1
|
Han Z, Zheng Y, Zhang X, Wang B, Guo Y, Guan Z. Flavonoid metabolism plays an important role in response to lead stress in maize at seedling stage. BMC PLANT BIOLOGY 2024; 24:726. [PMID: 39080516 PMCID: PMC11287917 DOI: 10.1186/s12870-024-05455-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/25/2024] [Indexed: 08/03/2024]
Abstract
BACKGROUND Pb stress, a toxic abiotic stress, critically affects maize production and food security. Although some progress has been made in understanding the damage caused by Pb stress and plant response strategies, the regulatory mechanisms and resistance genes involved in the response to lead stress in crops are largely unknown. RESULTS In this study, to uncover the response mechanism of maize to Pb stress phenotype, physiological and biochemical indexes, the transcriptome, and the metabolome under different concentrations of Pb stress were combined for comprehensive analysis. As a result, the development of seedlings and antioxidant system were significantly inhibited under Pb stress, especially under relatively high Pb concentrations. Transcriptome analysis revealed 3559 co-differentially expressed genes(co-DEG) under the four Pb concentration treatments (500 mg/L, 1000 mg/L, 2000 mg/L, and 3000 mg/L Pb(NO3)2), which were enriched mainly in the GO terms related to DNA-binding transcription factor activity, response to stress, response to reactive oxygen species, cell death, the plasma membrane and root epidermal cell differentiation. Metabolome analysis revealed 72 and 107 differentially expressed metabolites (DEMs) under T500 and T2000, respectively, and 36 co-DEMs. KEGG analysis of the DEMs and DEGs revealed a common metabolic pathway, namely, flavonoid biosynthesis. An association study between the flavonoid biosynthesis-related DEMs and DEGs revealed 20 genes associated with flavonoid-related metabolites, including 3 for genistin and 17 for calycosin. CONCLUSION In summary, the study reveals that flavonoid metabolism plays an important role in response to Pb stress in maize, which not only provides genetic resources for the genetic improvement of maize Pb tolerance in the future but also enriches the theoretical basis of the maize Pb stress response.
Collapse
Affiliation(s)
- Zanping Han
- College of Agronomy, Henan University of Science and Technology, Luoyang, China.
| | - Yan Zheng
- College of Agronomy, Henan University of Science and Technology, Luoyang, China
| | - Xiaoxiang Zhang
- School of Agriculture, Henan Institute of Science and Technology, Xinxiang, China
| | - Bin Wang
- College of Agronomy, Henan University of Science and Technology, Luoyang, China
| | - Yiyang Guo
- College of Agronomy, Henan University of Science and Technology, Luoyang, China
| | - Zhongrong Guan
- Chongqing Yudongnan Academy of Agricultural Sciences, Chongqing, China
| |
Collapse
|
2
|
Ur Rahman S, Qin A, Zain M, Mushtaq Z, Mehmood F, Riaz L, Naveed S, Ansari MJ, Saeed M, Ahmad I, Shehzad M. Pb uptake, accumulation, and translocation in plants: Plant physiological, biochemical, and molecular response: A review. Heliyon 2024; 10:e27724. [PMID: 38500979 PMCID: PMC10945279 DOI: 10.1016/j.heliyon.2024.e27724] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/17/2024] [Accepted: 03/06/2024] [Indexed: 03/20/2024] Open
Abstract
Lead (Pb) is a highly toxic contaminant that is ubiquitously present in the ecosystem and poses severe environmental issues, including hazards to soil-plant systems. This review focuses on the uptake, accumulation, and translocation of Pb metallic ions and their toxicological effects on plant morpho-physiological and biochemical attributes. We highlight that the uptake of Pb metal is controlled by cation exchange capacity, pH, size of soil particles, root nature, and other physio-chemical limitations. Pb toxicity obstructs seed germination, root/shoot length, plant growth, and final crop-yield. Pb disrupts the nutrient uptake through roots, alters plasma membrane permeability, and disturbs chloroplast ultrastructure that triggers changes in respiration as well as transpiration activities, creates the reactive oxygen species (ROS), and activates some enzymatic and non-enzymatic antioxidants. Pb also impairs photosynthesis, disrupts water balance and mineral nutrients, changes hormonal status, and alters membrane structure and permeability. This review provides consolidated information concentrating on the current studies associated with Pb-induced oxidative stress and toxic conditions in various plants, highlighting the roles of different antioxidants in plants mitigating Pb-stress. Additionally, we discussed detoxification and tolerance responses in plants by regulating different gene expressions, protein, and glutathione metabolisms to resist Pb-induced phytotoxicity. Overall, various approaches to tackle Pb toxicity have been addressed; the phytoremediation techniques and biochar amendments are economical and eco-friendly remedies for improving Pb-contaminated soils.
Collapse
Affiliation(s)
- Shafeeq Ur Rahman
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Anzhen Qin
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences/Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs, Xinxiang, 453002, China
| | - Muhammad Zain
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Key Laboratory of Crop Cultivation and Physiology of Jiangsu Province, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Zain Mushtaq
- Department of Soil Science, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Faisal Mehmood
- Department of Land and Water Management, Faculty of Agricultural Engineering, Sindh Agriculture University, Tandojam, 70060, Pakistan
| | - Luqman Riaz
- Department of Environmental Sciences, Kohsar University Murree, 47150, Punjab, Pakistan
| | - Sadiq Naveed
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University Bareilly), 244001, India
| | - Mohd Saeed
- Department of Biology, College of Science, University of Hail, Hail, P.O. Box 2240, Saudi Arabia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Muhammad Shehzad
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| |
Collapse
|
3
|
Calabrese EJ, Selby PB. Comet assay and hormesis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122929. [PMID: 37979647 DOI: 10.1016/j.envpol.2023.122929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/06/2023] [Accepted: 11/11/2023] [Indexed: 11/20/2023]
Abstract
The paper provides the first assessment of the occurrence of hormetic dose responses using the Comet assay, a genotoxic assay. Using a priori evaluative criteria based on the Hormetic Database on peer-reviewed comet assay experimental findings, numerous examples of hormetic dose responses were obtained. These responses occurred in a large and diverse range of cell types and for agents from a broad range of chemical classes. Limited attempts were made to estimate the frequency of hormesis within comet assay experimental studies using a priori entry and evaluative criteria, with results suggesting a frequency in the 40% range. These findings are important as they show that a wide range of genotoxic chemicals display evidence that is strongly suggestive of hormetic dose responses. These findings have significant implications for study design issues, including the number of doses selected, dose range and spacing. Likewise, the widespread occurrence of hormetic dose responses in this genotoxic assay has important risk assessment implications.
Collapse
Affiliation(s)
- Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA, 01003, USA.
| | - Paul B Selby
- Retired from Oak Ridge National Laboratory at Oak Ridge, TN. Home Address: 4088 Nottinghill Gate Road, Upper Arlington, OH, 43220, USA.
| |
Collapse
|
4
|
Sahito ZA, Zehra A, Yu S, Chen S, He Z, Yang X. Chinese sapindaceous tree species (Sapindus mukorosii) exhibits lead tolerance and long-term phytoremediation potential for moderately contaminated soils. CHEMOSPHERE 2023; 338:139376. [PMID: 37437621 DOI: 10.1016/j.chemosphere.2023.139376] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/14/2023]
Abstract
Heavy metal pollution in metropolitan soils poses significant risks to human health and the entire ecosystem. Effective mitigation strategies and technologies are crucial for addressing these environmental issues. Fast-growing trees are an essential part of phytoremediation projects all over the world and provide long-term ecological benefits to mankind. This study assessed the lead tolerance and phytoremediation potential of a fast-growing soapberry tree species (Sapindus mukorossi) in moderately contaminated soil. Two independent experiments were conducted to assess its tolerance at (i) germination level and (ii) prolonged growth stage. In the germination experiments, seeds were exposed to lead (II) nitrate Pb (NO₃)₂ at various concentrations (0, 5, 10, 20, 50, 100, 200, 300, 400 and 500 μM) for 120 days. Results showed significant differences in germination time, germination index, seedling vigor index, energy of germination, final germination, germination inhibition, seedling height and root/shoot weight compared to the control experiments. In the prolonged growth experiments, seedlings were grown for six months in soils amended/spiked with different Pb concentrations (T0 = 0, T1 = 20, T2 = 50, T3 = 100, T4 = 150 and T5 = 200 mg kg-1 soil) and their biomass was determined. The highest biomass achieved in six months (T0: 12.62 g plant-1), followed by (T1: 12.33 g plant-1), (T2: 12.42 g plant-1), (T3: 11.86 g plant-1), (T4: 10.86 g plant-1) and (T5: 10.06 g plant-1) respectively. S. mukorossi showed no visible signs of Pb toxicity over a six-month period. During six months of exposure, the total Pb content in S. mucrossi tissues were classified as roots > leaves > stems. The highest cumulative absorption of Pb occurred between the fourth and fifth months of exposure. Maximum transfer factor (TF) was detected during the fourth month ranging from 0.888 to 1.012 for the different Pb concentrations. Furthermore, the growth behavior, lead accumulation, bioconcentration factors (BCF) and tolerance index (TI) indicated that S. mucrossi may tolerate moderate Pb concentrations for longer periods. These findings suggest that S. mukorossi may be deployed for long-term phytoremediation coupled with urban forest applications in the future.
Collapse
Affiliation(s)
- Zulfiqar Ali Sahito
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Afsheen Zehra
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Song Yu
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Shaoning Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech, University, Hangzhou, 310018, China
| | - Zhenli He
- University of Florida, Institute of Food and Agricultural Sciences, Indian River Research and Education Center, Fort Pierce, Florida, 34945, United States
| | - Xiaoe Yang
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
5
|
Darwish H, Al-Osaimi GS, Al Kashgry NAT, Sonbol H, Alayafi AAM, Alabdallah NM, Al-Humaid A, Al-Harbi NA, Al-Qahtani SM, Abbas ZK, Darwish DBE, Ibrahim MFM, Noureldeen A. Evaluating the genotoxicity of salinity stress and secondary products gene manipulation in lime, Citrus aurantifolia, plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1211595. [PMID: 37502705 PMCID: PMC10369181 DOI: 10.3389/fpls.2023.1211595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/22/2023] [Indexed: 07/29/2023]
Abstract
Salinity is a significant abiotic stress that has a profound effect on growth, the content of secondary products, and the genotoxicity of cells. Lime, Citrus aurantifolia, is a popular plant belonging to the family Rutaceae. The interest in cultivating this plant is due to the importance of its volatile oil, which is included in many pharmaceutical industries, but C. aurantifolia plants are affected by the NaCl salinity levels. In the present study, a comet assay test has been applied to evaluate the genotoxic impact of salinity at 0, 50, 100, and 200 mM of NaCl on C. aurantifolia tissue-cultured plants. Furthermore, terpene gene expression was investigated using a semi-quantitative real-time polymerase chain reaction. Results from the two analyses revealed that 200 mM of NaCl stress resulted in high levels of severe damage to the C. aurantifolia plants' DNA tail 21.8%, tail length 6.56 µm, and tail moment 3.19 Unit. The relative highest expression of RtHK and TAT genes was 2.08, and 1.693, respectively, when plants were exposed to 200 mM of NaCl, whereas pv4CL2RT expressed 1.50 in plants subjected to 100 mM of NaCl. The accumulation of transcripts for the RTMYB was 0.951 when plants were treated with NaCl at 50 mM, and RtGPPS gene was significantly decreased to 0.446 during saline exposure at 100 mM. We conclude that the comet assay test offers an appropriate tool to detect DNA damage as well as RtHK, TAT, and pv4CL2RT genes having post-transcriptional regulation in C. aurantifolia plant cells under salinity stress. Future studies are needed to assess the application of gene expression and comet assay technologies using another set of genes that show vulnerability to different stresses on lime and other plants.
Collapse
Affiliation(s)
- Hadeer Darwish
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
- Department of Medicinal and Aromatic Plants, Horticulture Research Institute, Agricultural Research Center, Giza, Egypt
| | - Ghaida S. Al-Osaimi
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | | | - Hana Sonbol
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Aisha A. M. Alayafi
- Department of Biological Sciences, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Nadiyah M. Alabdallah
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
- Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Abdulrahman Al-Humaid
- Plant Production and Protection Department, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Nadi Awad Al-Harbi
- Biology Department, University College of Tayma, University of Tabuk, Tabuk, Saudi Arabia
| | | | - Zahid Khorshid Abbas
- Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Doaa Bahaa Eldin Darwish
- Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
- Botany Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Mohamed F. M. Ibrahim
- Department of Agricultural Botany, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Ahmed Noureldeen
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
- Department of Agricultural Zoology, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| |
Collapse
|
6
|
Safety Evaluation of Heavy Metal Contamination and Pesticide Residues in Coix Seeds in Guizhou Province, China. Foods 2022; 11:foods11152286. [PMID: 35954054 PMCID: PMC9367953 DOI: 10.3390/foods11152286] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
The coix seed is a medicinal and edible plant with rich nutritional and medicinal values. With the expansion of the coix seed consumption market, the problem of coix seed safety has attracted attention worldwide. The aims of this work were to evaluate the contamination of mercury (Hg), lead (Pb), cadmium (Cd), arsenic (As), chromium (Cr) and 116 pesticides in coix seeds collected from 12 main producing regions of coix seeds in the Guizhou Province of China and to analyze the major contributors of heavy metal and pesticide contamination in coix seed. The results show that the average contents of Pb, Cd, As and Cr in the 123 coix seed samples were 0.0069, 0.0021, 0.0138 and 0.1107 mg/kg, respectively, while Hg was not detected in all coix seed samples. Among the five heavy metals detected, only the Cr contents of three samples were found to be higher than the contaminant limit of Chinese standard GB2762-2017 (CSGB). A total of 13 pesticides were detected in 29 samples from seven main production regions of coix seeds, accounting for 23.6% of all the samples. The detection rates of chlorpyrifos were the highest (8.13%), followed by fenpropathrin (4.06%), bifenthrin (2.43%) and phoxim (1.62%), while the detection rates of the remaining pesticides were below 1%. Moreover, the residual risk score of dichlorvos was the highest of all the pesticides detected. The pollution index and risk assessment of heavy metals and pesticide residues indicates that coix seeds were at safe levels for consumption. In the production process of coix seeds, the local government should control the soil in areas heavily polluted by heavy metals and strengthen the monitoring and guidance on the scientific and rational use of pesticides.
Collapse
|
7
|
Sorrentino MC, Giordano S, Capozzi F, Spagnuolo V. Metals Induce Genotoxicity in Three Cardoon Cultivars: Relation to Metal Uptake and Distribution in Extra- and Intracellular Fractions. PLANTS 2022; 11:plants11040475. [PMID: 35214808 PMCID: PMC8876339 DOI: 10.3390/plants11040475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 11/16/2022]
Abstract
Heavy metal-polluted soil represents an important stress condition for plants. Several studies demonstrated that growth inhibition under metal stress and metal-induced damages, including genotoxicity, is particularly pronounced at the early stages of seedling growth. Moreover, it is reported that heavy metals enter the cytoplasm to exert their detrimental effect, including DNA damage. In this work, we estimated (i) metal-induced genotoxicity by ISSR molecular markers and (ii) the distribution of the metal fractions between symplast and apoplast by EDTA washing, in three cultivars of Cynara cardunculus var. altilis (L.) DC (Sardo, Siciliano, and Spagnolo), grown in hydroponics for 15 days with Cd or Pb: In line with the literature, in all cultivars, the genotoxic damage induced by Pb was more severe compared to Cd. However, a cultivar-specific response was evidenced since Spagnolo showed, under metal stress, a significantly higher genome template stability compared to the other examined cultivars. The lower genotoxicity observed in Spagnolo could depend on the lower intracellular metal concentration measured in this cultivar by chemical analysis. Accordingly, light microscopy highlighted that Spagnolo developed smaller and more numerous epidermal cells under metal stress; these cells would provide a larger wall surface offering a wider metal sequestration compartment in the apoplast.
Collapse
|
8
|
Pedroza-Garcia JA, Xiang Y, De Veylder L. Cell cycle checkpoint control in response to DNA damage by environmental stresses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:490-507. [PMID: 34741364 DOI: 10.1111/tpj.15567] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Being sessile organisms, plants are ubiquitously exposed to stresses that can affect the DNA replication process or cause DNA damage. To cope with these problems, plants utilize DNA damage response (DDR) pathways, consisting of both highly conserved and plant-specific elements. As a part of this DDR, cell cycle checkpoint control mechanisms either pause the cell cycle, to allow DNA repair, or lead cells into differentiation or programmed cell death, to prevent the transmission of DNA errors in the organism through mitosis or to its offspring via meiosis. The two major DDR cell cycle checkpoints control either the replication process or the G2/M transition. The latter is largely overseen by the plant-specific SOG1 transcription factor, which drives the activity of cyclin-dependent kinase inhibitors and MYB3R proteins, which are rate limiting for the G2/M transition. By contrast, the replication checkpoint is controlled by different players, including the conserved kinase WEE1 and likely the transcriptional repressor RBR1. These checkpoint mechanisms are called upon during developmental processes, in retrograde signaling pathways, and in response to biotic and abiotic stresses, including metal toxicity, cold, salinity, and phosphate deficiency. Additionally, the recent expansion of research from Arabidopsis to other model plants has revealed species-specific aspects of the DDR. Overall, it is becoming evidently clear that the DNA damage checkpoint mechanisms represent an important aspect of the adaptation of plants to a changing environment, hence gaining more knowledge about this topic might be helpful to increase the resilience of plants to climate change.
Collapse
Affiliation(s)
- José Antonio Pedroza-Garcia
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent, B-9052, Belgium
| | - Yanli Xiang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent, B-9052, Belgium
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent, B-9052, Belgium
| |
Collapse
|
9
|
Uddin MM, Zakeel MCM, Zavahir JS, Marikar FMMT, Jahan I. Heavy Metal Accumulation in Rice and Aquatic Plants Used as Human Food: A General Review. TOXICS 2021; 9:360. [PMID: 34941794 PMCID: PMC8706345 DOI: 10.3390/toxics9120360] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/08/2021] [Accepted: 12/19/2021] [Indexed: 02/07/2023]
Abstract
Aquatic ecosystems are contaminated with heavy metals by natural and anthropogenic sources. Whilst some heavy metals are necessary for plants as micronutrients, others can be toxic to plants and humans even in trace concentrations. Among heavy metals, cadmium (Cd), arsenic (As), chromium (Cr), lead (Pb), and mercury (Hg) cause significant damage to aquatic ecosystems and can invariably affect human health. Rice, a staple diet of many nations, and other aquatic plants used as vegetables in many countries, can bioaccumulate heavy metals when they grow in contaminated aquatic environments. These metals can enter the human body through food chains, and the presence of heavy metals in food can lead to numerous human health consequences. Heavy metals in aquatic plants can affect plant physicochemical functions, growth, and crop yield. Various mitigation strategies are being continuously explored to avoid heavy metals entering aquatic ecosystems. Understanding the levels of heavy metals in rice and aquatic plants grown for food in contaminated aquatic environments is important. Further, it is imperative to adopt sustainable management approaches and mitigation mechanisms. Although narrowly focused reviews exist, this article provides novel information for improving our understanding about heavy metal accumulation in rice and aquatic plants, addressing the gaps in literature.
Collapse
Affiliation(s)
- Mohammad Main Uddin
- Institute of Forestry and Environmental Sciences, Faculty of Science, University of Chittagong, Chittagong 4331, Bangladesh;
- School of Biological Sciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Mohamed Cassim Mohamed Zakeel
- Department of Plant Sciences, Faculty of Agriculture, Rajarata University of Sri Lanka, Puliyankulama, Anuradhapura 50000, Sri Lanka
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, Dutton Park, Brisbane, QLD 4102, Australia
| | - Junaida Shezmin Zavahir
- Australian Centre for Research on Separation Science, School of Chemistry, Monash University, Melbourne, VIC 3800, Australia;
| | - Faiz M. M. T. Marikar
- Staff Development Centre, General Sir John Kotelawala Defense University, Ratmalana 10390, Sri Lanka;
| | - Israt Jahan
- Department of Environmental Science, Faculty of Science and Technology, Bangladesh University of Professionals, Mirpur, Dhaka 1216, Bangladesh;
| |
Collapse
|
10
|
Genotoxicity and Cytotoxicity Induced in Zygophyllum fabago by Low Pb Doses Depends on the Population’s Redox Plasticity. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7110455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lead (Pb) soil contamination remains a major ecological challenge. Zygophyllum fabago is a candidate for the Pb phytostabilisation of mining tailings; nevertheless, the cytogenotoxic effects of low doses of Pb on this species are still unknown. Therefore, Z. fabago seeds collected from non-mining (NM) and mining (M) areas were exposed to 0, 5 and 20 µM Pb for four weeks, after which seedling growth, Pb cytogenotoxic effects and redox status were analyzed. The data revealed that Pb did not affect seedling growth in M populations, in contrast to the NM population. Cell cycle progression delay/arrest was detected in both NM and M seedlings, mostly in the roots. DNA damage (DNAd) was induced by Pb, particularly in NM seedlings. In contrast, M populations, which showed a higher Pb content, exhibited lower levels of DNAd and protein oxidation, together with higher levels of antioxidants. Upon Pb exposure, reduced glutathione (GSH) and non-protein thiols were upregulated in shoots and were unaffected/decreased in roots from the NM population, whereas M populations maintained higher levels of flavanols and hydroxycinnamic acids in shoots and triggered GSH in roots and shoots. These differential organ-specific mechanisms seem to be a competitive strategy that allows M populations to overcome Pb toxicity, contrarily to NM, thus stressing the importance of seed provenance in phytostabilisation programs.
Collapse
|
11
|
Kaur G, Sharma P, Rathee S, Singh HP, Batish DR, Kohli RK. Salicylic acid pre-treatment modulates Pb 2+-induced DNA damage vis-à-vis oxidative stress in Allium cepa roots. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:51989-52000. [PMID: 33999323 DOI: 10.1007/s11356-021-14151-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
The current study investigated the putative role of salicylic acid (SA) in modulating Pb2+-induced DNA and oxidative damage in Allium cepa roots. Pb2+ exposure enhanced free radical generation and reduced DNA integrity and antioxidant machinery after 24 h; however, SA pre-treatment (for 24 h) ameliorated Pb2+ toxicity. Pb2+ exposure led to an increase in malondialdehyde (MDA) and hydrogen peroxide (H2O2) accumulation and enhanced superoxide radical and hydroxyl radical levels. SA improved the efficiency of enzymatic antioxidants (ascorbate and guaiacol peroxidases [APX, GPX], superoxide dismutases [SOD], and catalases [CAT]) at 50-μM Pb2+ concentration. However, SA pre-treatment could not improve the efficiency of CAT and APX at 500 μM of Pb2+ treatment. Elevated levels of ascorbate and glutathione were observed in A. cepa roots pre-treated with SA and exposed to 50 μM Pb2+ treatment, except for oxidized glutathione. Nuclear membrane integrity test demonstrated the ameliorating effect of SA by reducing the number of dark blue-stained nuclei as compared to Pb2+ alone treatments. SA was successful in reducing DNA damage in cell exposed to higher concentration of Pb2+ (500 μM) as observed through comet assay. The study concludes that SA played a major role in enhancing defense mechanism and protecting against DNA damage by acclimatizing the plant to Pb2+-induced toxicity.
Collapse
Affiliation(s)
- Gurpreet Kaur
- Department of Environment Studies, Panjab University, Chandigarh, 160 014, India
- Agriculture Victoria, AgriBio, The Centre for AgriBioscience, 5 Ring Road, Bundoora, Victoria, 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Padma Sharma
- Department of Environment Studies, Panjab University, Chandigarh, 160 014, India
| | - Sonia Rathee
- Department of Botany, Panjab University, Chandigarh, 160 014, India
| | - Harminder Pal Singh
- Department of Environment Studies, Panjab University, Chandigarh, 160 014, India.
| | - Daizy Rani Batish
- Department of Botany, Panjab University, Chandigarh, 160 014, India.
| | | |
Collapse
|
12
|
Ortiz-Luevano R, López-Bucio J, Martínez-Trujillo M, Sánchez-Calderón L. Changes induced by lead in root system architecture of Arabidopsis seedlings are mediated by PDR2-LPR1/2 phosphate dependent way. Biometals 2021; 34:603-620. [PMID: 33772672 DOI: 10.1007/s10534-021-00299-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 03/07/2021] [Indexed: 10/21/2022]
Abstract
As sessile organisms, plants respond to changing environments modulating their genetic expression, metabolism and postembryonic developmental program (PDP) to adapt. Among environmental stressor, lead (Pb) is one of the most hazardous pollutants which limits crop productivity. Here, we describe in detail the effects of a wide range of concentrations of Pb on growth and development and a possible convergence with phosphate (Pi) starvation response. We found that the response to Pb presents a biphasic curve dose response in biomass accumulation: below 400 µM show a stimulatory effect meanwhile at Pb doses up to 600 µM effects are inhibitory. We found that +Pb (800 µM) modifies root system architecture (RSA) and induces acidification media, according to in silico ion interaction, in the growing medium Pb and Pi coprecipitate and plants grow in both Pi deficiency and Pb stress at the same time, however in spite of seedlings are under Pi starvation AtPT2 expression are Pb downregulated indicating that in addition to Pi starvation stress, Pb regulates physiological responses in root system. Using the mutants stop1, lpr1/2 and lpi3, which are affected in Pi starvation response, we found that changes in RSA by +Pb is genetically regulated and there are shared pathways with Pi starvation response mediated by PDR2-LPR1/2 and LPI3 pathways since lpr1/2 and lpi3 mutants are insensitive to +Pb and Pi starvation. Taking together, these results indicate that similar changes in RSA induced by independent environmental stimuli +Pb and Pi starvation are due to similar mediated response by PDR2-LPR1/2 pathway.
Collapse
Affiliation(s)
- Ricardo Ortiz-Luevano
- Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Edificio R, Ciudad Universitaria, 58030, Morelia, Michoacán, México.,Laboratorio de Genómica Evolutiva, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Campus II, 98066, Zacatecas, Zacatecas, México
| | - José López-Bucio
- Instituto de Investigaciones Quıímico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, 58030, Morelia, Michoacán, México
| | - Miguel Martínez-Trujillo
- Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Edificio R, Ciudad Universitaria, 58030, Morelia, Michoacán, México
| | - Lenin Sánchez-Calderón
- Laboratorio de Genómica Evolutiva, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Campus II, 98066, Zacatecas, Zacatecas, México.
| |
Collapse
|
13
|
Alengebawy A, Abdelkhalek ST, Qureshi SR, Wang MQ. Heavy Metals and Pesticides Toxicity in Agricultural Soil and Plants: Ecological Risks and Human Health Implications. TOXICS 2021; 9:42. [PMID: 33668829 PMCID: PMC7996329 DOI: 10.3390/toxics9030042] [Citation(s) in RCA: 575] [Impact Index Per Article: 143.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 12/19/2022]
Abstract
Environmental problems have always received immense attention from scientists. Toxicants pollution is a critical environmental concern that has posed serious threats to human health and agricultural production. Heavy metals and pesticides are top of the list of environmental toxicants endangering nature. This review focuses on the toxic effect of heavy metals (cadmium (Cd), lead (Pb), copper (Cu), and zinc (Zn)) and pesticides (insecticides, herbicides, and fungicides) adversely influencing the agricultural ecosystem (plant and soil) and human health. Furthermore, heavy metals accumulation and pesticide residues in soils and plants have been discussed in detail. In addition, the characteristics of contaminated soil and plant physiological parameters have been reviewed. Moreover, human diseases caused by exposure to heavy metals and pesticides were also reported. The bioaccumulation, mechanism of action, and transmission pathways of both heavy metals and pesticides are emphasized. In addition, the bioavailability in soil and plant uptake of these contaminants has also been considered. Meanwhile, the synergistic and antagonistic interactions between heavy metals and pesticides and their combined toxic effects have been discussed. Previous relevant studies are included to cover all aspects of this review. The information in this review provides deep insights into the understanding of environmental toxicants and their hazardous effects.
Collapse
Affiliation(s)
- Ahmed Alengebawy
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China;
| | - Sara Taha Abdelkhalek
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.T.A.); (S.R.Q.)
- Department of Entomology, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| | - Sundas Rana Qureshi
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.T.A.); (S.R.Q.)
| | - Man-Qun Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.T.A.); (S.R.Q.)
| |
Collapse
|
14
|
Abstract
Retrotransposon activity and genomic template stability (GTS) are one of the most significant rearranging mechanisms in environmental stress. Therefore, in this study, it is aimed to elucidate effecting of Cobalt (Co) on the instability of genomes and Long Terminal Repeat retrotransposon polymorphism in Zea mays and whether humic acid (HA) has any role on these parameters. For this purpose, Retrotransposon-microsatellite amplified polymorphism (REMAP) and Inter-Retrotransposon Amplified Polymorphism (IRAP) markers were applied to evaluate retrotransposon polymorphism and the GTS levels. It was found that IRAP and REMAP primers generate unique polymorphic band structures on maize plants treated with various doses of Co. Retrotransposon polymorphism increased and GTS decreased while increasing Co concentration. On the other hand, there was a reduction in negative effects of Co on retrotransposon GTS and polymorphism after treatment with HA. The results indicate that HA may be used effectively for the protection of maize seedlings from the destructive effects of Co toxicity.
Collapse
|
15
|
Song X, Zhang C, Chen W, Zhu Y, Wang Y. Growth responses and physiological and biochemical changes in five ornamental plants grown in urban lead-contaminated soils. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2020; 1:29-47. [PMID: 37284132 PMCID: PMC10168045 DOI: 10.1002/pei3.10013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 04/03/2020] [Accepted: 04/16/2020] [Indexed: 06/08/2023]
Abstract
An increasing concentration of lead (Pb) in urban contaminated soil due to anthropogenic activities has been a global issue threatening human health. The use of urban ornamental plants as phytoremediation of Pb-contaminated soil is a new choice. In the present experiment, the physiological and biochemical response of five ornamental plants to increase in concentrations of C4H6O4Pb·H2O in the soil were measured to investigate these plans' Pb tolerance strategies and abilities. Our results showed that Pb stress significantly inhibited the growth and the biomass of all the plants. The root activity (RA), net photosynthetic rate (P n), and chlorophyll (Chl) content in Pb-stressed leaves were significantly decreased, whereas the leaf proline (Pro), soluble sugar (SS), and membrane stability index (MSI) were remarkable increased compared with those in the control group. By application of all-subsets regression and linear regression, the reduction in photosynthetic capacity in the five plants is mainly due to the decrease in the leaf Chl content caused by Pb stress. The bioconcentration factor (BCF) in Canna generalis was greater than 1, while in the other plants were lower than 1, suggesting that Canna generalis had the highest Pb accumulation ability. The translocation factor (TF) in all the plants were lower than 1, suggesting that Pb preferentially accumulated in the external part of roots. By calculating the comprehensive evaluation value (CEV), Iris germanica L. was found to be the most sensitive species, and Canna generalis was the most tolerant species, to Pb stress among the five ornamental plants.
Collapse
Affiliation(s)
- Xiliang Song
- College of Resources and EnvironmentShandong Agricultural UniversityTai’anChina
- Shandong Provincial Engineering & Technology Research Center for Phyto‐microremediation in Saline‐alkali LandShandongChina
| | - Chenxiang Zhang
- College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Weifeng Chen
- College of Resources and EnvironmentShandong Agricultural UniversityTai’anChina
- Shandong Provincial Engineering & Technology Research Center for Phyto‐microremediation in Saline‐alkali LandShandongChina
| | - Yihao Zhu
- College of Resources and EnvironmentShandong Agricultural UniversityTai’anChina
| | - Yueying Wang
- College of Resources and EnvironmentShandong Agricultural UniversityTai’anChina
| |
Collapse
|
16
|
Cheema AI, Liu G, Yousaf B, Abbas Q, Zhou H. A comprehensive review of biogeochemical distribution and fractionation of lead isotopes for source tracing in distinct interactive environmental compartments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 719:135658. [PMID: 31874752 DOI: 10.1016/j.scitotenv.2019.135658] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/13/2019] [Accepted: 11/19/2019] [Indexed: 05/06/2023]
Abstract
Lead (Pb) is a non-essential and extremely noxious metallic-element whose biogeochemical cycle has been influenced predominantly by increasing human activities to a great extent. The introduction and enrichment of this ubiquitous contaminant in the terrestrial-environment has a long history and getting more attention due to its adverse health effects to living organisms even at very low exposure levels. Its lethal-effects can vary widely depending on the atmospheric-depositions, fates and distribution of Pb isotopes (i.e., 204Pb, 206Pb, 207Pb &208Pb) in the terrestrial-environment. Thus, it is essential to understand the depositional behavior and transformation mechanism of Pb and the factors affecting Pb isotopes composition in the terrestrial-compartments. Owing to the persistence nature of Pb-isotopic fractions, regardless of ongoing biogeochemical-processes taking place in soils and in other interlinked terrestrial-compartments of the biosphere makes Pb isotope ratios (Pb-IRs) more recognizable as a powerful and an efficient-tool for tracing the source(s) and helped uncover pertinent migration and transformation processes. This review discusses the ongoing developments in tracing migration pathway and distribution of lead in various terrestrial-compartments and investigates the processes regulating the Pb isotope geochemistry taking into account the source identification of lead, its transformation among miscellaneous terrestrial-compartments and detoxification mechanism in soil-plant system. Additionally, this compendium reveals that Pb-pools in various terrestrial-compartments differ in Pb isotopic fractionations. In order to improve understanding of partition behaviors and biogeochemical pathways of Pb isotope in the terrestrial environment, future works should involve investigation of changes in Pb isotopic compositions during weathering processes and atmospheric-biological sub-cycles.
Collapse
Affiliation(s)
- Ayesha Imtiyaz Cheema
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, PR China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, Shaanxi 710075, PR China.
| | - Guijian Liu
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, PR China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, Shaanxi 710075, PR China.
| | - Balal Yousaf
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, PR China.
| | - Qumber Abbas
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, PR China.
| | - Huihui Zhou
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, PR China.
| |
Collapse
|
17
|
Lead Toxicity: Health Hazards, Influence on Food Chain, and Sustainable Remediation Approaches. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17072179. [PMID: 32218253 PMCID: PMC7177270 DOI: 10.3390/ijerph17072179] [Citation(s) in RCA: 307] [Impact Index Per Article: 61.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/21/2020] [Accepted: 03/22/2020] [Indexed: 12/21/2022]
Abstract
Lead (Pb) toxicity has been a subject of interest for environmental scientists due to its toxic effect on plants, animals, and humans. An increase in several Pb related industrial activities and use of Pb containing products such as agrochemicals, oil and paint, mining, etc. can lead to Pb contamination in the environment and thereby, can enter the food chain. Being one of the most toxic heavy metals, Pb ingestion via the food chain has proven to be a potential health hazard for plants and humans. The current review aims to summarize the research updates on Pb toxicity and its effects on plants, soil, and human health. Relevant literature from the past 20 years encompassing comprehensive details on Pb toxicity has been considered with key issues such as i) Pb bioavailability in soil, ii) Pb biomagnification, and iii) Pb- remediation, which has been addressed in detail through physical, chemical, and biological lenses. In the review, among different Pb-remediation approaches, we have highlighted certain advanced approaches such as microbial assisted phytoremediation which could possibly minimize the Pb load from the resources in a sustainable manner and would be a viable option to ensure a safe food production system.
Collapse
|
18
|
Majumder B, Das S, Pal B, Biswas AK. Evaluation of arsenic induced toxicity based on arsenic accumulation, translocation and its implications on physio-chemical changes and genomic instability in indica rice (Oryza sativa L.) cultivars. ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:13-34. [PMID: 31735977 DOI: 10.1007/s10646-019-02135-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/02/2019] [Indexed: 06/10/2023]
Abstract
Arsenic (As) accumulation in rice is a principal route of As exposure for rice based population. We have tested physiochemical and molecular parameters together to identify low As accumulating rice cultivars with normal growth and vigor. The present study examined potential toxicity caused by arsenate (AsV) among four rice cultivars tested that varied with respect to accumulation of total arsenic, arsenite (AsIII) and their differential translocation rate which had deleterious impact on growth and metabolism. Intracellular homeostasis of rice cultivars viz., TN-1, IR-64, IR-20 and Tulaipanji was hampered by 21 days long As(V) treatment due to generation of reactive oxygen species (ROS) and inadequate activity of catalase (CAT; EC 1.11.1.6). Upregulation of oxidative stress markers viz., H2O2, proline and MDA along with alteration in enzymatic antioxidants profile were conspicuously pronounced in cv. Tulaipanji while cv. TN-1 was least affected under As(V) challenged environment. In addition to that genomic template stability and band sharing indices were qualitatively measured by DNA profiling of all tested cultivars treated with 25 μM, 50 μM, and 75 μM As(V). In rice cv. Tulaipanji genetic polymorphism was significantly detected with the application of random amplified polymorphic DNA (RAPD) tool and characterized as susceptible cultivar of As compared to cvs. TN-1, IR-64 and IR-20 that is in correlation with data obtained from cluster analysis. Hence, identified As tolerant cultivars viz., TN-1, IR64 and IR-20 especially TN-1 could be used in As contaminated agricultural field after appropriate field trial. This study could help to gather information regarding cultivar-specific tolerance strategy to avoid pollutant induced toxicity.
Collapse
Affiliation(s)
- Barsha Majumder
- Plant Physiology & Biochemistry Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
- Biological Anthropology Unit, Indian Statistical Institute, 203, Barrackpore Trunk Road, Kolkata, 700108, India
| | - Susmita Das
- Plant Physiology & Biochemistry Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Baidyanath Pal
- Biological Anthropology Unit, Indian Statistical Institute, 203, Barrackpore Trunk Road, Kolkata, 700108, India
| | - Asok K Biswas
- Plant Physiology & Biochemistry Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
19
|
Agarwal S, Khan S. Heavy Metal Phytotoxicity: DNA Damage. CELLULAR AND MOLECULAR PHYTOTOXICITY OF HEAVY METALS 2020. [DOI: 10.1007/978-3-030-45975-8_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
20
|
Kohli SK, Handa N, Bali S, Khanna K, Arora S, Sharma A, Bhardwaj R. Current Scenario of Pb Toxicity in Plants: Unraveling Plethora of Physiological Responses. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 249:153-197. [PMID: 30900073 DOI: 10.1007/398_2019_25] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Lead (Pb) is an extremely toxic metal for all living forms including plants. It enters plants through roots from soil or soil solution. It is considered as one of the most eminent examples of anthropogenic environmental pollutant added in environment through mining and smelting of lead ores, coal burning, waste from battery industries, leaded paints, metal plating, and automobile exhaust. Uptake of Pb in plants is a nonselective process and is driven by H+/ATPases. Translocation of Pb metal ions occurs by apoplastic movement resulting in deposition of metal ions in the endodermis and is further transported by symplastic movement. Plants exposed to high concentration of Pb show toxic symptoms due to the overproduction of reactive oxygen species (ROS) through Fenton-Haber-Weiss reaction. ROS include superoxide anion, hydroxyl radical, and hydrogen peroxide, which reach to macro- and micro-cellular levels in the plant cells and cause oxidative damage. Plant growth and plethora of biochemical and physiological attributes including plant growth, water status, photosynthetic efficiency, antioxidative defense system, phenolic compounds, metal chelators, osmolytes, and redox status are adversely influenced by Pb toxicity. Plants respond to toxic levels of Pb in varied ways such as restricted uptake of metal, chelation of metal ions to the root endodermis, enhancement in activity of antioxidative defense, alteration in metal transporters expression, and involvement of plant growth regulators.
Collapse
Affiliation(s)
- Sukhmeen Kaur Kohli
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India.
| | - Neha Handa
- Department of Botany, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Shagun Bali
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Kanika Khanna
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Saroj Arora
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India.
| |
Collapse
|
21
|
Zhu J, Fang XZ, Dai YJ, Zhu YX, Chen HS, Lin XY, Jin CW. Nitrate transporter 1.1 alleviates lead toxicity in Arabidopsis by preventing rhizosphere acidification. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:6363-6374. [PMID: 31414122 PMCID: PMC6859734 DOI: 10.1093/jxb/erz374] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/05/2019] [Indexed: 05/04/2023]
Abstract
Identification of the mechanisms that control lead (Pb) concentration in plants is a prerequisite for minimizing dietary uptake of Pb from contaminated crops. This study examines how nitrate uptake by roots affects Pb uptake and reveals a new resistance strategy for plants to cope with Pb contamination. We investigated the interaction between nitrate transporter (NRT)-mediated NO3- uptake and exposure to Pb in Arabidopsis using NRT-related mutants. Exposure to Pb specifically stimulated NRT1.1-mediated nitrate uptake. Loss of function of NRT1.1 in nrt1.1-knockout mutants resulted in greater Pb toxicity and higher Pb accumulation in nitrate-sufficient growth medium, whereas no difference was seen between wild-type plants and null-mutants for NRT1.2, NRT2.1, NRT2.2, NRT2.4, and NRT2.5. These results indicate that only NRT1.1-mediated NO3- uptake alleviated Pb toxicity in the plants. Further examination indicated that rhizosphere acidification, which favors Pb entry to roots by increasing its availability, is prevented when NRT1.1 is functional and both NO3- and NH4+ are present in the medium.
Collapse
Affiliation(s)
| | | | - Yu Jie Dai
- State Key Laboratory of Plant Physiology and Biochemistry, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, China
| | - Ya Xin Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, China
| | - Hong Shan Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, China
| | - Xian Yong Lin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, China
- Correspondence: or
| | | |
Collapse
|
22
|
Rodriguez E, Sousa M, Gomes A, Azevedo R, Mariz-Ponte N, Sario S, Mendes RJ, Santos C. Genotoxic endpoints in a Pb-accumulating pea cultivar: insights into Pb 2+ contamination limits. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:32368-32373. [PMID: 31605360 DOI: 10.1007/s11356-019-06465-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 09/09/2019] [Indexed: 06/10/2023]
Abstract
Lead (Pb) persists among the most hazardous contaminant metals. Pb-induced genotoxic effects remain a matter of debate as they are a major cause of plant growth impairment, but assessing Pb genotoxicity requires the selection of Pb-sensitive genotoxic biomarkers. Seedlings of the ecotoxicological model species Pisum sativum L. were exposed to Pb2+ (≤ 2000 mg L-1). Flow cytometry (FCM) revealed that 28 days after, Pb2+ arrested root cell cycle at G2 but no eu/aneuploidies were found. Comet assay and FCM-clastogenicity assays showed that Pb2+ increased DNA breaks in roots at concentrations as low as 20 mg L-1. Leaves showed no variation in DNA-ploidy or cell cycle progression but had increased DNA breaks at the highest Pb2+ dose. We conclude that both Comet assay and the full-peak coefficient of variation (FPCV) were the most relevant endpoints of Pb-phytogenotoxicity. Also, the Pb-induced DNA breaks may be related with the arrest at the G2-checkpoint. Data will be relevant to better define Pb2+ ecogenotoxicological effects and their measuring tools and may contribute to a regulatory debate of this pollutant limits.
Collapse
Affiliation(s)
- Eleazar Rodriguez
- LBC, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Márcia Sousa
- Department of Biology and LAQV/REQUIMTE, Faculty of Sciences of University of Porto, Rua do Campo Alegre 1021/1055, 4169-007, Porto, Portugal
| | - Anicia Gomes
- Department of Biology and LAQV/REQUIMTE, Faculty of Sciences of University of Porto, Rua do Campo Alegre 1021/1055, 4169-007, Porto, Portugal
| | - Raquel Azevedo
- LBC, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Nuno Mariz-Ponte
- Department of Biology and LAQV/REQUIMTE, Faculty of Sciences of University of Porto, Rua do Campo Alegre 1021/1055, 4169-007, Porto, Portugal
| | - Sara Sario
- Department of Biology and LAQV/REQUIMTE, Faculty of Sciences of University of Porto, Rua do Campo Alegre 1021/1055, 4169-007, Porto, Portugal
- CITAB-Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5001-801, Vila Real, Portugal
| | - Rafael José Mendes
- Department of Biology and LAQV/REQUIMTE, Faculty of Sciences of University of Porto, Rua do Campo Alegre 1021/1055, 4169-007, Porto, Portugal.
- CITAB-Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5001-801, Vila Real, Portugal.
| | - Conceição Santos
- Department of Biology and LAQV/REQUIMTE, Faculty of Sciences of University of Porto, Rua do Campo Alegre 1021/1055, 4169-007, Porto, Portugal
| |
Collapse
|
23
|
Dappe V, Dumez S, Bernard F, Hanoune B, Cuny D, Dumat C, Sobanska S. The role of epicuticular waxes on foliar metal transfer and phytotoxicity in edible vegetables: case of Brassica oleracea species exposed to manufactured particles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:20092-20106. [PMID: 30264340 DOI: 10.1007/s11356-018-3210-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 09/12/2018] [Indexed: 06/08/2023]
Abstract
The rapid industrialization and urbanization of intra- and peri-urban areas at the world scale are responsible for the degradation of the quality of edible crops, because of their contamination with airborne pollutants. Their consumption could lead to serious health risks. In this work, we aim to investigate the phytotoxicity induced by foliar transfer of atmospheric particles of industrial/urban origin. Leaves of cabbage plants (Brassica oleracea var. Prover) were contaminated with metal-rich particles (PbSO4 CuO and CdO) of micrometer size. A trichloroacetic acid (TCA) treatment was used to inhibit the synthesis of the epicuticular waxes in order to investigate their protective role against metallic particles toxicity. Besides the location of the particles on/in the leaves by microscopic techniques, photosynthetic activity measurements, genotoxicity assessment, and quantification of the gene expression have been studied for several durations of exposure (5, 10, and 15 days). The results show that the depletion of epicuticular waxes has a limited effect on the particle penetration in the leaf tissues. The stomatal openings appear to be the main pathway of particles entry inside the leaf tissues, as demonstrated by the overexpression of the BolC.CHLI1 gene. The effects of particles on the photosynthetic activity are limited, considering only the photosynthetic Fv/Fm parameter. The genotoxic effects were significant for the contaminated TCA-treated plants, especially after 10 days of exposure. Still, the cabbage plants are able to implement repair mechanisms quickly, and to thwart the physiological effects induced by the particles. Finally, the foliar contamination by metallic particles induces no serious damage to DNA, as observed by monitoring the BolC.OGG1 gene.
Collapse
Affiliation(s)
- Vincent Dappe
- Laboratoire de Spectrochimie Infrarouge et Raman, CNRS UMR 8516, Université de Lille, 59655, Villeneuve d'Ascq, France.
| | - Sylvain Dumez
- Laboratoire des Sciences Végétales et Fongiques EA4483, Université de Lille, 3 rue du Professeur Laguesse, B.P. 83, Lille, France
| | - Fabien Bernard
- Laboratoire des Sciences Végétales et Fongiques EA4483, Université de Lille, 3 rue du Professeur Laguesse, B.P. 83, Lille, France
| | - Benjamin Hanoune
- Laboratoire de Physico-Chimie des Processus de Combustion et de l'Atmosphère, UMR 8522 CNRS, Université de Lille, 59655, Villeneuve d'Ascq, France
| | - Damien Cuny
- Laboratoire des Sciences Végétales et Fongiques EA4483, Université de Lille, 3 rue du Professeur Laguesse, B.P. 83, Lille, France
| | - Camille Dumat
- Université de Toulouse INP-ENSAT, Avenue de l'Agrobiopole, 31326, Castanet-Tolosan, France
- Université Toulouse - Le Mirail UTM-CERTOP CNRS UMR, 5044, Toulouse, France
| | - Sophie Sobanska
- Laboratoire de Spectrochimie Infrarouge et Raman, CNRS UMR 8516, Université de Lille, 59655, Villeneuve d'Ascq, France.
- Institut des Sciences Moléculaires UMR CNRS 5255, Université de Bordeaux, 351, Cours de la Libération, 33405, Talence, France.
| |
Collapse
|
24
|
Kumar A, Prasad MNV. Plant-lead interactions: Transport, toxicity, tolerance, and detoxification mechanisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 166:401-418. [PMID: 30290327 DOI: 10.1016/j.ecoenv.2018.09.113] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 09/18/2018] [Accepted: 09/25/2018] [Indexed: 05/18/2023]
Abstract
Natural and human activities introduced an excess level of toxic lead (Pb) to the environment. Pb has no known biological significance and its interactions with plants lead to the production of reactive oxygen species (ROS). Pb and/or ROS have the potential to cause phytotoxicity by damaging the tissue ultrastructure, cellular components, and biomolecules. These damaging effects may possibly result in the inhibition of normal cellular functioning, physiological reactions, and overall plant performances. ROS play a dual role and act as a signaling molecule in plant defense system. This system encircles enzymatic and non-enzymatic antioxidative mechanisms. Catalase, superoxide dismutase, peroxidase, and enzymes from the ascorbate-glutathione cycle are the major enzymatic antioxidants, while non-enzymatic antioxidants include phenols, flavonoids, ascorbic acid, and glutathione. Pb removal from contaminated sites using plants depend on the plant's Pb accumulation capacity, Pb-induced phytotoxicity, and tolerance and detoxification mechanisms plants adopted to combat against this phytotoxicity. However, the consolidated information discussing Pb-plant interaction including Pb uptake and its translocation within tissues, Pb-mediated phytotoxic symptoms, antioxidative mechanisms, cellular, and protein metabolisms are rather limited. Thus, we aimed to present a consolidated information and critical discussions focusing on the recent studies related to the Pb-induced toxicity and oxidative stress situations in different plants. The important functions of different antioxidants in plants during Pb stress have been reviewed. Additionally, tolerance responses and detoxification mechanisms in the plant through the regulation of gene expression, and glutathione and protein metabolisms to compete against Pb-induced phytotoxicity are also briefly discussed herein.
Collapse
Affiliation(s)
- Abhay Kumar
- Department of Plant Sciences, University of Hyderabad, Hyderabad, Telangana 500046, India.
| | | |
Collapse
|
25
|
Khalifa NS, Hasaneen MN. The effect of chitosan-PMAA-NPK nanofertilizer on Pisum sativum plants. 3 Biotech 2018; 8:193. [PMID: 29576999 PMCID: PMC5861260 DOI: 10.1007/s13205-018-1221-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/16/2018] [Indexed: 11/29/2022] Open
Abstract
The use of chitosan (CS) as a carrier for slow fertilizer release is a novel trend. The potential effect of this system in agriculture is still debatable. Here, chitosan (CS) nanoparticles were obtained by polymerizing methacrylic acid (PMAA) for the entrapment of nitrogen, phosphorous and potassium (NPK) nanoparticles (NP), each at a time to form CS-PMAA-NPK NPs complex. The impact of this complex was evaluated using garden pea (Pisum sativum var. Master B) plants. Five-day-old pea seedlings were treated through their root system with CS-PMAA-NPK NPs at concentrations of 1, 0.5, 0.25, 0.125 and 0.0625 of the stock solution (R) for 1, 2, 4 and 7 days. In general, CS-PMAA-NPK NP complex reduced root elongation rate and resulted in the accumulation of starch at the root tip in a dose-dependent manner within the treated plants. Interestingly, the lowest concentrations of 0.0625 and 0.125 R had induced mitotic cell division (MI = 22.45 ± 2.68 and 19.72 ± 3.48, respectively) compared with the control (MI = 9.09 ± 3.28). In addition, some of major proteins such as convicilin, vicilin and legumin β were upregulated in plants treated with these low concentrations too. However, all concentrations used exhibited genotoxic effect on DNA based on the comet assay data after 48 h of treatment. Thus, it is highly recommended to consider the negative effects of this carrier system on plants and environment that may arise due to its accumulation in the agricultural fields.
Collapse
Affiliation(s)
- Noha S. Khalifa
- Botany Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | | |
Collapse
|
26
|
Azevedo R, Rodriguez E, Mendes RJ, Mariz-Ponte N, Sario S, Lopes JC, Ferreira de Oliveira JMP, Santos C. Inorganic Hg toxicity in plants: A comparison of different genotoxic parameters. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 125:247-254. [PMID: 29477088 DOI: 10.1016/j.plaphy.2018.02.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 06/08/2023]
Abstract
Inorganic Mercury (Hg) contamination persists an environmental problem, but its cyto- and genotoxicity in plants remains yet unquantified. To determine the extent of Hg-induced cyto- and genotoxicity, and assess most sensitive endpoints in plants, Pisum sativum L. seedlings were exposed for 14 days to different HgCl2 concentrations up to 100 μM. Shoots and roots from hydroponic exposure presented growth impairment and/or morphological disorders for doses >1 μM, being the roots more sensitive. Plant growth, ploidy changes, clastogenicity (HPCV), cell cycle dynamics (G1-S-G2), Comet-tail moment (TM), Comet-TD, Mitotic-index (MI) and cell proliferation index (CPI) were used to evaluate Hg-induced cyto/genotoxicity. Both leaf and root DNA-ploidy levels, assessed by flow cytometry (FCM), remained unaltered after exposure. Root cell cycle impairment occurred at lower doses (≥1 μM) than structural DNA damages (≥10 μM). Cytostatic effects depended on the Hg concentration, with delays during S-phase at lower doses, and arrests at G1 at higher ones. This arrest was paralleled with decreases of both mitotic index (MI) and cell proliferation index (CPI). DNA fragmentation, assessed by the Comet assay parameters of TD and TM, could be visualized for conditions ≥10 μM, while FCM-clastogenic parameter (FPCV) and micronuclei (MNC) were only altered in roots exposed to 100 μM. We demonstrate that inorganic-Hg induced cytostaticity is detectable even at 1 μM (a value found in contaminated sites), while structural DNA breaks/damage are only visualized in plants at concentrations ≥10 μM. We also demonstrate that among the different techniques tested for cyto- and genotoxicity, TD and TM Comet endpoints were more sensitive than FPCV or MNC. Regarding cytostatic effects, cell cycle analysis by FCM, including the difference in % cell cycle phases and CPI were more sensitive than MI or MNC frequency. Our data contribute to better understand Hg cyto- and genotoxicity in plants and to understand the information and sensitivity provided by each of the genotoxic techniques used.
Collapse
Affiliation(s)
- Raquel Azevedo
- Laboratory of Biotechnology and Cytomics, University of Aveiro, 3810-123, Aveiro, Portugal
| | - Eleazar Rodriguez
- Laboratory of Biotechnology and Cytomics, University of Aveiro, 3810-123, Aveiro, Portugal
| | - Rafael José Mendes
- iB(2)Lab, Department of Biology, Faculty of Sciences, LAQV/REQUIMTE, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - Nuno Mariz-Ponte
- iB(2)Lab, Department of Biology, Faculty of Sciences, LAQV/REQUIMTE, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - Sara Sario
- iB(2)Lab, Department of Biology, Faculty of Sciences, LAQV/REQUIMTE, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - José Carlos Lopes
- Department of Physics, University of Aveiro, 3810-123, Aveiro, Portugal
| | - José Miguel P Ferreira de Oliveira
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Porto, Portugal
| | - Conceição Santos
- iB(2)Lab, Department of Biology, Faculty of Sciences, LAQV/REQUIMTE, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal.
| |
Collapse
|
27
|
Leal-Alvarado DA, Estrella-Maldonado H, Sáenz-Carbonell L, Ramírez-Prado JH, Zapata-Pérez O, Santamaría JM. Genes coding for transporters showed a rapid and sharp increase in their expression in response to lead, in the aquatic fern (Salvinia minima Baker). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 147:1056-1064. [PMID: 29976008 DOI: 10.1016/j.ecoenv.2017.09.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 09/08/2017] [Accepted: 09/16/2017] [Indexed: 05/27/2023]
Abstract
Salvinia minima was assessed for its ability to accumulate lead (Pb) by exposing it to concentrations of 40µM Pb(NO3)2 during 24h. At the same time, the expression levels were quantified, of four genes coding for transporters: SmABCC (ABCC-MRP), SmATPase (ATPase-P3A), SmNhaD (Type-Na+/H+) and SmABCG (ABCG-WBC). In the absence of lead, S. minima had very low expression of those genes, when plants were exposed to the metal however, those genes showed a rapid (in just three hours or less) and sharp increase (up to 60 times) in their expression, particularly the SmNhaD (Type-Na+/H+) gene. This sharp increase in expression levels of the genes studied, occurred at the same time that the plant accumulated the highest content of lead in its tissues. The first two genes, are apparently implicated in detoxification and lead accumulation mechanisms, while the other two genes are apparently involved in maintaining cell balance (homeostatic control) and membrane integrity. Our results confirmed that S. minima is efficient for phytoremediation of water bodies contaminated by lead, as it is efficient in accumulating this metal in its tissues (bioconcentration factor; BCF) values greater than 1000, in short times of exposure. More importantly, our data on the expression profiles of four genes coding for transporters, represent a first sight scenario of the molecular basis for understanding the different mechanism of detoxification, apparently present in this aquatic fern.
Collapse
Affiliation(s)
- D A Leal-Alvarado
- Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Col. Chuburná de Hidalgo, 97200 Mérida, Yucatán, Mexico
| | - H Estrella-Maldonado
- Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Col. Chuburná de Hidalgo, 97200 Mérida, Yucatán, Mexico
| | - L Sáenz-Carbonell
- Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Col. Chuburná de Hidalgo, 97200 Mérida, Yucatán, Mexico
| | - J H Ramírez-Prado
- Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Col. Chuburná de Hidalgo, 97200 Mérida, Yucatán, Mexico
| | - Omar Zapata-Pérez
- Centro de Investigación y de Estudios Avanzados Unidad Mérida, Km. 6 Antigua Carretera a Progreso Apdo. Postal 73, Cordemex, 97310 Mérida, Yucatán, Mexico
| | - J M Santamaría
- Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Col. Chuburná de Hidalgo, 97200 Mérida, Yucatán, Mexico.
| |
Collapse
|
28
|
Kushwaha A, Hans N, Kumar S, Rani R. A critical review on speciation, mobilization and toxicity of lead in soil-microbe-plant system and bioremediation strategies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 147:1035-1045. [PMID: 29976006 DOI: 10.1016/j.ecoenv.2017.09.049] [Citation(s) in RCA: 226] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 09/15/2017] [Accepted: 09/17/2017] [Indexed: 05/18/2023]
Abstract
Lead accumulation in soils is of serious concern in agricultural production due to the harmful effects on soil microflora, crop growth and food safety. In soil, speciation of lead greatly affects its bioavailability and thus its toxicity on plants and microbes. Many plants and bacteria have evolved to develop detoxification mechanisms to counter the toxic effect of lead. Factors influencing the lead speciation include soil pH, organic matter, presence of various amendments, clay minerals and presence of organic colloids and iron oxides. Unlike, other metals little is known about the speciation and mobility of lead in soil. This review focuses on the speciation of lead in soil, its mobility, toxicity, uptake and detoxification mechanisms in plants and bacteria and bioremediation strategies for remediation of lead contaminated repositories.
Collapse
Affiliation(s)
- Anamika Kushwaha
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Teliyarganj, Allahabad, Uttar Pradesh, India
| | - Nidhi Hans
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Teliyarganj, Allahabad, Uttar Pradesh, India
| | - Sanjay Kumar
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Teliyarganj, Allahabad, Uttar Pradesh, India
| | - Radha Rani
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Teliyarganj, Allahabad, Uttar Pradesh, India.
| |
Collapse
|
29
|
Kim J, Lee JB. Giant Catalytic DNA Particles for Simple and Intuitive Detection of Pb(2.). NANOSCALE RESEARCH LETTERS 2016; 11:244. [PMID: 27169418 PMCID: PMC4864767 DOI: 10.1186/s11671-016-1462-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/03/2016] [Indexed: 06/05/2023]
Abstract
DNAzymes have been extensively studied as biosensors because of their unique functionality of cleaving substrate in the presence of metal ion cofactors. However, there are only a few reports on visual detection using gold nanoparticles. Here, we synthesized the DNAzyme microparticle (DzMP) (~1 μm) via rolling circle amplification for detection of Pb(2+) without the help of other materials. Then, the substrate strands were labeled with two different fluorophores (6-carboxyfluorescein and Cy5) to visualize the DzMPs and to monitor the separation of substrate strands. Because of their large size, the decline in the number of fluorescent particles in the presence of Pb(2+) could be successfully demonstrated by a fluorescence microscopy, presenting a new platform for heavy metal detection.
Collapse
Affiliation(s)
- Jieun Kim
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, 130-743, South Korea
| | - Jong Bum Lee
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, 130-743, South Korea.
| |
Collapse
|
30
|
Khan M, Daud MK, Basharat A, Khan MJ, Azizullah A, Muhammad N, Muhammad N, Ur Rehman Z, Zhu SJ. Alleviation of lead-induced physiological, metabolic, and ultramorphological changes in leaves of upland cotton through glutathione. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:8431-40. [PMID: 26782322 DOI: 10.1007/s11356-015-5959-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 12/10/2015] [Indexed: 05/24/2023]
Abstract
Plants face changes in leaves under lead (Pb) toxicity. Reduced glutathione (GSH) has several functions in plant metabolism, but its role in alleviating Pb toxicity in cotton leaves is still unknown. In the present study, cotton seedlings (28 days old) were exposed to 500 μM Pb and 50 μM GSH, both alone and in combination, for a period of 10 days, in the Hoagland solution under controlled growth conditions. Results revealed Pb-induced changes in cotton's leaf morphology, photosynthesis, and oxidative metabolism. However, exogenous application of GSH restored leaf growth. GSH triggered build up of chlorophyll a, chlorophyll b, and carotenoid contents and boosted fluorescence ratios (F v/F m and F v/F 0). Moreover, GSH reduced the malondialdehyde (MDA), hydrogen peroxide (H2O2), and Pb contents in cotton leaves. Results further revealed that total soluble protein contents were decreased under Pb toxicity; however, exogenously applied GSH improved these contents in cotton leaves. Activities of antioxidant enzymes (catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), glutathione reductase (GR), and ascorbate peroxidase (APX)) were also increased by GSH application under Pb toxicity. Microscopic analysis showed that excess Pb shattered thylakoid membranes in chloroplasts. However, GSH stabilized ultrastructure of Pb-stressed cotton leaves. These findings suggested that exogenously applied GSH lessened the adverse effects of Pb and improved cotton's tolerance to oxidative stress.
Collapse
Affiliation(s)
- Mumtaz Khan
- Institute of Crop Science, Department of Agronomy, College of Agriculture and Biotechnology Zijingang Campus, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - M K Daud
- Institute of Crop Science, Department of Agronomy, College of Agriculture and Biotechnology Zijingang Campus, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| | - Ali Basharat
- Institute of Crop Science, Department of Agronomy, College of Agriculture and Biotechnology Zijingang Campus, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Muhammad Jamil Khan
- Department of Soil and Environmental Sciences, Faculty of Agriculture, Gomal University, Dera Ismail Khan, 29050, KPK, Pakistan
| | - Azizullah Azizullah
- Department of Botany, Kohat University of Science and Technology, Kohat, 26000, KPK, Pakistan
| | - Niaz Muhammad
- Department of Microbiology, Kohat University of Science and Technology, Kohat, 26000, KPK, Pakistan
| | - Noor Muhammad
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, 26000, KPK, Pakistan
| | - Zia Ur Rehman
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, 26000, KPK, Pakistan
| | - Shui Jin Zhu
- Institute of Crop Science, Department of Agronomy, College of Agriculture and Biotechnology Zijingang Campus, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
31
|
Chaves LCC, Navoni JA, de Morais Ferreira D, Batistuzzo de Medeiros S, Ferreira da Costa T, Petta RA, Souza do Amaral V. Water mutagenic potential assessment on a semiarid aquatic ecosystem under influence of heavy metals and natural radioactivity using micronuclei test. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:7572-7581. [PMID: 26732704 DOI: 10.1007/s11356-015-5993-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 12/15/2015] [Indexed: 06/05/2023]
Abstract
The contamination of water bodies by heavy metals and ionizing radiation is a critical environmental issue, which can affect water quality and, thus, human health. This study aimed to evaluate the water quality of the Boqueirão de Parelhas Dam in the Brazilian semiarid region. A 1-year study (2013-2014) was performed through the assessment of physicochemical parameters, heavy metal content, and radioactivity along with the mutagenicity potential of water using micronuclei test in Orechromis niloticus (in vivo) and the cytokinesis-block micronucleus (CBMN) assay in human lymphocytes (in vitro). A deterioration of water organoleptics characteristics by the presence of high levels of sulfate and total solids was observed. High concentrations of aluminum, nickel, silver, and lead along with the alpha particle content were higher than the limits suggested by the World Health Organization and Brazilian legislation for drinking water. An increase in the frequency of micronuclei and nuclear abnormalities was observed in both experimental models. The results obtained confirmed the mutagenic potential present in water samples. This study highlights that geogenic agents affect water quality becoming a human health concern to be taken into account due to the relevance that this water reservoir has in the region.
Collapse
Affiliation(s)
- Luiz Cláudio Cardozo Chaves
- Programa de Pós-Graduação em Desenvolvimento e Meio Ambiente, Universidade Federal do Rio Grande do Norte, Av. Sen. Salgado Filho 3000, 59078-970, Natal, RN, Brazil
| | - Julio Alejandro Navoni
- Programa de Pós-Graduação em Desenvolvimento e Meio Ambiente, Universidade Federal do Rio Grande do Norte, Av. Sen. Salgado Filho 3000, 59078-970, Natal, RN, Brazil
| | - Douglisnilson de Morais Ferreira
- Núcleo de Análises de águas, alimentos e efluentes, Instituto Federal de Tecnologia do Rio Grande do Norte (IFRN), Natal, Brazil
| | - Silvia Batistuzzo de Medeiros
- Programa de Pós-Graduação em Desenvolvimento e Meio Ambiente, Universidade Federal do Rio Grande do Norte, Av. Sen. Salgado Filho 3000, 59078-970, Natal, RN, Brazil
| | - Thomas Ferreira da Costa
- Laboratório de Radioatividade Natural (LARANA), Departamento de Geologia, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Reinaldo Antônio Petta
- Programa de Pós-Graduação em Desenvolvimento e Meio Ambiente, Universidade Federal do Rio Grande do Norte, Av. Sen. Salgado Filho 3000, 59078-970, Natal, RN, Brazil
- Laboratório de Geomática e Ciências Ambientais (LAGEOMA), Departamento de Geologia, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Viviane Souza do Amaral
- Programa de Pós-Graduação em Desenvolvimento e Meio Ambiente, Universidade Federal do Rio Grande do Norte, Av. Sen. Salgado Filho 3000, 59078-970, Natal, RN, Brazil.
| |
Collapse
|
32
|
Lanier C, Manier N, Cuny D, Deram A. The comet assay in higher terrestrial plant model: Review and evolutionary trends. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 207:6-20. [PMID: 26327498 DOI: 10.1016/j.envpol.2015.08.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 08/13/2015] [Indexed: 05/24/2023]
Abstract
The comet assay is a sensitive technique for the measurement of DNA damage in individual cells. Although it has been primarily applied to animal cells, its adaptation to higher plant tissues significantly extends the utility of plants for environmental genotoxicity research. The present review focuses on 101 key publications and discusses protocols and evolutionary trends specific to higher plants. General consensus validates the use of the percentage of DNA found in the tail, the alkaline version of the test and root study. The comet protocol has proved its effectiveness and its adaptability for cultivated plant models. Its transposition in wild plants thus appears as a logical evolution. However, certain aspects of the protocol can be improved, namely through the systematic use of positive controls and increasing the number of nuclei read. These optimizations will permit the increase in the performance of this test, namely when interpreting mechanistic and physiological phenomena.
Collapse
Affiliation(s)
- Caroline Lanier
- Université Lille 2, EA 4483, Laboratoire des Sciences Végétales et Fongiques - Faculté des Sciences Pharmaceutiques et Biologiques, B.P. 83, F-59006 Lille Cedex, France; Université Lille 2, Faculté Ingénierie et Management de la Santé (ILIS), EA 4483, 42, Rue Ambroise Paré, 59120 Loos, France
| | - Nicolas Manier
- INERIS, Parc Technologique ALATA, B.P. 2, 60550 Verneuil en Halatte, France
| | - Damien Cuny
- Université Lille 2, Faculté Ingénierie et Management de la Santé (ILIS), EA 4483, 42, Rue Ambroise Paré, 59120 Loos, France
| | - Annabelle Deram
- Université Lille 2, EA 4483, Laboratoire des Sciences Végétales et Fongiques - Faculté des Sciences Pharmaceutiques et Biologiques, B.P. 83, F-59006 Lille Cedex, France; Université Lille 2, Faculté Ingénierie et Management de la Santé (ILIS), EA 4483, 42, Rue Ambroise Paré, 59120 Loos, France.
| |
Collapse
|
33
|
Santos CLV, Pourrut B, Ferreira de Oliveira JMP. The use of comet assay in plant toxicology: recent advances. Front Genet 2015; 6:216. [PMID: 26175750 PMCID: PMC4485349 DOI: 10.3389/fgene.2015.00216] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 06/02/2015] [Indexed: 12/13/2022] Open
Abstract
The systematic study of genotoxicity in plants induced by contaminants and other stress agents has been hindered to date by the lack of reliable and robust biomarkers. The comet assay is a versatile and sensitive method for the evaluation of DNA damages and DNA repair capacity at single-cell level. Due to its simplicity and sensitivity, and the small number of cells required to obtain robust results, the use of plant comet assay has drastically increased in the last decade. For years its use was restricted to a few model species, e.g., Allium cepa, Nicotiana tabacum, Vicia faba, or Arabidopsis thaliana but this number largely increased in the last years. Plant comet assay has been used to study the genotoxic impact of radiation, chemicals including pesticides, phytocompounds, heavy metals, nanoparticles or contaminated complex matrices. Here we will review the most recent data on the use of this technique as a standard approach for studying the genotoxic effects of different stress conditions on plants. Also, we will discuss the integration of information provided by the comet assay with other DNA-damage indicators, and with cellular responses including oxidative stress, cell division or cell death. Finally, we will focus on putative relations between transcripts related with DNA damage pathways, DNA replication and repair, oxidative stress and cell cycle progression that have been identified in plant cells with comet assays demonstrating DNA damage.
Collapse
Affiliation(s)
| | - Bertrand Pourrut
- Laboratoire Génie Civil et géo-Environnement - Groupe ISA Lille, France
| | - José M P Ferreira de Oliveira
- Laboratory of Biotechnology and Cytometry, Centre for Environmental and Marine Studies, University of Aveiro Aveiro, Portugal
| |
Collapse
|
34
|
Garanzini DS, Menone ML. Azoxystrobin causes oxidative stress and DNA damage in the aquatic macrophyte Myriophyllum quitense. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2015; 94:146-151. [PMID: 25416866 DOI: 10.1007/s00128-014-1428-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 11/14/2014] [Indexed: 06/04/2023]
Abstract
Among the search for new types of pesticides, the fungicide azoxystrobin (AZX) was the first patent of the strobilurin compounds, entering in the market in 1996. Its use worldwide is growing, mainly linked to soybean production, although its effects in non-target organisms are almost unknown. The goal of the present work was to evaluate effects of short-term AZX exposure to the aquatic macrophyte Myriophyllum quitense, focusing on oxidative stress parameters and DNA fragmentation. Significant inhibition of the antioxidant enzyme systems were observed at 50 μg/L AZX for catalase and peroxidase (p < 0.05). Lipid and DNA damage were significant at 50 and 100 μg/L AZX. These biomarkers were sensitive to AZX and can be used in a battery to evaluate the occurrence of AZX in freshwater ecosystems.
Collapse
Affiliation(s)
- Daniela S Garanzini
- Facultad de Cs. Ex. y Nat. Lab. Ecotoxicología, Instituto de Investigaciones Marinas y Costeras (IIMyC)-UNMDP/CONICET, Funes 3350 (7600), Mar del Plata, Argentina
| | | |
Collapse
|
35
|
Izbiańska K, Arasimowicz-Jelonek M, Deckert J. Phenylpropanoid pathway metabolites promote tolerance response of lupine roots to lead stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 110:61-7. [PMID: 25194698 DOI: 10.1016/j.ecoenv.2014.08.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 08/09/2014] [Accepted: 08/11/2014] [Indexed: 05/10/2023]
Abstract
Over the past decade, there has been increasing interest in the role of phenolic compounds, especially flavonoids in plants in response to heavy metal stress. In this study, it was found that treatment of yellow lupine (Lupinus luteus L.) with Pb (150mg/l Pb(NO3)2) increased flavonoid contents in both cotyledons (by ca. 67%) and roots (by ca. 54%). Moreover, seedling roots preincubated with flavonoid extracts, derived from Pb-treated lupine cotyledons, exhibited enhanced tolerance to the heavy metal. Flavonoid preincubated lupine seedlings, growing for 48h in the presence of Pb(NO3)2, showed mitigated symptoms of lead stress, which was manifested by a significant increase in the root length and its biomass. Additionally, in seedlings pretreated with the natural flavonoid preparations an impressive rise of the antioxidant capacity was observed. Simultaneously, root cells exhibited reduced accumulation of both H2O2 and O2(-), which was associated with the decreased TBARS content and the number of dying cells under Pb stress. Taken together, accumulation of flavonoids could be an effective event in the plant׳s spectrum of defense responses to heavy metal stress, and the protective role of flavonoids against heavy metals might be associated with their ability to scavenge reactive oxygen species overproduced under lead stress.
Collapse
Affiliation(s)
- Karolina Izbiańska
- Department of Plant Ecophysiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, ul. Umultowska 89, 61-614, Poznań, Poland
| | - Magdalena Arasimowicz-Jelonek
- Department of Plant Ecophysiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, ul. Umultowska 89, 61-614, Poznań, Poland
| | - Joanna Deckert
- Department of Plant Ecophysiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, ul. Umultowska 89, 61-614, Poznań, Poland.
| |
Collapse
|
36
|
Molecular instability induced by aluminum stress in Plantago species. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2014; 770:105-11. [DOI: 10.1016/j.mrgentox.2014.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 05/20/2014] [Accepted: 06/09/2014] [Indexed: 11/21/2022]
|
37
|
Jiang Z, Zhang H, Qin R, Zou J, Wang J, Shi Q, Jiang W, Liu D. Effects of lead on the morphology and structure of the nucleolus in the root tip meristematic cells of Allium cepa L. Int J Mol Sci 2014; 15:13406-23. [PMID: 25089875 PMCID: PMC4159802 DOI: 10.3390/ijms150813406] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 07/15/2014] [Accepted: 07/24/2014] [Indexed: 01/14/2023] Open
Abstract
To study the toxic mechanisms of lead (Pb) in plants, the effects of Pb on the morphology and structure of the nucleolus in root tip meristematic cells of Allium cepa var. agrogarum L. were investigated. Fluorescence labeling, silver-stained indirect immunofluorescent microscopy and western blotting were used. Fluorescence labeling showed that Pb ions were localized in the meristematic cells and the uptake and accumulation of Pb increased with treatment time. At low concentrations of Pb (1-10 μM) there were persistent nucleoli in some cells during mitosis, and at high concentration (100 μM) many of the nucleolar organizing regions were localized on sticky chromosomes in metaphase and anaphase cells. Pb induced the release of particles containing argyrophilic proteins to be released from the nucleus into the cytoplasm. These proteins contained nucleophosmin and nucleolin. Pb also caused the extrusion of fibrillarin from the nucleus into the cytoplasm. Western blotting demonstrated the increased expression of these three major nucleolar proteins under Pb stress.
Collapse
Affiliation(s)
- Ze Jiang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China.
| | - Huaning Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China.
| | - Rong Qin
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China.
| | - Jinhua Zou
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China.
| | - Junran Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China.
| | - Qiuyue Shi
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China.
| | - Wusheng Jiang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China.
| | - Donghua Liu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China.
| |
Collapse
|
38
|
Qadir S, Jamshieed S, Rasool S, Ashraf M, Akram NA, Ahmad P. Modulation of plant growth and metabolism in cadmium-enriched environments. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2014; 229:51-88. [PMID: 24515810 DOI: 10.1007/978-3-319-03777-6_4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Cadmium (Cd) is a water soluble metal pollutant that is not essential to plant growth.It has attracted attention from soil scientists and plant nutritionists in recent years because of its toxicity and mobility in the soil-plant continuum. Even low levels of Cd (0.1-1 J.!M) cause adverse effects on plant growth and metabolism. Cadmium is known to trigger the synthesis of reactive oxygen species, hinder utilization, uptake and transport of essential nutrients and water, and modify photosynthetic machinery,thereby resulting in plant tissue death. Although the effects of Cd are dose- as well as plant species-dependent, some plants show Cd tolerance through a wide range of cellular responses. Such tolerance results from synthesis of osmolytes,generation of enzymatic and non-enzymatic antioxidants and metal-detoxifying peptides, changes in gene expression, and metal ion homeostasis and compartmentalization of ligand-metal complexes. Cd toxicity in plants produces effects on chlorophyllbio synthesis, reduces photosynthesis, and upsets plant water relations and hormonal and/or nutritional balances. All of these effects on plants and on plant metabolism ultimately reduce growth and productivity.In this review, we describe the extent to which Cd affects underlying metabolic processes in plants and how such altered processes affect plant growth. We review the sources of Cd contamination, its uptake, transportation and bioavailability and accumulation in plants, and its antagonistic and synergistic effects with other metals and compounds. We further address the effects of Cd on plant genetics and metabolism,and how plants respond to mitigate the adverse effects of Cd exposure, as well as strategies(e.g., plant breeding) that can reduce the impact of Cd contamination on plants.
Collapse
Affiliation(s)
- Shaista Qadir
- Department of Botany, Womens Degree College, Moulana Azad Road, Srinagar, Jammu and Kashmir, 190001, India
| | | | | | | | | | | |
Collapse
|
39
|
Arya SK, Basu A, Mukherjee A. Lead induced genotoxicity and cytotoxicity in root cells of Allium cepa and Vicia faba. THE NUCLEUS 2013. [DOI: 10.1007/s13237-013-0099-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
40
|
Purohit AR, Rao MV. Mitigative role of melatonin andα-tocopherol against mercury-induced genotoxicity. Drug Chem Toxicol 2013; 37:221-6. [DOI: 10.3109/01480545.2013.838774] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
41
|
Glińska S, Gapińska M. The effect of pre-incubation of Allium cepa L. roots in the ATH-rich extract on Pb uptake and localization. PROTOPLASMA 2013; 250:601-11. [PMID: 22895797 PMCID: PMC3604584 DOI: 10.1007/s00709-012-0445-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 08/01/2012] [Indexed: 05/22/2023]
Abstract
The positive influence of anthocyanin (ATH) on toxic metal-treated plant material is well documented; however, it is still not explained if it is caused by changes in element absorption and distribution. Therefore, detailed analysis of the effect of the ATH-rich extract from red cabbage leaves on Pb uptake and localization at morphological, anatomical and ultrastructural level was the goal of this study. Two-day-old adventitious roots of Allium cepa L. (cv. Polanowska) were treated for 2 h with the aqueous solution of Pb(NO3)2 at the concentration of 100 μM with or without preliminary incubation in the anthocyanin-rich extract from Brassica oleracea L. var. capitata rubra leaves (250 μM, 3 h). The red cabbage extract did not change the total Pb uptake but it enhanced the translocation of accumulated metal from roots to shoots. Within the pretreated roots, more Pb was deposited in their basal part and definitely smaller amount of the metal was bound in the apoplast of the outer layers of cortex cells. The ultrastructural analysis (transmission electron microscopy and X-ray microanalysis) revealed that the ATH-rich extract lowered the number of Pb deposits in intracellular spaces, cell wall and cytoplasm of root meristematic cells as well as in such organelles important to cell metabolism as mitochondria, plastids and nucleus. The Pb deposits were preferably localised in those vacuoles where ATH also occurred. This sequestration of Pb in vacuoles is probably responsible for reduction of metal cytotoxicity and consequently could lead to better plant growth.
Collapse
Affiliation(s)
- Sława Glińska
- Laboratory of Electron Microscopy, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland.
| | | |
Collapse
|
42
|
Rodriguez E, Azevedo R, Moreira H, Souto L, Santos C. Pb2+ exposure induced microsatellite instability in Pisum sativum in a locus related with glutamine metabolism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 62:19-22. [PMID: 23174146 DOI: 10.1016/j.plaphy.2012.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 10/10/2012] [Indexed: 06/01/2023]
Abstract
Lead (Pb) is a toxic element, but its putative mutagenic effects in plant cells, using molecular markers, remain to unveil. To evaluate if Pb induces mutagenicity, Pisum sativum L. seedlings were exposed to Pb(2+) (up to 2000 mg L(-1)) for 28 days and the instability of microsatellites (or Simple Sequence Repeats, SSR) was analyzed in leaves and roots. The analysis of eight selected microsatellites (SSR1-SSR8) demonstrated that only at the highest dosage microsatellite instability (MSI) occurred, at a frequency of 4.2%. Changes were detected in one microsatellite (SSR6) that is inserted in the locus for glutamine synthetase. SSR6 products of roots exposed to the highest concentration of Pb were 3 bp larger than those of the control. Our data demonstrate that: (a) SSR technique is sensitive to detect Pb-induced mutagenicity in plants. MSI instability is Pb dose dependent and organ dependent (roots are more sensitive); (b) the Pb-sensitive SSR6 is inserted in the glutamine synthetase locus, with still unknown relation with functional changes of this enzyme; (c) Pb levels inducing MSI are much above the maximum admitted levels in some European Union countries for agricultural purpose waters. In conclusion, we propose here the potential use of SSR to evaluate Pb(2+)-induced mutagenicity, in combination with other genetic markers.
Collapse
Affiliation(s)
- E Rodriguez
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | | | | | | | | |
Collapse
|
43
|
Monteiro C, Santos C, Pinho S, Oliveira H, Pedrosa T, Dias MC. Cadmium-induced cyto- and genotoxicity are organ-dependent in lettuce. Chem Res Toxicol 2012; 25:1423-34. [PMID: 22624971 DOI: 10.1021/tx300039t] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cadmium is a priority pollutant. Its mechanisms and effects within different plant organs remain unclear. Here, cyto-genotoxicity biomarkers were evaluated in roots and leaves after Cd exposure (0, 1, 10, and 50 μM) of the model crop Lactuca sativa L. (cv. "Reine de Mai"). Overall, superoxide dismutase (SOD) and catalase (CAT) activities were stimulated in leaves, where Cd accumulation was lower in comparison to that in roots. In roots, SOD and peroxidase (POX, APX) activities were stimulated. Moreover, in both organs glutathione reductase (GR) was not affected by Cd. Overall, the H(2)O(2) content increased in both organs, while the total antioxidant capacity decreased in leaves and increased in roots with Cd concentrations. In both organs, lipid and protein oxidation rose with consequent increase of membrane permeability. Simultaneously, the comet assay showed that tail moment, tail length, and % tail DNA were maximum for 1 μM. For 10 μM, shorter tails were found suggesting induced Cd-DNA adducts that lead to DNA-DNA/DNA-protein cross-links, and/or formation of longer DNA fragments, and/or impairment of DNA repair mechanisms, while at 50 μM, nucleoids sensitivity to the technique was evident. This result was consistent with the maximum micronuclei frequency found for the 10 μM Cd dose in roots, suggesting that the surviving cells in this organ had an increase of mitotic catastrophe and that DNA repair systems for blocking cell cycle were dysfunctional. In lower Cd concentrations, root cells might have developed strategies to repair damaged DNA by blocking the cell cycle at specific checkpoints, thus avoiding mitotic catastrophe. Roots at 1 μM showed a cell cycle blockage trend at the G(2) checkpoint, while those at higher concentrations presented S phase delay. We finally discuss a general model of Cd-organ interaction covering these cyto- and genotoxic effects and the potential use of this cultivar in phytoremediation strategies.
Collapse
Affiliation(s)
- Cristina Monteiro
- Department of Biology and CESAM, Laboratory of Biotechnology and Cytomics, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | | | | | | | | | | |
Collapse
|
44
|
Shahid M, Pinelli E, Dumat C. Review of Pb availability and toxicity to plants in relation with metal speciation; role of synthetic and natural organic ligands. JOURNAL OF HAZARDOUS MATERIALS 2012; 219-220:1-12. [PMID: 22502897 DOI: 10.1016/j.jhazmat.2012.01.060] [Citation(s) in RCA: 196] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 01/17/2012] [Accepted: 01/19/2012] [Indexed: 05/03/2023]
Abstract
Biogeochemical behavior of lead (Pb), a persistent hazardous pollutant of environmental concern, strongly depends on its chemical speciation. Therefore, in this review, link between Pb speciation: presence of organic ligands and its environmental behavior has been developed. Both, biogeochemical and ecotoxicological data are discussed in environmental risk assessment context and phytoremediation studies. Three kinds of organic ligands selected for this review include: (1) ethylene diamine tetra-acetic acid (EDTA), (2) low molecular weight organic acids (LMWOAs) and (3) humic substances (HSs). The review highlights the effect of Pb speciation on: (i) Pb fate and behavior in soil; (ii) Pb plant uptake and accumulation in different plant parts; and (iii) Pb-induced phyto-toxicity. Effects of organic ligands on Pb speciation are compared: how they can change Pb speciation modifying accordingly its fate and biogeochemistry in soil-plant system? EDTA forms soluble, stable and phytoavailable Pb-chelates due to high binding Pb affinity. LMWOAs can solubilize Pb in soil by decreasing soil pH or increasing soil organic contents, but have little effect on its translocation. Due to heterogeneous structure, HSs role is complex. In consequence Pb speciation knowledge is needed to discuss phyto-toxicity data and improved soil phytoremediation techniques.
Collapse
Affiliation(s)
- M Shahid
- Université de Toulouse, INP-ENSAT, Castanet-Tolosan, France
| | | | | |
Collapse
|
45
|
Lead-induced DNA damage in Vicia faba root cells: Potential involvement of oxidative stress. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2011; 726:123-8. [DOI: 10.1016/j.mrgentox.2011.09.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 07/04/2011] [Accepted: 08/16/2011] [Indexed: 11/17/2022]
|
46
|
Carmona ER, Creus A, Marcos R. Genotoxicity testing of two lead-compounds in somatic cells of Drosophila melanogaster. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2011; 724:35-40. [DOI: 10.1016/j.mrgentox.2011.05.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 04/13/2011] [Accepted: 05/05/2011] [Indexed: 10/18/2022]
|
47
|
Rodriguez E, Azevedo R, Fernandes P, Santos C. Cr(VI) induces DNA damage, cell cycle arrest and polyploidization: a flow cytometric and comet assay study in Pisum sativum. Chem Res Toxicol 2011; 24:1040-7. [PMID: 21667992 DOI: 10.1021/tx2001465] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Chromium(VI) is recognized as the most toxic valency of Cr, but its genotoxicity and cytostaticity in plants is still poorly studied. In order to analyze Cr(VI) cyto- and gentotoxicity, Pisum sativum L. plants were grown in soil and watered with solutions with different concentrations of Cr up to 2000 mg/L. After 28 days of exposure, leaves showed no significant variations in either cell cycle dynamics or ploidy level. As for DNA damage, flow cytometric (FCM) histograms showed significant differences in full peak coefficient of variation (FPCV) values, suggesting clastogenicity. This is paralleled by the Comet assay results, showing an increase in DNA damage for 1000 and 2000 mg/L. In roots, exposure to 2000 mg/L resulted in cell cycle arrest at the G(2)/M checkpoint. It was also verified that under the same conditions 40% of the individuals analyzed suffered polyploidization having both 2C and 4C levels. DNA damage analysis by the Comet assay and FCM revealed dose-dependent increases in DNA damage and FPCV. Through this, we have unequivocally demonstrated for the first time in plants that Cr exposure can result in DNA damage, cell cycle arrest, and polyploidization. Moreover, we critically compare the validity of the Comet assay and FCM in evaluating cytogenetic toxicity tests in plants and demonstrate that the data provided by both techniques complement each other and present high correlation levels. In conclusion, the data presented provides new insight on Cr effects in plants in general and supports the use of the parameters tested in this study as reliable endpoints for this metal toxicity in plants.
Collapse
Affiliation(s)
- Eleazar Rodriguez
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | | | | | | |
Collapse
|
48
|
A modified protocol for the comet assay allowing the processing of multiple samples. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2011; 721:153-6. [DOI: 10.1016/j.mrgentox.2011.01.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 12/19/2010] [Accepted: 01/16/2011] [Indexed: 11/22/2022]
|
49
|
Pourrut B, Shahid M, Dumat C, Winterton P, Pinelli E. Lead uptake, toxicity, and detoxification in plants. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2011; 213:113-36. [PMID: 21541849 DOI: 10.1007/978-1-4419-9860-6_4] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Lead has gained considerable attention as a persistent toxic pollutant of concern,partly because it has been prominent in the debate concerning the growing anthropogenic pressure on the environment. The purpose of this review is to describe how plants take lead up and to link such uptake to the ecotoxicity of lead in plants.Moreover, we address the mechanisms by which plants or plant systems detoxify lead.Lead has many interesting physico-chemical properties that make it a very useful heavy metal. Indeed, lead has been used by people since the dawn of civilization.Industrialization, urbanization, mining, and many other anthropogenic activities have resulted in the redistribution of lead from the earth's crust to the soil and to the environment.Lead forms various complexes with soil components, and only a small fraction of the lead present as these complexes in the soil solution are phyto available. Despite its lack of essential function in plants, lead is absorbed by them mainly through the roots from soil solution and thereby may enter the food chain. The absorption of lead by roots occurs via the apoplastic pathway or via Ca2+-permeable channels.The behavior of lead in soil, and uptake by plants, is controlled by its speciation and by the soil pH, soil particle size, cation-exchange capacity, root surface area,root exudation, and degree of mycorrhizal transpiration. After uptake, lead primarily accumulates in root cells, because of the blockage by Casparian strips within the endodermis. Lead is also trapped by the negative charges that exist on roots' cell walls.Excessive lead accumulation in plant tissue impairs various morphological, physiological, and biochemical functions in plants, either directly or indirectly, and induces a range of deleterious effects. It causes phytotoxicity by changing cell membrane permeability, by reacting with active groups of different enzymes involved in plant metabolism and by reacting with the phosphate groups of ADP or ATP,and by replacing essential ions. Lead toxicity causes inhibition of ATP production, lipid peroxidation, and DNA damage by over production of ROS. In addition, lead strongly inhibits seed germination, root elongation, seedling development, plant growth, transpiration, chlorophyll production, and water and protein content. The negative effects that lead has on plant vegetative growth mainly result from the following factors: distortion of chloroplast ultrastructure, obstructed electron transport,inhibition of Calvin cycle enzymes, impaired uptake of essential elements, such as Mg and Fe, and induced deficiency of CO2 resulting from stomatal closure.Under lead stress, plants possess several defense strategies to cope with lead toxicity. Such strategies include reduced uptake into the cell; sequestration of lead into vacuoles by the formation of complexes; binding of lead by phytochelatins,glutathione, and amino acids; and synthesis of osmolytes. In addition, activation of various antioxidants to combat increased production of lead-induced ROS constitutes a secondary defense system.
Collapse
Affiliation(s)
- Bertrand Pourrut
- LGCgE, Equipe Sols et environnement, ISA, 59046, Lille Cedex, France.
| | | | | | | | | |
Collapse
|
50
|
Dhakshanamoorthy D, Selvaraj R, Chidambaram ALA. Induced mutagenesis in Jatropha curcas L. using gamma rays and detection of DNA polymorphism through RAPD marker. C R Biol 2010; 334:24-30. [PMID: 21262483 DOI: 10.1016/j.crvi.2010.11.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 11/07/2010] [Accepted: 11/10/2010] [Indexed: 10/18/2022]
Abstract
The aim of this study is to examine the effect of different doses (control, 5, 10, 15, 20 and 25 Kr) of gamma irradiation on seed germination, flowering, fruit and seed traits of Jatropha curcas and to identify DNA polymorphism among the mutants through a Randomly Amplified Polymorphic DNA (RAPD) marker analysis. The improved agronomic traits such as flowering, fruits and seeds were recorded in 5 Kr dose and seed germination percentage in 10 Kr dose treated plants, while corresponding parameters were reduced significantly (P>0.05) in 25 Kr dose gamma rays treated plants when compared to that of control. All the twenty-three random primers used except six primers, namely OPAW16, OPAK07, OPAK15, OPS01, OPAK20 and OPAL09 were showed polymorphic bands. The primers: OPAW16, OPAK07, OPAK15, OPS01, OPAK20 and OPAL09 produced only one band each across the six mutants, while the primers: OPU13, OPAB 15, OPF01 and OPAB11 were produced with maximum number of bands (8). The number of amplicons varied from 1 to 8 with an average of 3.9 bands, of which 2.3 were polymorphic. The percentage of polymorphism per primer ranged from 0 to 100 with an average of 55.16%. The Jaccard's coefficients of dissimilarity varied from 0.324 to 0.397, indicative of the level of genetic variation among the mutants studied. The maximum dissimilarity value (0.397) was observed in 5 Kr mutant while the minimum value (0.250) was observed in 20 Kr mutant when compared to that of control. In a dendrogram constructed based on genetic similarity coefficients, the mutants were grouped into three main clusters; (a) control, 10, 15 and 20 Kr dose mutants clustered together, (b) 25 Kr dose grouped alone, (c) 5 Kr dose also grouped alone. The mutants showing the differences in morphological traits showed DNA polymorphism in PCR profile amplified by RAPD marker. It is concluded that DNA polymorphism detected by RAPD analysis offered a useful molecular marker for the identification of mutants in gamma radiation treated plants.
Collapse
|