1
|
Agathokleous S, Kedwell K, Casado C, Asbach C, Fonseca AS, Liisberg JB, Jensen SB, Jensen KA, Rodríguez JA, Karanasiou A, Lehmann M, Moreno T. Air quality in a bus depot and a way of improving it: effect of using air purifiers. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 375:126310. [PMID: 40288630 DOI: 10.1016/j.envpol.2025.126310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/15/2025] [Accepted: 04/24/2025] [Indexed: 04/29/2025]
Abstract
This study assessed airborne particulate matter and black carbon concentrations and their distribution inside a restricted bus depot over two campaigns. Particles with a diameter <2.5 μm were evenly distributed across the depot, influenced by limited bus activity and the depot's spacious layout with three entrances and one exit, facilitating particle dispersion. Their average baseline concentration was 25.2 μg m-3, 4.6 times higher than outdoor levels, primarily driven by bus emissions and maintenance activities. Number concentrations of particles smaller than 0.3 μm (0.01-0.3 μm) averaged 1.3 × 103 particles cm-3, while larger particles (0.3-10 μm) averaged 33 × 100 particles cm-3. Black carbon averaged 1.3 μg m-3. Concentration peaks occurred from 23:00-9:00 and 16:00-18:00 due to bus activities, maintenance, and soil resuspension. The impact of air purifiers on air quality was also investigated focusing on their location, number, and air volume flow for optimal results. APs operating at half air volume flow and placed within 6 m of the measurement equipment achieved reductions of up to 45.2 % for PM2.5 and 73.6 % for particles sized 0.3-10 μm. However, air purifiers were much less effective for particles <0.3 μm. Crossed airflows and higher air volume flow decreased effectiveness due to turbulence and particle resuspension. This study underscores the need for optimized air purifiers placement, air volume flow settings, and operational strategies to mitigate air pollution in (semi-)closed transport environments like bus depots, improving air quality and health for passengers and workers.
Collapse
Affiliation(s)
- S Agathokleous
- Institute of Environmental Assessment and Water Research (IDAEA), CSIC, Barcelona, 08034, Spain; Dept. of Natural Resources and Environment, Industrial and TIC Engineering (EMIT-UPC), Manresa, 08242, Spain
| | - K Kedwell
- MANN+HUMMEL GmbH, Ludwigsburg, 71636, Germany
| | - C Casado
- CARTIF Technology Centre, Valladolid, 47151, Spain
| | - C Asbach
- Institute of Energy and Environmental Technoloy e. V. (IUTA), Duisburg, 47229, Germany
| | - A S Fonseca
- The National Research Centre for the Working Environment (NFA), 2100, Denmark
| | - J B Liisberg
- The National Research Centre for the Working Environment (NFA), 2100, Denmark
| | - S B Jensen
- The National Research Centre for the Working Environment (NFA), 2100, Denmark
| | - K A Jensen
- The National Research Centre for the Working Environment (NFA), 2100, Denmark
| | - J A Rodríguez
- Urban Buses of Valladolid, S.A. (AUVASA), Valladolid, 47008, Spain
| | - A Karanasiou
- Institute of Environmental Assessment and Water Research (IDAEA), CSIC, Barcelona, 08034, Spain
| | - M Lehmann
- MANN+HUMMEL GmbH, Ludwigsburg, 71636, Germany
| | - T Moreno
- Institute of Environmental Assessment and Water Research (IDAEA), CSIC, Barcelona, 08034, Spain.
| |
Collapse
|
2
|
Lamote K, Delanghe S, Speeckaert MM, van Meerbeeck JP, Delanghe JR. Haptoglobin phenotype: A germline risk factor for malignant pleural mesothelioma? A case-control study. Clin Chim Acta 2025; 573:120309. [PMID: 40239912 DOI: 10.1016/j.cca.2025.120309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 03/24/2025] [Accepted: 04/12/2025] [Indexed: 04/18/2025]
Abstract
PURPOSE The pathogenesis of malignant pleural mesothelioma (MPM) is linked to asbestos-induced chronic inflammation, oxidant formation, hemolysis and subsequent hemoglobin (Hb) release, potentiating oxidative injury. Haptoglobin (Hp) serves as a major antioxidant by binding free Hb in order to prevent its harmful effects. Dependent on the Hp-phenotype, this complexing can be divergent, leading to additional formation of reactive oxygen species (ROS) above those directly induced by asbestos or released by inflammatory cells. In order to determine the Hp-phenotype as a risk factor in MPM, this case-control study compared the Hp-phenotype distribution in MPM patients with asymptomatic persons with former occupational asbestos exposure (AEx) and controls from a European population. MATERIALS AND METHODS Hp-phenotyping was done on serum samples of 118 MPM patients and 96 AEx subjects by starch gel electrophoresis. The frequencies of Hp phenotypes (Hp 1-1, Hp 2-1 and Hp 2-2) and alleles (Hp1, Hp2) were compared with those from 918 healthy control subjects. RESULTS The Hp 1-1 phenotype was overrepresented in MPM patients compared to AEx persons (P = 0.001) and healthy controls (P = 0.005). The relative risk for developing MPM when having the Hp 1-1 phenotype was 3.05 (1.47-6.34) for AEx subjects and 1.74 (1.19-2.54) for healthy controls compared to other phenotypes. CONCLUSION Our results indicate an important role of the Hp-phenotype in MPM pathogenesis suggesting that Hp 1-1 phenotypic persons are more prone for MPM development. Apart from the asbestos-induced radical formation, this finding confirms the role of oxidative stress in cancer development.
Collapse
Affiliation(s)
- Kevin Lamote
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Sigurd Delanghe
- Department of Nephrology, Ghent University Hospital, Ghent, Belgium
| | - Marijn M Speeckaert
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Department of Nephrology, Ghent University Hospital, Ghent, Belgium; Research Foundation-Flanders (FWO), Brussels, Belgium
| | - Jan P van Meerbeeck
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Thoracic Oncology/MOCA, Antwerp University Hospital, Edegem, Belgium
| | - Joris R Delanghe
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium.
| |
Collapse
|
3
|
Zhang J, Zhang X, Wang Q, Wu C. Assessing bioavailability and the toxicity of resveratrol nanoparticles: Insights from an in vivo chicken embryonic model. Food Chem Toxicol 2025; 200:115390. [PMID: 40090401 DOI: 10.1016/j.fct.2025.115390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/20/2025] [Accepted: 03/10/2025] [Indexed: 03/18/2025]
Abstract
This study evaluates the bioavailability, developmental toxicity, genotoxicity, and estrogenic effects (EA) of resveratrol nanoparticles (NPs) stabilized by Tween 80 and carboxymethyl chitosan (CMCS) using chicken embryonic models. Tween NPs exhibited smaller sizes (93.18 nm), and more homogeneous distribution compared to CMCS NPs (267.92 nm). Resveratrol-loaded CMCS NPs achieved a peak serum concentration (Cmax) of 0.462 μg/mL at 60 min, while Tween NPs showed lower bioavailability (Cmax = 0.16 μg/mL). CMCS NPs induced a higher mortality (45.0 %) at 760 μg/kg compared to Tween NPs (25.0 %) and resveratrol (0 %). Without loaded with resveratrol, Tween Empty NPs and CMCS Empty NPs showed higher mortality (51.5 % and 60.7 %, respectively). As capping agents, Tween 80 showed minimal mortality but induced malformation of 15.8 % at higher dose. CMCS increased mortality (30 %) and malformation (10 %) at 10 mg/kg. Empty NPs induced higher lipoperoxidation and DNA damage than resveratrol-loaded NPs. Tween Empty NPs significantly elevated DNA damage (p < 0.0001), while CMCS Empty NPs exhibited no genotoxic effects. Estrogen-responsive apolipoprotein II (ApoII) gene expression was significantly upregulated in the Tween Empty group (9.51 ± 3.27-fold), indicating potential EA of the nanocarrier. These findings highlight both the NPs and nanocarriers must be evaluated in safety of nano-formulations.
Collapse
Affiliation(s)
- Jinglin Zhang
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, 19716, United States
| | - Xinwen Zhang
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, 19716, United States
| | - Qin Wang
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD, 20740, United States
| | - Changqing Wu
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, 19716, United States.
| |
Collapse
|
4
|
Zhang Y, Zhang Y, Que H, Lu C, Zhou S. Occupational nanoparticles: major sources, physicochemical properties, multi-organ toxic effects, and associated mechanisms. Toxicol Mech Methods 2025:1-18. [PMID: 40394907 DOI: 10.1080/15376516.2025.2505629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Revised: 05/05/2025] [Accepted: 05/08/2025] [Indexed: 05/22/2025]
Abstract
Increased exposure to nanoscale particles (NPs) in living and occupational environments has produced various harmful effects in recent years. Owing to their small particle size and physicochemical properties, NPs can evade engineered defenses, exhibit greater toxicity, and affect the physiological functions of multiple organs in the human body through the circulatory system and biological barriers. Therefore, we should pay attention to the multi-organ toxicity effects caused by NPs and their mechanisms. High-level occupational exposure to NPs at elevated concentrations constitutes a substantial threat to the health of workers. Therefore, it is necessary to conduct a targeted assessment of the health risks of NPs in the occupational environment. This paper provides a comprehensive review of the sources of NPs in both living and occupational environments. Specifically, it highlights the disparities in the characteristics and associated toxicities between nanoscale and microscale inhalable particulate matter within the occupational context. Moreover, it delves deeply into the contributions of NPs to multi-organ toxicity effects and the underlying pathological mechanisms.
Collapse
Affiliation(s)
- Yinci Zhang
- The First Hospital of Anhui University of Science and Technology, Huainan, China
| | - Ying Zhang
- Bengbu Medical University, Bengbu, China
| | | | - Chao Lu
- The First Hospital of Anhui University of Science and Technology, Huainan, China
| | - Shuping Zhou
- The First Hospital of Anhui University of Science and Technology, Huainan, China
- Bengbu Medical University, Bengbu, China
| |
Collapse
|
5
|
Tariq Z, Williams ID, Cundy AB, Zapata-Restrepo LM. A critical review of sampling, extraction and analysis methods for tyre and road wear particles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 377:126440. [PMID: 40373858 DOI: 10.1016/j.envpol.2025.126440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 05/10/2025] [Accepted: 05/12/2025] [Indexed: 05/17/2025]
Abstract
Tyre and road wear particles (TRWPs) have become an increasing contamination concern because of their extensive distribution in the environment. A comprehensive overview of the methods for sampling, treatment and analysis of environmental samples for TRWPs (and their benefits and limitations) is lacking. We evaluate and critically assess the sampling, treatment and analysis methods previously reported for water, air, road dust and sediment/soil samples. We suggest research frameworks for studying TRWPs in these media. Microscopy and thermal analysis techniques such as scanning electron microscopy (with energy dispersive X-ray analysis), environmental scanning electron microscopy, 2-dimensional gas chromatography mass spectrometry and liquid chromatography with tandem mass spectrometry in the case of complex samples, are optimal methods for determination of the number and mass of TRWPs. Issues for further investigation and analysis recommendations are provided.
Collapse
Affiliation(s)
- Zainab Tariq
- School of Engineering, University of Southampton, Southampton, SO17 1BJ, United Kingdom.
| | - Ian D Williams
- School of Engineering, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Andrew B Cundy
- GAU-Radioanalytical, School of Ocean and Earth Science, National Oceanography Centre (Southampton), University of Southampton, Southampton, SO14 3ZH, United Kingdom
| | - Lina M Zapata-Restrepo
- Institute of Biology, Faculty of Natural and Exact Sciences, University of Antioquia, Medellín, Colombia
| |
Collapse
|
6
|
Hu P, Lu W, Gao X, Li Y, Yang Y, Yin W, Dong L, Ren R, Wang X. Atmospheric carbon monoxide and hospitalization for mental and behavioral disorders: insights from a longitudinal study in Shijiazhuang. Front Psychol 2025; 16:1573556. [PMID: 40370374 PMCID: PMC12076220 DOI: 10.3389/fpsyg.2025.1573556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 04/14/2025] [Indexed: 05/16/2025] Open
Abstract
Background and aim Carbon monoxide (CO), a prevalent environmental pollutant, has been implicated in adverse mental health outcomes, but the mechanistic relationship between atmospheric CO levels and hospital admissions for mental and behavioral disorders remains unclear. This study investigates the epidemiological link between atmospheric CO and hospitalizations for mental health conditions in Shijiazhuang, China. Methodology Clinical data from patients hospitalized with mental and behavioral disorders at The First Hospital of Hebei Medical University between January 2014 and December 2020 were analyzed. Daily atmospheric CO levels, temperature, and relative humidity were concurrently monitored. A generalized additive model (GAM) was used to explore the correlation between CO levels and hospital admissions. Blood samples from patients with depressive disorders were analyzed for MAPK3 expression, and a mouse model of CO-induced depression was employed to further explore the molecular mechanisms. Results A total of 15,890 hospitalization records were included. A significant positive correlation was identified between CO levels and the number of daily hospitalizations, with the strongest effects observed when CO concentrations exceeded 40 μg/m3. This association was most pronounced in males and individuals aged over 45, as well as during both warm and cold seasons. A two-pollutant model confirmed CO as a major factor affecting hospitalizations, independent of other pollutants like nitric oxide and sulfur dioxide. Additionally, elevated MAPK3 expression was found in the blood samples of depressed patients, and treatment with the MAPK inhibitor PD98059 alleviated CO-induced depression in a mouse model. Conclusion This study provides compelling evidence for a significant association between atmospheric CO and hospitalizations for mental and behavioral disorders. The findings suggest that CO exposure may exacerbate mental health conditions, particularly in vulnerable populations. These insights underline the importance of air quality management and highlight potential pathways for therapeutic interventions targeting CO-induced mental health disorders.
Collapse
Affiliation(s)
- Peihua Hu
- Institute of Mental Health, First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wenting Lu
- Hebei Medical University and Hebei Technical Innovation Center for Mental Health Assessment and Intervention, Hebei Clinical Research Center for Mental Disorders and Institute of Mental Health, Department of Psychiatry, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xian Gao
- Department of Clinical Pharmacy, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yating Li
- Department of Nursing, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yanli Yang
- Department of Nephrology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wanyi Yin
- Department of Hematology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Liang Dong
- Department of Hospital Infection Management, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ruojia Ren
- Hebei Medical University and Hebei Technical Innovation Center for Mental Health Assessment and Intervention, Hebei Clinical Research Center for Mental Disorders and Institute of Mental Health, Department of Psychiatry, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xueyi Wang
- Institute of Mental Health, First Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
7
|
Yang C. Relationship between long-term exposure to fine particulate air pollution and colorectal cancer mortality in Taiwan. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2025:1-10. [PMID: 40272044 DOI: 10.1080/15287394.2025.2497074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2025] [Accepted: 04/19/2025] [Indexed: 04/25/2025]
Abstract
The International Agency for Research on Cancer classified fine particulate matter (PM2.5) air pollution as carcinogenic to humans (Group I). Although PM2.5 exposure has been associated with lung cancer occurrence, few studies investigated this association with non-lung cancer. Colorectal cancer (CRC) is the third leading cause of cancer deaths both among men and women. In Taiwan, deaths attributed to CRC vary considerably across townships, suggesting involvement of the environment. The aim of this study was to examine the association between long-term ambient PM2.5 exposure and deaths attributed to CRC in 66 municipal areas across Taiwan. Annual PM2.5 levels were compared against age-standardized CRC mortality rates in male and female residents of these municipalities from 2012 to 2021. Annual PM2.5 levels of different municipalities were sub-divided into tertiles. Adjusted risk ratio (RR) was calculated by multiple regression analyses, controlling for municipal lung cancer deaths, urbanization level, annual average household income, and density of physicians in the municipal areas. For males, adjusted RRs for CRC death were 1.1 (95% CI = 1.05-1.15) for municipalities with PM2.5 levels ranging from 18.96 to 25.19 µg/m3and 1.15 (95% CI = 1.1-1.21) for levels ranging from 25.2 to 29.48 µg/m3, respectively, compared to those areas belonging to the lowest tertiles. Our analysis of trend suggested that risk of CRC-related death paralleled increases PM2.5 levels in males. For females, adjusted RRs were 1.18 (95% CI = 1.12-1.25) and 1.12 (95% CI = 1.06-1.19), respectively. Evidence indicated that long-term exposure to PM2.5 may elevate the risk of CRC-related death in both men and women in Taiwan.
Collapse
Affiliation(s)
- ChunYuh Yang
- Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- National Institute of Environmental Health Sciences, National Health Research Institute, Miaoli, Taiwan
| |
Collapse
|
8
|
Temizgul R. Ancient Hulled Wheat: An Antioxidant-Rich Crop for Boron-Contaminated Soils. ACS OMEGA 2025; 10:15334-15350. [PMID: 40290971 PMCID: PMC12019734 DOI: 10.1021/acsomega.4c11314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/28/2025] [Accepted: 03/19/2025] [Indexed: 04/30/2025]
Abstract
This study investigated the boron (B) tolerance of four ancient hulled wheat species, examining their morphological, physiological, and antioxidant responses to varying B concentrations and the mitigating effects of exogenous glycine betaine (GB). Results revealed that B initially promoted root and shoot biomass, but higher concentrations induced growth inhibition, mitigated by GB application. B exposure increased total protein content and antioxidant enzyme activities at lower concentrations but decreased them at higher concentrations, indicating oxidative stress. Exogenous GB enhanced antioxidant enzyme activities and proline accumulation, alleviating oxidative damage. These findings suggest varying B tolerance among ancient hulled wheat varieties. GB effectively mitigated B-induced stress by bolstering antioxidant defenses and promoting osmotic adjustment. This highlights the potential of ancient hulled wheat as a genetic resource for developing B-tolerant wheat cultivars.
Collapse
Affiliation(s)
- Ridvan Temizgul
- Department of Biology, Faculty
of Sciences, Erciyes University, Kayseri 38039, Türkiye
| |
Collapse
|
9
|
Hosseinzadeh SS, Balighi N, Saeidi J, Azimi‐Nezhad M, Mohtashami M, Hojat Bonab Z, Dehghani M, Ariamanesh M, Naimabadi A, Ghasemi A, Momtazi‐Borojeni AA. Preventive Effects of Vanillic Acid Against Lung Inflammation and Oxidative Stress Induced by Dust Particles in Wistar Rats. J Cell Mol Med 2025; 29:e70573. [PMID: 40289540 PMCID: PMC12034852 DOI: 10.1111/jcmm.70573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 04/03/2025] [Accepted: 04/17/2025] [Indexed: 04/30/2025] Open
Abstract
To evaluate dose-dependent cytotoxicity effects of indoor dust particles (DPs) collected from Neyshabur, Iran, in vitro on A545 cells and in vivo on lungs of healthy male Wistar rats, as well as the antioxidant effects of vanillic acid (VA) against DP inhalation. Heavy metal levels in DPs collected from high-traffic (HT), medium-traffic, low-traffic or rural (LT) zones were measured, and their cytotoxicity effects were evaluated by MTT assay. In vivo evaluations were conducted after rats were exposed to DPs collected from HT or LT in the presence or absence of VA. Exposure to DPs increased the activity of serum superoxide dismutase; the serum level of malondialdehyde; and mRNA expression of TNFα, IL6, CXCL15 and CYP1A1 in the lung homogenate groups receiving HT and LT compared to the control group. DP effects in the groups receiving HT were higher than those of LT. Concomitant VA intake attenuated the adverse effects mediated by DPs in the HT and LT groups. DPs had adverse effects on the lungs of healthy rats, probably because of the accumulated oxidative stress agents. VA could ameliorate the effects of DPs and may be considered as a protective substance against the undesirable effects of DPs.
Collapse
Affiliation(s)
| | - Nazanin Balighi
- Department of Biology, School of Basic ScienceNeyshabur Branch, Islamic Azad UniversityNeyshaburIran
| | - Jafar Saeidi
- Department of Physiology, School of Basic Science, Neyshabur BranchIslamic Azad UniversityNeyshaburIran
| | - Mohsen Azimi‐Nezhad
- Healthy Ageing Research CentreNeyshabur University of Medical SciencesNeyshaburIran
| | - Mahnaz Mohtashami
- Department of Biology, School of Basic ScienceNeyshabur Branch, Islamic Azad UniversityNeyshaburIran
| | - Zahra Hojat Bonab
- Department of Microbiology, School of Basic Science, Bonab BranchIslamic Azad UniversityBonabIran
| | - Mansoureh Dehghani
- Department of Radiation OncologyNeyshabur University of Medical SciencesNeyshaburIran
| | - Mona Ariamanesh
- Department of PathologyNeyshabur University of Medical SciencesNeyshaburIran
| | - Abolfazl Naimabadi
- Department of Environmental Health Engineering, School of Public HealthNeyshabur University of Medical SciencesNeyshaburIran
| | - Ahmad Ghasemi
- Department of Biochemistry, Nutrition and Food Sciences, School of MedicineGonabad University of Medical SciencesGonabadIran
| | - Amir Abbas Momtazi‐Borojeni
- Department of Medical Biotechnology, School of MedicineNeyshabur University of Medical SciencesNeyshaburIran
| |
Collapse
|
10
|
Rana SVS. Mechanistic paradigms of immunotoxicity, triggered by nanoparticles - a review. Toxicol Mech Methods 2025; 35:262-278. [PMID: 39585654 DOI: 10.1080/15376516.2024.2431687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/04/2024] [Accepted: 11/14/2024] [Indexed: 11/26/2024]
Abstract
Nanoparticles (NPs) possess the ability to penetrate cells and elicit a rapid and targeted immune response, influenced by their distinct physicochemical properties. These particles can engage with both micro and macromolecules, thereby impacting various downstream signaling pathways that may lead to cell death. This review provides a comprehensive overview of the primary mechanisms contributing to the immunotoxicity of both organic and inorganic nanoparticles. The effects of carbon-based nanomaterials (CNMs), including single-walled carbon nanotubes, multi-walled carbon nanotubes, graphene, and metal oxide nanoparticles, on various immune cell types such as macrophages, neutrophils, monocytes, dendritic cells (DCs), antigen-presenting cells (APCs), and RAW 264.7 cells are examined. The immune responses discussed encompass inflammation, oxidative stress, autophagy, and apoptosis. Additionally, the roles of pro-inflammatory cytokines such as IL-1β, IL-6, TNF-α, and IFN-γ, along with JAK/STAT signaling pathways, are highlighted. The interaction of NPs with oxidative stress pathways, including MAPK signaling and Nrf2/ARE signaling, is also explored. Furthermore, the mechanisms by which nanoparticles induce damage to organelles such as lysosomes, the endoplasmic reticulum, exosomes, and Golgi bodies within the immune system are addressed. The review also emphasizes the genotoxic and epigenetic mechanisms associated with the immunotoxicity of NPs. Recent advancements regarding the immunotherapeutic potential of engineered NPs are reported. The roles of autophagy and apoptosis in the immunotoxicity of NPs merit further investigation. In conclusion, understanding how engineered nanoparticles modulate immune responses may facilitate the prevention and treatment of human diseases, including cancer and autoimmune disorders.
Collapse
Affiliation(s)
- S V S Rana
- Department of Toxicology, Chaudhary Charan Singh University, Meerut, India
| |
Collapse
|
11
|
Tian YC, Yin ZM, Wang P, Li L, Huang SL, Cheng JQ, Jiang HW, Yin P. The impact of air pollutants on emergency ambulance dispatches due to mental and behavioral disorders in Shenzhen, China. BMC Public Health 2025; 25:673. [PMID: 39966854 PMCID: PMC11837661 DOI: 10.1186/s12889-025-21781-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 02/04/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND The relationships between air pollutants and mental and behavioral disorders (MBDs) remain unclear. We aimed to identify the primary pollutants affecting mental health and evaluate the short-term effects on emergency ambulance dispatches (EADs) due to MBDs. METHODS Time-stratified case-crossover study and conditional logistic regression model were adopted to explore the impact of air pollutants on EADs due to MBDs from 2013 to 2020 in Shenzhen, China. In order to clarify the influence of gender and age on association, subgroup analysis was carried out. We also applied binary response surface model and distributed lag interaction model to examine the interaction effects between pollutants and meteorological factors on EADs due to MBDs. RESULTS Nitrogen dioxide (NO2) was the primary pollutant in Shenzhen that affects the EADs due to mental and behavioral disorders, exhibiting significant immediate exposure effects and cumulative lag effects. As NO2 concentration increased, the risk of EADs due to mental and behavioral disorders showed a linear upward trend without a threshold. For each interquartile range (IQR) increase of NO2, the odds ratio (OR) associated with MBDs was highest at lag 2 in the single-day lag pattern (OR = 1.035, 95% CI: 1.012-1.060) and the effect of NO2 reached its maximum at lag 0-6 with OR of 1.078 (95% CI: 1.037-1.122). We did not observe significant associations between PM2.5, PM10, SO2, O3 and CO exposures and EADs due to MBDs. In addition, there was an interaction effect between NO2 and Humidity index (Humidex). Both high and low Humidex would aggravate the influence of pollutants on mental health. CONCLUSIONS Short exposure to NO2 was positively associated with acute onset of MBDs in Shenzhen, China. Health departments should take effective measures to raise public awareness of NO2 and Humidex, as well as their interaction effects.
Collapse
Affiliation(s)
- Yu-Chen Tian
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Qiaokou District, Wuhan, 430030, China
| | - Zi-Ming Yin
- Children's Hospital of Nanjing Medical University, Nanjing, 211112, China
| | - Peng Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Qiaokou District, Wuhan, 430030, China
| | - Lei Li
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Qiaokou District, Wuhan, 430030, China
| | - Su-Li Huang
- School of Public Health, Shenzhen University, Shenzhen, 518060, China
| | - Jin-Quan Cheng
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Hong-Wei Jiang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Qiaokou District, Wuhan, 430030, China.
| | - Ping Yin
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Qiaokou District, Wuhan, 430030, China.
| |
Collapse
|
12
|
Vaccarella E, Massimi L, Canepari S. Assessment of oxidative stress induced by atmospheric particulate matter: from acellular and cellular assays to the use of model and experimental organisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 965:178651. [PMID: 39892228 DOI: 10.1016/j.scitotenv.2025.178651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/08/2025] [Accepted: 01/24/2025] [Indexed: 02/03/2025]
Abstract
Oxidative stress is considered one of the major mechanisms by which atmospheric particulate matter (PM) can induce adverse effects on living systems. Recently, the assessment of PM-induced oxidative stress effects has gained importance, and many efforts have been invested in identifying the most suitable techniques for evaluating PM toxicological potential. This paper briefly resumes the current knowledge and criticisms related to the application of the OP and cellular assays and systematically reviews the studies focused on the assessment of PM-induced oxidative stress using model or experimental organisms. Currently, the most widely used techniques are acellular oxidative potential (OP) assays, which allow for a quick and relatively low-cost assessment of the OP of PM; however, their biological representativeness has still to be confirmed. Other popular techniques are based on the exposure of different cell lines, which allows for assessing different biological outcomes; however, they are based on simple systems unable to properly represent the response complexity of a complete biological organism. Another issue related to both OP and cellular assays is that they are mainly applied to the extracts of sampled PM filters, with a possible alteration of the actual oxidizing properties of the sample. Conversely, the use of model or experimental organisms for the assessment of PM-induced oxidative stress is less frequent in the literature, even though this would enable the evaluation of multiple stress response pathways and, in some cases, the prevention of any physicochemical alteration of PM by in situ exposure. In this review, we analyzed available papers focused on the study of oxidative stress effects induced by PM in plant and lower animal model/experimental organisms. In our opinion, increased employment of model and experimental organisms may overcome most of the criticisms shown by conventional methods.
Collapse
Affiliation(s)
- Emanuele Vaccarella
- Sapienza University of Rome, Environmental Biology Department, Rome 00185, Italy
| | - Lorenzo Massimi
- Sapienza University of Rome, Environmental Biology Department, Rome 00185, Italy; C.N.R. Institute of Atmospheric Pollution Research, Monterotondo St. (Rome), 00015, Italy.
| | - Silvia Canepari
- Sapienza University of Rome, Environmental Biology Department, Rome 00185, Italy; C.N.R. Institute of Atmospheric Pollution Research, Monterotondo St. (Rome), 00015, Italy
| |
Collapse
|
13
|
Rychlik KA, Illingworth EJ, Sillé FCM. Arsenic and the placenta: A review with emphasis on the immune system. Placenta 2025; 160:73-81. [PMID: 39778256 PMCID: PMC11927389 DOI: 10.1016/j.placenta.2024.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 12/09/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025]
Abstract
Chronic arsenic exposure affects over 140 million people globally. While arsenic easily crosses the placenta, the specific mechanisms impacting placental immune cell populations and fetal health are unclear. Maternal arsenic exposure is epidemiologically linked to increased infection risk, mortality, and cancer susceptibility in offspring, emphasizing the importance of understanding placentally-mediated immune effects. This review explores the potential role of the placenta, a key organ for immune transfer to the developing fetus, in mediating chronic low-dose arsenic exposure effects. Examining three potential pathways-direct contaminant transfer, altered immune transfer from the mother, and indirect impact on fetal immune programming via maternal and placental signaling-the review highlights studies associating maternal arsenic levels with immune-related outcomes, including changes in cord blood T cell populations and increased placental inflammation. Placental gene expression analysis reveals alterations in pathways related to oxidative stress, proteasome activity, and aquaglyceroporin transporter expression. Impact on placental DNA methylation and microRNA regulation as well as on trophoblast dysfunction is discussed, with evidence suggesting inhibited trophoblast migration and placental growth factor expression. The complexity of mixtures, nutrition, and environmental interactions add challenges to investigating the placenta's role in immune programming. Despite inconsistent findings on placental morphology alterations, evidence suggests a potential link between arsenic exposure, placental anomalies, and adverse birth outcomes. Further research is crucial to comprehend the effects of prenatal arsenic exposure on trophoblasts, placental immune cells, and subsequent long-term consequences for fetal immune development and birth outcomes.
Collapse
Affiliation(s)
- Kristal A Rychlik
- Public Health Program, School of Health Professions, University of Mary Hardin-Baylor, USA; Johns Hopkins University Bloomberg School of Public Health, USA
| | - Emily J Illingworth
- Johns Hopkins University Bloomberg School of Public Health, USA; iQ Biosciences, Alameda, CA, USA
| | - Fenna C M Sillé
- Johns Hopkins University Bloomberg School of Public Health, USA.
| |
Collapse
|
14
|
Motoc I, Ginos BNR, Goncalves Soares A, Elhakeem A, Voortman T, Kavousi M, Luik AI, Roseboom TJ, de Rooij SR. Examining associations of air pollution and green space with depressive symptoms in adults: A LongITools cross-cohort analysis. ENVIRONMENTAL RESEARCH 2025; 264:120321. [PMID: 39522873 DOI: 10.1016/j.envres.2024.120321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 10/21/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVES Evidence suggests that high levels of air pollution and less green space increase depressive symptoms in adults. However, results are mixed and cross-cohort comparisons are scarce, largely due to heterogeneity in exposure assessment. Also, the impact of these exposures on the trajectory of depressive symptoms over time has been less studied. We investigated the association of air pollution and green space with depressive symptoms in adulthood and whether these exposures modify the trajectory of depressive symptoms leveraging harmonized data from four population-based cohorts across the Netherlands and United Kingdom (UK). METHODS We analyzed data from the Dutch Famine Birth Cohort (DFBC) (n = 840, baseline ages: 56-61), and the Rotterdam Study (RS) (RS-I n = 4,049, baseline ages: 61-101 and RS-II n = 2,861, baseline ages: 55-99), in the Netherlands, and the Avon Longitudinal Study of Parents and Children (ALSPAC) (n = 17,100, baseline ages: 18-71) in the UK, each using a different validated instrument for depressive symptoms, with 3-11 repeated measures. European-wide environmental data was linked to participants' addresses at baseline. Linear mixed-models were used to estimate associations of air pollution and green space with standardized cohort-specific depressive symptoms, and whether these exposures modify the trajectory of depressive symptoms. RESULTS Long-term exposure to fine particulate matter (PM2.5) was positively associated with overall higher standardized depressive symptom scores in ALSPAC and RS-I (β per 10 μg/m3 increase in PM2.5: 0.07 SD, 95%CI 0.02, 0.11 and 0.13 SD, 95%CI 0.02, 0.24, respectively). Exposure to higher normalized difference vegetation index (NDVI) at 300 m buffer was associated with lower depressive symptoms in DFBC (β per 0.1 increase in NDVI: 0.08, 95%CI -0.14, -0.01). In RS-II, the positive effect of higher NDVI at 300-m buffer on depressive symptoms decreased over time, but this effect was very small (β per 0.1 increase in NDVI: 0.01 SD per year, 95%CI 0.00, 0.01). CONCLUSION Air pollution in the form of particulate matter as well as green space were associated with depressive symptoms across multiple cohorts. In the majority of cohorts, depressive symptoms increased with age, but we found little evidence that trajectories of depressive symptoms are influenced by exposure to environmental variables.
Collapse
Affiliation(s)
- Irina Motoc
- Amsterdam UMC location University of Amsterdam, Epidemiology and Data Science, Meibergdreef 9, Amsterdam, Netherlands; Amsterdam Reproduction & Development programs, Amsterdam, Netherlands; Amsterdam Public Health, Aging & Later Life and Mental Health programs, Amsterdam, Netherlands.
| | - Bigina N R Ginos
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Ana Goncalves Soares
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, United Kingdom; Population Health Sciences, Bristol Medical School. University of Bristol. Bristol, United Kingdom
| | - Ahmed Elhakeem
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, United Kingdom; Population Health Sciences, Bristol Medical School. University of Bristol. Bristol, United Kingdom
| | - Trudy Voortman
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Annemarie I Luik
- Trimbos Institute, Netherlands Institute of Mental Health and Addiction, Utrecht, Netherlands
| | - Tessa J Roseboom
- Amsterdam UMC location University of Amsterdam, Epidemiology and Data Science, Meibergdreef 9, Amsterdam, Netherlands; Amsterdam Reproduction & Development programs, Amsterdam, Netherlands
| | - Susanne R de Rooij
- Amsterdam UMC location University of Amsterdam, Epidemiology and Data Science, Meibergdreef 9, Amsterdam, Netherlands; Amsterdam Reproduction & Development programs, Amsterdam, Netherlands; Amsterdam Public Health, Aging & Later Life and Mental Health programs, Amsterdam, Netherlands
| |
Collapse
|
15
|
Meng X, Du W, Sun Z. Fine particulate matter‑induced cardiac developmental toxicity (Review). Exp Ther Med 2025; 29:6. [PMID: 39534282 PMCID: PMC11552469 DOI: 10.3892/etm.2024.12756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Fine particulate matter (PM2.5) has become an important risk factor threatening human health. Epidemiological and toxicological investigations have revealed that PM2.5 not only leads to cardiovascular dysfunction, but it also gives rise to various adverse health effects on the human body, such as cardiovascular and cerebrovascular diseases, cancers, neurodevelopmental disorders, depression and autism. PM2.5 is able to penetrate both respiratory and placental barriers, thereby resulting in negative effects on fetal development. A large body of epidemiological evidences has suggested that gestational exposure to PM2.5 increases the incidence of congenital diseases in offspring, including congenital heart defects. In addition, animal model studies have revealed that gestational exposure to PM2.5 can disrupt normal heart development in offspring, although the potential molecular mechanisms have yet to be fully elucidated. The aim of the present review was to provide a brief overview of what is currently known regarding the molecular mechanisms underlying cardiac developmental toxicity in offspring induced by gestational exposure to PM2.5.
Collapse
Affiliation(s)
- Xiangjiang Meng
- Department of Cardiovascular Medicine, Changle People's Hospital, Shandong Second Medical University, Weifang, Shandong 262400, P.R. China
| | - Weiyuan Du
- Department of Cardiovascular Medicine, Changle People's Hospital, Shandong Second Medical University, Weifang, Shandong 262400, P.R. China
| | - Zongli Sun
- Department of Cardiovascular Medicine, Changle People's Hospital, Shandong Second Medical University, Weifang, Shandong 262400, P.R. China
| |
Collapse
|
16
|
Zhang Y, Huang W, Xu R, Ye T, Chen G, Yue X, Coêl MDSZS, Saldiva PHN, Song J, Guo Y, Li S. Wildfire-sourced fine particulate matter and preterm birth risks in Brazil: A nationwide population-based cohort study. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136290. [PMID: 39476695 DOI: 10.1016/j.jhazmat.2024.136290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/15/2024] [Accepted: 10/23/2024] [Indexed: 12/01/2024]
Abstract
Wildfire-specific particulate matter with diameters ≤ 2.5 µm (PM2.5) is the key component of wildfire smoke, with potentially higher toxicity than PM2.5 from other sources. In this nationwide population-based cohort study, we included 22,163,195 births from Brazil during 20102019. Daily wildfire-specific PM2.5 was estimated through the chemical transport model. Time-varying Cox proportional hazards models were used to characterize the exposure-time-response (E-T-R) relationship between weekly wildfire-specific PM2.5 exposure and preterm birth (PTB) risks, followed by subgroup analyses. A 10 µg/m3 increment in wildfire-specific PM2.5 was associated with a hazard ratio of 1.047 (95 % confidence interval [CI]: 1.032-1.063) for PTB. Stronger associations between wildfire-specific PM2.5 and PTB were observed during earlier pregnancy, among female infants, and pregnant women < 18 years old, in ethnic minorities, with a length of education ≥ 11 years, from low-income or high-temperature municipalities, and residing in North/Northeast regions. An estimated 1.47 % (95 % CI: 1.01 %1.94 %) of PTBs were attributable to wildfire-specific PM2.5 in Brazil, increasing from 2010 to 2019. The PTBs attributable to wildfire-specific PM2.5 surpassed those attributed to non-wildfire PM2.5 (0.31 %, 95% CI: 0.09 %0.57 %). Wildfire emerged as a critical source contributing to the PM2.5-linked PTBs. Prioritized fire management and emission control strategies are warranted for PTB prevention.
Collapse
Affiliation(s)
- Yiwen Zhang
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Wenzhong Huang
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Rongbin Xu
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Tingting Ye
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Gongbo Chen
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Xu Yue
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, China
| | | | | | - Jiangning Song
- Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Yuming Guo
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Shanshan Li
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia.
| |
Collapse
|
17
|
Roland HB, McGuire CM, Baskin ML, Esposito MH, Baker E, Brown EE. Influence of structural racism on cancer health disparities: Tailoring measures relevant to multiple myeloma. Cancer 2024; 130:4012-4019. [PMID: 39127894 PMCID: PMC11818237 DOI: 10.1002/cncr.35512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
This commentary highlights a need for comprehensive measures of structural racism tailored to cancer health disparities, in particular Black-White disparities in multiple myeloma (MM). Recent political and social calls and advances in the ability to quantitate structural racism have led to rapidly growing research on the health consequences of structural racism. However, to date, most studies have used unidimensional measures of structural racism that do not capture cumulative influences or enable the identification of factors most responsible for driving disparities. Furthermore, measures may not reflect aspects of structural racism most relevant to underlying disease processes and risks. This study proposes a multifaceted approach to measuring structural racism relevant to MM that includes comprehensive, disease- and at-risk population-tailored social and environmental data and biomarkers of susceptibility and progression related to underlying biological changes associated with structural racism. Such novel measures of structural racism may improve the ability to assess the influence of structural racism on cancer health disparities, which may advance understanding of disease etiology and differences observed by racialized groups.
Collapse
Affiliation(s)
- Hugh B. Roland
- Department of Environmental Health Sciences, University of Alabama at Birmingham School of Public Health, Birmingham, Alabama, USA
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Cydney M. McGuire
- Paul H. O’Neill School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana, USA
| | - Monica L. Baskin
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Michael H. Esposito
- Department of Sociology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Elizabeth Baker
- Department of Sociology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Elizabeth E. Brown
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
18
|
Zhang T, Ren AX, Tong M, Li Y, Mendola P, Chen X, Wang M. Gestational exposure to wildfire PM 2.5 and its specific components and the risk of gestational hypertension and eclampsia in the southwestern United States. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175781. [PMID: 39187088 DOI: 10.1016/j.scitotenv.2024.175781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/13/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
In the southwestern United States, the frequency of summer wildfires has elevated ambient PM2.5 concentrations and rates of adverse birth outcomes. Notably, hypertensive disorders in pregnancy (HDP) constitute a significant determinant associated with maternal mortality and adverse birth outcomes. Despite the accumulating body of evidence, scant research has delved into the correlation between chemical components of wildfire PM2.5 and the risk of HDP. Derived from data provided by the National Center for Health Statistics, singleton births from >2.68 million pregnant women were selected across 8 states (Arizona, AZ; California, CA, Idaho, ID, Montana, MT; Nevada, NV; Oregon, OR; Utah, UT, and Wyoming, WY) in the southwestern US from 2001 to 2004. A spatiotemporal model and a Goddard Earth Observing System chemical transport model were employed to forecast daily concentrations of total and wildfire PM2.5-derived exposure. Various modeling techniques including unadjusted analyses, covariate-adjusted models, propensity-score matching, and double robust typical logit models were applied to assess the relationship between wildfire PM2.5 exposure and gestational hypertension and eclampsia. Exposure to fire PM2.5, fire-sourced black carbon (BC) and organic carbon (OC) were associated with an augmented risk of gestational hypertension (ORPM2.5 = 1.125, 95 % CI: 1.109,1.141; ORBC = 1.247, 95 % CI: 1.214,1.281; OROC = 1.153, 95 % CI: 1.132, 1.174) and eclampsia (ORPM2.5 = 1.217, 95 % CI: 1.145,1.293; ORBC = 1.458, 95 % CI: 1.291,1.646; OROC = 1.309, 95 % CI: 1.208,1.418) during the pregnancy exposure window with the strongest effect. The associations were stronger that the observed effects of ambient PM2.5 in which the sources primarily came from urban emissions. Social vulnerability index (SVI), education years, pre-pregnancy diabetes, and hypertension acted as effect modifiers. Gestational exposure to wildfire PM2.5 and specific chemical components (BC and OC) increased gestational hypertension and eclampsia risk in the southwestern United States.
Collapse
Affiliation(s)
- Tong Zhang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Amber X Ren
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA
| | - Mingkun Tong
- Institute of Reproductive and Child Health / Ministry of Health Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Yang Li
- Department of Environmental Science, Baylor University, Waco, TX, USA
| | - Pauline Mendola
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA
| | - Xushen Chen
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China.
| | - Meng Wang
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA; RENEW Institute, University at Buffalo, Buffalo, NY, USA; Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA.
| |
Collapse
|
19
|
Sun Z, Stuart KV, Luben RN, Auld AL, Strouthidis NG, Khaw PT, Jayaram H, Khawaja AP, Foster PJ, on behalf of the UK Biobank Eye and Vision Consortium. Association of Ambient Air Pollution Exposure With Incident Glaucoma: 12-Year Evidence From the UK Biobank Cohort. Invest Ophthalmol Vis Sci 2024; 65:22. [PMID: 39412818 PMCID: PMC11488522 DOI: 10.1167/iovs.65.12.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/16/2024] [Indexed: 10/20/2024] Open
Abstract
Purpose Glaucoma is the leading cause of irreversible blindness worldwide. Despite growing concerns about air quality and its impact on ocular health, there remains a knowledge gap regarding the long-term association between air pollution and glaucoma risk. This study investigates the relationship between exposure to ambient air pollution and incidence of glaucoma. Methods In this prospective study, we used land use regression models to estimate levels of various air pollutants, including fine particulate matter (PM2.5), PM2.5 absorbance, PM2.5-10, PM10, nitrogen dioxide (NO2), and nitrogen oxides (NOx). Incidents of glaucoma were ascertained through routinely collected hospital admission records. Multivariate Cox proportional hazards models were used to examine the associations between air pollution exposure and glaucoma incidence, adjusting for potential confounding sociodemographic, physical, and lifestyle factors. Results Data from 481,113 participants were included. Over a median follow-up of 12.8 years, 9224 incident cases of glaucoma were identified. In the maximally adjusted model, per interquartile range increase in PM2.5 was associated with a 3% greater risk of developing glaucoma (hazard ratio [HR] = 1.03, 95% confidence interval [CI] = 1.00 to 1.06, P = 0.048). Participants in the highest quartile had a 10% increased risk of developing glaucoma compared to those in the lowest quartile (HR = 1.10, 95% CI = 1.03 to 1.17, P = 0.005). Conclusions Higher levels of exposure to ambient air pollutants, particularly PM2.5, are associated with an increased risk of developing glaucoma. These results highlight the potential public health impact of ambient air pollution on glaucoma risk and underscore the urgent need for further research into targeted environmental interventions in this domain.
Collapse
Affiliation(s)
- Zihan Sun
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
- Glaucoma Service, Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Kelsey V. Stuart
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
- Glaucoma Service, Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Robert N. Luben
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
- Glaucoma Service, Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Amy L. Auld
- Glaucoma Service, Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Nicholas G. Strouthidis
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
- Glaucoma Service, Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
- Discipline of Clinical Ophthalmology and Eye Health, University of Sydney, Sydney, New South Wales, Australia
| | - Peng T. Khaw
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
- Glaucoma Service, Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Hari Jayaram
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
- Glaucoma Service, Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Anthony P. Khawaja
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
- Glaucoma Service, Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Paul J. Foster
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
- Glaucoma Service, Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - on behalf of the UK Biobank Eye and Vision Consortium
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
- Glaucoma Service, Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
- Discipline of Clinical Ophthalmology and Eye Health, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
20
|
Wang SN, Shi YC, Lin S, He HF. Particulate matter 2.5 accelerates aging: Exploring cellular senescence and age-related diseases. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116920. [PMID: 39208581 DOI: 10.1016/j.ecoenv.2024.116920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Exposure to Particulate matter 2.5 (PM2.5) accelerates aging, causing declines in tissue and organ function, and leading to diseases such as cardiovascular, neurodegenerative, and musculoskeletal disorders. PM2.5 is a major environmental pollutant and an exogenous pathogen in air pollution that is now recognized as an accelerator of human aging and a predisposing factor for several age-related diseases. In this paper, we seek to elucidate the mechanisms by which PM2.5 induces cellular senescence, such as genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, and mitochondrial dysfunction, and age-related diseases. Our goal is to increase awareness among researchers within the field of the toxicity of environmental pollutants and to advocate for personal and public health initiatives to curb their production and enhance population protection. Through these endeavors, we aim to promote longevity and health in older adults.
Collapse
Affiliation(s)
- Sheng-Nan Wang
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Yan-Chuan Shi
- Centre of Neurological and Metabolic Research, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China; Group of Neuroendocrinology, Garvan Institute of Medical Research, 384 Victoria St, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Australia
| | - Shu Lin
- Centre of Neurological and Metabolic Research, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China; Group of Neuroendocrinology, Garvan Institute of Medical Research, 384 Victoria St, Sydney, Australia.
| | - He-Fan He
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China.
| |
Collapse
|
21
|
Kumar SH, Acharyya S, Chouksey A, Soni N, Nazeer N, Mishra PK. Air pollution-linked epigenetic modifications in placental DNA: Prognostic potential for identifying future foetal anomalies. Reprod Toxicol 2024; 129:108675. [PMID: 39074641 DOI: 10.1016/j.reprotox.2024.108675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/11/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024]
Abstract
Prenatal exposure to air pollution is a significant risk factor for the mother and the developing foetus. The accumulation of pollutants in the placenta can cause a self-cascade loop of pro-inflammatory cytokine responses and DNA double-strand breaks. Previous research has shown that airborne particulate matter can damage the epigenome and disturb mitochondrial machinery, ultimately impairing placental function. Mitochondria are essential for preserving cellular homeostasis, energy metabolism, redox equilibrium, and epigenetic reprogramming. As these organelles are subtle targets of environmental exposures, any disruption in the signaling pathways can result in epigenomic instability, which can impact gene expression and mitochondrial function. This, in turn, can lead to changes in DNA methylation, post-translational histone modifications, and aberrant expression of microRNAs in proliferating trophoblast cells. The placenta has two distinct layers, cytotrophoblasts, and syncytiotrophoblasts, each with its mitochondria, which play important roles in preeclampsia, gestational diabetes, and overall health. Foetal nucleic acids enter maternal circulation during placental development because of necrotic, apoptotic, and inflammatory mechanisms. These nucleic acids reflect normal or abnormal ongoing cellular changes during prenatal foetal development. Detecting cell-free DNA in the bloodstream can be a biomarker for predicting negative pregnancy-related outcomes and recognizing abnormalities in foetal growth. Hence, a thorough understanding of how air pollution induces epigenetic variations within the placenta could offer crucial insights into underlying mechanisms and prolonged repercussions on foetal development and susceptibility in later stages of life.
Collapse
Affiliation(s)
- Sruthy Hari Kumar
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Sayanti Acharyya
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Apoorva Chouksey
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Nikita Soni
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Nazim Nazeer
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Pradyumna Kumar Mishra
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India.
| |
Collapse
|
22
|
Singh S, Goel I, Tripathi S, Ahirwar A, Kumar M, Rana A, Dhar R, Karmakar S. Effect of environmental air pollutants on placental function and pregnancy outcomes: a molecular insight. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:59819-59851. [PMID: 39388084 DOI: 10.1007/s11356-024-35016-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024]
Abstract
Air pollution has become a major health concern, particularly for vulnerable populations such as the elderly, children, and pregnant women. Studies have reported a strong association between prenatal exposure to air pollutants and adverse pregnancy outcomes, including lower birth weight, reduced fetal growth, and an increased frequency of preterm births. This review summarizes the harmful effects of air pollutants, such as particulate matter, on pregnancy and outlines the mechanistic details associated with these adverse outcomes. Particulate pollutant matter may be able to cross the placenta barrier, and alterations in placental functions are central to the detrimental effects of these pollutants. In addition to associations with preeclampsia and gestational hypertension, air pollutants also induce oxidative stress, inflammation, and epigenetic alteration in the placenta. These pollutants can also affect placental homeostasis and endocrine function, contributing to pregnancy complications and possible transgenerational effects. Prenatal air pollution exposure has been linked to reduced cognitive and motor function in infants and newborns, increasing the predisposition to autism spectrum disorders and other neuropsychiatric disorders. This review also summarizes the use of various animal models to study the harmful effects of air pollution on pregnancy and postnatal outcomes. These findings provide valuable insight into the molecular events associated with the process and can aid in risk mitigation and adopting safety measures. Implementing effective environmental protocols and taking appropriate steps may reduce the global disease burden, particularly for developing nations with poor regulatory compliance and large populations of pregnant women.
Collapse
Affiliation(s)
- Sunil Singh
- Department of Biochemistry, All India Institute of Medical Sciences, Room 3020, New Delhi, 110029, India
| | - Isha Goel
- Department of Psychiatry, All India Institute of Medical Sciences, New Delhi, India
| | - Smita Tripathi
- Department of Biochemistry, Lady Harding Medical College, New Delhi, India
| | - Ashok Ahirwar
- Department of Lab Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Megha Kumar
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Habsiguda, Hyderabad, India
| | - Anubhuti Rana
- Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences, New Delhi, India
| | - Ruby Dhar
- Department of Biochemistry, All India Institute of Medical Sciences, Room 3020, New Delhi, 110029, India
| | - Subhradip Karmakar
- Department of Biochemistry, All India Institute of Medical Sciences, Room 3020, New Delhi, 110029, India.
| |
Collapse
|
23
|
Qamar W, Gulia S, Athar M, Ahmad R, Imam MT, Chandra P, Singh BP, Haque R, Hassan MI, Rahman S. An insight into impact of nanomaterials toxicity on human health. PeerJ 2024; 12:e17807. [PMID: 39364370 PMCID: PMC11448750 DOI: 10.7717/peerj.17807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/03/2024] [Indexed: 10/05/2024] Open
Abstract
In recent years, advances in nanotechnology have significantly influenced electronics manufacturing, industrial processes, and medical research. Various industries have seen a surge in the use of nanomaterials. However, several researchers have raised the alarm about the toxicological nature of nanomaterials, which appear to be quite different from their crude forms. This altered nature can be attributed to their unique physicochemical profile. They can adversely affect human health and the environment. Nanomaterials that have been released into the environment tend to accumulate over time and can cause a significant impact on the ecosystem and organisms with adverse health effects. Increased use of nanoparticles has led to increased human exposure in their daily lives, making them more vulnerable to nanoparticle toxicity. Because of their small size, nanomaterials can readily cross biological membranes and enter cells, tissues, and organs. Therefore, the effect of nanomaterials on the human environment is of particular concern. The toxicological effects of nanomaterials and their mechanisms of action are being researched worldwide. Technological advances also support monitoring new nanomaterials marketed for industrial and household purposes. It is a challenging area because of the exceptional physicochemical properties of nanomaterials. This updated review focuses on the diverse toxicological perspective of nanomaterials. We have discussed the use of different types of nanoparticles and their physiochemical properties responsible for toxicity, routes of exposure, bio-distribution, and mechanism of toxicity. The review also includes various in vivo and in vitro methods of assessing the toxicity of nanomaterials. Finally, this review will provide a detailed insight into nano material-induced toxicological response, which can be beneficial in designing safe and effective nanoparticles.
Collapse
Affiliation(s)
- Wajhul Qamar
- Department of Pharmacology and Toxicology and Central Laboratory, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Shweta Gulia
- Department of Biotechnology, Delhi Technological University, New Delhi, India
| | - Mohammad Athar
- Department of Medical Genetics, Umm Al-Qura University, Makkah, Saudi Arabia
- Science and Technology Unit, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Razi Ahmad
- Department of Chemistry, Indian Institute of Technology, Delhi, New Delhi, India
| | - Mohammad Tarique Imam
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Prakash Chandra
- Department of Biotechnology, Delhi Technological University, New Delhi, India
| | - Bhupendra Pratap Singh
- Department of Environmental Studies, Deshbandhu College, University of Delhi, New Delhi, India
| | - Rizwanul Haque
- Department of Biotechnology, Central University of South Bihar, Gaya, Bihar, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia University, New Delhi, India
| | - Shakilur Rahman
- Department of Medical Elementology and Toxicology, Jamia Hamdard University, New Delhi, India
| |
Collapse
|
24
|
Zhao X, Xu H, Li Y, Liu Y, Guo C, Li Y. Status and frontier analysis of indoor PM 2.5-related health effects: a bibliometric analysis. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 39:479-498. [PMID: 36976918 DOI: 10.1515/reveh-2022-0228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Epidemiological data indicate atmospheric particulate matter, especially fine particulate matter (PM2.5), has many negative effects on human health. Of note, people spend about 90% of their time indoors. More importantly, according to the World Health Organization (WHO) statistics, indoor air pollution causes nearly 1.6 million deaths each year, and it is considered as one of the major health risk factors. In order to obtain a deeper understanding of the harmful effects of indoor PM2.5 on human health, we used bibliometric software to summarize articles in this field. In conclusion, since 2000, the annual publication volume has increased year by year. America topped the list for the number of articles, and Professor Petros Koutrakis and Harvard University were the author and institution with the most published in this research area, respectively. Over the past decade, scholars gradually paid attention to molecular mechanisms, therefore, the toxicity can be better explored. Particularly, apart from timely intervention and treatment for adverse consequences, it is necessary to effectively reduce indoor PM2.5 through technologies. In addition, the trend and keywords analysis are favorable ways to find out future research hotspots. Hopefully, various countries and regions strengthen academic cooperation and integration of multi-disciplinary.
Collapse
Affiliation(s)
- Xinying Zhao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Hailin Xu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Yan Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, China
| | - Yufan Liu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Caixia Guo
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, China
| | - Yanbo Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| |
Collapse
|
25
|
Thongsak N, Chitapanarux T, Chotirosniramit A, Chakrabandhu S, Traisathit P, Nakharutai N, Srikummoon P, Thumronglaohapun S, Supasri T, Hemwan P, Chitapanarux I. Air pollutants and primary liver cancer mortality: a cohort study in crop-burning activities and forest fires area. Front Public Health 2024; 12:1389760. [PMID: 39381772 PMCID: PMC11459313 DOI: 10.3389/fpubh.2024.1389760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/26/2024] [Indexed: 10/10/2024] Open
Abstract
Introduction Northern Thailand experiences high levels of air pollution in the dry season due to agricultural waste burning and forest fires. Some air pollutants can enter the bloodstream, and the liver has the role of detoxifying these along with other harmful substances. In this study, we assessed the effects of long-term exposure to air pollutants on liver cancer mortality in this area. Methods A cohort of 10,859 primary liver cancer patients diagnosed between 2003 and 2018 and followed up to the end of 2020 were included in the study. Extended time-varying covariates of the annually averaged pollutant concentrations updated each year were utilized. The associations between air pollutants and mortality risk were examined by using a Cox proportional hazard model. Results Metastatic cancer stage had the highest adjusted hazard ratio (aHR) of 3.57 (95% confidence interval (CI):3.23-3.95). Being male (aHR = 1.10; 95% CI: 1.04-1.15), over 60 years old (aHR = 1.16; 95% CI: 1.11-1.21), having a history of smoking (aHR = 1.16; 95%CI: 1.11-1.22), and being exposed to a time-updated local concentration of PM2.5 of 40 μg/m3 (aHR = 1.10; 95% CI: 1.05-1.15) increased the mortality risk. Conclusion We found that air pollution is one of several detrimental factors on the mortality risk of liver cancer.
Collapse
Affiliation(s)
- Natthapat Thongsak
- Department of Statistics, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Taned Chitapanarux
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Anon Chotirosniramit
- Division of Hepatobiliary-Pancreatic Surgery, Department of Surgery, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Somvilai Chakrabandhu
- Division of Radiation Oncology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Patrinee Traisathit
- Department of Statistics, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Nawapon Nakharutai
- Department of Statistics, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Pimwarat Srikummoon
- Department of Statistics, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | | | - Titaporn Supasri
- Atmospheric Research Unit of National Astronomical Research Institute of Thailand, Chiang Mai, Thailand
| | - Phonpat Hemwan
- Geo-Informatics and Space Technology Centre (Northern Region), Department of Geography, Faculty of Social Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Imjai Chitapanarux
- Division of Radiation Oncology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
26
|
Kang JY, Choi H, Oh JM, Kim M, Lee DC. PM 2.5 Induces Pyroptosis via Activation of the ROS/NF-κB Signaling Pathway in Bronchial Epithelial Cells. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1434. [PMID: 39336475 PMCID: PMC11434086 DOI: 10.3390/medicina60091434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024]
Abstract
Background and Objectives: Fine particulate matter, PM2.5, is becoming a major threat to human health, particularly in terms of respiratory diseases. Pyroptosis is a recently discovered and distinct form of cell death, characterized by pore formation in the cell membrane and secretions of proinflammatory cytokines. There has been little research on the effect of PM2.5 on pyroptosis, especially in airway epithelium. We investigated whether PM2.5-related oxidative stress induces pyroptosis in bronchial epithelial cells and defined the underlying mechanisms. Materials and Methods: After exposure of a BEAS-2B cell line to PM2.5 concentration of 20 µg/mL, reactive oxygen species (ROS) levels, parameters related to pyroptosis, and NF-κB signaling were measured by Western blotting, immunofluorescence, and ELISA (Enzyme-linked immunosorbent assay). Results: PM2.5 induced pyroptotic cell death, accompanied by LDH (Lactate dehydrogenase) release and increased uptake of propidium iodide in a dose-dependent manner. PM2.5 activated the NLRP3-casp1-gasdermin D pathway, with resulting secretions of the proinflammatory cytokines IL-1β and IL-18. The pyroptosis activated by PM2.5 was alleviated significantly by NLRP3 inhibitor. In PM2.5-exposed BEAS-2B cells, levels of intracellular ROS and NF-κB p65 increased. ROS scavenger inhibited the expression of the NLRP3 inflammasome, and the NF-κB inhibitor attenuated pyroptotic cell death triggered by PM2.5 exposure, indicating that the ROS/NF-κB pathway is involved in PM2.5-induced pyroptosis. Conclusions: These findings show that PM2.5 exposure can cause cell injury by NLRP3-inflammasome-mediated pyroptosis by upregulating the ROS/NF-κB pathway in airway epithelium.
Collapse
Affiliation(s)
- Ji-Young Kang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Jeju National University Hospital, 15 Aran 13-gil, Jeju-si 63241, Republic of Korea
| | - Hyunsu Choi
- Clinical Research Institute, Daejeon St. Mary's Hospital, Daeheung-dong, Jung-gu, Daejeon 34943, Republic of Korea
| | - Jeong-Min Oh
- Clinical Research Institute, Daejeon St. Mary's Hospital, Daeheung-dong, Jung-gu, Daejeon 34943, Republic of Korea
| | - Minsu Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 64 Daeheung-ro, Jung-gu, Daejeon 34943, Republic of Korea
| | - Dong-Chang Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 64 Daeheung-ro, Jung-gu, Daejeon 34943, Republic of Korea
| |
Collapse
|
27
|
Holzhausen E, Chalifour BN, Tan Y, Young N, Lurmann F, Jones DP, Sarnat JA, Chang HH, Goran MI, Liang D, Alderete TL. Prenatal and Early Life Exposure to Ambient Air Pollutants Is Associated with the Fecal Metabolome in the First Two Years of Life. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:14121-14134. [PMID: 39086199 PMCID: PMC11325649 DOI: 10.1021/acs.est.4c02929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 08/02/2024]
Abstract
Prenatal and early life air pollution exposure has been linked with several adverse health outcomes. However, the mechanisms underlying these relationships are not yet fully understood. Therefore, this study utilizes fecal metabolomics to determine if pre- and postnatal exposure to ambient air pollutants (i.e., PM10, PM2.5, and NO2) is associated with the fecal metabolome in the first 2 years of life in a Latino cohort from Southern California. The aims of this analysis were to estimate associations between (1) prenatal air pollution exposure with fecal metabolic features at 1-month of age, (2) prior month postnatal air pollution exposure with fecal metabolites from 1-month to 2 years of age, and (3) how postnatal air pollution exposure impacts the change over time of fecal metabolites in the first 2 years of life. Prenatal exposure to air pollutants was associated with several Level-1 metabolites, including those involved in vitamin B6 and tyrosine metabolism. Prior month air pollution exposure in the postnatal period was associated with Level-1 metabolites involved in histidine metabolism. Lastly, we found that pre- and postnatal ambient air pollution exposure was associated with changes in metabolic features involved in metabolic pathways including amino acid metabolism, histidine metabolism, and fatty acid metabolism.
Collapse
Affiliation(s)
- Elizabeth
A. Holzhausen
- Department
of Integrative Physiology, University of
Colorado Boulder, Boulder, Colorado 80309, United States
- Department
of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, United States
| | - Bridget N. Chalifour
- Department
of Integrative Physiology, University of
Colorado Boulder, Boulder, Colorado 80309, United States
| | - Youran Tan
- Rollins
School of Public Health, Emory University, Atlanta, Georgia 30322, United States
| | - Nathan Young
- Department
of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, United States
| | - Fred Lurmann
- Sonoma
Technology Inc., Petaluma, California 94954, United States
| | - Dean P. Jones
- Rollins
School of Public Health, Emory University, Atlanta, Georgia 30322, United States
| | - Jeremy A. Sarnat
- Rollins
School of Public Health, Emory University, Atlanta, Georgia 30322, United States
| | - Howard H. Chang
- Rollins
School of Public Health, Emory University, Atlanta, Georgia 30322, United States
| | - Michael I. Goran
- Children’s
Hospital Los Angeles, Los Angeles, California 90027, United States
| | - Donghai Liang
- Rollins
School of Public Health, Emory University, Atlanta, Georgia 30322, United States
| | - Tanya L. Alderete
- Department
of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, United States
| |
Collapse
|
28
|
Nookongbut P, Thiravetyan P, Salsabila S, Widiana A, Krobthong S, Yingchutrakul Y, Treesubsuntorn C. Application of Acinetobacter indicus to promote cigarette smoke particulate matter phytoremediation: removal efficiency and plant-microbe interactions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:52352-52370. [PMID: 39145908 DOI: 10.1007/s11356-024-34658-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 08/03/2024] [Indexed: 08/16/2024]
Abstract
Particulate matter (PM) is one of the most hazardous atmospheric pollutants. Several plant species show high potential to reduce air pollutants and are widely used as green belts to provide clean outdoor spaces for human well-being. However, high PM concentrations cause physiological changes and stress in plants. In this study, 11 species of Thai native perennial plants were exposed to PM generated from tobacco smoke. Wrightia religiosa (Teijsm. & Binn.) Benth. ex Kurz, Bauhinia purpurea DC. ex Walp. and Tectona grandis L.f. reduced PM effectively (which is in the typical range of 43.95 to 52.97%) compared to other plant species. In addition, the responses of perennial plants under PM stress at the proteomic level were also evaluated. Proteomic analysis of these three plant species showed that plants respond negatively to high PM concentrations, such as reducing several photosynthetic-related proteins and increasing plant stress response proteins. To improve PM phytoremediation efficiency and reduce plant stress from PM, perennial plant-microbe interactions were investigated. W. religiosa was inoculated with Acinetobacter indicus PS1, and high biosurfactant-producing strains clearly showed a higher PM removal efficiency than non-inoculated plants (9.48, 9.5 and 12.6% for PM1.0, PM2.5 and PM10, respectively). Inoculating W. religiosa with A. indicus PS1 maintained chlorophyll a and b concentrations. Moreover, the malondialdehyde (MDA) concentration of W. religiosa inoculated with A. indicus PS1 was lower than that of non-inoculated W. religiosa. The leaf wax content (µg/cm2) and biosurfactant (µg/cm2) of W. religiosa inoculated with A. indicus PS1 were also higher than those of non-inoculated W. religiosa. This study clearly showed that inoculating plants with A. indicus PS1 can help plants remediate PM and improve their PM stress response.
Collapse
Affiliation(s)
- Phitthaya Nookongbut
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Paitip Thiravetyan
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Salma Salsabila
- Department of Biology, Faculty of Science and Technology, State Islamic University Sunan Gunung Djati Bandung, Bandung City, West Java, 40614, Indonesia
| | - Ana Widiana
- Department of Biology, Faculty of Science and Technology, State Islamic University Sunan Gunung Djati Bandung, Bandung City, West Java, 40614, Indonesia
| | - Sucheewin Krobthong
- Interdisciplinary Graduate Program in Genetic Engineering, Kasetsart University, Bangkok, 10900, Thailand
| | - Yodying Yingchutrakul
- Proteomics Research Team, National Omics Center, NSTDA, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Chairat Treesubsuntorn
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand.
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand.
| |
Collapse
|
29
|
Poblano-Bata J, Zaragoza-Ojeda M, De Vizcaya-Ruiz A, Arenas-Huertero F, Amador-Muñoz O. Toxicological effects of solvent-extracted organic matter associated with PM 2.5 on human bronchial epithelial cell line NL-20. CHEMOSPHERE 2024; 362:142622. [PMID: 38880264 DOI: 10.1016/j.chemosphere.2024.142622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/02/2024] [Accepted: 06/14/2024] [Indexed: 06/18/2024]
Abstract
The heterogeneity and complexity of solvent-extracted organic matter associated with PM2.5 (SEOM-PM2.5) is well known; however, there is scarce information on its biological effects in human cells. This work aimed to evaluate the effect of SEOM-PM2.5 collected in northern Mexico City during the cold-dry season (November 2017) on NL-20 cells, a human bronchial epithelial cell line. The SEOM obtained accounted for 15.5% of the PM2.5 mass and contained 21 polycyclic aromatic hydrocarbons (PAHs). The cell viability decreased following exposure to SEOM-PM2.5, and there were noticeable morphological changes such as increased cell size and the presence of cytoplasmic vesicles in cells treated with 5-40 μg/mL SEOM-PM2.5. Exposure to 5 μg/mL SEOM-PM2.5 led to several alterations compared with the control cells, including the induction of double-stranded DNA breaks based (p < 0.001); nuclear fragmentation and an increased mitotic index (p < 0.05); 53BP1 staining, a marker of DNA repair by non-homologous end-joining (p < 0.001); increased BiP protein expression; and reduced ATF6, IRE1α, and PERK gene expression. Conversely, when exposed to 40 μg/mL SEOM-PM2.5, the cells showed an increase in reactive oxygen species formation (p < 0.001), BiP protein expression (p < 0.05), and PERK gene expression (p < 0.05), indicating endoplasmic reticulum stress. Our data suggest concentration-dependent toxicological effects of SEOM-PM2.5 on NL-20 cells, including genotoxicity, genomic instability, and endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Josefina Poblano-Bata
- Especiación Química de Aerosoles Orgánicos Atmosféricos, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México. Investigación Científica s/n, C.U., Coyoacán, Mexico City, 04510, Mexico; Centro de Investigación en Biomedicina y Bioseguridad, Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Mexico City, 06720, Mexico.
| | - Montserrat Zaragoza-Ojeda
- Centro de Investigación en Biomedicina y Bioseguridad, Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Mexico City, 06720, Mexico.
| | - Andrea De Vizcaya-Ruiz
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados-IPN, Ciudad de México, 07360, Mexico.
| | - Francisco Arenas-Huertero
- Centro de Investigación en Biomedicina y Bioseguridad, Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Mexico City, 06720, Mexico.
| | - Omar Amador-Muñoz
- Especiación Química de Aerosoles Orgánicos Atmosféricos, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México. Investigación Científica s/n, C.U., Coyoacán, Mexico City, 04510, Mexico.
| |
Collapse
|
30
|
Kim C, Jeong SH, Lee H, Nam YJ, Lee H, Choi JY, Lee YS, Kim J, Park YH, Lee JH. Subchronic particulate matter exposure underlying polyhexamethylene guanidine phosphate-induced lung injury: Quantitative and qualitative evaluation with chest computed tomography. Heliyon 2024; 10:e34562. [PMID: 39113974 PMCID: PMC11305277 DOI: 10.1016/j.heliyon.2024.e34562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Our study was to explore the effects of subchronic particulate matter (PM) exposure on lung injury induced by polyhexamethylene guanidine phosphate (PHMG-p) in a rat model. Specifically, we investigated pulmonary inflammation, fibrosis, and tumor formation using chest computed tomography (CT), and histopathologic examination. PHMG-p was administered intratracheally to 20 male rats. After an initial week of PHMG-p treatment, the experimental group (PM group) received intratracheal administration of PM suspension, while the control group received normal saline. This regimen was continued for 10 weeks to induce subchronic PM exposure. Chest CT scans were conducted on all rats, followed by the extraction of both lungs for histopathological analysis. All CT images underwent comprehensive quantitative and qualitative analyses. Pulmonary inflammation was markedly intensified in rats subjected to subchronic PM exposure in the PM group compared to those in the control. Similarly, lung fibrosis was more severe in the PM group as observed on both chest CT and histopathologic examination. Quantitative chest CT analysis revealed that the mean lesion volume was significantly greater in the PM group than in the control group. Although the incidence of bronchiolo-alveolar hyperplasia was higher in the PM group compared to the control group, this difference was not statistically significant. In summary, subchronic PM exposure exacerbated pulmonary inflammation and fibrosis underlying lung injury induced by PHMG-p.
Collapse
Affiliation(s)
- Cherry Kim
- Department of Radiology, Ansan Hospital, Korea University College of Medicine, 123, Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi, 15355, South Korea
| | - Sang Hoon Jeong
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, 123, Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi, 15355, South Korea
| | - Hong Lee
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, 123, Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi, 15355, South Korea
| | - Yoon Jeong Nam
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, 123, Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi, 15355, South Korea
| | - Hyejin Lee
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, 123, Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi, 15355, South Korea
| | - Jin Young Choi
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, 123, Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi, 15355, South Korea
| | - Yu-Seon Lee
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, 123, Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi, 15355, South Korea
| | - Jaeyoung Kim
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, 123, Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi, 15355, South Korea
| | - Yoon Hee Park
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, 123, Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi, 15355, South Korea
| | - Ju-Han Lee
- Department of Pathology, Ansan Hospital, Korea University College of Medicine, 123, Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi, 15355, South Korea
| |
Collapse
|
31
|
Roh S, Hwang J, Park JH, Song DJ, Gim JA. Particulate matter-induced gene expression patterns in human-derived cells based on 11 public gene expression datasets. Genes Genomics 2024; 46:743-749. [PMID: 38733519 DOI: 10.1007/s13258-024-01512-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/04/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND Exposure to particulate matter (PM) and house dust mite (HDM) can change the expression patterns of inflammation-, oxidative stress-, and cell death-related genes. We investigated the changes in gene expression patterns owing to PM exposure. OBJECTIVE This study examined the changes in gene expression patterns following PM exposure. METHODS We searched for differentially expressed genes (DEGs) following PM exposure using five cell line-based RNA-seq or microarray datasets and six human-derived datasets. The enrichment terms of the DEGs were assessed. RESULTS DEG analysis yielded two gene sets. Thus, enrichment analysis was performed for each gene set, and the enrichment terms related to respiratory diseases were presented. The intersection of six human-derived datasets and two gene sets was obtained, and the expression patterns following PM exposure were observed. CONCLUSIONS Two gene sets were obtained for cells treated with PM and their expression patterns were presented following verification in human-derived cells. Our findings suggest that exposure to PM2.5 and HDM may reveal changes in genes that are associated with diseases, such as allergies, highlighting the importance of mitigating PM2.5 and HDM exposure for disease prevention.
Collapse
Affiliation(s)
- Sanghyun Roh
- Department of Medical Science, Soonchunhyang University, Asan, 31538, Korea
| | - Jeongeun Hwang
- Department of Medical IT Engineering, Soonchunhyang University, Asan, 31538, Korea
| | - Joo-Hoo Park
- Upper Airway Chronic Inflammatory Diseases Laboratory, Korea University College of Medicine, Seoul, 08308, Korea
| | - Dae Jin Song
- Department of Pediatrics, Korea University Guro Hospital, Seoul, 08308, Korea.
| | - Jeong-An Gim
- Department of Medical Science, Soonchunhyang University, Asan, 31538, Korea.
| |
Collapse
|
32
|
Liu M, Zeeshan M, Sun T, Hu X, Nie Z, Dong H, Dong G, Ou Y. Association of Air Quality Improvement and Frailty Progression: A National Study across China. TOXICS 2024; 12:464. [PMID: 39058116 PMCID: PMC11280498 DOI: 10.3390/toxics12070464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/22/2024] [Accepted: 06/23/2024] [Indexed: 07/28/2024]
Abstract
Accumulating evidence strongly suggests that exposure to ambient air pollution is linked with increased frailty. However, little is known about the effect of improved air quality on frailty progression. We aimed to investigate whether improvements in air quality (PM1, PM2.5, PM10, NO2, and O3) can alleviate frailty progression, particularly in the aftermath of implementation of the "Clean Air Action" policy in China. The study involved 12,891 participants with geocoded environmental data from the nationwide China Health and Retirement Longitudinal Study (CHARLS) during the period from May 2011 to August 2015. Multivariate logistic regression models were used to analyze the association of air pollution improvements and frailty progression. The protective effects were noted for PM1, PM2.5, PM10, and NO2 indices, with an aOR (adjusted odds ratio) ranging from 0.72 to 0.79. Air quality improvement in PM1, PM2.5, PM10, and NO2 could alleviate the progression of frailty. The study is the first to examine the association between the improvement of air quality and the progression of frailty, setting a precedent for the importance of a nationwide clean air policy and its impact on healthy ageing.
Collapse
Affiliation(s)
- Mingqin Liu
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China;
| | - Mohammed Zeeshan
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA;
| | - Tiantian Sun
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518000, China;
| | - Xiangming Hu
- Department of Cardiology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510080, China; (X.H.); (Z.N.); (H.D.)
| | - Zhiqiang Nie
- Department of Cardiology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510080, China; (X.H.); (Z.N.); (H.D.)
| | - Haojian Dong
- Department of Cardiology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510080, China; (X.H.); (Z.N.); (H.D.)
| | - Guanghui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yanqiu Ou
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China;
| |
Collapse
|
33
|
Li Y, Yang Z. The causal effect of exposure to air pollution on risk of adverse pregnancy outcomes: A two-sample Mendelian randomisation study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172234. [PMID: 38615756 DOI: 10.1016/j.scitotenv.2024.172234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/10/2024] [Accepted: 04/03/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND Epidemiological studies have examined the relation between air pollution (NOx, NO2, PM2.5, PM2.5-10, and PM10) and adverse pregnancy outcomes (APOs). There's increasing evidence that air pollution increases the risk of APOs. However, the results of these studies are controversial, and the causal relation remains uncertain. We aimed to assess whether a genetic causal link exists between air pollution and APOs and the potential effects of this relation. METHODS A novel two-sample Mendelian randomisation (MR) study used pooled data from a large-scale complete genome correlation study. The primary analysis method was inverse variance weighting (IVW), which explored the expose-outcome relationship for assessing single nucleotide polymorphisms (SNPs) associated with air pollution. Further sensitivity analysis, including MR-PRESSO, MR-Egger regression, and leave-one analysis, was used to test the consistency of the results. RESULTS There was a significant correlation between air pollution-related SNPs and APOs. A robust causal link was found between genetic susceptibility to air pollution and APOs. CONCLUSIONS Our MR analysis reveals a genetic causal relation between air pollution and APOs, which may help provide new insights into further mechanisms and clinical studies in air pollution-mediated APOs.
Collapse
Affiliation(s)
- Yanhui Li
- Department of Obstetrics and Gynecology, Shandong University Qilu Hospital, 107 Wenhua West Road, Lixia District, Jinan City, Shandong Province, China.
| | - Zhou Yang
- Department of Obstetrics and Gynecology, Shandong University Qilu Hospital, 107 Wenhua West Road, Lixia District, Jinan City, Shandong Province, China
| |
Collapse
|
34
|
Guan X, Meng X, Zhong G, Zhang Z, Wang C, Xiao Y, Fu M, Zhao H, Zhou Y, Hong S, Xu X, Bai Y, Kan H, Chen R, Wu T, Guo H. Particulate matter pollution, polygenic risk score and mosaic loss of chromosome Y in middle-aged and older men from the Dongfeng-Tongji cohort study. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134315. [PMID: 38678703 DOI: 10.1016/j.jhazmat.2024.134315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/04/2024] [Accepted: 04/14/2024] [Indexed: 05/01/2024]
Abstract
Mosaic loss of chromosome Y (mLOY) is the most common somatic alteration as men aging and may reflect genome instability. PM exposure is a major health concern worldwide, but its effects with genetic factors on mLOY has never been investigated. Here we explored the associations of PM2.5 and PM10 exposure with mLOY of 10,158 males measured via signal intensity of 2186 probes in male-specific chromosome-Y region from Illumina array data. The interactive and joint effects of PM2.5 and PM10 with genetic factors and smoking on mLOY were further evaluated. Compared with the lowest tertiles of PM2.5 levels in each exposure window, the highest tertiles in the same day, 7-, 14-, 21-, and 28-day showed a 0.005, 0.006, 0.007, 0.007, and 0.006 decrease in mLRR-Y, respectively (all P < 0.05), with adjustment for age, BMI, smoking pack-years, alcohol drinking status, physical activity, education levels, season of blood draw, and experimental batch. Such adverse effects were also observed in PM10-mLOY associations. Moreover, the unweighted and weighted PRS presented significant negative associations with mLRR-Y (both P < 0.001). Participants with high PRS and high PM2.5 or PM10 exposure in the 28-day separately showed a 0.018 or 0.019 lower mLRR-Y level [β (95 %CI) = -0.018 (-0.023, -0.012) and - 0.019 (-0.025, -0.014), respectively, both P < 0.001], when compared to those with low PRS and low PM2.5 or PM10 exposure. We also observed joint effects of PM with smoking on exacerbated mLOY. This large study is the first to elucidate the impacts of PM2.5 exposure on mLOY, and provides key evidence regarding the interactive and joint effects of PM with genetic factors on mLOY, which may promote understanding of mLOY development, further modifying and increasing healthy aging in males.
Collapse
Affiliation(s)
- Xin Guan
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China
| | - Xia Meng
- Department of Environment Health, School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and National Health Commission Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Guorong Zhong
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China
| | - Zirui Zhang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China
| | - Chenming Wang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China
| | - Yang Xiao
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China
| | - Ming Fu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China
| | - Hui Zhao
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China
| | - Yuhan Zhou
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China
| | - Shiru Hong
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China
| | - Xuedan Xu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China
| | - Yansen Bai
- Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, China
| | - Haidong Kan
- Department of Environment Health, School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and National Health Commission Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Renjie Chen
- Department of Environment Health, School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and National Health Commission Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Tangchun Wu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China
| | - Huan Guo
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China.
| |
Collapse
|
35
|
Vicente ED, Figueiredo D, Alves C. Toxicity of particulate emissions from residential biomass combustion: An overview of in vitro studies using cell models. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:171999. [PMID: 38554951 DOI: 10.1016/j.scitotenv.2024.171999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/07/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
This article aims to critically review the current state of knowledge on in vitro toxicological assessments of particulate emissions from residential biomass heating systems. The review covers various aspects of particulate matter (PM) toxicity, including oxidative stress, inflammation, genotoxicity, and cytotoxicity, all of which have important implications for understanding the development of diseases. Studies in this field have highlighted the different mechanisms that biomass combustion particles activate, which vary depending on the combustion appliances and fuels. In general, particles from conventional combustion appliances are more potent in inducing cytotoxicity, DNA damage, inflammatory responses, and oxidative stress than those from modern appliances. The sensitivity of different cell lines to the toxic effects of biomass combustion particles is also influenced by cell type and culture conditions. One of the main challenges in this field is the considerable variation in sampling strategies, sample processing, experimental conditions, assays, and extraction techniques used in biomass burning PM studies. Advanced culture systems, such as co-cultures and air-liquid interface exposures, can provide more accurate insights into the effects of biomass combustion particles compared to simpler submerged monocultures. This review provides critical insights into the complex field of toxicity from residential biomass combustion emissions, underscoring the importance of continued research and standardisation of methodologies to better understand the associated health hazards and to inform targeted interventions.
Collapse
Affiliation(s)
- E D Vicente
- Department of Environment and Planning, Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - D Figueiredo
- Department of Environment and Planning, Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal; Department of Biology, Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| | - C Alves
- Department of Environment and Planning, Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
36
|
Patil SS, Puttaswamy N, Cardenas A, Barr DB, Ghosh S, Balakrishnan K. Protocol for CARES-HAPIN: an ambidirectional cohort study on exposure to environmental tobacco smoke and risk of early childhood caries. BMJ Open 2024; 14:e083874. [PMID: 38749682 PMCID: PMC11097839 DOI: 10.1136/bmjopen-2024-083874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/09/2024] [Indexed: 05/18/2024] Open
Abstract
INTRODUCTION Prenatal and postnatal exposure to environmental tobacco smoke (ETS) has been linked with early childhood caries (ECC), but the specific molecular mechanisms and pathways remain largely unknown. The Caries Risk from exposure to Environmental tobacco Smoke (CARES) within the Household Air Pollution Intervention Network (HAPIN) study aims to establish the association between ETS and ECC by employing epidemiological and novel biomarker-based approaches. Here, we outline the overall design and rationale of the project. METHODS AND ANALYSIS We will leverage the infrastructure and data from the HAPIN trial (India) to mount the CARES study. In this ambidirectional cohort study, children (n=735, aged: 3-5 years) will undergo ECC examination by a trained dentist using standard criteria and calibrated methods. Structured questionnaires will be used to gather information on sociodemographic variables, dietary habits, oral hygiene, oral health-related quality of life and current exposure to ETS. We will collect non-invasive or minimally invasive biospecimens (i.e., saliva, buccal cells, dried blood spots and urine) from a subset of HAPIN children (n=120) to assess a battery of biomarkers indicative of exposure to ETS, early biological effect and epigenetic modifications. Both self-reported and objective measures of ETS exposure collected longitudinally during in utero and early postnatal periods will be accessed from the HAPIN database. We will apply current science data techniques to assess the association and interrelationships between ETS, ECC, and multiple biomarkers. ETHICS AND DISSEMINATION Information gathered in this research will be published in peer-reviewed journals and summaries will be shared with the key stakeholders as well as patients and their parents/guardians involved in this study. Sri Ramachandra Institute of Higher Education and Research Ethics Board has approved the study protocol (IEC-NI22/JUL/83/82). TRIAL REGISTRATION NUMBER NCT02944682.
Collapse
Affiliation(s)
- Sneha S Patil
- Department of Environmental Health Engineering, Faculty of Public Health, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Chennai, Tamil Nadu, India
- Department of Pediatric and Preventive Dentistry, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Naveen Puttaswamy
- Department of Environmental Health Engineering, Faculty of Public Health, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Chennai, Tamil Nadu, India
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford University, Stanford, California, USA
| | - Dana Boyd Barr
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Santu Ghosh
- Department of Biostatistics, St John's Medical College, Bengaluru, Karnataka, India
| | - Kalpana Balakrishnan
- Department of Environmental Health Engineering, Faculty of Public Health, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Chennai, Tamil Nadu, India
| |
Collapse
|
37
|
Sakurai Y, Oba E, Honda A, Tanaka H, Takano H, Akita H. The stress-responsive cytotoxic effect of diesel exhaust particles on lymphatic endothelial cells. Sci Rep 2024; 14:10503. [PMID: 38714844 PMCID: PMC11076499 DOI: 10.1038/s41598-024-61255-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/03/2024] [Indexed: 05/12/2024] Open
Abstract
Diesel exhaust particles (DEPs) are very small (typically < 0.2 μm) fragments that have become major air pollutants. DEPs are comprised of a carbonaceous core surrounded by organic compounds such as polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs. Inhaled DEPs reach the deepest sites in the respiratory system where they could induce respiratory/cardiovascular dysfunction. Additionally, a previous study has revealed that a portion of inhaled DEPs often activate immune cells and subsequently induce somatic inflammation. Moreover, DEPs are known to localize in lymph nodes. Therefore, in this study we explored the effect of DEPs on the lymphatic endothelial cells (LECs) that are a constituent of the walls of lymph nodes. DEP exposure induced cell death in a reactive oxygen species (ROS)-dependent manner. Following exposure to DEPs, next-generation sequence (NGS) analysis identified an upregulation of the integrated stress response (ISR) pathway and cell death cascades. Both the soluble and insoluble components of DEPs generated intracellular ROS. Three-dimensional Raman imaging revealed that DEPs are taken up by LECs, which suggests internalized DEP cores produce ROS, as well as soluble DEP components. However, significant cell death pathways such as apoptosis, necroptosis, ferroptosis, pyroptosis, and parthanatos seem unlikely to be involved in DEP-induced cell death in LECs. This study clarifies how DEPs invading the body might affect the lymphatic system through the induction of cell death in LECs.
Collapse
Affiliation(s)
- Yu Sakurai
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Eiki Oba
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Akiko Honda
- Graduate School of Engineering, Kyoto University, Kyoto, 615-8530, Japan
| | - Hiroki Tanaka
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Hirohisa Takano
- Institute for International Academic Research, Kyoto University of Advanced Science, Kyoto, 621-8555, Japan
- Graduate School of Global Environmental Studies, Kyoto University, Kyoto, 615-8530, Japan
| | - Hidetaka Akita
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan.
| |
Collapse
|
38
|
Bookstein A, Po J, Tseng C, Larson TV, Yang J, Park SSL, Wu J, Shariff-Marco S, Inamdar PP, Ihenacho U, Setiawan VW, DeRouen MC, Le Marchand L, Stram DO, Samet J, Ritz B, Fruin S, Wu AH, Cheng I. Association between Airport Ultrafine Particles and Lung Cancer Risk: The Multiethnic Cohort Study. Cancer Epidemiol Biomarkers Prev 2024; 33:703-711. [PMID: 38372643 PMCID: PMC11062824 DOI: 10.1158/1055-9965.epi-23-0924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/10/2023] [Accepted: 02/12/2024] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND Ultrafine particles (UFP) are unregulated air pollutants abundant in aviation exhaust. Emerging evidence suggests that UFPs may impact lung health due to their high surface area-to-mass ratio and deep penetration into airways. This study aimed to assess long-term exposure to airport-related UFPs and lung cancer incidence in a multiethnic population in Los Angeles County. METHODS Within the California Multiethnic Cohort, we examined the association between long-term exposure to airport-related UFPs and lung cancer incidence. Multivariable Cox proportional hazards regression models were used to estimate the effect of UFP exposure on lung cancer incidence. Subgroup analyses by demographics, histology and smoking status were conducted. RESULTS Airport-related UFP exposure was not associated with lung cancer risk [per one IGR HR, 1.01; 95% confidence interval (CI), 0.97-1.05] overall and across race/ethnicity. A suggestive positive association was observed between a one IQR increase in UFP exposure and lung squamous cell carcinoma (SCC) risk (HR, 1.08; 95% CI, 1.00-1.17) with a Phet for histology = 0.05. Positive associations were observed in 5-year lag analysis for SCC (HR, 1.12; 95% CI, CI, 1.02-1.22) and large cell carcinoma risk (HR, 1.23; 95% CI, 1.01-1.49) with a Phet for histology = 0.01. CONCLUSIONS This large prospective cohort analysis suggests a potential association between airport-related UFP exposure and specific lung histologies. The findings align with research indicating that UFPs found in aviation exhaust may induce inflammatory and oxidative injury leading to SCC. IMPACT These results highlight the potential role of airport-related UFP exposure in the development of lung SCC.
Collapse
Affiliation(s)
- Arthur Bookstein
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Justine Po
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Chiuchen Tseng
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Timothy V. Larson
- Departments of Civil & Environmental Engineering and Environmental & Occupational Health Sciences, University of Washington, Seattle, WA
| | - Juan Yang
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA
| | - Sung-shim L. Park
- Population Sciences in the Pacific Program (Cancer Epidemiology), University of Hawaii Cancer Center, Honolulu, HI
| | - Jun Wu
- Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, Irvine, CA
| | - Salma Shariff-Marco
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA
- University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, San Francisco, CA
| | - Pushkar P. Inamdar
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA
| | - Ugonna Ihenacho
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Veronica W. Setiawan
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Mindy C. DeRouen
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA
- University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, San Francisco, CA
| | - Loïc Le Marchand
- Population Sciences in the Pacific Program (Cancer Epidemiology), University of Hawaii Cancer Center, Honolulu, HI
| | - Daniel O. Stram
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Jonathan Samet
- Departments of Epidemiology and of Environmental & Occupational Health, Colorado School of Public Health, Aurora, CO
| | - Beate Ritz
- Department of Epidemiology, School of Public Health, University of California, Los Angeles, Los Angeles, CA
| | - Scott Fruin
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA
| | - Anna H. Wu
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Iona Cheng
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA
- University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, San Francisco, CA
| |
Collapse
|
39
|
Rahman S, Sadaf S, Hoque ME, Mishra A, Mubarak NM, Malafaia G, Singh J. Unleashing the promise of emerging nanomaterials as a sustainable platform to mitigate antimicrobial resistance. RSC Adv 2024; 14:13862-13899. [PMID: 38694553 PMCID: PMC11062400 DOI: 10.1039/d3ra05816f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 04/02/2024] [Indexed: 05/04/2024] Open
Abstract
The emergence and spread of antibiotic-resistant (AR) bacterial strains and biofilm-associated diseases have heightened concerns about exploring alternative bactericidal methods. The WHO estimates that at least 700 000 deaths yearly are attributable to antimicrobial resistance, and that number could increase to 10 million annual deaths by 2050 if appropriate measures are not taken. Therefore, the increasing threat of AR bacteria and biofilm-related infections has created an urgent demand for scientific research to identify novel antimicrobial therapies. Nanomaterials (NMs) have emerged as a promising alternative due to their unique physicochemical properties, and ongoing research holds great promise for developing effective NMs-based treatments for bacterial and viral infections. This review aims to provide an in-depth analysis of NMs based mechanisms combat bacterial infections, particularly those caused by acquired antibiotic resistance. Furthermore, this review examines NMs design features and attributes that can be optimized to enhance their efficacy as antimicrobial agents. In addition, plant-based NMs have emerged as promising alternatives to traditional antibiotics for treating multidrug-resistant bacterial infections due to their reduced toxicity compared to other NMs. The potential of plant mediated NMs for preventing AR is also discussed. Overall, this review emphasizes the importance of understanding the properties and mechanisms of NMs for the development of effective strategies against antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Sazedur Rahman
- Department of Mechanical and Production Engineering, Ahsanullah University of Science and Technology Dhaka Bangladesh
| | - Somya Sadaf
- Department of Civil and Environmental Engineering, Birla Institute of Technology Mesra Ranchi 835215 Jharkhand India
| | - Md Enamul Hoque
- Department of Biomedical Engineering, Military Institute of Science and Technology Dhaka Bangladesh
| | - Akash Mishra
- Department of Civil and Environmental Engineering, Birla Institute of Technology Mesra Ranchi 835215 Jharkhand India
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei Bandar Seri Begawan BE1410 Brunei Darussalam
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University Jalandhar Punjab India
| | - Guilherme Malafaia
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute Urutaí GO Brazil
| | - Jagpreet Singh
- Department of Chemistry, University Centre for Research and Development, Chandigarh University Mohali-140413 India
| |
Collapse
|
40
|
Jirau-Colón H, Jiménez-Vélez BD. PM 2.5 Extracts Induce INFγ-Independent Activation of CIITA, MHCII, and Increases Inflammation in Human Bronchial Epithelium. TOXICS 2024; 12:292. [PMID: 38668515 PMCID: PMC11054084 DOI: 10.3390/toxics12040292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/29/2024] [Accepted: 03/12/2024] [Indexed: 04/29/2024]
Abstract
The capacity of particulate matter (PM) to enhance and stimulate the expression of pro-inflammatory mediators has been previously demonstrated in non-antigen-presenting cells (human bronchial epithelia). Nonetheless, many proposed mechanisms for this are extrapolated from known canonical molecular pathways. This work evaluates a possible mechanism for inflammatory exacerbation after exposure to PM2.5 (from Puerto Rico) and CuSO4, using human bronchial epithelial cells (BEAS-2B) as a model. The induction of CIITA, MHCII genes, and various pro-inflammatory mediators was investigated. Among these, the phosphorylation of STAT1 Y701 was significantly induced after 4 h of PM2.5 exposure, concurrent with a slight increase in CIITA and HLA-DRα mRNA levels. INFγ mRNA levels remained low amidst exposure time, while IL-6 levels significantly increased at earlier times. IL-8 remained low, as expected from attenuation by IL-6 in the known INFγ-independent inflammation pathway. The effects of CuSO4 showed an increase in HLA-DRα expression after 8 h, an increase in STAT1 at 1 h, and RF1 at 8 h We hypothesize and show evidence that an inflammatory response due to PM2.5 extract exposure in human bronchial epithelia can be induced early via an alternate non-canonical pathway in the absence of INFγ.
Collapse
Affiliation(s)
- Héctor Jirau-Colón
- Department of Biochemistry, University of Puerto Rico Medical Sciences Campus, San Juan 00935, Puerto Rico;
- Center for Environmental and Toxicological Research, Biochemistry Department, San Juan 00935, Puerto Rico
| | - Braulio D. Jiménez-Vélez
- Department of Biochemistry, University of Puerto Rico Medical Sciences Campus, San Juan 00935, Puerto Rico;
- Center for Environmental and Toxicological Research, Biochemistry Department, San Juan 00935, Puerto Rico
| |
Collapse
|
41
|
Panumasvivat J, Sapbamrer R, Sittitoon N, Khacha-Ananda S, Kiratipaisarl W, Sirikul W, Insian W, Assavanopakun P. Exploring the adverse effect of fine particulate matter (PM 2.5) on wildland firefighters' pulmonary function and DNA damage. Sci Rep 2024; 14:7932. [PMID: 38575786 PMCID: PMC10994925 DOI: 10.1038/s41598-024-58721-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 04/02/2024] [Indexed: 04/06/2024] Open
Abstract
Chiang Mai encounters severe pollution during the wildfire season. Wildland firefighters encounter various hazards while engaged in fire suppression operations, which encompass significant exposure to elevated concentrations of air pollutants resulting from combustion, especially particulate matter. The adverse effects of wildfire smoke on respiratory health are a significant concern. The objective of this study was to examine the potential adverse effects of PM2.5 exposure on the respiratory function and DNA damage of wildland firefighters. This prospective cohort study conducted in Chiang Mai from January to May 2022 planned to evaluate the health status of wildland firefighters during the pre-peak, peak, and post-peak ambient air pollution seasons. The measurement of PM2.5 was done at every forest fire station, as well as utilizing data from the Pollution Control Department. Participants received general health examinations, spirometry evaluations, and blood tests for DNA damage analysis. Pair t-tests and multiple regression models were used to examine the connection between pulmonary function parameters (FVC, FEV1) and PM2.5 concentration, with a significance level of P < 0.05. Thirty-three peak-season and twenty-one post-peak-season participants were enrolled. Four pre-peak-season wildland firefighters had FVC and FEV1 declines of > 15%. Multiple regression analysis showed a negative association between PM2.5 exposure and FVC% predicted (- 2.81%, 95% CI - 5.27 to - 0.34%, P = 0.027) and a marginally significant negative correlation with FVC (- 114.38 ml, 95% CI - 230.36 to 1.59 ml, P = 0.053). The remaining pulmonary measures showed a statistically insignificant decline. There were no significant changes in DNA damage detected. Wildland firefighters suffered a significant decline in pulmonary function associated with PM2.5 exposure. Spirometry is crucial for monitoring and promptly identifying respiratory issues that occur during wildfire seasons. Further research is recommended to explore DNA damage alterations and their potential association with PM2.5.
Collapse
Affiliation(s)
- Jinjuta Panumasvivat
- Department of Community Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Environmental and Occupational Medicine Excellence Center (EnOMEC), Department of Community Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Ratana Sapbamrer
- Department of Community Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Environmental and Occupational Medicine Excellence Center (EnOMEC), Department of Community Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nalin Sittitoon
- School of Environmental Health, Institute of Public Health, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Supakit Khacha-Ananda
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Wuttipat Kiratipaisarl
- Department of Community Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Wachiranun Sirikul
- Department of Community Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Environmental and Occupational Medicine Excellence Center (EnOMEC), Department of Community Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Data Analytics and Knowledge Synthesis for Health Care, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Wittawat Insian
- Office of Disease Prevention and Control 1 Chiang Mai, Department of Disease Control, Ministry of Public Health, Chiang Mai, 50000, Thailand
| | - Pheerasak Assavanopakun
- Department of Community Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Environmental and Occupational Medicine Excellence Center (EnOMEC), Department of Community Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
42
|
Melzi G, Massimi L, Frezzini MA, Iulini M, Tarallo N, Rinaldi M, Paglione M, Nozza E, Crova F, Valentini S, Valli G, Costabile F, Canepari S, Decesari S, Vecchi R, Marinovich M, Corsini E. Redox-activity and in vitro effects of regional atmospheric aerosol pollution: Seasonal differences and correlation between oxidative potential and in vitro toxicity of PM 1. Toxicol Appl Pharmacol 2024; 485:116913. [PMID: 38522584 DOI: 10.1016/j.taap.2024.116913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
Particulate Matter (PM) is a complex and heterogeneous mixture of atmospheric particles recognized as a threat to human health. Oxidative Potential (OP) measurement is a promising and integrative method for estimating PM-induced health impacts since it is recognized as more closely associated with adverse health effects than ordinarily used PM mass concentrations. OP measurements could be introduced in the air quality monitoring, along with the parameters currently evaluated. PM deposition in the lungs induces oxidative stress, inflammation, and DNA damage. The study aimed to compare the OP measurements with toxicological effects on BEAS-2B and THP-1 cells of winter and summer PM1 collected in the Po Valley (Italy) during 2021. PM1 was extracted in deionized water by mechanical agitation and tested for OP and, in parallel, used to treat cells. Cytotoxicity, genotoxicity, oxidative stress, and inflammatory responses were assessed by MTT test, DCFH-DA assay, micronucleus, γ-H2AX, comet assay modified with endonucleases, ELISA, and Real-Time PCR. The evaluation of OP was performed by applying three different assays: dithiothreitol (OPDTT), ascorbic acid (OPAA), and 2',7'-dichlorofluorescein (OPDCFH), in addition, the reducing potential was also analysed (RPDPPH). Seasonal differences were detected in all the parameters investigated. The amount of DNA damage detected with the Comet assay and ROS formation highlights the presence of oxidative damage both in winter and in summer samples, while DNA damage (micronucleus) and genes regulation were mainly detected in winter samples. A positive correlation with OPDCFH (Spearman's analysis, p < 0.05) was detected for IL-8 secretion and γ-H2AX. These results provide a biological support to the implementation in air quality monitoring of OP measurements as a useful proxy to estimate PM-induced cellular toxicological responses. In addition, these results provide new insights for the assessment of the ability of secondary aerosol in the background atmosphere to induce oxidative stress and health effects.
Collapse
Affiliation(s)
- Gloria Melzi
- Department of Pharmacological and Biomolecular Science (DiSFeB) "Rodolfo Paoletti", Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy.
| | - Lorenzo Massimi
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro, 5, 00185 Rome, Italy; Institute of Atmospheric Pollution Research, National Research Council, Via Salaria, Km 29,300, Monterotondo St., 00015 Rome, Italy
| | - Maria Agostina Frezzini
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro, 5, 00185 Rome, Italy; ARPA Lazio, Regional Environmental Protection Agency, Via Boncompagni 101, 00187 Rome, Italy
| | - Martina Iulini
- Department of Pharmacological and Biomolecular Science (DiSFeB) "Rodolfo Paoletti", Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Naima Tarallo
- Department of Pharmacological and Biomolecular Science (DiSFeB) "Rodolfo Paoletti", Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Matteo Rinaldi
- Institute of Atmospheric Sciences and Climate, National Research Council, 40129 Bologna, Italy; National Biodiversity Future Center, NBFC, 90133 Palermo, Italy
| | - Marco Paglione
- Institute of Atmospheric Sciences and Climate, National Research Council, 40129 Bologna, Italy; National Biodiversity Future Center, NBFC, 90133 Palermo, Italy
| | - Emma Nozza
- Department of Pharmacological and Biomolecular Science (DiSFeB) "Rodolfo Paoletti", Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; Experimental Medicine, Università degli Studi di Milano, Via L. Vanvitelli 32, 20129 Milan, Italy; Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Via della Commenda 19, 20122 Milan, Italy
| | - Federica Crova
- Department of Physics, Università degli Studi di Milano & INFN-Milano, Via Celoria 16, 20133 Milan, Italy
| | - Sara Valentini
- Department of Physics, Università degli Studi di Milano & INFN-Milano, Via Celoria 16, 20133 Milan, Italy
| | - Gianluigi Valli
- Department of Physics, Università degli Studi di Milano & INFN-Milano, Via Celoria 16, 20133 Milan, Italy
| | - Francesca Costabile
- National Biodiversity Future Center, NBFC, 90133 Palermo, Italy; Institute of Atmospheric Sciences and Climate, National Research Council, Via Fosso del Cavaliere 100, Rome, Italy
| | - Silvia Canepari
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro, 5, 00185 Rome, Italy; Institute of Atmospheric Pollution Research, National Research Council, Via Salaria, Km 29,300, Monterotondo St., 00015 Rome, Italy
| | - Stefano Decesari
- Institute of Atmospheric Sciences and Climate, National Research Council, 40129 Bologna, Italy; National Biodiversity Future Center, NBFC, 90133 Palermo, Italy
| | - Roberta Vecchi
- Department of Physics, Università degli Studi di Milano & INFN-Milano, Via Celoria 16, 20133 Milan, Italy
| | - Marina Marinovich
- Department of Pharmacological and Biomolecular Science (DiSFeB) "Rodolfo Paoletti", Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Emanuela Corsini
- Department of Pharmacological and Biomolecular Science (DiSFeB) "Rodolfo Paoletti", Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| |
Collapse
|
43
|
Chuang SH, Kuo YJ, Huang SW, Zhang HW, Peng HC, Chen YP. Association Between Long‑Term Exposure to Air Pollution and the Rate of Mortality After Hip Fracture Surgery in Patients Older Than 60 Years: Nationwide Cohort Study in Taiwan. JMIR Public Health Surveill 2024; 10:e46591. [PMID: 38342504 PMCID: PMC10985614 DOI: 10.2196/46591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 10/08/2023] [Accepted: 02/08/2024] [Indexed: 02/13/2024] Open
Abstract
BACKGROUND To enhance postoperative patient survival, particularly in older adults, understanding the predictors of mortality following hip fracture becomes paramount. Air pollution, a prominent global environmental issue, has been linked to heightened morbidity and mortality across a spectrum of diseases. Nevertheless, the precise impact of air pollution on hip fracture outcomes remains elusive. OBJECTIVE This retrospective study aims to comprehensively investigate the profound influence of a decade-long exposure to 12 diverse air pollutants on the risk of post-hip fracture mortality among older Taiwanese patients (older than 60 years). We hypothesized that enduring long-term exposure to air pollution would significantly elevate the 1-year mortality rate following hip fracture surgery. METHODS From Taiwan's National Health Insurance Research Database, we obtained the data of patients who underwent hip fracture surgery between July 1, 2003, and December 31, 2013. Using patients' insurance registration data, we estimated their cumulative exposure levels to sulfur dioxide (SO2), carbon dioxide (CO2), carbon monoxide (CO), ozone (O3), particulate matter having a size of <10 μm (PM10), particulate matter having a size of <2.5 μm (PM2.5), nitrogen oxides (NOX), nitrogen monoxide (NO), nitrogen dioxide (NO2), total hydrocarbons (THC), nonmethane hydrocarbons (NMHC), and methane (CH4). We quantified the dose-response relationship between these air pollutants and the risk of mortality by calculating hazard ratios associated with a 1 SD increase in exposure levels over a decade. RESULTS Long-term exposure to SO2, CO, PM10, PM2.5, NOX, NO, NO2, THC, NMHC, and CH4 demonstrated significant associations with heightened all-cause mortality risk within 1 year post hip fracture surgery among older adults. For older adults, each 1 SD increment in the average exposure levels of SO2, CO, PM10, PM2.5, NOX, NO, NO2, THC, NMHC, and CH4 corresponded to a substantial escalation in mortality risk, with increments of 14%, 49%, 18%, 12%, 41%, 33%, 38%, 20%, 9%, and 26%, respectively. We further noted a 35% reduction in the hazard ratio for O3 exposure suggesting a potential protective effect, along with a trend of potentially protective effects of CO2. CONCLUSIONS This comprehensive nationwide retrospective study, grounded in a population-based approach, demonstrated that long-term exposure to specific air pollutants significantly increased the risk of all-cause mortality within 1 year after hip fracture surgery in older Taiwanese adults. A reduction in the levels of SO2, CO, PM10, PM2.5, NOX, NO, NO2, THC, NMHC, and CH4 may reduce the risk of mortality after hip fracture surgery. This study provides robust evidence and highlights the substantial impact of air pollution on the outcomes of hip fractures.
Collapse
Affiliation(s)
- Shu-Han Chuang
- Division of General Practice, Department of Medical Education, Changhua Christian Hospital, Changhua, Taiwan
| | - Yi-Jie Kuo
- Department of Orthopedics, Wan Fang Hospital, Taipei Medical University, Taipei City, Taiwan
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shu-Wei Huang
- Department of Applied Science, National Taitung University, Taitung City, Taitung County, Taiwan
| | - Han-Wei Zhang
- MetaTrial Research Center, Biomedica Corporation, New Taipei, Taiwan
- Program for Aging, China Medical University, Taichung, Taiwan
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan
- Department of Electrical and Computer Engineering, Institute of Electrical Control Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Hsiao-Ching Peng
- MetaTrial Research Center, Biomedica Corporation, New Taipei, Taiwan
| | - Yu-Pin Chen
- Department of Orthopedics, Wan Fang Hospital, Taipei Medical University, Taipei City, Taiwan
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
44
|
Meraz-Cruz N, Manzano-León N, Sandoval-Colin DE, García de León Méndez MDC, Quintana-Belmares R, Tapia LS, Osornio-Vargas AR, Buxton MA, O’Neill MS, Vadillo-Ortega F. Effects of PM 10 Airborne Particles from Different Regions of a Megacity on In Vitro Secretion of Cytokines by a Monocyte Line during Different Seasons. TOXICS 2024; 12:149. [PMID: 38393244 PMCID: PMC10892217 DOI: 10.3390/toxics12020149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024]
Abstract
Several epidemiological studies have demonstrated that particulate matter (PM) in air pollution can be involved in the genesis or aggravation of different cardiovascular, respiratory, perinatal, and cancer diseases. This study assessed the in vitro effects of PM10 on the secretion of cytokines by a human monocytic cell line (THP-1). We compared the chemotactic, pro-inflammatory, and anti-inflammatory cytokines induced by PM10 collected for two years during three different seasons in five different Mexico City locations. MIP-1α, IP-10, MCP-1, TNF-α, and VEGF were the main secretion products after stimulation with 80 μg/mL of PM10 for 24 h. The THP-1 cells showed a differential response to PM10 obtained in the different sites of Mexico City. The PM10 from the north and the central city areas induced a higher pro-inflammatory cytokine response than those from the south. Seasonal pro-inflammatory cytokine secretion always exceeded anti-inflammatory secretion. The rainy-season-derived particles caused the lowest pro-inflammatory effects. We concluded that toxicological assessment of airborne particles provides evidence supporting their potential role in the chronic exacerbation of local or systemic inflammatory responses that may worsen the evolution of some chronic diseases.
Collapse
Affiliation(s)
- Noemi Meraz-Cruz
- Unidad de Vinculación Científica de la Facultad de Medicina, UNAM en el Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico; (N.M.-C.); (D.E.S.-C.); (M.d.C.G.d.L.M.)
| | - Natalia Manzano-León
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City 14080, Mexico; (N.M.-L.); (R.Q.-B.); (L.S.T.)
| | - Daniel Eduardo Sandoval-Colin
- Unidad de Vinculación Científica de la Facultad de Medicina, UNAM en el Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico; (N.M.-C.); (D.E.S.-C.); (M.d.C.G.d.L.M.)
| | - María del Carmen García de León Méndez
- Unidad de Vinculación Científica de la Facultad de Medicina, UNAM en el Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico; (N.M.-C.); (D.E.S.-C.); (M.d.C.G.d.L.M.)
| | - Raúl Quintana-Belmares
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City 14080, Mexico; (N.M.-L.); (R.Q.-B.); (L.S.T.)
| | - Laura Sevilla Tapia
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City 14080, Mexico; (N.M.-L.); (R.Q.-B.); (L.S.T.)
| | - Alvaro R. Osornio-Vargas
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 1C9, Canada;
| | - Miatta A. Buxton
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; (M.A.B.); (M.S.O.)
| | - Marie S. O’Neill
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; (M.A.B.); (M.S.O.)
- Department of Environmental Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Felipe Vadillo-Ortega
- Unidad de Vinculación Científica de la Facultad de Medicina, UNAM en el Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico; (N.M.-C.); (D.E.S.-C.); (M.d.C.G.d.L.M.)
- Department of Environmental Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
45
|
Zhu J, Chen J, Wang K, Yan H, Liu Q, Lan Y, Ren L, Wu S. Exposure to ambient black carbon and particulate matter during pregnancy in associations with risk of pre-eclampsia: A meta-analysis based on population-based studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123230. [PMID: 38158011 DOI: 10.1016/j.envpol.2023.123230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/17/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
Air pollution control protocols and policies formulated for PM2.5 and PM10 (particulate matter [PM] with an aerodynamic diameter of ≤2.5 and 10 μm), however, such protocols and policies have not been available for black carbon (BC). A growing number of studies have evaluated the association between long-term exposure to ambient air pollution with BC and PM and pre-eclampsia. We applied a meta-analysis to estimate pooled odds ratios (ORs) and 95 % confidence intervals (CIs) based on four exposure windows (first/second/third trimester and entire pregnancy). 24 studies meeting our selection criteria (8 for BC, 21 and 15 for PM2.5 and PM10) were finally included after screening studies published up to June 22, 2023. An increase of 1 μg/m3 BC during the second trimester and entire pregnancy were associated with a 16 % (OR: 1.16, 95 % CI: [1.02, 1.32]) and a 15 % (OR: 1.15, 95 % CI: [1.03, 1.29]) increased risk of pre-eclampsia, respectively. A 10 μg/m3 increase in second-trimester exposure to PM2.5 and PM10 was associated with a 1 % (OR: 1.01, 95 % CI: [1.00, 1.03]) and a 5 % (OR: 1.05, 95 % CI: [1.01, 1.10]) increased risk of pre-eclampsia. An 11 % (OR: 1.11, 95 % CI: [1.03, 1.21]) increased risk of pre-eclampsia was found to be associated with a 10 μg/m3 increase in PM10 exposure during the entire pregnancy. The results support the potential effect of exposure to ambient particulate pollutants on risk of pre-eclampsia and emphasize the necessity of strategies and protocols for controlling BC. Greater efforts in controlling ambient particulate pollution and especially BC are needed in order to prevent pregnant women from developing pre-eclampsia.
Collapse
Affiliation(s)
- Jiaqi Zhu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, China; Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, China
| | - Juan Chen
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, China; Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, China
| | - Kai Wang
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, China; Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, China
| | - Hairong Yan
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, China; Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, China
| | - Qisijing Liu
- Research Institute of Public Health, School of Medicine, Nankai University, Tianjin, China
| | - Yang Lan
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, China; Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, China
| | - Lihua Ren
- School of Nursing, Peking University, Beijing, China
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, China; Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, China.
| |
Collapse
|
46
|
He H, Wan N, Li Z, Zhang Z, Gao Z, Liu Q, Ma X, Zhang Y, Li R, Fu X, Qiu W. Short-term effects of exposure to ambient PM 2.5 and its components on hospital admissions for threatened and spontaneous abortions: A multicity case-crossover study in China. CHEMOSPHERE 2024; 350:141057. [PMID: 38158083 DOI: 10.1016/j.chemosphere.2023.141057] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/09/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND The adverse effects of short-term exposure to PM2.5 and its components on hospital admissions for threatened and spontaneous abortions (TSAB) are still controversial. METHODS Data on daily hospitalizations for TSAB and PM2.5 and its components, including sulfate (SO42-), nitrate (NO3-), ammonium salt (NH4+), organic matter (OM), and black carbon (BC), were collected from January 2015 to December 2021 (total 2,557 days) in five cities in China. Case-crossover analyses were conducted to investigate the short-term associations between PM2.5 and its components and TSAB. Additionally, the modification effects by age (<35 and ≥35 years), season (cold and warm seasons), and the "Three-Year Action Plan to Win the Blue Sky Defense War" (before and after implementation) on the above associations were further conducted. RESULTS For each 10 μg/m3 (1 μg/m3 for BC) increase, the strongest relative risks (95% confidence intervals) of hospitalization for TSAB were 1.011 (1.001-1.021) for PM2.5 in lag02, 1.060 (1.003-1.120) for SO42- in lag02, 1.035 (1.000-1.070) for NO3- in lag02, 1.065 (1.009-1.124) for NH4+ in lag02, 1.047 (1.008-1.088) for OM in lag01 and 1.029 (1.005-1.054) for BC in lag02 (all P <0.05). Furthermore, significant modifying effects of age and the Action Plan were found. The effects of NO3- (lag2), NH4+ (lag2), and BC (lag2) were more pronounced in mothers aged ≥35 years and the effects of PM2.5 (lag4), NO3- (lag4), NH4+ (lag4), OM (lag4), and BC (lag4) was more pronounced in the period before the Action Plan was implemented (all P modification <0.05). CONCLUSION Short-term exposure to ambient PM2.5 and its components (SO42-, NO3-, NH4+, OM, and BC) was related to increased risks of hospitalization for TSAB. The effects were more pronounced in mothers aged ≥35 years and the period before the Action Plan.
Collapse
Affiliation(s)
- Heng He
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Na Wan
- Henan Key Laboratory of Fertility Protection and Aristogenesis, Luohe Central Hospital, Luohe, Henan 462000, China
| | - Zhenzhen Li
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Zihan Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Zesen Gao
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Qingdan Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Xiaolei Ma
- Henan Key Laboratory of Fertility Protection and Aristogenesis, Luohe Central Hospital, Luohe, Henan 462000, China
| | - Yuqing Zhang
- Henan Key Laboratory of Fertility Protection and Aristogenesis, Luohe Central Hospital, Luohe, Henan 462000, China
| | - Rongxiang Li
- Henan Key Laboratory of Fertility Protection and Aristogenesis, Luohe Central Hospital, Luohe, Henan 462000, China
| | - Xiuhong Fu
- Henan Key Laboratory of Fertility Protection and Aristogenesis, Luohe Central Hospital, Luohe, Henan 462000, China
| | - Weihong Qiu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, Fujian 350122, China.
| |
Collapse
|
47
|
Sepehri B, Darbani R, Mesgari-Abbasi M, Kheirouri S, Shanehbandi D, Khordadmehr M, Alizadeh M. The effects of short-time air pollution, SO2, and ozone on biochemical, histo-pathological, oxidative stress, and carcinogenesis related genes expressions in the liver of the rats. Hum Exp Toxicol 2024; 43:9603271241263569. [PMID: 39073095 DOI: 10.1177/09603271241263569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
OBJECTIVE OF THE RESEARCH Air pollution is a universal issue and has significant deleterious effects on both human health and also environment. The important indicators of air pollution include ozone (O3), particulate matter (PM), nitrogen dioxide (NO2), and sulfur dioxide (SO2). This research aims to investigate the impacts of ambient air pollution (AAP), SO2, and O3 on oxidative stress parameters, liver tissue histopathology, and expression of some carcinogenesis-related genes in the hepatic tissue of rats. MATERIALS AND METHODS 32 Wistar rats were randomly allocated to four groups: the control group, the AAP group, the SO2 group (10 ppm), and the ozone group (0.6 ppm). Over a period of five consecutive weeks, the rats were exposed to the specified pollutants for 3 h daily; liver tissues were harvested and instantly fixed with formalin. Pathological changes were assessed in the tissue samples. Additionally, the RT-qPCR technique was utilized to investigate Expression alterations of BAX, p-53, BCL2, caspase-3, caspase-8 and caspase-9. Furthermore, 30 milligrams of hepatic tissues were extracted to assess the activities of oxidative stress enzymes. RESULTS The liver catalase and MDA activity were elevated in the air pollution (p < .05). Also, liver GPx activity in air pollution and ozone groups was significant in comparison to the control group (p < .05). The SO2 group exhibited severe lesions in histopathology examinations. CONCLUSIONS The findings revealed an alteration in liver histopathology, an induction of oxidative stress, and the expression of some apoptosis-related genes in hepatic tissues after exposure to AAP, SO2, and O3.
Collapse
Affiliation(s)
- Bita Sepehri
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roya Darbani
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Sorayya Kheirouri
- Department of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology research center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Monireh Khordadmehr
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Mohammad Alizadeh
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
48
|
Martens DS, An DW, Yu YL, Chori BS, Wang C, Silva AI, Wei FF, Liu C, Stolarz-Skrzypek K, Rajzer M, Latosinska A, Mischak H, Staessen JA, Nawrot TS. Association of Air Pollution with a Urinary Biomarker of Biological Aging and Effect Modification by Vitamin K in the FLEMENGHO Prospective Population Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:127011. [PMID: 38078706 PMCID: PMC10712426 DOI: 10.1289/ehp13414] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/28/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND A recently developed urinary peptidomics biological aging clock can be used to study accelerated human aging. From 1990 to 2019, exposure to airborne particulate matter (PM) became the leading environmental risk factor worldwide. OBJECTIVES This study investigated whether air pollution exposure is associated with accelerated urinary peptidomic aging, independent of calendar age, and whether this association is modified by other risk factors. METHODS In a Flemish population, the urinary peptidomic profile (UPP) age (UPP-age) was derived from the urinary peptidomic profile measured by capillary electrophoresis coupled with mass spectrometry. UPP-age-R was calculated as the residual of the regression of UPP-age on chronological age, which reflects accelerated aging predicted by UPP-age, independent of chronological age. A high-resolution spatial-temporal interpolation method was used to assess each individual's exposure to PM 10 , PM 2.5 , black carbon (BC), and nitrogen dioxide (NO 2 ). Associations of UPP-age-R with these pollutants were investigated by mixed models, accounting for clustering by residential address and confounders. Effect modifiers of the associations between UPP-age-R and air pollutants that included 18 factors reflecting vascular function, renal function, insulin resistance, lipid metabolism, or inflammation were evaluated. Direct and indirect (via UPP-age-R) effects of air pollution on mortality were evaluated by multivariable-adjusted Cox models. RESULTS Among 660 participants (50.2% women; mean age: 50.7 y), higher exposure to PM 10 , PM 2.5 , BC, and NO 2 was associated with a higher UPP-age-R. Studying effect modifiers showed that higher plasma levels of desphospho-uncarboxylated matrix Gla protein (dpucMGP), signifying poorer vitamin K status, steepened the slopes of UPP-age-R on the air pollutants. In further analyses among participants with dpucMGP ≥ 4.26 μ g / L (median), an interquartile range (IQR) higher level in PM 10 , PM 2.5 , BC, and NO 2 was associated with a higher UPP-age-R of 2.03 [95% confidence interval (CI): 0.60, 3.46], 2.22 (95% CI: 0.71, 3.74), 2.00 (95% CI: 0.56, 3.43), and 2.09 (95% CI: 0.77, 3.41) y, respectively. UPP-age-R was an indirect mediator of the associations of mortality with the air pollutants [multivariable-adjusted hazard ratios from 1.094 (95% CI: 1.000, 1.196) to 1.110 (95% CI: 1.007, 1.224)] in participants with a high dpucMGP, whereas no direct associations were observed. DISCUSSION Ambient air pollution was associated with accelerated urinary peptidomics aging, and high vitamin K status showed a potential protective effect in this population. Current guidelines are insufficient to decrease the adverse health effects of airborne pollutants, including healthy aging trajectories. https://doi.org/10.1289/EHP13414.
Collapse
Affiliation(s)
- Dries S. Martens
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - De-Wei An
- Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Non-Profit Research Association Alliance for the Promotion of Preventive Medicine, Mechelen, Belgium
- Research Unit Environment and Health, KU Leuven Department of Public Health and Primary Care, University of Leuven, Leuven, Belgium
| | - Yu-Ling Yu
- Non-Profit Research Association Alliance for the Promotion of Preventive Medicine, Mechelen, Belgium
- Research Unit Environment and Health, KU Leuven Department of Public Health and Primary Care, University of Leuven, Leuven, Belgium
| | - Babangida S. Chori
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
- Non-Profit Research Association Alliance for the Promotion of Preventive Medicine, Mechelen, Belgium
| | - Congrong Wang
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Ana Inês Silva
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Fang-Fei Wei
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Chen Liu
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Katarzyna Stolarz-Skrzypek
- First Department of Cardiology, Interventional Electrocardiology and Hypertension, Jagiellonian University, Kraków, Poland
| | - Marek Rajzer
- First Department of Cardiology, Interventional Electrocardiology and Hypertension, Jagiellonian University, Kraków, Poland
| | | | | | - Jan A. Staessen
- Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Non-Profit Research Association Alliance for the Promotion of Preventive Medicine, Mechelen, Belgium
- Biomedical Sciences Group, Faculty of Medicine, University of Leuven, Leuven, Belgium
| | - Tim S. Nawrot
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
- Research Unit Environment and Health, KU Leuven Department of Public Health and Primary Care, University of Leuven, Leuven, Belgium
| |
Collapse
|
49
|
Li K, Geng Y, Lin B, Xi Z. Molecular mechanisms underlying mitochondrial damage, endoplasmic reticulum stress, and oxidative stress induced by environmental pollutants. Toxicol Res (Camb) 2023; 12:1014-1023. [PMID: 38145103 PMCID: PMC10734609 DOI: 10.1093/toxres/tfad094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/09/2023] [Accepted: 09/15/2023] [Indexed: 12/26/2023] Open
Abstract
Mitochondria and endoplasmic reticulum (ER) are essential organelles playing pivotal roles in the regulation of cellular metabolism, energy production, and protein synthesis. In addition, these organelles are important targets susceptible to external stimuli, such as environmental pollutants. Exposure to environmental pollutants can cause the mitochondrial damage, endoplasmic reticulum stress (ERS), and oxidative stress, leading to cellular dysfunction and death. Therefore, understanding the toxic effects and molecular mechanisms of environmental pollution underlying these processes is crucial for developing effective strategies to mitigate the adverse effects of environmental pollutants on human health. In the present study, we summarized and reviewed the toxic effects and molecular mechanisms of mitochondrial damage, ERS, and oxidative stress caused by exposure to environmental pollutants as well as interactions inducing the cell apoptosis and the roles in exposure to environmental pollutants.
Collapse
Affiliation(s)
- Kang Li
- Department of Health Toxicology, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Yanpei Geng
- Department of Health Toxicology, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Bencheng Lin
- Department of Health Toxicology, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Zhuge Xi
- Department of Health Toxicology, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| |
Collapse
|
50
|
Chen SW, Lin CY, Chen CY, Lin CL, Hsieh TL, Tsai FJ, Chang KH. Long-term exposure to air pollution and risk of Sarcopenia in adult residents of Taiwan: a nationwide retrospective cohort study. BMC Public Health 2023; 23:2172. [PMID: 37932727 PMCID: PMC10629182 DOI: 10.1186/s12889-023-17091-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/28/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND Sarcopenia is an age-related, multifactorial syndrome. Previous studies have shown that air pollutants are associated with inflammation and oxidative stress. However, the association between long-term exposure to air pollution and sarcopenia is not completely understood. METHODS The Taiwan National Health Research Database (NHIRD) contains medical records of almost all Taiwanese residents. Daily air pollution data collected by the Taiwan Environmental Protection Agency was used to analyze concentrations of sulfur oxide (SO2), carbon monoxide (CO), nitrogen monoxide (NO), nitrogen dioxide (NO2), and particulate matter (PM2.5, PM10). The databases were merged according to the insurants' living area and the location of the air quality monitoring station. We categorized the pollutants into quartiles (Q1, Q2, Q3, and Q4). RESULTS Our study population consisted of 286,044 patients, among whom 54.9% were female and 45.1% were male. Compared to Q1 levels of pollutants, Q4 levels of SO2 (adjusted hazard ratio [aHR] = 8.43; 95% confidence interval [CI] = 7.84, 9.07); CO (aHR = 3.03; 95%CI = 2.83, 3.25); NO (aHR = 3.47; 95%CI = 3.23, 3.73); NO2 (aHR = 3.72; 95%CI = 3.48, 3.98); PM2.5 (aHR = 21.9; 95% CI = 19.7, 24.5) and PM10 (aHR = 15.6; 95%CI = 14.1, 17.4) increased risk of sarcopenia. CONCLUSIONS Our findings indicated a significantly increased risk of sarcopenia in both male and female residents exposed to high levels of air pollutants.
Collapse
Affiliation(s)
- Ssu-Wen Chen
- Department of Family Medicine, Tungs' Taichung MetroHarbor Hospital, Taichung, 435, Taiwan
| | - Chih-Ying Lin
- Department of Public Health, China Medical University, Taichung, 404, Taiwan
| | - Chiu-Ying Chen
- Department of Public Health, China Medical University, Taichung, 404, Taiwan
| | - Cheng-Li Lin
- Management Office for Health Data, China Medical University Hospital, Taichung, 404, Taiwan
- College of Medicine, China Medical University, Taichung, 404, Taiwan
| | - Tsai-Ling Hsieh
- Department of Medical Research, Tungs' Taichung MetroHarbor Hospital, Taichung, 435, Taiwan
- Department of Otolaryngology, Tungs' Taichung MetroHarbor Hospital, Taichung, 435, Taiwan
| | - Fuu-Jen Tsai
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, 404, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 404, Taiwan
- Division of Medical Genetics, China Medical University Children's Hospital, Taichung, 404, Taiwan
- Department of Biotechnology and Bioinformatics, Asia University, Taichung, 413, Taiwan
| | - Kuang-Hsi Chang
- Department of Medical Research, Tungs' Taichung MetroHarbor Hospital, Taichung, 435, Taiwan.
- Center for General Education, China Medical University, Taichung, 404, Taiwan.
- General Education Center, Nursing and Management, Jen-Teh Junior College of Medicine, Miaoli, 356, Taiwan.
| |
Collapse
|