1
|
Wang Y, Yan L, Zheng G. Magnetic Molecularly Imprinted Polymers with Hydrophilic Shells for the Selective Enrichment and Detection of Rosmarinic Acid in Aqueous Extraction. PLANTS (BASEL, SWITZERLAND) 2024; 14:56. [PMID: 39795316 PMCID: PMC11722810 DOI: 10.3390/plants14010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/17/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025]
Abstract
Rosmarinic acid (RA) is a natural active compound widely found in many plants belonging to the family of Lamiaceae, Boraginaceae, and so on, which has various important bioactivities, including being anti-oxidative, anti-inflammatory, antiviral, etc. Herein, novel hydrophilic magnetic molecularly imprinted polymers (HMMIPs) with a regular core-shell structure were successfully developed using RA as a template molecule, acrylamide (AM) as a functional monomer, N-N 'methylenebisacrylamide (MBA) as a cross-linking agent, and water as the porogen. After a series of characterization and adsorption performance analyses, it was found that HMMIPs are hydrophilic with an adsorption capacity of 8.012 ± 0.54 mg/g, an imprinting factor of 3.64, and a selectivity coefficient of 2.63~2.91. Furthermore, the HMMIPs can be rapidly separated from other components under the influence of external magnetic fields. The HMMIPs were employed for the determination of RA present in the Perilla frutescens and Rosmarinus officinalis aqueous extract with recoveries of 88.2~107.3%. These results indicated that HMMIPs of RA have the benefits of straightforward operation, rapid adsorption, and high selectivity, rendering it an appropriate way for the expedient and selective isolation of RA in an intricate matrix.
Collapse
Affiliation(s)
| | - Linlin Yan
- Key Laboratory of Biomass Energy and Material, Jiangsu Province, Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Institute of Chemical Industry of Forest Products, CAF, Nanjing 210042, China; (Y.W.); (G.Z.)
| | | |
Collapse
|
2
|
Helvacioglu S, Charehsaz M, Bankoglu EE, Stopper H, Aydin A. The ameliorative effect of rosmarinic acid and epigallocatechin gallate against doxorubicin-induced genotoxicity. Drug Chem Toxicol 2024; 47:1087-1099. [PMID: 38529831 DOI: 10.1080/01480545.2024.2332790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/14/2024] [Indexed: 03/27/2024]
Abstract
Doxorubicin (Dox), an effective anticancer agent, is known for its genotoxic effects on normal cells. Phenolic compounds, renowned for their antitumor, antioxidant, and antigenotoxic properties, have gained prominence in recent years. This study investigates the individual and combined protective effects of rosmarinic acid (RA) and epigallocatechin gallate (EGCG) against Dox-induced genotoxicity using various in vitro test systems. The synergistic/antagonistic interaction of these combinations on Dox's chemotherapeutic effect is explored in breast cancer cell lines. Both RA and EGCG significantly mitigate Dox-induced genotoxicity in comet, micronucleus, and Ames assays. While Dox exhibits higher selectivity against MCF-7 cells, EGCG and RA show greater selectivity against MDA-MB-231 cells. The coefficient of drug interaction reveals a synergistic effect when RA or EGCG is combined with Dox in breast cancer cells. In conclusion, both EGCG and RA effectively reduce Dox-induced genetic damage and enhance Dox's cell viability-reducing effect in breast cancer cells.
Collapse
Affiliation(s)
- Sinem Helvacioglu
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, İstinye University, Istanbul, Turkey
| | - Mohammad Charehsaz
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey
| | - Ezgi Eyluel Bankoglu
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Wuerzburg, Germany
| | - Helga Stopper
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Wuerzburg, Germany
| | - Ahmet Aydin
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey
| |
Collapse
|
3
|
Gautam RK, Tripathi SM, Akash S, Sharma S, Sharma K, Goyal S, Behzad S, Gundamaraju R, Mishra DK, Zhang Y, Shen B, Sundriyal S, Singla RK. Unlocking the Immunomodulatory Potential of Rosmarinic Acid Isolated from Punica granatum L. using Bioactivity-Guided Approach: In Silico, In Vitro, and In Vivo Approaches. Curr Med Chem 2024; 31:5969-5988. [PMID: 38445701 DOI: 10.2174/0109298673291064240227094654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/17/2024] [Accepted: 01/29/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Punica granatum L. is well-known for its multifaceted therapeutic potential, including anti-inflammatory and immunomodulatory activities. AIM This study aimed to characterize an immunomodulatory compound isolated from Punica granatum L. using a bioactivity-guided approach. METHODS Chromatographic techniques were adopted for isolation and purification of secondary metabolites. In silico, in vitro, and in vivo methods were performed to characterize the therapeutic potential of the isolated compound. RESULTS Using preparative thin-layer chromatography, rosmarinic acid was isolated from F4 (column chromatography product obtained from a butanolic fraction of the extract). The impact of rosmarinic acid was assessed in rats using the neutrophil adhesion test, DTH response, and phagocytic index. In immunized rats, rosmarinic acid demonstrated significant immunomodulatory potential. Computational experiments, like molecular docking and molecular dynamics, were also conducted against two targeted receptors, Cereblon (PDB ID: 8AOQ) and human CD22 (PDB ID: 5VKM). Computational studies suggested that an increase in phagocytic index by rosmarinic acid could be attributed to inhibiting Cereblon and CD22. Pharmacokinetics and toxicity prediction also suggested the drug-likeness of rosmarinic acid. CONCLUSION Rosmarinic acid is a potential candidate, but extensive research needs to be done to translate this molecule from bench to bedside.
Collapse
Affiliation(s)
- Rupesh K Gautam
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Indore Institute of Pharmacy, IIST Campus, Rau, Indore, 453331, (M.P.), India
| | - Shailesh Mani Tripathi
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, 333031, India
| | - Shopnil Akash
- Department of Pharmacy, Daffodil International University, Daffodil Smart City, Ashulia, Savar, Dhaka, 1207, Bangladesh
| | - Sanjay Sharma
- Department of Quality Assurance, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, Maharashtra, 400056, India
| | - Komal Sharma
- Bhupal Nobles' College of Pharmacy, Bhopal Noble's University, Udaipur, 313001, India
| | - Swapnil Goyal
- Faculty of Pharmacy, Mandsaur University, Mandsaur, 458001, India
| | - Sahar Behzad
- Evidence-based Phytotherapy and Complementary Medicine Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Rohit Gundamaraju
- ER stress and mucosal immunology lab, School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia
- School of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Dinesh Kumar Mishra
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University) Koni, Bilaspur (C.G.), 495009, India
| | - Yingbo Zhang
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Bairong Shen
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Sandeep Sundriyal
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, 333031, India
| | - Rajeev K Singla
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| |
Collapse
|
4
|
Truong DH, Ngo TC, Nhung NTA, Quang DT, Nguyen TLA, Khiri D, Taamalli S, Louis F, El Bakali A, Dao DQ. New insights into the competition between antioxidant activities and pro-oxidant risks of rosmarinic acid. RSC Adv 2022; 12:1499-1514. [PMID: 35425185 PMCID: PMC8978883 DOI: 10.1039/d1ra07599c] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/11/2021] [Indexed: 12/18/2022] Open
Abstract
Direct and indirect antioxidant activities of rosmarinic acid (RA) based on HOO˙/CH3OO˙ radical scavenging and Fe(iii)/Fe(ii) ion chelation were theoretically studied using density functional theory at the M05-2X/6-311++G(2df,2p) level of theory. First, four antioxidant mechanisms including hydrogen atom transfer (HAT), radical adduct formation (RAF), proton loss (PL) and single electron transfer (SET) were investigated in water and pentyl ethanoate (PEA) phases. Regarding the free radical scavenging mechanism, HAT plays a decisive role with overall rate coefficients of 1.84 × 103 M-1 s-1 (HOO˙) and 4.49 × 103 M-1 s-1 (CH3OO˙) in water. In contrast to PL, RAF and especially SET processes, the HAT reaction in PEA is slightly more favorable than that in water. Second, the [Fe(iii)(H2O)6]3+ and [Fe(ii)(H2O)6]2+ ion chelating processes in an aqueous phase are both favorable and spontaneous especially at the O5, site-1, and site-2 positions with large negative Δr G 0 values and great formation constant K f. Finally, the pro-oxidant risk of RA- was also considered via the Fe(iii)-to-Fe(ii) complex reduction process, which may initiate Fenton-like reactions forming reactive HO˙ radicals. As a result, RA- does not enhance the reduction process when ascorbate anions are present as reducing agents, whereas the pro-oxidant risk becomes remarkable when superoxide anions are found. The results encourage further attempts to verify the speculation using more powerful research implementations of the antioxidant activities of rosmarinic acid in relationship with its possible pro-oxidant risks.
Collapse
Affiliation(s)
- Dinh Hieu Truong
- Institute of Research and Development, Duy Tan University Da Nang 550000 Vietnam
- Faculty of Natural Sciences, Duy Tan University Da Nang 550000 Vietnam
| | - Thi Chinh Ngo
- Institute of Research and Development, Duy Tan University Da Nang 550000 Vietnam
- Faculty of Natural Sciences, Duy Tan University Da Nang 550000 Vietnam
| | - Nguyen Thi Ai Nhung
- Department of Chemistry, University of Sciences, Hue University Hue 530000 Vietnam
| | - Duong Tuan Quang
- Department of Chemistry, University of Sciences, Hue University Hue 530000 Vietnam
| | - Thi Le Anh Nguyen
- Institute of Research and Development, Duy Tan University Da Nang 550000 Vietnam
- Faculty of Natural Sciences, Duy Tan University Da Nang 550000 Vietnam
| | - Dorra Khiri
- Department of Chemistry, University of Education, Hue University Hue 530000 Vietnam
| | - Sonia Taamalli
- Department of Chemistry, University of Education, Hue University Hue 530000 Vietnam
| | - Florent Louis
- Department of Chemistry, University of Education, Hue University Hue 530000 Vietnam
| | | | - Duy Quang Dao
- Institute of Research and Development, Duy Tan University Da Nang 550000 Vietnam
- Faculty of Natural Sciences, Duy Tan University Da Nang 550000 Vietnam
| |
Collapse
|
5
|
Nikshenas Shahrestani V, Haddadi M, Samzadeh Kermani AR. Behavioral and Molecular Analysis of Antioxidative Potential of Rosmarinic Acid Against Methamphetamine-induced Augmentation of Casp3a mRNA in the Zebrafish Brain. Basic Clin Neurosci 2021; 12:243-254. [PMID: 34925721 PMCID: PMC8672665 DOI: 10.32598/bcn.12.2.1777.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/14/2020] [Accepted: 12/01/2020] [Indexed: 11/21/2022] Open
Abstract
Introduction: Methamphetamine (MA) acts as a powerful oxidant agent, while Rosmarinic Acid (RA) is an effective herbal antioxidant. Oxidative stress-mediated by MA results in apoptosis, and caspase-3 is one of the critical enzymes in the apoptosis process. MA can epigenetically alter gene regulation. In this paper, to investigate the effects of RA on MA-mediated oxidative stress, changes in the level of casp3a mRNA were demonstrated in zebrafish. Methods: The animals were grouped in 3 treatment conditions for the behavioral test: control, MA, MA pretreated by RA, and 6 treatment conditions for the molecular test: control, RA, MA, MA co-treated with RA, MA co-treated with RA/ZnO/chitosan nanoparticle, and ZnO/chitosan nanoparticle. Then molecular and behavioral investigations were carried out, and critical comparisons were made between the groups. MA solution was prepared with a concentration of 25 mg/L, and RA solution was prepared by DPPH test with the antioxidant power of about 97%. Each solution was administered by immersing 20 zebrafish for 20 minutes, once per day for 7 days. The level of casp3a mRNA was quantified by using qRT-PCR. One-sided trapezoidal tank diving test was applied to study behavioral alterations. Results: The qPCR analysis demonstrated the high potential of RA/ZnO/chitosan in counteracting the MA-mediated elevation in casp3a mRNA level. Based on the diving test results of MA-treated fish, MA was found to be anxiolytic compared to the control. While the resulted diving pattern of the MA-treated animals pretreated by RA was novel and different from both the control and MA-treated groups. Conclusion: The potential of RA combined with a suitable nanoparticle against MA-induced oxidative stress was supported. The high efficiency of ZnO/chitosan in increasing RA penetration to the brain cells was evident. MA at a dose of 25 mg/L is anxiolytic for zebrafish. However, the molecular mechanisms involved in these processes should be studied.
Collapse
Affiliation(s)
| | - Mohammad Haddadi
- Department of Biology, Faculty of Basic Sciences, University of Zabol, Zabol, Iran
| | | |
Collapse
|
6
|
Jurič U, Slemnik M, Škerget M. The new rapid and accurate analytical HPLC-ECD method for the determination of rosmarinic acid in meat products. J Food Sci 2021; 86:4491-4499. [PMID: 34486122 DOI: 10.1111/1750-3841.15890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 11/30/2022]
Abstract
A new rapid method has been developed for the determination of low levels of rosmarinic acid extracted from rosemary (Rosmarinus officinalis L.) and has been used as an antioxidant in meat and meat products after cold storage at 4°C. The method is a high performance liquid chromatography using a coulometric electrochemical detector. It provides a significant improvement on the limit of detection, which was 0.33 ppb, while the limit of quantification was 1 ppb of rosmarinic acid. The advantage of the method also lies in the simpler and faster sample preparation, which can quantify a very low concentration of rosmarinic acid (60 ppb), and is more than 40 ppb below the limits of previously existing methods. A coulometric method is well suited for determining low analyte concentrations and is one of the most sensitive analytical approaches available today, in addition to being time efficient and cost effective. PRACTICAL APPLICATION: A new method for determining low concentrations (60 ppb) of rosmarinic acid in meat and meat products is presented. The method is user-friendly, as it does not require complex sample preparation. It is a selective, precise, and accurate method that makes it useful for routine applications in the meat and other food industries.
Collapse
Affiliation(s)
- Urška Jurič
- Vitiva d.d., Nova vas pri Markovcih, Markovci, Slovenia
| | - Mojca Slemnik
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, Maribor, Slovenia
| | - Mojca Škerget
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, Maribor, Slovenia
| |
Collapse
|
7
|
Melo KM, Oliveira LFS, da Rocha RM, Ferreira MAP, Fascineli ML, Milhomem-Paixão SSR, Grisolia CK, Santos AS, Salgado HLC, Muehlmann LA, Azevedo RB, Pieczarka JC, Nagamachi CY. Andiroba oil and nanoemulsion (Carapa guianensis Aublet) reduce lesion severity caused by the antineoplastic agent doxorubicin in mice. Biomed Pharmacother 2021; 138:111505. [PMID: 33773467 DOI: 10.1016/j.biopha.2021.111505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/06/2021] [Accepted: 03/11/2021] [Indexed: 12/01/2022] Open
Abstract
Doxorubicin (DOX) is an anthracycline antibiotic used in the fight against many types of cancer. Although it is quite effective for this purpose, its clinical use is limited by its severe side effects, highlighting the relevance of efforts to identify substances that act to minimize these effects. In this work, we sought to verify the ability of andiroba oil (AO) and a nanoemulsion of andiroba oil (AN) to lessen the side effects of DOX. The animals were separated into 7 groups with 6 animals each: mice treated with AO (2000 mg/kg), AN (2000 mg/kg), the antineoplastic agent DOX (40 mg/kg), AO+DOX, AN+DOX and solvent controls was used of negative control (corn oil and nanoemulsion surfactant). AO and AN were administered for 14 consecutive days orally by gavage and on the 13th day, applied DOX by intraperitoneal route (i.p.), in order to evaluate the protective potential of andiroba. The animals were euthanized on the 15th day. Hematological, biochemical, histological, and immunohistochemical parameters were analyzed. Andiroba reduced several aspects of the severity of lesions caused by DOX, decreasing hematotoxicity and the severity of histological changes in the liver and kidneys, and reducing the frequency of apoptotic cell death. In many cases, AN showed greater efficacy than AO alone, reflecting the feasibility of using this nanotechnology to improve the pharmacokinetics of lipid compounds in the body. The study sheds new light on the therapeutic benefits of andiroba and suggests new ways for investigating how the quantity and quality of lipid compounds affect exposed organisms.
Collapse
Affiliation(s)
- Karina Motta Melo
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil; Universidade Federal Rural da Amazônia, Campus Tomé Açu, Tomé Açu, PA, Brazil.
| | - Luiz Fernando Silva Oliveira
- Laboraratório de Imunohistoquímica e Biologia do Desenvolvimento, Instituto de Ciências Biológicas, Universidade Federal do Pará, Brazil.
| | - Rossineide Martins da Rocha
- Laboratório de Ultraestrutura Celular e Técnicas Histológicas, Universidade Federal do Pará, Belém, PA, Brazil.
| | - Maria Auxiliadora Pantoja Ferreira
- Laboraratório de Imunohistoquímica e Biologia do Desenvolvimento, Instituto de Ciências Biológicas, Universidade Federal do Pará, Brazil.
| | - Maria Luiza Fascineli
- Laboratório de Genética Toxicológica, Universidade de Brasília, Brasília, DF, Brazil.
| | | | - Cesar Koppe Grisolia
- Laboratório de Genética Toxicológica, Universidade de Brasília, Brasília, DF, Brazil.
| | - Alberdan Silva Santos
- Laboratório de Investigação Sistemática em Biotecnologia e Biodiversidade Molecular, Universidade Federal do Pará, Belém, PA, Brazil.
| | - Hugo Leonardo Crisóstomo Salgado
- Laboratório de Investigação Sistemática em Biotecnologia e Biodiversidade Molecular, Universidade Federal do Pará, Belém, PA, Brazil.
| | | | | | - Julio Cesar Pieczarka
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil.
| | - Cleusa Yoshiko Nagamachi
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil.
| |
Collapse
|
8
|
Braga AL, do Nascimento PB, Paz MFCJ, de Lima RMT, Santos JVDO, de Alencar MVOB, de Meneses AAPM, Júnior ALG, Islam MT, Sousa JMDCE, Melo-Cavalcante AADC. Antioxidative defense against omeprazole-induced toxicogenetical effects in Swiss mice. Pharmacol Rep 2021; 73:551-562. [PMID: 33476036 DOI: 10.1007/s43440-021-00219-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/30/2020] [Accepted: 01/07/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Omeprazole (OME), a most frequently used proton pump inhibitor in gastric acidosis, is evident to show many adverse effects, including genetic instability. This study evaluated toxicogenic effects of OME in Mus musculus. METHODS For this study, 40 male Swiss mice were divided into 8 groups (n = 5) and treated with OME at doses of 10, 20, and 40 mg/kg and/or treated with the antioxidants retinol palmitate (100 IU/kg) and ascorbic acid (2.0 μM/kg). Cyclophosphamide 50 mg/kg, (cytotoxic agent) and the vehicle were served as positive and negative control group, respectively. After 14 days of treatment, the stomach cells along with the bone marrow and peripheral blood lymphocytes were collected and submitted to the comet assay (alkaline version) and micronucleus test. Additionally, hematological and biochemical parameters of the animals were also determined inspect of vehicle group. RESULTS The results suggest that OME at all doses induced genotoxicity and mutagenicity in the treated cells. However, in association with the antioxidants, these effects were modulated and/or inhibited along with a DNA repair capacity. CONCLUSIONS Taken together, antioxidants (such as retinol palmitate and ascorbic acid) may be one of the best options to counteract OME-induced cytogenetic instability.
Collapse
Affiliation(s)
- Antonio Lima Braga
- Laboratory of Genetics and Toxicology (LAPGENIC), Federal University of Piauí, 64.049-550, Teresina, Piauí, Brazil.,Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, 64.049-550, Teresina, Piauí, Brazil
| | | | - Márcia Fernanda Correia Jardim Paz
- Laboratory of Genetics and Toxicology (LAPGENIC), Federal University of Piauí, 64.049-550, Teresina, Piauí, Brazil.,Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, 64.049-550, Teresina, Piauí, Brazil
| | - Rosália Maria Tôrres de Lima
- Laboratory of Genetics and Toxicology (LAPGENIC), Federal University of Piauí, 64.049-550, Teresina, Piauí, Brazil.,Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, 64.049-550, Teresina, Piauí, Brazil
| | - José Victor de Oliveira Santos
- Laboratory of Genetics and Toxicology (LAPGENIC), Federal University of Piauí, 64.049-550, Teresina, Piauí, Brazil.,Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, 64.049-550, Teresina, Piauí, Brazil
| | - Marcus Vinícius Oliveira Barros de Alencar
- Laboratory of Genetics and Toxicology (LAPGENIC), Federal University of Piauí, 64.049-550, Teresina, Piauí, Brazil.,Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, 64.049-550, Teresina, Piauí, Brazil
| | - Ag-Anne Pereira Melo de Meneses
- Laboratory of Genetics and Toxicology (LAPGENIC), Federal University of Piauí, 64.049-550, Teresina, Piauí, Brazil.,Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, 64.049-550, Teresina, Piauí, Brazil
| | - Antonio Luiz Gomes Júnior
- Laboratory of Genetics and Toxicology (LAPGENIC), Federal University of Piauí, 64.049-550, Teresina, Piauí, Brazil.,Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, 64.049-550, Teresina, Piauí, Brazil
| | - Muhammad Torequl Islam
- Laboratory of Theoretical and Computational Biophysics, Ton Duc Thang University, Ho Chi Minh City, Vietnam. .,Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| | - João Marcelo de Castro E Sousa
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, 64.049-550, Teresina, Piauí, Brazil.,Department of Biological Sciences, Federal University of Piauí, 64.607-670, Picos, Piauí, Brazil
| | - Ana Amélia de Carvalho Melo-Cavalcante
- Laboratory of Genetics and Toxicology (LAPGENIC), Federal University of Piauí, 64.049-550, Teresina, Piauí, Brazil.,Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, 64.049-550, Teresina, Piauí, Brazil
| |
Collapse
|
9
|
Nieto G. A Review on Applications and Uses of Thymus in the Food Industry. PLANTS (BASEL, SWITZERLAND) 2020; 9:E961. [PMID: 32751488 PMCID: PMC7464319 DOI: 10.3390/plants9080961] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023]
Abstract
Thyme is one of the most important medicinal plants because of its ethnopharmacological relevance and high content of bioactive compounds. This review focuses particularly on thyme as an alternative natural antioxidant and antimicrobial with potential use in the food industry. This is in line with the preferences of the current consumer, who demands healthier and more natural products. Different studies have concluded that the use of thyme increases stability and reduces lipid oxidation during the shelf-life period of foods (meat, meat products, milk, fish or fish products), which makes thyme a promising source of natural additives. Despite these findings, the use of Thymus extracts or essential oils as natural additives in foods is reduced in comparison with other natural preservative extracts. This review provides an overview of the most important information on the positive effect of the bioactive compounds of thyme and its uses as a preservative in foods, taking into account its origin (from plants, plant extracts or essential oils).
Collapse
Affiliation(s)
- Gema Nieto
- Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence "Campus Mare Nostrum", Espinardo, 30071 Murcia, Spain
| |
Collapse
|
10
|
Cruz LF, Figueiredo GFD, Pedro LP, Amorin YM, Andrade JT, Passos TF, Rodrigues FF, Souza ILA, Gonçalves TPR, Dos Santos Lima LAR, Ferreira JMS, Araújo MGDF. Umbelliferone (7-hydroxycoumarin): A non-toxic antidiarrheal and antiulcerogenic coumarin. Biomed Pharmacother 2020; 129:110432. [PMID: 32768935 DOI: 10.1016/j.biopha.2020.110432] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/09/2020] [Accepted: 06/17/2020] [Indexed: 02/07/2023] Open
Abstract
Gastrointestinal diseases are very common problems; available treatments are very limited and come with a range of side effects. Coumarins are an extensive class of phenolic compounds that can be found in plants, fungi and bacteria. The 7-hydroxycoumarin, also known as umbelliferone (UMB), is a compound that comes from coumarin and has been showing biological activities in other studies. As of this scenario, the present study was designed to evaluate the acute oral toxicity, mutagenic, antidiarrheal, anti-bacterial, and antiulcerogenic effects, and antioxidant capacity of UMB. An investigation was conducted through the hippocratic screening method and through histopathological analysis in animals to evaluate the effects of acute oral administration of a dose of 50, 100 and 200 mg/kg of UMB. A micronucleus test on peripheral blood of Swiss mice, which were orally treated with three doses (50, 100 and 200 mg/kg), was conducted to evaluate mutagenic activities. The antiulcerogenic activity was accomplished through the ethanol-induced damage method. Antidiarrheal activities were tested for inducing diarrhea with castor oil and evaluating intestinal transit duration; additionally, the antimicrobial effect against some enteropathogenic bacteria was analyzed. Finally, the antioxidant capability was determined by the capacity of the UMB sample to kidnap the stable radical 2,2-diphenyl-1-picrylhydrazyl. Of the evaluated doses, signs of toxicity after acute administration of the compound were not observed. UMB presented antiulcerogenic activity (100 and 200 mg/kg), which was explained because of its antioxidant capacity. A gastro protective effect was similar to the positive control, and the UMB was able to significantly reduce intestinal transit, and also diarrheal symptoms. Furthermore, UMB had an anti-bacterial effect with minimum inhibitory concentration fluctuating between 62.5 and 1000 μg/mL. Based on these findings, we can suggest that UMB has important biological activities in vivo and in vitro and is not toxic under the evaluated circumstances, which demonstrates its large potential for pharmacological use.
Collapse
Affiliation(s)
- Luisa Ferreira Cruz
- Laboratory of Pharmacology, Federal University of São João Del-Rei, Sebastião Gonçalves Coelho, 400, Chanadour, 35501-296, Divinópolis, MG, Brazil.
| | - Geisa Fantini de Figueiredo
- Laboratory of Pharmacology, Federal University of São João Del-Rei, Sebastião Gonçalves Coelho, 400, Chanadour, 35501-296, Divinópolis, MG, Brazil
| | - Lidiane Paula Pedro
- Laboratory of Pharmacology, Federal University of São João Del-Rei, Sebastião Gonçalves Coelho, 400, Chanadour, 35501-296, Divinópolis, MG, Brazil
| | - Yuri Martins Amorin
- Laboratory of Pharmacology, Federal University of São João Del-Rei, Sebastião Gonçalves Coelho, 400, Chanadour, 35501-296, Divinópolis, MG, Brazil
| | - Jessica Tauany Andrade
- Laboratory of Medical Microbiology, Federal University of São João Del-Rei, Sebastião Gonçalves Coelho, 400, Chanadour, 35501-296, Divinópolis, MG, Brazil
| | - Tiago Faustino Passos
- Laboratory of Pharmacology, Federal University of São João Del-Rei, Sebastião Gonçalves Coelho, 400, Chanadour, 35501-296, Divinópolis, MG, Brazil
| | - Felipe Fernandes Rodrigues
- Laboratory of Pharmacology, Federal University of São João Del-Rei, Sebastião Gonçalves Coelho, 400, Chanadour, 35501-296, Divinópolis, MG, Brazil
| | - Israel Lucas Antunes Souza
- Laboratory of Pharmacology, Federal University of São João Del-Rei, Sebastião Gonçalves Coelho, 400, Chanadour, 35501-296, Divinópolis, MG, Brazil
| | - Thaís Paula Rodrigues Gonçalves
- Laboratory of Phytochemistry, Federal University of São João Del-Rei, Campus Centro Oeste Dona Lindu, Divinópolis, MG, Brazil
| | | | - Jaqueline Maria Siqueira Ferreira
- Laboratory of Medical Microbiology, Federal University of São João Del-Rei, Sebastião Gonçalves Coelho, 400, Chanadour, 35501-296, Divinópolis, MG, Brazil
| | - Marcelo Gonzaga de Freitas Araújo
- Laboratory of Pharmacology, Federal University of São João Del-Rei, Sebastião Gonçalves Coelho, 400, Chanadour, 35501-296, Divinópolis, MG, Brazil
| |
Collapse
|
11
|
Andreadelis I, Chatziathanasiadou ΜV, Ntountaniotis D, Valsami G, Papaemmanouil C, Christodoulou E, Mitropoulou G, Kourkoutas Y, Tzakos AG, Mavromoustakos T. Charting the structural and thermodynamic determinants in phenolic acid natural product - cyclodextrin encapsulations. J Biomol Struct Dyn 2020; 39:2642-2658. [PMID: 32249691 DOI: 10.1080/07391102.2020.1751716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cyclodextrins are pliable platforms that have served to optimize the pharmaceutic profile of numerous compounds and to enhance the stability of natural food additives. Caffeic and rosmarinic acid are natural products with proven health benefits, though their full therapeutic potential has not been exploited. To enhance their pharmaceutic profile, we developed cyclodextrin-based formulates and unveiled their thermodynamic and structural principles. The complexes' stoichiometry was determined by ESI-MS. Solid-state and liquid NMR spectroscopy revealed the interactions and the topographical location of the caffeic and rosmarinic acid inside the cyclodextrin cavity. The theoretically analyzed HP-β-CD's degree of substitution (DS) of caffeic and rosmarinic acids can explain the intensities obtained by 2D NOESY experiments. The thermodynamics and the affinity of the complexes were evaluated through isothermal titration calorimetry. In addition, the rosmarinic and caffeic acids as, also, their complexes showed considerable antimicrobial activity against common food spoilage and pathogenic bacteria. The generated data could provide the basis to understand the structural and thermodynamic determinants implicated in natural products - CD recognition and to develop platforms for the optimization of their pharmaceutical and stability profiles in order to be utilized as safe and stable natural antimicrobial food additives.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ioannis Andreadelis
- Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Μaria V Chatziathanasiadou
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, Ioannina, Greece
| | | | - Georgia Valsami
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Greece
| | - Christina Papaemmanouil
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, Ioannina, Greece
| | - Eirini Christodoulou
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Greece
| | - Gregoria Mitropoulou
- Laboratory of Applied Microbiology & Biotechnology, Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Yiannis Kourkoutas
- Laboratory of Applied Microbiology & Biotechnology, Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Andreas G Tzakos
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, Ioannina, Greece
| | - Thomas Mavromoustakos
- Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
12
|
EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP), Bampidis V, Azimonti G, Bastos MDL, Christensen H, Kouba M, Kos Durjava M, López‐Alonso M, López Puente S, Marcon F, Mayo B, Pechová A, Petkova M, Ramos F, Sanz Y, Villa RE, Woutersen R, Brantom P, Chesson A, Westendorf J, Gregoretti L, Manini P, Dusemund B. Safety and efficacy of a dried aqueous ethanol extract of Melissa officinalis L. leaves when used as a sensory additive for all animal species. EFSA J 2020; 18:e06016. [PMID: 32874225 PMCID: PMC7448011 DOI: 10.2903/j.efsa.2020.6016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Following a request from the European Commission, the Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) was asked to deliver a scientific opinion on the safety and efficacy of a dried aqueous ethanol extract of Melissa officinalis L. leaves when used as a sensory feed additive for all animal species. The aqueous ethanol extract is specified to contain ≥ 10% of hydroxycinnamic acid derivatives including ≥ 3% of rosmarinic acid. Considering the contradictory data from the Ames tests and uncertainty about the qualitative and quantitative presence of flavonoids and other compounds in the extract from M. officinalis L. leaves, the FEEDAP Panel could not conclude on the genotoxicity of the additive under assessment. Although the identified components of the extract do not raise concerns for the safety of target species, the analysis of the extract is incomplete. In the absence of adequate analytical and safety data, the FEEDAP Panel is unable to conclude on the safety of the additive for the target species. The use of M. officinalis L. leaf dried extract in animal feed at the proposed use level does not raise significantly the exposure levels of the consumer for compounds derived from this plant. However, in the absence of adequate data on genotoxicity, the Panel cannot conclude on the safety for the consumer. In the absence of specific studies, the FEEDAP Panel cannot conclude on the safety of the additive for the user. M. officinalis L. is a native species to Europe and its use in animal nutrition is not expected to pose a risk for the environment. Since M. officinalis L. and its extracts are recognised to flavour food and its function in feed would be essentially the same as that in food, no further demonstration of efficacy is considered necessary for the extract.
Collapse
|
13
|
Albogami S, Darwish H, Abdelmigid HM, Alotaibi S, El-Deen AN, Alnefaie A, Alattas A. Anticancer Potential of Calli Versus Seedling Extracts Derived from Rosmarinus officinalis and Coleus hybridus. Curr Pharm Biotechnol 2020; 21:1528-1538. [PMID: 32188380 DOI: 10.2174/1389201021666200318114817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/01/2019] [Accepted: 02/23/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND In Saudi Arabia, the incidence and mortality rates of breast cancer are high. Although current treatments are effective, breast cancer cells develop resistance to these treatments. Numerous studies have demonstrated that active compounds in plant extracts, such as the phenolic compound Rosmarinic Acid (RA), exert anti-cancer effects. OBJECTIVE We investigated the anticancer properties of methanolic crude extracts of seedlings and calli of Rosmarinus officinalis and Coleus hybridus, two Lamiaceae species. METHODS MCF-7 human breast cancer cells were treated with methanolic crude extracts obtained from plant calli and seedlings generated in vitro, and cell proliferation was evaluated. Transcriptional profiling of the seedling and callus tissues was also conducted. RESULTS The mRNA expression levels of RA genes were higher in C. hybridus seedlings than in R. officinalis seedlings, as well as in C. hybridus calli than in R. officinalis calli, except for TAT and C4H. In addition, seedling and callus extracts of both R. officinalis and C. hybridus showed anti-proliferative effects against MCF-7 cells after 24 or 48 h of treatment. DISCUSSION At a low concentration of 10 μg/mL, C. hybridus calli and seedling extracts showed the most significant anti-proliferative effects after 24 and 48 h of exposure (p < 0.01); controls (doxorubicin) also showed significant inhibition, but lesser than that observed with C. hybridus (p < 0.05). Results with R. officinalis callus and seedling extracts did not significantly differ from those with untreated cells. CONCLUSION Methanolic extracts of R. officinalis and C. hybridus are potentially valuable options for breast cancer treatment.
Collapse
Affiliation(s)
- Sarah Albogami
- Department of Biotechnology, Faculty of Science, Taif University, Taif, Saudi Arabia
| | - Hadeer Darwish
- Department of Biotechnology, Faculty of Science, Taif University, Taif, Saudi Arabia
| | - Hala M Abdelmigid
- Department of Biotechnology, Faculty of Science, Taif University, Taif, Saudi Arabia
| | - Saqer Alotaibi
- Department of Biotechnology, Faculty of Science, Taif University, Taif, Saudi Arabia
| | - Ahmed Nour El-Deen
- Department of Biology, Faculty of Sciences, Taif University, Saudi Arabia
| | - Alaa Alnefaie
- Department of Biotechnology, Faculty of Science, Taif University, Taif, Saudi Arabia
| | - Afnan Alattas
- Department of Biotechnology, Faculty of Science, Taif University, Taif, Saudi Arabia
| |
Collapse
|
14
|
Levsh O, Pluskal T, Carballo V, Mitchell AJ, Weng JK. Independent evolution of rosmarinic acid biosynthesis in two sister families under the Lamiids clade of flowering plants. J Biol Chem 2019; 294:15193-15205. [PMID: 31481469 PMCID: PMC6802498 DOI: 10.1074/jbc.ra119.010454] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/24/2019] [Indexed: 11/06/2022] Open
Abstract
As a means to maintain their sessile lifestyle amid challenging environments, plants produce an enormous diversity of compounds as chemical defenses against biotic and abiotic insults. The underpinning metabolic pathways that support the biosynthesis of these specialized chemicals in divergent plant species provide a rich arena for understanding the molecular evolution of complex metabolic traits. Rosmarinic acid (RA) is a phenolic natural product first discovered in plants of the mint family (Lamiaceae) and is recognized for its wide range of medicinal properties and potential applications in human dietary and medical interventions. Interestingly, the RA chemotype is present sporadically in multiple taxa of flowering plants as well as some hornworts and ferns, prompting the question whether its biosynthesis arose independently across different lineages. Here we report the elucidation of the RA biosynthetic pathway in Phacelia campanularia (desert bells). This species represents the borage family (Boraginaceae), an RA-producing family closely related to the Lamiaceae within the Lamiids clade. Using a multi-omics approach in combination with functional characterization of candidate genes both in vitro and in vivo, we found that RA biosynthesis in P. campanularia involves specific activities of a BAHD acyltransferase and two cytochrome P450 hydroxylases. Further phylogenetic and comparative structure-function analyses of the P. campanularia RA biosynthetic enzymes clearly indicate that RA biosynthesis has evolved independently at least twice in the Lamiids, an exemplary case of chemotypic convergence through disparate evolutionary trajectories.
Collapse
Affiliation(s)
- Olesya Levsh
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142
| | - Tomáš Pluskal
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142
| | - Valentina Carballo
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142
| | - Andrew J Mitchell
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142
| | - Jing-Ke Weng
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142
| |
Collapse
|
15
|
Lin M, Han P, Li Y, Wang W, Lai D, Zhou L. Quinoa Secondary Metabolites and Their Biological Activities or Functions. Molecules 2019; 24:E2512. [PMID: 31324047 PMCID: PMC6651730 DOI: 10.3390/molecules24132512] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/03/2019] [Accepted: 07/03/2019] [Indexed: 02/07/2023] Open
Abstract
Quinoa (Chenopodium quinoa Willd.) was known as the "golden grain" by the native Andean people in South America, and has been a source of valuable food over thousands of years. It can produce a variety of secondary metabolites with broad spectra of bioactivities. At least 193 secondary metabolites from quinoa have been identified in the past 40 years. They mainly include phenolic acids, flavonoids, terpenoids, steroids, and nitrogen-containing compounds. These metabolites exhibit many physiological functions, such as insecticidal, molluscicidal and antimicrobial activities, as well as various kinds of biological activities such as antioxidant, cytotoxic, anti-diabetic and anti-inflammatory properties. This review focuses on our knowledge of the structures, biological activities and functions of quinoa secondary metabolites. Biosynthesis, development and utilization of the secondary metabolites especially from quinoa bran were prospected.
Collapse
Affiliation(s)
- Minyi Lin
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Peipei Han
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yuying Li
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Weixuan Wang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Daowan Lai
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Ligang Zhou
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
16
|
Carranza-Torres IE, Viveros-Valdez E, Guzmán-Delgado NE, García-Davis S, Morán-Martínez J, Betancourt-Martínez ND, Balderas-Rentería I, Carranza-Rosales P. Protective effects of phenolic acids on mercury-induced DNA damage in precision-cut kidney slices. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2019; 22:367-375. [PMID: 31168340 PMCID: PMC6535197 DOI: 10.22038/ijbms.2019.30056.7242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Objective(s): Precision-cut tissue slices are considered an organotypic 3D model widely used in biomedical research. The comet assay is an important screening test for early genotoxicity risk assessment that is mainly applied on in vitro models. The aim of the present study was to provide a 3D organ system for determination of genotoxicity using a modified method of the comet assay since the stromal components from the original tissue make this technique complicated. Materials and Methods: A modified comet assay technique was validated using precision-cut hamster kidney slices to analyze the antigenotoxic effect of the phenolic compounds caffeic acid, chlorogenic acid, and rosmarinic acid in tissue slices incubated with 15 µM HgCl2. Cytotoxicity of the phenolic compounds was studied in Vero cells, and by morphologic analysis in tissue slices co-incubated with HgCl2 and phenolic compounds. Results: A modification of the comet assay allows obtaining better and clear comet profiles for analysis. Non-cytotoxic concentrations of phenolic acids protected kidney tissue slices against mercury-induced DNA damage, and at the same time, were not nephrotoxic. The highest protection was provided by 3 µg/ml caffeic acid, although 6 µg/ml rosmarinic and 9 µg/ml chlorogenic acids also exhibited protective effects. Conclusion: This is the first time that a modification of the comet assay technique is reported as a tool to visualize the comets from kidney tissue slices in a clear and simple way. The phenolic compounds tested in this study provided protection against mercury-induced genotoxic damage in precision-cut kidney slices.
Collapse
Affiliation(s)
- Irma Edith Carranza-Torres
- Departamento de Biología Celular y Ultraestructura, Centro de Investigación Biomédica, Facultad de Medicina, Universidad Autónoma de Coahuila. Torreón, Coah. México.,Departamento de Biología Celular y Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, NL. México
| | - Ezequiel Viveros-Valdez
- Departamento de Química Analítica, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL. México
| | - Nancy Elena Guzmán-Delgado
- División de Investigación, Unidad Médica de Alta Especialidad # 34, Instituto Mexicano del Seguro Social, Monterrey, NL. México
| | - Sara García-Davis
- Departamento de Química Analítica, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL. México
| | - Javier Morán-Martínez
- Departamento de Biología Celular y Ultraestructura, Centro de Investigación Biomédica, Facultad de Medicina, Universidad Autónoma de Coahuila. Torreón, Coah. México
| | - Nadia Denys Betancourt-Martínez
- Departamento de Biología Celular y Ultraestructura, Centro de Investigación Biomédica, Facultad de Medicina, Universidad Autónoma de Coahuila. Torreón, Coah. México
| | - Isaías Balderas-Rentería
- Laboratorio de Ingeniería Genética y Genómica, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL. México
| | - Pilar Carranza-Rosales
- Departamento de Biología Celular y Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, NL. México
| |
Collapse
|
17
|
Elufioye TO, Habtemariam S. Hepatoprotective effects of rosmarinic acid: Insight into its mechanisms of action. Biomed Pharmacother 2019; 112:108600. [PMID: 30780110 DOI: 10.1016/j.biopha.2019.108600] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 01/11/2019] [Accepted: 01/18/2019] [Indexed: 02/06/2023] Open
Abstract
Liver diseases such as hepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma are one of the major health challenges in the world and many conditions such as inadequate nutrition, viral infection, ethanol and drug abuse, xenobiotic exposure, and metabolic diseases have been implicated in the development and progression of liver diseases. Several factors including lipid peroxidation, production of reactive oxygen species (ROS), peroxynitrite formation, complement factors and proinflammatory mediators, such as cytokines and chemokines, are involved in hepatic diseases. Rosmarinic acid (RA) is a natural phenolic compound found mainly in the family Lamiaceae consisting of several medicinal plants, herbs and spices. Several biological activities have been reported for RA and these include antioxidant properties as a ROS scavenger and lipid peroxidation inhibitor, anti-inflammatory, neuroprotective and antiangiogenic among others. This review is aimed at discussing the effects of RA on the liver, highlighting its hepatoprotective potential and the underlying mechanisms.
Collapse
Affiliation(s)
- Taiwo O Elufioye
- Department of Pharmacognosy, Faculty of Pharmacy, University of Ibadan, Nigeria.
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories & Herbal Analysis Services, University of Greenwich, Chatham, Maritime Kent, ME4 4TB, UK
| |
Collapse
|
18
|
Liman R, Ciğerci İH, Gökçe S. Cytogenetic and genotoxic effects of Rosmaniric Acid on Allium cepa L. root meristem cells. Food Chem Toxicol 2018; 121:444-449. [PMID: 30248483 DOI: 10.1016/j.fct.2018.09.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 08/08/2018] [Accepted: 09/12/2018] [Indexed: 11/23/2022]
Abstract
Rosmarinic acid (RA) is a natural polyphenol carboxylic acid, an ester of caffeic acid with 3,4-dihydroxyphenyllactic acid, found in many species. Current study was aimed to investigate the mitotic division, chromosomal and genotoxic effects of RA on Allium cepa root meristematic cells. In Allium root growth inhibition test, EC50 value was found as 100 ppm. Three concentrations (50, 100, and 200 ppm) of RA under different exposure periods (24, 48, 72 and 96 h) were employed to onion tuber roots. Distilled water and methyl methane sulfonate (MMS, 10 ppm) were used as a negative and positive control, respectively. 100 (except 24 h) and 200 ppm of RA significantly decreased mitotic index (MI). There was an increase of total chromosomal aberrations (CAs) at 50 ppm and simultaneous decrease of CAs at 200 ppm concentrations (p < 0.05). A significant increase in DNA damage was also observed at 200 ppm by Comet assay. Quantitative analysis of RA in A. cepa root meristem cells was also done by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Further investigations are required to explore the molecular mechanism involved in the cytotoxicity and genotoxicity of RA on plants.
Collapse
Affiliation(s)
- Recep Liman
- Uşak University Faculty of Arts and Sciences, Molecular Biology and Genetics Department, 64300, Uşak, Turkey.
| | - İbrahim Hakkı Ciğerci
- Afyon Kocatepe University, Faculty of Science and Literatures, Biology Department, 03200, Afyonkarahisar, Turkey
| | - Süleyman Gökçe
- Uşak University, Central Research Laboratory, 64000, Uşak, Turkey
| |
Collapse
|
19
|
Swamy MK, Sinniah UR, Ghasemzadeh A. Anticancer potential of rosmarinic acid and its improved production through biotechnological interventions and functional genomics. Appl Microbiol Biotechnol 2018; 102:7775-7793. [PMID: 30022261 DOI: 10.1007/s00253-018-9223-y] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/04/2018] [Accepted: 07/04/2018] [Indexed: 12/19/2022]
Abstract
Rosmarinic acid (RA) is a highly valued natural phenolic compound that is very commonly found in plants of the families Lamiaceae and Boraginaceae, including Coleus blumei, Heliotropium foertherianum, Rosmarinus officinalis, Perilla frutescens, and Salvia officinalis. RA is also found in other members of higher plant families and in some fern and horned liverwort species. The biosynthesis of RA is catalyzed by the enzymes phenylalanine ammonia lyase and cytochrome P450-dependent hydroxylase using the amino acids tyrosine and phenylalanine. Chemically, RA can be produced via methods involving the esterification of 3,4-dihydroxyphenyllactic acid and caffeic acid. Some of the derivatives of RA include melitric acid, salvianolic acid, lithospermic acid, and yunnaneic acid. In plants, RA is known to have growth-promoting and defensive roles. Studies have elucidated the varied pharmacological potential of RA and its derived molecules, including anticancer, antiangiogenic, anti-inflammatory, antioxidant, and antimicrobial activities. The demand for RA is therefore, very high in the pharmaceutical industry, but this demand cannot be met by plants alone because RA content in plant organs is very low. Further, many plants that synthesize RA are under threat and near extinction owing to biodiversity loss caused by unscientific harvesting, over-collection, environmental changes, and other inherent features. Moreover, the chemical synthesis of RA is complicated and expensive. Alternative approaches using biotechnological methodologies could overcome these problems. This review provides the state of the art information on the chemistry, sources, and biosynthetic pathways of RA, as well as its anticancer properties against different cancer types. Biotechnological methods are also discussed for producing RA using plant cell, tissue, and organ cultures and hairy-root cultures using flasks and bioreactors. The recent developments and applications of the functional genomics approach and heterologous production of RA in microbes are also highlighted. This chapter will be of benefit to readers aiming to design studies on RA and its applicability as an anticancer agent.
Collapse
Affiliation(s)
- Mallappa Kumara Swamy
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Uma Rani Sinniah
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Ali Ghasemzadeh
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| |
Collapse
|
20
|
Ali M, Keppler JK, Coenye T, Schwarz K. Covalent Whey Protein-Rosmarinic Acid Interactions: A Comparison of Alkaline and Enzymatic Modifications on Physicochemical, Antioxidative, and Antibacterial Properties. J Food Sci 2018; 83:2092-2100. [PMID: 30007045 DOI: 10.1111/1750-3841.14222] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/18/2018] [Accepted: 05/29/2018] [Indexed: 12/01/2022]
Abstract
The covalent interactions between whey protein isolate (WPI) and rosmarinic acid (RosA) at two different conditions, alkaline (pH 9) and enzymatic (in the presence of tyrosinase, PPO), at room temperature with free atmospheric air were studied. The conjugates formed between WPI and RosA were characterized in terms of their physicochemical and functional properties. The changes in protein structure were analyzed by intrinsic fluorescence and binding of 8-anilino-1-naphthalenesulfonic acid. The findings show that the covalent interactions caused a decrease in free amino and thiol groups and tryptophan content at both conditions. The decrease at enzymatic conditions was lower than at alkaline conditions. In addition, modified WPI at alkaline conditions exhibited higher antioxidative capacity compared to the modification at enzymatic conditions. However, WPI modified at enzymatic condition showed mild antimicrobial activity against Staphylococcus aureus LMG 10147 and MU50 compared to WPI modified at alkaline conditions and unmodified WPI (control). The modified WPI can be used as multifunctional ingredient into various food products with an additional health promoting effect of the bound phenolic compounds.
Collapse
Affiliation(s)
- Mostafa Ali
- Dept. of Food Technology, Faculty of agriculture, Univ. of Kafrelsheikh, Kafrelsheikh, Egypt
- Div. of Food Technology, Inst. of Human Nutrition and Food Science, Kiel University, 24118, Kiel, Germany
| | - Julia K Keppler
- Div. of Food Technology, Inst. of Human Nutrition and Food Science, Kiel University, 24118, Kiel, Germany
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology (LPM), Ghent Univ., Ghent, Belgium
| | - Karin Schwarz
- Div. of Food Technology, Inst. of Human Nutrition and Food Science, Kiel University, 24118, Kiel, Germany
| |
Collapse
|
21
|
Lorenzo JM, Mousavi Khaneghah A, Gavahian M, Marszałek K, Eş I, Munekata PES, Ferreira ICFR, Barba FJ. Understanding the potential benefits of thyme and its derived products for food industry and consumer health: From extraction of value-added compounds to the evaluation of bioaccessibility, bioavailability, anti-inflammatory, and antimicrobial activities. Crit Rev Food Sci Nutr 2018; 59:2879-2895. [DOI: 10.1080/10408398.2018.1477730] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Jose M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, San Cibrao das Viñas, Ourense, Spain
| | - Amin Mousavi Khaneghah
- Department of Food Science, Faculty of Food Engineering, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Mohsen Gavahian
- Product and Process Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan, ROC
| | - Krystian Marszałek
- Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology, Department of Fruit and Vegetable Product Technology, Warsaw, Poland
| | - Ismail Eş
- Department of Material and Bioprocess Engineering, Faculty of Chemical Engineering, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Paulo E. S. Munekata
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Jardim Elite, Pirassununga, São Paulo, Brazil
| | - Isabel C. F. R. Ferreira
- Mountain Research Centre (CIMO), Polytechnic Institute of Bragança (IPB), Campus de Santa Apolonia, Bragança, Portugal
| | - Francisco J. Barba
- Universitat de València, Faculty of Pharmacy, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Nutrition and Food Science Area, Avda.Vicent Andrés Estellés, Burjassot, València, Spain
| |
Collapse
|
22
|
Chumphukam O, Pintha K, Khanaree C, Chewonarin T, Chaiwangyen W, Tantipaiboonwong P, Suttajit M, Khantamat O. Potential anti-mutagenicity, antioxidant, and anti-inflammatory capacities of the extract from perilla seed meal. J Food Biochem 2018. [DOI: 10.1111/jfbc.12556] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Orada Chumphukam
- Division of Biochemistry and Nutrition, School of Medical Sciences; University of Phayao; Phayao Thailand
| | - Komsak Pintha
- Division of Biochemistry and Nutrition, School of Medical Sciences; University of Phayao; Phayao Thailand
| | - Chakkrit Khanaree
- Division of Biochemistry and Nutrition, School of Medical Sciences; University of Phayao; Phayao Thailand
- Department of Biochemistry, Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
| | - Teera Chewonarin
- Department of Biochemistry, Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
| | - Wittaya Chaiwangyen
- Division of Biochemistry and Nutrition, School of Medical Sciences; University of Phayao; Phayao Thailand
| | - Payungsak Tantipaiboonwong
- Division of Biochemistry and Nutrition, School of Medical Sciences; University of Phayao; Phayao Thailand
| | - Maitree Suttajit
- Division of Biochemistry and Nutrition, School of Medical Sciences; University of Phayao; Phayao Thailand
| | - Orawan Khantamat
- Department of Biochemistry, Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
| |
Collapse
|
23
|
Javadi B. Diet Therapy for Cancer Prevention and Treatment Based on Traditional Persian Medicine. Nutr Cancer 2018. [DOI: 10.1080/01635581.2018.1446095] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Behjat Javadi
- Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
24
|
Olivas-Quintero S, López-Angulo G, Montes-Avila J, Díaz-Camacho SP, Vega-Aviña R, López-Valenzuela JÁ, Salazar-Salas NY, Delgado-Vargas F. Chemical composition and biological activities of Helicteres vegae and Heliopsis sinaloensis. PHARMACEUTICAL BIOLOGY 2017; 55:1473-1482. [PMID: 28347185 PMCID: PMC6130667 DOI: 10.1080/13880209.2017.1306712] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 03/06/2017] [Accepted: 03/11/2017] [Indexed: 06/02/2023]
Abstract
CONTEXT Helicteres vegae Cristóbal (Sterculiaceae) (Hv) and Heliopsis sinaloensis B.L. Turner (Asteraceae) (Hs) are endangered and poorly studied plant species; related plants have been used against chronic-degenerative and infectious diseases. Therefore, Hv and Hs could be sources of bioactive compounds against these illnesses. OBJECTIVE To determine the chemical composition and biological activities (antioxidant, antimutagenic and antimicrobial) of Hv and Hs leaves (L) and stems (S). MATERIALS AND METHODS Methanol extracts (ME) of each plant/tissue were evaluated for their phytochemicals; phenolics (HPLC-DAD-ESI-MS); antioxidant activity (AA) (0.125-4 mg/mL) (DPPH, ABTS, ORAC and β-carotene discoloration); antimutagenicity (0.5 and 1 mg/plate) (Ames assay, tester strain Salmonella enterica serovar Typhimurium YG1024, 1-nitropyrene as mutagen); activity against human pathogens (1 mg/mL); and toxicity (0.01-2 mg/mL) (Artemia salina assay). RESULTS All ME showed flavonoids and triterpenes/steroids. The ME-SHv had the highest content of total phenolics (TP) (2245.82 ± 21.45 mg GAE/100 g d.w.) and condensed tannins (603.71 ± 1.115 mg CE/100 g d.w.). The compounds identified were flavonoids (kaempferol 7-O-coumaroylhexoside, and two kaempferol 7-O-rhamnosylhexosides) and phenolics [rosmarinic acid, and 3'-O-(8″-Z-caffeoyl) rosmarinic acid]. The ME-LHs showed the highest content of flavonoids (357.88 mg RE/g d.w.) and phenolic acids (238.58 mg CAE/g d.w.) by HPLC. The ME-SHv showed the highest AA. All ME were strong antimutagens (63.3-85.7%). Only the Hs extracts were toxic (ME-LHs, LC50 = 94.9 ± 1.7 μg/mL; ME-SHs, LC50 = 89.03 ± 4.42 μg/mL). DISCUSSION AND CONCLUSIONS Both Hv and Hs are potential sources of preventive and therapeutic agents against chronic-degenerative diseases.
Collapse
Affiliation(s)
- Sandra Olivas-Quintero
- School of Chemical and Biological Sciences, Autonomous University of Sinaloa, Culiacan, Sinaloa, Mexico
| | - Gabriela López-Angulo
- School of Chemical and Biological Sciences, Autonomous University of Sinaloa, Culiacan, Sinaloa, Mexico
| | - Julio Montes-Avila
- School of Chemical and Biological Sciences, Autonomous University of Sinaloa, Culiacan, Sinaloa, Mexico
| | - Sylvia Páz Díaz-Camacho
- School of Chemical and Biological Sciences, Autonomous University of Sinaloa, Culiacan, Sinaloa, Mexico
| | - Rito Vega-Aviña
- School of Agronomy, Autonomous University of Sinaloa, Culiacan, Sinaloa, Mexico
| | | | | | - Francisco Delgado-Vargas
- School of Chemical and Biological Sciences, Autonomous University of Sinaloa, Culiacan, Sinaloa, Mexico
| |
Collapse
|
25
|
de Rus Jacquet A, Tambe MA, Ma SY, McCabe GP, Vest JHC, Rochet JC. Pikuni-Blackfeet traditional medicine: Neuroprotective activities of medicinal plants used to treat Parkinson's disease-related symptoms. JOURNAL OF ETHNOPHARMACOLOGY 2017; 206:393-407. [PMID: 28088492 PMCID: PMC6149223 DOI: 10.1016/j.jep.2017.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 12/29/2016] [Accepted: 01/04/2017] [Indexed: 05/25/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Parkinson's disease (PD) is a multifactorial neurodegenerative disorder affecting 5% of the population over the age of 85 years. Current treatments primarily involve dopamine replacement therapy, which leads to temporary relief of motor symptoms but fails to slow the underlying neurodegeneration. Thus, there is a need for safe PD therapies with neuroprotective activity. In this study, we analyzed contemporary herbal medicinal practices used by members of the Pikuni-Blackfeet tribe from Western Montana to treat PD-related symptoms, in an effort to identify medicinal plants that are affordable to traditional communities and accessible to larger populations. AIM OF THE STUDY The aims of this study were to (i) identify medicinal plants used by the Pikuni-Blackfeet tribe to treat individuals with symptoms related to PD or other CNS disorders, and (ii) characterize a subset of the identified plants in terms of antioxidant and neuroprotective activities in cellular models of PD. MATERIALS AND METHODS Interviews of healers and local people were carried out on the Blackfeet Indian reservation. Plant samples were collected, and water extracts were produced for subsequent analysis. A subset of botanical extracts was tested for the ability to induce activation of the Nrf2-mediated transcriptional response and to protect against neurotoxicity elicited by the PD-related toxins rotenone and paraquat. RESULTS The ethnopharmacological interviews resulted in the documentation of 26 medicinal plants used to treat various ailments and diseases, including symptoms related to PD. Seven botanical extracts (out of a total of 10 extracts tested) showed activation of Nrf2-mediated transcriptional activity in primary cortical astrocytes. Extracts prepared from Allium sativum cloves, Trifolium pratense flowers, and Amelanchier arborea berries exhibited neuroprotective activity against toxicity elicited by rotenone, whereas only the extracts prepared from Allium sativum and Amelanchier arborea alleviated PQ-induced dopaminergic cell death. CONCLUSIONS Our findings highlight the potential clinical utility of plants used for medicinal purposes over generations by the Pikuni-Blackfeet people, and they shed light on mechanisms by which the plant extracts could slow neurodegeneration in PD.
Collapse
Affiliation(s)
- Aurélie de Rus Jacquet
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA.
| | - Mitali Arun Tambe
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA.
| | - Sin Ying Ma
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA.
| | - George P McCabe
- Department of Statistics, Purdue University, West Lafayette, IN 47907, USA.
| | | | - Jean-Christophe Rochet
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
26
|
Al-Dualimi DW, Shah Abdul Majid A, Al-Shimary SFF, Al-Saadi AA, Al Zarzour R, Asif M, Ein Oon C, Abdul Majid AMS. 50% Ethanol extract of Orthosiphon stamineus modulates genotoxicity and clastogenicity induced by mitomycin C. Drug Chem Toxicol 2017. [PMID: 28635332 DOI: 10.1080/01480545.2017.1317785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Herbal products contain a variety of compounds which may be useful in protecting against cellular damage caused by mutagens. Orthosiphon stamineus (O.s) also known as Cat whiskers. The herb has been shown anti-oxidative properties and can modulate key cellular proteins that have cytoprotective effect. The study aimed to evaluate the effects of different doses (250, 500 and 1000 mg kg-1) of 50% ethanol extract of O.s (Et. O.s) on micro-nucleated polychromatic erythrocytes (MNPCE), Polychromatic to normachromatic erythrocytes ratio (PCE/NCE), Mitotic index (MI), and Chromosomal aberration (CA) in Bab/c mice. Moreover, these parameters were used to evaluate the anti-genotoxic and clastogenic potencies of (Et. O.s) against mitomycin c (MMC) that interact with biological molecules and induce genotoxic and clastogenic disorders in non-tumor cells. MMC (4 mg kg-1) was injected intraperitoneally (i.p.) to the mice before and after treatment with three different doses of (Et. O.s). The results indicated that the extract at different doses did not show significant (p ≥ 0.05) differences in (MNPCE), (PCE/NCE) ratios, and (CA) values. The higher doses sowed high (MI) values compared with untreated control group. MMC showed significant increase (p ≤ 0.001) in (MNPCE), (CA) and reduce (PCE/NCE) and (MI) values compared with untreated control group. Treatment with (Et. O.s) at different doses before and after MMC injection showed to modulate MNPCE, PCE/NCE ratios, CA and MI values in mice bone marrow cells suggesting genoprotective potential of this plant extract.
Collapse
Affiliation(s)
- Dhamraa Waleed Al-Dualimi
- a Department of Pharmacology, Eman Laboratory, School of Pharmaceutical Sciences , Universiti Sains Malaysia , Penang , Malaysia
| | - Aman Shah Abdul Majid
- b Department of Pharmacology, School of Medical Sciences , Quest International University , Perak , Malaysia
| | - Sarah Furqan Faisal Al-Shimary
- a Department of Pharmacology, Eman Laboratory, School of Pharmaceutical Sciences , Universiti Sains Malaysia , Penang , Malaysia
| | - Amal Aziz Al-Saadi
- c Department of Clinical Analysis , College of Health and Medical Technology , Baghdad , Iraq
| | - Raghdaa Al Zarzour
- d Department of Pharmacology, School of Pharmaceutical Sciences , Universiti Sains Malaysia , Penang , Malaysia
| | - Muhammad Asif
- a Department of Pharmacology, Eman Laboratory, School of Pharmaceutical Sciences , Universiti Sains Malaysia , Penang , Malaysia
| | - Chern Ein Oon
- e Institute for Research in Molecular Medicine (INFORMM) , Universiti Sains Malaysia , Penang , Malaysia
| | - Amin Malik Shah Abdul Majid
- a Department of Pharmacology, Eman Laboratory, School of Pharmaceutical Sciences , Universiti Sains Malaysia , Penang , Malaysia.,f ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research , Australian National University , Acton , Australia
| |
Collapse
|
27
|
de Carvalho RM, Aguiar RPDS, Islam MT, de Alencar MVOB, da Mata AMOF, Braga AL, Júnior JJDS, Sousa LDR, de Lima RMT, Paz MFCJ, E Sousa JMDC, Melo-Cavalcante AADC. Cytogenotoxicological defense of retinyl palmitate in the front damage of antineoplastics. ACTA ACUST UNITED AC 2017; 69:293-297. [PMID: 28216169 DOI: 10.1016/j.etp.2017.01.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/31/2017] [Indexed: 10/20/2022]
Abstract
Cancer, the multifactorial pathology and to date is the most lethal causes of death in the world. Cyclophosphamide (CPA) and doxorubicin (DOX) are the individually or combindly used two anticancer drugs. The antineoplastic drugs-mediated genetic instability can be overcome by using antioxidants. The study evaluated the cytogenotoxic modulatory potentials of retinyl palmitate (RP) caused by CPA and DOX in Swiss mice. For this, adult Mus musculus of either sex were divided equally regarding to the gender. Toxicogenetic effects were induced by the intraperitoneal (i.p.) administration of the CPA (20mg/kg) and/or DOX (2mg/kg), following to test for comet assay and micronucleus test in bone marrow cells after 48h (DOX) and 7h (CPA) of the administration of RP (100 IU/kg). Both CPA and DOX significantly (p<0.05) increased with the index and frequency of damages, clastogenic and/or aneugenic effects with the augmenting of micronuclei, demonstrating the cytotoxicity interference on the ratio of normochromatic to polychromatic erythrocytes and bone marrow cells of mice, that were found to reduce in RP treatment groups. In conclusion, RP has a modulatory effect on CPA and DOX-mediated cytogenotoxic events. The findings may be a good indication to manage the antioneoplastic drug-induced stress mediated detrimental effects by using RP, especially as a side effect minimizer.
Collapse
Affiliation(s)
- Ricardo Melo de Carvalho
- Laboratory of Toxicology and Genetics, Federal University of Piauí, Teresina, Piaui, 64.049-550, Brazil
| | - Rai Pablo de Sousa Aguiar
- Laboratory of Toxicology and Genetics, Federal University of Piauí, Teresina, Piaui, 64.049-550, Brazil
| | - Muhammad Torequl Islam
- Laboratory of Toxicology and Genetics, Federal University of Piauí, Teresina, Piaui, 64.049-550, Brazil; Postgraduate Program in Biotechnology (RENORBIO), Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil; Department of Pharmacy, Southern University Bangladesh, Mehedibag, Chittagong, 4000, Bangladesh.
| | - Marcus Vinicius Oliveira Barros de Alencar
- Laboratory of Toxicology and Genetics, Federal University of Piauí, Teresina, Piaui, 64.049-550, Brazil; Postgraduate Program in Biotechnology (RENORBIO), Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
| | | | - Antonio Lima Braga
- Laboratory of Toxicology and Genetics, Federal University of Piauí, Teresina, Piaui, 64.049-550, Brazil
| | - Josemar José da Silva Júnior
- Postgraduate Program in Biotechnology (RENORBIO), Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
| | - Leonardo da Rocha Sousa
- Laboratory of Toxicology and Genetics, Federal University of Piauí, Teresina, Piaui, 64.049-550, Brazil
| | - Rosália Maria Tôrres de Lima
- Laboratory of Toxicology and Genetics, Federal University of Piauí, Teresina, Piaui, 64.049-550, Brazil; Postgraduate Program in Biotechnology (RENORBIO), Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
| | - Márcia Fernanda Correia Jardim Paz
- Laboratory of Toxicology and Genetics, Federal University of Piauí, Teresina, Piaui, 64.049-550, Brazil; Postgraduate Program in Biotechnology (RENORBIO), Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
| | - João Marcelo de Castro E Sousa
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil; Department of Biological Sciences, Federal University of Piauí, Picos, Piauí, 64.607-670, Brazil
| | - Ana Amélia de Carvalho Melo-Cavalcante
- Laboratory of Toxicology and Genetics, Federal University of Piauí, Teresina, Piaui, 64.049-550, Brazil; Postgraduate Program in Biotechnology (RENORBIO), Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil; Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
| |
Collapse
|
28
|
Nunes S, Madureira AR, Campos D, Sarmento B, Gomes AM, Pintado M, Reis F. Therapeutic and nutraceutical potential of rosmarinic acid-Cytoprotective properties and pharmacokinetic profile. Crit Rev Food Sci Nutr 2017; 57:1799-1806. [PMID: 26114303 DOI: 10.1080/10408398.2015.1006768] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Rosmarinic acid (RA) is a natural polyphenolic antioxidant derived from many common herbal plants. This compound displays several important biological properties, including anti-inflammatory, antiviral, antibacterial, antidepressant, anticarcionogenic, and chemopreventive properties. The importance of its activities and its possible application in processed foods as a natural antioxidant has reached a new interest levels in recent years. The health effects of this polyphenol depend greatly on both its intakes and bioavailability. This review focuses on the importance of RA as a dietary supplement, and summarizes its pharmacokinetics and metabolism, including the factors that limit its oral bioavailability which leads to a lower therapeutic action. Further experimental investigations are needed to optimize and enhance the oral bioavailability of this natural compound which consequently will help increasing therapeutic efficacy of RA in vivo.
Collapse
Affiliation(s)
- Sara Nunes
- a Laboratory of Pharmacology & Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra , Coimbra , Portugal
| | - Ana Raquel Madureira
- b CBQF/Escola Superior de Biotecnologia, Universidade Católica Portuguesa , Porto , Portugal
| | - Débora Campos
- b CBQF/Escola Superior de Biotecnologia, Universidade Católica Portuguesa , Porto , Portugal
| | - Bruno Sarmento
- c i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto , Portugal
- d INEB - Instituto de Engenharia Biomédica, New Therapies Group, Universidade do Porto , Porto , Portugal
- e CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde & Instituto Universitário de Ciências da Saúde , Gandra , Portugal
| | - Ana Maria Gomes
- b CBQF/Escola Superior de Biotecnologia, Universidade Católica Portuguesa , Porto , Portugal
| | - Manuela Pintado
- b CBQF/Escola Superior de Biotecnologia, Universidade Católica Portuguesa , Porto , Portugal
| | - Flávio Reis
- a Laboratory of Pharmacology & Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra , Coimbra , Portugal
- f Center for Neuroscience and Cell Biology-Institute for Biomedical Imaging and Life Sciences (CNC.IBILI) Research Consortium, University of Coimbra , Coimbra , Portugal
| |
Collapse
|
29
|
Revisiting Greek Propolis: Chromatographic Analysis and Antioxidant Activity Study. PLoS One 2017; 12:e0170077. [PMID: 28103258 PMCID: PMC5245904 DOI: 10.1371/journal.pone.0170077] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 12/28/2016] [Indexed: 12/25/2022] Open
Abstract
Propolis is a bee product that has been extensively used in alternative medicine and recently has gained interest on a global scale as an essential ingredient of healthy foods and cosmetics. Propolis is also considered to improve human health and to prevent diseases such as inflammation, heart disease, diabetes and even cancer. However, the claimed effects are anticipated to be correlated to its chemical composition. Since propolis is a natural product, its composition is consequently expected to be variable depending on the local flora alignment. In this work, we present the development of a novel HPLC-PDA-ESI/MS targeted method, used to identify and quantify 59 phenolic compounds in Greek propolis hydroalcoholic extracts. Amongst them, nine phenolic compounds are herein reported for the first time in Greek propolis. Alongside GC-MS complementary analysis was employed, unveiling eight additional newly reported compounds. The antioxidant activity study of the propolis samples verified the potential of these extracts to effectively scavenge radicals, with the extract of Imathia region exhibiting comparable antioxidant activity to that of quercetin.
Collapse
|
30
|
Qin S, Liu L, Wang J, Zhao F, Ma J. Toxicology evaluation of selenium protein powder. BIO WEB OF CONFERENCES 2017. [DOI: 10.1051/bioconf/20170802009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
31
|
Xu Y, Han S, Lei K, Chang X, Wang K, Li Z, Liu J. Anti-Warburg effect of rosmarinic acid via miR-155 in colorectal carcinoma cells. Eur J Cancer Prev 2016; 25:481-489. [PMID: 26340059 DOI: 10.1097/cej.0000000000000205] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Warburg effect, glycolytic production of ATP under aerobic conditions, is found to be a universal feature of most cancer cells. Our study was aimed to determine whether rosmarinic acid (RA) had the anti-Warburg effect activity against colorectal carcinoma. Furthermore, the mechanism for the anti-Warburg effect by RA would be investigated. In our study, we found that RA suppressed glucose consumption and lactate generation in colorectal carcinoma cells; meanwhile, RA inhibited the expression of transcription factor hypoxia-inducible factor-1α (HIF-1α) that affects the glycolytic pathway. Chronic inflammation is a key promoting factor of the Warburg effect. As we supposed, the present study also showed that RA could not only repress proinflammatory cytokines using enzyme-linked immunosorbent assay but it could also suppress microRNAs related to inflammation by real-time PCR. Therefore, we proposed that RA may inhibit the Warburg effect by suppressing the inflammatory response of colorectal carcinoma cells. Recent studies have provided evidence that miR-155 was an important mediator between inflammation and carcinogenesis. We further showed that miR-155 acted to repress the Warburg effect through the mechanism of inactivating the IL-6/STAT3 pathway. Above all, RA might be a potential therapeutic agent against colorectal carcinoma.
Collapse
Affiliation(s)
- Yichun Xu
- aState Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology bLaboratory of Integrative Medicine Surgery cDepartment of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou dDepartment of Clinical Pharmacy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
32
|
Aksamija A, Polidori A, Plasson R, Dangles O, Tomao V. The inclusion complex of rosmarinic acid into beta-cyclodextrin: A thermodynamic and structural analysis by NMR and capillary electrophoresis. Food Chem 2016; 208:258-63. [PMID: 27132848 DOI: 10.1016/j.foodchem.2016.04.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 03/02/2016] [Accepted: 04/04/2016] [Indexed: 11/23/2022]
Abstract
This work focuses on the characterization of the rosmarinic acid (RA)-β-cyclodextrin (CD) complex in aqueous solution by (1)H NMR (1D- and 2D-ROESY), completed with studies by capillary electrophoresis (CE). From the (1)H NMR data, the stoichiometry of the complex was determined by a Job's plot and the binding constant was estimated from a linear regression (Scott's method). At pH 2.9, the results showed that RA binds CD with a 1:1 stoichiometry and a binding constant Kb of 445 (±53) M(-1) or 465 (±81) M(-1) depending on the CD protons (H-5 or H-3) selected for the evaluation. The Kb value was also calculated from the CD-induced chemical shifts of each RA proton in order to collect information on the structure of the complex. The pH dependence of Kb revealed that the RA carboxylic form displays the highest affinity for CD. An investigation by capillary electrophoresis fully confirmed these results. 2D ROESY analysis provided detailed structural information on the complex and showed a strong correlation between H-3 and H-5 of CD and most RA protons. In conclusion, RA, an efficient phenolic antioxidant from rosemary with a marketing authorization, spontaneously forms a relatively stable inclusion complex with CD in water.
Collapse
Affiliation(s)
- Amra Aksamija
- University of Avignon, INRA, UMR408 SQPOV, 84000 Avignon, France
| | - Ange Polidori
- University of Avignon, UMR5247 CBSA, 84000 Avignon, France
| | - Raphaël Plasson
- University of Avignon, INRA, UMR408 SQPOV, 84000 Avignon, France
| | - Olivier Dangles
- University of Avignon, INRA, UMR408 SQPOV, 84000 Avignon, France
| | - Valérie Tomao
- University of Avignon, INRA, UMR408 SQPOV, 84000 Avignon, France.
| |
Collapse
|
33
|
Shakeri A, Sahebkar A, Javadi B. Melissa officinalis L. - A review of its traditional uses, phytochemistry and pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2016; 188:204-28. [PMID: 27167460 DOI: 10.1016/j.jep.2016.05.010] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 05/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Melissa officinalis L. is a medicinal plant that has long been used in different ethno-medical systems especially in the European Traditional Medicine and the Iranian Traditional Medicine for the treatment of several diseases. It is also widely used as a vegetable and to add flavor to dishes AIM OF THE REVIEW This review aimed to provide a summary on the botanical characterization, traditional uses, phytochemistry, pharmacological activities, pharmacokinetics and toxicity of M. officinalis, and discusses research gaps and future opportunities for investigations on this plant. MATERIALS AND METHODS We extensively reviewed major unpublished old texts, and published and electronic literature on traditional medicines of different regions of the world to find traditional uses of M. officinalis. Electronic databases including Web of Science, PubMed, ScienceDirect, Google Scholar and Scopus were searched to find articles (published between 1956 and 2015) on pharmacology and phytochemistry of M. officinalis. RESULTS Traditional uses of M. officinalis have been recorded mostly in European countries, Mediterranean region and Middle East countries. Phytochemical investigations revealed that this plant contains volatile compounds, triterpenoids, phenolic acids and flavonoids. Crude extracts and pure compounds isolated from M. officinalis exhibited numerous pharmacological effects, from which only anxiolytic, antiviral and antispasmodic activities of this plant as well as its effects on mood, cognition and memory have been shown in clinical trials. AChE inhibitory activity, stimulation of the acetylcholine and GABAA receptors, as well as inhibition of matrix metallo proteinase-2 are the main mechanisms proposed for the widely discussed neurological effects of this plant. CONCLUSIONS Modern pharmacological studies have now validated many traditional uses of M. officinalis. The data reviewed here revealed that M. officinalis is a potential source for the treatment of a wide range of diseases especially anxiety and some other CNS disorders, though confirmatory trials are warranted to substantiate these effects in the clinical setting. Data regarding many aspects of this plant such as mechanisms of actions, pharmacokinetics, adverse effects of the extracts, potential interactions with standard-of-care medications and active compounds is still limited which call for additional studies particularly in humans.
Collapse
Affiliation(s)
- Abolfazl Shakeri
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Research Centre, Royal Perth Hospital, School of Medicine and Pharmacology, University of Western Australia, Perth, Australia
| | - Behjat Javadi
- Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
34
|
Xu W, Yang F, Zhang Y, Shen X. Protective effects of rosmarinic acid against radiation-induced damage to the hematopoietic system in mice. JOURNAL OF RADIATION RESEARCH 2016; 57:356-62. [PMID: 27006381 PMCID: PMC4973645 DOI: 10.1093/jrr/rrw021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/19/2016] [Accepted: 01/28/2016] [Indexed: 06/05/2023]
Abstract
Rosmarinic acid (RA) is an ester of caffeic acid and 3, 4-dihydroxyphenyl lactic acid. It is a potent antioxidant that functions by scavenging free radicals. Here, we used a 30-day survival assay to investigate the radioprotective effects of RA. Mice were treated with RA once per day for 10 consecutive days starting at 3 days before gamma irradiation at 7.5 Gy until 7 days post irradiation. Mice treated with 100 and 200 mg/kg body weight (bw) of RA had 30-day survival rates of 89% and 72%, respectively, compared with 32% in the control group, and the differences were statistically significant (P = 0.0008 and 0.0421, respectively). Spleen colony-forming units (CFU-S), the number of nucleated cells in the bone marrow (BMNC), bone marrow DNA content, and hematological parameters of the peripheral blood were measured to investigate the radioprotective effect of RA on the hematopoietic system. The treatment groups that received RA at 50, 100 and 150 mg/kg bw and whole-body exposure to 5.5 Gy of (137)Cs γ- radiation had significantly higher CFU-S, BMNC and DNA content than the irradiation-only group. Assessment of hematological parameters in the peripheral blood showed that the treatment groups receiving RA at doses of 50, 100 and 150 mg/kg bw had higher white blood cell counts, hemoglobin and platelets than the radiation-only group. These results suggested that the administration of RA promoted the recovery of peripheral blood cells in irradiated mice.
Collapse
Affiliation(s)
- Wenqing Xu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 238 Bai Di Road, Nan Kai District, Tianjin, 300192, China
| | - Fujun Yang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 238 Bai Di Road, Nan Kai District, Tianjin, 300192, China
| | - Yujie Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 238 Bai Di Road, Nan Kai District, Tianjin, 300192, China
| | - Xiu Shen
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 238 Bai Di Road, Nan Kai District, Tianjin, 300192, China
| |
Collapse
|
35
|
David IG, Buleandră M, Popa DE, Bîzgan AMC, Moldovan Z, Badea IA, Iorgulescu EE, Tekiner TA, Basaga H. Voltammetric determination of polyphenolic content as rosmarinic acid equivalent in tea samples using pencil graphite electrodes. Journal of Food Science and Technology 2016; 53:2589-96. [PMID: 27478214 DOI: 10.1007/s13197-016-2223-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/04/2016] [Accepted: 04/01/2016] [Indexed: 02/02/2023]
Abstract
The quasi-reversible, diffusion controlled behavior of rosmarinic acid (RA) on a disposable pencil graphite electrode (PGE) was established by cyclic voltammetry. Using the anodic oxidation peak presented by RA on the PGE a differential pulse voltammetric (DPV) method was developed for the quantitative determination of RA. The linear range was 10(-8) - 10(-5) M RA and the detection and quantification limits were 7.93 × 10(-9) M and 2.64 × 10(-8) M RA, respectively. The applicability of the developed method was tested by recovery studies and by the assessment of the total polyphenolic contents (TPCDPV) of green, white and black Turkish teas, which were found to be 40.74, 30.04 and 23.97 mg rosmarinic acid equivalent/g dry tea, respectively. These results were in good agreement with those obtained by the Folin-Ciocalteu method. The developed method is a sensitive and cheap tool for the rapid and precise evaluation of TPCDPV of tea samples.
Collapse
Affiliation(s)
- Iulia Gabriela David
- Department of Analytical Chemistry, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta Av. District 3, 030018 Bucharest, Romania
| | - Mihaela Buleandră
- Department of Analytical Chemistry, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta Av. District 3, 030018 Bucharest, Romania
| | - Dana Elena Popa
- Department of Analytical Chemistry, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta Av. District 3, 030018 Bucharest, Romania
| | - Ana-Maria Cristina Bîzgan
- Department of Analytical Chemistry, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta Av. District 3, 030018 Bucharest, Romania
| | - Zenovia Moldovan
- Department of Analytical Chemistry, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta Av. District 3, 030018 Bucharest, Romania
| | - Irinel-Adriana Badea
- Department of Analytical Chemistry, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta Av. District 3, 030018 Bucharest, Romania
| | - Emilia Elena Iorgulescu
- Department of Analytical Chemistry, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta Av. District 3, 030018 Bucharest, Romania
| | - Tuğçe Ayça Tekiner
- Molecular Biology Genetics and Bioengineering Program, Sabanci University, Orhanlı-Tuzla, 34956 Istanbul, Turkey
| | - Huveyda Basaga
- Molecular Biology Genetics and Bioengineering Program, Sabanci University, Orhanlı-Tuzla, 34956 Istanbul, Turkey
| |
Collapse
|
36
|
Zorić Z, Markić J, Pedisić S, Bučević-Popović V, Generalić-Mekinić I, Grebenar K, Kulišić-Bilušić T. Stability of Rosmarinic Acid in Aqueous Extracts from Different Lamiaceae Species after in vitro Digestion with Human Gastrointestinal Enzymes. Food Technol Biotechnol 2016; 54:97-102. [PMID: 27904398 DOI: 10.17113/ftb.54.01.16.4033] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The present study compares the gastrointestinal stability of rosmarinic acid in aqueous extracts of thyme, winter savory and lemon balm with the stability of pure rosmarinic acid. The stability of rosmarinic acid was detected after two-phase in vitro digestion process (gastric and duodenal) with human gastrointestinal enzymes. The concentration of rosmarinic acid in undigested and digested samples was detected using HPLC-DAD. Results showed that gastrointestinal stability of pure rosmarinic acid was significantly higher than that of rosmarinic acid from plant extracts after both gastric and intestinal phases of digestion. Among plant extracts, rosmarinic acid was the most stable in lemon balm after gastric (14.10%) and intestinal digestion phases (6.5%). The temperature (37 °C) and slightly alkaline medium (pH=7.5) did not affect the stability of rosmarinic acid, while acid medium (pH=2.5) significantly decreased its stability (≥50%). In addition, the stability rate of rosmarinic acid is influenced by the concentration of human gastrointestinal juices.
Collapse
Affiliation(s)
- Zoran Zorić
- Faculty of Food Technology and Biotechnology, Centre in Zadar, P. Kasandrića 6, HR-23000 Zadar, Croatia
| | - Joško Markić
- University Hospital of Split, Spinčićeva 1, HR-21000 Split, Croatia
| | - Sandra Pedisić
- Faculty of Food Technology and Biotechnology, Centre in Zadar, P. Kasandrića 6, HR-23000 Zadar, Croatia
| | - Viljemka Bučević-Popović
- Faculty of Science, Department of Chemistry, University of Split, Teslina 12, HR-21000 Split, Croatia
| | - Ivana Generalić-Mekinić
- Faculty of Chemistry and Technology, University of Split, Teslina 10, HR-21000 Split, Croatia
| | - Katarina Grebenar
- Faculty of Chemistry and Technology, University of Split, Teslina 10, HR-21000 Split, Croatia
| | - Tea Kulišić-Bilušić
- Faculty of Chemistry and Technology, University of Split, Teslina 10, HR-21000 Split, Croatia
| |
Collapse
|
37
|
Silva CRE, Borges FFV, Bernardes A, Perez CN, Silva DDME, Chen-Chen L. Genotoxic, Cytotoxic, Antigenotoxic, and Anticytotoxic Effects of Sulfonamide Chalcone Using the Ames Test and the Mouse Bone Marrow Micronucleus Test. PLoS One 2015; 10:e0137063. [PMID: 26335560 PMCID: PMC4559391 DOI: 10.1371/journal.pone.0137063] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 08/12/2015] [Indexed: 12/02/2022] Open
Abstract
Chalcones present several biological activities and sulfonamide chalcone derivatives have shown important biological applications, including antitumor activity. In this study, genotoxic, cytotoxic, antigenotoxic, and anticytotoxic activities of the sulfonamide chalcone N-{4-[3-(4-nitrophenyl)prop-2-enoyl]phenyl} benzenesulfonamide (CPN) were assessed using the Salmonella typhimurium reverse mutation test (Ames test) and the mouse bone marrow micronucleus test. The results showed that CPN caused a small increase in the number of histidine revertant colonies in S. typhimurium strains TA98 and TA100, but not statistically significant (p > 0.05). The antimutagenicity test showed that CPN significantly decreased the number of His+ revertants in strain TA98 at all doses tested (p < 0.05), whereas in strain TA100 this occurred only at doses higher than 50 μg/plate (p < 0.05). The results of the micronucleus test indicated that CPN significantly increased the frequency of micronucleated polychromatic erythrocytes (MNPCE) at 24 h and 48 h, revealing a genotoxic effect of this compound. Also, a significant decrease in polychromatic/normochromatic erythrocyte ratio (PCE/NCE) was observed at the higher doses of CPN at 24 h and 48 h (p < 0.05), indicating its cytotoxic action. CPN co-administered with mitomycin C (MMC) significantly decreased the frequency of MNPCE at almost all doses tested at 24 h (p < 0.05), showing its antigenotoxic activity, and also presented a small decrease in MNPCE at 48 h (p > 0.05). Additionally, CPN co-administered with MMC significantly increased PCE/NCE ratio at all doses tested, demonstrating its anticytotoxic effect. In summary, CPN presented genotoxic, cytotoxic, antigenotoxic, and anticytotoxic properties.
Collapse
Affiliation(s)
- Carolina Ribeiro e Silva
- Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
- * E-mail:
| | | | - Aline Bernardes
- Instituto de Química, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Caridad Noda Perez
- Instituto de Química, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | | | - Lee Chen-Chen
- Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| |
Collapse
|
38
|
Kuhn AW, Tedesco M, Boligon AA, Frescura VDS, Athayde ML, Tedesco SB. Genotoxic and chromatographic analyses of aqueous extracts of Peltodon longipes Kunth ex Benth. (hortelã-do-campo). BRAZ J PHARM SCI 2015. [DOI: 10.1590/s1984-82502015000300005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Peltodon longipes is used as a stimulant and emmenagogue. The objective of this study was to perform genotoxic and chromatographic analyses of the extracts of two samples of P. longipes, collected from the cities of Santa Maria and Tupanciretã, RS, Brazil. The Allium cepa assay was used to analyze genotoxicity while high-performance liquid chromatography was employed to determine phenolic compounds. The genotoxicity experiment consisted of nine groups each comprising four A. cepa bulbs. Bulb roots were developed in distilled water and then transferred for the treatments, for 24 hours, and the negative control remained in water. The treatments were: aqueous extracts at concentrations of 5 and 15 g L-1 for each sample, plus four groups treated with 1% glyphosate, one of which was used as a positive control and the other three for testing DNA damage recovery using water and the extracts of P. longipes from Santa Maria. All extracts of P. longipes exhibited anti-proliferative potential, although the effect was significantly greater for the extracts from the Tupanciretã sample. This sample also contained the highest amount of rosmarinic acid and kaempferol, which may confer the effects found in these extracts. Only extracts from the Santa Maria sample exhibited genotoxic potential.
Collapse
|
39
|
Carranza-Torres IE, Guzmán-Delgado NE, Coronado-Martínez C, Bañuelos-García JI, Viveros-Valdez E, Morán-Martínez J, Carranza-Rosales P. Organotypic culture of breast tumor explants as a multicellular system for the screening of natural compounds with antineoplastic potential. BIOMED RESEARCH INTERNATIONAL 2015; 2015:618021. [PMID: 26075250 PMCID: PMC4449881 DOI: 10.1155/2015/618021] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 02/23/2015] [Accepted: 03/02/2015] [Indexed: 01/11/2023]
Abstract
Breast cancer is the leading cause of death in women worldwide. The search for novel compounds with antitumor activity, with less adverse effects and higher efficacy, and the development of methods to evaluate their toxicity is an area of intense research. In this study we implemented the preparation and culture of breast tumor explants, which were obtained from precision-cut breast tumor slices. In order to validate the model we are proposing to screen antineoplastic effect of natural compounds, we selected caffeic acid, ursolic acid, and rosmarinic acid. Using the Krumdieck tissue slicer, precision-cut tissue slices were prepared from breast cancer samples; from these slices, 4 mm explants were obtained and incubated with the selected compounds. Viability was assessed by Alamar Blue assay, LDH release, and histopathological criteria. Results showed that the viability of the explants cultured in the presence of paclitaxel (positive control) decreased significantly (P < 0.05); however, tumor samples responded differently to each compound. When the explants were coincubated with paclitaxel and compounds, a synergic effect was observed. This study shows that ex vivo culture of breast cancer explants offers a suitable alternative model for evaluating natural or synthetic compounds with antitumor properties within the complex microenvironment of the tumor.
Collapse
Affiliation(s)
- Irma Edith Carranza-Torres
- Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, 64720 Monterrey, NL, Mexico
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, 64460 San Nicolás de los Garza, NL, Mexico
| | - Nancy Elena Guzmán-Delgado
- Unidad Médica de Alta Especialidad No. 34, Instituto Mexicano del Seguro Social, 64730 Monterrey, NL, Mexico
| | - Consuelo Coronado-Martínez
- Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, 64720 Monterrey, NL, Mexico
| | | | - Ezequiel Viveros-Valdez
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, 64460 San Nicolás de los Garza, NL, Mexico
| | | | - Pilar Carranza-Rosales
- Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, 64720 Monterrey, NL, Mexico
| |
Collapse
|
40
|
da Silva SB, Amorim M, Fonte P, Madureira R, Ferreira D, Pintado M, Sarmento B. Natural extracts into chitosan nanocarriers for rosmarinic acid drug delivery. PHARMACEUTICAL BIOLOGY 2015; 53:642-52. [PMID: 25489634 DOI: 10.3109/13880209.2014.935949] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
CONTEXT Nanotechnology can be applied to deliver and protect antioxidants in order to control the oxidative stress phenomena in several chronic pathologies. Chitosan (CS) nanoparticles are biodegradable carriers that may protect antioxidants with potent biological activity such as rosmarinic acid (RA) in Salvia officinalis (sage) and Satureja montana (savory) extracts for safe and innovative therapies. OBJECTIVE Development and characterization of CS nanoparticles as a stable and protective vehicle to deliver RA for medical applications using natural extracts as sage and savory. MATERIALS AND METHODS Antioxidant-CS based nanoparticles were prepared by ionic gelation with sodium tripolyphosphate (TPP), at pH 5.8 with a mass ratio of 7:1 (CS:TPP), with a theoretical antioxidant-CS loading of 40-50%. The nanoparticles were then characterized by different methods such as photon correlation spectroscopy, laser Doppler anemometry, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), Fourier-transform infrared (FTIR), high-performance liquid chromatographic (HPLC), association efficiency, and antioxidant activity. RESULTS AND DISCUSSION Individual and small sizing nanoparticles, around 300 nm, were obtained. SEM confirmed smooth and spherical nanoparticles after freeze-drying. No chemical interactions were found between antioxidants and CS, after encapsulation, by DSC and FTIR. The association efficiency was 51.2% for RA (with 40% loading) and 96.1 and 98.2% for sage and savory nanoparticles, respectively (both with 50% loading). Antioxidant activity values were higher than 0.0348 eq [Asc. Ac.] g/L/g extract and 0.4251 µmol/eq Trolox/g extract. CONCLUSION The extracts under study are promising vehicles for RA drug delivery in CS nanocarriers.
Collapse
Affiliation(s)
- Sara Baptista da Silva
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto , Porto , Portugal
| | | | | | | | | | | | | |
Collapse
|
41
|
Jayanthy G, Subramanian S. RA abrogates hepatic gluconeogenesis and insulin resistance by enhancing IRS-1 and AMPK signalling in experimental type 2 diabetes. RSC Adv 2015. [DOI: 10.1039/c5ra04605j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
RA abrogates hyperglycemia and insulin resistance, the primary features of type 2 diabetes (T2DM).
Collapse
Affiliation(s)
- G. Jayanthy
- Department of Biochemistry
- University of Madras
- Guindy Campus
- Chennai
- India
| | - S. Subramanian
- Department of Biochemistry
- University of Madras
- Guindy Campus
- Chennai
- India
| |
Collapse
|
42
|
Madureira AR, Campos DA, Fonte P, Nunes S, Reis F, Gomes AM, Sarmento B, Pintado MM. Characterization of solid lipid nanoparticles produced with carnauba wax for rosmarinic acid oral delivery. RSC Adv 2015. [DOI: 10.1039/c4ra15802d] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Illustration of the final product of solid carnauba nanoparticles loaded with rosmarinic acid in the dried solid state suitable for food incorporation.
Collapse
Affiliation(s)
- Ana Raquel Madureira
- CBQF – Centro de Biotecnologia e Química Fina – Laboratório Associado
- Escola Superior de Biotecnologia
- Universidade Católica Portuguesa/Porto
- 4202-401 Porto
- Portugal
| | - Débora A. Campos
- CBQF – Centro de Biotecnologia e Química Fina – Laboratório Associado
- Escola Superior de Biotecnologia
- Universidade Católica Portuguesa/Porto
- 4202-401 Porto
- Portugal
| | - Pedro Fonte
- CESPU
- Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde
- 4585-116 Gandra PRD
- Portugal
| | - Sara Nunes
- IBILI – Laboratory of Pharmacology and Experimental Therapeutics
- Institute for Biomedical Imaging and Life Sciences
- Faculty of Medicine, Sub-Unit 1 (Pólo III), University of Coimbra
- 3000-548 Coimbra
- Portugal
| | - Flávio Reis
- IBILI – Laboratory of Pharmacology and Experimental Therapeutics
- Institute for Biomedical Imaging and Life Sciences
- Faculty of Medicine, Sub-Unit 1 (Pólo III), University of Coimbra
- 3000-548 Coimbra
- Portugal
| | - Ana Maria Gomes
- CBQF – Centro de Biotecnologia e Química Fina – Laboratório Associado
- Escola Superior de Biotecnologia
- Universidade Católica Portuguesa/Porto
- 4202-401 Porto
- Portugal
| | - Bruno Sarmento
- CESPU
- Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde
- 4585-116 Gandra PRD
- Portugal
- I3S
| | - Maria Manuela Pintado
- CBQF – Centro de Biotecnologia e Química Fina – Laboratório Associado
- Escola Superior de Biotecnologia
- Universidade Católica Portuguesa/Porto
- 4202-401 Porto
- Portugal
| |
Collapse
|
43
|
Baldasquin-Caceres B, Gomez-Garcia FJ, López-Jornet P, Castillo-Sanchez J, Vicente-Ortega V. Chemopreventive potential of phenolic compounds in oral carcinogenesis. Arch Oral Biol 2014; 59:1101-7. [PMID: 25033381 DOI: 10.1016/j.archoralbio.2014.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 06/08/2014] [Accepted: 06/18/2014] [Indexed: 01/09/2023]
Abstract
OBJECTIVE To evaluate the chemopreventive potential of phenolic compounds - potassium apigenin, cocoa, catechins, eriocitrin and rosmarinic acid in oral carcinogenesis induced in hamsters by means of the topical application of 7,12-dimethylbenz(a)anthracene(DMBA). STUDY DESIGN An experimental study at the University of Murcia. METHODS 50 male Syrian hamsters (Mesocricetus auratus) were divided into five groups of ten: Group I (control group): 0.5% DMBA; Group II: 0.5% DMBA+1.1mg/15ml potassium apigenin; Group III: 05% DMBA+2.5mg/15ml cocoa catechins; Group IV: 0.5% DMBA+6mg/15ml eriocitrin; Group V: 0.5% DMBA+1.3mg/15ml rosmarinic acid. The flavonoids were administered orally. All the animals were sacrificed after 12 weeks. Macroscopic, microscopic and immunohistochemical (PCNA and p53) analyses of the lesions were performed. RESULTS All the groups treated with phenolic compounds showed lower incidences of tumour, greater differentiation and lower scores in the tumour invasion front grading system in comparison with the control group. Potassium apigenin and rosmarinic acid achieved the best results, the former considerably reduced the carcinoma tumour volumes developed and both significantly reduced the intensity and aggression of the tumours. Immunoexpression of PCNA and p53 were significantly altered during DMBA-induced oral carcinogenesis. CONCLUSIONS Animals treated with phenolic compounds, particularly potassium apigenin and rosmarinic acid, showed a lower incidence of tumours.
Collapse
Affiliation(s)
- B Baldasquin-Caceres
- Department of Pathology and Anatomical Sciences, Faculty of Medicine and Dentistry, Ageing Research Institute, University of Murcia, Murcia, Spain
| | - F J Gomez-Garcia
- Department of Pathology and Anatomical Sciences, Faculty of Medicine and Dentistry, Ageing Research Institute, University of Murcia, Murcia, Spain
| | - P López-Jornet
- Oral Medicine Ageing Research Institute, Faculty of Medicine and Dentistry, University of Murcia, Murcia, Spain.
| | - J Castillo-Sanchez
- I+D+I Nutrafur SA Murcia Spain Ageing Research Institute, University of Murcia, Murcia, Spain
| | - V Vicente-Ortega
- Department of Pathology and Anatomical Sciences, Faculty of Medicine and Dentistry, Ageing Research Institute, University of Murcia, Murcia, Spain
| |
Collapse
|
44
|
Chen KL, Li HX, Xu XL, Zhou GH. The protective effect of rosmarinic acid on hyperthermia-induced C2C12 muscle cells damage. Mol Biol Rep 2014; 41:5525-31. [PMID: 24874305 DOI: 10.1007/s11033-014-3429-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 05/17/2014] [Indexed: 10/25/2022]
Abstract
High temperature will cause animal tissues or cells damage. Rosmarinic acid (RA) is a good antioxidant and health care product, but the roles of RA in muscle cells damage and the mechanisms which caused by high temperature is still unknown. In this study, the roles of RA on hyperthermia-induced apoptosis and damage of C2C12 muscle cells were investigated. C2C12 cells were cultured in medium with different concentration (0, 25, 50, 100 µM) RA and treated in 42 °C high temperature to induce cellular apoptosis and damage. Then, these cells were analyzed effect of different dose of RA on cells apoptosis and damage. The results indicated that RA has protective effect on heat-stress induced cellular damage, and the cells have the higher cell viability at the dose of 50 µM RA by MTT assay. Hochest33342/PI double staining showed that the cellular apoptosis of C2C12 cells were decreased in the presence of selected 50 µM RA. Malondialdehyde formation and reactive oxygen species levels were also decreased significantly, but cellular superoxide dismutase activity was increased significantly in the presence of RA even in the condition of 42 °C. Meanwhile, Caspase-3 mRNA expression, Caspase-3 activity, and Bax/Bcl-2 ratio were reduced significantly, but the mRNA expression of Hsp72 was increased significantly in those hyperthermia-induced C2C12 cells in the presence of 50 µM RA. Taken together, the results at least discovered that RA has protective effects on hyperthermia-induced cellular apoptosis and damage of muscle cells by change the expression of stress-genes and increasing intracellular antioxidant capability.
Collapse
Affiliation(s)
- Kun-Lin Chen
- College of Animal Science and Technology, Nanjing Agricultural University, 1# Weigang, Nanjing, 210095, Jiangsu, China
| | | | | | | |
Collapse
|
45
|
Lee Y, Song B, Ju J. Anti-inflammatory Activity of Perilla frutescens Britton Seed in RAW 264.7 Macrophages and an Ulcerative Colitis Mouse Model. ACTA ACUST UNITED AC 2014. [DOI: 10.9721/kjfst.2014.46.1.61] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
46
|
Solvent extraction and purification of rosmarinic acid from supercritical fluid extraction fractionation waste: Economic evaluation and scale-up. J Supercrit Fluids 2013. [DOI: 10.1016/j.supflu.2013.09.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
47
|
Nayak PG, Paul P, Bansal P, Kutty NG, Pai KSR. Sesamol prevents doxorubicin-induced oxidative damage and toxicity on H9c2 cardiomyoblasts. J Pharm Pharmacol 2013; 65:1083-1093. [PMID: 23738736 DOI: 10.1111/jphp.12073] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 03/18/2013] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Exposure to toxicants like doxorubicin (Dox) damages cellular components by generating reactive oxygen species (ROS). This can be attenuated using free radical scavengers and/or antioxidants. METHODS Dox-exposed cardiac myoblasts (H9c2 cells) were treated with sesamol (12.5, 25 and 50 μm), a natural phenolic compound. Intracellular ROS inhibition, cell viability and analysis of antioxidant and biochemical markers such as superoxide dismutase, catalase, glutathione-S-transferase, glutathione peroxidase, reduced/oxidized glutathione, lipid peroxidation and protein carbonyl content were performed. The effect of sesamol treatment on the cytotoxic and genotoxic parameters was studied by monitoring the signalling proteins involved in the apoptotic pathway. KEY FINDINGS Dox triggered cellular and genetic damage by increasing levels of intracellular ROS, thereby decreasing cell viability and increasing apoptosis. Sesamol reversed the cytotoxic and genotoxic effects of Dox. In addition, sesamol attenuated the pro-apoptotic proteins and improved the anti-apoptotic status. Sesamol pre-treatment also alleviated the disturbed antioxidant milieu by preventing ROS production and improving endogenous enzyme levels. CONCLUSIONS Among the different doses tested, 50 μm of sesamol showed maximum protection against Dox-induced oxidative damage. This reflects the significance of sesamol in ameliorating the deleterious effects associated with cancer chemotherapy.
Collapse
Affiliation(s)
- Pawan G Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, India
| | | | | | | | | |
Collapse
|
48
|
Vuković R, Bauer N, Curković-Perica M. Genetic elicitation by inducible expression of β-cryptogein stimulates secretion of phenolics from Coleus blumei hairy roots. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 199-200:18-28. [PMID: 23265315 DOI: 10.1016/j.plantsci.2012.10.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Revised: 10/27/2012] [Accepted: 10/31/2012] [Indexed: 06/01/2023]
Abstract
The accumulation of phenolic compounds in plants is often part of the defense response against stress and pathogen attack, which can be triggered and activated by elicitors. Oomycetal proteinaceous elicitor, β-cryptogein, induces hypersensitive response and systemic acquired resistance against some pathogens. In order to test the effect of endogenously synthesized cryptogein protein on phenolic compounds accumulation in tissue, and secretion into the culture medium, Coleus blumei hairy roots were generated. Agrobacterium rhizogenes was employed to insert synthetic crypt gene, encoding β-cryptogein, under the control of alcohol-inducible promoter. The expression of β-cryptogein, in C. blumei hairy roots, was controlled by application of 1% and 2% ethanol, during 21 days induction period. Ethanol-induced expression of β-cryptogein caused significant decrease of soluble phenolics and rosmarinic acid (RA) in hairy root lines and increase of phenolics, RA and caffeic acid in culture medium. These data suggest that β-cryptogein might be a potential regulatory factor for phenolics secretion from the roots.
Collapse
Affiliation(s)
- Rosemary Vuković
- Department of Biology, J.J. Strossmayer University of Osijek, Osijek, Croatia
| | | | | |
Collapse
|
49
|
Ferreira LG, Celotto AC, Capellini VK, Albuquerque AAS, Nadai TRD, Carvalho MTMD, Evora PRB. Is rosmarinic acid underestimated as an experimental cardiovascular drug? Acta Cir Bras 2013; 28 Suppl 1:83-7. [PMID: 23381830 DOI: 10.1590/s0102-86502013001300016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
PURPOSE The rationale of the present review is to analize the activity of Rosmarinus officinalis in the the cardiovascular system METHODS A MEDLINE database search (from January 1970 to December 2011) using only rosmarinic acid as searched term. RESULTS The references search revealed 509 references about rosmarinic acid in 40 years (the first reference is from 1970). There is a powerful prevalence of antioxidant and cancer studies. Other diseases are few cited, as inflammation, brain (Alzheimer and Parkinson disease) and, memory; allergy; diabetes; atherosclerosis, and; hypertension. It is necessary to consider the complete absence of studies on coronary artery disease, myocardial ischemia, heart failure or ischemia/reperfusion injury. CONCLUSION Rosmarinic acid is underestimated as an experimental cardiovascular drug and deserves more attention.
Collapse
Affiliation(s)
- Luciana Garros Ferreira
- Postgraduate Program in Medical Surgical Clinic, Department of Surgery and Anatomy, Ribeirão Preto Faculty of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
50
|
Mariappan G, Sundaraganesan N, Manoharan S. Experimental and theoretical spectroscopic studies of anticancer drug rosmarinic acid using HF and density functional theory. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2012; 97:340-51. [PMID: 22789527 DOI: 10.1016/j.saa.2012.06.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Revised: 06/05/2012] [Accepted: 06/06/2012] [Indexed: 06/01/2023]
Abstract
In this work, we reported a combined experimental and theoretical study on molecular structure, vibrational spectra and NBO analysis of anticancer drug of rosmarinic acid. The optimized molecular structure, atomic charges, vibrational frequencies, natural bond orbital analysis and ultraviolet-visible spectral interpretation of rosmarinic acid have been studied by performing HF and DFT/B3LYP/6-31G(d,p) level of theory. The FT-IR (solid and solution phase), FT-Raman (solid phase) spectra were recorded in the region 4000-400 and 3500-50 cm(-1), respectively. The UV-Visible absorption spectra of the compound that dissolved in ethanol were recorded in the range of 200-800 nm. The scaled wavenumbers are compared with the experimental values. The difference between the observed and scaled wavenumber values of most of the fundamentals is very small. The formation of hydrogen bond was investigated in terms of the charge density by the NBO calculations. Based on the UV spectra and TD-DFT calculations, the electronic structure and the assignments of the absorption bands were carried out. Besides, molecular electrostatic potential (MEP), frontier molecular orbitals (FMO) analysis were investigated using theoretical calculations.
Collapse
Affiliation(s)
- G Mariappan
- Department of Physics (Engg.), Annamalai University, Annamalainagar 608 002, India
| | | | | |
Collapse
|