL, Houhou H, Rahlfs S, Falcone FH, Becker K, Schlitzer M, Haeberlein S, Czermak P, Salzig D, Grevelding CG. Identification and characterisation of the tegument-expressed aldehyde dehydrogenase SmALDH_312 of Schistosoma mansoni, a target of disulfiram. Eur J Med Chem 2023; 251:115179. [PMID: 36948075 DOI: 10.1016/j.ejmech.2023.115179] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/17/2023] [Accepted: 01/31/2023] [Indexed: 02/12/2023]
Abstract
Schistosomiasis is an infectious disease caused by blood flukes of the genus Schistosoma and affects approximately 200 million people worldwide. Since Praziquantel (PZQ) is the only drug for schistosomiasis, alternatives are needed. By a biochemical approach, we identified a tegumentally expressed aldehyde dehydrogenase (ALDH) of S. mansoni, SmALDH_312. Molecular analyses of adult parasites showed Smaldh_312 transcripts in both genders and different tissues. Physiological and cell-biological experiments exhibited detrimental effects of the drug disulfiram (DSF), a known ALDH inhibitor, on larval and adult schistosomes in vitro. DSF also reduced stem-cell proliferation and caused severe tegument damage in treated worms. In silico-modelling of SmALDH_312 and docking analyses predicted DSF binding, which we finally confirmed by enzyme assays with recombinant SmALDH_312. Furthermore, we identified compounds of the Medicine for Malaria Venture (MMV) pathogen box inhibiting SmALDH_312 activity. Our findings represent a promising starting point for further development towards new drugs for schistosomiasis.
Collapse
Affiliation(s)
- Mandy Beutler
- Institute of Parasitology, BFS, Justus Liebig University Giessen, Germany
| | - Julie Harnischfeger
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Michael H W Weber
- Institute of Parasitology, BFS, Justus Liebig University Giessen, Germany
| | - Steffen R Hahnel
- Institute of Parasitology, BFS, Justus Liebig University Giessen, Germany
| | - Thomas Quack
- Institute of Parasitology, BFS, Justus Liebig University Giessen, Germany
| | - Ariane Blohm
- Institute of Parasitology, BFS, Justus Liebig University Giessen, Germany
| | - Monique E Ueberall
- Institute of Parasitology, BFS, Justus Liebig University Giessen, Germany; Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Thomas Timm
- Protein Analytics, Institute of Biochemistry, Justus Liebig University Giessen, Germany
| | - Günter Lochnit
- Protein Analytics, Institute of Biochemistry, Justus Liebig University Giessen, Germany
| | - Georg A Rennar
- Department of Pharmaceutical Chemistry, Philipps Universität Marburg, Germany, Germany
| | - Tom L Gallinger
- Department of Pharmaceutical Chemistry, Philipps Universität Marburg, Germany, Germany
| | - Hicham Houhou
- Institute of Parasitology, BFS, Justus Liebig University Giessen, Germany
| | - Stefan Rahlfs
- Institute for Biochemistry and Molecular Biology, Interdisciplinary Research Centre, Justus Liebig University, Germany
| | - Franco H Falcone
- Institute of Parasitology, BFS, Justus Liebig University Giessen, Germany
| | - Katja Becker
- Institute for Biochemistry and Molecular Biology, Interdisciplinary Research Centre, Justus Liebig University, Germany
| | - Martin Schlitzer
- Department of Pharmaceutical Chemistry, Philipps Universität Marburg, Germany, Germany
| | - Simone Haeberlein
- Institute of Parasitology, BFS, Justus Liebig University Giessen, Germany
| | - Peter Czermak
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Denise Salzig
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | | |
Collapse
|