1
|
Amin N, Singh VK, Kannaujiya VK. Mycosporine-Like Amino Acids as a Potential Inhibitor of Tyrosinase-Related Protein 1: Computational Screening, Pharmacokinetics, and Molecular Dynamics Simulation. Mol Biotechnol 2025; 67:1674-1694. [PMID: 38652428 DOI: 10.1007/s12033-024-01153-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/24/2024] [Indexed: 04/25/2024]
Abstract
Melanin is the major pigment responsible for the coloring of mammalian skin, hair, and eyes to defend against ultraviolet radiation. However, excessive melanin production has resulted in numerous types of hyperpigmentation disorders. Tyrosinase-related protein 1 (TYRP1) is a transmembrane glycoprotein enzyme found in many organisms, including humans, that plays an important role in melanogenesis. Thus, controlling the enzyme activity of TYRP1 with tyrosinase inhibitors is a vital step in the treatment of hyperpigmentation problems in humans. In the present investigation, virtual screening, pharmacokinetics, drug docking, and molecular dynamics (MD) simulation were used to find the most potent drug as an inhibitor of TYRP1 to effectively treat hyperpigmentation disorder. The 3D structure of TYRP1 was retrieved from the Protein Data Bank (PDB) database (PDB ID: 5M8M) and validated by the Ramachandran plot. Pharmacokinetics and drug-likeness showed that mycosporine 2 glycine (M2G) and shinorine (SHI) were the best compounds over other ligands in the same (P-1) structural pose. However, MD simulations of the M2G showed the highest CDOCKER interaction energy (-45.182 kcal/mol) and binding affinity (-65.0529 kcal/mol) as compared to SHI and reference drugs. The molecular binding modes RMSD and RMSF plots have exhibited more relevance to the M2G ligand in comparison to other drug ligands. The bioactivity and ligand efficiency profiles revealed that M2G is the most effective compound as a TYRP1 inhibitor. Thus, M2G could be used as a most effective drug for developing valuable sunscreen products to cure hyperpigmentation-related diseases.
Collapse
Affiliation(s)
- Nasreen Amin
- Department of Botany, MMV, Banaras Hindu University, Varanasi, 221005, India
| | - Vinay K Singh
- Centre for Bioinformatics, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Vinod K Kannaujiya
- Department of Botany, MMV, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
2
|
Deshmukh RS, Sanadi RM, Tepan M. Estimation of Tyrosinase-Related Protein 1 (TRP-1) Gene Expression in Human Gingiva and Its Correlation With Gingival Melanin Hyperpigmentation: A Pilot Study. Cureus 2025; 17:e76843. [PMID: 39897280 PMCID: PMC11787718 DOI: 10.7759/cureus.76843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/02/2025] [Indexed: 02/04/2025] Open
Abstract
Background Melanin synthesis in humans relies on the activity of the tyrosinase enzyme, along with tyrosinase-related proteins 1 and 2 (TRP-1 and TRP-2). TRP-1 functions as a 5,6-dihydroxyindole-2-carboxylic acid oxidase and plays a crucial role in activating and stabilizing tyrosinase, as well as in melanosome synthesis. However, TRP-1 gene expression in human gingiva has not been explored. Therefore, this study aimed to estimate TRP-1 gene expression in human gingiva. Aim The aim of the study was to estimate TRP-1 gene expression in human gingiva and examine its correlation with the degree of gingival melanin hyperpigmentation. Materials and methods Gingival tissue samples were collected from individuals undergoing gingival depigmentation surgery due to concerns about blackish-looking gums. The gingival epithelial tissue was excised under local anesthesia using a surgical scalpel blade. The excised tissue, including a thin layer of underlying connective tissue, was sent to the laboratory for TRP-1 gene expression analysis using the RT-PCR technique. Results The levels of TRP-1 gene expression in human gingiva ranged from 0.459 to 0.973. TRP-1 gene expression in the gingival tissues showed a correlation with the degree of gingival melanin hyperpigmentation, with lower expression levels observed at sites with mild to moderate pigmentation and higher levels at sites with severe pigmentation. Conclusions TRP-1 gene expression in human gingiva was positively correlated with the degree of gingival melanin hyperpigmentation, suggesting its potential role in the regulation of gingival melanin pigmentation.
Collapse
Affiliation(s)
- Revati S Deshmukh
- Oral Pathology and Microbiology, Bharati Vidyapeeth Dental College and Hospital, Pune, IND
| | - Rizwan M Sanadi
- Periodontology and Oral Implantology, Dr. G.D. Pol Foundation's Y.M.T. Dental College and Hospital, Navi Mumbai, IND
| | - Meenal Tepan
- Oral Medicine and Radiology, Bharati Vidyapeeth Dental College and Hospital, Pune, IND
| |
Collapse
|
3
|
Orlandi M, Porcellato I, Sforna M, Lo Giudice A, Giglia G, Mechelli L, Brachelente C. SOX-10 and TRP-1 expression in feline ocular and nonocular melanomas. Vet Pathol 2024; 61:712-720. [PMID: 38613415 DOI: 10.1177/03009858241244850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2024]
Abstract
In felines, ocular and nonocular melanomas are uncommon tumors that represent a diagnostic challenge for pathologists, especially when amelanotic. To date, the immunohistochemical diagnostic panel in cats is based on specific melanocytic markers (Melan-A and PNL2) and a nonspecific but sensitive marker (S100). In human medicine, SOX-10 is reported to be a sensitive antibody for the detection of melanoma micrometastasis in the lymph node. TRP-1, an enzyme involved in melanogenesis, has recently been used in humans and dogs as a specific melanocyte marker. The aim of this study was to evaluate the cross-reactivity and the expression of SOX-10 and TRP-1 antibodies in feline normal tissue and melanocytic tumors. Thirty-one cases of ocular, cutaneous, and oral melanomas were retrospectively evaluated and confirmed by histopathological examination and by immunolabeling with Melan-A and/or PNL2. SOX-10 nuclear expression in normal tissues was localized in epidermal, subepidermal, hair bulb, and iridal stromal melanocytes and dermal nerves. In melanomas, nuclear expression of SOX-10 was detected in ocular (11/12; 92%), oral (6/7; 86%), and cutaneous sites (12/12; 100%). TRP-1 cytoplasmic immunolabeling in normal tissue was observed in epidermal and bulbar melanocytes and in the lining pigmented epithelium of the iris and in its stroma. Its expression was positively correlated to the degree of pigmentation in the tumor and was observed in 75% of ocular (9/12), 43% of oral (3/7), and 33% of cutaneous melanomas (4/12). This study demonstrated the cross-reactivity of SOX-10 and TRP-1 antibodies in feline non-neoplastic melanocytes and their expression in ocular and nonocular melanomas.
Collapse
|
4
|
Lara-Vega I. Upgrading Melanoma Treatment: Promising Immunotherapies Combinations
in the Preclinical Mouse Model. CURRENT CANCER THERAPY REVIEWS 2024; 20:489-509. [DOI: 10.2174/0115733947263244231002042219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/27/2023] [Accepted: 08/25/2023] [Indexed: 01/03/2025]
Abstract
Background:
Melanoma, known for its high metastatic potential, does not respond well to
existing treatments in advanced stages. As a solution, immunotherapy-based treatments, including
anti-PD-1/L1 and anti-CTLA-4, have been developed and evaluated in preclinical mouse models to
overcome resistance. Although these treatments display the potential to suppress tumor growth, there
remains a crucial requirement for a thorough assessment of long-term efficacy in preventing metastasis
or recurrence and improving survival rates.
Methods:
From 2016 onwards, a thorough examination of combined immunotherapies for the treatment
of cutaneous melanoma in preclinical mouse models was conducted. The search was conducted
using MeSH Terms algorithms in PubMed®, resulting in the identification of forty-five studies that
met the rigorous inclusion criteria for screening.
Results:
The C57 mouse model bearing B16-melanoma has been widely utilized to assess the efficacy
of immunotherapies. The combination of therapies has demonstrated a synergistic impact, leading
to potent antitumor activity. One extensively studied method for establishing metastatic models involves
the intravenous administration of malignant cells, with several combined therapies under investigation.
The primary focus of evaluation has been on combined immunotherapies utilizing PD-
1/L1 and CTLA-4 blockade, although alternative immunotherapies not involving PD-1/L1 and
CTLA-4 blockade have also been identified. Additionally, the review provides detailed treatment regimens
for each combined approach.
Conclusion:
The identification of techniques for generating simulated models of metastatic melanoma
and investigating various therapeutic combinations will greatly aid in evaluating the overall systemic
efficacy of immunotherapy. This will be especially valuable for conducting short-term preclinical
experiments that have the potential for clinical studies.
Collapse
Affiliation(s)
- Israel Lara-Vega
- National School of Biological Sciences, IPN. Av. Wilfrido Massieu s/n, Professional Unit Adolfo Lopez Mateos, Mexico
City, CP 07738, Mexico
| |
Collapse
|
5
|
Chen JM, Hernandez E, Frosina D, Ruh PA, Ariyan C, Busam KJ, Jungbluth AA. In Situ Protein Expression Analysis of Melanocyte Differentiation Antigen TRP1 (Tyrosinase-Related Protein-1). Am J Dermatopathol 2024; 46:563-571. [PMID: 39008470 DOI: 10.1097/dad.0000000000002772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
ABSTRACT Melanocyte differentiation antigens refer to molecules expressed in cells of melanocytic lineage such as gp100/PMEL, tyrosinase, and Melan-A. Corresponding antibodies such as HMB45, T311, and A103 have become key immunohistochemical tools in surgical pathology for the diagnosis of pigmented and related lesions. Little is known about tyrosinase-related protein 1 (TRP1), another melanocyte differentiation antigen, which is an enzymatic component of melanogenesis and known as the brown locus in mice. In this study, we tested several commercial reagents to TRP1 and identified one clone, EPR13063, which we further characterized by testing its specificity and usefulness for surgical pathology. Subsequently, we analyzed the expression of TRP1 in panels of normal tissues and tumors. TRP1 is regularly expressed in normal skin and in cutaneous nevi predominantly present in junctional and to a lesser extent in dermal nevocytes. In melanoma, TRP1 is present in 100% and 44% of primary and metastatic melanomas, respectively. TRP1 was absent in 5 desmoplastic melanomas but heterogeneously present in 9 of 11 PEComas/angiomyolipomas. No TRP1 was found in neoplasms of nonmelanocytic lineage. We demonstrate that EPR13063 is a valuable reagent for the analysis of TRP1 expression in archival surgical pathology material. The TRP1 expression pattern in melanocytic and related lesions appears to parallel other melanocyte differentiation antigens with a higher incidence in primary and a lower incidence in metastatic melanomas.
Collapse
|
6
|
Jangra S, Gulia H, Singh J, Dang AS, Giri SK, Singh G, Priya K, Kumar A. Chemical leukoderma: An insight of pathophysiology and contributing factors. Toxicol Ind Health 2024; 40:479-495. [PMID: 38814634 DOI: 10.1177/07482337241257273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Chemical leukoderma, or chemical-based vitiligo, is a dermal disease triggered by exposure to chemicals and characterized by the emergence of depigmentation or hypopigmentation of the skin. The etiology of this condition is associated with exposure to various chemical substances present in both occupational and non-occupational settings. The precise mechanism that underlies chemical leukoderma remains elusive and is believed to result from the demise of melanocytes, which are responsible for producing skin pigments. This condition has gained particular prominence in developing countries like India. An interesting connection between chemical leukoderma and vitiligo has been identified; studies suggest that exposure to many household chemicals, which are derivatives of phenols and catechol, may serve as a primary etiological factor for the condition. Similar to autoimmune diseases, its pathogenesis involves contributions from both genetic and environmental factors. Furthermore, over the last few decades, various studies have demonstrated that exposure to chemicals plays a crucial role in initiating and progressing chemical leukoderma, including cases stemming from occupational exposure.
Collapse
Affiliation(s)
- Soniya Jangra
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Heena Gulia
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Jagphool Singh
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Amita S Dang
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Shiv K Giri
- Department of Biotechnology, Maharaja Agrasen University, Solan, India
| | - Gulab Singh
- Department of Bioscience, School of Liberal Arts and Sciences, Mody University, Lakshmangarh, India
| | - Kanu Priya
- Department of Life Sciences, Sharda University, Greater Noida, India
| | - Anil Kumar
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
7
|
Chatzilakou E, Hu Y, Jiang N, Yetisen AK. Biosensors for melanoma skin cancer diagnostics. Biosens Bioelectron 2024; 250:116045. [PMID: 38301546 DOI: 10.1016/j.bios.2024.116045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/03/2024]
Abstract
Skin cancer is a critical global public health concern, with melanoma being the deadliest variant, correlated to 80% of skin cancer-related deaths and a remarkable propensity to metastasize. Despite notable progress in skin cancer prevention and diagnosis, the limitations of existing methods accentuate the demand for precise diagnostic tools. Biosensors have emerged as valuable clinical tools, enabling rapid and reliable point-of-care (POC) testing of skin cancer. This review offers insights into skin cancer development, highlights essential cutaneous melanoma biomarkers, and assesses the current landscape of biosensing technologies for diagnosis. The comprehensive analysis in this review underscores the transformative potential of biosensors in revolutionizing melanoma skin cancer diagnosis, emphasizing their critical role in advancing patient outcomes and healthcare efficiency. The increasing availability of these approaches supports direct diagnosis and aims to reduce the reliance on biopsies, enhancing POC diagnosis. Recent advancements in biosensors for skin cancer diagnosis hold great promise, with their integration into healthcare expected to enhance early detection accuracy and reliability, thereby mitigating socioeconomic disparities.
Collapse
Affiliation(s)
- Eleni Chatzilakou
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2BU, UK
| | - Yubing Hu
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2BU, UK.
| | - Nan Jiang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China; JinFeng Laboratory, Chongqing, 401329, China.
| | - Ali K Yetisen
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2BU, UK.
| |
Collapse
|
8
|
Spreafico A, Couselo EM, Irmisch A, Bessa J, Au-Yeung G, Bechter O, Svane IM, Sanmamed MF, Gambardella V, McKean M, Callahan M, Dummer R, Klein C, Umaña P, Justies N, Heil F, Fahrni L, Opolka-Hoffmann E, Waldhauer I, Bleul C, Staack RF, Karanikas V, Fowler S. Phase 1, first-in-human study of TYRP1-TCB (RO7293583), a novel TYRP1-targeting CD3 T-cell engager, in metastatic melanoma: active drug monitoring to assess the impact of immune response on drug exposure. Front Oncol 2024; 14:1346502. [PMID: 38577337 PMCID: PMC10991832 DOI: 10.3389/fonc.2024.1346502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/05/2024] [Indexed: 04/06/2024] Open
Abstract
Introduction Although checkpoint inhibitors (CPIs) have improved outcomes for patients with metastatic melanoma, those progressing on CPIs have limited therapeutic options. To address this unmet need and overcome CPI resistance mechanisms, novel immunotherapies, such as T-cell engaging agents, are being developed. The use of these agents has sometimes been limited by the immune response mounted against them in the form of anti-drug antibodies (ADAs), which is challenging to predict preclinically and can lead to neutralization of the drug and loss of efficacy. Methods TYRP1-TCB (RO7293583; RG6232) is a T-cell engaging bispecific (TCB) antibody that targets tyrosinase-related protein 1 (TYRP1), which is expressed in many melanomas, thereby directing T cells to kill TYRP1-expressing tumor cells. Preclinical studies show TYRP1-TCB to have potent anti-tumor activity. This first-in-human (FIH) phase 1 dose-escalation study characterized the safety, tolerability, maximum tolerated dose/optimal biological dose, and pharmacokinetics (PK) of TYRP1-TCB in patients with metastatic melanoma (NCT04551352). Results Twenty participants with cutaneous, uveal, or mucosal TYRP1-positive melanoma received TYRP1-TCB in escalating doses (0.045 to 0.4 mg). All participants experienced ≥1 treatment-related adverse event (TRAE); two participants experienced grade 3 TRAEs. The most common toxicities were grade 1-2 cytokine release syndrome (CRS) and rash. Fractionated dosing mitigated CRS and was associated with lower levels of interleukin-6 and tumor necrosis factor-alpha. Measurement of active drug (dual TYPR1- and CD3-binding) PK rapidly identified loss of active drug exposure in all participants treated with 0.4 mg in a flat dosing schedule for ≥3 cycles. Loss of exposure was associated with development of ADAs towards both the TYRP1 and CD3 domains. A total drug PK assay, measuring free and ADA-bound forms, demonstrated that TYRP1-TCB-ADA immune complexes were present in participant samples, but showed no drug activity in vitro. Discussion This study provides important insights into how the use of active drug PK assays, coupled with mechanistic follow-up, can inform and enable ongoing benefit/risk assessment for individuals participating in FIH dose-escalation trials. Translational studies that lead to a better understanding of the underlying biology of cognate T- and B-cell interactions, ultimately resulting in ADA development to novel biotherapeutics, are needed.
Collapse
Affiliation(s)
- Anna Spreafico
- Department of Medicine, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Eva Muñoz Couselo
- Department of Medical Oncology, Vall d’Hebron University Hospital and Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Anja Irmisch
- Roche Pharma Research & Early Development, Roche Innovation Center Zurich, Zurich, Switzerland
| | - Juliana Bessa
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - George Au-Yeung
- Department of Medical Oncology, Peter MacCallum Cancer Center and Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Oliver Bechter
- Department of General Medical Oncology, Universitair Ziekenhuis (UZ), Leuven, Leuven, Belgium
| | - Inge Marie Svane
- National Center for Cancer Immune Therapy and Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Miguel F. Sanmamed
- Department of Medical Oncology, Clínica Universidad de Navarra and Immunology and Immunotherapy Program, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Valentina Gambardella
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- Department of Medical Oncology, Hospital Clínico Universitario de Valencia, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain
| | - Meredith McKean
- Sarah Cannon Research Institute at Tennessee Oncology, Nashville, TN, United States
| | - Margaret Callahan
- Department of Medicine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY, United States
| | - Reinhard Dummer
- Department of Dermatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Christian Klein
- Roche Pharma Research & Early Development, Roche Innovation Center Zurich, Zurich, Switzerland
| | - Pablo Umaña
- Roche Pharma Research & Early Development, Roche Innovation Center Zurich, Zurich, Switzerland
| | - Nicole Justies
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Florian Heil
- Roche Pharma Research & Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Linda Fahrni
- Roche Pharma Research & Early Development, Roche Innovation Center Zurich, Zurich, Switzerland
| | - Eugenia Opolka-Hoffmann
- Roche Pharma Research & Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Inja Waldhauer
- Roche Pharma Research & Early Development, Roche Innovation Center Zurich, Zurich, Switzerland
| | - Conrad Bleul
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Roland F. Staack
- Roche Pharma Research & Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Vaios Karanikas
- Roche Pharma Research & Early Development, Roche Innovation Center Zurich, Zurich, Switzerland
| | - Stephen Fowler
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, Basel, Switzerland
| |
Collapse
|
9
|
Jilani S, Saco JD, Mugarza E, Pujol-Morcillo A, Chokry J, Ng C, Abril-Rodriguez G, Berger-Manerio D, Pant A, Hu J, Gupta R, Vega-Crespo A, Baselga-Carretero I, Chen JM, Shin DS, Scumpia P, Radu RA, Chen Y, Ribas A, Puig-Saus C. CAR-T cell therapy targeting surface expression of TYRP1 to treat cutaneous and rare melanoma subtypes. Nat Commun 2024; 15:1244. [PMID: 38336975 PMCID: PMC10858182 DOI: 10.1038/s41467-024-45221-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/18/2024] [Indexed: 02/12/2024] Open
Abstract
A major limitation to developing chimeric antigen receptor (CAR)-T cell therapies for solid tumors is identifying surface proteins highly expressed in tumors but not in normal tissues. Here, we identify Tyrosinase Related Protein 1 (TYRP1) as a CAR-T cell therapy target to treat patients with cutaneous and rare melanoma subtypes unresponsive to immune checkpoint blockade. TYRP1 is primarily located intracellularly in the melanosomes, with a small fraction being trafficked to the cell surface via vesicular transport. We develop a highly sensitive CAR-T cell therapy that detects surface TYRP1 in tumor cells with high TYRP1 overexpression and presents antitumor activity in vitro and in vivo in murine and patient-derived cutaneous, acral and uveal melanoma models. Furthermore, no systemic or off-tumor severe toxicities are observed in an immunocompetent murine model. The efficacy and safety profile of the TYRP1 CAR-T cell therapy supports the ongoing preparation of a phase I clinical trial.
Collapse
Affiliation(s)
- Sameeha Jilani
- Department of Hematology-Oncology, David Geffen School of Medicine at the University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Justin D Saco
- Department of Hematology-Oncology, David Geffen School of Medicine at the University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Edurne Mugarza
- Department of Hematology-Oncology, David Geffen School of Medicine at the University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Aleida Pujol-Morcillo
- Department of Hematology-Oncology, David Geffen School of Medicine at the University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Jeffrey Chokry
- Department of Hematology-Oncology, David Geffen School of Medicine at the University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Clement Ng
- Department of Hematology-Oncology, David Geffen School of Medicine at the University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Gabriel Abril-Rodriguez
- Department of Hematology-Oncology, David Geffen School of Medicine at the University of California Los Angeles (UCLA), Los Angeles, CA, USA
- Parker Institute for Cancer Immunotherapy Center at UCLA, Los Angeles, CA, USA
| | - David Berger-Manerio
- Department of Hematology-Oncology, David Geffen School of Medicine at the University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Ami Pant
- UCLA Stein Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jane Hu
- UCLA Stein Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Rubi Gupta
- Department of Hematology-Oncology, David Geffen School of Medicine at the University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Agustin Vega-Crespo
- Department of Hematology-Oncology, David Geffen School of Medicine at the University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Ignacio Baselga-Carretero
- Department of Hematology-Oncology, David Geffen School of Medicine at the University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Jia M Chen
- Department of Hematology-Oncology, David Geffen School of Medicine at the University of California Los Angeles (UCLA), Los Angeles, CA, USA
- Parker Institute for Cancer Immunotherapy Center at UCLA, Los Angeles, CA, USA
| | - Daniel Sanghoon Shin
- Division of Hematology/Oncology, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center-UCLA, Los Angeles, CA, USA
| | - Philip Scumpia
- Division of Dermatology, Department of Medicine, UCLA, Los Angeles, CA, USA
- Department of Dermatology, VA Greater Los Angeles Healthcare System-West Los Angeles, Los Angeles, CA, USA
| | - Roxana A Radu
- UCLA Stein Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Yvonne Chen
- Parker Institute for Cancer Immunotherapy Center at UCLA, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center-UCLA, Los Angeles, CA, USA
- Department of Microbiology, Immunology, and Molecular Genetics at UCLA, Los Angeles, CA, USA
- Broad Stem Cell Research Center-UCLA, Los Angeles, CA, USA
| | - Antoni Ribas
- Department of Hematology-Oncology, David Geffen School of Medicine at the University of California Los Angeles (UCLA), Los Angeles, CA, USA
- Parker Institute for Cancer Immunotherapy Center at UCLA, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center-UCLA, Los Angeles, CA, USA
- Broad Stem Cell Research Center-UCLA, Los Angeles, CA, USA
| | - Cristina Puig-Saus
- Department of Hematology-Oncology, David Geffen School of Medicine at the University of California Los Angeles (UCLA), Los Angeles, CA, USA.
- Parker Institute for Cancer Immunotherapy Center at UCLA, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center-UCLA, Los Angeles, CA, USA.
- Broad Stem Cell Research Center-UCLA, Los Angeles, CA, USA.
| |
Collapse
|
10
|
Zhang Y, Zuo B, Yu Z, Zhao K, Zhang Y, He K, Seow Y, Yin H. Complete remission of tumors in mice with neoantigen-painted exosomes and anti-PD-1 therapy. Mol Ther 2023; 31:3579-3593. [PMID: 37919900 PMCID: PMC10727972 DOI: 10.1016/j.ymthe.2023.10.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/14/2023] [Accepted: 10/31/2023] [Indexed: 11/04/2023] Open
Abstract
Neoantigen-based cancer vaccines are emerging as promising tumor therapies, but enhancement of immunogenicity can further improve therapeutic outcomes. Here, we demonstrate that anchoring different peptide neoantigens on subcutaneously administered serum exosomes promote lymph node homing and dendritic cell uptake, resulting in significantly enhanced antigenicity in vitro and in vivo. Exosomes anchoring of melanoma peptide neoantigens augmented the magnitude and breadth of T cell response in vitro and in vivo, to a greater extent with CD8+ T cell responses. Simultaneous decoration of different peptide neoantigens on serum exosomes induced potent tumor suppression and neoantigen-specific immune responses in mice with melanoma and colon cancer. Complete tumor eradication and sustainable immunological memory were achieved with neoantigen-painted serum exosome vaccines in combination with programmed cell death protein 1 (PD-1) antibodies in mice with colon cancer. Importantly, human serum exosomes loaded with peptide neoantigens elicited significant tumor growth retardation and immune responses in human colon cancer 3-dimensional (3D) multicellular spheroids. Our study demonstrates that serum exosomes direct in vivo localization, increase dendritic cell uptake, and enhance the immunogenicity of antigenic peptides and thus provides a general delivery tool for peptide antigen-based personalized immunotherapy.
Collapse
Affiliation(s)
- Yang Zhang
- State Key Laboratory of Experimental Hematology & The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics & Key Laboratory of Immune Microenvironment and Disease (Ministry of Education) & School of Medical Technology & School of Basic Medical Sciences, Tianjin Medical University, Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Bingfeng Zuo
- State Key Laboratory of Experimental Hematology & The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics & Key Laboratory of Immune Microenvironment and Disease (Ministry of Education) & School of Medical Technology & School of Basic Medical Sciences, Tianjin Medical University, Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Zezhen Yu
- State Key Laboratory of Experimental Hematology & The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics & Key Laboratory of Immune Microenvironment and Disease (Ministry of Education) & School of Medical Technology & School of Basic Medical Sciences, Tianjin Medical University, Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Kangjie Zhao
- State Key Laboratory of Experimental Hematology & The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics & Key Laboratory of Immune Microenvironment and Disease (Ministry of Education) & School of Medical Technology & School of Basic Medical Sciences, Tianjin Medical University, Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Yali Zhang
- State Key Laboratory of Experimental Hematology & The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics & Key Laboratory of Immune Microenvironment and Disease (Ministry of Education) & School of Medical Technology & School of Basic Medical Sciences, Tianjin Medical University, Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Kai He
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yiqi Seow
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A∗STAR), 60 Biopolis Street, Genome, Singapore 138672, Singapore; Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - HaiFang Yin
- State Key Laboratory of Experimental Hematology & The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics & Key Laboratory of Immune Microenvironment and Disease (Ministry of Education) & School of Medical Technology & School of Basic Medical Sciences, Tianjin Medical University, Qixiangtai Road, Heping District, Tianjin 300070, China; Department of Clinical Laboratory, Tianjin Medical University General Hospital, Tianjin 300052, China.
| |
Collapse
|
11
|
Boateng ST, Roy T, Torrey K, Owunna U, Banang-Mbeumi S, Basnet D, Niedda E, Alexander AD, Hage DE, Atchimnaidu S, Nagalo BM, Aryal D, Findley A, Seeram NP, Efimova T, Sechi M, Hill RA, Ma H, Chamcheu JC, Murru S. Synthesis, in silico modelling, and in vitro biological evaluation of substituted pyrazole derivatives as potential anti-skin cancer, anti-tyrosinase, and antioxidant agents. J Enzyme Inhib Med Chem 2023; 38:2205042. [PMID: 37184042 PMCID: PMC10187093 DOI: 10.1080/14756366.2023.2205042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/16/2023] [Indexed: 05/16/2023] Open
Abstract
Twenty-five azole compounds (P1-P25) were synthesised using regioselective base-metal catalysed and microwave-assisted approaches, fully characterised by high-resolution mass spectrometry (HRMS), nuclear magnetic resonance (NMR), and infrared spectra (IR) analyses, and evaluated for anticancer, anti-tyrosinase, and anti-oxidant activities in silico and in vitro. P25 exhibited potent anticancer activity against cells of four skin cancer (SC) lines, with selectivity for melanoma (A375, SK-Mel-28) or non-melanoma (A431, SCC-12) SC cells over non-cancerous HaCaT-keratinocytes. Clonogenic, scratch-wound, and immunoblotting assay data were consistent with anti-proliferative results, expression profiling therewith implicating intrinsic and extrinsic apoptosis activation. In a mushroom tyrosinase inhibition assay, P14 was most potent among the compounds (half-maximal inhibitory concentration where 50% of cells are dead, IC50 15.9 μM), with activity greater than arbutin and kojic acid. Also, P6 exhibited noteworthy free radical-scavenging activity. Furthermore, in silico docking and absorption, distribution, metabolism, excretion, and toxicity (ADMET) simulations predicted prominent-phenotypic actives to engage diverse cancer/hyperpigmentation-related targets with relatively high affinities. Altogether, promising early-stage hits were identified - some with multiple activities - warranting further hit-to-lead optimisation chemistry with further biological evaluations, towards identifying new skin-cancer and skin-pigmentation renormalising agents.
Collapse
Affiliation(s)
- Samuel T. Boateng
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Tithi Roy
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Kara Torrey
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Bioactive Botanical Research Laboratory, University of Rhode Island, Kingston, RI, USA
| | - Uchechi Owunna
- School of Sciences, College of Arts, Education and Sciences, University of Louisiana at Monroe, Monroe, LA, USA
| | - Sergette Banang-Mbeumi
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
- School of Nursing and Allied Health Sciences, Louisiana Delta Community College, Monroe, LA, USA
| | - David Basnet
- School of Sciences, College of Arts, Education and Sciences, University of Louisiana at Monroe, Monroe, LA, USA
| | - Eleonora Niedda
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | - Alexis D. Alexander
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Denzel El Hage
- School of Sciences, College of Arts, Education and Sciences, University of Louisiana at Monroe, Monroe, LA, USA
| | - Siriki Atchimnaidu
- School of Sciences, College of Arts, Education and Sciences, University of Louisiana at Monroe, Monroe, LA, USA
| | - Bolni Marius Nagalo
- Department of Pathology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA
- The Winthrop P. Rockefeller Cancer Institute, UAMS, Little Rock, AR, USA
| | - Dinesh Aryal
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
- Department of Biomedical Affairs and Research, Edward Via College of Osteopathic Medicine, Monroe, LA, USA
| | - Ann Findley
- School of Sciences, College of Arts, Education and Sciences, University of Louisiana at Monroe, Monroe, LA, USA
| | - Navindra P. Seeram
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Bioactive Botanical Research Laboratory, University of Rhode Island, Kingston, RI, USA
| | - Tatiana Efimova
- Department of Biomedical Engineering, Northwestern University, Chicago, IL, USA
| | - Mario Sechi
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | - Ronald A. Hill
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Hang Ma
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Bioactive Botanical Research Laboratory, University of Rhode Island, Kingston, RI, USA
| | - Jean Christopher Chamcheu
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Siva Murru
- School of Sciences, College of Arts, Education and Sciences, University of Louisiana at Monroe, Monroe, LA, USA
| |
Collapse
|
12
|
Märkl F, Benmebarek MR, Keyl J, Cadilha BL, Geiger M, Karches C, Obeck H, Schwerdtfeger M, Michaelides S, Briukhovetska D, Stock S, Jobst J, Müller PJ, Majed L, Seifert M, Klüver AK, Lorenzini T, Grünmeier R, Thomas M, Gottschlich A, Klaus R, Marr C, von Bergwelt-Baildon M, Rothenfusser S, Levesque MP, Heppt MV, Endres S, Klein C, Kobold S. Bispecific antibodies redirect synthetic agonistic receptor modified T cells against melanoma. J Immunother Cancer 2023; 11:jitc-2022-006436. [PMID: 37208128 DOI: 10.1136/jitc-2022-006436] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND Melanoma is an immune sensitive disease, as demonstrated by the activity of immune check point blockade (ICB), but many patients will either not respond or relapse. More recently, tumor infiltrating lymphocyte (TIL) therapy has shown promising efficacy in melanoma treatment after ICB failure, indicating the potential of cellular therapies. However, TIL treatment comes with manufacturing limitations, product heterogeneity, as well as toxicity problems, due to the transfer of a large number of phenotypically diverse T cells. To overcome said limitations, we propose a controlled adoptive cell therapy approach, where T cells are armed with synthetic agonistic receptors (SAR) that are selectively activated by bispecific antibodies (BiAb) targeting SAR and melanoma-associated antigens. METHODS Human as well as murine SAR constructs were generated and transduced into primary T cells. The approach was validated in murine, human and patient-derived cancer models expressing the melanoma-associated target antigens tyrosinase-related protein 1 (TYRP1) and melanoma-associated chondroitin sulfate proteoglycan (MCSP) (CSPG4). SAR T cells were functionally characterized by assessing their specific stimulation and proliferation, as well as their tumor-directed cytotoxicity, in vitro and in vivo. RESULTS MCSP and TYRP1 expression was conserved in samples of patients with treated as well as untreated melanoma, supporting their use as melanoma-target antigens. The presence of target cells and anti-TYRP1 × anti-SAR or anti-MCSP × anti-SAR BiAb induced conditional antigen-dependent activation, proliferation of SAR T cells and targeted tumor cell lysis in all tested models. In vivo, antitumoral activity and long-term survival was mediated by the co-administration of SAR T cells and BiAb in a syngeneic tumor model and was further validated in several xenograft models, including a patient-derived xenograft model. CONCLUSION The SAR T cell-BiAb approach delivers specific and conditional T cell activation as well as targeted tumor cell lysis in melanoma models. Modularity is a key feature for targeting melanoma and is fundamental towards personalized immunotherapies encompassing cancer heterogeneity. Because antigen expression may vary in primary melanoma tissues, we propose that a dual approach targeting two tumor-associated antigens, either simultaneously or sequentially, could avoid issues of antigen heterogeneity and deliver therapeutic benefit to patients.
Collapse
Affiliation(s)
- Florian Märkl
- Department of Medicine IV, Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
| | - Mohamed-Reda Benmebarek
- Department of Medicine IV, Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
| | - Julius Keyl
- Department of Medicine IV, Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
| | - Bruno L Cadilha
- Department of Medicine IV, Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
| | - Martina Geiger
- Roche Innovation Center Zurich, Roche Pharma Research & Early Development, Schlieren, Switzerland
| | - Clara Karches
- Department of Medicine IV, Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
| | - Hannah Obeck
- Department of Medicine IV, Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
| | - Melanie Schwerdtfeger
- Department of Medicine IV, Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
| | - Stefanos Michaelides
- Department of Medicine IV, Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
| | - Daria Briukhovetska
- Department of Medicine IV, Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
| | - Sophia Stock
- Department of Medicine IV, Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
- Department of Medicine III, Klinikum der Universität München, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Jakob Jobst
- Department of Medicine IV, Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
| | - Philipp Jie Müller
- Department of Medicine IV, Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
| | - Lina Majed
- Department of Medicine IV, Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
| | - Matthias Seifert
- Department of Medicine IV, Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
| | - Anna-Kristina Klüver
- Department of Medicine IV, Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
| | - Theo Lorenzini
- Department of Medicine IV, Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
| | - Ruth Grünmeier
- Department of Medicine IV, Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
| | - Moritz Thomas
- Institute of AI for Health, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Computational Biology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Freising, Germany
| | - Adrian Gottschlich
- Department of Medicine IV, Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
| | - Richard Klaus
- Division of Pediatric Nephrology, Department of Pediatrics, Dr. v. Haunersches Kinderspital, Klinikum der Universität München, Munich, Germany
| | - Carsten Marr
- Institute of AI for Health, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Computational Biology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Michael von Bergwelt-Baildon
- Department of Medicine III, Klinikum der Universität München, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Simon Rothenfusser
- Department of Medicine IV, Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
| | - Mitchell P Levesque
- Department of Dermatology, University Hospital Zurich, Schlieren, Switzerland
| | - Markus Vincent Heppt
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Stefan Endres
- Department of Medicine IV, Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Christian Klein
- Roche Innovation Center Zurich, Roche Pharma Research & Early Development, Schlieren, Switzerland
| | - Sebastian Kobold
- Department of Medicine IV, Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| |
Collapse
|
13
|
Hirschhorn D, Budhu S, Kraehenbuehl L, Gigoux M, Schröder D, Chow A, Ricca JM, Gasmi B, De Henau O, Mangarin LMB, Li Y, Hamadene L, Flamar AL, Choi H, Cortez CA, Liu C, Holland A, Schad S, Schulze I, Betof Warner A, Hollmann TJ, Arora A, Panageas KS, Rizzuto GA, Duhen R, Weinberg AD, Spencer CN, Ng D, He XY, Albrengues J, Redmond D, Egeblad M, Wolchok JD, Merghoub T. T cell immunotherapies engage neutrophils to eliminate tumor antigen escape variants. Cell 2023; 186:1432-1447.e17. [PMID: 37001503 PMCID: PMC10994488 DOI: 10.1016/j.cell.2023.03.007] [Citation(s) in RCA: 118] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 10/11/2022] [Accepted: 03/03/2023] [Indexed: 04/01/2023]
Abstract
Cancer immunotherapies, including adoptive T cell transfer, can be ineffective because tumors evolve to display antigen-loss-variant clones. Therapies that activate multiple branches of the immune system may eliminate escape variants. Here, we show that melanoma-specific CD4+ T cell therapy in combination with OX40 co-stimulation or CTLA-4 blockade can eradicate melanomas containing antigen escape variants. As expected, early on-target recognition of melanoma antigens by tumor-specific CD4+ T cells was required. Surprisingly, complete tumor eradication was dependent on neutrophils and partly dependent on inducible nitric oxide synthase. In support of these findings, extensive neutrophil activation was observed in mouse tumors and in biopsies of melanoma patients treated with immune checkpoint blockade. Transcriptomic and flow cytometry analyses revealed a distinct anti-tumorigenic neutrophil subset present in treated mice. Our findings uncover an interplay between T cells mediating the initial anti-tumor immune response and neutrophils mediating the destruction of tumor antigen loss variants.
Collapse
Affiliation(s)
- Daniel Hirschhorn
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA; Sandra and Edward Meyer Cancer Center at Weill Cornell Medicine, New York, NY, USA
| | - Sadna Budhu
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA; Sandra and Edward Meyer Cancer Center at Weill Cornell Medicine, New York, NY, USA
| | - Lukas Kraehenbuehl
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA; Sandra and Edward Meyer Cancer Center at Weill Cornell Medicine, New York, NY, USA; Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Mathieu Gigoux
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - David Schröder
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Andrew Chow
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Jacob M Ricca
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Billel Gasmi
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Olivier De Henau
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Levi Mark B Mangarin
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA; Sandra and Edward Meyer Cancer Center at Weill Cornell Medicine, New York, NY, USA
| | - Yanyun Li
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Linda Hamadene
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA; Sandra and Edward Meyer Cancer Center at Weill Cornell Medicine, New York, NY, USA
| | - Anne-Laure Flamar
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Hyejin Choi
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Czrina A Cortez
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Cailian Liu
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA; Sandra and Edward Meyer Cancer Center at Weill Cornell Medicine, New York, NY, USA
| | - Aliya Holland
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Sara Schad
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Isabell Schulze
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA; Sandra and Edward Meyer Cancer Center at Weill Cornell Medicine, New York, NY, USA
| | - Allison Betof Warner
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Travis J Hollmann
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Arshi Arora
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Katherine S Panageas
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gabrielle A Rizzuto
- Human Oncology and Pathogenesis Program, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rebekka Duhen
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | - Andrew D Weinberg
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | - Christine N Spencer
- Department of Informatics, Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - David Ng
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Xue-Yan He
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | - David Redmond
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Mikala Egeblad
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Jedd D Wolchok
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA; Sandra and Edward Meyer Cancer Center at Weill Cornell Medicine, New York, NY, USA; Department of Medicine and Graduate Schools, Weill Cornell Medicine, New York, NY, USA
| | - Taha Merghoub
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA; Sandra and Edward Meyer Cancer Center at Weill Cornell Medicine, New York, NY, USA; Department of Medicine and Graduate Schools, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
14
|
Irfan A, Faisal S, Ahmad S, Al-Hussain SA, Javed S, Zahoor AF, Parveen B, Zaki MEA. Structure-Based Virtual Screening of Furan-1,3,4-Oxadiazole Tethered N-phenylacetamide Derivatives as Novel Class of hTYR and hTYRP1 Inhibitors. Pharmaceuticals (Basel) 2023; 16:344. [PMID: 36986444 PMCID: PMC10059052 DOI: 10.3390/ph16030344] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/10/2023] [Accepted: 02/12/2023] [Indexed: 03/30/2023] Open
Abstract
Human tyrosinase (hTYR) is a key and rate-limiting enzyme along with human tyrosinase-related protein-1 (hTYRP1), which are among the most prominent targets of inhibiting hyper pigmentation and melanoma skin cancer. In the current in-silico computer-aided drug design (CADD) study, the structure-based screening of sixteen furan-1,3,4-oxadiazole tethered N-phenylacetamide structural motifs BF1-BF16 was carried out to assess their potential as hTYR and hTYRP1 inhibitors. The results revealed that the structural motifs BF1-BF16 showed higher binding affinities towards hTYR and hTYRP1 than the standard inhibitor kojic acid. The most bioactive lead furan-1,3,4-oxadiazoles BF4 and BF5 displayed stronger binding in affinities (-11.50 kcal/mol and -13.30 kcal/mol) than the standard drug kojic acid against hTYRP1 and hTYR enzymes, respectively. These were further confirmed by MM-GBSA and MM-PBSA binding energy computations. The stability studies involving the molecular dynamics simulations also provided stability insights into the binding of these compounds with the target enzymes, wherein it was found that they remain stable in the active sites during the 100 ns virtual simulation time. Moreover, the ADMET, as well as the medicinal properties of these novel furan-1,3,4-oxadiazole tethered N-phenylacetamide structural hybrids, also showed a good prospect. The excellent in-silico profiling of furan-1,3,4--oxadiazole structural motifs BF4 and BF5 provide a hypothetical gateway to use these compounds as potential hTYRP1 and hTYR inhibitors against melanogenesis.
Collapse
Affiliation(s)
- Ali Irfan
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Shah Faisal
- Department of Chemistry, Islamia College University Peshawar, Peshawar 25120, Pakistan
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan
| | - Sami A. Al-Hussain
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Sadia Javed
- Department of Biochemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Bushra Parveen
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Magdi E. A. Zaki
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| |
Collapse
|
15
|
Donohue LK, Guo MG, Zhao Y, Jung N, Bussat RT, Kim DS, Neela PH, Kellman LN, Garcia OS, Meyers RM, Altman RB, Khavari PA. A cis-regulatory lexicon of DNA motif combinations mediating cell-type-specific gene regulation. CELL GENOMICS 2022; 2:100191. [PMID: 36742369 PMCID: PMC9894309 DOI: 10.1016/j.xgen.2022.100191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Gene expression is controlled by transcription factors (TFs) that bind cognate DNA motif sequences in cis-regulatory elements (CREs). The combinations of DNA motifs acting within homeostasis and disease, however, are unclear. Gene expression, chromatin accessibility, TF footprinting, and H3K27ac-dependent DNA looping data were generated and a random-forest-based model was applied to identify 7,531 cell-type-specific cis-regulatory modules (CRMs) across 15 diploid human cell types. A co-enrichment framework within CRMs nominated 838 cell-type-specific, recurrent heterotypic DNA motif combinations (DMCs), which were functionally validated using massively parallel reporter assays. Cancer cells engaged DMCs linked to neoplasia-enabling processes operative in normal cells while also activating new DMCs only seen in the neoplastic state. This integrative approach identifies cell-type-specific cis-regulatory combinatorial DNA motifs in diverse normal and diseased human cells and represents a general framework for deciphering cis-regulatory sequence logic in gene regulation.
Collapse
Affiliation(s)
- Laura K.H. Donohue
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA,Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA,Synthego, Redwood City, CA, USA,These authors contributed equally
| | - Margaret G. Guo
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA,Stanford Program in Biomedical Informatics, Stanford University, Stanford, CA, USA,These authors contributed equally
| | - Yang Zhao
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA,Synthego, Redwood City, CA, USA
| | - Namyoung Jung
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA,Department of Life Science, Pohang University of Science and Technology, Pohang, Korea
| | - Rose T. Bussat
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA,23andMe, Inc., Sunnyvale, CA, USA
| | - Daniel S. Kim
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA,Stanford Program in Biomedical Informatics, Stanford University, Stanford, CA, USA
| | - Poornima H. Neela
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA,Fauna Bio, Emeryville, CA, USA
| | - Laura N. Kellman
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA,Stanford Program in Cancer Biology, Stanford University, Stanford, CA, USA
| | - Omar S. Garcia
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Robin M. Meyers
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA,Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Russ B. Altman
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA,Stanford Program in Biomedical Informatics, Stanford University, Stanford, CA, USA,Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Paul A. Khavari
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA,Stanford Program in Cancer Biology, Stanford University, Stanford, CA, USA,Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA,Lead contact,Correspondence:
| |
Collapse
|
16
|
A Case Series With Acquired Dermal Melanocytosis: A Retrospective Study From 2001 to 2018. Am J Dermatopathol 2022; 44:789-798. [DOI: 10.1097/dad.0000000000002267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Liu C, Zhao Z, Lv H, Yu J, Zhang P. Microneedles-mediated drug delivery system for the diagnosis and treatment of melanoma. Colloids Surf B Biointerfaces 2022; 219:112818. [PMID: 36084509 DOI: 10.1016/j.colsurfb.2022.112818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/16/2022] [Accepted: 08/29/2022] [Indexed: 11/26/2022]
Abstract
As an emerging novel drug delivery system, microneedles (MNs) have a wide range of applications in the medical field. They can overcome the physiological barriers of the skin, penetrate the outermost skin of the human body, and form hundreds of reversible microchannels to enhance the penetration of drugs and deliver drugs to the diseased sites. So they have great applications in the diagnosis and treatment of melanoma. Melanoma is a kind of malignant tumor, the survival rate of patients with metastases is extremely low. The traditional methods of surgery and drug treatment for melanoma are often accompanied by large adverse reactions in the whole body, and the drug concentration is low. The use of MNs for transdermal administration can increase the drug concentration, reduce adverse reactions in the treatment process, and have good therapeutic effect on melanoma. This paper introduced various types of MNs and their preparation methods, summarized the diagnosis and various treatment options for melanoma with MNs, focused on the treatment of melanoma with dissolved MNs, and made prospect of MNs-mediated transdermal drug delivery in the treatment of melanoma.
Collapse
Affiliation(s)
- Cheng Liu
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Zhining Zhao
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Hongqian Lv
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Jia Yu
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| | - Peng Zhang
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
18
|
Huang Q, Yuan Y, Gong J, Zhang T, Qi Z, Yang X, Li W, Wei A. Identification of a Novel MLPH Missense Mutation in a Chinese Griscelli Syndrome 3 Patient. Front Med (Lausanne) 2022; 9:896943. [PMID: 35602484 PMCID: PMC9120966 DOI: 10.3389/fmed.2022.896943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
Melanophilin (MLPH) functions as a linker between RAB27A and myosin Va (MYO5A) in regulating skin pigmentation during the melanosome transport process. The MYO5A-MLPH-RAB27A ternary protein complex is required for anchoring mature melanosomes in the peripheral actin filaments of melanocytes for subsequent transfer to adjacent keratinocytes. Griscelli syndrome type 3 (GS3) is caused by mutations in the MLPH gene. So far, only five variants of MLPH associated with GS3 have been reported. Here, we reported the first patient with GS3 in a Chinese population. The proband carried a novel homozygous missense mutation (c.73G>C; p.D25H), residing in the conserved Slp homology domain of MLPH, and presented with hypopigmentation of the hair, eyebrows, and eyelashes. Light microscopy revealed the presence of abnormal pigment clumping in his hair shaft. In silico tools predicted this MLPH variant to be likely pathogenic. Using immunoblotting and immunofluorescence analysis, we demonstrated that the MLPH (D25H) variant had an inhibitory effect on melanosome transport by exhibiting perinuclear melanosome aggregation in melanocytes, and greatly reduced its binding to RAB27A, although the protein level of MLPH in the patient was not changed. Our findings suggest that MLPH (D25H) is a pathogenic variant that expands the genetic spectrum of the MLPH gene.
Collapse
Affiliation(s)
- Qiaorong Huang
- Department of Dermatology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yefeng Yuan
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing, China
| | - Juanjuan Gong
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing, China
- Rare Disease Center, National Center for Children's Health, Beijing, China
- MOE Key Laboratory of Major Diseases in Children, Beijing, China
- Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Tianjiao Zhang
- Department of Dermatology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Zhan Qi
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing, China
- Rare Disease Center, National Center for Children's Health, Beijing, China
- MOE Key Laboratory of Major Diseases in Children, Beijing, China
- Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Xiumin Yang
- Department of Dermatology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Wei Li
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing, China
- Rare Disease Center, National Center for Children's Health, Beijing, China
- MOE Key Laboratory of Major Diseases in Children, Beijing, China
- Beijing Children's Hospital, Capital Medical University, Beijing, China
- Wei Li
| | - Aihua Wei
- Department of Dermatology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- *Correspondence: Aihua Wei
| |
Collapse
|
19
|
Zhang H, Liu Y, Hu D, Liu S. Identification of Novel Molecular Therapeutic Targets and Their Potential Prognostic Biomarkers Based on Cytolytic Activity in Skin Cutaneous Melanoma. Front Oncol 2022; 12:844666. [PMID: 35345444 PMCID: PMC8957259 DOI: 10.3389/fonc.2022.844666] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/09/2022] [Indexed: 12/13/2022] Open
Abstract
Skin cutaneous melanoma (SKCM) attracts attention worldwide for its extremely high malignancy. A novel term cytolytic activity (CYT) has been introduced as a potential immunotherapy biomarker associated with counter-regulatory immune responses and enhanced prognosis in tumors. In this study, we extracted all datasets of SKCM patients, namely, RNA sequencing data and clinical information from The Cancer Genome Atlas (TCGA) database and the Gene Expression Omnibus (GEO) database, conducted differential expression analysis to yield 864 differentially expressed genes (DEGs) characteristic of CYT and used non-negative matrix factorization (NMF) method to classify molecular subtypes of SKCM patients. Among all genes, 14 hub genes closely related to prognosis for SKCM were finally screen out. Based on these genes, we constructed a 14-gene prognostic risk model and its robustness and strong predictive performance were further validated. Subsequently, the underlying mechanisms in tumor pathogenesis and prognosis have been defined from a number of perspectives, namely, tumor mutation burden (TMB), copy number variation (CNV), tumor microenvironment (TME), infiltrating immune cells, gene set enrichment analysis (GSEA) and immune checkpoint inhibitors (ICIs). Furthermore, combined with GTEx database and HPA database, the expression of genes in the model was verified at the transcriptional level and protein level, and the relative importance of genes in the model was described by random forest algorithm. In addition, the model was used to predict the difference in sensitivity of SKCM patients to chemotherapy and immunotherapy. Finally, a nomogram was constructed to better aid clinical diagnosis.
Collapse
Affiliation(s)
- Haoxue Zhang
- Department of Dermatovenerology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology, Ministry of Education, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Yuyao Liu
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Delin Hu
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shengxiu Liu
- Department of Dermatovenerology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology, Ministry of Education, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| |
Collapse
|
20
|
Faraj S, Kemp EH, Gawkrodger DJ. Patho-immunological mechanisms of vitiligo: the role of the innate and adaptive immunities and environmental stress factors. Clin Exp Immunol 2022; 207:27-43. [PMID: 35020865 PMCID: PMC8802175 DOI: 10.1093/cei/uxab002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 10/04/2021] [Accepted: 10/15/2021] [Indexed: 12/17/2022] Open
Abstract
Epidermal melanocyte loss in vitiligo, triggered by stresses ranging from trauma to emotional stress, chemical exposure or metabolite imbalance, to the unknown, can stimulate oxidative stress in pigment cells, which secrete damage-associated molecular patterns that then initiate innate immune responses. Antigen presentation to melanocytes leads to stimulation of autoreactive T-cell responses, with further targeting of pigment cells. Studies show a pathogenic basis for cellular stress, innate immune responses and adaptive immunity in vitiligo. Improved understanding of the aetiological mechanisms in vitiligo has already resulted in successful use of the Jak inhibitors in vitiligo. In this review, we outline the current understanding of the pathological mechanisms in vitiligo and locate loci to which therapeutic attack might be directed.
Collapse
Affiliation(s)
- Safa Faraj
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | | | - David John Gawkrodger
- Department of Infection, Immunology and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| |
Collapse
|
21
|
Roy S, Ghosh J, Ghosh R. Cancer Vaccine in Solid Tumors: Where We Stand. Indian J Med Paediatr Oncol 2021. [DOI: 10.1055/s-0041-1735439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
AbstractCancer immunotherapy has achieved landmark progress in the field of medical oncology in the era of personalized medicine. In the recent past, our knowledge has expanded regarding how tumor cells escape from the immune system, introducing immunosuppressive microenvironments, and developing tolerance. Therapeutic cancer vaccine leads to activation of immune memory that is long-lasting, safe, and effective; hence, it is becoming an attractive method of immunotherapy. Various cancer vaccine trials in the past have taught us the types of target selection, magnitude of immune response, and implementation of appropriate technologies for the development of new successful cancer vaccines. Tumor-associated antigens, cancer germline antigens, oncogenic viral antigens, and tumor-specific antigens, also known as neoantigens, are potential targets for designing therapeutic cancer vaccines. Cancer vaccine could be cell based, viral vector based, peptide based, and nucleic acid based (DNA/RNA). Several preclinical and clinical studies have demonstrated the mechanism of action, safety, efficacy, and toxicities of various types of cancer vaccines. In this article, we review the types of various tumor antigens and types of cancer vaccines tested in clinical trials and discuss the application and importance of this approach toward precision medicine in the field of immuno-oncology.
Collapse
Affiliation(s)
- Somnath Roy
- Department of Medical Oncology, Tata Memorial Centre, Homi Bhabha Cancer Hospital, Varanasi, Uttar Pradesh, India
| | - Joydeep Ghosh
- Department of Medical Oncology, Tata Medical Center, Kolkata, West Bengal, India
| | - Ranti Ghosh
- Deparment of Radiation Oncology, Tata Memorial Centre, Homi Bhabha Cancer Hospital, Varanasi, Uttar Pradesh, India
| |
Collapse
|
22
|
Kyjacova L, Saup R, Rothley M, Schmaus A, Wagner T, Boßerhoff A, Garvalov BK, Thiele W, Sleeman JP. Quantitative Detection of Disseminated Melanoma Cells by Trp-1 Transcript Analysis Reveals Stochastic Distribution of Pulmonary Metastases. J Clin Med 2021; 10:jcm10225459. [PMID: 34830742 PMCID: PMC8618565 DOI: 10.3390/jcm10225459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 11/29/2022] Open
Abstract
A better understanding of the process of melanoma metastasis is required to underpin the development of novel therapies that will improve patient outcomes. The use of appropriate animal models is indispensable for investigating the mechanisms of melanoma metastasis. However, reliable and practicable quantification of metastases in experimental mice remains a challenge, particularly if the metastatic burden is low. Here, we describe a qRT-PCR-based protocol that employs the melanocytic marker Trp-1 for the sensitive quantification of melanoma metastases in the murine lung. Using this protocol, we were able to detect the presence of as few as 100 disseminated melanoma cells in lung tissue. This allowed us to quantify metastatic burden in a spontaneous syngeneic B16-F10 metastasis model, even in the absence of visible metastases, as well as in the autochthonous Tg(Grm1)/Cyld−/− melanoma model. Importantly, we also observed an uneven distribution of disseminated melanoma cells amongst the five lobes of the murine lung, which varied considerably from animal to animal. Together, our findings demonstrate that the qRT-PCR-based detection of Trp-1 allows the quantification of low pulmonary metastatic burden in both transplantable and autochthonous murine melanoma models, and show that the analysis of lung metastasis in such models needs to take into account the stochastic distribution of metastatic lesions amongst the lung lobes.
Collapse
Affiliation(s)
- Lenka Kyjacova
- Department of Microvascular Biology and Pathobiology, European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany; (L.K.); (R.S.); (M.R.); (A.S.); (T.W.); (B.K.G.); (W.T.)
| | - Rafael Saup
- Department of Microvascular Biology and Pathobiology, European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany; (L.K.); (R.S.); (M.R.); (A.S.); (T.W.); (B.K.G.); (W.T.)
| | - Melanie Rothley
- Department of Microvascular Biology and Pathobiology, European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany; (L.K.); (R.S.); (M.R.); (A.S.); (T.W.); (B.K.G.); (W.T.)
- Institute for Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT)-Campus North, D-76344 Karlsruhe, Germany
| | - Anja Schmaus
- Department of Microvascular Biology and Pathobiology, European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany; (L.K.); (R.S.); (M.R.); (A.S.); (T.W.); (B.K.G.); (W.T.)
- Institute for Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT)-Campus North, D-76344 Karlsruhe, Germany
| | - Tabea Wagner
- Department of Microvascular Biology and Pathobiology, European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany; (L.K.); (R.S.); (M.R.); (A.S.); (T.W.); (B.K.G.); (W.T.)
| | - Anja Boßerhoff
- Institute of Biochemistry, Faculty of Medicine, Friedrich-Alexander University Erlangen-Nürnberg (FAU), D-91054 Erlangen, Germany;
| | - Boyan K. Garvalov
- Department of Microvascular Biology and Pathobiology, European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany; (L.K.); (R.S.); (M.R.); (A.S.); (T.W.); (B.K.G.); (W.T.)
| | - Wilko Thiele
- Department of Microvascular Biology and Pathobiology, European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany; (L.K.); (R.S.); (M.R.); (A.S.); (T.W.); (B.K.G.); (W.T.)
- Institute for Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT)-Campus North, D-76344 Karlsruhe, Germany
| | - Jonathan P. Sleeman
- Department of Microvascular Biology and Pathobiology, European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany; (L.K.); (R.S.); (M.R.); (A.S.); (T.W.); (B.K.G.); (W.T.)
- Institute for Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT)-Campus North, D-76344 Karlsruhe, Germany
- Correspondence: ; Tel.: +49-621-383-71595
| |
Collapse
|
23
|
Humeau J, Le Naour J, Galluzzi L, Kroemer G, Pol JG. Trial watch: intratumoral immunotherapy. Oncoimmunology 2021; 10:1984677. [PMID: 34676147 PMCID: PMC8526014 DOI: 10.1080/2162402x.2021.1984677] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 09/20/2021] [Indexed: 02/06/2023] Open
Abstract
While chemotherapy and radiotherapy remain the first-line approaches for the management of most unresectable tumors, immunotherapy has emerged in the past two decades as a game-changing treatment, notably with the clinical success of immune checkpoint inhibitors. Immunotherapies aim at (re)activating anticancer immune responses which occur in two main steps: (1) the activation and expansion of tumor-specific T cells following cross-presentation of tumor antigens by specialized myeloid cells (priming phase); and (2) the immunological clearance of malignant cells by these antitumor T lymphocytes (effector phase). Therapeutic vaccines, adjuvants, monoclonal antibodies, cytokines, immunogenic cell death-inducing agents including oncolytic viruses, anthracycline-based chemotherapy and radiotherapy, as well as adoptive cell transfer, all act at different levels of this cascade to (re)instate cancer immunosurveillance. Intratumoral delivery of these immunotherapeutics is being tested in clinical trials to promote superior antitumor immune activity in the context of limited systemic toxicity.
Collapse
Affiliation(s)
- Juliette Humeau
- Equipe labellisée par la Ligue contre le cancer, INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada
- Department of Medicine, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Julie Le Naour
- Equipe labellisée par la Ligue contre le cancer, INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Kremlin Bicêtre, France
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA
| | - Guido Kroemer
- Equipe labellisée par la Ligue contre le cancer, INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Kremlin Bicêtre, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Institut Universitaire de France, Paris, France
- Karolinska Institute, Department of Women’s and Children’s Health, Karolinska University Hospital, Stockholm, Sweden
- Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
| | - Jonathan G. Pol
- Equipe labellisée par la Ligue contre le cancer, INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Kremlin Bicêtre, France
| |
Collapse
|
24
|
Rezaei T, Davoudian E, Khalili S, Amini M, Hejazi M, de la Guardia M, Mokhtarzadeh A. Strategies in DNA vaccine for melanoma cancer. Pigment Cell Melanoma Res 2021; 34:869-891. [PMID: 33089665 DOI: 10.1111/pcmr.12933] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/05/2020] [Accepted: 09/22/2020] [Indexed: 11/29/2022]
Abstract
According to reports of the international agency for cancer on research, although malignant melanoma shows less prevalence than nonmelanoma skin cancers, it is the major cause of skin cancer mortality. Given that, the production of effective vaccines to control melanoma is eminently required. In this regard, DNA-based vaccines have been extensively investigated for melanoma therapy. DNA vaccines are capable of inducing both cellular and humoral branches of immune responses. These vaccines possess some valuable advantages such as lack of severe side effects and high stability compared to conventional vaccination methods. The ongoing studies are focused on novel strategies in the development of DNA vaccines encoding artificial polyepitope immunogens based on the multiple melanoma antigens, the inclusion of molecular adjuvants to increase the level of immune responses, and the improvement of delivery approaches. In this review, we have outlined the recent advances in the field of melanoma DNA vaccines and described their implications in clinical trials as a strong strategy in the prevention and control of melanoma.
Collapse
Affiliation(s)
- Tayebeh Rezaei
- Department of Molecular Medicine and Biotechnology, Faculty of Medicine, Arak University of Medical Science, Arak, Iran
| | - Elham Davoudian
- Department of Microbiology, School of Paramedical Sciences, Ilam University of Medical Sciences, Ilam, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Hejazi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
25
|
Fan YF, Zhu SX, Hou FB, Zhao DF, Pan QS, Xiang YW, Qian XK, Ge GB, Wang P. Spectrophotometric Assays for Sensing Tyrosinase Activity and Their Applications. BIOSENSORS 2021; 11:290. [PMID: 34436092 PMCID: PMC8393227 DOI: 10.3390/bios11080290] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 12/13/2022]
Abstract
Tyrosinase (TYR, E.C. 1.14.18.1), a critical enzyme participating in melanogenesis, catalyzes the first two steps in melanin biosynthesis including the ortho-hydroxylation of L-tyrosine and the oxidation of L-DOPA. Previous pharmacological investigations have revealed that an abnormal level of TYR is tightly associated with various dermatoses, including albinism, age spots, and malignant melanoma. TYR inhibitors can partially block the formation of pigment, which are always used for improving skin tone and treating dermatoses. The practical and reliable assays for monitoring TYR activity levels are very useful for both disease diagnosis and drug discovery. This review comprehensively summarizes structural and enzymatic characteristics, catalytic mechanism and substrate preference of TYR, as well as the recent advances in biochemical assays for sensing TYR activity and their biomedical applications. The design strategies of various TYR substrates, alongside with several lists of all reported biochemical assays for sensing TYR including analytical conditions and kinetic parameters, are presented for the first time. Additionally, the biomedical applications and future perspectives of these optical assays are also highlighted. The information and knowledge presented in this review offer a group of practical and reliable assays and imaging tools for sensing TYR activities in complex biological systems, which strongly facilitates high-throughput screening TYR inhibitors and further investigations on the relevance of TYR to human diseases.
Collapse
Affiliation(s)
- Yu-Fan Fan
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.-F.F.); (F.-B.H.); (D.-F.Z.); (Q.-S.P.); (X.-K.Q.); (G.-B.G.)
| | - Si-Xing Zhu
- Institute of Science, Technology and Humanities, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China;
| | - Fan-Bin Hou
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.-F.F.); (F.-B.H.); (D.-F.Z.); (Q.-S.P.); (X.-K.Q.); (G.-B.G.)
| | - Dong-Fang Zhao
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.-F.F.); (F.-B.H.); (D.-F.Z.); (Q.-S.P.); (X.-K.Q.); (G.-B.G.)
| | - Qiu-Sha Pan
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.-F.F.); (F.-B.H.); (D.-F.Z.); (Q.-S.P.); (X.-K.Q.); (G.-B.G.)
| | - Yan-Wei Xiang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China;
| | - Xing-Kai Qian
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.-F.F.); (F.-B.H.); (D.-F.Z.); (Q.-S.P.); (X.-K.Q.); (G.-B.G.)
| | - Guang-Bo Ge
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.-F.F.); (F.-B.H.); (D.-F.Z.); (Q.-S.P.); (X.-K.Q.); (G.-B.G.)
| | - Ping Wang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.-F.F.); (F.-B.H.); (D.-F.Z.); (Q.-S.P.); (X.-K.Q.); (G.-B.G.)
| |
Collapse
|
26
|
Enkhtaivan E, Lee CH. Role of Amine Neurotransmitters and Their Receptors in Skin Pigmentation: Therapeutic Implication. Int J Mol Sci 2021; 22:ijms22158071. [PMID: 34360837 PMCID: PMC8348573 DOI: 10.3390/ijms22158071] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/09/2021] [Accepted: 07/24/2021] [Indexed: 12/27/2022] Open
Abstract
Skin pigmentation can occur due to increased melanin, including melanocyte proliferation, melanin biosynthesis, or melanocyte migration. There are many factors that influence the melanin production process, but the role of neurotransmitters in this process is still unclear. We found that histamine and serotonin influence the different stages of melanogenesis and melanogenesis, which increase melanogenesis. Since then, several related papers have been published, and from these papers, it has been recognised that the role of neurotransmitters in skin-pigment-related diseases needs to be summarised. By introducing the role of neurotransmitters in the regulation of various pigment disorders, including vitiligo and melasma, through this review, many researchers can be expected to try to apply neurotransmitter-related agonists and antagonists as treatments for skin pigment disorders.
Collapse
|
27
|
Madheswaran S, Mungra N, Biteghe FAN, De la Croix Ndong J, Arowolo AT, Adeola HA, Ramamurthy D, Naran K, Khumalo NP, Barth S. Antibody-Based Targeted Interventions for the Diagnosis and Treatment of Skin Cancers. Anticancer Agents Med Chem 2021; 21:162-186. [PMID: 32723261 DOI: 10.2174/1871520620666200728123006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/19/2020] [Accepted: 04/30/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cutaneous malignancies most commonly arise from skin epidermal cells. These cancers may rapidly progress from benign to a metastatic phase. Surgical resection represents the gold standard therapeutic treatment of non-metastatic skin cancer while chemo- and/or radiotherapy are often used against metastatic tumors. However, these therapeutic treatments are limited by the development of resistance and toxic side effects, resulting from the passive accumulation of cytotoxic drugs within healthy cells. OBJECTIVE This review aims to elucidate how the use of monoclonal Antibodies (mAbs) targeting specific Tumor Associated Antigens (TAAs) is paving the way to improved treatment. These mAbs are used as therapeutic or diagnostic carriers that can specifically deliver cytotoxic molecules, fluorophores or radiolabels to cancer cells that overexpress specific target antigens. RESULTS mAbs raised against TAAs are widely in use for e.g. differential diagnosis, prognosis and therapy of skin cancers. Antibody-Drug Conjugates (ADCs) particularly show remarkable potential. The safest ADCs reported to date use non-toxic photo-activatable Photosensitizers (PSs), allowing targeted Photodynamic Therapy (PDT) resulting in targeted delivery of PS into cancer cells and selective killing after light activation without harming the normal cell population. The use of near-infrared-emitting PSs enables both diagnostic and therapeutic applications upon light activation at the specific wavelengths. CONCLUSION Antibody-based approaches are presenting an array of opportunities to complement and improve current methods employed for skin cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Suresh Madheswaran
- Medical Biotechnology & Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Neelakshi Mungra
- Medical Biotechnology & Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Fleury A N Biteghe
- Department of Radiation Oncology and Biomedical Sciences, Cedars-Sinai Medical, 8700 Beverly Blvd, Los Angeles, CA, United States
| | - Jean De la Croix Ndong
- Department of Orthopedic Surgery, New York University Langone Orthopedic Hospital, 301 East 17th Street, New York, NY, United States
| | - Afolake T Arowolo
- The Hair and Skin Research Lab, Division of Dermatology, Department of Medicine, Faculty of Health Sciences, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
| | - Henry A Adeola
- The Hair and Skin Research Lab, Division of Dermatology, Department of Medicine, Faculty of Health Sciences, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
| | - Dharanidharan Ramamurthy
- Medical Biotechnology & Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Krupa Naran
- Medical Biotechnology & Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Nonhlanhla P Khumalo
- The Hair and Skin Research Lab, Division of Dermatology, Department of Medicine, Faculty of Health Sciences, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
| | - Stefan Barth
- Medical Biotechnology & Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
28
|
Gautron A, Migault M, Bachelot L, Corre S, Galibert MD, Gilot D. Human TYRP1: Two functions for a single gene? Pigment Cell Melanoma Res 2021; 34:836-852. [PMID: 33305505 DOI: 10.1111/pcmr.12951] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 11/12/2020] [Accepted: 12/01/2020] [Indexed: 01/07/2023]
Abstract
In the animal kingdom, skin pigmentation is highly variable between species, and it contributes to phenotypes. In humans, skin pigmentation plays a part in sun protection. Skin pigmentation depends on the ratio of the two pigments pheomelanin and eumelanin, both synthesized by a specialized cell population, the melanocytes. In this review, we explore one important factor in pigmentation: the tyrosinase-related protein 1 (TYRP1) gene which is involved in eumelanin synthesis via the TYRP1 protein. Counterintuitively, high TYRP1 mRNA expression is associated with a poor clinical outcome for patients with metastatic melanomas. Recently, we were able to explain this unexpected TYRP1 function by demonstrating that TYRP1 mRNA sequesters microRNA-16, a tumor suppressor miRNA. Here, we focus on actors influencing TYRP1 mRNA abundance, particularly transcription factors, single nucleotide polymorphisms (SNPs), and miRNAs, as they all dictate the indirect oncogenic activity of TYRP1.
Collapse
Affiliation(s)
- Arthur Gautron
- CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F-35000, Univ. Rennes, Rennes, France
| | - Mélodie Migault
- CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F-35000, Univ. Rennes, Rennes, France.,Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Laura Bachelot
- CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F-35000, Univ. Rennes, Rennes, France
| | - Sébastien Corre
- CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F-35000, Univ. Rennes, Rennes, France
| | - Marie-Dominique Galibert
- CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F-35000, Univ. Rennes, Rennes, France.,CHU Rennes, Génétique Moléculaire et Génomique, UMR 6290, F-35000, Rennes, France
| | - David Gilot
- CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F-35000, Univ. Rennes, Rennes, France.,INSERM U1242, Centre Eugène Marquis, Rennes, France
| |
Collapse
|
29
|
Newell F, Wilmott JS, Johansson PA, Nones K, Addala V, Mukhopadhyay P, Broit N, Amato CM, Van Gulick R, Kazakoff SH, Patch AM, Koufariotis LT, Lakis V, Leonard C, Wood S, Holmes O, Xu Q, Lewis K, Medina T, Gonzalez R, Saw RPM, Spillane AJ, Stretch JR, Rawson RV, Ferguson PM, Dodds TJ, Thompson JF, Long GV, Levesque MP, Robinson WA, Pearson JV, Mann GJ, Scolyer RA, Waddell N, Hayward NK. Whole-genome sequencing of acral melanoma reveals genomic complexity and diversity. Nat Commun 2020; 11:5259. [PMID: 33067454 PMCID: PMC7567804 DOI: 10.1038/s41467-020-18988-3] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/24/2020] [Indexed: 12/21/2022] Open
Abstract
To increase understanding of the genomic landscape of acral melanoma, a rare form of melanoma occurring on palms, soles or nail beds, whole genome sequencing of 87 tumors with matching transcriptome sequencing for 63 tumors was performed. Here we report that mutational signature analysis reveals a subset of tumors, mostly subungual, with an ultraviolet radiation signature. Significantly mutated genes are BRAF, NRAS, NF1, NOTCH2, PTEN and TYRP1. Mutations and amplification of KIT are also common. Structural rearrangement and copy number signatures show that whole genome duplication, aneuploidy and complex rearrangements are common. Complex rearrangements occur recurrently and are associated with amplification of TERT, CDK4, MDM2, CCND1, PAK1 and GAB2, indicating potential therapeutic options.
Collapse
Affiliation(s)
- Felicity Newell
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
| | - James S Wilmott
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
| | | | - Katia Nones
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Venkateswar Addala
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | | | - Natasa Broit
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Carol M Amato
- Center for Rare Melanomas, University of Colorado Cancer Center, Aurora, Colorado, USA
| | - Robert Van Gulick
- Center for Rare Melanomas, University of Colorado Cancer Center, Aurora, Colorado, USA
| | | | - Ann-Marie Patch
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | | | - Vanessa Lakis
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Conrad Leonard
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Scott Wood
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Oliver Holmes
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Qinying Xu
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Karl Lewis
- Center for Rare Melanomas, University of Colorado Cancer Center, Aurora, Colorado, USA
| | - Theresa Medina
- Center for Rare Melanomas, University of Colorado Cancer Center, Aurora, Colorado, USA
| | - Rene Gonzalez
- Center for Rare Melanomas, University of Colorado Cancer Center, Aurora, Colorado, USA
| | - Robyn P M Saw
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
- Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Andrew J Spillane
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
- Royal North Shore Hospital, Sydney, NSW, Australia
| | - Jonathan R Stretch
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
- Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Robert V Rawson
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
- Royal Prince Alfred Hospital, Sydney, NSW, Australia
- New South Wales Health Pathology, Sydney, NSW, Australia
| | - Peter M Ferguson
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
- Royal Prince Alfred Hospital, Sydney, NSW, Australia
- New South Wales Health Pathology, Sydney, NSW, Australia
| | - Tristan J Dodds
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
| | - John F Thompson
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
- Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
- Royal North Shore Hospital, Sydney, NSW, Australia
| | - Mitchell P Levesque
- Dermatology Clinic, University Hospital Zürich, University of Zurich, Zurich, Switzerland
| | - William A Robinson
- Center for Rare Melanomas, University of Colorado Cancer Center, Aurora, Colorado, USA
| | - John V Pearson
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Graham J Mann
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
- Centre for Cancer Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, Sydney, NSW, Australia
| | - Richard A Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
- Royal Prince Alfred Hospital, Sydney, NSW, Australia
- New South Wales Health Pathology, Sydney, NSW, Australia
| | - Nicola Waddell
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | | |
Collapse
|
30
|
Acebes-Fernández V, Landeira-Viñuela A, Juanes-Velasco P, Hernández AP, Otazo-Perez A, Manzano-Román R, Gongora R, Fuentes M. Nanomedicine and Onco-Immunotherapy: From the Bench to Bedside to Biomarkers. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1274. [PMID: 32610601 PMCID: PMC7407304 DOI: 10.3390/nano10071274] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/16/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022]
Abstract
The broad relationship between the immune system and cancer is opening a new hallmark to explore for nanomedicine. Here, all the common and synergy points between both areas are reviewed and described, and the recent approaches which show the progress from the bench to the beside to biomarkers developed in nanomedicine and onco-immunotherapy.
Collapse
Affiliation(s)
- Vanessa Acebes-Fernández
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (V.A.-F.); (A.L.-V.); (P.J.-V.); (A.-P.H.); (A.O.-P.); (R.G.)
| | - Alicia Landeira-Viñuela
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (V.A.-F.); (A.L.-V.); (P.J.-V.); (A.-P.H.); (A.O.-P.); (R.G.)
| | - Pablo Juanes-Velasco
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (V.A.-F.); (A.L.-V.); (P.J.-V.); (A.-P.H.); (A.O.-P.); (R.G.)
| | - Angela-Patricia Hernández
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (V.A.-F.); (A.L.-V.); (P.J.-V.); (A.-P.H.); (A.O.-P.); (R.G.)
| | - Andrea Otazo-Perez
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (V.A.-F.); (A.L.-V.); (P.J.-V.); (A.-P.H.); (A.O.-P.); (R.G.)
| | - Raúl Manzano-Román
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain;
| | - Rafael Gongora
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (V.A.-F.); (A.L.-V.); (P.J.-V.); (A.-P.H.); (A.O.-P.); (R.G.)
| | - Manuel Fuentes
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (V.A.-F.); (A.L.-V.); (P.J.-V.); (A.-P.H.); (A.O.-P.); (R.G.)
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain;
| |
Collapse
|
31
|
Claus C, Ferrara C, Xu W, Sam J, Lang S, Uhlenbrock F, Albrecht R, Herter S, Schlenker R, Hüsser T, Diggelmann S, Challier J, Mössner E, Hosse RJ, Hofer T, Brünker P, Joseph C, Benz J, Ringler P, Stahlberg H, Lauer M, Perro M, Chen S, Küttel C, Bhavani Mohan PL, Nicolini V, Birk MC, Ongaro A, Prince C, Gianotti R, Dugan G, Whitlow CT, Solingapuram Sai KK, Caudell DL, Burgos-Rodriguez AG, Cline JM, Hettich M, Ceppi M, Giusti AM, Crameri F, Driessen W, Morcos PN, Freimoser-Grundschober A, Levitsky V, Amann M, Grau-Richards S, von Hirschheydt T, Tournaviti S, Mølhøj M, Fauti T, Heinzelmann-Schwarz V, Teichgräber V, Colombetti S, Bacac M, Zippelius A, Klein C, Umaña P. Tumor-targeted 4-1BB agonists for combination with T cell bispecific antibodies as off-the-shelf therapy. Sci Transl Med 2020; 11:11/496/eaav5989. [PMID: 31189721 DOI: 10.1126/scitranslmed.aav5989] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 05/16/2019] [Indexed: 01/08/2023]
Abstract
Endogenous costimulatory molecules on T cells such as 4-1BB (CD137) can be leveraged for cancer immunotherapy. Systemic administration of agonistic anti-4-1BB antibodies, although effective preclinically, has not advanced to phase 3 trials because they have been hampered by both dependency on Fcγ receptor-mediated hyperclustering and hepatotoxicity. To overcome these issues, we engineered proteins simultaneously targeting 4-1BB and a tumor stroma or tumor antigen: FAP-4-1BBL (RG7826) and CD19-4-1BBL. In the presence of a T cell receptor signal, they provide potent T cell costimulation strictly dependent on tumor antigen-mediated hyperclustering without systemic activation by FcγR binding. We could show targeting of FAP-4-1BBL to FAP-expressing tumor stroma and lymph nodes in a colorectal cancer-bearing rhesus monkey. Combination of FAP-4-1BBL with tumor antigen-targeted T cell bispecific (TCB) molecules in human tumor samples led to increased IFN-γ and granzyme B secretion. Further, combination of FAP- or CD19-4-1BBL with CEA-TCB (RG7802) or CD20-TCB (RG6026), respectively, resulted in tumor remission in mouse models, accompanied by intratumoral accumulation of activated effector CD8+ T cells. FAP- and CD19-4-1BBL thus represent an off-the-shelf combination immunotherapy without requiring genetic modification of effector cells for the treatment of solid and hematological malignancies.
Collapse
Affiliation(s)
- Christina Claus
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Claudia Ferrara
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Wei Xu
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Johannes Sam
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Sabine Lang
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Franziska Uhlenbrock
- University of Basel, Department of Biomedicine, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Rosmarie Albrecht
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Sylvia Herter
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Ramona Schlenker
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Tamara Hüsser
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Sarah Diggelmann
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - John Challier
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Ekkehard Mössner
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Ralf J Hosse
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Thomas Hofer
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Peter Brünker
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Catherine Joseph
- Roche Innovation Center Basel, pRED, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Jörg Benz
- Roche Innovation Center Basel, pRED, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Philippe Ringler
- University of Basel, Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Henning Stahlberg
- University of Basel, Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Matthias Lauer
- Roche Innovation Center Basel, pRED, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Mario Perro
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Stanford Chen
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Christine Küttel
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Preethi L Bhavani Mohan
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Valeria Nicolini
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Martina Carola Birk
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Amandine Ongaro
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Christophe Prince
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Reto Gianotti
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Gregory Dugan
- Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Christopher T Whitlow
- Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | | | - David L Caudell
- Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | | | - J Mark Cline
- Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Michael Hettich
- Roche Innovation Center Basel, pRED, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Maurizio Ceppi
- Roche Innovation Center Basel, pRED, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Anna Maria Giusti
- Roche Innovation Center Basel, pRED, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Flavio Crameri
- Roche Innovation Center Basel, pRED, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Wouter Driessen
- Roche Innovation Center Basel, pRED, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Peter N Morcos
- Roche Innovation Center New York, pRED, 430 E 29th St, New York, NY 10016, USA
| | - Anne Freimoser-Grundschober
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Victor Levitsky
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Maria Amann
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Sandra Grau-Richards
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | | | - Stella Tournaviti
- Roche Innovation Center Munich, pRED, Nonnenwald 2, 82377 Penzberg, Germany
| | - Michael Mølhøj
- Roche Innovation Center Munich, pRED, Nonnenwald 2, 82377 Penzberg, Germany
| | - Tanja Fauti
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | | | - Volker Teichgräber
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Sara Colombetti
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Marina Bacac
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Alfred Zippelius
- University of Basel, Department of Biomedicine, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Christian Klein
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Pablo Umaña
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland.
| |
Collapse
|
32
|
Dorgaleleh S, Naghipoor K, Barahouie A, Dastaviz F, Oladnabi M. Molecular and biochemical mechanisms of human iris color: A comprehensive review. J Cell Physiol 2020; 235:8972-8982. [DOI: 10.1002/jcp.29824] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/18/2020] [Indexed: 01/01/2023]
Affiliation(s)
- Saeed Dorgaleleh
- Student Research Committee Golestan University of Medical Sciences Gorgan Iran
| | - Karim Naghipoor
- Student Research Committee Golestan University of Medical Sciences Gorgan Iran
| | - Ahmad Barahouie
- Student Research Committee Golestan University of Medical Sciences Gorgan Iran
| | - Farzad Dastaviz
- Student Research Committee Golestan University of Medical Sciences Gorgan Iran
| | - Morteza Oladnabi
- Gorgan Congenital Malformations Research Center, Golestan University of Medical Sciences Gorgan Iran
- Stem Cell Research Center, Golestan University of Medical Sciences Gorgan Iran
- Department of Medical Genetics, School of Advanced Technologies in Medicine Ischemic Disorders Research Center, Golestan University of Medical Sciences Gorgan Iran
| |
Collapse
|
33
|
Dutta S, Panda S, Singh P, Tawde S, Mishra M, Andhale V, Athavale A, Keswani SM. Hypopigmentation in burns is associated with alterations in the architecture of the skin and the dendricity of the melanocytes. Burns 2019; 46:906-917. [PMID: 31685389 DOI: 10.1016/j.burns.2019.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 08/31/2019] [Accepted: 10/02/2019] [Indexed: 10/25/2022]
Abstract
Hypopigmentation is a major problem in deep dermal burns. To date, no standard treatment is available for the post burn hypopigmentation disorder. Therefore, understanding the molecular and cellular events are of benefit for therapeutic intervention. Hematoxylin and Eosin (H&E) and Fontana Masson (FM) staining of post burn hypopigmented skin (PBHS) showed an altered architectural pattern in cellular organization, cornified layer and melanin pigment as compared to the normal skin. This was confirmed by immunohistochemistry (IHC) analysis of PBHS samples using specific marker cytokeratin 5 (CK5) for keratinocytes and melanocortin 1 receptor (MCIR) for melanocytes. Validation of these observations was performed by IHC using proliferation and differentiation markers, Ki67 and Loricrin respectively and the melanocyte specific marker tyrosinase related protein 1 (TRP1). Taking a cue from the IHC study, the interaction of keratinocytes and melanocytes was studied by developing a co-culture model from PBHS and normal skin. Culture data exhibited a change of dendritic structure, reduced proliferation rate, faulty melanin synthesis and transfer of melanin from melanocytes to keratinocytes in PBHS samples. To the best of our knowledge, this is the first study showing structural and functional aberrations of melanocytes and keratinocytes, as a potential cause of hypopigmentation in burned patients. Our study, therefore, provides valuable insight for the basis of hypopigmentation in post burn patients, which may pave the way for clinical intervention in the future.
Collapse
Affiliation(s)
- Shruti Dutta
- National Burns Centre, Sector 13, Plot no 1, Airoli, Navi Mumbai, India
| | - Sangita Panda
- National Burns Centre, Sector 13, Plot no 1, Airoli, Navi Mumbai, India
| | - Prashant Singh
- National Burns Centre, Sector 13, Plot no 1, Airoli, Navi Mumbai, India
| | - Sumit Tawde
- National Burns Centre, Sector 13, Plot no 1, Airoli, Navi Mumbai, India
| | - Mamata Mishra
- National Burns Centre, Sector 13, Plot no 1, Airoli, Navi Mumbai, India
| | - Vikas Andhale
- National Burns Centre, Sector 13, Plot no 1, Airoli, Navi Mumbai, India
| | - Angira Athavale
- National Burns Centre, Sector 13, Plot no 1, Airoli, Navi Mumbai, India
| | | |
Collapse
|
34
|
Hartman ML, Czyz M. TYRP1 mRNA level is stable and MITF-M-independent in drug-naïve, vemurafenib- and trametinib-resistant BRAF V600E melanoma cells. Arch Dermatol Res 2019; 312:385-392. [PMID: 31624899 PMCID: PMC7248034 DOI: 10.1007/s00403-019-01995-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/20/2019] [Accepted: 10/03/2019] [Indexed: 01/28/2023]
Abstract
TYRP1 mRNA is of interest due to its potential non-coding role as a sponge sequestering tumor-suppressive miRs in melanoma. To our knowledge, there is no report on changes in TYRP1 expression in melanomas after development of resistance to targeted therapies. We used patient-derived drug-naïve RASQ61R and BRAFV600E melanoma cell lines. In BRAFV600E melanoma cells, resistance to vemurafenib and trametinib was developed. A time-lapse fluorescence microscope was used to rate proliferation, qRT-PCR and Western blotting were used to assess TYRP1 expression and MITF-M level and activity. A high TYRP1 protein level in RASQ61R cells corresponded with high TYRP1 mRNA level, whereas undetectable TYRP1 protein in BRAFV600E cells was accompanied by medium mRNA level, also in cells carrying NF1R135W variant in addition. TYRP1 expression was MITF-M-independent, since similar transcript status was found in MITF-Mhigh and MITF-Mlow cells. For the first time, we showed that TYRP1 expression remained unaltered in melanoma cells that became resistant to vemurafenib or trametinib, including those cells losing MITF-M. Also drug discontinuation in resistant cells did not substantially affect TYRP1 expression. To verify in vitro results, publicly available microarray data were analyzed. TYRP1 transcript levels stay unaltered in the majority of paired melanoma samples from patients before treatment and after relapse caused by resistance to targeted therapies. As TYRP1 mRNA level remains unaltered in melanoma cells during development of resistance to vemurafenib or trametinib, therapies developed to terminate a sponge activity of TYRP1 transcript may be extended to patients that relapse with resistant disease.
Collapse
Affiliation(s)
- Mariusz L Hartman
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215, Lodz, Poland
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215, Lodz, Poland.
| |
Collapse
|
35
|
Recent Development and Clinical Application of Cancer Vaccine: Targeting Neoantigens. J Immunol Res 2018; 2018:4325874. [PMID: 30662919 PMCID: PMC6313977 DOI: 10.1155/2018/4325874] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/18/2018] [Indexed: 12/30/2022] Open
Abstract
Recently, increasing data show that immunotherapy could be a powerful weapon against cancers. Comparing to the traditional surgery, chemotherapy or radiotherapy, immunotherapy more specifically targets cancer cells, giving rise to the opportunities to the patients to have higher response rates and better quality of life and even to cure the disease. Cancer vaccines could be designed to target tumor-associated antigens (TAAs), cancer germline antigens, virus-associated antigens, or tumor-specific antigens (TSAs), which are also called neoantigens. The cancer vaccines could be cell-based (e.g., dendritic cell vaccine provenge (sipuleucel-T) targeting prostatic acid phosphatase for metastatic prostate cancer), peptide/protein-based, or gene- (DNA/RNA) based, with the different kinds of adjuvants. Neoantigens are tumor-specific and could be presented by MHC molecules and recognized by T lymphocytes, serving the ideal immune targets to increase the therapeutic specificity and decrease the risk of nonspecific autoimmunity. By targeting the shared antigens and private epitopes, the cancer vaccine has potential to treat the disease. Accordingly, personalized neoantigen-based immunotherapies are emerging. In this article, we review the literature and evidence of the advantage and application of cancer vaccine. We summarize the recent clinical trials of neoantigen cancer vaccines which were designed according to the patients' personal mutanome. With the rapid development of personalized immunotherapy, it is believed that tumors could be efficiently controlled and become curable in the new era of precision medicine.
Collapse
|
36
|
Park O, Choi ES, Yu G, Kim JY, Kang YY, Jung H, Mok H. Efficient Delivery of Tyrosinase Related Protein-2 (TRP2) Peptides to Lymph Nodes using Serum-Derived Exosomes. Macromol Biosci 2018; 18:e1800301. [PMID: 30407735 DOI: 10.1002/mabi.201800301] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/13/2018] [Indexed: 12/21/2022]
Abstract
Exosomes (EXO) are considered to be versatile carriers for biomolecules; however, the delivery of therapeutic peptides using EXOs poses several challenges. In this study, the efficiency of serum-derived EXOs in delivering tyrosinase-related protein-2 (TRP2) peptides to lymph nodes is determined. TRP2 peptides are successfully incorporated into EXOs, which show a uniform and narrow size distribution of around 45 nm. The TRP2-incorporated exosomes (EXO-TRP2) are efficiently internalized into macrophages and dendritic cells, and are seen to display a punctate distribution. EXOs loaded with TRP2 together with MPLA, (EXO-MPLA-TRP2) result in a strong release of proinflammatory cytokines (TNF-α and IL-6) from both RAW264.7 and DC2.4 cells. Finally, subcutaneous injection of fluorescently labeled EXO-TRP2 followed by ex vivo imaging using in vivo imaging system (IVIS) show a strong fluorescent signal in the lymph nodes after only 1 h, which is maintained until at least 4 h after injection. Taken together, the findings suggest that serum-derived EXOs can serve as promising carriers to deliver therapeutic peptides to lymph nodes for immunotherapy.
Collapse
Affiliation(s)
- Ok Park
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Eun Seo Choi
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Gyeonghui Yu
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jun Yeong Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Yoon Young Kang
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Heesun Jung
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hyejung Mok
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| |
Collapse
|
37
|
Lee J, Ji J, Park S. Antiwrinkle and antimelanogenesis activity of the ethanol extracts of Lespedeza cuneata G. Don for development of the cosmeceutical ingredients. Food Sci Nutr 2018; 6:1307-1316. [PMID: 30065832 PMCID: PMC6060902 DOI: 10.1002/fsn3.682] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/15/2018] [Accepted: 04/27/2018] [Indexed: 12/31/2022] Open
Abstract
To develop the ingredient with the cosmeceutical function, the antiwrinkle and antimelanogenesis effects of the ethanol extract of Lespedeza cuneata G. Don were investigated. DPPH radical scavenging activity was significantly increased with the extract of L. cuneata G. Don. Cell viability on CCD986Sk human fibroblast was also increased by the ethanol extract of L. cuneata G. Don. The inhibitory function of the extract of L. cuneata G. Don on collagenase, elastase, and tyrosinase was evaluated. Protein expression level of Claudin-1, Occludin, and ZO-1 was up-regulated in HaCaT human keratinocyte by the extract of L. cuneata G. Don. In addition, the extract of L. cuneata G. Don inhibited melanin synthesis in B16F10 murine melanoma cells by decreasing MITF, TRP1, and TRP2 protein levels and increasing the phosphorylated Erk and Akt. Thus, these findings would be useful for developing the new cosmeceutical formulations based on the extract of L. cuneata G. Don.
Collapse
Affiliation(s)
- Jongsung Lee
- Department of Genetic EngineeringSungkyunkwan UniversitySuwonKorea
| | - Jun Ji
- Department of Natural MedicineHallym UniversityChuncheonKorea
- FA CompanySejongKorea
| | - See‐Hyoung Park
- Department of Bio and Chemical EngineeringHongik UniversitySejongKorea
| |
Collapse
|
38
|
Membrane-associated human tyrosinase is an enzymatically active monomeric glycoprotein. PLoS One 2018; 13:e0198247. [PMID: 29870551 PMCID: PMC5988326 DOI: 10.1371/journal.pone.0198247] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 05/16/2018] [Indexed: 11/19/2022] Open
Abstract
Human tyrosinase (hTyr) is a Type 1 membrane bound glycoenzyme that catalyzes the initial and rate-limiting steps of melanin production in the melanosome. Mutations in the Tyr gene are linked to oculocutaneous albinism type 1 (OCA1), an autosomal recessive disorder. Currently, the application of enzyme replacement therapy for a treatment of OCA1 is hampered by the absence of pure hTyr. Here, full-length hTyr (residues 1-529) was overexpressed in Trichoplusia ni larvae infected with a baculovirus, solubilized with detergent and purified using chromatography. Michaelis-Menten kinetics, enzymatic specific activity, and analytical ultracentrifugation were used to compare the hTyr in detergent with the soluble recombinant intra-melanosomal domain, hTyrCtr (residues 19-469). Active hTyr is monomeric in detergent micelles suggesting no stable interactions between protein molecules. Both, hTyr and hTyrCtr, exhibited similar enzymatic activity and ligand affinity in L-DOPA and L-Tyrosine reactions. In addition, expression in larvae is a scalable process that will allow high yield protein production. Thus, larval production of enzymatically active human tyrosinase potentially could be a useful tool in developing a cure for OCA1.
Collapse
|
39
|
Tofani LB, Depieri LV, Campos PM, Riul TB, Antonietto KS, de Abreu Fantini MC, Bentley MVLB. In Vitro TyRP-1 Knockdown Based on siRNA Carried by Liquid Crystalline Nanodispersions: an Alternative Approach for Topical Treatment of Vitiligo. Pharm Res 2018; 35:104. [PMID: 29560584 DOI: 10.1007/s11095-017-2330-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 12/12/2017] [Indexed: 01/27/2023]
Abstract
PURPOSE Vitiligo is a skin disease characterized by depigmentation and the presence of white patches that are associated with the loss of melanocytes. The most common explanation for the cause of this condition is that it is an autoimmune condition. TyRP-1 is involved in melanin pigment synthesis but can also function as a melanocyte differentiation antigen. This protein plays a role in the autoimmune destruction of melanocytes, which results in the depigmentation, characteristic of this disease. In this study, we evaluated liquid crystalline nanodispersions as non-viral vectors to deliver siRNA-TyRP-1 as an alternative for topical treatment of vitiligo. METHODS Liquid crystalline nanodispersions were obtained and characterized with respect to their physical-chemical parameters including size, PdI and zeta potential, as well as Small Angle X-ray Scattering and complexing to siRNA. The effects of the liquid crystalline nanodispersions on the cellular viability, cell uptake and levels of the knockdown target TyRP-1 were evaluated in melan-A cells after 24 h of treatment. RESULTS The liquid crystalline nanodispersions demonstrated adequate physical-chemical parameters including nanometer size and a PdI below 0.38. These systems promoted a high rate of cell uptake and an impressive TyRP-1 target knockdown (> 80%) associated with suitable loading of TyRp-1 siRNA. CONCLUSIONS We demonstrated that the liquid crystalline nanodispersions showed promising alternative for the topical treatment of vitiligo due to their physical parameters and ability in knockdown the target protein involved with autoimmune destruction of melanocytes.
Collapse
Affiliation(s)
- Larissa Bueno Tofani
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Avenida do Café, s/n, Ribeirão Preto, SP, 14040-903, Brazil
| | - Lívia Vieira Depieri
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Avenida do Café, s/n, Ribeirão Preto, SP, 14040-903, Brazil
| | - Patrícia Mazureki Campos
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Avenida do Café, s/n, Ribeirão Preto, SP, 14040-903, Brazil
| | - Thalita Bachelli Riul
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Avenida do Café, s/n, Ribeirão Preto, SP, 14040-903, Brazil
| | - Kamilla Swiech Antonietto
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Avenida do Café, s/n, Ribeirão Preto, SP, 14040-903, Brazil
| | | | - Maria Vitória Lopes Badra Bentley
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Avenida do Café, s/n, Ribeirão Preto, SP, 14040-903, Brazil.
| |
Collapse
|
40
|
Chen XY, Li DF, Han JC, Wang B, Dong ZP, Yu LN, Pan ZH, Qu CJ, Chen Y, Sun SG, Zheng QS. Reprogramming induced by isoliquiritigenin diminishes melanoma cachexia through mTORC2-AKT-GSK3β signaling. Oncotarget 2018; 8:34565-34575. [PMID: 28410220 PMCID: PMC5470991 DOI: 10.18632/oncotarget.16655] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/15/2017] [Indexed: 12/27/2022] Open
Abstract
Isoliquiritigenin (ISL), a member of the flavonoids, is known to have anti-tumor activity in vitro and in vivo. The effect of ISL on reprogramming in cancer cells, however, remains elusive. In this study, we investigated the effect of ISL on reprogramming in human melanoma A375 cells. ISL (15 μg/ml) significantly inhibited A375 cell proliferation, anchorage independent cell proliferation and G2/M cell cycle arrest after ISL exposure for 24 h. However, there were no significant changes in apoptosis rate. Terminal differentiation indicators (melanin content, melanogenesis mRNA expression, tyrosinase (TYR) activity) were all up-regulated by ISL treatment. In ISL-treated cells, glucose uptake, lactate levels and mRNA expression levels of GLUT1 and HK2 were significantly decreased, and accompanied by an increase in O2 consumption rate (OCR) and adenosine triphosphate (ATP) deficiency. Protein expression levels of mTORC2-AKT-GSK3β signaling pathway components (mTOR, p-mTOR, RICTOR, p-AKT, p-GSK3β) decreased significantly after ISL treatment. Co-treatment of ISL and the mTOR-specific inhibitor Ku-0063794 had a synergistic effect on the inhibition of proliferation, and increased melanin content and TYR activity. Glucose uptake and lactate levels decreased more significantly than treatment with ISL alone. These findings indicate that ISL induced reprogramming in A375 melanoma cells by activating mTORC2-AKT-GSK3β signaling.
Collapse
Affiliation(s)
- Xiao-Yu Chen
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - De-Fang Li
- Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Ji-Chun Han
- Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Bo Wang
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832002, China
| | | | - Li-Na Yu
- Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Zhao-Hai Pan
- Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Chuan-Jun Qu
- Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Ying Chen
- Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Shi-Guo Sun
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | | |
Collapse
|
41
|
Mann T, Gerwat W, Batzer J, Eggers K, Scherner C, Wenck H, Stäb F, Hearing VJ, Röhm KH, Kolbe L. Inhibition of Human Tyrosinase Requires Molecular Motifs Distinctively Different from Mushroom Tyrosinase. J Invest Dermatol 2018; 138:1601-1608. [PMID: 29427586 DOI: 10.1016/j.jid.2018.01.019] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 01/03/2018] [Accepted: 01/15/2018] [Indexed: 11/20/2022]
Abstract
Tyrosinase is the rate-limiting enzyme of melanin production and, accordingly, is the most prominent target for inhibiting hyperpigmentation. Numerous tyrosinase inhibitors have been identified, but most of those lack clinical efficacy because they were identified using mushroom tyrosinase as the target. Therefore, we used recombinant human tyrosinase to screen a library of 50,000 compounds and compared the active screening hits with well-known whitening ingredients. Hydroquinone and its derivative arbutin only weakly inhibited human tyrosinase with a half-maximal inhibitory concentration (IC50) in the millimolar range, and kojic acid showed a weak efficacy (IC50 > 500 μmol/L). The most potent inhibitors of human tyrosinase identified in this screen were resorcinyl-thiazole derivatives, especially the newly identified Thiamidol (Beiersdorf AG, Hamburg, Germany) (isobutylamido thiazolyl resorcinol), which had an IC50 of 1.1 μmol/L. In contrast, Thiamidol only weakly inhibited mushroom tyrosinase (IC50 = 108 μmol/L). In melanocyte cultures, Thiamidol strongly but reversibly inhibited melanin production (IC50 = 0.9 μmol/L), whereas hydroquinone irreversibly inhibited melanogenesis (IC50 = 16.3 μmol/L). Clinically, Thiamidol visibly reduced the appearance of age spots within 4 weeks, and after 12 weeks some age spots were indistinguishable from the normal adjacent skin. The full potential of Thiamidol to reduce hyperpigmentation of human skin needs to be explored in future studies.
Collapse
Affiliation(s)
- Tobias Mann
- Front End Innovation, Beiersdorf AG, Hamburg, Germany
| | | | - Jan Batzer
- Front End Innovation, Beiersdorf AG, Hamburg, Germany
| | | | | | - Horst Wenck
- Front End Innovation, Beiersdorf AG, Hamburg, Germany
| | - Franz Stäb
- Front End Innovation, Beiersdorf AG, Hamburg, Germany
| | | | | | - Ludger Kolbe
- Front End Innovation, Beiersdorf AG, Hamburg, Germany.
| |
Collapse
|
42
|
Bracalente C, Salguero N, Notcovich C, Müller CB, da Motta LL, Klamt F, Ibañez IL, Durán H. Reprogramming human A375 amelanotic melanoma cells by catalase overexpression: Reversion or promotion of malignancy by inducing melanogenesis or metastasis. Oncotarget 2018; 7:41142-41153. [PMID: 27206672 PMCID: PMC5173048 DOI: 10.18632/oncotarget.9220] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 03/28/2016] [Indexed: 12/11/2022] Open
Abstract
Advanced melanoma is the most aggressive form of skin cancer. It is highly metastatic and dysfunctional in melanogenesis; two processes that are induced by H2O2. This work presents a melanoma cell model with low levels of H2O2 induced by catalase overexpression to study differentiation/dedifferentiation processes. Three clones (A7, C10 and G10) of human A375 amelanotic melanoma cells with quite distinct phenotypes were obtained. These clones faced H2O2 scavenging by two main strategies. One developed by clone G10 where ROS increased. This resulted in G10 migration and metastasis associated with the increased of cofilin-1 and CAP1. The other strategy was observed in clone A7 and C10, where ROS levels were maintained reversing malignant features. Particularly, C10 was not tumorigenic, while A7 reversed the amelanotic phenotype by increasing melanin content and melanocytic differentiation markers. These clones allowed the study of potential differentiation and migration markers and its association with ROS levels in vitro and in vivo, providing a new melanoma model with different degree of malignancy.
Collapse
Affiliation(s)
- Candelaria Bracalente
- Departamento de Micro y Nanotecnología, Comisión Nacional de Energía Atómica, San Martín, Buenos Aires, B1650KNA, Argentina.,Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, C1033AAJ, Argentina
| | - Noelia Salguero
- Departamento de Micro y Nanotecnología, Comisión Nacional de Energía Atómica, San Martín, Buenos Aires, B1650KNA, Argentina
| | - Cintia Notcovich
- Departamento de Micro y Nanotecnología, Comisión Nacional de Energía Atómica, San Martín, Buenos Aires, B1650KNA, Argentina
| | - Carolina B Müller
- Laboratório de Bioquímica Celular, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035 003, Brasil
| | - Leonardo L da Motta
- Laboratório de Bioquímica Celular, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035 003, Brasil
| | - Fabio Klamt
- Laboratório de Bioquímica Celular, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035 003, Brasil
| | - Irene L Ibañez
- Departamento de Micro y Nanotecnología, Comisión Nacional de Energía Atómica, San Martín, Buenos Aires, B1650KNA, Argentina.,Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, C1033AAJ, Argentina
| | - Hebe Durán
- Departamento de Micro y Nanotecnología, Comisión Nacional de Energía Atómica, San Martín, Buenos Aires, B1650KNA, Argentina.,Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, C1033AAJ, Argentina.,Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, San Martín, Buenos Aires, B1650HMP, Argentina
| |
Collapse
|
43
|
Bracalente C, Ibañez IL, Berenstein A, Notcovich C, Cerda MB, Klamt F, Chernomoretz A, Durán H. Reprogramming human A375 amelanotic melanoma cells by catalase overexpression: Upregulation of antioxidant genes correlates with regression of melanoma malignancy and with malignant progression when downregulated. Oncotarget 2018; 7:41154-41171. [PMID: 27206673 PMCID: PMC5173049 DOI: 10.18632/oncotarget.9273] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 04/02/2016] [Indexed: 12/18/2022] Open
Abstract
Reactive oxygen species (ROS) are implicated in tumor transformation. The antioxidant system (AOS) protects cells from ROS damage. However, it is also hijacked by cancers cells to proliferate within the tumor. Thus, identifying proteins altered by redox imbalance in cancer cells is an attractive prognostic and therapeutic tool. Gene expression microarrays in A375 melanoma cells with different ROS levels after overexpressing catalase were performed. Dissimilar phenotypes by differential compensation to hydrogen peroxide scavenging were generated. The melanotic A375-A7 (A7) upregulated TYRP1, CNTN1 and UCHL1 promoting melanogenesis. The metastatic A375-G10 (G10) downregulated MTSS1 and TIAM1, proteins absent in metastasis. Moreover, differential coexpression of AOS genes (EPHX2, GSTM3, MGST1, MSRA, TXNRD3, MGST3 and GSR) was found in A7 and G10. Their increase in A7 improved its AOS ability and therefore, oxidative stress response, resembling less aggressive tumor cells. Meanwhile, their decrease in G10 revealed a disruption in the AOS and therefore, enhanced its metastatic capacity. These gene signatures, not only bring new insights into the physiopathology of melanoma, but also could be relevant in clinical prognostic to classify between non aggressive and metastatic melanomas.
Collapse
Affiliation(s)
- Candelaria Bracalente
- Departamento de Micro y Nanotecnología, Comisión Nacional de Energía Atómica, San Martín, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| | - Irene L Ibañez
- Departamento de Micro y Nanotecnología, Comisión Nacional de Energía Atómica, San Martín, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| | - Ariel Berenstein
- Fundación Instituto Leloir and Departamento de Física, Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Cintia Notcovich
- Departamento de Micro y Nanotecnología, Comisión Nacional de Energía Atómica, San Martín, Buenos Aires, Argentina
| | - María B Cerda
- Departamento de Micro y Nanotecnología, Comisión Nacional de Energía Atómica, San Martín, Buenos Aires, Argentina
| | - Fabio Klamt
- Laboratório de Bioquímica Celular, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | - Ariel Chernomoretz
- Fundación Instituto Leloir and Departamento de Física, Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Hebe Durán
- Departamento de Micro y Nanotecnología, Comisión Nacional de Energía Atómica, San Martín, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina.,Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| |
Collapse
|
44
|
Gilot D, Galibert MD. miRNA displacement as a promising approach for cancer therapy. Mol Cell Oncol 2017; 5:e1406432. [PMID: 29404400 DOI: 10.1080/23723556.2017.1406432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 11/13/2017] [Accepted: 11/13/2017] [Indexed: 10/18/2022]
Abstract
microRNA (miRNA) are critical post-transcriptional regulators and key players in diseases development. We demonstrated that non-canonical microRNA Responsive Elements (here MRE-16) could sequester miR-16, dampening miR-16 tumor suppressor function. We developed small oligonucleotides, masking specifically these unusual miR-16 binding sites, that restored miR-16 function. This constitutes a promising targeted approach.
Collapse
Affiliation(s)
- David Gilot
- CNRS UMR 6290, IGDR, 2 avenue Pr Léon Bernard 35043 Rennes, France.,Université de Rennes 1, 2 avenue Pr Léon Bernard 35043 Rennes, France.,Equipe labellisée Fondation ARC, 2 avenue Pr Léon Bernard 35043 Rennes, France
| | - Marie-Dominique Galibert
- CNRS UMR 6290, IGDR, 2 avenue Pr Léon Bernard 35043 Rennes, France.,Université de Rennes 1, 2 avenue Pr Léon Bernard 35043 Rennes, France.,Equipe labellisée Fondation ARC, 2 avenue Pr Léon Bernard 35043 Rennes, France.,CHU Rennes, Génétique Somatique des Cancers, 2 Rue Henri le Guilloux, 35000 Rennes, France
| |
Collapse
|
45
|
Sadozai H, Gruber T, Hunger RE, Schenk M. Recent Successes and Future Directions in Immunotherapy of Cutaneous Melanoma. Front Immunol 2017; 8:1617. [PMID: 29276510 PMCID: PMC5727014 DOI: 10.3389/fimmu.2017.01617] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 11/08/2017] [Indexed: 12/14/2022] Open
Abstract
The global health burden associated with melanoma continues to increase while treatment options for metastatic melanoma are limited. Nevertheless, in the past decade, the field of cancer immunotherapy has witnessed remarkable advances for the treatment of a number of malignancies including metastatic melanoma. Although the earliest observations of an immunological antitumor response were made nearly a century ago, it was only in the past 30 years, that immunotherapy emerged as a viable therapeutic option, in particular for cutaneous melanoma. As such, melanoma remains the focus of various preclinical and clinical studies to understand the immunobiology of cancer and to test various tumor immunotherapies. Here, we review key recent developments in the field of immune-mediated therapy of melanoma. Our primary focus is on therapies that have received regulatory approval. Thus, a brief overview of the pathophysiology of melanoma is provided. The purported functions of various tumor-infiltrating immune cell subsets are described, in particular the recently described roles of intratumoral dendritic cells. The section on immunotherapies focuses on strategies that have proved to be the most clinically successful such as immune checkpoint blockade. Prospects for novel therapeutics and the potential for combinatorial approaches are delineated. Finally, we briefly discuss nanotechnology-based platforms which can in theory, activate multiple arms of immune system to fight cancer. The promising advances in the field of immunotherapy signal the dawn of a new era in cancer treatment and warrant further investigation to understand the opportunities and barriers for future progress.
Collapse
Affiliation(s)
- Hassan Sadozai
- Institute of Pathology, Experimental Pathology, University of Bern, Bern, Switzerland
| | - Thomas Gruber
- Institute of Pathology, Experimental Pathology, University of Bern, Bern, Switzerland
| | | | - Mirjam Schenk
- Institute of Pathology, Experimental Pathology, University of Bern, Bern, Switzerland
| |
Collapse
|
46
|
Abstract
A variety of non-coding RNAs have been reported as endogenous sponges for cancer-modulating miRNAs. However, miRNA trapping by transcripts with protein-coding functions is less understood. The mRNA of TYRP1 is now found to sequester the tumour suppressor miR-16 on non-canonical miRNA response elements in melanoma, thereby promoting malignant growth.
Collapse
Affiliation(s)
- Maria S Soengas
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), 28029 Madrid, Spain
| | - Eva Hernando
- Department of Pathology and Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, New York University School of Medicine, New York, New York 10016, USA
| |
Collapse
|
47
|
A non-coding function of TYRP1 mRNA promotes melanoma growth. Nat Cell Biol 2017; 19:1348-1357. [PMID: 28991221 DOI: 10.1038/ncb3623] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 09/06/2017] [Indexed: 02/07/2023]
Abstract
Competition among RNAs to bind miRNA is proposed to influence biological systems. However, the role of this competition in disease onset is unclear. Here, we report that TYRP1 mRNA, in addition to encoding tyrosinase-related protein 1 (TYRP1), indirectly promotes cell proliferation by sequestering miR-16 on non-canonical miRNA response elements. Consequently, the sequestered miR-16 is no longer able to repress its mRNA targets, such as RAB17, which is involved in melanoma cell proliferation and tumour growth. Restoration of miR-16 tumour-suppressor function can be achieved in vitro by silencing TYRP1 or increasing miR-16 expression. Importantly, TYRP1-dependent miR-16 sequestration can also be overcome in vivo by using small oligonucleotides that mask miR-16-binding sites on TYRP1 mRNA. Together, our findings assign a pathogenic non-coding function to TYRP1 mRNA and highlight miRNA displacement as a promising targeted therapeutic approach for melanoma.
Collapse
|
48
|
Decker H, Tuczek F. Die erste Kristallstruktur des humanen Tyrosinase-ähnlichen Proteins 1 (HsTYRP1) löst ein altes Problem und wirft ein neues auf. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201708214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Heinz Decker
- Institut für Molekulare Biologie; Johannes-Gutenberg-Universität Mainz; Jakob Welder Weg 26 55128 Mainz Deutschland
| | - Felix Tuczek
- Institut für Anorganische Chemie; Christian-Albrechts-Universität zu Kiel; Deutschland
| |
Collapse
|
49
|
Decker H, Tuczek F. The Recent Crystal Structure of Human Tyrosinase Related Protein 1 (HsTYRP1) Solves an Old Problem and Poses a New One. Angew Chem Int Ed Engl 2017; 56:14352-14354. [DOI: 10.1002/anie.201708214] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Heinz Decker
- Institute of Molecular Biology; Johannes Gutenberg-University; Jacob Welder Weg 26 55128 Mainz Germany
| | - Felix Tuczek
- Institute of Inorganic Chemistry; Christian Alberts University Kiel; Max Eyth Strasse 2 24118 Kiel Germany
| |
Collapse
|
50
|
Wang S, Huo D, Kupfer S, Alleyne D, Ogundiran TO, Ojengbede O, Zheng W, Nathanson KL, Nemesure B, Ambs S, Olopade OI, Zheng Y. Genetic variation in the vitamin D related pathway and breast cancer risk in women of African ancestry in the root consortium. Int J Cancer 2017; 142:36-43. [PMID: 28891071 DOI: 10.1002/ijc.31038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 07/07/2017] [Accepted: 07/12/2017] [Indexed: 01/08/2023]
Abstract
The vitamin D related pathway has been evaluated in carcinogenesis but its genetic contribution remains poorly understood. We examined single-nucleotide polymorphisms (SNPs) in the vitamin D related pathway genes using data from a genome-wide association study (GWAS) of breast cancer in the African Diaspora that included 3,686 participants (1,657 cases). Pathway- and gene-level analyses were conducted using the adaptive rank truncated product test. Odds ratios (OR) and 95% confidence intervals (CI) were estimated at SNP-level. After stringent Bonferroni corrections, we observed no significant association between variants in the vitamin D pathway and breast cancer risk at the pathway-, gene-, or SNP-level. In addition, no association was found for either the reported signals from GWASs of vitamin D related traits, or the SNPs within vitamin D receptor (VDR) binding regions. Furthermore, a decrease in genetically predicted 25(OH)D levels by Mendelian randomization was not associated with breast cancer (p = 0.23). However, an association for breast cancer with the pigment synthesis/metabolism pathway almost approached significance (pathway-level p = 0.08), driven primarily by a nonsense SNP rs41302073 in TYRP1, with an OR of 1.54 (95% CI = 1.24-1.91, padj = 0.007). In conclusion, we found no evidence to support an association between vitamin D status and breast cancer risk in women of African ancestry, suggesting that vitamin D is unlikely to have significant effect on breast carcinogenesis. Interestingly, TYRP1 might be related to breast cancer through a non-vitamin D relevant mechanism but further studies are needed.
Collapse
Affiliation(s)
- Shengfeng Wang
- Center for Clinical Cancer Genetics & Global Health, Department of Medicine, University of Chicago, Chicago, IL
| | - Dezheng Huo
- Department of Public Health Sciences, University of Chicago, Chicago, IL
| | - Sonia Kupfer
- Department of Medicine, University of Chicago, Chicago, Illinois
| | - Dereck Alleyne
- Department of Medicine, University of Chicago, Chicago, Illinois
| | - Temidayo O Ogundiran
- Department of Surgery, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oladosu Ojengbede
- Center for Population and Reproductive Health, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN
| | | | - Barbara Nemesure
- Department of Preventive Medicine, State University of New York at Stony Brook, Stony Brook, NY
| | - Stefan Ambs
- Laboratory of Human Carcinogenesis, National Cancer Institute, Bethesda, MD
| | - Olufunmilayo I Olopade
- Center for Clinical Cancer Genetics & Global Health, Department of Medicine, University of Chicago, Chicago, IL
| | - Yonglan Zheng
- Center for Clinical Cancer Genetics & Global Health, Department of Medicine, University of Chicago, Chicago, IL
| |
Collapse
|