1
|
Moline DC, Zenner ML, Burr A, Vellky JE, Nonn L, Vander Griend DJ. Single-cell RNA-Seq identifies factors necessary for the regenerative phenotype of prostate luminal epithelial progenitors. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2022; 10:425-439. [PMID: 36636696 PMCID: PMC9831919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 12/23/2022] [Indexed: 01/14/2023]
Abstract
Benign prostate hyperplasia and prostate cancer are common diseases that involve the overgrowth of prostatic tissue. Although their pathologies and symptoms differ, both diseases show aberrant activation of prostate progenitor cell phenotypes in a tissue that should be relatively quiescent. This phenomenon prompts a need to better define the normal prostate progenitor cell phenotype and pursue the discovery of causal networks that could yield druggable targets to combat hyperplastic prostate diseases. We used single-cell (sc) RNA-Seq analysis to confirm the identity of a luminal progenitor cell population in both the hormonally intact and castrated mouse prostate. Using marker genes from our scRNA-Seq analysis, we identified factors necessary for the regeneration phenotype of prostate organoids derived from mice and humans in vitro. These data outline potential factors necessary for prostate regeneration and utilization of scRNA-Seq approaches for the identification of pharmacologic strategies targeting critical cell populations that drive prostate disease.
Collapse
Affiliation(s)
- Daniel C Moline
- Committee on Development, Regeneration, and Stem Cell Biology (DRSB), The University of ChicagoChicago, IL 60612, USA
| | - Morgan L Zenner
- Department of Pathology, The University of Illinois at ChicagoChicago, IL 60612, USA
| | - Alex Burr
- Department of Pathology, The University of Illinois at ChicagoChicago, IL 60612, USA
| | - Jordan E Vellky
- Department of Pathology, The University of Illinois at ChicagoChicago, IL 60612, USA
| | - Larisa Nonn
- Department of Pathology, The University of Illinois at ChicagoChicago, IL 60612, USA
| | | |
Collapse
|
2
|
Marhold M, Udovica S, Topakian T, Horak P, Horvat R, Tomasich E, Heller G, Krainer M. MALAT1 Fusions and Basal Cells Contribute to Primary Resistance against Androgen Receptor Inhibition in TRAMP Mice. Cancers (Basel) 2022; 14:cancers14030749. [PMID: 35159020 PMCID: PMC8833778 DOI: 10.3390/cancers14030749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 01/26/2022] [Accepted: 01/29/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary We deeply characterized a frequently used mouse model of prostate cancer and found cellular and molecular regulators of resistance against antihormonal treatment, such as basal cell function and MALAT1 gene fusions. As these mechanisms also occur in human disease, our findings highlight the importance of this model for human cancer and may be helpful for future research focusing on overcoming antihormonal treatment resistance. Abstract Targeting testosterone signaling through androgen deprivation therapy (ADT) or antiandrogen treatment is the standard of care for advanced prostate cancer (PCa). Although the large majority of patients initially respond to ADT and/or androgen receptor (AR) blockade, most patients suffering from advanced PCa will experience disease progression. We sought to investigate drivers of primary resistance against antiandrogen treatment in the TRAMP mouse model, an SV-40 t-antigen driven model exhibiting aggressive variants of prostate cancer, castration resistance, and neuroendocrine differentiation upon antihormonal treatment. We isolated primary tumor cell suspensions from adult male TRAMP mice and subjected them to organoid culture. Basal and non-basal cell populations were characterized by RNA sequencing, Western blotting, and quantitative real-time PCR. Furthermore, effects of androgen withdrawal and enzalutamide treatment were studied. Basal and luminal TRAMP cells exhibited distinct molecular signatures and gave rise to organoids with distinct phenotypes. TRAMP cells exhibited primary resistance against antiandrogen treatment. This was more pronounced in basal cell-derived TRAMP organoids when compared to luminal cell-derived organoids. Furthermore, we found MALAT1 gene fusions to be drivers of antiandrogen resistance in TRAMP mice through regulation of AR. Summarizing, TRAMP tumor cells exhibited primary resistance towards androgen inhibition enhanced through basal cell function and MALAT1 gene fusions.
Collapse
Affiliation(s)
- Maximilian Marhold
- Division of Oncology, Department for Medicine I, Medical University of Vienna, A-1090 Vienna, Austria; (T.T.); (E.T.); (G.H.); (M.K.)
- Comprehensive Cancer Center Vienna, Medical University of Vienna, A-1090 Vienna, Austria
- Correspondence:
| | - Simon Udovica
- Clinic of Internal Medicine I and Wilhelminen Cancer Research Institute, Klinik Ottakring, A-1090 Vienna, Austria;
| | - Thais Topakian
- Division of Oncology, Department for Medicine I, Medical University of Vienna, A-1090 Vienna, Austria; (T.T.); (E.T.); (G.H.); (M.K.)
- Comprehensive Cancer Center Vienna, Medical University of Vienna, A-1090 Vienna, Austria
| | - Peter Horak
- National Tumor Center (NCT), DKFZ, 69120 Heidelberg, Germany;
| | - Reinhard Horvat
- Institute for Pathology, Medical University of Vienna, A-1090 Vienna, Austria;
| | - Erwin Tomasich
- Division of Oncology, Department for Medicine I, Medical University of Vienna, A-1090 Vienna, Austria; (T.T.); (E.T.); (G.H.); (M.K.)
- Comprehensive Cancer Center Vienna, Medical University of Vienna, A-1090 Vienna, Austria
| | - Gerwin Heller
- Division of Oncology, Department for Medicine I, Medical University of Vienna, A-1090 Vienna, Austria; (T.T.); (E.T.); (G.H.); (M.K.)
- Comprehensive Cancer Center Vienna, Medical University of Vienna, A-1090 Vienna, Austria
| | - Michael Krainer
- Division of Oncology, Department for Medicine I, Medical University of Vienna, A-1090 Vienna, Austria; (T.T.); (E.T.); (G.H.); (M.K.)
- Comprehensive Cancer Center Vienna, Medical University of Vienna, A-1090 Vienna, Austria
| |
Collapse
|
3
|
Prostate luminal progenitor cells: from mouse to human, from health to disease. Nat Rev Urol 2022; 19:201-218. [DOI: 10.1038/s41585-021-00561-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2021] [Indexed: 12/11/2022]
|
4
|
Tomalty D, Giovannetti O, Hannan J, Komisaruk B, Goldstein S, Goldstein I, Adams M. Should We Call It a Prostate? A Review of the Female Periurethral Glandular Tissue Morphology, Histochemistry, Nomenclature, and Role in Iatrogenic Sexual Dysfunction. Sex Med Rev 2022; 10:183-194. [PMID: 35074318 DOI: 10.1016/j.sxmr.2021.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 10/19/2022]
Abstract
INTRODUCTION There is evidence of glandular tissue within the region of the anterior vaginal wall-female periurethral tissue (AVW-FPT) having similar morphology and immunohistochemistry to the prostate in men and having physiological roles in the female sexual response (FSR). Whether this tissue should be called a prostate in women has been debated. Iatrogenic injury to structures of the AVW-FPT, including these glands and the associated neurovasculature, could be a cause of female sexual dysfunction (FSD). OBJECTIVES To consolidate the current knowledge concerning the glandular tissue surrounding the urethra in women, evidence was reviewed to address whether: (i) these glands comprise the prostate in women, (ii) they have specific functions in the FSR, and (iii) injury to the AVW-FPT and prostate has sexual dysfunction as a likely outcome. METHODS A literature review was conducted using keywords including female prostate, Skene's/paraurethral glands, periurethral tissue, Gräfenberg (G)-spot, female ejaculation, mid-urethral sling (MUS), and sexual dysfunction. RESULTS Histological and immunohistochemical studies of the glandular tissue surrounding the urethra support the existence of prostate in women. Evidence suggests this tissue may have physiologically and clinically relevant autonomic and sensory innervation, and during sexual arousal may contribute to secretions involved in ejaculation and orgasm. Gaps in knowledge relating to the functional anatomy, physiological roles, and embryological origins of this tissue have impeded the acceptance of a prostate in women. Injury to the innervation, vasculature, and/or glandular tissue within the surgical field of MUS implantation suggests iatrogenic sexual dysfunction is plausible. CONCLUSIONS Continuing to advance our understanding of the morphology, histochemistry, and physiologic capacity of this glandular tissue will clarify the characterization of this tissue as the "prostate" involved in the FSR, and its role in FSD following surgical injury. Tomalty D, Giovannetti O, Hannan J, et al. Should We Call It a Prostate? A Review of the Female Periurethral Glandular Tissue Morphology, Histochemistry, Nomenclature, and Role in Iatrogenic Sexual Dysfunction. Sex Med Rev 2021;XX:XXX-XXX.
Collapse
Affiliation(s)
- Diane Tomalty
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.
| | - Olivia Giovannetti
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Johanna Hannan
- Department of Physiology, East Carolina University, Greenville, NC, USA
| | - Barry Komisaruk
- Department of Psychology, Rutgers University, Newark, NJ, USA
| | | | - Irwin Goldstein
- San Diego Sexual Medicine, San Diego, CA, USA; Alvarado Hospital, San Diego, CA, USA
| | - Michael Adams
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
5
|
Shen M, Liu S, Stoyanova T. The role of Trop2 in prostate cancer: an oncogene, biomarker, and therapeutic target. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2021; 9:73-87. [PMID: 33816696 PMCID: PMC8012837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
Prostate cancer remains the second leading cause of cancer-associated deaths amongst American men. Trop2, a cell surface glycoprotein, correlates with poor clinical outcome and is highly expressed in metastatic, treatment-resistant prostate cancer. High levels of Trop2 are prognostic for biochemical recurrence. Trop2 regulates tumor growth and metastatic ability of prostate cancer. Moreover, overexpression of Trop2 drives the transdifferentiation to neuroendocrine phenotype in prostate cancer. In addition, Trop2 is overexpressed across epithelial cancers and has emerged as a promising therapeutic target in various solid epithelial cancers. The FDA (Food and Drug Administration) recently approved the use of a Trop2-targeting ADC (antibody-drug conjugate), Sacituzumab Govitecan (IMMU-132), for metastatic, triple-negative breast cancer with at least two prior therapies. Here, we review the role of Trop2 in prostate tumorigenesis and its potential as a promising biomarker and therapeutic target for prostate cancer.
Collapse
Affiliation(s)
- Michelle Shen
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University USA
| | - Shiqin Liu
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University USA
| | - Tanya Stoyanova
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University USA
| |
Collapse
|
6
|
Raspollini MR, Montagnani I, Cirri P, Baroni G, Cimadamore A, Scarpelli M, Cheng L, Lopez-Beltran A, Montironi R, Barnea ER. PreImplantation Factor immunohistochemical expression correlates with prostate cancer aggressiveness. Int J Biol Markers 2020; 35:82-90. [PMID: 32389051 DOI: 10.1177/1724600820919969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND The PreImplantation Factor (PIF)-a peptide secreted by viable embryos-exerts autotrophic protective effects, promotes endometrial receptivity and controls trophoblast invasion. Synthetic PIF (sPIF) has both immune-protective and regenerative properties, and reduces oxidative stress and protein misfolding. PIF is detected by immunohistochemistry (IHC) in hyperplastic endometriotic lesions and advanced uterine cancer. sPIF reduces graft-versus-host disease while maintaining a graft-versus-leukemia effect. METHODS PIF detection in prostate cancer was assessed in 50 human prostate samples following radical prostatectomy using tumor-microarray-based IHC correlating PIF immune staining with Gleason score (GS) and cancer aggressiveness. RESULTS PIF was detected in moderate-to-high risk prostate cancer (GS 4+3 and beyond, prognostic groups 3 to 5). In prostate cancer (GS (WHO Grade Group (GG)5), PIF was detected in 50% of cases; in prostate cancer (GS 4+4 GG4), PIF was observed in 62.5% of cases; in prostate cancer (GS 4+3 GG3), PIF immunostaining was observed in 57.1% of cases. In prostate cancer, (GS 3+4 GG2) and (GS 3+3 GG1) cases where PIF staining was negative to weak, membranous staining was observed in 20% of cases (staining pattern considered negative). High-grade prostate intraepithelial neoplasia PIF positive stain in 28.57% of cases (6 of 21) was observed. In contrast, PIF was not detected in normal prostate glands. Importantly, sPIF added to the PC3 cell line alone or combined with prostate cancer fibroblast feeder-cells did not affect proliferation. Only when peripheral blood mononuclear cells were added to the culture, a minor increase in cell proliferation was noted, reflecting local proliferation control. CONCLUSIONS Collectively, PIF assessment could be a valuable, simple-to-use immunohistochemical biomarker to evaluate aggressiveness/prognosis in specimens from prostate cancer patients.
Collapse
Affiliation(s)
| | - Ilaria Montagnani
- Histopathology and Molecular Diagnostics, University Hospital Careggi, Florence, Toscana, Italy
| | - Paolo Cirri
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche Sezione di Scienze Biochimiche, Scuola di Scienze della Salute Umana Università degli Studi di Firenze, Florence, Toscana, Italy
| | - Gianna Baroni
- Histopathology and Molecular Diagnostics, University Hospital Careggi, Florence, Toscana, Italy
| | - Alessia Cimadamore
- Institute of Pathological Anatomy and Histopathology Polytechnic University of the Marche Region, Ancona, Torrette, Italy
| | - Marina Scarpelli
- Institute of Pathological Anatomy and Histopathology Polytechnic University of the Marche Region, Ancona, Torrette, Italy
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Antonio Lopez-Beltran
- Unit of Anatomical Pathology, Faculty of Medicine, University of Cordoba, Cordoba, Andalucía, Spain
| | - Rodolfo Montironi
- Institute of Pathological Anatomy and Histopathology Polytechnic University of the Marche Region, Ancona, Torrette, Italy
| | - Eytan R Barnea
- BioIncept, LLC & The Society for the Investigation of Early Pregnancy (SIEP), New York, NY, USA
| |
Collapse
|
7
|
O'Reilly D, Johnson P, Buchanan PJ. Hypoxia induced cancer stem cell enrichment promotes resistance to androgen deprivation therapy in prostate cancer. Steroids 2019; 152:108497. [PMID: 31521707 DOI: 10.1016/j.steroids.2019.108497] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 09/03/2019] [Accepted: 09/09/2019] [Indexed: 02/06/2023]
Abstract
Androgen deprivation therapy (ADT) is the main treatment to prolong survival in advance stage prostate cancer (PCa) but associated resistance leads to the development of terminal castrate resistant PCa (CRPC). Current research demonstrates that prostate cancer stem cells (PCSC) play a critical role in the development of treatment resistance and subsequent disease progression. Despite uncertainty surrounding the origin of these cells, studies clearly show they are associated with poorer outcomes and that ADT significantly enhances their numbers. Here in we highlight how activation of HIF signalling, in response to hypoxic conditions within the tumour microenvironment, results in the expression of genes associated with stemness and EMT promoting PCSC emergence which ultimately drives tumour relapse to CRPC. Hypoxic conditions are not only enhanced by ADT but the associated decrease in AR activation also promotes PI3K/AKT signalling which actively enhances HIF and its effects on PCSC's. Furthermore, emerging evidence now indicates that HIF-2α, rather than the commonly considered HIF-1α, is the main family member that drives PCSC emergence. Taken together this clearly identifies HIF and associated pathways as key targets for new therapeutic strategies that could potentially prevent or slow PCSC promoted resistance to ADT, thus holding potential to prolong patient survival.
Collapse
Affiliation(s)
- Debbie O'Reilly
- School of Nursing & Human Sciences, Dublin City University, Dublin, Ireland; National Institute of Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Patricia Johnson
- School of Nursing & Human Sciences, Dublin City University, Dublin, Ireland
| | - Paul J Buchanan
- School of Nursing & Human Sciences, Dublin City University, Dublin, Ireland; National Institute of Cellular Biotechnology, Dublin City University, Dublin, Ireland.
| |
Collapse
|
8
|
Testa U, Castelli G, Pelosi E. Cellular and Molecular Mechanisms Underlying Prostate Cancer Development: Therapeutic Implications. MEDICINES (BASEL, SWITZERLAND) 2019; 6:E82. [PMID: 31366128 PMCID: PMC6789661 DOI: 10.3390/medicines6030082] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/19/2019] [Accepted: 07/25/2019] [Indexed: 12/15/2022]
Abstract
Prostate cancer is the most frequent nonskin cancer and second most common cause of cancer-related deaths in man. Prostate cancer is a clinically heterogeneous disease with many patients exhibiting an aggressive disease with progression, metastasis, and other patients showing an indolent disease with low tendency to progression. Three stages of development of human prostate tumors have been identified: intraepithelial neoplasia, adenocarcinoma androgen-dependent, and adenocarcinoma androgen-independent or castration-resistant. Advances in molecular technologies have provided a very rapid progress in our understanding of the genomic events responsible for the initial development and progression of prostate cancer. These studies have shown that prostate cancer genome displays a relatively low mutation rate compared with other cancers and few chromosomal loss or gains. The ensemble of these molecular studies has led to suggest the existence of two main molecular groups of prostate cancers: one characterized by the presence of ERG rearrangements (~50% of prostate cancers harbor recurrent gene fusions involving ETS transcription factors, fusing the 5' untranslated region of the androgen-regulated gene TMPRSS2 to nearly the coding sequence of the ETS family transcription factor ERG) and features of chemoplexy (complex gene rearrangements developing from a coordinated and simultaneous molecular event), and a second one characterized by the absence of ERG rearrangements and by the frequent mutations in the E3 ubiquitin ligase adapter SPOP and/or deletion of CDH1, a chromatin remodeling factor, and interchromosomal rearrangements and SPOP mutations are early events during prostate cancer development. During disease progression, genomic and epigenomic abnormalities accrued and converged on prostate cancer pathways, leading to a highly heterogeneous transcriptomic landscape, characterized by a hyperactive androgen receptor signaling axis.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Vaile Regina Elena 299, 00161 Rome, Italy.
| | - Germana Castelli
- Department of Oncology, Istituto Superiore di Sanità, Vaile Regina Elena 299, 00161 Rome, Italy
| | - Elvira Pelosi
- Department of Oncology, Istituto Superiore di Sanità, Vaile Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
9
|
Trabzonlu L, Kulac I, Zheng Q, Hicks JL, Haffner MC, Nelson WG, Sfanos KS, Ertunc O, Lotan TL, Heaphy CM, Meeker AK, Yegnasubramanian S, De Marzo AM. Molecular Pathology of High-Grade Prostatic Intraepithelial Neoplasia: Challenges and Opportunities. Cold Spring Harb Perspect Med 2019; 9:a030403. [PMID: 30082453 PMCID: PMC6444695 DOI: 10.1101/cshperspect.a030403] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A better understanding of the early stages of prostate cancer initiation, potentially arising from precursor lesions, may fuel development of powerful approaches for prostate cancer prevention or interception. The best-known candidate for such a precursor lesion has been referred to as high-grade prostatic intraepithelial neoplasia (HGPIN). Although there is significant evidence supporting the notion that such HGPIN lesions can give rise to invasive adenocarcinomas of the prostate, there are also numerous complicating considerations and evidence that cloud the picture in many instances. Notably, recent evidence has suggested that some fraction of such lesions that are morphologically consistent with HGPIN may actually be invasive carcinomas masquerading as HGPIN-a state that we term "postinvasive intraepithelial carcinoma" (PIC). Although the prevalence of such PIC lesions is not fully understood, this and other factors can confound the potential of identifying prostate precursors that can be targeted for disease prevention, interception, or treatment. Here, we review our current understanding of the morphological and molecular pathological features of prostate cancer precursor lesions.
Collapse
Affiliation(s)
- Levent Trabzonlu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
| | - Ibrahim Kulac
- Department of Pathology, Koc University School of Medicine, Istanbul 34010, Turkey
| | - Qizhi Zheng
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
| | - Jessica L Hicks
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
| | - Michael C Haffner
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - William G Nelson
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
- The Brady Urological Research Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
| | - Karen S Sfanos
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
- The Brady Urological Research Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
| | - Onur Ertunc
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
| | - Tamara L Lotan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Christopher M Heaphy
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
- The Brady Urological Research Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
| | - Alan K Meeker
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
- The Brady Urological Research Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
| | - Srinivasan Yegnasubramanian
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
- The Brady Urological Research Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
| | - Angelo M De Marzo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
- The Brady Urological Research Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
| |
Collapse
|
10
|
Bahmad HF, Cheaito K, Chalhoub RM, Hadadeh O, Monzer A, Ballout F, El-Hajj A, Mukherji D, Liu YN, Daoud G, Abou-Kheir W. Sphere-Formation Assay: Three-Dimensional in vitro Culturing of Prostate Cancer Stem/Progenitor Sphere-Forming Cells. Front Oncol 2018; 8:347. [PMID: 30211124 PMCID: PMC6121836 DOI: 10.3389/fonc.2018.00347] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/07/2018] [Indexed: 12/12/2022] Open
Abstract
Cancer Stem Cells (CSCs) are a sub-population of cells, identified in most tumors, responsible for the initiation, recurrence, metastatic potential, and resistance of different malignancies. In prostate cancer (PCa), CSCs were identified and thought to be responsible for the generation of the lethal subtype, commonly known as Castration-Resistant Prostate Cancer (CRPC). In vitro models to investigate the properties of CSCs in PCa are highly required. Sphere-formation assay is an in vitro method commonly used to identify CSCs and study their properties. Here, we report the detailed methodology on how to generate and propagate spheres from PCa cell lines and from murine prostate tissue. This model is based on the ability of stem cells to grow in non-adherent serum-free gel matrix. We also describe how to use these spheres in histological and immuno-fluorescent staining assays to assess the differentiation potential of the CSCs. Our results show the sphere-formation Assay (SFA) as a reliable in vitro assay to assess the presence and self-renewal ability of CSCs in different PCa models. This platform presents a useful tool to evaluate the effect of conventional or novel agents on the initiation and self-renewing properties of different tumors. The effects can be directly evaluated through assessment of the sphere-forming efficiency (SFE) over five generations or other downstream assays such as immuno-histochemical analysis of the generated spheres.
Collapse
Affiliation(s)
- Hisham F Bahmad
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Katia Cheaito
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Reda M Chalhoub
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ola Hadadeh
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Alissar Monzer
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Farah Ballout
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
| | - Albert El-Hajj
- Division of Urology, Department of Surgery, American University of Beirut Medical Center, Beirut, Lebanon
| | - Deborah Mukherji
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Yen-Nien Liu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Georges Daoud
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
11
|
Soundararajan R, Paranjape AN, Maity S, Aparicio A, Mani SA. EMT, stemness and tumor plasticity in aggressive variant neuroendocrine prostate cancers. Biochim Biophys Acta Rev Cancer 2018; 1870:229-238. [PMID: 29981816 DOI: 10.1016/j.bbcan.2018.06.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/27/2018] [Accepted: 06/28/2018] [Indexed: 12/25/2022]
Abstract
Neuroendocrine/Aggressive Variant Prostate Cancers are lethal variants of the disease, with an aggressive clinical course and very short responses to conventional therapy. The age-adjusted incidence rate for this tumor sub-type has steadily increased over the past 20 years in the United States, with no reduction in the associated mortality rate. The molecular networks fueling its emergence and sustenance are still obscure; however, many factors have been associated with the onset and progression of neuroendocrine differentiation in clinically typical adenocarcinomas including loss of androgen-receptor expression and/or signaling, conventional therapy, and dysregulated cytokine function. "Tumor-plasticity" and the ability to dedifferentiate into alternate cell lineages are central to this process. Epithelial-to-mesenchymal (EMT) signaling pathways are major promoters of stem-cell properties in prostate tumor cells. In this review, we examine the contributions of EMT-induced cellular-plasticity and stem-cell signaling pathways to the progression of Neuroendocrine/Aggressive Variant Prostate Cancers in the light of potential therapeutic opportunities.
Collapse
Affiliation(s)
- Rama Soundararajan
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Anurag N Paranjape
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sankar Maity
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ana Aparicio
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sendurai A Mani
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Metastasis Research Center, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for Stem Cell and Developmental Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
12
|
YAP1 regulates prostate cancer stem cell-like characteristics to promote castration resistant growth. Oncotarget 2017; 8:115054-115067. [PMID: 29383141 PMCID: PMC5777753 DOI: 10.18632/oncotarget.23014] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 10/29/2017] [Indexed: 01/10/2023] Open
Abstract
Castration resistant prostate cancer (CRPC) is a stage of relapse that arises after various forms of androgen ablation therapy (ADT) and causes significant morbidity and mortality. However, the mechanism underlying progression to CRPC remains poorly understood. Here, we report that YAP1, which is negatively regulated by AR, influences prostate cancer (PCa) cell self-renewal and CRPC development. Specifically, we found that AR directly regulates the methylation of YAP1 gene promoter via the formation of a complex with Polycomb group protein EZH2 and DNMT3a. In normal conditions, AR recruits EZH2 and DNMT3a to YAP1 promoter, thereby promoting DNA methylation and the repression of YAP1 gene transcription. Following ADT treatment or when AR activity is antagonized by Bicalutamide or Enzalutamide, YAP1 gene expression is switched on. In turn, YAP1 promotes SOX2 and Nanog expression and the de-differentiation of PCa cells to stem/progenitor-like cells (PCSC), which potentially contribute to disease recurrence. Finally, the knock down of YAP1 expression or the inhibition of YAP1 function by Verteporfin in TRAMP prostate cancer mice significantly suppresses tumor recurrence following castration. In conclusion, our data reveals that AR suppresses YAP1 gene expression through a novel epigenetic mechanism, which is critical for PCa cells self-renewal and the development of CRPC.
Collapse
|
13
|
Goffin V. Prolactin receptor targeting in breast and prostate cancers: New insights into an old challenge. Pharmacol Ther 2017; 179:111-126. [DOI: 10.1016/j.pharmthera.2017.05.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Ferrucci D, Biancardi MF, Nishan U, Rosa-Ribeiro R, Carvalho HF. Desquamation takes center stage at the origin of proliferative inflammatory atrophy, epithelial-mesenchymal transition, and stromal growth in benign prostate hyperplasia. Cell Biol Int 2017; 41:1265-1270. [PMID: 28877372 DOI: 10.1002/cbin.10867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/03/2017] [Indexed: 01/24/2023]
Abstract
In this commentary, we propose a relationship between desquamation, initially described as the collective detachment and deletion of epithelial cell in the prostate gland after castration, and proliferative inflammatory atrophy (PIA) and stromal growth in benign prostate hyperplasia (BPH). First, in response to diverse stimuli, including inflammatory mediators, epithelial cells desquamate and leave a large surface of the luminal side of the basement membrane (BM) exposed. Basal cells are activated into intermediate-type cells, which change morphology to cover and remodel the exposed BM (simple atrophy) to a new physiological demand (such as in the hypoandrogen environment, simulated by surgical and/or chemical castration) and/or to support re-epithelialization (under normal androgen levels). In the presence of inflammation (that might be the cause of desquamation), the intermediate-type cells proliferate and characterize PIA. Second, in other circumstances, desquamation is an early step of epithelial-to-mesenchymal transition (EMT), which contributes to stromal growth, as suggested by some experimental models of BPH. The proposed associations correlate unexplored cell behaviors and reveal the remarkable plasticity of the prostate epithelium that might be at the origin of prostate diseases.
Collapse
Affiliation(s)
- Danilo Ferrucci
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas SP, Brazil
| | - Manoel F Biancardi
- Department of Histology, Embryology, and Cell Biology, Institute of Biological Sciences, Federal University of Goiás, Goiania GO, Brazil
| | - Umar Nishan
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology, Lahore, Pakistan
| | - Rafaela Rosa-Ribeiro
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas SP, Brazil
| | - Hernandes F Carvalho
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas SP, Brazil
| |
Collapse
|
15
|
Abstract
Cell and tissue specific somatic stem cells develop as dynamic populations of precursor cells to discrete tissue and organ differentiation during embryonic and fetal stages and their potential evolves with development. Some of their progeny are sequestered into separate cell niches of tissues as adult somatic stem cells at various times during organ development and differentiation These are diverse cell populations of stem and progenitor cells that respond to homeostatic needs for cell and tissue maintenance and the cycling of differentiated cells for physiological/ endocrinological changes. Nominally, multipotent stem cells in one or more niches follow specific lineages of differentiation that can be followed by diverse markers of differentiation. The activation of precursors appears to be stochastic and results in a population of heterogeneous progenitor cells. When variations in the functional need of the tissue or organ occurs, the progenitor cells exhibit flexibility in their differentiation capacity. Regulation of the progenitors is the result of signals from the stem cell niche that can cause adaptive changes in the behavior or function of the stem -progenitor cell lineage. A possible mechanism may be alteration in the differentiation capacity of the resident or introduced cells. Certain quiescent stem cells also serve as a potential cell reservoir for trauma induced cell regeneration through adaptive changes in differentiation of stem cells, progenitor cells and differentiated cells. If the stem-progenitor cell population is normally depleted or destroyed by trauma, differentiated cells from the niche microenvironment can restore the specific stem potency which suggests the process of dedifferentiation.
Collapse
Affiliation(s)
- Kenyon S Tweedell
- Department of Biological Sciences, University of Notre Dame, Notre Dame IN 46556 USA
| |
Collapse
|
16
|
Olsen JR, Azeem W, Hellem MR, Marvyin K, Hua Y, Qu Y, Li L, Lin B, Ke XS, Øyan AM, Kalland KH. Context dependent regulatory patterns of the androgen receptor and androgen receptor target genes. BMC Cancer 2016; 16:377. [PMID: 27378372 PMCID: PMC4932678 DOI: 10.1186/s12885-016-2453-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 06/23/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Expression of the androgen receptor (AR) is associated with androgen-dependent proliferation arrest and terminal differentiation of normal prostate epithelial cells. Additionally, activation of the AR is required for survival of benign luminal epithelial cells and primary cancer cells, thus androgen deprivation therapy (ADT) leads to apoptosis in both benign and cancerous tissue. Escape from ADT is known as castration-resistant prostate cancer (CRPC). In the course of CRPC development the AR typically switches from being a cell-intrinsic inhibitor of normal prostate epithelial cell proliferation to becoming an oncogene that is critical for prostate cancer cell proliferation. A clearer understanding of the context dependent activation of the AR and its target genes is therefore desirable. METHODS Immortalized human prostate basal epithelial EP156T cells and progeny cells that underwent epithelial to mesenchymal transition (EMT), primary prostate epithelial cells (PrECs) and prostate cancer cell lines LNCaP, VCaP and 22Rv1 were used to examine context dependent restriction and activation of the AR and classical target genes, such as KLK3. Genome-wide gene expression analyses and single cell protein analyses were applied to study the effect of different contexts. RESULTS A variety of growth conditions were tested and found unable to activate AR expression and transcription of classical androgen-dependent AR target genes, such as KLK3, in prostate epithelial cells with basal cell features or in mesenchymal type prostate cells. The restriction of androgen- and AR-dependent transcription of classical target genes in prostate basal epithelial cells was at the level of AR expression. Exogenous AR expression was sufficient for androgen-dependent transcription of AR target genes in prostate basal epithelial cells, but did not exert a positive feedback on endogenous AR expression. Treatment of basal prostate epithelial cells with inhibitors of epigenetic gene silencing was not efficient in inducing androgen-dependent transcription of AR target genes, suggesting the importance of missing cofactor(s). CONCLUSIONS Regulatory mechanisms of AR and androgen-dependent AR target gene transcription are insufficiently understood and may be critical for prostate cancer initiation, progression and escape from standard therapy. The present model is useful for the study of context dependent activation of the AR and its transcriptome.
Collapse
Affiliation(s)
- Jan Roger Olsen
- Department of Clinical Science, University of Bergen, Bergen, Norway. .,, Laboratory Bld. 5. etg, Bergen Health, Bergen, NO-5021, Norway.
| | - Waqas Azeem
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway
| | | | - Kristo Marvyin
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Yaping Hua
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Yi Qu
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Microbiology, Haukeland University Hospital, Bergen, Norway
| | - Lisha Li
- Cancer Institute, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Biaoyang Lin
- Cancer Institute, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Department of Urology, University of Washington, Seattle, WA, USA
| | - Xi- Song Ke
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | - Karl- Henning Kalland
- Department of Clinical Science, University of Bergen, Bergen, Norway. .,Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway. .,Department of Microbiology, Haukeland University Hospital, Bergen, Norway. .,, Laboratory Bld. 5. etg, Bergen Health, Bergen, NO-5021, Norway.
| |
Collapse
|
17
|
Albino D, Civenni G, Dallavalle C, Roos M, Jahns H, Curti L, Rossi S, Pinton S, D'Ambrosio G, Sessa F, Hall J, Catapano CV, Carbone GM. Activation of the Lin28/let-7 Axis by Loss of ESE3/EHF Promotes a Tumorigenic and Stem-like Phenotype in Prostate Cancer. Cancer Res 2016; 76:3629-43. [PMID: 27197175 DOI: 10.1158/0008-5472.can-15-2665] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 03/30/2016] [Indexed: 11/16/2022]
Abstract
Although cancer stem-like cells (CSC) are thought to be the most tumorigenic, metastatic, and therapy-resistant cell subpopulation within human tumors, current therapies target bulk tumor cells while tending to spare CSC. In seeking to understand mechanisms needed to acquire and maintain a CSC phenotype in prostate cancer, we investigated connections between the ETS transcription factor ESE3/EHF, the Lin28/let-7 microRNA axis, and the CSC subpopulation in this malignancy. In normal cells, we found that ESE3/EHF bound and repressed promoters for the Lin28A and Lin28B genes while activating transcription and maturation of the let-7 microRNAs. In cancer cells, reduced expression of ESE3/EHF upregulated Lin28A and Lin28B and downregulated the let-7 microRNAs. Notably, we found that deregulation of the Lin28/let-7 axis with reduced production of let-7 microRNAs was critical for cell transformation and expansion of prostate CSC. Moreover, targeting Lin28A/Lin28B in cell lines and tumor xenografts mimicked the effects of ESE3/EHF and restrained tumor-initiating and self-renewal properties of prostate CSC both in vitro and in vivo These results establish that tight control by ESE3/EHF over the Lin28/let-7 axis is a critical barrier to malignant transformation, and they also suggest new strategies to antagonize CSC in human prostate cancer for therapeutic purposes. Cancer Res; 76(12); 3629-43. ©2016 AACR.
Collapse
Affiliation(s)
- Domenico Albino
- Tumor Biology and Experimental Therapeutics Program, Institute of Oncology Research (IOR), Bellinzona, Switzerland
| | - Gianluca Civenni
- Tumor Biology and Experimental Therapeutics Program, Institute of Oncology Research (IOR), Bellinzona, Switzerland
| | - Cecilia Dallavalle
- Tumor Biology and Experimental Therapeutics Program, Institute of Oncology Research (IOR), Bellinzona, Switzerland
| | - Martina Roos
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Hartmut Jahns
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Laura Curti
- Tumor Biology and Experimental Therapeutics Program, Institute of Oncology Research (IOR), Bellinzona, Switzerland
| | - Simona Rossi
- Tumor Biology and Experimental Therapeutics Program, Institute of Oncology Research (IOR), Bellinzona, Switzerland
| | - Sandra Pinton
- Tumor Biology and Experimental Therapeutics Program, Institute of Oncology Research (IOR), Bellinzona, Switzerland
| | | | - Fausto Sessa
- Department of Pathology, University of Insubria, Varese, Italy
| | - Jonathan Hall
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Carlo V Catapano
- Tumor Biology and Experimental Therapeutics Program, Institute of Oncology Research (IOR), Bellinzona, Switzerland. Oncology Institute of Southern Switzerland (IOSI), Bellinzona, Switzerland. Department of Oncology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| | - Giuseppina M Carbone
- Tumor Biology and Experimental Therapeutics Program, Institute of Oncology Research (IOR), Bellinzona, Switzerland. Oncology Institute of Southern Switzerland (IOSI), Bellinzona, Switzerland.
| |
Collapse
|
18
|
Hu DP, Hu WY, Xie L, Li Y, Birch L, Prins GS. Actions of Estrogenic Endocrine Disrupting Chemicals on Human Prostate Stem/Progenitor Cells and Prostate Carcinogenesis. ACTA ACUST UNITED AC 2016. [DOI: 10.2174/1874070701610010076] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Substantial evidences from epidemiological and animal-based studies indicate that early exposure to endocrine disrupting chemicals (EDCs) during the developmental stage results in a variety of disorders including cancer. Previous studies have demonstrated that early estrogen exposure results in life-long reprogramming of the prostate gland that leads to an increased incidence of prostatic lesions with aging. We have recently documented that bisphenol A (BPA), one of the most studied EDCs with estrogenic activity has similar effects in increasing prostate carcinogenic potential, supporting the connection between EDCs exposure and prostate cancer risk. It is well accepted that stem cells play a crucial role in development and cancer. Accumulating evidence suggest that stem cells are regulated by extrinsic factors and may be the potential target of hormonal carcinogenesis. Estrogenic EDCs which interfere with normal hormonal signaling may perturb prostate stem cell fate by directly reprogramming stem cells or breaking down the stem cell niche. Transformation of stem cells into cancer stem cells may underlie cancer initiation accounting for cancer recurrence, which becomes a critical therapeutic target of cancer management. We therefore propose that estrogenic EDCs may influence the development and progression of prostate cancer through reprogramming and transforming the prostate stem and early stage progenitor cells. In this review, we summarize our current studies and have updated recent advances highlighting estrogenic EDCs on prostate carcinogenesis by possible targeting prostate stem/progenitor cells. Using novel stem cell assays we have demonstrated that human prostate stem/progenitor cells express estrogen receptors (ER) and are directly modulated by estrogenic EDCs. Moreover, employing anin vivohumanized chimeric prostate model, we further demonstrated that estrogenic EDCs initiate and promote prostatic carcinogenesis in an androgen-supported environment. These findings support our hypothesis that prostate stem/progenitor cells may be the direct targets of estrogenic EDCs as a consequence of developmental exposure which carry permanent reprogrammed epigenetic and oncogenic events and subsequently deposit into cancer initiation and progression in adulthood.
Collapse
|
19
|
Shibata M, Shen MM. Stem cells in genetically-engineered mouse models of prostate cancer. Endocr Relat Cancer 2015; 22:T199-208. [PMID: 26341780 PMCID: PMC4618022 DOI: 10.1530/erc-15-0367] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/04/2015] [Indexed: 12/24/2022]
Abstract
The cancer stem cell model proposes that tumors have a hierarchical organization in which tumorigenic cells give rise to non-tumorigenic cells, with only a subset of stem-like cells able to propagate the tumor. In the case of prostate cancer, recent analyses of genetically engineered mouse (GEM) models have provided evidence supporting the existence of cancer stem cells in vivo. These studies suggest that cancer stem cells capable of tumor propagation exist at various stages of tumor progression from prostatic intraepithelial neoplasia (PIN) to advanced metastatic and castration-resistant disease. However, studies of stem cells in prostate cancer have been limited by available approaches for evaluating their functional properties in cell culture and transplantation assays. Given the role of the tumor microenvironment and the putative cancer stem cell niche, future studies using GEM models to analyze cancer stem cells in their native tissue microenvironment are likely to be highly informative.
Collapse
Affiliation(s)
- Maho Shibata
- Departments of MedicineGenetics and Development, Urology, and Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York 10032, USA
| | - Michael M Shen
- Departments of MedicineGenetics and Development, Urology, and Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York 10032, USA
| |
Collapse
|
20
|
Sackmann-Sala L, Angelergues A, Boutillon F, d'Acremont B, Maidenberg M, Oudard S, Goffin V. Human and murine prostate basal/stem cells are not direct targets of prolactin. Gen Comp Endocrinol 2015; 220:133-42. [PMID: 25888939 DOI: 10.1016/j.ygcen.2015.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 03/25/2015] [Accepted: 04/07/2015] [Indexed: 10/23/2022]
Abstract
Local overexpression of prolactin (PRL) in the prostate of Pb-PRL transgenic mice induces benign prostate tumors exhibiting marked amplification of the epithelial basal/stem cell compartment. However, PRL-activated intracellular signaling seems to be restricted to luminal cells, suggesting that basal/stem cells may not be direct targets of PRL. Given their described role as prostate cancer-initiating cells, it is important to understand the mechanisms that regulate basal/stem cells. In this study, we evaluated whether PRL can act directly on these cells, by growing them as prostaspheres. For this, primary 3D prostasphere cultures were prepared from unfractionated cells isolated from freshly harvested human and mouse benign prostate tissues and subjected to PRL stimulation in vitro. None of the various concentrations of PRL tested showed any effects on the sizes or numbers of the prostaspheres generated. In addition, neither activation of canonical PRL-induced signaling pathways (Stat5, Stat3 or Erk1/2) nor increased expression of the proliferation marker Ki-67 were detected by immunostaining in PRL-stimulated prostaspheres. Consistent with the absence of response, PRL receptor mRNA levels were generally undetectable in mouse sphere cells. We conclude that human and mouse prostate basal/stem cells are not direct targets of PRL action. The observed amplification of basal/stem cells in Pb-PRL prostates might be due to paracrine mechanisms originating from PRL action on other cell compartments. Our current efforts are aimed at unraveling these mechanisms.
Collapse
Affiliation(s)
- Lucila Sackmann-Sala
- Institut Necker Enfants Malades (INEM), Inserm U1151 - CNRS UMR 8253, Equipe "Physiopathologie des hormones PRL/GH", Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, 14 rue Maria Helena Vieira da Silva - CS 61431, Bâtiment Leriche, 75993 Paris Cedex 14, France.
| | - Antoine Angelergues
- Institut Necker Enfants Malades (INEM), Inserm U1151 - CNRS UMR 8253, Equipe "Physiopathologie des hormones PRL/GH", Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, 14 rue Maria Helena Vieira da Silva - CS 61431, Bâtiment Leriche, 75993 Paris Cedex 14, France; Service de Cancérologie Médicale, Hôpital Européen Georges Pompidou, Université Paris Descartes, 20 rue Leblanc, 75015 Paris, France.
| | - Florence Boutillon
- Institut Necker Enfants Malades (INEM), Inserm U1151 - CNRS UMR 8253, Equipe "Physiopathologie des hormones PRL/GH", Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, 14 rue Maria Helena Vieira da Silva - CS 61431, Bâtiment Leriche, 75993 Paris Cedex 14, France
| | - Bruno d'Acremont
- Service d'Urologie, Fondation Saint Jean de Dieu - Clinique Oudinot, 19 rue Oudinot, 75007 Paris, France.
| | - Marc Maidenberg
- Service d'Urologie, Fondation Saint Jean de Dieu - Clinique Oudinot, 19 rue Oudinot, 75007 Paris, France.
| | - Stéphane Oudard
- Service de Cancérologie Médicale, Hôpital Européen Georges Pompidou, Université Paris Descartes, 20 rue Leblanc, 75015 Paris, France.
| | - Vincent Goffin
- Institut Necker Enfants Malades (INEM), Inserm U1151 - CNRS UMR 8253, Equipe "Physiopathologie des hormones PRL/GH", Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, 14 rue Maria Helena Vieira da Silva - CS 61431, Bâtiment Leriche, 75993 Paris Cedex 14, France.
| |
Collapse
|
21
|
Differential requirements for β-catenin in murine prostate cancer originating from basal versus luminal cells. J Pathol 2015; 236:290-301. [DOI: 10.1002/path.4521] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 02/12/2015] [Accepted: 02/19/2015] [Indexed: 01/01/2023]
|
22
|
Sackmann-Sala L, Guidotti JE, Goffin V. Minireview: prolactin regulation of adult stem cells. Mol Endocrinol 2015; 29:667-81. [PMID: 25793405 DOI: 10.1210/me.2015-1022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Adult stem/progenitor cells are found in many tissues, where their primary role is to maintain homeostasis. Recent studies have evaluated the regulation of adult stem/progenitor cells by prolactin in various target tissues or cell types, including the mammary gland, the prostate, the brain, the bone marrow, the hair follicle, and colon cancer cells. Depending on the tissue, prolactin can either maintain stem cell quiescence or, in contrast, promote stem/progenitor cell expansion and push their progeny towards differentiation. In many instances, whether these effects are direct or involve paracrine regulators remains debated. This minireview aims to overview the current knowledge in the field.
Collapse
Affiliation(s)
- Lucila Sackmann-Sala
- Institut Necker Enfants Malades, Inserm Unité1151, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8253, Team Prolactin/Growth Hormone Pathophysiology, Faculty of Medicine, University Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France
| | | | | |
Collapse
|
23
|
Bauderlique-Le Roy H, Vennin C, Brocqueville G, Spruyt N, Adriaenssens E, Bourette RP. Enrichment of Human Stem-Like Prostate Cells with s-SHIP Promoter Activity Uncovers a Role in Stemness for the Long Noncoding RNA H19. Stem Cells Dev 2015; 24:1252-62. [PMID: 25567531 DOI: 10.1089/scd.2014.0386] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Understanding normal and cancer stem cells should provide insights into the origin of prostate cancer and their mechanisms of resistance to current treatment strategies. In this study, we isolated and characterized stem-like cells present in the immortalized human prostate cell line, RWPE-1. We used a reporter system with green fluorescent protein (GFP) driven by the promoter of s-SHIP (for stem-SH2-domain-containing 5'-inositol phosphatase) whose stem cell-specific expression has been previously shown. We observed that s-SHIP-GFP-expressing RWPE-1 cells showed stem cell characteristics such as increased expression of stem cell surface markers (CD44, CD166, TROP2) and pluripotency transcription factors (Oct4, Sox2), and enhanced sphere-forming capacity and resistance to arsenite-induced cell death. Concomitant increased expression of the long noncoding RNA H19 was observed, which prompted us to investigate a putative role in stemness for this oncofetal gene. Targeted suppression of H19 with siRNA decreased Oct4 and Sox2 gene expression and colony-forming potential in RWPE-1 cells. Conversely, overexpression of H19 significantly increased gene expression of these two transcription factors and the sphere-forming capacity of RWPE-1 cells. Analysis of H19 expression in various prostate and mammary human cell lines revealed similarities with Sox2 expression, suggesting that a functional relationship may exist between H19 and Sox2. Collectively, we provide the first evidence that s-SHIP-GFP promoter reporter offers a unique marker for the enrichment of human stem-like cell populations and highlight a role in stemness for the long noncoding RNA H19.
Collapse
Affiliation(s)
- Hélène Bauderlique-Le Roy
- 1 UMR 8161 CNRS, Institut de Biologie de Lille, SIRIC ONCOLille, Institut Pasteur de Lille , Lille, France
| | | | | | | | | | | |
Collapse
|
24
|
Prolactin-Induced Prostate Tumorigenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 846:221-42. [DOI: 10.1007/978-3-319-12114-7_10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Sackmann-Sala L, Chiche A, Mosquera-Garrote N, Boutillon F, Cordier C, Pourmir I, Pascual-Mathey L, Kessal K, Pigat N, Camparo P, Goffin V. Prolactin-Induced Prostate Tumorigenesis Links Sustained Stat5 Signaling with the Amplification of Basal/Stem Cells and Emergence of Putative Luminal Progenitors. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:3105-19. [DOI: 10.1016/j.ajpath.2014.07.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 06/10/2014] [Accepted: 07/10/2014] [Indexed: 12/28/2022]
|
26
|
Marhold M, Tomasich E, El-Gazzar A, Heller G, Spittler A, Horvat R, Krainer M, Horak P. HIF1α Regulates mTOR Signaling and Viability of Prostate Cancer Stem Cells. Mol Cancer Res 2014; 13:556-64. [PMID: 25349289 DOI: 10.1158/1541-7786.mcr-14-0153-t] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Tumor-initiating subpopulations of cancer cells, also known as cancer stem cells (CSC), were recently identified and characterized in prostate cancer. A well-characterized murine model of prostate cancer was used to investigate the regulation of hypoxia-inducible factor 1α (HIF1A/HIF1α) in CSCs and a basal stem cell subpopulation (Lin(-)/Sca-1(+)/CD49f(+)) was identified, in primary prostate tumors of mice, with elevated HIF1α expression. To further analyze the consequences of hypoxic upregulation on stem cell proliferation and HIF1α signaling, CSC subpopulations from murine TRAMP-C1 cells (Sca-1(+)/CD49f(+)) as well as from a human prostate cancer cell line (CD44(+)/CD49f(+)) were isolated and characterized. HIF1α levels and HIF target gene expression were elevated in hypoxic CSC-like cells, and upregulation of AKT occurred through a mechanism involving an mTOR/S6K/IRS-1 feedback loop. Interestingly, resistance of prostate CSCs to selective mTOR inhibitors was observed because of HIF1α upregulation. Thus, prostate CSCs show a hypoxic deactivation of a feedback inhibition of AKT signaling through IRS-1. In light of these results, we propose that deregulation of the PI3K/AKT/mTOR pathway through HIF1α is critical for CSC quiescence and maintenance by attenuating CSC metabolism and growth via mTOR and promoting survival by AKT signaling. We also propose that prostate CSCs can exhibit primary drug resistance to selective mTOR inhibitors. IMPLICATIONS This work contributes to a deeper understanding of hypoxic regulatory mechanisms in CSCs and will help devise novel therapies against prostate cancer.
Collapse
Affiliation(s)
- Maximilian Marhold
- Department of Internal Medicine I and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Erwin Tomasich
- Department of Internal Medicine I and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Ahmed El-Gazzar
- Department of Internal Medicine I and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Gerwin Heller
- Department of Internal Medicine I and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Andreas Spittler
- Department of Surgery and Core Facility Flow Cytometry, Medical University of Vienna, Vienna, Austria
| | - Reinhard Horvat
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Michael Krainer
- Department of Internal Medicine I and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Peter Horak
- Department of Internal Medicine I and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
27
|
Stoyanova T, Goldstein AS. Distinct phases of human prostate cancer initiation and progression can be driven by different cell-types. ACTA ACUST UNITED AC 2014; 1. [PMID: 26005704 DOI: 10.14800/ccm.90] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The cells that initiate and propagate cancer are important therapeutic targets. However, the progression from cells of origin to tumor-propagating cells is poorly defined for most human cancers. Mouse models indicate that both basal and luminal cells can initiate prostate cancer, while studies with human prostate tissue have demonstrated a role for basal cells in transformation. Our recent study provides evidence that a common cell of origin can produce alternative variants of human epithelial cancer. Our findings also reveal that the cell of origin that initiates cancer is not continuously required to maintain and propagate the disease. Importantly, the cells responsible for initiating human prostate cancer can have a distinct cellular phenotype from the cells needed to maintain it.
Collapse
Affiliation(s)
- Tanya Stoyanova
- Microbiology Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095
| | - Andrew S Goldstein
- Departments of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095 ; Departments of Urology, University of California, Los Angeles, CA 90095 ; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095 ; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095
| |
Collapse
|
28
|
Pellacani D, Kestoras D, Droop AP, Frame FM, Berry PA, Lawrence MG, Stower MJ, Simms MS, Mann VM, Collins AT, Risbridger GP, Maitland NJ. DNA hypermethylation in prostate cancer is a consequence of aberrant epithelial differentiation and hyperproliferation. Cell Death Differ 2014; 21:761-73. [PMID: 24464224 DOI: 10.1038/cdd.2013.202] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 12/12/2013] [Accepted: 12/16/2013] [Indexed: 12/16/2022] Open
Abstract
Prostate cancer (CaP) is mostly composed of luminal-like differentiated cells, but contains a small subpopulation of basal cells (including stem-like cells), which can proliferate and differentiate into luminal-like cells. In cancers, CpG island hypermethylation has been associated with gene downregulation, but the causal relationship between the two phenomena is still debated. Here we clarify the origin and function of CpG island hypermethylation in CaP, in the context of a cancer cell hierarchy and epithelial differentiation, by analysis of separated basal and luminal cells from cancers. For a set of genes (including GSTP1) that are hypermethylated in CaP, gene downregulation is the result of cell differentiation and is not cancer specific. Hypermethylation is however seen in more differentiated cancer cells and is promoted by hyperproliferation. These genes are maintained as actively expressed and methylation-free in undifferentiated CaP cells, and their hypermethylation is not essential for either tumour development or expansion. We present evidence for the causes and the dynamics of CpG island hypermethylation in CaP, showing that, for a specific set of genes, promoter methylation is downstream of gene downregulation and is not a driver of gene repression, while gene repression is a result of tissue-specific differentiation.
Collapse
Affiliation(s)
- D Pellacani
- YCR Cancer Research Unit, Department of Biology, University of York, Wentworth Way, York, UK
| | - D Kestoras
- YCR Cancer Research Unit, Department of Biology, University of York, Wentworth Way, York, UK
| | - A P Droop
- YCR Cancer Research Unit, Department of Biology, University of York, Wentworth Way, York, UK
| | - F M Frame
- YCR Cancer Research Unit, Department of Biology, University of York, Wentworth Way, York, UK
| | - P A Berry
- YCR Cancer Research Unit, Department of Biology, University of York, Wentworth Way, York, UK
| | - M G Lawrence
- Prostate Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - M J Stower
- York District Hospital, Wigginton Road, City Centre, York, UK
| | - M S Simms
- 1] Castle Hill Hospital, Castle Rd, Cottingham, East Yorkshire, UK [2] Hull York Medical School, University of Hull, Hull, UK
| | - V M Mann
- 1] Castle Hill Hospital, Castle Rd, Cottingham, East Yorkshire, UK [2] Hull York Medical School, University of Hull, Hull, UK
| | - A T Collins
- YCR Cancer Research Unit, Department of Biology, University of York, Wentworth Way, York, UK
| | - G P Risbridger
- Prostate Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - N J Maitland
- YCR Cancer Research Unit, Department of Biology, University of York, Wentworth Way, York, UK
| |
Collapse
|
29
|
The molecular basis for ethnic variation and histological subtype differences in prostate cancer. SCIENCE CHINA-LIFE SCIENCES 2013; 56:780-7. [PMID: 23852643 PMCID: PMC4078990 DOI: 10.1007/s11427-013-4522-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 07/01/2013] [Indexed: 01/04/2023]
Abstract
Prostate cancer is a common malignancy among men in Western countries. Recently the morbidity and mortality of prostate cancer increase dramatically in several oriental countries including China. Rapidly evolving technology in molecular biology such as high-throughput sequencing and integrative analysis of genomic and transcriptomic landscapes have enabled the identification of key oncogenic events for prostate cancer initiation, progression and resistance to hormonal therapy. These surging data of prostate cancer genome also provide insights on ethnic variation and the differences in histological subtype of this disease. In this review, differences in the incidence of prostate cancer and the prevalence of main genetic alterations between Asian and Western populations are discussed. We also review the recent findings on the mechanisms underlying neuroendocrine differentiation of prostate cancer and the development of small cell neuroendocrine carcinoma after androgen deprivation therapy.
Collapse
|
30
|
Mouse prostate epithelial luminal cells lineage originate in the basal layer where the primitive stem/early progenitor cells reside: implications for identifying prostate cancer stem cells. BIOMED RESEARCH INTERNATIONAL 2013; 2013:913179. [PMID: 23819124 PMCID: PMC3683430 DOI: 10.1155/2013/913179] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 05/03/2013] [Indexed: 11/18/2022]
Abstract
Prostate stem cells are thought to be responsible for generation of all prostate epithelial cells and for tissue maintenance. The lineage relationship between basal and luminal cells in the prostate is not well clarified. We developed a mouse model to trace cell fate and a mouse model with a slowly cycling cell label to provide insight into this question. The results obtained indicate that putative mouse prostate stem cells are likely to reside in the basal layer.
Collapse
|
31
|
Lineage analysis of basal epithelial cells reveals their unexpected plasticity and supports a cell-of-origin model for prostate cancer heterogeneity. Nat Cell Biol 2013; 15:274-83. [PMID: 23434823 PMCID: PMC3743266 DOI: 10.1038/ncb2697] [Citation(s) in RCA: 252] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 01/21/2013] [Indexed: 12/24/2022]
Abstract
A key issue in cancer biology is whether oncogenic transformation of different cell types of origin within an adult tissue gives rise to distinct tumour subtypes that differ in their prognosis and/or treatment response. We now show that initiation of prostate tumours in basal or luminal epithelial cells in mouse models results in tumours with distinct molecular signatures that are predictive of human patient outcomes. Furthermore, our analysis of untransformed basal cells reveals an unexpected assay dependence of their stem cell properties in sphere formation and transplantation assays versus genetic lineage tracing during prostate regeneration and adult tissue homeostasis. Although oncogenic transformation of basal cells gives rise to tumours with luminal phenotypes, cross-species bioinformatic analyses indicate that tumours of luminal origin are more aggressive than tumours of basal origin, and identify a molecular signature associated with patient outcome. Our results reveal the inherent plasticity of basal cells, and support a model in which different cells of origin generate distinct molecular subtypes of prostate cancer.
Collapse
|
32
|
TROP2 expression and its correlation with tumor proliferation and angiogenesis in human gliomas. Neurol Sci 2013; 34:1745-50. [PMID: 23397225 DOI: 10.1007/s10072-013-1326-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 01/09/2013] [Indexed: 01/01/2023]
Abstract
Trophoblast cell surface antigen 2 (TROP2) is a transmembrane glycoprotein which is associated with tumor development and progression in a variety of epithelial carcinomas, while its expression and role in gliomas have not been considered. The aim of the study was to investigate TROP2 expression in malignant gliomas with different World Health Organization (WHO) classification and its correlation with tumor proliferation and angiogenesis. Immuohistochemistry was used to determine TROP2 and Ki-67 expression and microvessel density (MVD) in tumor specimens and normal brain tissues from 69 glioma patients and the relationship between TROP2 and Ki-67 and MVD was investigated. Immunohistochemistry results showed that the TROP2 expression was found in 59 (85.5 %) of the 69 tumor specimens, but no expression in normal brain tissues. Furthermore, TROP2 expression is significantly higher in WHO grade III (P = 0.025) and WHO grade IV (P = 0.011) gliomas than in WHO grade II gliomas. TROP2 expression correlates with Ki-67 (r = 0.676, P = 0.012) and MVD (r = 0.365, P = 0.035), but not with gender or age in human gliomas. These results suggested that the TROP2 correlated with malignancy, proliferation and angiogenesis in human gliomas. This is the first study describing TROP2 expression in gliomas and its proliferation and angiogenesis-related characteristic may serve as a potential therapeutic target for glioma treatment.
Collapse
|
33
|
Prins GS, Hu WY. Prostate Stem Cells, Hormones, and Development. STEM CELLS AND PROSTATE CANCER 2013:1-20. [DOI: 10.1007/978-1-4614-6498-3_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
34
|
Shah M, Allegrucci C. Stem cell plasticity in development and cancer: epigenetic origin of cancer stem cells. Subcell Biochem 2013; 61:545-65. [PMID: 23150267 DOI: 10.1007/978-94-007-4525-4_24] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Stem cells are unique cells that can self-renew and differentiate into many cell types. Plasticity is a fundamental characteristic of stem cells and it is regulated by reversible epigenetic modifications. Although gene-restriction programs are established during embryonic development when cell lineages are formed, stem cells retain a degree of flexibility that is essential for tissue regeneration. For instance, quiescent adult stem cells can be induced to proliferate and trans-differentiate in response to injury. The same degree of plasticity is observed in cancer, where cancer cells with stem cell characteristics (or cancer stem cells) are formed by transformation of normal stem cells or de-differentiation of somatic cells. Reprogramming experiments with normal somatic cells and cancer cells show that epigenetic landscapes are more plastic than originally thought and that their manipulation can induce changes in cell fate. Our knowledge of stem cell function is still limited and only by understanding the mechanisms regulating developmental potential together with the definition of epigenetic maps of normal and diseased tissues we can reveal the true extent of their plasticity. In return, the control of plastic epigenetic programs in stem cells will allow us to develop effective treatments for degenerative diseases and cancer.
Collapse
Affiliation(s)
- Mansi Shah
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, LE12 5RD, Loughborough, Leicestershire, UK
| | | |
Collapse
|
35
|
Abstract
Men with advanced prostate cancer are typically treated with hormonal therapy, which leads to tumour shrinkage. However, tumours relapse and develop into the lethal form of the disease, termed castration-resistant prostate cancer (CRPC). Two distinct, but not mutually exclusive, models have been proposed in the literature to describe the onset of CRPC: adaptation and selection. Although some studies indicate that tumour cells acquire new alterations that enable them to survive in the castrated state (adaptation), other research points to the outgrowth of rare, pre-existing cells capable of surviving hormonal therapy (selection). Targeting the cells that survive hormonal therapy--by either adaptation or selection--is necessary to prevent the development of CRPC. Current research is focused on not only understanding the cellular mechanisms of CRPC, but also defining critical pathways that can be targeted with combinatorial therapies in castration-resistant cancer cells.
Collapse
|
36
|
Germann M, Wetterwald A, Guzmán-Ramirez N, van der Pluijm G, Culig Z, Cecchini MG, Williams ED, Thalmann GN. Stem-like cells with luminal progenitor phenotype survive castration in human prostate cancer. Stem Cells 2012; 30:1076-86. [PMID: 22438320 DOI: 10.1002/stem.1087] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Castration is the standard therapy for advanced prostate cancer (PC). Although this treatment is initially effective, tumors invariably relapse as incurable, castration-resistant PC (CRPC). Adaptation of androgen-dependent PC cells to an androgen-depleted environment or selection of pre-existing, CRPC cells have been proposed as mechanisms of CRPC development. Stem cell (SC)-like PC cells have been implicated not only as tumor initiating/maintaining in PC but also as tumor-reinitiating cells in CRPC. Recently, castration-resistant cells expressing the NK3 homeobox 1 (Nkx3-1) (CARNs), the other luminal markers cytokeratin 18 (CK18) and androgen receptor (AR), and possessing SC properties, have been found in castrated mouse prostate and proposed as the cell-of-origin of CRPC. However, the human counterpart of CARNs has not been identified yet. Here, we demonstrate that in the human PC xenograft BM18, pre-existing SC-like and neuroendocrine (NE) PC cells are selected by castration and survive as totally quiescent. SC-like BM18 cells, displaying the SC markers aldehyde dehydrogenase 1A1 or NANOG, coexpress the luminal markers NKX3-1, CK18, and a low level of AR (AR(low)) but not basal or NE markers. These CR luminal SC-like cells, but not NE cells, reinitiate BM18 tumor growth after androgen replacement. The AR(low) seems to mediate directly both castration survival and tumor reinitiation. This study identifies for the first time in human PC SC-/CARN-like cells that may represent the cell-of-origin of tumor reinitiation as CRPC. This finding will be fundamental for refining the hierarchy among human PC cancer cells and may have important clinical implications.
Collapse
Affiliation(s)
- Markus Germann
- Department of Urology, University of Bern, Bern, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Chen S, Principessa L, Isaacs JT. Human prostate cancer initiating cells isolated directly from localized cancer do not form prostaspheres in primary culture. Prostate 2012; 72:1478-89. [PMID: 22396312 PMCID: PMC3578386 DOI: 10.1002/pros.22503] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 01/25/2012] [Indexed: 12/13/2022]
Abstract
BACKGROUND Recent experimental studies suggest that hierarchical expansion from a minor population of cancer cells with an unlimited self-renewal capacity, termed cancer initiating cells (CICs), drives both lethality and heterogeneity of prostate cancer. Human prostate CICs have been established from only two primary prostate cancer patients, with the remaining established CIC lines being derived from metastatic sites from <10 patients. This suggests that the established CIC lines are significant "outliers" and may not be representative of the prostate CICs seen clinically. Thus, there is an urgent need to develop new approaches to achieve the "routine" establishment of CIC containing lines, particularly derived from primary prostate cancers. METHODS In the present studies, we confirmed that in serum free, high Ca(2+) (i.e., DMEN: F12) growth factor defined (GFD) media plus androgen, a large (n = 10) series of established human prostate cancer cell lines derived from both localized and metastatic sites characteristically self-associate in suspension and grow as unattached spheroids, termed prostaspheres which contain CICs based upon their self-renewal in vitro and tumorigenicity in vivo. RESULTS Unfortunately, however, while dissociated single cells from human primary prostate cancer tissues are viable, contain CICs as documented by their ability to take and proliferate as xenografts, and produce prostaspheres when plated with serum free, high Ca(2+) /GFD-media plus androgen onto standard tissue culture flask, these prostasphere do not contain CICs. CONCLUSION The development of reproducibly methods to culture CICs isolated directly from localized cancers is still an urgent unmeet need of the prostate cancer research community.
Collapse
Affiliation(s)
- Shuangling Chen
- Chemical Therapeutic Program, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland 21231, USA.
| | | | | |
Collapse
|
38
|
Rane JK, Pellacani D, Maitland NJ. Advanced prostate cancer--a case for adjuvant differentiation therapy. Nat Rev Urol 2012; 9:595-602. [PMID: 22890299 DOI: 10.1038/nrurol.2012.157] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The development of novel therapies such as abiraterone acetate and sipuleucel-T has improved the outlook for patients with advanced-stage and castration-resistant prostate cancer. However, the beneficial effects of these drugs are only measured in months. Moreover, the National Institute for Health and Clinical Excellence in the UK had ruled that the use of abiraterone acetate was not cost-effective before cost revision by the manufacturers. The FDA statement asserting that the use of 5α-reductase inhibitors for prostate cancer chemoprevention could increase the risk of developing high-grade prostate cancer also indirectly questions the value of direct androgen response manipulation for long-term benefit. These reports illustrate the need for a fresh and comprehensive analysis of advanced prostate cancer pathology to promote the next generation of effective adjuvant therapies. One such avenue is that of differentiation therapy, which seeks to promote the differentiation of cancer stem cells into a phenotype more sensitive to anticancer therapy than their parents. Using differentiation therapy with current antiandrogen therapies should augment our armoury of treatment for the management of advanced prostate cancer.
Collapse
Affiliation(s)
- Jayant K Rane
- Yorkshire Cancer Research Unit, Department of Biology (Area 13), University of York, York YO10 5DD, UK
| | | | | |
Collapse
|
39
|
Jiao J, Hindoyan A, Wang S, Tran LM, Goldstein AS, Lawson D, Chen D, Li Y, Guo C, Zhang B, Fazli L, Gleave M, Witte ON, Garraway IP, Wu H. Identification of CD166 as a surface marker for enriching prostate stem/progenitor and cancer initiating cells. PLoS One 2012; 7:e42564. [PMID: 22880034 PMCID: PMC3411798 DOI: 10.1371/journal.pone.0042564] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 07/09/2012] [Indexed: 12/29/2022] Open
Abstract
New therapies for late stage and castration resistant prostate cancer (CRPC) depend on defining unique properties and pathways of cell sub-populations capable of sustaining the net growth of the cancer. One of the best enrichment schemes for isolating the putative stem/progenitor cell from the murine prostate gland is Lin-;Sca1+;CD49fhi (LSChi), which results in a more than 10-fold enrichment for in vitro sphere-forming activity. We have shown previously that the LSChi subpopulation is both necessary and sufficient for cancer initiation in the Pten-null prostate cancer model. To further improve this enrichment scheme, we searched for cell surface molecules upregulated upon castration of murine prostate and identified CD166 as a candidate gene. CD166 encodes a cell surface molecule that can further enrich sphere-forming activity of WT LSChi and Pten null LSChi. Importantly, CD166 could enrich sphere-forming ability of benign primary human prostate cells in vitro and induce the formation of tubule-like structures in vivo. CD166 expression is upregulated in human prostate cancers, especially CRPC samples. Although genetic deletion of murine CD166 in the Pten null prostate cancer model does not interfere with sphere formation or block prostate cancer progression and CRPC development, the presence of CD166 on prostate stem/progenitors and castration resistant sub-populations suggest that it is a cell surface molecule with the potential for targeted delivery of human prostate cancer therapeutics.
Collapse
Affiliation(s)
- Jing Jiao
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
- Institute for Molecular Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Antreas Hindoyan
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
- Institute for Molecular Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Shunyou Wang
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Linh M. Tran
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
- Institute for Molecular Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Andrew S. Goldstein
- Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Microbiology and Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Devon Lawson
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Donghui Chen
- Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Microbiology and Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Yunfeng Li
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
- Institute for Molecular Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Changyong Guo
- Department of Urology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Baohui Zhang
- Department of Urology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Ladan Fazli
- The Vancouver Prostate Centre and University of British Columbia, Vancouver, British Columbia, Canada
| | - Martin Gleave
- The Vancouver Prostate Centre and University of British Columbia, Vancouver, British Columbia, Canada
| | - Owen N. Witte
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
- Institute for Molecular Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Microbiology and Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, California, United States of America
| | - Isla P. Garraway
- Department of Urology, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail: (IG); (HW)
| | - Hong Wu
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
- Institute for Molecular Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail: (IG); (HW)
| |
Collapse
|
40
|
Casey OM, Fang L, Hynes PG, Abou-Kheir WG, Martin PL, Tillman HS, Petrovics G, Awwad HO, Ward Y, Lake R, Zhang L, Kelly K. TMPRSS2- driven ERG expression in vivo increases self-renewal and maintains expression in a castration resistant subpopulation. PLoS One 2012; 7:e41668. [PMID: 22860005 PMCID: PMC3408501 DOI: 10.1371/journal.pone.0041668] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 06/24/2012] [Indexed: 12/26/2022] Open
Abstract
Genomic rearrangements commonly occur in many types of cancers and often initiate or alter the progression of disease. Here we describe an in vivo mouse model that recapitulates the most frequent rearrangement in prostate cancer, the fusion of the promoter region of TMPRSS2 with the coding region of the transcription factor, ERG. A recombinant bacterial artificial chromosome including an extended TMPRSS2 promoter driving genomic ERG was constructed and used for transgenesis in mice. TMPRSS2-ERG expression was evaluated in tissue sections and FACS-fractionated prostate cell populations. In addition to the anticipated expression in luminal cells, TMPRSS2-ERG was similarly expressed in the Sca-1hi/EpCAM+ basal/progenitor fraction, where expanded numbers of clonogenic self-renewing progenitors were found, as assayed by in vitro sphere formation. These clonogenic cells increased intrinsic self renewal in subsequent generations. In addition, ERG dependent self-renewal and invasion in vitro was demonstrated in prostate cell lines derived from the model. Clinical studies have suggested that the TMPRSS2-ERG translocation occurs early in prostate cancer development. In the model described here, the presence of the TMPRSS2-ERG fusion alone was not transforming but synergized with heterozygous Pten deletion to promote PIN. Taken together, these data suggest that one function of TMPRSS2-ERG is the expansion of self-renewing cells, which may serve as targets for subsequent mutations. Primary prostate epithelial cells demonstrated increased post transcriptional turnover of ERG compared to the TMPRSS2-ERG positive VCaP cell line, originally isolated from a prostate cancer metastasis. Finally, we determined that TMPRSS2-ERG expression occurred in both castration-sensitive and resistant prostate epithelial subpopulations, suggesting the existence of androgen-independent mechanisms of TMPRSS2 expression in prostate epithelium.
Collapse
Affiliation(s)
- Orla M. Casey
- Cell and Cancer Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Lei Fang
- Cell and Cancer Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Paul G. Hynes
- Cell and Cancer Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Wassim G. Abou-Kheir
- Cell and Cancer Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Philip L. Martin
- Cell and Cancer Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Heather S. Tillman
- Cell and Cancer Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Gyorgy Petrovics
- Department of Surgery, Center for Prostate Disease Research, Uniformed Services University of the Health Sciences, Rockville, Maryland, United States of America
| | - Hibah O. Awwad
- Cell and Cancer Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yvona Ward
- Cell and Cancer Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ross Lake
- Cell and Cancer Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Luhua Zhang
- Cell and Cancer Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kathleen Kelly
- Cell and Cancer Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
41
|
Albino D, Longoni N, Curti L, Mello-Grand M, Pinton S, Civenni G, Thalmann G, D'Ambrosio G, Sarti M, Sessa F, Chiorino G, Catapano CV, Carbone GM. ESE3/EHF controls epithelial cell differentiation and its loss leads to prostate tumors with mesenchymal and stem-like features. Cancer Res 2012; 72:2889-900. [PMID: 22505649 DOI: 10.1158/0008-5472.can-12-0212] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cancer stem cells (CSC) play a significant role in tumor progression, disease recurrence, and treatment failure. Here, we show that the endogenously expressed ETS transcription factor ESE3/EHF controls prostate epithelial cell differentiation and stem-like potential. We found that loss of ESE3/EHF induced epithelial-to-mesenchymal transition (EMT), stem-like features, and tumor-initiating and metastatic properties in prostate epithelial cells, and reexpression of ESE3/EHF inhibited the stem-like properties and tumorigenic potential of prostate cancer cells. Mechanistically, ESE3/EHF repressed the expression of key EMT and CSC genes, including TWIST1, ZEB2, BMI1, and POU5F1. Analysis of human tissue microarrays showed that reduced ESE3/EHF expression is an early event in tumorigenesis, frequently occurring independently of other ETS gene alterations. Additional analyses linked loss of ESE3/EHF expression to a distinct group of prostate tumors with distinctive molecular and biologic characteristics, including increased expression of EMT and CSC genes. Low ESE3/EHF expression was also associated with increased biochemical recurrence of prostate cancer and reduced overall survival after prostatectomy. Collectively, our findings define a key role for ESE3/EHF in the development of a subset of prostate tumors and highlight the clinical importance of identifying molecularly defined tumor subgroups.
Collapse
Affiliation(s)
- Domenico Albino
- Institute of Oncology Research and Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Trerotola M, Cantanelli P, Guerra E, Tripaldi R, Aloisi AL, Bonasera V, Lattanzio R, Lange RD, Weidle UH, Piantelli M, Alberti S. Upregulation of Trop-2 quantitatively stimulates human cancer growth. Oncogene 2012; 32:222-33. [DOI: 10.1038/onc.2012.36] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
43
|
Ting MC, Liao CP, Yan C, Jia L, Groshen S, Frenkel B, Roy-Burman P, Coetzee GA, Maxson R. An enhancer from the 8q24 prostate cancer risk region is sufficient to direct reporter gene expression to a subset of prostate stem-like epithelial cells in transgenic mice. Dis Model Mech 2012; 5:366-74. [PMID: 22279083 PMCID: PMC3339830 DOI: 10.1242/dmm.008458] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Regions in the 8q24 gene desert contribute significantly to the risk of prostate cancer and other adult cancers. This region contains several DNA regions with enhancer activity in cultured cells. One such segment, histone acetylation peak 10 (AcP10), contains a risk single nucleotide polymorphism (SNP) that is significantly associated with the pathogenesis of colorectal, prostate and other cancers. The mechanism by which AcP10 influences cancer risk remains unknown. Here we show that AcP10 contains a sequence that is highly conserved across terrestrial vertebrates and is capable in transgenic mice of directing reporter gene expression to a subset of prostate lumenal epithelial cells. These cells include a small population of Nkx3.1-positive cells that persist even after androgen ablation. Castration-resistant Nkx3.1-positive (CARN) cells were shown by others to function both as stem cells and cells of origin of prostate cancer. Our results thus provide a mechanism by which AcP10 could influence prostate cancer risk.
Collapse
Affiliation(s)
- Man-Chun Ting
- Department of Biochemistry and Molecular Biology, Norris Cancer Center, USC Keck School of Medicine, 1441 Eastlake Avenue, Los Angeles, CA 90089, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Romańska-Knight H, Abel P. Prostate cancer stem cells. Cent European J Urol 2011; 64:196-200. [PMID: 24578892 PMCID: PMC3921735 DOI: 10.5173/ceju.2011.04.art1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 08/20/2011] [Accepted: 08/23/2011] [Indexed: 01/01/2023] Open
Abstract
The Cancer Stem Cells (CSCs) hypothesis postulates that a minute subpopulation of cells is accountable for cancer initiation and progression. Unlike the stochastic and clonal evolution models, the CSC theory proposes that tumours are hierarchical and only the rare subset of cells at the top of the 'stemness hierarchy tree’ are adequately ‘equipped’ biologically to initiate and drive tumourigenesis. CSCs have been implicated in various solid malignancies including prostate cancer (PCa), where their existence seems to provide an explanation for the failure of tumour eradicating therapies. As CSCs are thought to share many properties with normal stem cells, understanding normal stem cells should shed light on the pathomechanisms of cancer and, importantly, on potential therapeutic interventions. The purpose of this paper is to review the existing data on CSCs in PCa, their putative phenotypic markers, potential role in tumour biology and relevance to therapy.
Collapse
Affiliation(s)
- Hanna Romańska-Knight
- Department of Molecular Pathology and Neuropathology, Medical University of Łódź, Poland
| | - Paul Abel
- Department of Surgery and Cancer, Imperial College London, Hammersmith Campus, London, Great Britain
| |
Collapse
|
45
|
Abou-Kheir W, Hynes PG, Martin P, Yin JJ, Liu YN, Seng V, Lake R, Spurrier J, Kelly K. Self-renewing Pten-/- TP53-/- protospheres produce metastatic adenocarcinoma cell lines with multipotent progenitor activity. PLoS One 2011; 6:e26112. [PMID: 22022528 PMCID: PMC3191168 DOI: 10.1371/journal.pone.0026112] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 09/19/2011] [Indexed: 12/15/2022] Open
Abstract
Prostate cancers of luminal adenocarcinoma histology display a range of clinical behaviors. Although most prostate cancers are slow-growing and indolent, a proportion is aggressive, developing metastasis and resistance to androgen deprivation treatment. One hypothesis is that a portion of aggressive cancers initiate from stem-like, androgen-independent tumor-propagating cells. Here we demonstrate the in vitro creation of a mouse cell line, selected for growth as self-renewing stem/progenitor cells, which manifests many in vivo properties of aggressive prostate cancer. Normal mouse prostate epithelium containing floxed Pten and TP53 alleles was subjected to CRE-mediated deletion in vitro followed by serial propagation as protospheres. A polyclonal cell line was established from dissociated protospheres and subsequently a clonal daughter line was derived. Both lines demonstrate a mature luminal phenotype in vitro. The established lines contain a stable minor population of progenitor cells with protosphere-forming ability and multi-lineage differentiation capacity. Both lines formed orthotopic adenocarcinoma tumors with metastatic potential to lung. Intracardiac inoculation resulted in brain and lung metastasis, while intra-tibial injection induced osteoblastic bone formation, recapitulating the bone metastatic phenotype of human prostate cancer. The cells showed androgen receptor dependent growth in vitro. Importantly, in vivo, the deprivation of androgens from established orthotopic tumors resulted in tumor regression and eventually castration-resistant growth. These data suggest that transformed prostate progenitor cells preferentially differentiate toward luminal cells and recapitulate many characteristics of the human disease.
Collapse
Affiliation(s)
- Wassim Abou-Kheir
- Cell and Cancer Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Paul G. Hynes
- Cell and Cancer Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Philip Martin
- Cell and Cancer Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Juan Juan Yin
- Cell and Cancer Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yen-Nien Liu
- Cell and Cancer Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Victoria Seng
- Cell and Cancer Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ross Lake
- Cell and Cancer Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Joshua Spurrier
- Cell and Cancer Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kathleen Kelly
- Cell and Cancer Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
46
|
Pittoni P, Tripodo C, Piconese S, Mauri G, Parenza M, Rigoni A, Sangaletti S, Colombo MP. Mast cell targeting hampers prostate adenocarcinoma development but promotes the occurrence of highly malignant neuroendocrine cancers. Cancer Res 2011; 71:5987-97. [PMID: 21896641 DOI: 10.1158/0008-5472.can-11-1637] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mast cells (MC) are c-Kit-expressing cells, best known for their primary involvement in allergic reactions, but recently reappraised as important players in either cancer promotion or inhibition. Here, we assessed the role of MCs in prostate tumor development. In prostate tumors from both tumor-prone transgenic adenocarcinoma of the mouse prostate (TRAMP) mice and human patients, MCs are specifically enriched and degranulated in areas of well-differentiated (WD) adenocarcinoma but not around poorly differentiated (PD) foci that coexist in the same tumors. We derived novel TRAMP tumor cell lines, representative of WD and PD variants, and through pharmacologic stabilization or genetic ablation of MCs in recipients mice, we showed that MCs promote WD adenocarcinoma growth but are dispensable for PD tumors. WD tumors rely on MCs for matrix metalloprotease 9 (MMP-9) provision, as reconstitution of MC-deficient mice with wild-type but not MMP-9(-/-) MCs was sufficient to promote their growth. In contrast, PD tumors are MMP-9 self-competent, consistently with epithelial-to-mesenchymal transition. Such a dual source of MMP-9 was confirmed in human tumors, suggesting that MCs could be a good target for early-stage prostate cancer. Interestingly, in testing whether MC targeting could block or delay tumorigenesis in tumor-prone TRAMP mice, we observed a high incidence of early and aggressive tumors, characterized by a neuroendocrine (NE) signature and c-Kit expression. Taken together, these data underscore the contribution of MCs in tumor progression and uncover a new, opposite role of MCs in protecting against the occurrence of aggressive NE variants in prostate cancer.
Collapse
Affiliation(s)
- Paola Pittoni
- Molecular Immunology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Experimental models for the development of new medical treatments in prostate cancer. Eur J Cancer 2011; 47 Suppl 3:S200-14. [DOI: 10.1016/s0959-8049(11)70166-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
48
|
Saar M, Kamradt J, Jung V, Stöckle M, Unteregger G. [From tumor tissue via primary cultures to xenograft models: a functional approach in prostate cancer research]. Urologe A 2011; 50:961-7. [PMID: 21728008 DOI: 10.1007/s00120-011-2630-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The clinical course of prostate cancer, the most common cancer in men, is very variable. Despite intense research activities over the years and besides histopathological criteria, prognostic markers that reliably predict tumor behavior and the necessity for treatment are still missing. A likely explanation for this fact is the lack of good tumor models, mimicking the in vivo situation. These models are not only essential for a better understanding of the pathogenesis of prostate cancer but also play an important role in the development of new therapeutic strategies. Since results of permanent cell culture experiments reflect only in part real tumor behavior and primary cultures from patient material cannot be grown indefinitely, novel approaches need to be developed to achieve reliable and clinically relevant prostate cancer research.In this work the development of several approaches for culturing primary prostate cancer tissue is illustrated and a forecast of future research plans utilizing xenograft models in mice is made.
Collapse
Affiliation(s)
- M Saar
- Klinik für Urologie und Kinderurologie , Universitätsklinikum des Saarlandes, Kirrberger Straße 1, 66421 Homburg/Saar, Deutschland
| | | | | | | | | |
Collapse
|
49
|
Abstract
The lethal consequences of prostate cancer are related to its metastasis to other organ sites. Epithelial-to-mesenchymal transition (EMT) has received considerable attention as a conceptual paradigm to explain invasive and metastatic behavior during cancer progression. EMT is a normal physiologic process by which cells of epithelial origin convert into cells bearing mesenchymal characteristics. It has been proposed that EMT is co-opted by cancer cells during their metastatic dissemination from a primary organ to secondary sites, but the extent to which this recapitulates physiologic EMT remains uncertain. However, there is ample evidence that EMT-like states occur in, and may contribute to, prostate cancer progression and metastasis, and so has become a very active area of research. Here we review this evidence and explore recent studies that have aimed to better define the role and mechanisms of EMT in prostate cancer. While definitive evidence of something akin to physiologic EMT is still lacking in human prostate cancer, this area of research has nonetheless provided new avenues of investigation into the longstanding puzzles of metastasis, therapeutic resistance, and prognostic biomarkers.
Collapse
|
50
|
Abstract
While cancer treatment modalities are gradually improving due to increased knowledge about tumor heterogeneity and the cancer stem cell hypothesis, there remains a disconnect between tumor detection and mortality rates. The increasing knowledge of stem cell biology and its contribution to cancer progression illuminates the potential for chemopreventative regimens that effectively target the tissue-specific stem cell. Several signaling pathways have emerged that are critical for regulating stem cell self-renewal and multilineage differentiation over a range of tissue types, including Wnt, Hedgehog, and Notch signaling. Dysregulation of these genes can lead to cancer, which supports the cancer stem cell hypothesis. Several known chemopreventative agents have recently been shown to impact these and other pathways in the stem cell population, suggesting that their efficacies may be attributed in part to maintaining homeostasis of tissue-specific stem cells. Further understanding of the mechanisms of action of chemopreventative agents and of stem cell biology will generate better chemoprevention regimens that can be recommended especially to those in high-risk populations.
Collapse
Affiliation(s)
- Sophia L Maund
- Department of Cancer Biology, Wake Forest University School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC 27157, USA
| | | |
Collapse
|