1
|
Wang X, Jiang A, Meng Q, Jiang T, Lu H, Geng X, Song Z, Hu X, Yu Z, Xu W, Ning C, Lin Y, Li D. Aberrant phase separation drives membranous organelle remodeling and tumorigenesis. Mol Cell 2025; 85:1852-1867.e10. [PMID: 40273917 DOI: 10.1016/j.molcel.2025.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 02/08/2025] [Accepted: 03/31/2025] [Indexed: 04/26/2025]
Abstract
Membrane remodeling is essential for numerous cellular functions. Although liquid-liquid phase separation (LLPS) of intrinsically disordered region (IDR)-rich proteins could drive dramatic membrane remodeling of artificial giant unilamellar vesicles, it remains elusive whether LLPS-mediated membrane-remodeling functions in live cells and what role it plays in specific bioprocesses. Here, we show that three IDR-rich integral transmembrane fusion proteins (MFPs), generated by chromosomal translocations, can lead to de novo remodeling of their located membranous organelles. Taking FUS-CREB3L2, prevalent in low-grade fibromyxoid sarcoma (LGFMS), as a proof of concept, we recorded super-resolution long-time imaging of endoplasmic reticulum (ER) remodeling dynamics as accumulating FUS-CREB3L2, meanwhile causing spontaneous ER stress to hijack the X-box-binding protein 1 (XBP1) pathway. We further reveal the underlying mechanisms of how FUS-CREB3L2 transduces its tumorigenic signals and aberrant LLPS effects from the ER membrane into the nucleus autonomously, which activates hundreds of LGFMS-specific genes de novo compared with CREB3L2, thus sufficiently reprogramming the cells into an LGFMS-like status.
Collapse
Affiliation(s)
- Xinyu Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Amin Jiang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Quan Meng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Jiang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Huaide Lu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaohan Geng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zikuo Song
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, IDG/McGovern Institute for Brain Research, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xinyao Hu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhu Yu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wencong Xu
- Department of Automation, Tsinghua University, Beijing 100084, China
| | - Chao Ning
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yajing Lin
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Dong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, IDG/McGovern Institute for Brain Research, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
2
|
Guan Z, Liang Y, Zhu Z, Yang A, Li S, Wang X, Wang J. Lithium carbonate exposure disrupts neurodevelopment by perturbing primary cilia and ER homeostasis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 296:118200. [PMID: 40245563 DOI: 10.1016/j.ecoenv.2025.118200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 04/12/2025] [Accepted: 04/13/2025] [Indexed: 04/19/2025]
Abstract
Lithium, which is widely used in medicine and batteries, has become increasingly prevalent in the environment, raising concerns about its impact on human health. Lithium carbonate (Li2CO3) is a common treatment and relapse prevention method for bipolar disorder. It can freely cross the placental barrier; however, lithium treatment is accompanied by side effects, particularly in women of reproductive age. Among these, neural tube defects (NTDs) have the most severe impact on nervous system development; however, their underlying mechanisms remain unclear. This study explored the potential mechanisms by which Li2CO3 exposure contributes to NTDs. Pregnant mice were intraperitoneally injected with Li2CO3 (360 mg/kg), which mimicked high-exposure scenarios such as an unintended pregnancy during lithium therapy or exposure to industrial contamination. Embryos were assessed for morphological changes, primary cilia length, and endoplasmic reticulum (ER) homeostasis using histological analysis, scanning electron microscopy, PCR array analysis, immunofluorescence, and quantitative real-time PCR. Network and bioinformatics analyses were used to identify primary molecular targets and pathways. We also evaluated the effects of inositol supplementation on cilia during Li2CO3 exposure. The results revealed that treatment with Li2CO3 at 360 mg/kg induced exencephaly in some embryos, reduced primary cilia length, and dysregulated cilia-associated gene expression in the neural tube. PCR Array, network metabolism, and immunofluorescence analyses revealed that HSP90AB1, a critical regulator of ER homeostasis, was upregulated in Li2CO3-treated embryos with NTDs. Li2CO3 exposure disturbed ER homeostasis in the developing brain. Interestingly, inositol supplementation partially rescued ciliogenesis impairment in lithium-treated NIH3T3 cells. Li2CO3 exposure disrupted primary ciliary development and ER homeostasis in the embryonic neural tube. Maintaining adequate maternal inositol levels during Li2CO3 exposure before and during pregnancy prevents NTDs. These findings help in better understanding and reassessing the risks associated with lithium, especially in terms of maternal and fetal health.
Collapse
Affiliation(s)
- Zhen Guan
- Laboratory of Translational Medicine, Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Yingchao Liang
- Laboratory of Translational Medicine, Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Zhiqiang Zhu
- Laboratory of Translational Medicine, Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Aiyun Yang
- Laboratory of Translational Medicine, Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Shen Li
- Laboratory of Translational Medicine, Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Xiuwei Wang
- Laboratory of Translational Medicine, Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China.
| | - Jianhua Wang
- Laboratory of Translational Medicine, Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China.
| |
Collapse
|
3
|
Sharma A, Heffernan LM, Hoang K, Jeyaseelan S, Beavers WN, Abuaita BH. Activation of the endoplasmic reticulum stress regulator IRE1α compromises pulmonary host defenses. Cell Rep 2025; 44:115632. [PMID: 40315054 DOI: 10.1016/j.celrep.2025.115632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/29/2025] [Accepted: 04/09/2025] [Indexed: 05/04/2025] Open
Abstract
The endoplasmic reticulum (ER) stress sensor inositol-requiring enzyme 1α (IRE1α) is associated with lung infections where innate immune cells are drivers for progression and resolution ammatory cytokinesflammation. Yet, the role of IRE1α in pulmonary innate immune host defense during acute respiratory infection remains unexplored. Here, we found that activation of IRE1α in infected lungs compromises immunity against methicillin-resistant Staphylococcus aureus (MRSA)-induced primary and secondary pneumonia. Moreover, activation of IRE1α in MRSA-infected lungs and alveolar macrophages (AMs) leads to exacerbated production of inflammatory mediators followed by cell death. Ablation of myeloid IRE1α or global IRE1α inhibition confers protection against MRSA-induced pneumonia with improved survival, bacterial clearance, cytokine reduction, and lung injury. In addition, loss of myeloid IRE1α protects mice against MRSA-induced secondary to influenza pneumonia by promoting AM survival. Thus, activation of IRE1α is detrimental to pneumonia, and therefore, it shows potential as a target to control excessive unresolved lung inflammation.
Collapse
Affiliation(s)
- Amit Sharma
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA 70803, USA
| | - Linda M Heffernan
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA 70803, USA
| | - Ky Hoang
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA 70803, USA
| | - Samithamby Jeyaseelan
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA 70803, USA
| | - William N Beavers
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA 70803, USA; Mass Spectrometry Resource Center, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA 70803, USA
| | - Basel H Abuaita
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA 70803, USA.
| |
Collapse
|
4
|
Zhou H, Zhang J, Wang R, Huang J, Xin C, Song Z. The unfolded protein response is a potential therapeutic target in pathogenic fungi. FEBS J 2025. [PMID: 40227882 DOI: 10.1111/febs.70100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/15/2025] [Accepted: 04/04/2025] [Indexed: 04/16/2025]
Abstract
Pathogenic fungal infections cause significant morbidity and mortality, particularly in immunocompromised patients. The frequent emergence of multidrug-resistant strains challenges existing antifungal therapies, driving the need to investigate novel antifungal agents that target new molecular moieties. Pathogenic fungi are subjected to various environmental stressors, including pH, temperature, and pharmacological agents, both in natural habitats and the host body. These stressors elevate the risk of misfolded or unfolded protein production within the endoplasmic reticulum (ER) which, if not promptly mitigated, can lead to the accumulation of these proteins in the ER lumen. This accumulation triggers an ER stress response, potentially jeopardizing fungal survival. The unfolded protein response (UPR) is a critical cellular defense mechanism activated by ER stress to restore the homeostasis of protein folding. In recent years, the regulatory role of the UPR in pathogenic fungi has garnered significant attention, particularly for its involvement in fungal adaptation, regulation of virulence, and drug resistance. In this review, we comparatively analyze the UPRs of fungi and mammals and examine the potential utility of the UPR as a molecular antifungal target in pathogenic fungi. By clarifying the specificity and regulatory functions of the UPR in pathogenic fungi, we highlight new avenues for identifying potential therapeutic targets for antifungal treatments.
Collapse
Affiliation(s)
- Hao Zhou
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Jinping Zhang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
- Public Center of Experimental Technology, Southwest Medical University, Luzhou, China
| | - Rong Wang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Ju Huang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Caiyan Xin
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Zhangyong Song
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
- Public Center of Experimental Technology, Southwest Medical University, Luzhou, China
- Hemodynamics and Medical Engineering Combination Key Laboratory of Luzhou, China
| |
Collapse
|
5
|
Barny LA, Hermanson JN, Garcia SK, Stauffer PE, Plate L. Dissecting Branch-Specific Unfolded Protein Response Activation in Drug-Tolerant BRAF-Mutant Melanoma using Data-Independent Acquisition Mass Spectrometry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.20.644425. [PMID: 40196682 PMCID: PMC11974750 DOI: 10.1101/2025.03.20.644425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Cells rely on the Unfolded Protein Response (UPR) to maintain ER protein homeostasis (proteostasis) when faced with elevated levels of misfolded and aggregated proteins. The UPR is comprised of three main branches-ATF6, IRE1, and PERK-that coordinate the synthesis of proteins involved in folding, trafficking, and degradation of nascent proteins to restore ER function. Dysregulation of the UPR is linked to numerous diseases, including neurodegenerative disorders, cancer, and diabetes. Despite its importance, identifying UPR targets has been challenging due to their heterogeneous induction, which varies by cell type and tissue. Additionally, defining the magnitude and range of UPR-regulated genes is difficult because of intricate temporal regulation, feedback between UPR branches, and extensive cross-talk with other stress-signaling pathways. To comprehensively identify UPR-regulated proteins and determine their branch specificity, we developed a data-independent acquisition (DIA) liquid-chromatography mass spectrometry (LC-MS) pipeline. Our optimized workflow improved identifications of low-abundant UPR proteins and leveraged an automated SP3-based protocol on the Biomek i5 liquid handler for label-free peptide preparation. Using engineered stable cell lines that enable selective pharmacological activation of each UPR branch without triggering global UPR activation, we identified branch-specific UPR proteomic targets. These targets were subsequently applied to investigate proteomic changes in multiple patient-derived BRAF-mutant melanoma cell lines treated with a BRAF inhibitor (PLX4720, i.e., vemurafenib). Our findings revealed differential regulation of the XBP1s branch of the UPR in the BRAF-mutant melanoma cell lines after PLX4720 treatment, likely due to calcium activation, suggesting that the UPR plays a role as a non-genetic mechanism of drug tolerance in melanoma. In conclusion, the validated branch-specific UPR proteomic targets identified in this study provide a robust framework for investigating this pathway across different cell types, drug treatments, and disease conditions in a high-throughput manner.
Collapse
Affiliation(s)
- Lea A Barny
- Chemical and Physical Biology Program, Vanderbilt University Medical Center, Nashville, TN, 37235
| | - Jake N Hermanson
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235
| | - Sarah K Garcia
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235
| | - Philip E Stauffer
- Chemical and Physical Biology Program, Vanderbilt University Medical Center, Nashville, TN, 37235
| | - Lars Plate
- Chemical and Physical Biology Program, Vanderbilt University Medical Center, Nashville, TN, 37235
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232
| |
Collapse
|
6
|
Valenzuela V, Becerra D, Astorga JI, Fuentealba M, Diaz G, Bargsted L, Chacón C, Martinez A, Gozalvo R, Jackson K, Morales V, Heras ML, Tamburini G, Petrucelli L, Sardi SP, Plate L, Hetz C. Artificial enforcement of the unfolded protein response reduces disease features in multiple preclinical models of ALS/FTD. Mol Ther 2025; 33:1226-1245. [PMID: 39799393 PMCID: PMC11897772 DOI: 10.1016/j.ymthe.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 06/05/2024] [Accepted: 01/07/2025] [Indexed: 01/15/2025] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are part of a spectrum of diseases that share several causative genes, resulting in a combinatory of motor and cognitive symptoms and abnormal protein aggregation. Multiple unbiased studies have revealed that proteostasis impairment at the level of the endoplasmic reticulum (ER) is a transversal pathogenic feature of ALS/FTD. The transcription factor XBP1s is a master regulator of the unfolded protein response (UPR), the main adaptive pathway to cope with ER stress. Here, we provide evidence of suboptimal activation of the UPR in ALS/FTD models under experimental ER stress. To artificially engage the UPR, we intracerebroventricularly administrated adeno-associated viruses (AAVs) to express the active form of XBP1 (XBP1s) in the nervous system of ALS/FTD models. XBP1s expression improved motor performance and extended lifespan of mutant SOD1 mice, associated with reduced protein aggregation. AAV-XBP1s administration also attenuated disease progression in models of TDP-43 and C9orf72 pathogenesis. Proteomic profiling of spinal cord tissue revealed that XBP1s overexpression improved proteostasis and modulated the expression of a cluster of synaptic and cell morphology proteins. Our results suggest that strategies to improve ER proteostasis may serve as a pan-therapeutic strategy to treat ALS/FTD.
Collapse
Affiliation(s)
- Vicente Valenzuela
- Program of Cellular and Molecular Biology, Biomedical Sciences Institute (ICBM), Universidad de Chile, Santiago, Chile; Biomedical Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Daniela Becerra
- Program of Cellular and Molecular Biology, Biomedical Sciences Institute (ICBM), Universidad de Chile, Santiago, Chile; Biomedical Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - José I Astorga
- Program of Cellular and Molecular Biology, Biomedical Sciences Institute (ICBM), Universidad de Chile, Santiago, Chile; Biomedical Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Matías Fuentealba
- FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Buck Institute for Research on Aging, Novato, CA, USA
| | - Guillermo Diaz
- Program of Cellular and Molecular Biology, Biomedical Sciences Institute (ICBM), Universidad de Chile, Santiago, Chile; Biomedical Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Leslie Bargsted
- Program of Cellular and Molecular Biology, Biomedical Sciences Institute (ICBM), Universidad de Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Carlos Chacón
- Program of Cellular and Molecular Biology, Biomedical Sciences Institute (ICBM), Universidad de Chile, Santiago, Chile; Biomedical Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Alexis Martinez
- Program of Cellular and Molecular Biology, Biomedical Sciences Institute (ICBM), Universidad de Chile, Santiago, Chile; Biomedical Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Romina Gozalvo
- Program of Cellular and Molecular Biology, Biomedical Sciences Institute (ICBM), Universidad de Chile, Santiago, Chile; Biomedical Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | | | - Vania Morales
- Program of Cellular and Molecular Biology, Biomedical Sciences Institute (ICBM), Universidad de Chile, Santiago, Chile; Biomedical Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Macarena Las Heras
- Program of Cellular and Molecular Biology, Biomedical Sciences Institute (ICBM), Universidad de Chile, Santiago, Chile; Biomedical Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Giovanni Tamburini
- Program of Cellular and Molecular Biology, Biomedical Sciences Institute (ICBM), Universidad de Chile, Santiago, Chile; Biomedical Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Mayo Graduate School, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Lars Plate
- Department of Chemistry and Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Claudio Hetz
- Program of Cellular and Molecular Biology, Biomedical Sciences Institute (ICBM), Universidad de Chile, Santiago, Chile; Biomedical Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Buck Institute for Research on Aging, Novato, CA, USA.
| |
Collapse
|
7
|
Acosta-Alvear D, Harnoss JM, Walter P, Ashkenazi A. Homeostasis control in health and disease by the unfolded protein response. Nat Rev Mol Cell Biol 2025; 26:193-212. [PMID: 39501044 DOI: 10.1038/s41580-024-00794-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2024] [Indexed: 02/27/2025]
Abstract
Cells rely on the endoplasmic reticulum (ER) to fold and assemble newly synthesized transmembrane and secretory proteins - essential for cellular structure-function and for both intracellular and intercellular communication. To ensure the operative fidelity of the ER, eukaryotic cells leverage the unfolded protein response (UPR) - a stress-sensing and signalling network that maintains homeostasis by rebalancing the biosynthetic capacity of the ER according to need. The metazoan UPR can also redirect signalling from cytoprotective adaptation to programmed cell death if homeostasis restoration fails. As such, the UPR benefits multicellular organisms by preserving optimally functioning cells while removing damaged ones. Nevertheless, dysregulation of the UPR can be harmful. In this Review, we discuss the UPR and its regulatory processes as a paradigm in health and disease. We highlight important recent advances in molecular and mechanistic understanding of the UPR that enable greater precision in designing and developing innovative strategies to harness its potential for therapeutic gain. We underscore the rheostatic character of the UPR, its contextual nature and critical open questions for its further elucidation.
Collapse
Affiliation(s)
| | - Jonathan M Harnoss
- Department of General, Visceral, Thoracic and Transplant Surgery, University Hospital Giessen, Giessen, Germany
| | - Peter Walter
- Altos Labs, Inc., Bay Area Institute of Science, Redwood City, CA, USA.
| | - Avi Ashkenazi
- Research Oncology, Genentech, Inc., South San Francisco, CA, USA.
| |
Collapse
|
8
|
Gao K, Si M, Qin X, Zhang B, Wang Z, Lin P, Chen H, Wang A, Jin Y. Transcription factor XBP1s promotes endometritis-induced epithelial-mesenchymal transition by targeting MAP3K2, a key gene in the MAPK/ERK pathway. Cell Commun Signal 2025; 23:72. [PMID: 39930412 PMCID: PMC11808991 DOI: 10.1186/s12964-025-02050-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/16/2025] [Indexed: 02/14/2025] Open
Abstract
The epithelial-mesenchymal transition (EMT) is a biological process whereby epithelial cells are transformed into cells with a mesenchymal phenotype. The transcription factor, X-box binding protein 1 splicing variant (XBP1s) is a key regulator of the endoplasmic reticulum stress response (ERS); but the function of XBP1s in the endometritis-induced EMT process remains unclear. Here we found that uterine tissues from goats with endometritis exhibited an EMT phenotype, with a significant decrease in the epithelial cell polarity marker E-cadherin and a significant increase in the mesenchymal markers N-cadherin and vimentin. We also found that sustained LPS treatment induced EMT in goat endometrial epithelial cells (gEECs), along with ERS and XBP1s overexpression. XBP1s KO significantly inhibited LPS-induced EMT and migration in gEECs, while XBP1s overexpression showed the opposite result. CUT & Tag experiments performed on XBP1s revealed that MAP3K2 was a downstream target gene for XBP1s regulation. We also found that expression of MAP3K2 was positively correlated with XBP1s expression in uterine tissues of goats with endometritis and in gEECs. Assays for dual luciferase reporter and molecular docking indicated that XBP1s protein regulated the transcription of MAP3K2 by modulating promoter activity. The knockdown of MAP3K2 expression significantly inhibited the migration and EMT of gEECs. XBP1s and MAP3K2 significantly promoted phosphorylation of p38 and ERK, activating the MAPK/ERK pathway. Treatment with the MAPK/ERK inhibitor, PD98059, reversed the effects of XBP1s and MAP3K2 overexpression on LPS-induced EMT. The MAPK/ERK activator, DHC, reversed the effects of XBP1s KO and MAP3K2 KD on EMT.
Collapse
Affiliation(s)
- Kangkang Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Mengqi Si
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xinxi Qin
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Beibei Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zongjie Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Pengfei Lin
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Huatao Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Aihua Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yaping Jin
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
9
|
Prasad V. Transmission of unfolded protein response-a regulator of disease progression, severity, and spread in virus infections. mBio 2025; 16:e0352224. [PMID: 39772778 PMCID: PMC11796368 DOI: 10.1128/mbio.03522-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
The unfolded protein response (UPR) is a cell-autonomous stress response aimed at restoring homeostasis due to the accumulation of misfolded proteins in the endoplasmic reticulum (ER). Viruses often hijack the host cell machinery, leading to an accumulation of misfolded proteins in the ER. The cell-autonomous UPR is the immediate response of an infected cell to this stress, aiming to restore normal function by halting protein translation, degrading misfolded proteins, and activating signaling pathways that increase the production of molecular chaperones. The cell-non-autonomous UPR involves the spreading of UPR signals from initially stressed cells to neighboring unstressed cells that lack the stressor. Though viruses are known modulators of cell-autonomous UPR, recent advancements have highlighted that cell-non-autonomous UPR plays a critical role in elucidating how local infections cause systemic effects, thereby contributing to disease symptoms and progression. Additionally, by utilizing cell-non-autonomous UPR, viruses have devised novel strategies to establish a pro-viral state, promoting virus spread. This review discusses examples that have broadened the understanding of the role of UPR in virus infections and disease progression by looking beyond cell-autonomous to non-autonomous processes and mechanistic details of the inducers, spreaders, and receivers of UPR signals.
Collapse
Affiliation(s)
- Vibhu Prasad
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
10
|
Renzi G, Vlassakev I, Hansen M, Higos R, Lecoutre S, Elmastas M, Hodek O, Moritz T, Alaeddine LM, Frendo-Cumbo S, Dahlman I, Kerr A, Maqdasy S, Mejhert N, Rydén M. Epigenetic suppression of creatine kinase B in adipocytes links endoplasmic reticulum stress to obesity-associated inflammation. Mol Metab 2025; 92:102082. [PMID: 39675471 PMCID: PMC11731883 DOI: 10.1016/j.molmet.2024.102082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/26/2024] [Accepted: 12/05/2024] [Indexed: 12/17/2024] Open
Abstract
In white adipose tissue, disturbed creatine metabolism through reduced creatine kinase B (CKB) transcription contributes to obesity-related inflammation. However, the mechanisms regulating CKB expression in human white adipocytes remain unclear. By screening conditions perturbed in obesity, we identified endoplasmic reticulum (ER) stress as a key suppressor of CKB transcription across multiple cell types. Through follow-up studies, we found that ER stress through the IRE1-XBP1s pathway, promotes CKB promoter methylation via the methyltransferase DNMT3A. This epigenetic change represses CKB transcription, shifting metabolism towards glycolysis and increasing the production of the pro-inflammatory chemokine CCL2. We validated our findings in vivo, demonstrating that individuals living with obesity show an inverse relationship between CKB expression and promoter methylation in white adipocytes, along with elevated CCL2 secretion. Overall, our study uncovers a regulatory axis where ER stress drives inflammation in obesity by reducing CKB abundance, and consequently altering the bioenergetic state of the cell.
Collapse
Affiliation(s)
- Gianluca Renzi
- Department of Medicine (H7), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, SE-141 83, Huddinge, Sweden
| | - Ivan Vlassakev
- Department of Medicine (H7), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, SE-141 83, Huddinge, Sweden
| | - Mattias Hansen
- Department of Medicine (H7), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, SE-141 83, Huddinge, Sweden
| | - Romane Higos
- Department of Medicine (H7), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, SE-141 83, Huddinge, Sweden
| | - Simon Lecoutre
- Nutrition and Obesities: Systemic Approaches Research Group (Nutri-Omics), Sorbonne Université, INSERM, F-75013 Paris, France
| | - Merve Elmastas
- Department of Medicine (H7), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, SE-141 83, Huddinge, Sweden
| | - Ondrej Hodek
- Swedish Metabolomics Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Thomas Moritz
- Swedish Metabolomics Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden; The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lynn M Alaeddine
- Department of Medicine (H7), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, SE-141 83, Huddinge, Sweden
| | - Scott Frendo-Cumbo
- Department of Medicine (H7), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, SE-141 83, Huddinge, Sweden
| | - Ingrid Dahlman
- Department of Clinical Science and Education, Karolinska Institutet, Stockholm, Sweden
| | - Alastair Kerr
- Department of Medicine (H7), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, SE-141 83, Huddinge, Sweden
| | - Salwan Maqdasy
- Department of Medicine (H7), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, SE-141 83, Huddinge, Sweden
| | - Niklas Mejhert
- Department of Medicine (H7), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, SE-141 83, Huddinge, Sweden; Steno Diabetes Center, Copenhagen, Herlev, Denmark.
| | - Mikael Rydén
- Department of Medicine (H7), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, SE-141 83, Huddinge, Sweden; Steno Diabetes Center, Copenhagen, Herlev, Denmark.
| |
Collapse
|
11
|
Huang H, Charron TL, Fu M, Dunn M, Jones DM, Kumar P, Kulkarni A, Konopka G, Shakkottai VG. Resilience to Endoplasmic Reticulum Stress Mitigates Calcium-Dependent Membrane Hyperexcitability Underlying Late Disease Onset in SCA6. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.27.635103. [PMID: 39975408 PMCID: PMC11838253 DOI: 10.1101/2025.01.27.635103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
An enduring puzzle in many inherited neurological disorders is the late onset of symptoms despite expression of function-impairing mutant protein early in life. We examined the basis for onset of impairment in Spinocerebellar ataxia type 6 (SCA6), a canonical late-onset neurodegenerative ataxia which results from a polyglutamine expansion in the voltage gated calcium channel, Cav2.1. Cerebellar Purkinje cell spiking abnormalities are seen concurrent with motor impairment in SCA6 mice but the basis for these changes in spiking is unknown. We identify endoplasmic reticulum (ER) calcium depletion as the cause for Purkinje cell spiking abnormalities and that the impairments in Purkinje cell spiking are unrelated to Cav2.1 ion-flux function. Further, intact inhibitory neurotransmission in the cerebellar cortex is necessary for Purkinje neurons to exhibit spiking abnormalities in SCA6 mice. Based on serial cerebellar transcriptome analysis, we define a mechanism of disease that is related to ER stress. Further, our studies support a model whereby proteotoxicity from misfolded mutant Cav2.1 is mitigated by a HSP90-dependent unfolded protein response (UPR) and that age-related breakdown of this response causes motor dysfunction and aberrant Purkinje cell spiking. Redundant pathways of the UPR mediate this resilience to ER stress. These studies elucidate a mechanism of resilience connecting aberrant proteostasis and calcium-dependent intrinsic membrane hyperexcitability to explain delayed disease onset more widely in age-dependent neurodegenerative disease. Significance Statement Advancing age is the single most important risk factor for neurodegenerative disease. Understanding how age intersects with genetic risk is therefore a critical challenge for neurodegenerative disease research. SCA6, a canonical late-onset degenerative cerebellar ataxia, results from a polyQ expansion in the voltage gated calcium channel, Cav2.1, encoded by CACNA1A . We define a mechanism of disease in SCA6 that is related to ER stress and unrelated to impaired calcium flux function of Cav2.1. Age-related decompensation of a HSP90-dependent unfolded protein response leads to disease onset. Mutant Cav2.1 misfolding as the basis for disease in SCA6 provides insight into a novel role for channelopathies to behave as proteinopathies and helps understand resilience to proteotoxicity more widely in adult-onset neurodegenerative disease.
Collapse
|
12
|
Minchenko OH, Hrebennykova VO, Viletska YM, Hnatiuk OS, Sliusar MY, Kozynkevych HE, Minchenko DO. The ERN1 signaling pathway of unfolded protein controls the expression of EDEM1 and its hypoxic regulation in glioblastoma cells. Endocr Regul 2025; 59:1-9. [PMID: 40073403 DOI: 10.2478/enr-2025-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/14/2025] Open
Abstract
Objective. For the effective growth of malignant tumors, including glioblastoma, the necessary factors involve endoplasmic reticulum (ER) stress, hypoxia, and the availability of nutrients, particularly glucose. The ER degradation enhancing alpha-mannosidase like protein 1 (EDEM1) is involved in ER-associated degradation (ERAD) targeting misfolded glycoproteins for degradation in an N-glycan-independent manner. EDEM1 was also identified as a new modulator of insulin synthesis and secretion. The present study aims to investigate the regulation of the EDEM1 gene expression in U87MG glioblastoma cells by hypoxia and glucose or glutamine deprivations depending on the knockdown of ERN1 (endoplasmic reticulum to nucleus signaling 1) with the intent to reveal the role of ERN1 signaling in the regulation of this gene expression and function in tumorigenesis. Methods. The U87MG glioblastoma cells (transfected by an empty vector; control) and ERN1 knockdown cells with inhibited ERN1 endoribonuclease and protein kinase (dnERN1) or only ERN1 endoribonuclease (dnrERN1) were used. Hypoxia was introduced by dimethyloxalylglycine (4 h). For glucose and glutamine deprivations, the cells were exposed to DMEM medium without glucose and glutamine, respectively, for 16 h. The expression level of the EDEM1 gene was studied by quantitative RT-PCR and normalized to the ACTB mRNA. Results. It was found that inhibition of endoribonuclease and protein kinase activities of ERN1 led to down-regulation of EDEM1 gene expression in glioblastoma cells. Moreover, the expression of this gene was also decreased after silencing ERN1 in glioblastoma cells. At the same time, the expression of EDEM1 gene did not significantly change in cells with inhibited ERN1 endoribonuclease only. The expression of the EDEM1 gene was increased under hypoxia in control U87MG cells, but resistant to hypoxia in cells with ERN1 knockdown. Furthermore, the expression of this gene was up-regulated under glucose and glutamine deprivations in control glioblastoma cells. However, the ERN1 knockdown increased the sensitivity of EDEM1 gene expression to glucose and decreased to glutamine deprivations. Conclusion. The results of the present study demonstrate that inhibition of ERN1 down-regulated the expression of the EDEM1 gene through protein kinase activity of ERN1 and that the regulation of this gene expression by hypoxia and nutrient supply, especially glucose, is differently controlled by ERN1 in glioblastoma cells.
Collapse
Affiliation(s)
- Oleksandr H Minchenko
- 1Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Vita O Hrebennykova
- 1Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Yuliia M Viletska
- 1Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Oksana S Hnatiuk
- 1Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Myroslava Y Sliusar
- 1Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Halyna E Kozynkevych
- 2Department of Pediatrics, National Bohomolets Medical University, Kyiv, Ukraine
| | - Dmytro O Minchenko
- 1Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- 2Department of Pediatrics, National Bohomolets Medical University, Kyiv, Ukraine
| |
Collapse
|
13
|
Tak J, Kim YS, Kim SG. Roles of X-box binding protein 1 in liver pathogenesis. Clin Mol Hepatol 2025; 31:1-31. [PMID: 39355873 PMCID: PMC11791611 DOI: 10.3350/cmh.2024.0441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/06/2024] [Accepted: 09/27/2024] [Indexed: 10/03/2024] Open
Abstract
The prevalence of drug-induced liver injury (DILI) and viral liver infections presents significant challenges in modern healthcare and contributes to considerable morbidity and mortality worldwide. Concurrently, metabolic dysfunctionassociated steatotic liver disease (MASLD) has emerged as a major public health concern, reflecting the increasing rates of obesity and leading to more severe complications such as fibrosis and hepatocellular carcinoma. X-box binding protein 1 (XBP1) is a distinct transcription factor with a basic-region leucine zipper structure, whose activity is regulated by alternative splicing in response to disruptions in endoplasmic reticulum (ER) homeostasis and the unfolded protein response (UPR) activation. XBP1 interacts with a key signaling component of the highly conserved UPR and is critical in determining cell fate when responding to ER stress in liver diseases. This review aims to elucidate the emerging roles and molecular mechanisms of XBP1 in liver pathogenesis, focusing on its involvement in DILI, viral liver infections, MASLD, fibrosis/cirrhosis, and liver cancer. Understanding the multifaceted functions of XBP1 in these liver diseases offers insights into potential therapeutic strategies to restore ER homeostasis and mitigate liver damage.
Collapse
Affiliation(s)
- Jihoon Tak
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang, Korea
| | - Yun Seok Kim
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine, Seoul, Korea
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Sang Geon Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang, Korea
| |
Collapse
|
14
|
Zhang F, Lee A, Freitas AV, Herb JT, Wang ZH, Gupta S, Chen Z, Xu H. A transcription network underlies the dual genomic coordination of mitochondrial biogenesis. eLife 2024; 13:RP96536. [PMID: 39727307 DOI: 10.7554/elife.96536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024] Open
Abstract
Mitochondrial biogenesis requires the expression of genes encoded by both the nuclear and mitochondrial genomes. However, aside from a handful transcription factors regulating specific subsets of mitochondrial genes, the overall architecture of the transcriptional control of mitochondrial biogenesis remains to be elucidated. The mechanisms coordinating these two genomes are largely unknown. We performed a targeted RNAi screen in developing eyes with reduced mitochondrial DNA content, anticipating a synergistic disruption of tissue development due to impaired mitochondrial biogenesis and mitochondrial DNA (mtDNA) deficiency. Among 638 transcription factors annotated in the Drosophila genome, 77 were identified as potential regulators of mitochondrial biogenesis. Utilizing published ChIP-seq data of positive hits, we constructed a regulatory network revealing the logic of the transcription regulation of mitochondrial biogenesis. Multiple transcription factors in core layers had extensive connections, collectively governing the expression of nearly all mitochondrial genes, whereas factors sitting on the top layer may respond to cellular cues to modulate mitochondrial biogenesis through the underlying network. CG1603, a core component of the network, was found to be indispensable for the expression of most nuclear mitochondrial genes, including those required for mtDNA maintenance and gene expression, thus coordinating nuclear genome and mtDNA activities in mitochondrial biogenesis. Additional genetic analyses validated YL-1, a transcription factor upstream of CG1603 in the network, as a regulator controlling CG1603 expression and mitochondrial biogenesis.
Collapse
Affiliation(s)
- Fan Zhang
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Annie Lee
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Anna V Freitas
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Jake T Herb
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Zong-Heng Wang
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Snigdha Gupta
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Zhe Chen
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Hong Xu
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| |
Collapse
|
15
|
Fu Z, Wang W, Gao Y. Understanding the impact of ER stress on lung physiology. Front Cell Dev Biol 2024; 12:1466997. [PMID: 39744015 PMCID: PMC11688383 DOI: 10.3389/fcell.2024.1466997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/22/2024] [Indexed: 01/04/2025] Open
Abstract
Human lungs consist of a distinctive array of cell types, which are subjected to persistent challenges from chemical, mechanical, biological, immunological, and xenobiotic stress throughout life. The disruption of endoplasmic reticulum (ER) homeostatic function, triggered by various factors, can induce ER stress. To overcome the elevated ER stress, an adaptive mechanism known as the unfolded protein response (UPR) is activated in cells. However, persistent ER stress and maladaptive UPR can lead to defects in proteostasis at the cellular level and are typical features of the lung aging. The aging lung and associated lung diseases exhibit signs of ER stress-related disruption in cellular homeostasis. Dysfunction resulting from ER stress and maladaptive UPR can compromise various cellular and molecular processes associated with aging. Hence, comprehending the mechanisms of ER stress and UPR components implicated in aging and associated lung diseases could enable to develop appropriate therapeutic strategies for the vulnerable population.
Collapse
Affiliation(s)
- Zhiling Fu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Wei Wang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yuan Gao
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
16
|
Chen K, Shoulders MD. Protein Glycosylation Patterns Shaped By the IRE1-XBP1s Arm of the Unfolded Protein Response. Isr J Chem 2024; 64:e202300162. [PMID: 40083477 PMCID: PMC11906193 DOI: 10.1002/ijch.202300162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Indexed: 03/16/2025]
Abstract
The unfolded protein response (UPR) is a sensing and signaling pathway that surveys the endoplasmic reticulum (ER) for protein folding challenges and responds whenever issues are detected. UPR activation leads to upregulation of secretory pathway chaperones and quality control factors, as well as reduces the nascent protein load on the ER, thereby restoring and maintaining proteostasis. This paradigm-defining view of the role of the UPR is accurate, but it elides additional key functions of the UPR in cell biology. In particular, recent work has revealed that the UPR can shape the structure and function of N- and O-glycans installed on ER client proteins. This crosstalk between the UPR's response to protein misfolding and the regulation of glycosylation remains insufficiently understood. Still, emerging evidence makes it clear that the UPR, and particularly the IRE1-XBP1s arm of the UPR, may be a central regulator of protein glycosylation with important biological consequences. In this review, we discuss the crosstalk between proteostasis, the UPR, and glycosylation, present progress towards understanding biological functions of this crosstalk, and examine potential roles in diseases such as cancer.
Collapse
Affiliation(s)
- Kenny Chen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Matthew D Shoulders
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
17
|
Yang K, Zhang P, Li J, Zhang G, Chang X. Potential of natural drug modulation of endoplasmic reticulum stress in the treatment of myocardial injury. J Pharm Anal 2024; 14:101034. [PMID: 39720623 PMCID: PMC11667710 DOI: 10.1016/j.jpha.2024.101034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 06/09/2024] [Accepted: 06/29/2024] [Indexed: 12/26/2024] Open
Abstract
Myocardial injury (MI) is a common occurrence in clinical practice caused by various factors such as ischemia, hypoxia, infection, metabolic abnormalities, and inflammation. Such damages are characterized by a reduction in myocardial function and cardiomyocyte death that can result in dangerous outcomes such as cardiac failure and arrhythmias. An endoplasmic reticulum stress (ERS)-induced unfolded protein response (UPR) is triggered by several stressors, and its intricate signaling networks are instrumental in both cell survival and death. Cardiac damage frequently triggers ERS in response to different types of injuries and stress. High levels of ERS can exacerbate myocardial damage by inducing necrosis and apoptosis. To target ERS in MI prevention and treatment, current medical research is focused on identifying effective therapy approaches. Traditional Chinese medicine (TCM) is frequently used because of its vast range of applications and low risk of adverse effects. Various studies have demonstrated that active components of Chinese medicines, including polyphenols, saponins, and alkaloids, can reduce myocardial cell death, inflammation, and modify the ERS pathway, thus preventing and mitigating cardiac injury. Thus, this paper aims to provide a new direction and scientific basis for targeting ERS in MI prevention and treatment. We specifically summarize recent research progress on the regulation mechanism of ERS in MI by active ingredients of TCM.
Collapse
Affiliation(s)
- Kai Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Ping Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Jixin Li
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Genming Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| |
Collapse
|
18
|
Kong YX, Chiu J, Passam FH. "Sticki-ER": Functions of the Platelet Endoplasmic Reticulum. Antioxid Redox Signal 2024; 41:637-660. [PMID: 38284332 DOI: 10.1089/ars.2024.0566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Significance: The primary role of platelets is to generate a thrombus by platelet activation. Platelet activation relies on calcium mobilization from the endoplasmic reticulum (ER). ER resident proteins, which are externalized upon platelet activation, are essential for the function of platelet surface receptors and intercellular interactions. Recent Advances: The platelet ER is a conduit for changes in cellular function in response to the extracellular milieu. ER homeostasis is maintained by an appropriate redox balance, regulated calcium stores and normal protein folding. Alterations in ER function and ER stress results in ER proteins externalizing to the cell surface, including members of the protein disulfide isomerase family (PDIs) and chaperones. Critical Issues: The platelet ER is central to platelet function, but our understanding of its regulation is incomplete. Previous studies have focused on the function of PDIs in the extracellular space, and much less on their intracellular role. How platelets maintain ER homeostasis and how they direct ER chaperone proteins to facilitate intercellular signalling is unknown. Future Directions: An understanding of ER functions in the platelet is essential as these may determine critical platelet activities such as secretion and adhesion. Studies are necessary to understand the redox reactions of PDIs in the intracellular versus extracellular space, as these differentially affect platelet function. An unresolved question is how platelet ER proteins control calcium release. Regulation of protein folding in the platelet and downstream pathways of ER stress require further evaluation. Targeting the platelet ER may have therapeutic application in metabolic and neoplastic disease.
Collapse
Affiliation(s)
- Yvonne X Kong
- Haematology Research Group, Charles Perkins Centre; The University of Sydney, Camperdown, New South Wales, Australia
- Central Clinical School, Faculty of Medicine and Health; The University of Sydney, Camperdown, New South Wales, Australia
- Department of Haematology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Joyce Chiu
- ACRF Centenary Cancer Research Centre, The Centenary Institute; The University of Sydney, Camperdown, New South Wales, Australia
| | - Freda H Passam
- Haematology Research Group, Charles Perkins Centre; The University of Sydney, Camperdown, New South Wales, Australia
- Central Clinical School, Faculty of Medicine and Health; The University of Sydney, Camperdown, New South Wales, Australia
- Department of Haematology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| |
Collapse
|
19
|
Splichal RC, Chen K, Walton SP, Chan C. The Role of Endoplasmic Reticulum Stress on Reducing Recombinant Protein Production in Mammalian Cells. Biochem Eng J 2024; 210:109434. [PMID: 39220803 PMCID: PMC11360842 DOI: 10.1016/j.bej.2024.109434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Therapeutic recombinant protein production relies on industrial scale culture of mammalian cells to produce active proteins in quantities sufficient for clinical use. The combination of stresses from industrial cell culture environment and recombinant protein production can overwhelm the protein synthesis machinery in the endoplasmic reticulum (ER). This leads to a buildup of improperly folded proteins which induces ER stress. Cells respond to ER stress by activating the Unfolded Protein Response (UPR). To restore proteostasis, ER sensor proteins reduce global protein synthesis and increase chaperone protein synthesis, and if that is insufficient the proteins are degraded. If proteostasis is still not restored, apoptosis is initiated. Increasing evidence suggests crosstalk between ER proteostasis and DNA damage repair (DDR) pathways. External factors (e.g., metabolites) from the cellular environment as well as internal factors (e.g., transgene copy number) can impact genome stability. Failure to maintain genome integrity reduces cell viability and in turn protein production. This review focuses on the association between ER stress and processes that affect protein production and secretion. The processes mediated by ER stress, including inhibition of global protein translation, chaperone protein production, degradation of misfolded proteins, DNA repair, and protein secretion, impact recombinant protein production. Recombinant protein production can be reduced by ER stress through increased autophagy and protein degradation, reduced protein secretion, and reduced DDR response.
Collapse
Affiliation(s)
- R. Chauncey Splichal
- Department of Chemical Engineering and Materials Science, Michigan State University, MI, USA
| | - Kevin Chen
- Department of Chemical Engineering and Materials Science, Michigan State University, MI, USA
| | - S. Patrick Walton
- Department of Chemical Engineering and Materials Science, Michigan State University, MI, USA
| | - Christina Chan
- Department of Chemical Engineering and Materials Science, Michigan State University, MI, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, MI, USA
- Department of Computer Science and Engineering, Michigan State University, MI, USA
- Institute for Quantitative Health Science and Engineering, Division of Medical Devices, Michigan State University, MI, USA
| |
Collapse
|
20
|
Kuang B, Wang M, Yan H, Jiang Q, Wang Z, Ni H, Hou S, Peng X, Gu S, Zhao Y, Ou T, Gong N. Genetic and pharmacological targeting of XBP1 alleviates hepatic ischemia reperfusion injury by enhancing FoxO1-dependent mitophagy. Transl Res 2024; 272:162-176. [PMID: 38494125 DOI: 10.1016/j.trsl.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/10/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Hepatic ischemia reperfusion (I/R) injury is a common clinical complication. X-box binding protein 1 (XBP1), as a critical regulator of the endoplasmic reticulum stress, has been implicated in a variety of diseases. In this study, we aimed to investigate the effects and the underlying mechanism of XBP1 in the progression of hepatic I/R injury. Hepatocyte-specific XBP1 knockout mice, multiple viral delivery systems and specific pharmacological inhibitors were applied in vivo in a partial hepatic I/R injury mouse model and in vitro in a cell model of hypoxia-reoxygenation (H/R) injury. Mitophagy and autophagic flux were evaluated and fluorescence resonance energy transfer (FRET) as well as immunoprecipitation were performed. The results demonstrated that reperfusion for 6 h represented a critical timepoint in hepatic I/R injury and resulted in significant intracellular mitochondrial dysfunction; led to the breakdown of hepatocytes accompanied by the highest expression levels of XBP1. Hepatocyte-specific XBP1 knockout alleviated hepatic I/R injury via enhanced mitophagy, as demonstrated by the reduction in hepatocellular damage/necrosis and increased expression of mitophagy markers. Mechanistically, XBP1 interacted with FoxO1 directly and catalyzed the ubiquitination of FoxO1 for proteasomal degradation. Targeting XBP1 by genetic or pharmacological techniques potentiated the protein levels of FoxO1, further promoting the activity of the PINK1/Parkin signaling pathway, thus augmenting mitophagy and exerting hepatoprotective effects upon I/R injury. In conclusion, the inhibition of XBP1 potentiated FoxO1-mediated mitophagy in hepatic I/R injury. Specific genetic and pharmacological treatment targeting XBP1 in the perioperative 6 h prior to reperfusion exerted beneficial effects, thus providing a novel therapeutic approach.
Collapse
Affiliation(s)
- Baicheng Kuang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation of Ministry of Education, National Health Commission and Chinese Academy of Medical Sciences, Wuhan, Hubei China
| | - Mengqin Wang
- Department of Cardiothoracic surgery, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Hao Yan
- Department of Urology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Qin Jiang
- Department of Gastroenterology, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, Hubei China
| | - Zhiheng Wang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation of Ministry of Education, National Health Commission and Chinese Academy of Medical Sciences, Wuhan, Hubei China
| | - Haiqiang Ni
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation of Ministry of Education, National Health Commission and Chinese Academy of Medical Sciences, Wuhan, Hubei China
| | - Shuaiheng Hou
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation of Ministry of Education, National Health Commission and Chinese Academy of Medical Sciences, Wuhan, Hubei China
| | - Xuan Peng
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation of Ministry of Education, National Health Commission and Chinese Academy of Medical Sciences, Wuhan, Hubei China
| | - Shiqi Gu
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation of Ministry of Education, National Health Commission and Chinese Academy of Medical Sciences, Wuhan, Hubei China
| | - Yuanyuan Zhao
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation of Ministry of Education, National Health Commission and Chinese Academy of Medical Sciences, Wuhan, Hubei China
| | - Tongwen Ou
- Department of Urology, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Nianqiao Gong
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation of Ministry of Education, National Health Commission and Chinese Academy of Medical Sciences, Wuhan, Hubei China.
| |
Collapse
|
21
|
Kettel P, Marosits L, Spinetti E, Rechberger M, Giannini C, Radler P, Niedermoser I, Fischer I, Versteeg GA, Loose M, Covino R, Karagöz GE. Disordered regions in the IRE1α ER lumenal domain mediate its stress-induced clustering. EMBO J 2024; 43:4668-4698. [PMID: 39232130 PMCID: PMC11480506 DOI: 10.1038/s44318-024-00207-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/02/2024] [Accepted: 07/23/2024] [Indexed: 09/06/2024] Open
Abstract
Conserved signaling cascades monitor protein-folding homeostasis to ensure proper cellular function. One of the evolutionary conserved key players is IRE1, which maintains endoplasmic reticulum (ER) homeostasis through the unfolded protein response (UPR). Upon accumulation of misfolded proteins in the ER, IRE1 forms clusters on the ER membrane to initiate UPR signaling. What regulates IRE1 cluster formation is not fully understood. Here, we show that the ER lumenal domain (LD) of human IRE1α forms biomolecular condensates in vitro. IRE1α LD condensates were stabilized both by binding to unfolded polypeptides as well as by tethering to model membranes, suggesting their role in assembling IRE1α into signaling-competent stable clusters. Molecular dynamics simulations indicated that weak multivalent interactions drive IRE1α LD clustering. Mutagenesis experiments identified disordered regions in IRE1α LD to control its clustering in vitro and in cells. Importantly, dysregulated clustering of IRE1α mutants led to defects in IRE1α signaling. Our results revealed that disordered regions in IRE1α LD control its clustering and suggest their role as a common strategy in regulating protein assembly on membranes.
Collapse
Affiliation(s)
- Paulina Kettel
- Max Perutz Laboratories Vienna, Vienna BioCenter, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Laura Marosits
- Max Perutz Laboratories Vienna, Vienna BioCenter, Vienna, Austria
- Medical University of Vienna, Vienna, Austria
| | - Elena Spinetti
- Frankfurt Institute for Advanced Studies, Frankfurt, Germany
- Institute of Biophysics, Goethe University, Frankfurt, Germany
| | | | - Caterina Giannini
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Philipp Radler
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Isabell Niedermoser
- Max Perutz Laboratories Vienna, Vienna BioCenter, Vienna, Austria
- Medical University of Vienna, Vienna, Austria
| | - Irmgard Fischer
- Max Perutz Laboratories Vienna, Vienna BioCenter, Vienna, Austria
| | - Gijs A Versteeg
- Max Perutz Laboratories Vienna, Vienna BioCenter, Vienna, Austria
- Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna, Austria
| | - Martin Loose
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Roberto Covino
- Frankfurt Institute for Advanced Studies, Frankfurt, Germany
- IMPRS on Cellular Biophysics, Frankfurt, Germany
| | - G Elif Karagöz
- Max Perutz Laboratories Vienna, Vienna BioCenter, Vienna, Austria.
- Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
22
|
İpek E, Ahsan U, Özsoy B, Ekren Aşıcı GS, Tatar M, Özpilavcı BN, Epikmen ET, Özsoy ŞY, Khamseh EK, Petracci M. Endoplasmic reticulum stress and associated apoptosis are linked with the pathogenesis of white striping in broiler breast muscles. Poult Sci 2024; 103:104103. [PMID: 39094495 PMCID: PMC11345576 DOI: 10.1016/j.psj.2024.104103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/05/2024] [Accepted: 07/11/2024] [Indexed: 08/04/2024] Open
Abstract
White striping (WS) that appears as white stripes parallel to the muscle fibrils is an emerging growth-related abnormality of broiler breast meat. The pathomechanism of this defect has not been fully understood despite intensive studies over the past decade. In the present study, endoplasmic reticulum (ER) stress and its associated apoptotic pathways were investigated to elucidate the potential role of these pathways in the development of WS. To this end, a total of 60 Pectoralis major (Pm) muscle samples were collected from 55-d-old Ross 308 male broiler chickens according to the severity of gross WS lesions (normal, mild, and severe). Histopathological and molecular analyses were conducted to evaluate the lesions and genes involved in the ER stress and related apoptosis. All the Pm samples, both with and without macroscopic WS lesions, showed varying degrees of myodegenerative lesions. Molecular analysis revealed that the transcript abundances of many components related to protein kinase R-like ER kinase (PERK) and inositol-requiring enzyme type 1 (IRE-1) signals of the ER stress response were significantly greater in severely WS-affected breast tissues compared to their mildly affected and normal counterparts. Similarly, the transcript abundances of apoptotic markers related to both signaling pathways were significantly greater in severe WS lesions than those of mildly affected and normal Pm tissues. Besides these, a significant increase in caspase-3 transcript abundance was seen in severe WS lesions in comparison with mild WS and normal breast muscles. Findings of this study suggest that ER stress response and its related apoptotic pathways are possibly activated in the breast muscle of broiler chickens with severe WS lesions. Based on these findings, it is speculated that ER stress-mediated apoptosis occupies a central role in the progression of WS in broiler chickens.
Collapse
Affiliation(s)
- Emrah İpek
- Department of Pathology, Faculty of Veterinary Medicine, Aydın Adnan Menderes University, Aydın 09016, Türkiye
| | - Umair Ahsan
- Department of Plant and Animal Production, Burdur Vocational School of Food, Agriculture and Livestock, Burdur Mehmet Akif Ersoy University, Burdur 15030, Türkiye; Center for Agriculture, Livestock and Food Research Burdur Mehmet Akif Ersoy University, Burdur 15030, Türkiye
| | - Bülent Özsoy
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Aydın Adnan Menderes University, Aydın 09016, Türkiye
| | - Gamze Sevri Ekren Aşıcı
- Department of Biochemistry, Faculty of Veterinary Medicine, Aydın Adnan Menderes University, Aydın 09016, Türkiye
| | - Musa Tatar
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Kastamonu University, Kastamonu, Türkiye
| | - Beyza Nur Özpilavcı
- Department of Biochemistry, Faculty of Veterinary Medicine, Aydın Adnan Menderes University, Aydın 09016, Türkiye
| | - Erkmen Tuğrul Epikmen
- Department of Pathology, Faculty of Veterinary Medicine, Aydın Adnan Menderes University, Aydın 09016, Türkiye
| | - Şule Yurdagül Özsoy
- Department of Pathology, Faculty of Veterinary Medicine, Aydın Adnan Menderes University, Aydın 09016, Türkiye
| | - Ehsan Karimiyan Khamseh
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Aydın Adnan Menderes University, Aydın 09016, Türkiye
| | - Massimiliano Petracci
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy.
| |
Collapse
|
23
|
Faiz M, Kalev‐Zylinska ML, Dunstan‐Harrison C, Singleton DC, Hay MP, Ledgerwood EC. Megakaryocyte maturation involves activation of the adaptive unfolded protein response. Genes Cells 2024; 29:889-901. [PMID: 39138929 PMCID: PMC11555628 DOI: 10.1111/gtc.13151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/21/2024] [Accepted: 07/26/2024] [Indexed: 08/15/2024]
Abstract
Endoplasmic reticulum stress triggers the unfolded protein response (UPR) to promote cell survival or apoptosis. Transient endoplasmic reticulum stress activation has been reported to trigger megakaryocyte production, and UPR activation has been reported as a feature of megakaryocytic cancers. However, the role of UPR signaling in megakaryocyte biology is not fully understood. We studied the involvement of UPR in human megakaryocytic differentiation using PMA (phorbol 12-myristate 13-acetate)-induced maturation of megakaryoblastic cell lines and thrombopoietin-induced differentiation of human peripheral blood-derived progenitors. Our results demonstrate that an adaptive UPR is a feature of megakaryocytic differentiation and that this response is not associated with ER stress-induced apoptosis. Differentiation did not alter the response to the canonical endoplasmic reticulum stressors DTT or thapsigargin. However, thapsigargin, but not DTT, inhibited differentiation, consistent with the involvement of Ca2+ signaling in megakaryocyte differentiation.
Collapse
Affiliation(s)
- Mifra Faiz
- Department of BiochemistrySchool of Biomedical Sciences, University of OtagoDunedinNew Zealand
| | - Maggie L. Kalev‐Zylinska
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine & PathologyFaculty of Medical and Health Sciences, The University of AucklandAucklandNew Zealand
| | | | - Dean C. Singleton
- Auckland Cancer Society Research CentreFaculty of Medical and Health Sciences, The University of AucklandAucklandNew Zealand
| | - Michael P. Hay
- Auckland Cancer Society Research CentreFaculty of Medical and Health Sciences, The University of AucklandAucklandNew Zealand
| | - Elizabeth C. Ledgerwood
- Department of BiochemistrySchool of Biomedical Sciences, University of OtagoDunedinNew Zealand
| |
Collapse
|
24
|
Yu C, Zhang Z, Xiao L, Ai M, Qing Y, Zhang Z, Xu L, Yu OY, Cao Y, Liu Y, Song K. IRE1α pathway: A potential bone metabolism mediator. Cell Prolif 2024; 57:e13654. [PMID: 38736291 PMCID: PMC11471397 DOI: 10.1111/cpr.13654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/07/2024] [Accepted: 05/01/2024] [Indexed: 05/14/2024] Open
Abstract
Osteoblasts and osteoclasts collaborate in bone metabolism, facilitating bone development, maintaining normal bone density and strength, and aiding in the repair of pathological damage. Endoplasmic reticulum stress (ERS) can disrupt the intracellular equilibrium between osteoclast and osteoblast, resulting in dysfunctional bone metabolism. The inositol-requiring enzyme-1α (IRE1α) pathway-the most conservative unfolded protein response pathway activated by ERS-is crucial in regulating cell metabolism. This involvement encompasses functions such as inflammation, autophagy, and apoptosis. Many studies have highlighted the potential roles of the IRE1α pathway in osteoblasts, chondrocytes, and osteoclasts and its implication in certain bone-related diseases. These findings suggest that it may serve as a mediator for bone metabolism. However, relevant reviews on the role of the IRE1α pathway in bone metabolism remain unavailable. Therefore, this review aims to explore recent research that elucidated the intricate roles of the IRE1α pathway in bone metabolism, specifically in osteogenesis, chondrogenesis, osteoclastogenesis, and osteo-immunology. The findings may provide novel insights into regulating bone metabolism and treating bone-related diseases.
Collapse
Affiliation(s)
- Chengbo Yu
- Department of Stomatology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhanChina
| | - Zhixiang Zhang
- Department of Stomatology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhanChina
| | - Li Xiao
- Department of Stomatology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhanChina
| | - Mi Ai
- Department of Stomatology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhanChina
| | - Ying Qing
- Department of Stomatology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhanChina
| | - Zhixing Zhang
- Department of Stomatology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhanChina
| | - Lianyi Xu
- Department of Stomatology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhanChina
| | - Ollie Yiru Yu
- Faculty of DentistryThe University of Hong KongHong Kong SARChina
| | - Yingguang Cao
- Department of Stomatology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhanChina
| | - Yong Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, and the Institute for Advanced StudiesWuhan UniversityWuhanHubeiChina
| | - Ke Song
- Department of Stomatology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhanChina
| |
Collapse
|
25
|
Skubic C, Trček H, Nassib P, Kreft T, Walakira A, Pohar K, Petek S, Režen T, Ihan A, Rozman D. Knockouts of CYP51A1, DHCR24, or SC5D from cholesterol synthesis reveal pathways modulated by sterol intermediates. iScience 2024; 27:110651. [PMID: 39262789 PMCID: PMC11387598 DOI: 10.1016/j.isci.2024.110651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/20/2024] [Accepted: 07/31/2024] [Indexed: 09/13/2024] Open
Abstract
Sterols from cholesterol synthesis are crucial for cholesterol production, but also have individual roles difficult to assess in vivo due to essentiality of cholesterol. We developed HepG2 cell models with knockouts (KOs) for three enzymes of cholesterol synthesis, each accumulating specific sterols. Surprisingly, KOs of CYP51, DHCR24, and SC5D shared only 9% of differentially expressed genes. The most striking was the phenotype of CYP51 KO with highly elevated lanosterol and 24,25-dihydrolanosterol, significant increase in G2+M phase and enhanced cancer and cell cycle pathways. Comparisons with mouse liver Cyp51 KO data suggest 24,25-dihydrolanosterol activates similar cell proliferation pathways, possibly via elevated LEF1 and WNT/NFKB signaling. In contrast, SC5D and DHCR24 KO cells with elevated lathosterol or desmosterol proliferated slowly, with downregulated E2F, mitosis, and enriched HNF1A. These findings demonstrate that increase of lanosterol and 24,25-dihydrolanosterol, but not other sterols, promotes cell proliferation in hepatocytes.
Collapse
Affiliation(s)
- Cene Skubic
- Center for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| | - Hana Trček
- Center for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| | - Petra Nassib
- Center for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| | - Tinkara Kreft
- Center for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| | - Andrew Walakira
- Center for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| | - Katka Pohar
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Sara Petek
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Tadeja Režen
- Center for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| | - Alojz Ihan
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Damjana Rozman
- Center for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| |
Collapse
|
26
|
Zhang Y, Lin S, Yao J, Cai W, Chen H, Aierken A, Wang Z, Song W. XBP1 splicing contributes to endoplasmic reticulum stress-induced human islet amyloid polypeptide up-regulation. Genes Dis 2024; 11:101148. [PMID: 38993793 PMCID: PMC11237843 DOI: 10.1016/j.gendis.2023.101148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/20/2023] [Accepted: 09/16/2023] [Indexed: 07/13/2024] Open
Abstract
As a pathological hallmark of type 2 diabetes mellitus (T2DM), islet amyloid is formed by the aggregation of islet amyloid polypeptide (IAPP). Endoplasmic reticulum (ER) stress interacts with IAPP aggregates and has been implicated in the pathogenesis of T2DM. To examine the role of ER stress in T2DM, we cloned the hIAPP promoter and analyzed its promoter activity in human β-cells. We found that ER stress significantly enhanced hIAPP promoter activity and expression in human β-cells via triggering X-box binding protein 1 (XBP1) splicing. We identified a binding site of XBP1 in the hIAPP promoter. Disruption of this binding site by substitution or deletion mutagenesis significantly diminished the effects of ER stress on hIAPP promoter activity. Blockade of XBP splicing by MKC3946 treatment inhibited ER stress-induced hIAPP up-regulation and improved human β-cell survival and function. Our study uncovers a link between ER stress and IAPP at the transcriptional level and may provide novel insights into the role of ER stress in IAPP cytotoxicity and the pathogenesis of T2DM.
Collapse
Affiliation(s)
- Yun Zhang
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Susan Lin
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Jing Yao
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Wantong Cai
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health and the Affiliated Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325001, China
| | - Huaqiu Chen
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Ailikemu Aierken
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Zhe Wang
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Weihong Song
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health and the Affiliated Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325001, China
| |
Collapse
|
27
|
Minchenko OH, Sliusar MY, Khikhlo YP, Halkin OV, Viletska YM, Khita OO, Minchenko DO. Knockdown of ERN1 disturbs the expression of phosphoserine aminotransferase 1 and related genes in glioblastoma cells. Arch Biochem Biophys 2024; 759:110104. [PMID: 39059599 DOI: 10.1016/j.abb.2024.110104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Endoplasmic reticulum stress and synthesis of serine are essential for tumor growth, but the mechanism of their interaction is not clarified yet. The overarching goal of this work was to investigate the impact of ERN1 (endoplasmic reticulum to nucleus signaling 1) inhibition on the expression of serine synthesis genes in U87MG glioblastoma cells concerning the suppression of cell proliferation. METHODS Wild type U87MG glioblastoma cells and their clones with overexpression of transgenes dnERN1 (without cytoplasmic domain of ERN1) and dnrERN1 (with mutation in endoribonuclease of ERN1), and empty vector (as control) were used. The silencing of ERN1 and XBP1 was also used to inhibition of ERN1 and its function. Gene expression was measured by qPCR. RESULTS We show that the expression of PSAT1 and several other related to serine synthesis genes is suppressed in cells with ERN1 inhibition by dissimilar mechanisms: PHGDH gene through ERN1 protein kinase, because its expression was resistant to inhibition of ERN1 endoribonuclease, but ATF4 gene via endoribonuclease of ERN1. However, in the control of PSAT1 and PSPH genes both enzymatic activities of ERN1 signaling protein are involved. At the same time, ERN1 knockdown strongly increased SHMT1 expression, which controls serine metabolism and enhances the proliferation and invasiveness of glioma cells. The level of microRNAs, which have binding sites in PSAT1, SHMT1, and PSPH mRNAs, was also changed in cells harboring dnERN1 transgene. Inhibition of ERN1 suppressed cell proliferation and enzymatic activity of PHGDH, a rate-limiting enzyme for serine synthesis. CONCLUSION Changes in the expression of phosphoserine aminotransferase 1 and other genes related to serine synthesis are mediated by diverse ERN1-dependent mechanisms and contributed to suppressed proliferation and enhanced invasiveness of ERN1 knockdown glioblastoma cell.
Collapse
Affiliation(s)
- Oleksandr H Minchenko
- Department of Molecular Biology, Palladin Institute of Biochemistry National Academy of Sciences of Ukraine, Kyiv, Ukraine.
| | - Myroslava Y Sliusar
- Department of Molecular Biology, Palladin Institute of Biochemistry National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Yevgen P Khikhlo
- Department of Molecular Biology, Palladin Institute of Biochemistry National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Oleh V Halkin
- Department of Molecular Biology, Palladin Institute of Biochemistry National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Yuliia M Viletska
- Department of Molecular Biology, Palladin Institute of Biochemistry National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Olena O Khita
- Department of Molecular Biology, Palladin Institute of Biochemistry National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Dmytro O Minchenko
- Department of Molecular Biology, Palladin Institute of Biochemistry National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
28
|
Philippe C, Jaud M, Féral K, Gay A, Van Den Berghe L, Farce M, Bousquet M, Pyronnet S, Mazzolini L, Rouault-Pierre K, Touriol C. Pivotal role of the endoplasmic reticulum stress-related XBP1s/miR-22/SIRT1 axis in acute myeloid leukemia apoptosis and response to chemotherapy. Leukemia 2024; 38:1764-1776. [PMID: 38909090 PMCID: PMC11286524 DOI: 10.1038/s41375-024-02321-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
Malignant growth relies on rapid protein synthesis frequently leading to endoplasmic reticulum (ER) overload and accumulation of unfolded or misfolded protein in this cellular compartment. In the ER, protein homeostasis is finely regulated by a mechanism called the unfolded protein response (UPR), involving the activation of signalization pathways mediated by three transmembrane proteins, namely PERK, IRE1 and ATF6. IRE1 endoribonuclease activation leads in particular to the splicing of the cytosolic mRNA encoding the key UPR-specific transcription factor XBP1s. Our study shows that sustained activation of XBP1s expression in acute myeloid leukemia (AML) cells induces apoptosis in vitro and in vivo, whereas a moderate XBP1s expression sensitizes cells to chemotherapeutic treatments. ChIP-seq experiments identified specific XBP1s target genes including the MIR22HG lncRNA, the precursor transcript of microRNA-22-3p. miR-22-3p upregulation by XBP1s or forced expression of miR-22 significantly decreases cell's viability and sensitizes leukemic cells to chemotherapy. We found that miR-22-3p intracellular effects result at least partially from the targeting of the mRNA encoding the deacetylase sirtuin-1 (SIRT1), a well-established pro-survival factor. Therefore, this novel XBP1s/miR-22/SIRT1 axis identified could play a pivotal role in the proliferation and chemotherapeutic response of leukemic cells.
Collapse
Affiliation(s)
- Céline Philippe
- Barts Cancer Institute, Queen Mary University of London, London, UK.
| | - Manon Jaud
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kelly Féral
- Centre de Recherches en Cancérologie de Toulouse (CRCT), INSERM UMR-1037, CNRS UMR-5071, Université de Toulouse, Toulouse, France
| | - Alexandre Gay
- Centre de Recherches en Cancérologie de Toulouse (CRCT), INSERM UMR-1037, CNRS UMR-5071, Université de Toulouse, Toulouse, France
| | - Loïc Van Den Berghe
- Vectorology Platform, CRCT INSERM UMR-1037 Technological Pole, F-31037, Toulouse, France
| | - Manon Farce
- Flow Cytometry and Cell Sorting Platform, CRCT INSERM UMR-1037 Technological Pole, F-31037, Toulouse, France
| | - Marina Bousquet
- Centre de Recherches en Cancérologie de Toulouse (CRCT), INSERM UMR-1037, CNRS UMR-5071, Université de Toulouse, Toulouse, France
| | - Stéphane Pyronnet
- Centre de Recherches en Cancérologie de Toulouse (CRCT), INSERM UMR-1037, CNRS UMR-5071, Université de Toulouse, Toulouse, France
| | - Laurent Mazzolini
- Centre de Recherches en Cancérologie de Toulouse (CRCT), INSERM UMR-1037, CNRS UMR-5071, Université de Toulouse, Toulouse, France
| | | | - Christian Touriol
- Centre de Recherches en Cancérologie de Toulouse (CRCT), INSERM UMR-1037, CNRS UMR-5071, Université de Toulouse, Toulouse, France.
| |
Collapse
|
29
|
Joshi AS, Tomaz da Silva M, Roy A, Koike TE, Wu M, Castillo MB, Gunaratne PH, Liu Y, Iwawaki T, Kumar A. The IRE1α/XBP1 signaling axis drives myoblast fusion in adult skeletal muscle. EMBO Rep 2024; 25:3627-3650. [PMID: 38982191 PMCID: PMC11316051 DOI: 10.1038/s44319-024-00197-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/29/2024] [Accepted: 06/17/2024] [Indexed: 07/11/2024] Open
Abstract
Skeletal muscle regeneration involves a signaling network that regulates the proliferation, differentiation, and fusion of muscle precursor cells to injured myofibers. IRE1α, one of the arms of the unfolded protein response, regulates cellular proteostasis in response to ER stress. Here, we demonstrate that inducible deletion of IRE1α in satellite cells of mice impairs skeletal muscle regeneration through inhibiting myoblast fusion. Knockdown of IRE1α or its downstream target, X-box protein 1 (XBP1), also inhibits myoblast fusion during myogenesis. Transcriptome analysis revealed that knockdown of IRE1α or XBP1 dysregulates the gene expression of molecules involved in myoblast fusion. The IRE1α-XBP1 axis mediates the gene expression of multiple profusion molecules, including myomaker (Mymk). Spliced XBP1 (sXBP1) transcription factor binds to the promoter of Mymk gene during myogenesis. Overexpression of myomaker in IRE1α-knockdown cultures rescues fusion defects. Inducible deletion of IRE1α in satellite cells also inhibits myoblast fusion and myofiber hypertrophy in response to functional overload. Collectively, our study demonstrates that IRE1α promotes myoblast fusion through sXBP1-mediated up-regulation of the gene expression of multiple profusion molecules, including myomaker.
Collapse
Affiliation(s)
- Aniket S Joshi
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX, 77204, USA
| | - Meiricris Tomaz da Silva
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX, 77204, USA
| | - Anirban Roy
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX, 77204, USA
| | - Tatiana E Koike
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX, 77204, USA
| | - Mingfu Wu
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX, 77204, USA
| | - Micah B Castillo
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204, USA
| | - Preethi H Gunaratne
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204, USA
| | - Yu Liu
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204, USA
| | - Takao Iwawaki
- Division of Cell Medicine, Department of Life Science, Medical Research Institute, Kanazawa Medical University, Uchinada, Japan
| | - Ashok Kumar
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX, 77204, USA.
| |
Collapse
|
30
|
Hrabos D, Poggiolini I, Civitelli L, Galli E, Esapa C, Saarma M, Lindholm P, Parkkinen L. Unfolded protein response markers Grp78 and eIF2alpha are upregulated with increasing alpha-synuclein levels in Lewy body disease. Neuropathol Appl Neurobiol 2024; 50:e12999. [PMID: 39036837 DOI: 10.1111/nan.12999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/23/2024]
Abstract
AIMS Endoplasmic reticulum stress followed by the unfolded protein response is one of the cellular mechanisms contributing to the progression of α-synuclein pathology in Parkinson's disease and other Lewy body diseases. We aimed to investigate the activation of endoplasmic reticulum stress and its correlation with α-synuclein pathology in human post-mortem brain tissue. METHODS We analysed brain tissue from 45 subjects-14 symptomatic patients with Lewy body disease, 19 subjects with incidental Lewy body disease, and 12 healthy controls. The analysed brain regions included the medulla, pons, midbrain, striatum, amygdala and entorhinal, temporal, frontal and occipital cortex. We analysed activation of endoplasmic reticulum stress via levels of the unfolded protein response-related proteins (Grp78, eIF2α) and endoplasmic reticulum stress-regulating neurotrophic factors (MANF, CDNF). RESULTS We showed that regional levels of two endoplasmic reticulum-localised neurotrophic factors, MANF and CDNF, did not change in response to accumulating α-synuclein pathology. The concentration of MANF negatively correlated with age in specific regions. eIF2α was upregulated in the striatum of Lewy body disease patients and correlated with increased α-synuclein levels. We found the upregulation of chaperone Grp78 in the amygdala and nigral dopaminergic neurons of Lewy body disease patients. Grp78 levels in the amygdala strongly correlated with soluble α-synuclein levels. CONCLUSIONS Our data suggest a strong but regionally specific change in Grp78 and eIF2α levels, which positively correlates with soluble α-synuclein levels. Additionally, MANF levels decreased in dopaminergic neurons in the substantia nigra. Our research suggests that endoplasmic reticulum stress activation is not associated with Lewy pathology but rather with soluble α-synuclein concentration and disease progression.
Collapse
Affiliation(s)
- Dominik Hrabos
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK
- Department of Clinical and Molecular Pathology, Palacky University Olomouc and University Hospital Olomouc, Olomouc, Czech Republic
- Department of Neurology, Palacky University Olomouc and University Hospital Olomouc, Olomouc, Czech Republic
| | - Ilaria Poggiolini
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK
| | - Livia Civitelli
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK
| | - Emilia Galli
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Chris Esapa
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Science and Innovation Campus, Didcot, UK
| | - Mart Saarma
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Päivi Lindholm
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Laura Parkkinen
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK
| |
Collapse
|
31
|
Minchenko OH, Khita OO, Krasnytska DA, Viletska YM, Rudnytska OV, Hnatiuk OS, Minchenko DO. Inhibition of ERN1 affects the expression of TGIF1 and other homeobox gene expressions in U87MG glioblastoma cells. Arch Biochem Biophys 2024; 758:110073. [PMID: 38914217 DOI: 10.1016/j.abb.2024.110073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/16/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
BACKGROUND The ERN1 (endoplasmic reticulum to nucleus signaling 1) pathway plays an important role in the regulation of gene expression in glioblastoma, but molecular mechanism has not yet been fully elucidated. The aim of this study was to evaluate the relative relevance of ERN1 activity as a kinase in comparison to its endoribonuclease activity in the regulation of homeobox gene expression. METHODS Two sublines of U87MG glioblastoma cells with different ways of ERN1 inhibition were used: dnERN1 (overexpressed transgene without protein kinase and endoribonuclease) and dnrERN1 (overexpressed transgene with mutation in endoribonuclease). ERN1 suppression was also done using siRNA for ERN1. Silencing of XBP1 mRNA by specific siRNA was used for suppression of ERN1 endoribonuclease function mediated by XBP1s. The expression levels of homeobox genes and microRNAs were evaluated by qPCR. RESULTS The expression of TGIF1 and ZEB2 genes was downregulated in both types of glioblastoma cells with inhibition of ERN1 showing the ERN1 endoribonuclease-dependent mechanism of their regulation. However, the expression of PBX3 and PRPRX1 genes did not change significantly in dnrERN1 glioblastoma cells but was upregulated in dnERN1 cells indicating the dependence of these gene expressions on the ERN1 protein kinase. At the same time, the changes in PAX6 and PBXIP1 gene expressions introduced in glioblastoma cells by dnrERN1 and dnERN1 were different in direction and magnitude indicating the interaction of ERN1 protein kinase and endoribonuclease activities in regulation of these gene expressions. The impact of ERN1 and XBP1 silencing on the expression of studied homeobox genes is similar to that observed in dnERN1 and dnrERN1 glioblastoma cells, correspondingly. CONCLUSION The expression of TGIF1 and other homeobox genes is dependent on the ern1 signaling pathways by diverse mechanisms because inhibition of ERN1 endoribonuclease and both ERN1 enzymatic activities had dissimilar impacts on the expression of most studied genes showing that ERN1 protein kinase plays an important role in controlling homeobox gene expression associated with glioblastoma cell invasion.
Collapse
Affiliation(s)
- Oleksandr H Minchenko
- Department of Molecular Biology, Palladin Institute of Biochemistry National Academy of Sciences of Ukraine, Kyiv, Ukraine.
| | - Olena O Khita
- Department of Molecular Biology, Palladin Institute of Biochemistry National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Daria A Krasnytska
- Department of Molecular Biology, Palladin Institute of Biochemistry National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Yuliia M Viletska
- Department of Molecular Biology, Palladin Institute of Biochemistry National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Olha V Rudnytska
- Department of Molecular Biology, Palladin Institute of Biochemistry National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Oksana S Hnatiuk
- Department of Molecular Biology, Palladin Institute of Biochemistry National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Dmytro O Minchenko
- Department of Molecular Biology, Palladin Institute of Biochemistry National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
32
|
Poblano-Bata J, Zaragoza-Ojeda M, De Vizcaya-Ruiz A, Arenas-Huertero F, Amador-Muñoz O. Toxicological effects of solvent-extracted organic matter associated with PM 2.5 on human bronchial epithelial cell line NL-20. CHEMOSPHERE 2024; 362:142622. [PMID: 38880264 DOI: 10.1016/j.chemosphere.2024.142622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/02/2024] [Accepted: 06/14/2024] [Indexed: 06/18/2024]
Abstract
The heterogeneity and complexity of solvent-extracted organic matter associated with PM2.5 (SEOM-PM2.5) is well known; however, there is scarce information on its biological effects in human cells. This work aimed to evaluate the effect of SEOM-PM2.5 collected in northern Mexico City during the cold-dry season (November 2017) on NL-20 cells, a human bronchial epithelial cell line. The SEOM obtained accounted for 15.5% of the PM2.5 mass and contained 21 polycyclic aromatic hydrocarbons (PAHs). The cell viability decreased following exposure to SEOM-PM2.5, and there were noticeable morphological changes such as increased cell size and the presence of cytoplasmic vesicles in cells treated with 5-40 μg/mL SEOM-PM2.5. Exposure to 5 μg/mL SEOM-PM2.5 led to several alterations compared with the control cells, including the induction of double-stranded DNA breaks based (p < 0.001); nuclear fragmentation and an increased mitotic index (p < 0.05); 53BP1 staining, a marker of DNA repair by non-homologous end-joining (p < 0.001); increased BiP protein expression; and reduced ATF6, IRE1α, and PERK gene expression. Conversely, when exposed to 40 μg/mL SEOM-PM2.5, the cells showed an increase in reactive oxygen species formation (p < 0.001), BiP protein expression (p < 0.05), and PERK gene expression (p < 0.05), indicating endoplasmic reticulum stress. Our data suggest concentration-dependent toxicological effects of SEOM-PM2.5 on NL-20 cells, including genotoxicity, genomic instability, and endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Josefina Poblano-Bata
- Especiación Química de Aerosoles Orgánicos Atmosféricos, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México. Investigación Científica s/n, C.U., Coyoacán, Mexico City, 04510, Mexico; Centro de Investigación en Biomedicina y Bioseguridad, Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Mexico City, 06720, Mexico.
| | - Montserrat Zaragoza-Ojeda
- Centro de Investigación en Biomedicina y Bioseguridad, Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Mexico City, 06720, Mexico.
| | - Andrea De Vizcaya-Ruiz
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados-IPN, Ciudad de México, 07360, Mexico.
| | - Francisco Arenas-Huertero
- Centro de Investigación en Biomedicina y Bioseguridad, Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Mexico City, 06720, Mexico.
| | - Omar Amador-Muñoz
- Especiación Química de Aerosoles Orgánicos Atmosféricos, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México. Investigación Científica s/n, C.U., Coyoacán, Mexico City, 04510, Mexico.
| |
Collapse
|
33
|
Haddadi M, Haghi M, Rezaei N, Kiani Z, Akkülah T, Celik A. APOE and Alzheimer's disease: Pathologic clues from transgenic Drosophila melanogaster. Arch Gerontol Geriatr 2024; 123:105420. [PMID: 38537387 DOI: 10.1016/j.archger.2024.105420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/03/2024] [Accepted: 03/19/2024] [Indexed: 06/06/2024]
Abstract
Alzheimer's disease (AD) is one of the most common forms of neurodegenerative diseases. Apolipoprotein E4 (ApoE4) is the main genetic risk factor in the development of late-onset AD. However, the exact mechanism underlying ApoE4-mediated neurodegeneration remains unclear. We utilized Drosophila melanogaster to examine the neurotoxic effects of various human APOE isoforms when expressed specifically in glial and neural cells. We assessed impacts on mitochondrial dynamics, ER stress, lipid metabolism, and bio-metal ion concentrations in the central nervous system (CNS) of the transgenic flies. Dachshund antibody staining revealed a reduction in the number of Kenyon cells. Behavioral investigations including ethanol tolerance and learning and memory performance demonstrated neuronal dysfunction in APOE4-expressing larvae and adult flies. Transcription level of marf and drp-1 were found to be elevated in APOE4 flies, while atf4, atf6, and xbp-1 s showed down regulation. Enhanced concentrations of triglyceride and cholesterol in the CNS were observed in APOE4 transgenic flies, with especially pronounced effects upon glial-specific expression of the gene. Spectrophotometry of brain homogenate revealed enhanced Fe++ and Zn++ ion levels in conjunction with diminished Cu++ levels upon APOE4 expression. To explore therapeutic strategies, we subjected the flies to heat-shock treatment, aiming to activate heat-shock proteins (HSPs) and assess their potential to mitigate the neurotoxic effects of APOE isoforms. The results showed potential therapeutic benefits for APOE4-expressing flies, hinting at an ability to attenuate memory deterioration. Overall, our findings suggest that APOE4 can alter lipid metabolism, bio metal ion homeostasis, and disrupt the harmonious fission-fusion balance of neuronal and glial mitochondria, ultimately inducing ER stress. These alterations mirror the main clinical manifestations of AD in patients. Therefore, our work underscores the suitability of Drosophila as a fertile model for probing the pathological roles of APOE and furthering our understanding of diverse isoform-specific functions.
Collapse
Affiliation(s)
- Mohammad Haddadi
- Department of Biology, Faculty of Basic Sciences, University of Zabol, Zabol, Iran; Genetics and Non-communicable Diseases Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Mehrnaz Haghi
- Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| | - Niloofar Rezaei
- Department of Biology, Faculty of Basic Sciences, University of Zabol, Zabol, Iran
| | - Zahra Kiani
- Department of Biology, Faculty of Basic Sciences, University of Zabol, Zabol, Iran
| | - Taha Akkülah
- Department of Molecular Biology and Genetics, Bogazici University, Istanbul, Turkiye; Center for Life Sciences and Technologies, Bogazici University, Istanbul, Turkiye
| | - Arzu Celik
- Department of Molecular Biology and Genetics, Bogazici University, Istanbul, Turkiye; Center for Life Sciences and Technologies, Bogazici University, Istanbul, Turkiye
| |
Collapse
|
34
|
Zheng ZJ, Zhang HY, Hu YL, Li Y, Wu ZH, Li ZP, Chen DR, Luo Y, Zhang XJ, Li C, Wang XY, Xu D, Qiu W, Li HP, Liao XP, Ren H, Sun J. Sleep Deprivation Induces Gut Damage via Ferroptosis. J Pineal Res 2024; 76:e12987. [PMID: 38975671 DOI: 10.1111/jpi.12987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 07/09/2024]
Abstract
Sleep deprivation (SD) has been associated with a plethora of severe pathophysiological syndromes, including gut damage, which recently has been elucidated as an outcome of the accumulation of reactive oxygen species (ROS). However, the spatiotemporal analysis conducted in this study has intriguingly shown that specific events cause harmful damage to the gut, particularly to goblet cells, before the accumulation of lethal ROS. Transcriptomic and metabolomic analyses have identified significant enrichment of metabolites related to ferroptosis in mice suffering from SD. Further analysis revealed that melatonin could rescue the ferroptotic damage in mice by suppressing lipid peroxidation associated with ALOX15 signaling. ALOX15 knockout protected the mice from the serious damage caused by SD-associated ferroptosis. These findings suggest that melatonin and ferroptosis could be targets to prevent devastating gut damage in animals exposed to SD. To sum up, this study is the first report that proposes a noncanonical modulation in SD-induced gut damage via ferroptosis with a clearly elucidated mechanism and highlights the active role of melatonin as a potential target to maximally sustain the state during SD.
Collapse
Affiliation(s)
- Zi-Jian Zheng
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Hai-Yi Zhang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Ya-Lin Hu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Yan Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Zhi-Hong Wu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Zhi-Peng Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Dong-Rui Chen
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Yang Luo
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Xiao-Jing Zhang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Cang Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Xiao-Yu Wang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Dan Xu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Wei Qiu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | | | - Xiao-Ping Liao
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Hao Ren
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Jian Sun
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| |
Collapse
|
35
|
Bidooki SH, Barranquero C, Sánchez-Marco J, Martínez-Beamonte R, Rodríguez-Yoldi MJ, Navarro MA, Fernandes SCM, Osada J. TXNDC5 Plays a Crucial Role in Regulating Endoplasmic Reticulum Activity through Different ER Stress Signaling Pathways in Hepatic Cells. Int J Mol Sci 2024; 25:7128. [PMID: 39000233 PMCID: PMC11241358 DOI: 10.3390/ijms25137128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
The pathogenesis of non-alcoholic fatty liver disease (NAFLD) is influenced by a number of variables, including endoplasmic reticulum stress (ER). Thioredoxin domain-containing 5 (TXNDC5) is a member of the protein disulfide isomerase family and acts as an endoplasmic reticulum (ER) chaperone. Nevertheless, the function of TXNDC5 in hepatocytes under ER stress remains largely uncharacterized. In order to identify the role of TXNDC5 in hepatic wild-type (WT) and TXNDC5-deficient (KO) AML12 cell lines, tunicamycin, palmitic acid, and thapsigargin were employed as stressors. Cell viability, mRNA, protein levels, and mRNA splicing were then assayed. The protein expression results of prominent ER stress markers indicated that the ERN1 and EIF2AK3 proteins were downregulated, while the HSPA5 protein was upregulated. Furthermore, the ATF6 protein demonstrated no significant alterations in the absence of TXNDC5 at the protein level. The knockout of TXNDC5 has been demonstrated to increase cellular ROS production and its activity is required to maintain normal mitochondrial function during tunicamycin-induced ER stress. Tunicamycin has been observed to disrupt the protein levels of HSPA5, ERN1, and EIF2AK3 in TXNDC5-deficient cells. However, palmitic acid has been observed to disrupt the protein levels of ATF6, HSPA5, and EIF2AK3. In conclusion, TXNDC5 can selectively activate distinct ER stress pathways via HSPA5, contingent on the origin of ER stress. Conversely, the absence of TXNDC5 can disrupt the EIF2AK3 cascade.
Collapse
Affiliation(s)
- Seyed Hesamoddin Bidooki
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (S.H.B.); (J.S.-M.); (R.M.-B.); (M.A.N.)
- Instituto Agroalimentario de Aragón, CITA, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (C.B.); (M.J.R.-Y.)
- Institute of Analytical Sciences and Physico-Chemistry for Environment and Materials (IPREM), Universite de Pau et des Pays de l’Adour, E2S UPPA, CNRS, 64 000 Pau, France;
- MANTA—Marine Materials Research Group, Universite de Pau et des Pays de l’Adour, E2S UPPA, 64 600 Anglet, France
| | - Cristina Barranquero
- Instituto Agroalimentario de Aragón, CITA, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (C.B.); (M.J.R.-Y.)
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Javier Sánchez-Marco
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (S.H.B.); (J.S.-M.); (R.M.-B.); (M.A.N.)
| | - Roberto Martínez-Beamonte
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (S.H.B.); (J.S.-M.); (R.M.-B.); (M.A.N.)
- Instituto Agroalimentario de Aragón, CITA, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (C.B.); (M.J.R.-Y.)
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - María J. Rodríguez-Yoldi
- Instituto Agroalimentario de Aragón, CITA, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (C.B.); (M.J.R.-Y.)
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
- Departamento de Farmacología, Fisiología, Medicina Legal y Forense, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain
| | - María A. Navarro
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (S.H.B.); (J.S.-M.); (R.M.-B.); (M.A.N.)
- Instituto Agroalimentario de Aragón, CITA, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (C.B.); (M.J.R.-Y.)
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Susana C. M. Fernandes
- Institute of Analytical Sciences and Physico-Chemistry for Environment and Materials (IPREM), Universite de Pau et des Pays de l’Adour, E2S UPPA, CNRS, 64 000 Pau, France;
- MANTA—Marine Materials Research Group, Universite de Pau et des Pays de l’Adour, E2S UPPA, 64 600 Anglet, France
| | - Jesús Osada
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (S.H.B.); (J.S.-M.); (R.M.-B.); (M.A.N.)
- Instituto Agroalimentario de Aragón, CITA, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (C.B.); (M.J.R.-Y.)
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| |
Collapse
|
36
|
Li M, Shou H, Martínez Corrales G, Svermova T, Franco AV, Alic N. Xbp1 targets canonical UPR ER and non-canonical pathways in separate tissues to promote longevity. iScience 2024; 27:109962. [PMID: 38832022 PMCID: PMC11144730 DOI: 10.1016/j.isci.2024.109962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/19/2024] [Accepted: 05/09/2024] [Indexed: 06/05/2024] Open
Abstract
Transcription factors can reprogram gene expression to promote longevity. Here, we investigate the role of Drosophila Xbp1. Xbp1 is activated by splicing of its primary transcript, Xbp1u, to generate Xbp1s, a key activator of the endoplasmic reticulum unfolded protein response (UPRER). We show that Xbp1s induces the conical UPRER in the gut, promoting longevity from the resident stem cells. In contrast, in the fat body, Xbp1s does not appear to trigger UPRER but alters metabolic gene expression and is still able to extend lifespan. In the fat body, Xbp1s and dFOXO impinge on the same target genes, including the PGC-1α orthologue Srl, and dfoxo requires Xbp1 to extend lifespan. Interestingly, unspliceable version of the Xbp1 mRNA, Xbp1u can also extend lifespan, hinting at roles in longevity for the poorly characterized Xbp1u transcription factor. These findings reveal the diverse functions of Xbp1 in longevity in the fruit fly.
Collapse
Affiliation(s)
- Mengjia Li
- Institute of Healthy Ageing and the Research Department of Genetics, Evolution, and Environment, University College London, London WC1E 6BT, UK
| | - Haocheng Shou
- Institute of Healthy Ageing and the Research Department of Genetics, Evolution, and Environment, University College London, London WC1E 6BT, UK
| | - Guillermo Martínez Corrales
- Institute of Healthy Ageing and the Research Department of Genetics, Evolution, and Environment, University College London, London WC1E 6BT, UK
| | - Tatiana Svermova
- Institute of Healthy Ageing and the Research Department of Genetics, Evolution, and Environment, University College London, London WC1E 6BT, UK
| | - Alessandra Vieira Franco
- Institute of Healthy Ageing and the Research Department of Genetics, Evolution, and Environment, University College London, London WC1E 6BT, UK
| | - Nazif Alic
- Institute of Healthy Ageing and the Research Department of Genetics, Evolution, and Environment, University College London, London WC1E 6BT, UK
| |
Collapse
|
37
|
Mishra T, Sengupta P, Basu S. Biomaterials for Targeting Endoplasmic Reticulum in Cancer. Chem Asian J 2024; 19:e202400250. [PMID: 38602248 DOI: 10.1002/asia.202400250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/12/2024]
Abstract
Endoplasmic reticulum (ER) is one of the most important sub-cellular organelles which controls myriads of biological functions including protein biosynthesis with proper functional folded form, protein misfolding, protein transport into Golgi body for secretion, Ca2+ homeostasis and so on. Subsequently, dysregulation in ER function leads to ER stress followed by disease pathology like cancer. Hence, targeting ER in the cancer cells emerged as one of the futuristic strategies for cancer treatment. However, the major challenge is to selectively and specifically target ER in the sub-cellular milieu in the cancer tissues, due to the lack of ER targeting chemical moieties to recognize the ER markers. To address this, in the last decade, numerous biomaterials were explored to selectively impair and image ER in cancer cells to induce ER stress. This review outlines those biomaterials which consists of carbon and silicon materials, lipid nanoparticles (liposomes and micelles), supramolecular self-assembled nanostructures, cell membrane-coated nanoparticles and metallic nanoparticles. Moreover, we also discuss the challenges and possible solutions of this promising field to usher the readers towards next-generation ER targeted cancer therapy.
Collapse
Affiliation(s)
- Tripti Mishra
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382355, India
| | - Poulomi Sengupta
- Department of Chemistry, Indrashil University, Rajpur, Kadi, Mehsana, Gujarat, 382740, India
| | - Sudipta Basu
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382355, India
| |
Collapse
|
38
|
Infante A, Alcorta-Sevillano N, Macías I, Cabodevilla L, Medhat D, Lafaver B, Crawford TK, Phillips CL, Bueno AM, Sagastizabal B, Arroyo M, Campino A, Gerovska D, Araúzo-Bravo M, Gener B, Rodríguez CI. Galunisertib downregulates mutant type I collagen expression and promotes MSCs osteogenesis in pediatric osteogenesis imperfecta. Biomed Pharmacother 2024; 175:116725. [PMID: 38744219 DOI: 10.1016/j.biopha.2024.116725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
Qualitative alterations in type I collagen due to pathogenic variants in the COL1A1 or COL1A2 genes, result in moderate and severe Osteogenesis Imperfecta (OI), a rare disease characterized by bone fragility. The TGF-β signaling pathway is overactive in OI patients and certain OI mouse models, and inhibition of TGF-β through anti-TGF-β monoclonal antibody therapy in phase I clinical trials in OI adults is rendering encouraging results. However, the impact of TGF-β inhibition on osteogenic differentiation of mesenchymal stem cells from OI patients (OI-MSCs) is unknown. The following study demonstrates that pediatric skeletal OI-MSCs have imbalanced osteogenesis favoring the osteogenic commitment. Galunisertib, a small molecule inhibitor (SMI) that targets the TGF-β receptor I (TβRI), favored the final osteogenic maturation of OI-MSCs. Mechanistically, galunisertib downregulated type I collagen expression in OI-MSCs, with greater impact on mutant type I collagen, and concomitantly, modulated the expression of unfolded protein response (UPR) and autophagy markers. In vivo, galunisertib improved trabecular bone parameters only in female oim/oim mice. These results further suggest that type I collagen is a tunable target within the bone ECM that deserves investigation and that the SMI, galunisertib, is a promising new candidate for the anti-TGF-β targeting for the treatment of OI.
Collapse
Affiliation(s)
- Arantza Infante
- Stem Cells and Advanced Therapies Group, Biobizkaia Health Research Institute, Barakaldo, Spain
| | - Natividad Alcorta-Sevillano
- Stem Cells and Advanced Therapies Group, Biobizkaia Health Research Institute, Barakaldo, Spain; Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, Spain
| | - Iratxe Macías
- Stem Cells and Advanced Therapies Group, Biobizkaia Health Research Institute, Barakaldo, Spain
| | - Leire Cabodevilla
- Stem Cells and Advanced Therapies Group, Biobizkaia Health Research Institute, Barakaldo, Spain
| | - Dalia Medhat
- Medical Biochemistry Department, National Research Centre, Dokki, Giza, Egypt
| | - Brittany Lafaver
- Department of Biochemistry, University of Missouri, Columbia, USA
| | - Tara K Crawford
- Department of Biochemistry, University of Missouri, Columbia, USA
| | | | - Ana M Bueno
- Department of Orthopedic Surgery, Getafe University Hospital, Madrid, Spain
| | | | - Maitane Arroyo
- Department of Traumatology, Basurto Hospital, Bilbao, Spain
| | - Ainara Campino
- Service of Pharmacy, Cruces University Hospital, Barakaldo, Spain
| | - Daniela Gerovska
- Computational Biology and Systems Biomedicine Research Group, Biogipuzkoa Health Research Institute, Donostia, Spain
| | - Marcos Araúzo-Bravo
- Computational Biology and Systems Biomedicine Research Group, Biogipuzkoa Health Research Institute, Donostia, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao 48009, Spain; Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), Spain
| | - Blanca Gener
- Stem Cells and Advanced Therapies Group, Biobizkaia Health Research Institute, Barakaldo, Spain; Service of Genetics, Cruces University Hospital, Barakaldo, Spain
| | - Clara I Rodríguez
- Stem Cells and Advanced Therapies Group, Biobizkaia Health Research Institute, Barakaldo, Spain.
| |
Collapse
|
39
|
de Vries LE, Jongejan A, Monteiro Fortes J, Balesar R, Rozemuller AJM, Moerland PD, Huitinga I, Swaab DF, Verhaagen J. Gene-expression profiling of individuals resilient to Alzheimer's disease reveals higher expression of genes related to metallothionein and mitochondrial processes and no changes in the unfolded protein response. Acta Neuropathol Commun 2024; 12:68. [PMID: 38664739 PMCID: PMC11046840 DOI: 10.1186/s40478-024-01760-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/10/2024] [Indexed: 04/28/2024] Open
Abstract
Some individuals show a discrepancy between cognition and the amount of neuropathological changes characteristic for Alzheimer's disease (AD). This phenomenon has been referred to as 'resilience'. The molecular and cellular underpinnings of resilience remain poorly understood. To obtain an unbiased understanding of the molecular changes underlying resilience, we investigated global changes in gene expression in the superior frontal gyrus of a cohort of cognitively and pathologically well-defined AD patients, resilient individuals and age-matched controls (n = 11-12 per group). 897 genes were significantly altered between AD and control, 1121 between resilient and control and 6 between resilient and AD. Gene set enrichment analysis (GSEA) revealed that the expression of metallothionein (MT) and of genes related to mitochondrial processes was higher in the resilient donors. Weighted gene co-expression network analysis (WGCNA) identified gene modules related to the unfolded protein response, mitochondrial processes and synaptic signaling to be differentially associated with resilience or dementia. As changes in MT, mitochondria, heat shock proteins and the unfolded protein response (UPR) were the most pronounced changes in the GSEA and/or WGCNA, immunohistochemistry was used to further validate these processes. MT was significantly increased in astrocytes in resilient individuals. A higher proportion of the mitochondrial gene MT-CO1 was detected outside the cell body versus inside the cell body in the resilient compared to the control group and there were higher levels of heat shock protein 70 (HSP70) and X-box-binding protein 1 spliced (XBP1s), two proteins related to heat shock proteins and the UPR, in the AD donors. Finally, we show evidence for putative sex-specific alterations in resilience, including gene expression differences related to autophagy in females compared to males. Taken together, these results show possible mechanisms involving MTs, mitochondrial processes and the UPR by which individuals might maintain cognition despite the presence of AD pathology.
Collapse
Affiliation(s)
- Luuk E de Vries
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands.
| | - Aldo Jongejan
- Amsterdam UMC Location University of Amsterdam, Epidemiology and Data Science, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Public Health, Methodology, Amsterdam, The Netherlands
- Amsterdam Infection and Immunity, Inflammatory Diseases, Amsterdam, The Netherlands
| | - Jennifer Monteiro Fortes
- Department of Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands
| | - Rawien Balesar
- Department of Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands
| | - Annemieke J M Rozemuller
- Department of Pathology, Amsterdam Neuroscience, Amsterdam UMC - Location VUmc, Amsterdam, The Netherlands
| | - Perry D Moerland
- Amsterdam UMC Location University of Amsterdam, Epidemiology and Data Science, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Public Health, Methodology, Amsterdam, The Netherlands
- Amsterdam Infection and Immunity, Inflammatory Diseases, Amsterdam, The Netherlands
| | - Inge Huitinga
- Department of Neuroimmunology, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Dick F Swaab
- Department of Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands
| | - Joost Verhaagen
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands.
- Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
40
|
Sasaki I, Fukuda-Ohta Y, Nakai C, Wakaki-Nishiyama N, Okamoto C, Okuzaki D, Morita S, Kaji S, Furuta Y, Hemmi H, Kato T, Yamamoto A, Tosuji E, Saitoh SI, Tanaka T, Hoshino K, Fukuda S, Miyake K, Kuroda E, Ishii KJ, Iwawaki T, Furukawa K, Kaisho T. A stress sensor, IRE1α, is required for bacterial-exotoxin-induced interleukin-1β production in tissue-resident macrophages. Cell Rep 2024; 43:113981. [PMID: 38520688 DOI: 10.1016/j.celrep.2024.113981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 01/31/2024] [Accepted: 03/06/2024] [Indexed: 03/25/2024] Open
Abstract
Cholera toxin (CT), a bacterial exotoxin composed of one A subunit (CTA) and five B subunits (CTB), functions as an immune adjuvant. CTB can induce production of interleukin-1β (IL-1β), a proinflammatory cytokine, in synergy with a lipopolysaccharide (LPS), from resident peritoneal macrophages (RPMs) through the pyrin and NLRP3 inflammasomes. However, how CTB or CT activates these inflammasomes in the macrophages has been unclear. Here, we clarify the roles of inositol-requiring enzyme 1 alpha (IRE1α), an endoplasmic reticulum (ER) stress sensor, in CT-induced IL-1β production in RPMs. In RPMs, CTB is incorporated into the ER and induces ER stress responses, depending on GM1, a cell membrane ganglioside. IRE1α-deficient RPMs show a significant impairment of CT- or CTB-induced IL-1β production, indicating that IRE1α is required for CT- or CTB-induced IL-1β production in RPMs. This study demonstrates the critical roles of IRE1α in activation of both NLRP3 and pyrin inflammasomes in tissue-resident macrophages.
Collapse
Affiliation(s)
- Izumi Sasaki
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan.
| | - Yuri Fukuda-Ohta
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; Laboratory for Protein Conformation Diseases, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Chihiro Nakai
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Naoko Wakaki-Nishiyama
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Chizuyo Okamoto
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shuhei Morita
- First Department of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Shiori Kaji
- Second Department of Internal Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Yuki Furuta
- Department of Thoracic and Cardiovascular Surgery, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Hiroaki Hemmi
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; Laboratory of Immunology, Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Ehime 794-8555, Japan
| | - Takashi Kato
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Asumi Yamamoto
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Emi Tosuji
- Department of Dermatology, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Shin-Ichiroh Saitoh
- Department of Intractable Disorders, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Takashi Tanaka
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Science, Yokohama, Kanagawa 230-0045, Japan
| | - Katsuaki Hoshino
- Department of Immunology, Faculty of Medicine, Kagawa University, Miki, Kagawa 761-0793, Japan
| | - Shinji Fukuda
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan; Gut Environmental Design Group, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Kanagawa 210-0821, Japan; Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Laboratory for Regenerative Microbiology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Kensuke Miyake
- Division of Innate Immunity, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Etsushi Kuroda
- Department of Immunology, School of Medicine, Hyogo Medical University, Nishinomiya, Hyogo 663-8501, Japan
| | - Ken J Ishii
- Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Takao Iwawaki
- Division of Cell Medicine, Department of Life Science, Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | - Koichi Furukawa
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Aichi 487-8501, Japan
| | - Tsuneyasu Kaisho
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan.
| |
Collapse
|
41
|
Ong G, Ragetli R, Mnich K, Doble BW, Kammouni W, Logue SE. IRE1 signaling increases PERK expression during chronic ER stress. Cell Death Dis 2024; 15:276. [PMID: 38637497 PMCID: PMC11026449 DOI: 10.1038/s41419-024-06663-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 04/04/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024]
Abstract
The Unfolded Protein Response (UPR) is an essential cellular process activated by the accumulation of unfolded proteins within the Endoplasmic Reticulum (ER), a condition referred to as ER stress. Three ER anchored receptors, IRE1, PERK and ATF6 act as ER stress sensors monitoring the health of the ER. Upon detection of ER stress, IRE1, PERK and ATF6 initiate downstream signaling pathways collectively referred to as the UPR. The overarching aim of the UPR is to restore ER homeostasis by reducing ER stress, however if that is not possible, the UPR transitions from a pro-survival to a pro-death response. While our understanding of the key signaling pathways central to the UPR is well defined, the same is not true of the subtle signaling events that help fine tune the UPR, supporting its ability to adapt to varying amplitudes or durations of ER stress. In this study, we demonstrate cross talk between the IRE1 and PERK branches of the UPR, wherein IRE1 via XBP1s signaling helps to sustain PERK expression during prolonged ER stress. Our findings suggest cross talk between UPR branches aids adaptiveness thereby helping to support the plasticity of UPR signaling responses.
Collapse
Affiliation(s)
- Gideon Ong
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Rosemund Ragetli
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Katarzyna Mnich
- Apoptosis Research Centre, University of Galway, Galway, Ireland
- School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Bradley W Doble
- Department of Paediatrics, Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences University of Manitoba, Winnipeg, MB, Canada
| | - Wafa Kammouni
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Susan E Logue
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
- CancerCare Manitoba Research Institute, Winnipeg, MB, Canada.
- Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
42
|
Huang D, Li Y, Han J, Zuo H, Liu H, Chen Z. Xbp1 promotes odontoblastic differentiation through modulating mitochondrial homeostasis. FASEB J 2024; 38:e23600. [PMID: 38572599 DOI: 10.1096/fj.202400186r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/05/2024] [Accepted: 03/25/2024] [Indexed: 04/05/2024]
Abstract
Odontoblast differentiation depends on the orderly recruitment of transcriptional factors (TFs) in the transcriptional regulatory network. The depletion of crucial TFs disturbs dynamic alteration of the chromatin landscape and gene expression profile, leading to developmental defects. Our previous studies have revealed that the basic leucine zipper (bZIP) TF family is crucial in odontoblastic differentiation, but the function of bZIP TF family member XBP1 is still unknown. Here, we showed the stage-specific expression patterns of the spliced form Xbp1s during tooth development. Elevated Xbp1 expression and nuclear translocation of XBP1S in mesenchymal stem cells (MSCs) were induced by differentiation medium in vitro. Diminution of Xbp1 expression impaired the odontogenic differentiation potential of MSCs. The further integration of ATAC-seq and RNA-seq identified Hspa9 as a direct downstream target, an essential mitochondrial chaperonin gene that modulated mitochondrial homeostasis. The amelioration of mitochondrial dysfunction rescued the impaired odontogenic differentiation potential of MSCs caused by the diminution of Xbp1. Furthermore, the overexpression of Hspa9 rescued Xbp1-deficient defects in odontoblastic differentiation. Our study illustrates the crucial role of Xbp1 in odontoblastic differentiation via modulating mitochondrial homeostasis and brings evidence to the therapy of mitochondrial diseases caused by genetic defects.
Collapse
Affiliation(s)
- Delan Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yuanyuan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jiahao Han
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Huanyan Zuo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Cariology and Endodontics, School of Stomatology, Wuhan University, Wuhan, China
| | - Huan Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Periodontology, School of Stomatology, Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Zhi Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Cariology and Endodontics, School of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
43
|
Xu J, Sabatino B, Yan J, Ermakova G, Doering KRS, Taubert S. The unfolded protein response of the endoplasmic reticulum protects Caenorhabditis elegans against DNA damage caused by stalled replication forks. G3 (BETHESDA, MD.) 2024; 14:jkae017. [PMID: 38267027 PMCID: PMC10989892 DOI: 10.1093/g3journal/jkae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 12/21/2023] [Accepted: 01/14/2024] [Indexed: 01/26/2024]
Abstract
All animals must maintain genome and proteome integrity, especially when experiencing endogenous or exogenous stress. To cope, organisms have evolved sophisticated and conserved response systems: unfolded protein responses (UPRs) ensure proteostasis, while DNA damage responses (DDRs) maintain genome integrity. Emerging evidence suggests that UPRs and DDRs crosstalk, but this remains poorly understood. Here, we demonstrate that depletion of the DNA primases pri-1 or pri-2, which synthesize RNA primers at replication forks and whose inactivation causes DNA damage, activates the UPR of the endoplasmic reticulum (UPR-ER) in Caenorhabditis elegans, with especially strong activation in the germline. We observed activation of both the inositol-requiring-enzyme 1 (ire-1) and the protein kinase RNA-like endoplasmic reticulum kinase (pek-1) branches of the (UPR-ER). Interestingly, activation of the (UPR-ER) output gene heat shock protein 4 (hsp-4) was partially independent of its canonical activators, ire-1 and X-box binding protein (xbp-1), and instead required the third branch of the (UPR-ER), activating transcription factor 6 (atf-6), suggesting functional redundancy. We further found that primase depletion specifically induces the (UPR-ER), but not the distinct cytosolic or mitochondrial UPRs, suggesting that primase inactivation causes compartment-specific rather than global stress. Functionally, loss of ire-1 or pek-1 sensitizes animals to replication stress caused by hydroxyurea. Finally, transcriptome analysis of pri-1 embryos revealed several deregulated processes that could cause (UPR-ER) activation, including protein glycosylation, calcium signaling, and fatty acid desaturation. Together, our data show that the (UPR-ER), but not other UPRs, responds to replication fork stress and that the (UPR-ER) is required to alleviate this stress.
Collapse
Affiliation(s)
- Jiaming Xu
- Graduate Program in Cell & Developmental Biology, The University of British Columbia, 950 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, 950 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
- British Columbia Children’s Hospital Research Institute, 950 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
| | - Brendil Sabatino
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, 950 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
- British Columbia Children’s Hospital Research Institute, 950 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
- Department of Medical Genetics, The University of British Columbia, 950 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
| | - Junran Yan
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, 950 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
- British Columbia Children’s Hospital Research Institute, 950 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
- Edwin S.H. Leong Centre for Healthy Aging, The University of British Columbia, 117-2194 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
- Department of Medical Genetics, The University of British Columbia, 950 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
| | - Glafira Ermakova
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, 950 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
- British Columbia Children’s Hospital Research Institute, 950 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
- Edwin S.H. Leong Centre for Healthy Aging, The University of British Columbia, 117-2194 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
- Department of Medical Genetics, The University of British Columbia, 950 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
| | - Kelsie R S Doering
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, 950 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
- British Columbia Children’s Hospital Research Institute, 950 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
- Edwin S.H. Leong Centre for Healthy Aging, The University of British Columbia, 117-2194 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
- Department of Medical Genetics, The University of British Columbia, 950 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
| | - Stefan Taubert
- Graduate Program in Cell & Developmental Biology, The University of British Columbia, 950 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, 950 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
- British Columbia Children’s Hospital Research Institute, 950 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
- Edwin S.H. Leong Centre for Healthy Aging, The University of British Columbia, 117-2194 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
- Department of Medical Genetics, The University of British Columbia, 950 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
| |
Collapse
|
44
|
Zhu M, Cheng Y, Tang Y, Li S, Rao P, Zhang G, Xiao L, Liu J. Nanoparticles alleviate non-alcoholic steatohepatitis via ER stress sensor-mediated intestinal barrier damage and gut dysbiosis. Front Microbiol 2024; 14:1271835. [PMID: 38516345 PMCID: PMC10956414 DOI: 10.3389/fmicb.2023.1271835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/11/2023] [Indexed: 03/23/2024] Open
Abstract
Introduction The gut microbiota plays an important role in the development of non-alcoholic steatohepatitis (NASH), but the underlying mechanism is unclear. It has been found that the transcription factor XBP1s plays an important role in regulating inflammation and lipid metabolism and maintaining the integrity of intestinal barrier. However, whether XBP1s modulates the development of NASH by regulating the integrity of the intestinal barrier and altering the composition of the gut microbiota remains unknown. Methods Mice fed with a fat-, fructose-, cholesterol-rich (FFC) diet for 24 weeks successfully established the NASH model, as demonstrated by significant hepatic steatosis, inflammation, hepatocyte injury and fibrosis. The profile of gut microbiota dynamically changed with the different stages of NAFLD via 16S rDNA sequencing the feces from mice fed with FFC diet for 0, 12, or 24 weeks or NASH mice treated with siRNA-loaded folic acid-modified TPGS (hereafter named FT@XBP1). Results NASH mice had significantly higher abundance of Firmicutes, Blautia and Bacteroides, and lower abundance of Bifidobacterium and GCA-900066575. FT@XBP1 supplementation had a significantly attenuated effect on FFC diet-induced weight gain, hepatic fat accumulation, dyslipidemia, inflammatory cytokines, ER stress and fibrosis. In particularly, FT@XBP1 modulates the composition of the intestinal flora; for example, NASH mice demonstrated higher abundance of Blautia and Bacteroides, and lower abundance of Actinobacteriota, Muribaculaceae and Bifidobacterium, which were partially restored by FT@XBP1 treatment. Mechanistically, FT@XBP1 increased the expression of ZO-1 in the intestine and had the potential to restore intestinal barrier integrity and improve antimicrobial defense to alleviate enterogenic endotoxemia and activation of inflammatory signaling pathways. Discussion Regulation of the key transcription factor XBP1s can partially restore the intestinal microbiota structure, maintain the integrity of intestinal mucosal barrier, and prevent the progression of NASH, providing new evidence for treating NASH.
Collapse
Affiliation(s)
- Manman Zhu
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yong Cheng
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Yue Tang
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Shuojiao Li
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Peng Rao
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Guiyang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Lei Xiao
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jiatao Liu
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
45
|
Sun Y, Zhang Y, Zhang J, Chen YE, Jin JP, Zhang K, Mou H, Liang X, Xu J. XBP1-mediated transcriptional regulation of SLC5A1 in human epithelial cells in disease conditions. Cell Biosci 2024; 14:27. [PMID: 38388523 PMCID: PMC10885492 DOI: 10.1186/s13578-024-01203-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 02/01/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Sodium-Glucose cotransporter 1 and 2 (SGLT1/2) belong to the family of glucose transporters, encoded by SLC5A1 and SLC5A2, respectively. SGLT2 is almost exclusively expressed in the renal proximal convoluted tubule cells. SGLT1 is expressed in the kidneys but also in other organs throughout the body. Many SGLT inhibitor drugs have been developed based on the mechanism of blocking glucose (re)absorption mediated by SGLT1/2, and several have gained major regulatory agencies' approval for treating diabetes. Intriguingly these drugs are also effective in treating diseases beyond diabetes, for example heart failure and chronic kidney disease. We recently discovered that SGLT1 is upregulated in the airway epithelial cells derived from patients of cystic fibrosis (CF), a devastating genetic disease affecting greater than 70,000 worldwide. RESULTS In the present work, we show that the SGLT1 upregulation is coupled with elevated endoplasmic reticulum (ER) stress response, indicated by activation of the primary ER stress senor inositol-requiring protein 1α (IRE1α) and the ER stress-induced transcription factor X-box binding protein 1 (XBP1), in CF epithelial cells, and in epithelial cells of other stress conditions. Through biochemistry experiments, we demonstrated that the spliced form of XBP1 (XBP1s) acts as a transcription factor for SLC5A1 by directly binding to its promoter region. Targeting this ER stress → SLC5A1 axis by either the ER stress inhibitor Rapamycin or the SGLT1 inhibitor Sotagliflozin was effective in attenuating the ER stress response and reducing the SGLT1 level in these cellular model systems. CONCLUSIONS The present work establishes a causal relationship between ER stress and SGLT1 upregulation and provides a mechanistic explanation why SGLT inhibitor drugs benefit diseases beyond diabetes.
Collapse
Affiliation(s)
- Yifei Sun
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Yihan Zhang
- The Mucosal Immunology & Biology Research Center, Massachusetts General Hospital, 55 Fruit Street, Jackson, 1402, Boston, MA, 02114, USA
| | - Jifeng Zhang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Y Eugene Chen
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jian-Ping Jin
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Hongmei Mou
- The Mucosal Immunology & Biology Research Center, Massachusetts General Hospital, 55 Fruit Street, Jackson, 1402, Boston, MA, 02114, USA.
| | - Xiubin Liang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Jie Xu
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
46
|
Elwakiel A, Mathew A, Isermann B. The role of endoplasmic reticulum-mitochondria-associated membranes in diabetic kidney disease. Cardiovasc Res 2024; 119:2875-2883. [PMID: 38367274 DOI: 10.1093/cvr/cvad190] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 02/19/2024] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease worldwide. The pathomechanisms of DKD are multifactorial, yet haemodynamic and metabolic changes in the early stages of the disease appear to predispose towards irreversible functional loss and histopathological changes. Recent studies highlight the importance of endoplasmic reticulum-mitochondria-associated membranes (ER-MAMs), structures conveying important cellular homeostatic and metabolic effects, in the pathology of DKD. Disruption of ER-MAM integrity in diabetic kidneys is associated with DKD progression, but the regulation of ER-MAMs and their pathogenic contribution remain largely unknown. Exploring the cell-specific components and dynamic changes of ER-MAMs in diabetic kidneys may lead to the identification of new approaches to detect and stratify diabetic patients with DKD. In addition, these insights may lead to novel therapeutic approaches to target and/or reverse disease progression. In this review, we discuss the association of ER-MAMs with key pathomechanisms driving DKD such as insulin resistance, dyslipidaemia, ER stress, and inflammasome activation and the importance of further exploration of ER-MAMs as diagnostic and therapeutic targets in DKD.
Collapse
Affiliation(s)
- Ahmed Elwakiel
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Paul-List-Straße 13/15, 04103 Leipzig, Germany
| | - Akash Mathew
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Paul-List-Straße 13/15, 04103 Leipzig, Germany
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Paul-List-Straße 13/15, 04103 Leipzig, Germany
| |
Collapse
|
47
|
Touvier T, Veneri FA, Claessens A, Ferri C, Mastrangelo R, Sorgiati N, Bianchi F, Valenzano S, Del Carro U, Rivellini C, Duong P, Shy ME, Kelly JW, Svaren J, Wiseman RL, D’Antonio M. Activation of XBP1s attenuates disease severity in models of proteotoxic Charcot-Marie-Tooth type 1B. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.577760. [PMID: 38352425 PMCID: PMC10862880 DOI: 10.1101/2024.01.31.577760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Mutations in myelin protein zero (MPZ) are generally associated with Charcot-Marie-Tooth type 1B (CMT1B) disease, one of the most common forms of demyelinating neuropathy. Pathogenesis of some MPZ mutants, such as S63del and R98C, involves the misfolding and retention of MPZ in the endoplasmic reticulum (ER) of myelinating Schwann cells. To cope with proteotoxic ER-stress, Schwann cells mount an unfolded protein response (UPR) characterized by activation of the PERK, ATF6 and IRE1α/XBP1 pathways. Previous results showed that targeting the PERK UPR pathway mitigates neuropathy in mouse models of CMT1B; however, the contributions of other UPR pathways in disease pathogenesis remains poorly understood. Here, we probe the importance of the IRE1α/XBP1 signalling during normal myelination and in CMT1B. In response to ER stress, IRE1α is activated to stimulate the non-canonical splicing of Xbp1 mRNA to generate spliced Xbp1 (Xbp1s). This results in the increased expression of the adaptive transcription factor XBP1s, which regulates the expression of genes involved in diverse pathways including ER proteostasis. We generated mouse models where Xbp1 is deleted specifically in Schwann cells, preventing XBP1s activation in these cells. We observed that Xbp1 is dispensable for normal developmental myelination, myelin maintenance and remyelination after injury. However, Xbp1 deletion dramatically worsens the hypomyelination and the electrophysiological and locomotor parameters observed in young and adult CMT1B neuropathic animals. RNAseq analysis suggested that XBP1s exerts its adaptive function in CMT1B mouse models in large part via the induction of ER proteostasis genes. Accordingly, the exacerbation of the neuropathy in Xbp1 deficient mice was accompanied by upregulation of ER-stress pathways and of IRE1-mediated RIDD signaling in Schwann cells, suggesting that the activation of XBP1s via IRE1 plays a critical role in limiting mutant protein toxicity and that this toxicity cannot be compensated by other stress responses. Schwann cell specific overexpression of XBP1s partially re-established Schwann cell proteostasis and attenuated CMT1B severity in both the S63del and R98C mouse models. In addition, the selective, pharmacologic activation of IRE1α/XBP1 signaling ameliorated myelination in S63del dorsal root ganglia explants. Collectively, these data show that XBP1 has an essential adaptive role in different models of proteotoxic CMT1B neuropathy and suggest that activation of the IRE1α/XBP1 pathway may represent a therapeutic avenue in CMT1B and possibly for other neuropathies characterized by UPR activation.
Collapse
Affiliation(s)
- Thierry Touvier
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Francesca A. Veneri
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Anke Claessens
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Cinzia Ferri
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Rosa Mastrangelo
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Noémie Sorgiati
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Francesca Bianchi
- Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Serena Valenzano
- Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, 20157 Milan, Italy
- University of Camerino, Center for Neuroscience, 62032 Camerino, Italy
| | - Ubaldo Del Carro
- Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Cristina Rivellini
- Division of Neuroscience, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Phu Duong
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Michael E. Shy
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242 USA
| | - Jeffery W. Kelly
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - John Svaren
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - R. Luke Wiseman
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Maurizio D’Antonio
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| |
Collapse
|
48
|
Fernández JJ, Mancebo C, Garcinuño S, March G, Alvarez Y, Alonso S, Inglada L, Blanco J, Orduña A, Montero O, Sandoval TA, Cubillos-Ruiz JR, Bustamante-Munguira E, Fernández N, Crespo MS. Innate IRE1α-XBP1 activation by viral single-stranded RNA and its influence on lung cytokine production during SARS-CoV-2 pneumonia. Genes Immun 2024; 25:43-54. [PMID: 38146001 DOI: 10.1038/s41435-023-00243-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/27/2023]
Abstract
The utilization of host-cell machinery during SARS-CoV-2 infection can overwhelm the protein-folding capacity of the endoplasmic reticulum and activate the unfolded protein response (UPR). The IRE1α-XBP1 arm of the UPR could also be activated by viral RNA via Toll-like receptors. Based on these premises, a study to gain insight into the pathogenesis of COVID-19 disease was conducted using nasopharyngeal exudates and bronchioloalveolar aspirates. The presence of the mRNA of spliced XBP1 and a high expression of cytokine mRNAs were observed during active infection. TLR8 mRNA showed an overwhelming expression in comparison with TLR7 mRNA in bronchioloalveolar aspirates of COVID-19 patients, thus suggesting the presence of monocytes and monocyte-derived dendritic cells (MDDCs). In vitro experiments in MDDCs activated with ssRNA40, a synthetic mimic of SARS-CoV-2 RNA, showed induction of XBP1 splicing and the expression of proinflammatory cytokines. These responses were blunted by the IRE1α inhibitor MKC8866, the TLR8 antagonist CU-CPT9a, and knockdown of TLR8 receptor. In contrast, the IRE1α-XBP1 activator IXA4 enhanced these responses. Based on these findings, the TLR8/IRE1α system seems to play a significant role in the induction of the proinflammatory cytokines associated with severe COVID-19 disease and might be a druggable target to control cytokine storm.
Collapse
Affiliation(s)
- José J Fernández
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular, CSIC-Universidad de Valladolid, 47003, Valladolid, Spain
| | - Cristina Mancebo
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular, CSIC-Universidad de Valladolid, 47003, Valladolid, Spain
- Departamento de Bioquímica, Biología Molecular y Fisiología, Universidad de Valladolid, 47003, Valladolid, Spain
| | - Sonsoles Garcinuño
- Servicio de Microbiología, Hospital Clínico Universitario de Valladolid, Universidad de Valladolid, 47003, Valladolid, Spain
| | - Gabriel March
- Servicio de Microbiología, Hospital Clínico Universitario de Valladolid, Universidad de Valladolid, 47003, Valladolid, Spain
| | - Yolanda Alvarez
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular, CSIC-Universidad de Valladolid, 47003, Valladolid, Spain
- Departamento de Bioquímica, Biología Molecular y Fisiología, Universidad de Valladolid, 47003, Valladolid, Spain
| | - Sara Alonso
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular, CSIC-Universidad de Valladolid, 47003, Valladolid, Spain
| | - Luis Inglada
- Servicio de Medicina Interna, Hospital Universitario Rio-Hortega, 47012, Valladolid, Spain
| | - Jesús Blanco
- Servicio de Medicina Intensiva, Hospital Universitario Rio-Hortega, 47012, Valladolid, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Orduña
- Servicio de Microbiología, Hospital Clínico Universitario de Valladolid, Universidad de Valladolid, 47003, Valladolid, Spain
| | - Olimpio Montero
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular, CSIC-Universidad de Valladolid, 47003, Valladolid, Spain
| | - Tito A Sandoval
- Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, 10065, USA
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Juan R Cubillos-Ruiz
- Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, 10065, USA
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Elena Bustamante-Munguira
- Servicio de Medicina Intensiva, Hospital Clínico Universitario de Valladolid, 47003, Valladolid, Spain
| | - Nieves Fernández
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular, CSIC-Universidad de Valladolid, 47003, Valladolid, Spain
- Departamento de Bioquímica, Biología Molecular y Fisiología, Universidad de Valladolid, 47003, Valladolid, Spain
| | - Mariano Sánchez Crespo
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular, CSIC-Universidad de Valladolid, 47003, Valladolid, Spain.
| |
Collapse
|
49
|
Dasgupta D, Mahadev Bhat S, Creighton C, Cortes C, Delmotte P, Sieck GC. Molecular mechanisms underlying TNFα-induced mitochondrial fragmentation in human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2024; 326:L190-L205. [PMID: 38084427 PMCID: PMC11280718 DOI: 10.1152/ajplung.00198.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 01/06/2024] Open
Abstract
Tumor necrosis factor α (TNFα), a proinflammatory cytokine, plays a significant role in mediating the effects of acute inflammation in response to allergens, pollutants, and respiratory infections. Previously, we showed that acute exposure to TNFα induces mitochondrial fragmentation in human airway smooth muscle (hASM) cells, which is associated with increased expression of dynamin-related protein 1 (DRP1). Phosphorylation of DRP1 at serine 616 (pDRP1S616) promotes its translocation and binding to the outer mitochondrial membrane (OMM) and mediates mitochondrial fragmentation. Previously, we reported that TNFα exposure triggers protein unfolding and triggers an endoplasmic reticulum (ER) stress response involving phosphorylation of inositol-requiring enzyme 1α (pIRE1α) at serine 724 (pIRE1αS724) and subsequent splicing of X-box binding protein 1 (XBP1s) in hASM cells. We hypothesize that TNFα-mediated activation of the pIRE1αS724/XBP1s ER stress pathway in hASM cells transcriptionally activates genes that encode kinases responsible for pDRP1S616 phosphorylation. Using 3-D confocal imaging of MitoTracker green-labeled mitochondria, we found that TNFα treatment for 6 h induces mitochondrial fragmentation in hASM cells. We also confirmed that 6 h TNFα treatment activates the pIRE1α/XBP1s ER stress pathway. Using in silico analysis and ChIP assay, we showed that CDK1 and CDK5, kinases involved in the phosphorylation of pDRP1S616, are transcriptionally targeted by XBP1s. TNFα treatment increased the binding affinity of XBP1s on the promoter regions of CDK1 and CDK5, and this was associated with an increase in pDRP1S616 and mitochondria fragmentation. This study reveals a new underlying molecular mechanism for TNFα-induced mitochondrial fragmentation in hASM cells.NEW & NOTEWORTHY Airway inflammation is increasing worldwide. Proinflammatory cytokines mediate an adaptive mechanism to overcome inflammation-induced cellular stress. Previously, we reported that TNFα mediates hASM cellular responses, leading to increased force and ATP consumption associated with increased O2 consumption, and oxidative stress. This study indicates that TNFα induces ER stress, which induces mitochondrial fragmentation via pIRE1αS724/XBP1s mediated CDK1/5 upregulation and pDRP1S616 phosphorylation. Mitochondrial fragmentation may promote hASM mitochondrial biogenesis to maintain healthy mitochondrial pool.
Collapse
Affiliation(s)
- Debanjali Dasgupta
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Sanjana Mahadev Bhat
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Claire Creighton
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Catherin Cortes
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Philippe Delmotte
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
50
|
Tawfik A, Kawaguchi T, Takahashi M, Setoh K, Yamaguchi I, Tabara Y, Van Steen K, Sakuntabhai A, Matsuda F. Transcriptomic Analysis Reveals Sixteen Potential Genes Associated with the Successful Differentiation of Antibody-Secreting Cells through the Utilization of Unfolded Protein Response Mechanisms in Robust Responders to the Influenza Vaccine. Vaccines (Basel) 2024; 12:136. [PMID: 38400120 PMCID: PMC10892001 DOI: 10.3390/vaccines12020136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
The seasonal influenza vaccine remains one of the vital recommended infection control measures for the elderly with chronic illnesses. We investigated the immunogenicity of a single dose of influenza vaccine in 123 seronegative participants and classified them into four distinct groups, determined by the promptness of vaccine response, the longevity of humoral immunity, and the likelihood of exhibiting cross-reactivity. Subsequently, we used transcriptional profiling and differential gene expression analysis to identify potential genes directly associated with the robust response to the vaccine. The group of exemplary vaccine responders differentially expressed 16 genes, namely: MZB1, MYDGF, TXNDC5, TXNDC11, HSP90B1, FKBP11, PDIA5, PRDX4, CD38, SDC1, TNFRSF17, TNFRSF13B, PAX5, POU2AF1, IRF4, and XBP1. Our findings point out a list of expressed proteins that are related to B cell proliferation, unfolded protein response, and cellular haemostasis, as well as a linkage of these expressions to the survival of long-lived plasma cells.
Collapse
Affiliation(s)
- Ahmed Tawfik
- Functional Genetics of Infectious Diseases Unit, Institut Pasteur, CNRS UMR2000, 75015 Paris, France;
- Pasteur International Unit at Center for Genomic Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Takahisa Kawaguchi
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan (I.Y.)
| | - Meiko Takahashi
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan (I.Y.)
| | - Kazuya Setoh
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan (I.Y.)
| | - Izumi Yamaguchi
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan (I.Y.)
| | - Yasuharu Tabara
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan (I.Y.)
| | - Kristel Van Steen
- BIO3—Laboratory for Systems Genetics, GIGA-R Medical Genomics, University of Liège, 4000 Liège, Belgium
- BIO3—Laboratory for Systems Genetics, GIGA-R Medical Genomics, University of Leuven, 3000 Leuven, Belgium
| | - Anavaj Sakuntabhai
- Pasteur International Unit at Center for Genomic Medicine, Kyoto University, Kyoto 606-8507, Japan
- Ecology and Emergence of Arthropod-Borne Pathogens Unit, Institut Pasteur, CNRS UMR2000, 75015 Paris, France
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan (I.Y.)
| |
Collapse
|