1
|
Sun H, Zhai Q, Liu J, Shi K, Fan W. Interplay between the gut microbiota, its metabolites and carcinogens. Clin Transl Oncol 2025:10.1007/s12094-025-03920-2. [PMID: 40358880 DOI: 10.1007/s12094-025-03920-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 03/30/2025] [Indexed: 05/15/2025]
Abstract
The gut microbiota is a complex and dynamic community of microorganisms that reside in the gastrointestinal tract, playing a critical role in the host. It produces many metabolites, such as bile acids, which play an important role in the metabolism of the host. One area of particular interest is its involvement in the development and treatment of cancer. Carcinogens, which are substances known to promote cancer formation and development, are present in various sources in our daily lives, including cigarettes, barbecues, and moldy foods. The types, amounts, and metabolism of carcinogens have been closely linked to cancer risk, underscoring the importance of understanding their interplay with the gut microbiota. Numerous studies have demonstrated significant differences in the composition and function of the gut microbiota in individuals with cancer compared to healthy individuals. The gut microbiota and its metabolites have been shown to influence the metabolism of various carcinogens, thereby affecting cancer progression. While much attention has been paid to the relationship between the gut microbiota and cancer risk, the potential interplay between the gut microbiota and carcinogens has received less focus. This review aims to emphasize the importance of exploring the interplay between the gut microbiota with its metabolites and carcinogens in cancer development and therapy. By uncovering the mechanisms of the interplay, new approaches for cancer prevention and treatment can be developed.
Collapse
Affiliation(s)
- Huan Sun
- Department of Pharmacy, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| | - Qiaoli Zhai
- Department of Pharmacy, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| | - Juan Liu
- Department of Pharmacy, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| | - Kourong Shi
- Department of Pharmacy, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China.
| | - Wei Fan
- Department of Pharmacy, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China.
| |
Collapse
|
2
|
Li Z, He J, Li X, Chen J, You M, Sun B, Yang G. A narrative review of phthalates: From environmental release to kidney injury. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 376:126380. [PMID: 40339891 DOI: 10.1016/j.envpol.2025.126380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/16/2025] [Accepted: 05/04/2025] [Indexed: 05/10/2025]
Abstract
Plastic products play an indispensable role in human daily lives, largely due to their low cost and unrivaled convenience. Phthalates (PAEs) are the most significant plastic additives due to their distinctive properties and are extensively utilized and produced in large quantities. Nevertheless, given their inability to form covalent bonds with plastics, these compounds are prone to leaching from plastic surfaces. As a result, the use of plastics in various industries has become a major source of PAEs in the environment, leading to increased risks to humans. The kidneys, which play a central role in the excretion of PAEs, are considered one of the primary target organs for PAEs accumulation and toxicity. A growing body of evidence supports an association between exposure to PAEs and adverse effects on the kidney. In environments, PAEs are often exposed simultaneously with other contaminants that may directly or indirectly modify the toxic effects of PAEs. This review focuses on the adverse effects of PAEs exposure on the kidney and their mechanisms of action, as well as the interactions between PAEs and other contaminants on the kidney. This review underscores the necessity for future toxicological studies to prioritize the mechanisms of renal injury caused by co-exposure to PAEs and other pollutants. The employment of advanced technologies, including network toxicology and molecular docking techniques, is imperative to enhance comprehension of the potential toxicity associated with co-exposures.
Collapse
Affiliation(s)
- Zenglin Li
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 561113, China; Department of Occupational and Environmental Health, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, 561113, China
| | - Jixing He
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 561113, China; Department of Occupational and Environmental Health, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, 561113, China
| | - Xue Li
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 561113, China; Department of Occupational and Environmental Health, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, 561113, China
| | - Jing Chen
- Department of Nosocomial Infection Control, Guizhou Provincial People's Hospital, Guiyang, Guizhou, 550002, China
| | - Mingdan You
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 561113, China; Department of Occupational and Environmental Health, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, 561113, China
| | - Baojun Sun
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 561113, China.
| | - Guanghong Yang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 561113, China; Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, 550004, China.
| |
Collapse
|
3
|
Zhang S, Zhang XY, Zheng XC, Ye XL, Huang P, Liu WT, Jiang HJ. Downregulation of MGAT3 Promotes Benzo[ a]pyrene-Mediated Lung Carcinogenesis by Regulating Cell Invasion and Migration Activity. ACS OMEGA 2025; 10:17404-17415. [PMID: 40352502 PMCID: PMC12060035 DOI: 10.1021/acsomega.4c10682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 04/13/2025] [Accepted: 04/17/2025] [Indexed: 05/14/2025]
Abstract
Environmental chemical carcinogens are major factors in the induction of lung cancer, with benzo[a]pyrene (B[a]P) being one of the most widespread and highly carcinogenic among them. Although studies have reported that B[a]P exerts its carcinogenic effects by causing mutations, inducing cytotoxicity, and inhibiting DNA synthesis, the early molecular regulatory events and mechanisms involved in B[a]P-induced tumor initiation remain unclear. This study found that the MGAT3 gene was significantly downregulated in B[a]P-induced mouse lung tumorigenesis, suggesting its important tumor-suppressive function. Further investigation revealed that suppression of MGAT3 expression promoted the invasion and migration abilities of lung cancer cells, while overexpression of MGAT3 in these cells inhibited these effects. Western blot analysis also showed that MGAT3 regulated the expression of epithelial-mesenchymal transition markers, thereby affecting the motility of lung cancer cells. Xenograft assay also confirmed the inhibitory effect of MGAT3 overexpression on tumor proliferation. Analysis of lung cancer tissue expression further validated that MGAT3 is significantly downregulated in lung cancer tissues, and this decrease in expression is associated with a poor prognosis in lung cancer patients. Our research indicates that the suppression of MGAT3 expression and its downstream regulatory molecules plays a crucial role in lung cancer development induced by environmental chemical carcinogens.
Collapse
Affiliation(s)
- Su Zhang
- Center
for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital, Affiliated
People’s Hospital, Hangzhou Medical College, Shangtang Road No. 158, Hangzhou 310014, Zhejiang, China
| | - Xia-Yan Zhang
- Department
of Pharmacy, the Fifth Affiliated Hospital
of Wenzhou Medical University, Kuocang Road No. 289, Lishui 323000, Zhejiang, China
| | - Xiao-Chun Zheng
- Center
for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital, Affiliated
People’s Hospital, Hangzhou Medical College, Shangtang Road No. 158, Hangzhou 310014, Zhejiang, China
| | - Xiao-Lan Ye
- Center
for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital, Affiliated
People’s Hospital, Hangzhou Medical College, Shangtang Road No. 158, Hangzhou 310014, Zhejiang, China
| | - Ping Huang
- Center
for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital, Affiliated
People’s Hospital, Hangzhou Medical College, Shangtang Road No. 158, Hangzhou 310014, Zhejiang, China
| | - Wen-tong Liu
- School
of Pharmacy, Hangzhou Normal University, Binwen Road No. 481, Hangzhou 311121, Zhejiang, China
| | - Hong-juan Jiang
- Center
for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital, Affiliated
People’s Hospital, Hangzhou Medical College, Shangtang Road No. 158, Hangzhou 310014, Zhejiang, China
| |
Collapse
|
4
|
Hong Z, Guo Q, Luo X, Liu L. Polycyclic Aromatic Hydrocarbons Regulate the Occurrence and Development of Nasopharyngeal Carcinoma by Regulating Aryl Hydrocarbon Receptor. TOHOKU J EXP MED 2025; 265:221-228. [PMID: 39261077 DOI: 10.1620/tjem.2024.j095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Nasopharyngeal carcinoma (NPC) has hidden onset, low rate of early diagnosis, and most of them have metastases at the time of diagnosis. The specific pathogenesis of NPC is still unclear. Polycyclic aromatic hydrocarbons (PAHs) are a large group of contaminants produced by the incomplete combustion of organic matter and widespread in the air. Many of these compounds are mutagenic and carcinogenic. PAHs plays an important role in mutagenic and carcinogenic, while its role in NPC still needs further elucidation. In this study, CNE-2 cells were stimulated by PAHs, then the expression of aryl hydrocarbon receptor (AhR) and CYP1A2 were respectively examined using Real-Time fluorescence quantitative PCR (qRT-PCR) and Western Blot. CNE-2 cells proliferation, migration, invasion and apoptosis were examined by CCK-8, Wound-Healing Assay, Transwell, Flow Cytometry, respectively. We found that AhR expression was increased while the level of apoptosis was inhibited by PAHs. While the ability of cell invasion was weakened, proliferation and migration were not significantly different. After treated by PAHs and ITE, the effect of PAHs on promoting AhR expression was significantly inhibited and apoptosis was up-regulated. The present study found that, PAHs inhibit apoptosis of NPC cells and promote the expression of AhR. Besides, PAHs participates in NPC occurrence and development by regulating AhR expression. Collectively, these findings may provide a possible strategy for the clinical treatment of NPC.
Collapse
Affiliation(s)
- Zhicong Hong
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University
- Xiamen Key Laboratory of Otolaryngology Head and Neck Surgery
- The Third Clinical Medicine College, School of Clinical Medicine, Fujian Medical University
| | - Qiaoling Guo
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University
- Xiamen Key Laboratory of Otolaryngology Head and Neck Surgery
- The Third Clinical Medicine College, School of Clinical Medicine, Fujian Medical University
| | - Xianyang Luo
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University
- Xiamen Key Laboratory of Otolaryngology Head and Neck Surgery
- The Third Clinical Medicine College, School of Clinical Medicine, Fujian Medical University
| | - Liying Liu
- Nursing Department, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University
| |
Collapse
|
5
|
Zhou H, Lv X, Chen Y, Qin Z. TGFBR2 as a prognostic marker and therapeutic target in benzo(a)pyrene-associated esophageal cancer: insights from multi-omics analysis. Toxicol Mech Methods 2025:1-14. [PMID: 40293202 DOI: 10.1080/15376516.2025.2495930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 04/13/2025] [Accepted: 04/15/2025] [Indexed: 04/30/2025]
Abstract
BACKGROUND Benzo(a)pyrene (BaP) is an environmental pollutant linked to several cancers, including esophageal cancer (ESCA). Understanding its impact on gene expression and associated molecular pathways in ESCA is crucial for developing targeted therapies. METHODS Using the TCGA-ESCA dataset, we identified differentially expressed genes (DEGs) related to BaP exposure. Enrichment analyses and protein-protein interaction (PPI) network construction were performed to explore the biological significance of these DEGs. Molecular docking studies assessed the interactions between BaP and core subnetwork genes. Survival analysis and immune cell infiltration analysis were conducted to evaluate the prognostic value of TGFBR2. Chemotherapy drug sensitivity was analyzed based on TGFBR2 expression levels. RESULTS We identified 5757 DEGs in ESCA, with 33 genes linked to both BaP exposure and ESCA. Enrichment analyses revealed significant pathways, including p53 signaling and apoptosis. Key genes (ACTB, CDKN2A, TGFBR2) were verified for their differential expression. Molecular docking demonstrated strong BaP binding to several core proteins. High TGFBR2 expression correlated with better survival, enhanced immune infiltration, and altered sensitivity to chemotherapeutic agents. CONCLUSION Our study highlights the molecular mechanisms by which BaP influences ESCA, with TGFBR2 emerging as a potential prognostic marker and therapeutic target. These insights pave the way for personalized treatments in BaP-induced esophageal carcinogenesis.
Collapse
Affiliation(s)
- Hongying Zhou
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiaochun Lv
- Intensive Care Unit, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Yun Chen
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zhiquan Qin
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Zhang H, Liu C, Wang S, Wang Q, Feng X, Jiang H, Xiao L, Luo C, Zhang L, Hou F, Zhou M, Deng Z, Li H, Zhang Y, Su X, Li G. Proteogenomic analysis of air-pollution-associated lung cancer reveals prevention and therapeutic opportunities. eLife 2024; 13:RP95453. [PMID: 39432560 PMCID: PMC11493407 DOI: 10.7554/elife.95453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024] Open
Abstract
Air pollution significantly impacts lung cancer progression, but there is a lack of a comprehensive molecular characterization of clinical samples associated with air pollution. Here, we performed a proteogenomic analysis of lung adenocarcinoma (LUAD) in 169 female never-smokers from the Xuanwei area (XWLC cohort), where coal smoke is the primary contributor to the high lung cancer incidence. Genomic mutation analysis revealed XWLC as a distinct subtype of LUAD separate from cases associated with smoking or endogenous factors. Mutational signature analysis suggested that Benzo[a]pyrene (BaP) is the major risk factor in XWLC. The BaP-induced mutation hotspot, EGFR-G719X, was present in 20% of XWLC which endowed XWLC with elevated MAPK pathway activations and worse outcomes compared to common EGFR mutations. Multi-omics clustering of XWLC identified four clinically relevant subtypes. These subgroups exhibited distinct features in biological processes, genetic alterations, metabolism demands, immune landscape, and radiomic features. Finally, MAD1 and TPRN were identified as novel potential therapeutic targets in XWLC. Our study provides a valuable resource for researchers and clinicians to explore prevention and treatment strategies for air-pollution-associated lung cancers.
Collapse
Affiliation(s)
- Honglei Zhang
- Center for Scientific Research, Yunnan University of Chinese MedicineKunmingChina
| | - Chao Liu
- Department of Nuclear Medicine, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer HospitalKunmingChina
| | - Shuting Wang
- Department of Thoracic Surgery II, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer HospitalKunmingChina
| | - Qing Wang
- Department of Oncology, Qujing First People’s HospitalKumingChina
| | - Xu Feng
- Center for Scientific Research, Yunnan University of Chinese MedicineKunmingChina
| | - Huawei Jiang
- Department of Ophthalmology, Second People's Hospital of Yunnan ProvinceKunmingChina
| | - Li Xiao
- Department of Oncology, Qujing First People’s HospitalKumingChina
| | - Chao Luo
- Department of Thoracic Surgery II, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer HospitalKunmingChina
| | - Lu Zhang
- Department of Nuclear Medicine, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer HospitalKunmingChina
| | - Fei Hou
- Department of Nuclear Medicine, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer HospitalKunmingChina
| | - Minjun Zhou
- Department of Family Medicine, Community Health Service CenterKunmingChina
| | - Zhiyong Deng
- Department of Nuclear Medicine, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer HospitalKunmingChina
| | - Heng Li
- Department of Thoracic Surgery II, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer HospitalKunmingChina
| | - Yong Zhang
- Department of Nephrology, Institutes for Systems Genetics, Frontiers Science Center for Disease Related Molecular Network, West China Hospital, Sichuan UniversityChengduChina
| | - Xiaosan Su
- Center for Scientific Research, Yunnan University of Chinese MedicineKunmingChina
| | - Gaofeng Li
- Department of Thoracic Surgery II, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer HospitalKunmingChina
| |
Collapse
|
7
|
Malešević A, Tucović D, Kulaš J, Mirkov I, Popović D, Čakić Milošević M, Popov Aleksandrov A. Impact of Skin Exposure to Benzo[a]pyrene in Rat Model: Insights into Epidermal Cell Function and Draining Lymph Node Cell Response. Int J Mol Sci 2024; 25:8631. [PMID: 39201318 PMCID: PMC11354278 DOI: 10.3390/ijms25168631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
The skin is a direct target of the air pollutant benzo[a]pyrene (BaP). While its carcinogenic qualities are well-studied, the immunotoxicity of BaP after dermal exposure is less understood. This study examines the immunomodulatory effects of a 10-day epicutaneous BaP application, in environmentally/occupationally relevant doses, by analyzing ex vivo skin immune response (skin explant, epidermal cells and draining lymph node/DLN cell activity), alongside the skin's reaction to sensitization with experimental hapten dinitrochlorobenzene (DNCB). The results show that BaP application disrupts the structure of the epidermal layer and promotes immune cell infiltration in the dermis. BaP exposure led to oxidative stress in epidermal cells, characterized by decreased reduced glutathione and increased AHR and Cyp1A1 expression. Production and gene expression of proinflammatory cytokines (TNF, IL-1β) by epidermal cells decreased, while IL-10 response increased. Decreased spontaneous production of IFN-γ and IL-17, along with unchanged IL-10, was observed in DLC cells, whereas ConA-stimulated production of these cytokines was elevated. Local immunosuppression caused by BaP application seems to reduce the skin's response to an additional stimulus, evidenced by decreased effector activity of DLN cells three days after sensitization with DNCB. These findings provide new insight into the immunomodulatory effects and health risks associated with skin exposure to BaP.
Collapse
Affiliation(s)
- Anastasija Malešević
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 142 Bulevar Despota Stefana, 11000 Belgrade, Serbia; (A.M.); (D.T.); (J.K.); (I.M.); (D.P.)
| | - Dina Tucović
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 142 Bulevar Despota Stefana, 11000 Belgrade, Serbia; (A.M.); (D.T.); (J.K.); (I.M.); (D.P.)
| | - Jelena Kulaš
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 142 Bulevar Despota Stefana, 11000 Belgrade, Serbia; (A.M.); (D.T.); (J.K.); (I.M.); (D.P.)
| | - Ivana Mirkov
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 142 Bulevar Despota Stefana, 11000 Belgrade, Serbia; (A.M.); (D.T.); (J.K.); (I.M.); (D.P.)
| | - Dušanka Popović
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 142 Bulevar Despota Stefana, 11000 Belgrade, Serbia; (A.M.); (D.T.); (J.K.); (I.M.); (D.P.)
| | - Maja Čakić Milošević
- Institute of Zoology, Faculty of Biology, University of Belgrade, 16 Studentski trg, 11000 Belgrade, Serbia;
| | - Aleksandra Popov Aleksandrov
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 142 Bulevar Despota Stefana, 11000 Belgrade, Serbia; (A.M.); (D.T.); (J.K.); (I.M.); (D.P.)
| |
Collapse
|
8
|
Möller C, Virzi J, Chang YJ, Keidel A, Chao MR, Hu CW, Cooke MS. DNA modifications: Biomarkers for the exposome? ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 108:104449. [PMID: 38636743 DOI: 10.1016/j.etap.2024.104449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/25/2024] [Accepted: 04/12/2024] [Indexed: 04/20/2024]
Abstract
The concept of the exposome is the encompassing of all the environmental exposures, both exogenous and endogenous, across the life course. Many, if not all, of these exposures can result in the generation of reactive species, and/or the modulation of cellular processes, that can lead to a breadth of modifications of DNA, the nature of which may be used to infer their origin. Because of their role in cell function, such modifications have been associated with various major human diseases, including cancer, and so their assessment is crucial. Historically, most methods have been able to only measure one or a few DNA modifications at a time, limiting the information available. With the development of DNA adductomics, which aims to determine the totality of DNA modifications, a far more comprehensive picture of the DNA adduct burden can be gained. Importantly, DNA adductomics can facilitate a "top-down" investigative approach whereby patterns of adducts may be used to trace and identify the originating exposure source. This, together with other 'omic approaches, represents a major tool for unraveling the complexities of the exposome and hence allow a better a understanding of the environmental origins of disease.
Collapse
Affiliation(s)
- Carolina Möller
- Oxidative Stress Group, Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA.
| | - Jazmine Virzi
- Oxidative Stress Group, Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA
| | - Yuan-Jhe Chang
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan
| | - Alexandra Keidel
- Oxidative Stress Group, Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA
| | - Mu-Rong Chao
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan; Department of Occupational Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Chiung-Wen Hu
- Department of Public Health, Chung Shan Medical University, Taichung 402, Taiwan
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA; College of Public Health, University of South Florida, Tampa, FL 33620, USA; Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
| |
Collapse
|
9
|
Jin H, Zhao C, Chen Y, Zhang Y, Yong Z, Lei Y, Li Q, Yao X, Zhao M, Lu Q. Environmental exposure to polycyclic aromatic hydrocarbons: An underestimated risk factor for systemic lupus erythematosus onset and progression. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171841. [PMID: 38513863 DOI: 10.1016/j.scitotenv.2024.171841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
OBJECTIVE To investigate the link between systemic lupus erythematosus (SLE) incidence and exposure to environmental polycyclic aromatic hydrocarbons (PAH). METHODS A case-control study (ChiCTR2000038187) involving 316 SLE patients and 851 healthy controls (HCs) was executed. Environmental exposure was assessed via a questionnaire, stratified by gender and age (females <35 and ≥35 years, males). Blood samples collected from 89 HCs, 85 inactive, and 95 active SLE patients were used to measure serum benzo[a]pyrene diol epoxide -albumin (BPDE-Alb) adducts and PAH concentrations, indicating long-term and short-term exposure respectively. Intergroup comparisons and statistical analyses were conducted using R version 4.3.1. RESULTS Diverse patterns were found in how environmental factors affect SLE onset across different demographics. Lifestyle exposure factors were found to be a stronger determinant of SLE onset than occupational exposure factors in women under 35. Indoor air pollution had a significant impact on SLE incidence, potentially comparable to outdoor air pollution. Lifestyle-related PAH exposure had a greater impact on SLE than occupational PAH exposure. PAH exposure levels progressively increase from HCs to inactive and active SLE patients. Active SLE patients show markedly higher BPDE-Alb levels than HCs. CONCLUSIONS Environmental PAH, particularly lifestyle-related, are significant, yet under-recognized, risk factors for SLE. STATEMENT OF ENVIRONMENTAL IMPLICATION We examined the relationship between exposure to environmental polycyclic aromatic hydrocarbons (PAH) and the incidence of systemic lupus erythematosus (SLE). PAH, prevalent in sources such as cigarette smoke, air pollution, and charred food, pose significant health hazards. This study is the first to investigate specific PAH exposure levels in SLE patients. We determined actual PAH exposure levels in both SLE patients and healthy individuals and indicated that long-term PAH exposure biomarker is more reliable for evaluating exposure in non-occupationally exposed groups like SLE, compared to short-term markers. These findings provide valuable insights for future research on similar non-occupationally exposed populations.
Collapse
Affiliation(s)
- Hui Jin
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China; Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Cheng Zhao
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China; Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yiran Chen
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China
| | - Ying Zhang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China; Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zeng Yong
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China; Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yu Lei
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China; Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qilin Li
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China; Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xu Yao
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China.
| | - Ming Zhao
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China.
| | - Qianjin Lu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China.
| |
Collapse
|
10
|
Lv Z, Fan H, Gao M, Zhang X, Li G, Fan Y, Ning Z, Guo Y. The accessible chromatin landscape of lipopolysaccharide-induced systemic inflammatory response identifying epigenome signatures and transcription regulatory networks in chickens. Int J Biol Macromol 2024; 266:131136. [PMID: 38547952 DOI: 10.1016/j.ijbiomac.2024.131136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/11/2024] [Accepted: 03/23/2024] [Indexed: 04/01/2024]
Abstract
Lipopolysaccharide (LPS) can induce systemic inflammatory response (SIR) in animals. Understanding the regulatory mechanism of SIR and therapies to ensure healthy growth is urgently needed. Chromatin remodeling plays a crucial role in the expression of genes involved in immune diseases. In the present study, the ATAC-seq analysis revealed 3491 differential open chromatin sites in the spleen of chicks with SIR induced by LPS challenge, and we presented the motifs on these sites and the associated transcription factors. The regulatory network was presented by combining the differential open chromatin data with the mRNAs and exploded cytokines. Interestingly, the LPS challenge could regulate the mRNA expression of 202 genes through chromatin reprogramming, including critical genes such as TLE1 and JUN, which regulate signaling pathways such as I-κB kinase/NF-κB, Toll-like receptor, and downstream cytokine genes. Furthermore, dietary daidzein could inhibit DNA topoisomerase II, which reprograms the spatial conformation of chromatin in the inflammatory response and attenuates SIR. In conclusion, we successfully identified key genes directly regulated by chromatin reprogramming in SIR and demonstrated the chromatin epigenome signatures and transcriptional regulatory network, which provides an important reference for further research on avian epigenetics. There is great potential for alleviating SIR using dietary daidzein.
Collapse
Affiliation(s)
- Zengpeng Lv
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China.
| | - Hao Fan
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China; Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Mingkun Gao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Xiaodan Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Guang Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Yuyang Fan
- Xi'an Jiaotong-Liverpool University, Suzhou 215123, PR China
| | - Zhonghua Ning
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
11
|
Dadgar N, Sherry C, Zimmerman J, Park H, Lewis C, Donnenberg A, Zaidi AH, Fan Y, Xiao K, Bartlett D, Donnenberg V, Wagner PL. Targeting interleukin-6 as a treatment approach for peritoneal carcinomatosis. J Transl Med 2024; 22:402. [PMID: 38689325 PMCID: PMC11061933 DOI: 10.1186/s12967-024-05205-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
Peritoneal carcinomatosis (PC) is a complex manifestation of abdominal cancers, with a poor prognosis and limited treatment options. Recent work identifying high concentrations of the cytokine interleukin-6 (IL-6) and its soluble receptor (sIL-6-Rα) in the peritoneal cavity of patients with PC has highlighted this pathway as an emerging potential therapeutic target. This review article provides a comprehensive overview of the current understanding of the potential role of IL-6 in the development and progression of PC. We discuss mechansims by which the IL-6 pathway may contribute to peritoneal tumor dissemination, mesothelial adhesion and invasion, stromal invasion and proliferation, and immune response modulation. Finally, we review the prospects for targeting the IL-6 pathway in the treatment of PC, focusing on common sites of origin, including ovarian, gastric, pancreatic, colorectal and appendiceal cancer, and mesothelioma.
Collapse
Affiliation(s)
- Neda Dadgar
- Translational Hematology & Oncology Research, Enterprise Cancer Institute, Cleveland Clinic, Cleveland, OH, 44106, USA
| | - Christopher Sherry
- Allegheny Health Network Cancer Institute, 314 E. North Ave, Pittsburgh, PA, 15212, USA
| | - Jenna Zimmerman
- Allegheny Health Network Cancer Institute, 314 E. North Ave, Pittsburgh, PA, 15212, USA
| | - Hyun Park
- Allegheny Health Network Cancer Institute, 314 E. North Ave, Pittsburgh, PA, 15212, USA
| | - Catherine Lewis
- Allegheny Health Network Cancer Institute, 314 E. North Ave, Pittsburgh, PA, 15212, USA
| | - Albert Donnenberg
- Allegheny Health Network Cancer Institute, 314 E. North Ave, Pittsburgh, PA, 15212, USA
| | - Ali H Zaidi
- Allegheny Health Network Cancer Institute, 314 E. North Ave, Pittsburgh, PA, 15212, USA
| | - Yong Fan
- Allegheny Health Network Cancer Institute, 314 E. North Ave, Pittsburgh, PA, 15212, USA
| | - Kunhong Xiao
- Center for Proteomics & Artificial Intelligence, Center for Clinical Mass Spectrometry, Allegheny Health Network Cancer Institute, Pittsburgh, PA, 15224, USA
| | - David Bartlett
- Allegheny Health Network Cancer Institute, 314 E. North Ave, Pittsburgh, PA, 15212, USA
| | - Vera Donnenberg
- University of Pittsburgh School of MedicineDepartment of Cardiothoracic SurgeryUPMC Hillman Cancer Center Wagner, Patrick; Allegheny Health Network Cancer Institute, Pittsburgh, USA
| | - Patrick L Wagner
- Allegheny Health Network Cancer Institute, 314 E. North Ave, Pittsburgh, PA, 15212, USA.
| |
Collapse
|
12
|
Hýžďalová M, Procházková J, Straková N, Pěnčíková K, Strapáčová S, Slováčková J, Kajabová S, Líbalová H, Topinka J, Kabátková M, Vondráček J, Mollerup S, Machala M. Transcriptional and phenotypical alterations associated with a gradual benzo[a]pyrene-induced transition of human bronchial epithelial cells into mesenchymal-like cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 107:104424. [PMID: 38522766 DOI: 10.1016/j.etap.2024.104424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 03/20/2024] [Indexed: 03/26/2024]
Abstract
The role of benzo[a]pyrene (BaP), a prominent genotoxic carcinogen and aryl hydrocarbon receptor (AhR) ligand, in tumor progression remains poorly characterized. We investigated the impact of BaP on the process of epithelial-mesenchymal transition (EMT) in normal human bronchial epithelial HBEC-12KT cells. Early morphological changes after 2-week exposure were accompanied with induction of SERPINB2, IL1, CDKN1A/p21 (linked with cell cycle delay) and chemokine CXCL5. After 8-week exposure, induction of cell migration and EMT-related pattern of markers/regulators led to induction of further pro-inflammatory cytokines or non-canonical Wnt pathway ligand WNT5A. This trend of up-regulation of pro-inflammatory genes and non-canonical Wnt pathway constituents was observed also in the BaP-transformed HBEC-12KT-B1 cells. In general, transcriptional effects of BaP differed from those of TGFβ1, a prototypical EMT inducer, or a model non-genotoxic AhR ligand, TCDD. Carcinogenic polycyclic aromatic hydrocarbons could thus induce a unique set of molecular changes linked with EMT and cancer progression.
Collapse
Affiliation(s)
- Martina Hýžďalová
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Hudcova 70, Brno 62100, Czech Republic
| | - Jiřina Procházková
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Hudcova 70, Brno 62100, Czech Republic; Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, Brno 61200, Czech Republic
| | - Nicol Straková
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Hudcova 70, Brno 62100, Czech Republic
| | - Kateřina Pěnčíková
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Hudcova 70, Brno 62100, Czech Republic
| | - Simona Strapáčová
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Hudcova 70, Brno 62100, Czech Republic
| | - Jana Slováčková
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Hudcova 70, Brno 62100, Czech Republic; Department of Histology and Embryology, Masaryk University, Kamenice 3, Brno 62500, Czech Republic
| | - Simona Kajabová
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Hudcova 70, Brno 62100, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Helena Líbalová
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, Prague 142 20, Czech Republic
| | - Jan Topinka
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, Prague 142 20, Czech Republic
| | - Markéta Kabátková
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, Brno 61200, Czech Republic
| | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, Brno 61200, Czech Republic
| | - Steen Mollerup
- Research Group for Occupational Toxicology, The National Institute of Occupational Health in Norway, Oslo 0304, Norway
| | - Miroslav Machala
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Hudcova 70, Brno 62100, Czech Republic.
| |
Collapse
|
13
|
Chen S, Zhang Z, Peng H, Jiang S, Xu C, Ma X, Zhang L, Zhou H, Xing X, Chen L, Wang Q, Chen W, Li D. Histone H3K36me3 mediates the genomic instability of Benzo[a]pyrene in human bronchial epithelial cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123564. [PMID: 38367693 DOI: 10.1016/j.envpol.2024.123564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/13/2023] [Accepted: 02/11/2024] [Indexed: 02/19/2024]
Abstract
Histone modifications maintain genomic stability and orchestrate gene expression at the chromatin level. Benzo [a]pyrene (BaP) is the ubiquitous carcinogen widely spread in the environment, but the role and regulatory mechanism of histone modification in its toxic effects remain largely undefined. In this study, we found a dose-dependent reduction of histone H3 methylations at lysine4, lysine9, lysine27, lysine36 in HBE cells treated with BaP. We observed that inhibiting H3K27 and H3K36 methylation impaired cell proliferation, whereas the loss of H3K4, H3K9, H3K27, and H3K36 methylation led to increased genomic instability and delayed DNA repair. H3K36 mutation at both H3.1 and H3.3 exhibited the most significant impacts. In addition, we found that the expression of SET domain containing 2 (SETD2), the unique methyltransferase catalyzed H3K36me3, was downregulated by BaP dose-dependently in vitro and in vivo. Knockdown of SETD2 aggravated DNA damage of BaP exposure, which was consistent with the effects of H3K36 mutation. With the aid of chromatin immunoprecipitation (ChIP) -seq and RNA-seq, we found that H3K36me3 was responsible for transcriptional regulation of genes involved in pathways related to cell survival, lung cancer, metabolism and inflammation. The enhanced enrichment of H3K36me3 in genes (CYP1A1, ALDH1A3, ACOXL, WNT5A, WNT7A, RUNX2, IL1R2) was positively correlated with their expression levels, while the reduction of H3K36me3 distribution in genes (PPARGC1A, PDE4D, GAS1, RNF19A, KSR1) were in accordance with the downregulation of gene expression. Taken together, our findings emphasize the critical roles and mechanisms of histone lysine methylation in mediating cellular homeostasis during BaP exposure.
Collapse
Affiliation(s)
- Shen Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhengbao Zhang
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Department of Toxicology, School of Public Health, Guilin Medical University, Guilin, 541199, Guangxi, China
| | - Honghao Peng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shuyun Jiang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Chi Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xingyu Ma
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Liying Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hao Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiumei Xing
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Liping Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qing Wang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wen Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Daochuan Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
14
|
Ellwanger JH, Chies JAB. Toxicogenomics of the C-C chemokine receptor type 5 (CCR5): Exploring the potential impacts of chemical-CCR5 interactions on inflammation and human health. Food Chem Toxicol 2024; 186:114511. [PMID: 38360389 DOI: 10.1016/j.fct.2024.114511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
This article explores the impact of environmental chemicals on CCR5 expression and related inflammatory responses based on curated data from the Comparative Toxicogenomics Database (CTD). A total of 143 CCR5-interacting chemicals was found, with 229 chemical interactions. Of note, 67 (29.3%) out of 229 interactions resulted in "increased expression" of CCR5 mRNA or CCR5 protein, and 42 (18.3%) chemical interactions resulted in "decreased expression". The top-5 CCR5-interacting chemicals were "Tetrachlorodibenzodioxin", "Lipopolysaccharides", "Benzo(a)pyrene", "Drugs, Chinese Herbal", and "Ethinyl Estradiol". Based on the number of interactions and importance as environmental contaminant, we then focused our analysis on Tetrachlorodibenzodioxin and Benzo(a)pyrene. There is some consistency in the data supporting an increase in CCR5 expression triggered by Tetrachlorodibenzodioxin; although data concerning CCR5-Benzo(a)pyrene interactions is limited. Considering the high linkage disequilibrium between CCR5 and CCR2 genes, we also search for chemicals that interact with both genes, which resulted in 72 interacting chemicals, representing 50.3% of the 143 CCR5-interacting chemicals and 37.5% of the 192 CCR2-interacting chemicals. In conclusion, CTD data showed that environmental contaminants indeed affect CCR5 expression, with a tendency towards increased expression. The interaction of environmental contaminants with other chemokine receptor genes may potentialize their toxic effects on the chemokine system, favoring inflammation.
Collapse
Affiliation(s)
- Joel Henrique Ellwanger
- Laboratory of Immunobiology and Immunogenetics, Postgraduate Program in Genetics and Molecular Biology (PPGBM), Department of Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, 91501-970, Brazil.
| | - José Artur Bogo Chies
- Laboratory of Immunobiology and Immunogenetics, Postgraduate Program in Genetics and Molecular Biology (PPGBM), Department of Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, 91501-970, Brazil
| |
Collapse
|
15
|
Ni Z, Ma H, Li X, Zou L, Liu Z, Wang X, Ma H, Yang L. Wogonin alleviates BaP-induced DNA damage and oxidative stress in human airway epithelial cells by dual inhibiting CYP1A1 activity and expression. ENVIRONMENTAL TOXICOLOGY 2023; 38:2717-2729. [PMID: 37515497 DOI: 10.1002/tox.23907] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/09/2023] [Accepted: 07/09/2023] [Indexed: 07/31/2023]
Abstract
Benzo[a]pyrene (BaP) is a common air pollutant that has been reported to cause oxidative stress and carcinogenesis. Wogonin, a flavonoid compound extracted from the roots of Scutellaria baicalensis, has been found to possess a variety of pharmacological activities, including anti-inflammatory and anti-cancer effects. The purpose of this study was to examine the ability of wogonin to alleviate the cytotoxicity induced by BaP in human airway epithelial cells and explore the corresponding mechanism. Our study found that wogonin treatment inhibited DNA damage and reactive oxygen species overproduction induced by BaP in human airway epithelial cells. In vitro enzyme assays showed that wogonin significantly inhibited the enzymatic activity of CYP1A1. In addition, wogonin decreased the basal level of CYP1A1 and inhibited the CYP1A1 overexpression induced by BaP, whereas overexpression of CYP1A1 partially reversed the effect of wogonin on BaP-induced DNA damage. Meanwhile, a CYP1A1 inhibitor and CYP1A1 knockdown also showed these same effects. Further studies showed that wogonin regulates CYP1A1 expression by inhibiting CDK7 and CDK9 activity. The use of CDK7 or CDK9 inhibitors decreased BaP-induced cytotoxicity and CYP1A1 expression. Finally, we found that the methoxy group of wogonin was crucial for its inhibitory activity. In conclusion, our data indicated that wogonin could effectively relieve BaP induced cytotoxicity, and its mechanism was related to the dual inhibition of CYP1A1 activity and expression.
Collapse
Affiliation(s)
- Zhenhua Ni
- Center for Systems Pharmacokinetics, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Honghong Ma
- Center for Systems Pharmacokinetics, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaodong Li
- Center for Systems Pharmacokinetics, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liwei Zou
- Center for Systems Pharmacokinetics, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zongjun Liu
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiongbiao Wang
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hong Ma
- Shanghai Institute of Acupuncture and Meridian, Shanghai, China
| | - Ling Yang
- Center for Systems Pharmacokinetics, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| |
Collapse
|
16
|
Högberg J, Järnberg J. Approaches for the setting of occupational exposure limits (OELs) for carcinogens. Crit Rev Toxicol 2023:1-37. [PMID: 37366107 DOI: 10.1080/10408444.2023.2218887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/12/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023]
Abstract
This article addresses issues of importance for occupational exposure limits (OELs) and chemical carcinogens with a focus on non-threshold carcinogens. It comprises scientific as well as regulatory issues. It is an overview, not a comprehensive review. A central topic is mechanistic research and insights, and its implications for cancer risk assessment. Alongside scientific advancements, the approaches of hazard identification and qualitative and quantitative risk assessment have developed over the years. The key steps in a quantitative risk assessment are outlined, with special attention given to the dose-response assessment and the derivation of an OEL using risk calculations or default assessment factors. The work procedures of several bodies performing cancer hazard identifications and quantitative risk assessments, as well as regulatory procedures to derive OELs for non-threshold carcinogens, are presented. Non-threshold carcinogens for which the European Union (EU) introduced binding OELs in 2017-2019 serve as illustrations together with some currently used strategies in the EU and elsewhere. Available knowledge supports the derivation of health-based OELs (Hb-OELs) for non-threshold carcinogens, and the use of a risk-based approach with low-dose linear extrapolation (linear non-threshold, LNT) as the default for non-threshold carcinogens. However, there is a need to develop methods that allow recent years' advances in cancer research to be used for improving risk estimates. It is recommended that defined risk levels (terminology and numerical values) are harmonised, and that both collective and individual risks are considered and clearly communicated. Socioeconomic aspects should be dealt with transparently and separated from the scientific health risk assessment.
Collapse
Affiliation(s)
- Johan Högberg
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
17
|
Wu J, Han Y, Lyu R, Zhang F, Jiang N, Tao H, You Q, Zhang R, Yuan M, Nawaz W, Chen D, Wu Z. FOLR1-induced folate deficiency reduces viral replication via modulating APOBEC3 family expression. Virol Sin 2023:S1995-820X(23)00028-7. [PMID: 37028598 DOI: 10.1016/j.virs.2023.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
Folate receptor alpha (FOLR1) is vital for cells ingesting folate (FA). FA plays an indispensable role in cell proliferation and survival. However, it is not clear whether the axis of FOLR1/FA has a similar function in viral replication. In this study, we used vesicular stomatitis virus (VSV) to investigate the relationship between FOLR1-mediated FA deficiency and viral replication, as well as the underlying mechanisms. We discovered that FOLR1 upregulation led to the deficiency of FA in HeLa cells and mice. Meanwhile, VSV replication was notably suppressed by FOLR1 overexpression, and this antiviral activity was related to FA deficiency. Mechanistically, FA deficiency mainly upregulated apolipoprotein B mRNA editing enzyme catalytic subunit 3B (APOBEC3B) expression, which suppressed VSV replication in vitro and in vivo. In addition, methotrexate (MTX), an FA metabolism inhibitor, effectively inhibited VSV replication by enhancing the expression of APOBEC3B in vitro and in vivo. Overall, our present study provided a new perspective for the role of FA metabolism in viral infections and highlights the potential of MTX as a broad-spectrum antiviral agent against RNA viruses.
Collapse
Affiliation(s)
- Jing Wu
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, 210093, China
| | - Yajing Han
- Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510535, China
| | - Ruining Lyu
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, 210093, China
| | - Fang Zhang
- Department of Burn and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563099, China
| | - Na Jiang
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, 210093, China
| | - Hongji Tao
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, 210093, China
| | - Qiao You
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, 210093, China
| | - Rui Zhang
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, 210093, China
| | - Meng Yuan
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, 210093, China
| | - Waqas Nawaz
- Hȏpital Maisonneuve-Rosemont, School of Medicine, University of Montreal, Quebec, 999040, Canada
| | - Deyan Chen
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, 210093, China.
| | - Zhiwei Wu
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, 210093, China; Medical School and Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China; State Key Lab of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
18
|
Zhang X, Leng S, Qiu M, Ding Y, Zhao L, Ma N, Sun Y, Zheng Z, Wang S, Li Y, Guo X. Chemical fingerprints and implicated cancer risks of Polycyclic aromatic hydrocarbons (PAHs) from fine particulate matter deposited in human lungs. ENVIRONMENT INTERNATIONAL 2023; 173:107845. [PMID: 36871324 DOI: 10.1016/j.envint.2023.107845] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/15/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Exposure to fine particles (PM2.5) and associated PAHs are frequently linked with lung cancer, which makes the understanding of their occurrence and health risk in human lungs urgently important. Using the ultrasonic treatment and sequencing centrifugation (USC) extraction method coupled with gas chromatography-tandem mass spectrometry (GC - MS/MS) analysis, we revealed the molecular fingerprints of PM-accumulated PAHs in human lungs from a cohort of 68 patients with lung cancer in a typical air-polluted region, China. Sixteen priority PAHs can be grouped by concentrations as ∼ 1 × 104 ng/g (ANT/BkF/ACE/DBA/BgP/PHN/PYR), 2-5 × 103 ng/g (BaP/FLE/NaP/BbF), and ∼ 1 × 103 ng/g (IND/Acy/CHR/FLT/BaA). The sum concentration of 16 PAHs was approximately equaled to 13% of those in atmospheric PM2.5, suggesting significant pulmonary leaching of PAHs deposited in lungs. Low- and high-molecular weight PAHs accounted for ∼ 41.8% and ∼ 45.1% of the total PAHs, respectively, which indicated that atmospheric PM2.5, tobacco and cooking smoke were likely to be important sources of pulmonary PAHs. The evident increasing concentrations of NaP and FLE in pulmonary PM were significantly correlated with smoking history among smokers. The implicated carcinogenic potency of PM-accumulated PAHs among the participants aged 70-80 was 17 times that among participants aged 40-50 on the basis of BaP equivalent concentration (BaPeq) evaluation. The particulate enrichment factor (EFP), the PAH content in pulmonary PM relative to the bulk lung tissue, was equaled to 54 ∼ 835 and averaged at 436. The high value of EFP suggested that PAHs were essentially accumulated in pulmonary PM and exhibited a pattern of "hotspot" distribution in the lungs, which would likely increase the risk of monoclonal tumorigenesis. The chemical characteristics of PM-accumulated PAHs in human lungs together with their implicated lung cancer risks could provide significant information for understanding health effects of particulate pollution in the human body.
Collapse
Affiliation(s)
- Xiangyuan Zhang
- State Key Laboratory of Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China
| | - Siwen Leng
- State Key Laboratory of Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China
| | - Mantang Qiu
- Department of Thoracic Surgery, Peking University People's Hospital, 11 Xizhimen South Street, Beijing 100044, China; Thoracic Oncology Institute, Peking University People's Hospital, Beijing 100044, China
| | - Yifan Ding
- State Key Laboratory of Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China
| | - Lin Zhao
- State Key Laboratory of Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China
| | - Na Ma
- State Key Laboratory of Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China
| | - Yue Sun
- State Key Laboratory of Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China
| | - Zijie Zheng
- State Key Laboratory of Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China
| | - Shaodong Wang
- Department of Thoracic Surgery, Peking University People's Hospital, 11 Xizhimen South Street, Beijing 100044, China; Thoracic Oncology Institute, Peking University People's Hospital, Beijing 100044, China.
| | - Yun Li
- Department of Thoracic Surgery, Peking University People's Hospital, 11 Xizhimen South Street, Beijing 100044, China; Thoracic Oncology Institute, Peking University People's Hospital, Beijing 100044, China
| | - Xuejun Guo
- State Key Laboratory of Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China.
| |
Collapse
|
19
|
Zhang L, Louie A, Rigutto G, Guo H, Zhao Y, Ahn S, Dahlberg S, Sholinbeck M, Smith MT. A systematic evidence map of chronic inflammation and immunosuppression related to per- and polyfluoroalkyl substance (PFAS) exposure. ENVIRONMENTAL RESEARCH 2023; 220:115188. [PMID: 36592815 PMCID: PMC10044447 DOI: 10.1016/j.envres.2022.115188] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 06/01/2023]
Abstract
BACKGROUND The ability to induce chronic inflammation and immunosuppression are two key characteristics of carcinogens and important forms of immunotoxicity. The National Toxicology Program (NTP) evaluated the immunotoxicity of two per- and polyfluoroalkyl substances (PFASs), PFOA (perfluorooctanoic acid) and PFOS (perfluorooctane sulfonate), in 2016. However, the potential pro-inflammatory and immunosuppressive effects of other PFASs remain largely uncharacterized. METHODS We developed an expanded set of search terms pertaining to the chronic inflammatory and immunosuppressive effects of PFASs based on those of the International Agency for Research on Cancer (IARC) and NTP. To confirm searching effectiveness and scope, we compared our search term results with those of IARC and NTP for both PFASs and two other known carcinogens, chromium (VI) and benzene. Systematic evidence maps (SEMs) were also produced using Tableau to visualize the distribution of study numbers and types reporting immunotoxic effects and specific biomarkers elicited by PFAS exposures. RESULTS In total, 1155 PFAS studies were retrieved, of which 321 qualified for inclusion in our dataset. Using our search terms, we identified a greater number of relevant studies than those obtained using IARC and NTP's search terms. From the SEM findings, increased cytokine production strengthened an association between PFAS exposure and chronic inflammation, and decreased B-cell activation and altered levels of T-cell subtypes and immunoglobulins confirmed PFAS-induced immunosuppression. CONCLUSION Our SEM findings confirm that several PFASs commonly found in both in the environment, including those that are lesser-known, may induce immunosuppression and chronic inflammation, two key characteristics of carcinogens. This approach, including development of search terms, study screening process, data coding, and evidence mapping visualizations, can be applied to other key characteristics of chemical carcinogens.
Collapse
Affiliation(s)
- Luoping Zhang
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, 94720, USA.
| | - Allen Louie
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, 94720, USA; Molecular Toxicology Interdepartmental Program, Fielding School of Public Health, University of California, Los Angeles, CA, 90095, USA
| | - Gabrielle Rigutto
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, 94720, USA
| | - Helen Guo
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, 94720, USA
| | - Yun Zhao
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, 94720, USA
| | - Stacy Ahn
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, 94720, USA
| | - Sarah Dahlberg
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, 94720, USA
| | - Michael Sholinbeck
- Bioscience, Natural Resources & Public Health Library, University of California, Berkeley, CA, 94720, USA
| | - Martyn T Smith
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|
20
|
Dai M, Huang W, Huang X, Ma C, Wang R, Tian P, Chen W, Zhang Y, Mi C, Zhang H. BPDE, the Migration and Invasion of Human Trophoblast Cells, and Occurrence of Miscarriage in Humans: Roles of a Novel lncRNA-HZ09. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:17009. [PMID: 36719213 PMCID: PMC9888265 DOI: 10.1289/ehp10477] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
BACKGROUND Recurrent miscarriage (RM) affects 1%-3% of pregnancies. However, in almost 50% of cases, the cause is unknown. Increasing evidence have shown that benzo(a)pyrene [B(a)P], a representative of polycyclic aromatic hydrocarbons (PAHs), is correlated with miscarriage. However, the underlying mechanisms of B(a)P/benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE)-induced trophoblast cell dysfunctions and miscarriage remain largely unknown. OBJECTIVE The objective was to discover the role(s) of a novel lncRNA, lnc-HZ09, in the regulation of BPDE-inhibited migration and invasion of trophoblast cells and the occurrence of miscarriage. METHOD Human trophoblast cells were treated with 0, 0.25, 0.5, 1.0, or 1.5μM BPDE with or without corresponding lnc-HZ09 silencing or overexpression. Using these cells, we evaluated cell migration and invasion, the mRNA and protein levels of members of the PLD1/RAC1/CDC42 pathway, the regulatory roles of lnc-HZ09 in PLD1 transcription and mRNA stability, and lnc-HZ09 transcription and stability. Human villous tissues were collected from RM (n=15) group and their matched healthy control (HC, n=15) group. We evaluated the levels of BPDE-DNA adducts, lnc-HZ09, and the mRNA and protein expression of members of the PLD1/RAC1/CDC42 pathway, and correlated their relative expression levels. We further constructed 0, 0.05 or 0.2mg/kg B(a)P-induced mouse miscarriage model (each n=6), in which the mRNA and protein expression of members of the Pld1/Rac1/Cdc42 pathway were measured. RESULTS We identified a novel lnc-HZ09. Human trophoblast cells treated with lnc-HZ09 exhibited less cell migration and invasion. In addition, the levels of this lncRNA were higher in villous tissues from women with recurrent miscarriage than those from healthy individuals. SP1-mediated PLD1 mRNA levels were lower, and HuR-mediated PLD1 mRNA stability was less in trophoblast cells overexpressing lnc-HZ09. However, trophoblast cells treated with MSX1 had higher levels of lnc-HZ09, and METTL3-mediated m6A methylation on lnc-HZ09 resulted in greater lnc-HZ09 RNA stability. In BPDE-treated human trophoblast cells and in RM villous tissues, MSX1-mediated lnc-HZ09 transcription and METTL3-mediated lnc-HZ09 stability were both greater. In our mouse miscarriage model, B(a)P-treated mice had lower mRNA and protein levels of members of the Pld1/Rac1/Cdc42 pathway. DISCUSSION These results suggest that in human trophoblast cells, BPDE exposure up-regulated lnc-HZ09 level, suppressed PLD1/RAC1/CDC42 pathway, and inhibited migration and invasion, providing new insights in understanding the causes and mechanisms of unexplained miscarriage. https://doi.org/10.1289/EHP10477.
Collapse
MESH Headings
- Pregnancy
- Humans
- Female
- Mice
- Animals
- Trophoblasts
- 7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide/metabolism
- 7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide/pharmacology
- RNA, Long Noncoding/genetics
- Benzo(a)pyrene/metabolism
- Abortion, Habitual/genetics
- Abortion, Habitual/metabolism
- RNA, Messenger/metabolism
- Methyltransferases/metabolism
Collapse
Affiliation(s)
- Mengyuan Dai
- Research Center for Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- Department of Toxicology, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Wenxin Huang
- Research Center for Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- Department of Toxicology, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Xinying Huang
- Research Center for Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- Department of Toxicology, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Chenglong Ma
- Research Center for Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- Department of Toxicology, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Rong Wang
- Research Center for Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- Department of Toxicology, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Peng Tian
- Research Center for Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Weina Chen
- Research Center for Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Ying Zhang
- Research Center for Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Chenyang Mi
- Research Center for Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Huidong Zhang
- Research Center for Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
21
|
He H, Huang Y, Lu Y, Wang X, Ni H, Wu Y, Xia D, Ye D, Ding J, Mao Y, Teng Y. Effect of benzo[a]pyrene on proliferation and metastasis of oral squamous cell carcinoma cells: A transcriptome analysis based on RNA-seq. ENVIRONMENTAL TOXICOLOGY 2022; 37:2589-2604. [PMID: 35870112 DOI: 10.1002/tox.23621] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/02/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Benzo[a]pyrene (BaP), a representative polycyclic aromatic hydrocarbon compound, is a carcinogen that causes head and neck cancers. Despite intensive research, the molecular mechanism of BaP in the development of oral squamous cell carcinoma (OSCC) remains largely unknown. In the present study, the SCC-9 human OSCC cell line was cultured in vitro, separated into treatment groups, and treated with dimethyl sulfoxide or BaP at various concentrations. The malignant behavior ascribed to the BaP treatment was investigated by cell proliferation, clony formation assay, and Transwell assays. Furthermore, transcriptome sequencing was performed to detect the differentially expressed genes, followed by quantitative real-time PCR to measure the expression levels of nine of these genes. Moreover, the Gene Ontology (GO) term and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses showed the biological processes and signaling pathways in which the target genes were involved. Significant effects on SCC-9 cell proliferation, tumorigenicity, cell migration, and invasion were observed after exposure to 8 μM BaP. Additional results revealed that BaP inhibited apoptosis in a dose-dependent manner. The transcriptome sequencing results showed 137 upregulated genes and 135 downregulated genes induced by BaP, associated with tumor-related biological processes and signaling pathways, mainly including transcriptional dysregulation in cancer, the tumor necrosis factor signaling pathway, metabolism of xenobiotics by cytochrome P450, mitogen-activated protein kinase signaling pathway, and so forth. Our study demonstrates that BaP may regulate the expression of certain genes involved in tumor-associated signaling pathways, thereby promoting the proliferative, tumorigenic, and metastatic behaviors of OSCC cells while suppressing their apoptosis.
Collapse
Affiliation(s)
- Hanyi He
- Department of Otorhinolaryngology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yixing Huang
- Department of Otorhinolaryngology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yueyue Lu
- The Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinlu Wang
- The Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Haifeng Ni
- Department of Otorhinolaryngology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yihua Wu
- Department of Toxicology of School of Public Health, and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dajing Xia
- Department of Toxicology of School of Public Health, and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dong Ye
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo, China
| | - Jinwang Ding
- Department of Head and Neck Surgery, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, China
| | - Yanjiao Mao
- Department of Oncology Radiotherapy, Hangzhou Cancer Hospital, Affiliated Medical College of Zhejiang University, Hangzhou, China
| | - Yaoshu Teng
- Department of Otorhinolaryngology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- The Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
22
|
Varlı M, Pham HT, Kim SM, Taş İ, Gamage CDB, Zhou R, Pulat S, Park SY, Sesal NC, Hur JS, Kang KB, Kim H. An acetonic extract and secondary metabolites from the endolichenic fungus Nemania sp. EL006872 exhibit immune checkpoint inhibitory activity in lung cancer cell. Front Pharmacol 2022; 13:986946. [PMID: 36160406 PMCID: PMC9495263 DOI: 10.3389/fphar.2022.986946] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/08/2022] [Indexed: 11/18/2022] Open
Abstract
Background: Endolichenic fungi (ELF), which live the inside the lichen thallus, contain many secondary metabolites that show various biological activities. Recent studies show that lichen and ELF secondary metabolites have antioxidant, antibacterial, antifungal, cytotoxic, and anticancer activities. Purpose: Here, the effects of an ELF extract and its bioactive compounds were investigated on the H1975 cell line focusing on immune checkpoint marker inhibition. Methods: An ELF was isolated from the host lichen Bryoria fuscescens (Gyelnik) Brodo and D. Hawksw and identified the species as Nemania sp. EL006872. The fungus was cultured on agar medium and acetonic extracts were obtained. Secondary metabolites radianspenes C and D, and dahliane D, were isolated from the crude extract. The biological effects of both the crude extract and the isolated secondary metabolites were evaluated in cell viability, qRT-PCR assays, flow cytometry analysis and western blotting. Results: The cell viability assay revealed that extracts from Nemania sp. EL006872 and the isolated secondary compounds had low cytotoxicity. The crude extract, radianspenes C and D, and dahliane D, suppressed expression of mRNA encoding PD-L1 and aromatic hydrocarbon receptor (AhR), and surface expression of PD-L1 protein by cells exposed to benzo[a] pyrene. Radianspenes C and D, and dahliane D, reduced expression of AhR, PD-L1, ICOSL, and GITRL proteins by H1975 lung cancer cells, as well as exerting anti-proliferative effects. Conclusion: Radianspenes C and D, and dahliane D, bioactive compounds isolated from Nemania sp. EL006872 ELF, have the potential for use as immunotherapy and immunoncology treatments.
Collapse
Affiliation(s)
- Mücahit Varlı
- College of Pharmacy, Sunchon National University, Sunchon, South Korea
| | - Huong T. Pham
- College of Pharmacy, Sookmyung Women’s University, Seoul, South Korea
| | - Seong-Min Kim
- College of Pharmacy, Sunchon National University, Sunchon, South Korea
| | - İsa Taş
- College of Pharmacy, Sunchon National University, Sunchon, South Korea
| | | | - Rui Zhou
- College of Pharmacy, Sunchon National University, Sunchon, South Korea
| | - Sultan Pulat
- College of Pharmacy, Sunchon National University, Sunchon, South Korea
| | - So-Yeon Park
- College of Pharmacy, Sunchon National University, Sunchon, South Korea
| | - Nüzhet Cenk Sesal
- Faculty of Arts and Sciences, Department of Biology, Marmara University, Istanbul, Turkey
| | - Jae-Seoun Hur
- Korean Lichen Research Institute, Sunchon National University, Sunchon, South Korea
| | - Kyo Bin Kang
- College of Pharmacy, Sookmyung Women’s University, Seoul, South Korea
| | - Hangun Kim
- College of Pharmacy, Sunchon National University, Sunchon, South Korea
- *Correspondence: Hangun Kim,
| |
Collapse
|
23
|
Debon E, Rogeboz P, Latado H, Morlock GE, Meyer D, Cottet-Fontannaz C, Scholz G, Schilter B, Marin-Kuan M. Incorporation of Metabolic Activation in the HPTLC-SOS-Umu-C Bioassay to Detect Low Levels of Genotoxic Chemicals in Food Contact Materials. TOXICS 2022; 10:501. [PMID: 36136466 PMCID: PMC9500983 DOI: 10.3390/toxics10090501] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/11/2022] [Accepted: 08/24/2022] [Indexed: 06/16/2023]
Abstract
The safety evaluation of food contact materials requires excluding mutagenicity and genotoxicity in migrates. Testing the migrates using in vitro bioassays has been proposed to address this challenge. To be fit for that purpose, bioassays must be capable of detecting very low, safety relevant concentrations of DNA-damaging substances. There is currently no bioassay compatible with such qualifications. High-performance thin-layer chromatography (HPTLC), coupled with the planar SOS Umu-C (p-Umu-C) bioassay, was suggested as a promising rapid test (~6 h) to detect the presence of low levels of mutagens/genotoxins in complex mixtures. The current study aimed at incorporating metabolic activation in this assay and testing it with a set of standard mutagens (4-nitroquinoline-N-oxide, aflatoxin B1, mitomycin C, benzo(a)pyrene, N-ethyl nitrourea, 2-nitrofluorene, 7,12-dimethylbenzanthracene, 2-aminoanthracene and methyl methanesulfonate). An effective bioactivation protocol was developed. All tested mutagens could be detected at low concentrations (0.016 to 230 ng/band, according to substances). The calculated limits of biological detection were found to be up to 1400-fold lower than those obtained with the Ames assay. These limits are lower than the values calculated to ensure a negligeable carcinogenic risk of 10-5. They are all compatible with the threshold of toxicological concern for chemicals with alerts for mutagenicity (150 ng/person). They cannot be achieved by any other currently available test procedures. The p-Umu-C bioassay may become instrumental in the genotoxicity testing of complex mixtures such as food packaging, foods, and environmental samples.
Collapse
Affiliation(s)
- Emma Debon
- Food Safety Research Department, Société des Produits Nestlé SA—Nestlé Research, Vers-chez-les-Blanc, 1000 Lausanne, Switzerland
| | - Paul Rogeboz
- Food Safety Research Department, Société des Produits Nestlé SA—Nestlé Research, Vers-chez-les-Blanc, 1000 Lausanne, Switzerland
| | - Hélia Latado
- Food Safety Research Department, Société des Produits Nestlé SA—Nestlé Research, Vers-chez-les-Blanc, 1000 Lausanne, Switzerland
| | - Gertrud E. Morlock
- Institute of Nutritional Science, Chair of Food Science, and TransMIT Center of Effect-Directed Analysis, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Daniel Meyer
- Institute of Nutritional Science, Chair of Food Science, and TransMIT Center of Effect-Directed Analysis, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Claudine Cottet-Fontannaz
- Food Safety Research Department, Société des Produits Nestlé SA—Nestlé Research, Vers-chez-les-Blanc, 1000 Lausanne, Switzerland
| | - Gabriele Scholz
- Food Safety Research Department, Société des Produits Nestlé SA—Nestlé Research, Vers-chez-les-Blanc, 1000 Lausanne, Switzerland
| | - Benoît Schilter
- Food Safety Research Department, Société des Produits Nestlé SA—Nestlé Research, Vers-chez-les-Blanc, 1000 Lausanne, Switzerland
| | - Maricel Marin-Kuan
- Food Safety Research Department, Société des Produits Nestlé SA—Nestlé Research, Vers-chez-les-Blanc, 1000 Lausanne, Switzerland
| |
Collapse
|
24
|
Mechanistic Interrogation of Cell Transformation In Vitro: The Transformics Assay as an Exemplar of Oncotransformation. Int J Mol Sci 2022; 23:ijms23147603. [PMID: 35886950 PMCID: PMC9321586 DOI: 10.3390/ijms23147603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/21/2022] [Accepted: 07/03/2022] [Indexed: 12/19/2022] Open
Abstract
The Transformics Assay is an in vitro test which combines the BALB/c 3T3 Cell Transformation Assay (CTA) with microarray transcriptomics. It has been shown to improve upon the mechanistic understanding of the CTA, helping to identify mechanisms of action leading to chemical-induced transformation thanks to RNA extractions in specific time points along the process of in vitro transformation. In this study, the lowest transforming concentration of the carcinogenic benzo(a)pyrene (B(a)P) has been tested in order to find molecular signatures of initial events relevant for oncotransformation. Application of Enrichment Analysis (Metacore) to the analyses of the results facilitated key biological interpretations. After 72 h of exposure, as a consequence of the molecular initiating event of aryl hydrocarbon receptor (AhR) activation, there is a cascade of cellular events and microenvironment modification, and the immune and inflammatory responses are the main processes involved in cell response. Furthermore, pathways and processes related to cell cycle regulation, cytoskeletal adhesion and remodeling processes, cell differentiation and transformation were observed.
Collapse
|
25
|
Reactive Oxygen Species Bridge the Gap between Chronic Inflammation and Tumor Development. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2606928. [PMID: 35799889 PMCID: PMC9256443 DOI: 10.1155/2022/2606928] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/10/2022] [Indexed: 02/07/2023]
Abstract
According to numerous animal studies, adverse environmental stimuli, including physical, chemical, and biological factors, can cause low-grade chronic inflammation and subsequent tumor development. Human epidemiological evidence has confirmed the close relationship between chronic inflammation and tumorigenesis. However, the mechanisms driving the development of persistent inflammation toward tumorigenesis remain unclear. In this study, we assess the potential role of reactive oxygen species (ROS) and associated mechanisms in modulating inflammation-induced tumorigenesis. Recent reports have emphasized the cross-talk between oxidative stress and inflammation in many pathological processes. Exposure to carcinogenic environmental hazards may lead to oxidative damage, which further stimulates the infiltration of various types of inflammatory cells. In turn, increased cytokine and chemokine release from inflammatory cells promotes ROS production in chronic lesions, even in the absence of hazardous stimuli. Moreover, ROS not only cause DNA damage but also participate in cell proliferation, differentiation, and apoptosis by modulating several transcription factors and signaling pathways. We summarize how changes in the redox state can trigger the development of chronic inflammatory lesions into tumors. Generally, cancer cells require an appropriate inflammatory microenvironment to support their growth, spread, and metastasis, and ROS may provide the necessary catalyst for inflammation-driven cancer. In conclusion, ROS bridge the gap between chronic inflammation and tumor development; therefore, targeting ROS and inflammation represents a new avenue for the prevention and treatment of cancer.
Collapse
|
26
|
Scutellaria baicalensis and its constituents baicalin and baicalein as antidotes or protective agents against chemical toxicities: a comprehensive review. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:1297-1329. [PMID: 35676380 DOI: 10.1007/s00210-022-02258-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/21/2022] [Indexed: 10/18/2022]
Abstract
Scutellaria baicalensis (SB), also known as the Chinese skullcap, has a long history of being used in Chinese medicine to treat a variety of conditions ranging from microbial infections to metabolic syndrome and malignancies. Numerous studies have reported that treatment with total SB extract or two main flavonoids found in its root and leaves, baicalin (BA) and baicalein (BE), can prevent or alleviate the detrimental toxic effects of exposure to various chemical compounds. It has been shown that BA and BE are generally behind the protective effects of SB against toxicants. This paper aimed to review the protective and therapeutic effects of SB and its main components BA and BE against chemical compounds that can cause intoxication after acute or chronic exposure and seriously affect different vital organs including the brain, heart, liver, and kidneys. In this review paper, we had a look into a total of 221 in vitro and in vivo studies from 1995 to 2021 from the scientific databases PubMed, Scopus, and Web of Science which reported protective or therapeutic effects of BA, BE, or SB against drugs and chemicals that one might be exposed to on a professional or accidental basis and compounds that are primarily used to simulate disease models. In conclusion, the protective effects of SB and its flavonoids can be mainly attributed to increase in antioxidants enzymes, inhibition of lipid peroxidation, reduction of inflammatory cytokines, and suppression of apoptosis pathway.
Collapse
|
27
|
Holme JA, Valen H, Brinchmann BC, Vist GE, Grimsrud TK, Becher R, Holme AM, Øvrevik J, Alexander J. Polycyclic aromatic hydrocarbons (PAHs) may explain the paradoxical effects of cigarette use on preeclampsia (PE). Toxicology 2022; 473:153206. [PMID: 35550401 DOI: 10.1016/j.tox.2022.153206] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 11/21/2022]
Abstract
Tobacco smoking and use of snus (smokeless tobacco) are associated with adverse effects on pregnancy and neonatal outcomes. Nicotine is considered a key toxicant involved in effects caused by both smoking and snus, while pyrolysis products including polycyclic aromatic hydrocarbons (PAHs) in cigarette smoke represents the constituents most unequally divided between these two groups of tobacco products. The aim of this review was: i) to compare the impact, in terms of relative effect estimates, of cigarette smoking and use of Swedish snus on pregnancy outcomes using similar non-tobacco user controls, and ii) to examine whether exposure to PAHs from smoking could explain possible differences in impact on pregnancy outcomes. We systematically searched MEDLINE, Embase, PsycInfo, Web of Science and the Cochrane Database of Systematic Reviews up to October 2021 and identified studies reporting risks for adverse pregnancy and neonatal outcomes associated with snus use and with smoking relative to pregnant women with no use of tobacco. Both snus use and smoking were associated with increased risk of stillbirth, preterm birth, and oral cleft malformation, with comparable point estimates. These effects were likely due to comparable nicotine exposure. We also found striking differences. While both smoking and snus increased the risk of having small for gestational age (SGA) infants, risk from maternal smoking was markedly higher as was the reduction in birthweight. In contrast, the risk of preeclampsia (PE) was markedly lower in smokers than in controls, while snus use was associated with a slightly increased risk. We suggest that PAHs acting via AhR may explain the stronger effects of tobacco smoking on SGA and also to the apparent protective effect of cigarette smoking on PE. Possible mechanisms involved include: i) disrupted endocrine control of fetal development as well as placental development and function, and ii) stress adaption and immune suppression in placenta and mother.
Collapse
Affiliation(s)
- Jørn A Holme
- Division of Climate and Health, Norwegian Institute of Public Health, Oslo, Norway.
| | - Håkon Valen
- Division of Climate and Health, Norwegian Institute of Public Health, Oslo, Norway.
| | - Bendik C Brinchmann
- Division of Climate and Health, Norwegian Institute of Public Health, Oslo, Norway; Department of Occupational Medicine and Epidemiology, National Institute of Occupational Health, Oslo, Norway.
| | - Gunn E Vist
- Division for Health Services, Norwegian Institute of Public Health, Oslo, Norway.
| | - Tom K Grimsrud
- Department of Research, Cancer Registry of Norway, Oslo, Norway.
| | - Rune Becher
- Division of Climate and Health, Norwegian Institute of Public Health, Oslo, Norway.
| | - Ane M Holme
- Department of Obstetrics and Gynecology, Oslo University Hospital, Oslo, Norway.
| | - Johan Øvrevik
- Division of Climate and Health, Norwegian Institute of Public Health, Oslo, Norway; Department of Biosciences, University of Oslo, Oslo, Norway.
| | - Jan Alexander
- Division of Climate and Health, Norwegian Institute of Public Health, Oslo, Norway.
| |
Collapse
|
28
|
Zhang M, Hu Y, Yang F, Zhang J, Zhang J, Yu W, Wang M, Lv X, Li J, Bai T, Chang F. Interaction between AhR and HIF-1 signaling pathways mediated by ARNT/HIF-1β. BMC Pharmacol Toxicol 2022; 23:26. [PMID: 35473600 PMCID: PMC9044668 DOI: 10.1186/s40360-022-00564-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 03/29/2022] [Indexed: 04/12/2024] Open
Abstract
Background The main causes of lung cancer are smoking, environmental pollution and genetic susceptibility. It is an indisputable fact that PAHs are related to lung cancer, and benzo(a) pyrene is a representative of PAHs. The purpose of the current investigation was to investigate the interaction between AhR and HIF-1 signaling pathways in A549 cells, which provide some experimental basis for scientists to find drugs that block AhR and HIF-1 signaling pathway to prevent and treat cancer. Methods This project adopts the CYP1A1 signaling pathways and the expression of CYP1B1 is expressed as a measure of AhR strength index. The expression of VEGF and CAIX volume as a measure of the strength of the signal path HIF-1 indicators. Through the construction of plasmid vector, fluorescence resonance energy transfer, real-time quantitative PCR, western blotting and immunoprecipitation, the interaction between AhR signaling pathway and HIF-1 signaling pathway was observed. Results BaP can enhance the binding ability of HIF-1α protein to HIF-1β/ARNT in a dose-dependent manner without CoCl2. However, the binding ability of AhR protein to HIF-1β/ARNT is inhibited by HIF-1α signaling pathway in a dose-dependent manner with CoCl2. Conclusion It is shown that activation of the AhR signaling pathway does not inhibit the HIF-1α signaling pathway, but activation of the HIF-1α signaling pathway inhibits the AhR signaling pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s40360-022-00564-8.
Collapse
Affiliation(s)
- Mengdi Zhang
- Department of Pharmacy Experimental Teaching Center of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, China.,Inner Mongolia Research Center for Drug Screening, Hohhot, China
| | - Yuxia Hu
- Inner Mongolia Research Center for Drug Screening, Hohhot, China.,The Center for New Drug Safety Evaluation and Research of Inner Mongolia Medical University, Hohhot, China
| | - Fan Yang
- School of Pharmaceutical Science, Shanxi Medical University, Hohhot, China
| | - Jingwen Zhang
- Department of Pharmacology of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, China
| | - Jianxin Zhang
- Department of Pharmacology of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, China
| | - Wanjia Yu
- Department of Pharmacology of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, China
| | - Minjie Wang
- Department of Pharmacology of Basic medical College, Inner Mongolia Medical university, Hohhot, China
| | - Xiaoli Lv
- Inner Mongolia Research Center for Drug Screening, Hohhot, China.,Department of Pharmacology of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, China
| | - Jun Li
- Inner Mongolia Research Center for Drug Screening, Hohhot, China.,The Center for New Drug Safety Evaluation and Research of Inner Mongolia Medical University, Hohhot, China
| | - Tuya Bai
- Inner Mongolia Research Center for Drug Screening, Hohhot, China. .,Department of Pharmacology of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, China.
| | - Fuhou Chang
- Inner Mongolia Research Center for Drug Screening, Hohhot, China. .,The Center for New Drug Safety Evaluation and Research of Inner Mongolia Medical University, Hohhot, China. .,Department of Pharmacology of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, China.
| |
Collapse
|
29
|
Brito LD, Araujo CDS, Cavalcante DGSM, Gomes AS, Zocoler MA, Yoshihara E, Job AE, Kerche LE. In vivo assessment of antioxidant, antigenotoxic, and antimutagenic effects of bark ethanolic extract from Spondias purpurea L. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:336-352. [PMID: 34903147 DOI: 10.1080/15287394.2021.2013373] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Medicinal plants have always been used for therapeutic purposes; however, some plants may contain toxic and mutagenic substances. The aim of this study was to assess the cytotoxic, genotoxic, mutagenic, antioxidant, antigenotoxic, and antimutagenic effects of the bark ethanolic extract of Spondias purpurea L. using male and female Swiss albino mice. To determine the protective effects of the extract, benzo[a]pyrene (B[a]P) and cyclophosphamide (CP) were selected as cell damage inducers. The extract was examined at doses of 500, 1000, or 1500 mg/kg body weight (BW)via gavage alone or concomitant with B[a]P or CP. Oxidative stress was measured by quantification of blood catalase activity (CAT), reduced glutathione (GSH) levels in total blood, liver, and kidney, and concentrations of malondiadehyde (MDA) in liver and kidney. Genotoxicity and antigenotoxicity were evaluated by the comet assay using peripheral blood. Cytotoxicity, mutagenicity, and antimutagenicity were determined utilizing the micronucleus test in bone marrow and peripheral blood. The S. purpurea L extract increased CAT activity and GSH levels accompanied by a decrease in MDA levels after treatment with B[a]P and CP. No genotoxic, cytotoxic, or mutagenic effects were found in mice exposed only to the extract. These results indicate that the extract of S. purpurea exhibited protective effects against oxidative and DNA damage induced by B[a]P and CP.
Collapse
Affiliation(s)
- Lorrane Davi Brito
- Faculdade de Artes, Ciências, Letras E Educação, Universidade Do Oeste Paulista, Presidente Prudente, Brazil
| | - Caroline de Souza Araujo
- Faculdade de Artes, Ciências, Letras E Educação, Universidade Do Oeste Paulista, Presidente Prudente, Brazil
| | | | - Andressa Silva Gomes
- Departamento de Física, Química E Biologia, Universidade Estadual Paulista "Júlio de Mesquita Filho", Presidente Prudente, Brazil
| | | | - Eidi Yoshihara
- Department of Animal Health, Agência Paulista de Tecnologia Dos Agronegócios (Apta), Presidente Prudente, Brazil
| | - Aldo Eloizo Job
- Departamento de Física, Química E Biologia, Universidade Estadual Paulista "Júlio de Mesquita Filho", Presidente Prudente, Brazil
| | - Leandra Ernst Kerche
- Faculdade de Medicina, Universidade Do Oeste Paulista, Presidente Prudente, Brazil
| |
Collapse
|
30
|
Luo Y, Zhang B, Geng N, Sun S, Song X, Chen J, Zhang H. Transcriptomics and metabolomics analyses provide insights into the difference in toxicity of benzo[a]pyrene and 6-chlorobenzo[a]pyrene to human hepatic cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:152242. [PMID: 34919925 DOI: 10.1016/j.scitotenv.2021.152242] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 06/14/2023]
Abstract
The toxicological information of chlorinated polycyclic aromatic hydrocarbons (Cl-PAHs), as derivatives of PAHs, is still relatively lacking. In this study, a combination of transcriptomics and metabolomics approach was adopted to explore the changes in toxicity to human L02 hepatocytes after chlorination of benzo[a]pyrene (B[a]P) at 6 position. In general, 6-Cl-B[a]P produced a stronger toxicity to human hepatic cells than did parent B[a]P. When exposure concentrations were 5 and 50 nM, 6-Cl-B[a]P caused a weaker transcriptomic perturbation relative to B[a]P, whereas a stronger metabolomic perturbation, a stronger oxidative stress and a stronger inhibition effect on cell viability were caused by 6-Cl-B[a]P than did parent B[a]P. Pathway enrichment analysis indicated that 6-Cl-B[a]P produced a more widely perturbation to metabolic pathways than did B[a]P. Although they both significantly impaired the function of mitochondrial electron transport chain (ETC), the exact mechanism is different. B[a]P suppressed the expression of 20 genes regulating mitochondrial ETC mainly via AhR activation. However, 6-Cl-B[a]P produced a stronger inhibition on the activities of complexes I and V than did B[a]P. Meanwhile, 6-Cl-B[a]P also exhibited a stronger inhibition effect on mitochondrial β oxidation of fatty acid. Furthermore, 6-Cl-B[a]P and B[a]P both significantly disturbed the nucleotide metabolism, glycerophospholipid metabolism and amino acid metabolism in L02 cells.
Collapse
Affiliation(s)
- Yun Luo
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baoqin Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ningbo Geng
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shuai Sun
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyao Song
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jiping Chen
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Haijun Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
31
|
Zhao A, Li F, Wei C, Zhou Z, Luo X, Wu H, Ning C, Liu W, Li D, Lin D, Liu S, Zhang G, Gao J. TNFɑ Antagonist in Combination with PD-1 Blocker to Prevent or Retard Malignant Transformation of B[a]P-induced Chronic Lung Inflammation. Carcinogenesis 2022; 43:445-456. [PMID: 35230387 DOI: 10.1093/carcin/bgac024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/04/2021] [Accepted: 03/01/2022] [Indexed: 12/24/2022] Open
Abstract
Benzo[a]pyrene (B[a]P) is a typical complete carcinogen in tobacco, but its mechanism of inducing the development of chronic pneumonia and consequent lung cancer is unclear. Here we elucidated the role of myeloid-derived suppressor cells (MDSCs) in developing B[a]P-induced chronic lung inflammation and efficacy of immunotherapy in preventing subsequent malignant transformation. Our study showed that as B[a]P could induce the accumulation of MDSCs in lung tissues and enhance the immunosuppressive effect regulated by cytokines and metabolites, thereby promoting the formation of immunosuppressive microenvironment, where effector T cells were exhausted, NK cells were dysfunctional, regulatory T (Treg) cells were expanded, polarized alveolar macrophages were transformed from M1 to M2. Subsequently, we performed the immunotherapy to block TNFɑ only or both TNFɑ and PD-1 at the early- or middle-stage of B[a]P-induced chronic lung inflammation to ameliorate the immunosuppressive microenvironment. We found that TNFɑ antagonist alone or with PD-1 blocker was shown to exert therapeutic effects on malignant transformation at the early stage of B[a]P-induced chronic lung inflammation. Taken together, our findings demonstrated that B[a]P-induced chronic lung inflammation resulted in the accumulation of MDSCs in lung tissues and exercise their immunosuppressive functions, thereby developing an immunosuppressive microenvironment, thus TNFɑ antagonist alone or with PD-1 blocker could prevent or retard the malignant transformation of B[a]P-induced chronic lung inflammation.
Collapse
Affiliation(s)
- Ai Zhao
- Department of Hematology, Shunde Hospital, Southern Medical University; Foshan, Guangdong, China.,Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University; Wenzhou, Zhejiang, China
| | - Fanfan Li
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University; Wenzhou, Zhejiang, China.,Department of Hematology, Wenzhou Key Laboratory of Hematology, The First Affiliated Hospital of Wenzhou Medical University; Wenzhou, Zhejiang, China
| | - Cheng Wei
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University; Wenzhou, Zhejiang, China
| | - Zhujun Zhou
- Medical laboratory, Tianmen First People's Hospital; Tianmen, Hubei, China
| | - Xianqiang Luo
- Medical laboratory, The First Affiliated Hospital of Nanchang University; Nanchang, Jiangxi, China
| | - Haiming Wu
- Medical laboratory, Xiamen Children's Hospital; Xiamen, Fujian, China
| | - Chunhong Ning
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University; Wenzhou, Zhejiang, China
| | - Wanyu Liu
- Medical laboratory, Zhumadian Central Hospital; Zhumadian, Henan, China
| | - Dong Li
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University; Wenzhou, Zhejiang, China
| | - Danni Lin
- Harvard Medical School; Boston, MA, United States
| | - Shuwen Liu
- Department of Hematology, Shunde Hospital, Southern Medical University; Foshan, Guangdong, China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University; Guangzhou, Guangdong, China
| | - Guangji Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University; Hangzhou, Zhejiang, China
| | - Jimin Gao
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University; Wenzhou, Zhejiang, China.,Zhejiang Qixin Biotech; Wenzhou, Zhejiang, China
| |
Collapse
|
32
|
Xu Y, Gao H, Du Z, Liu H, Cheng Q, Zhang F, Ye J, Wang A, Dou Y, Ma B, Zhao N, Zhu F, Xu X, Shen N, Wu J, Xue B. A new approach for reducing pollutants level: a longitudinal cohort study of physical exercises in young people. BMC Public Health 2022; 22:223. [PMID: 35114971 PMCID: PMC8812347 DOI: 10.1186/s12889-022-12621-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 01/21/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The present study aimed to evaluate the elimination of three common pollutants (dimethoate, benzo(a)pyrene (BaP) and bisphenol A (BPA) by different physical exercises and to assess the possible factors which could affect the pollutants elimination. METHODS A total of 200 individuals who chose different kinds of exercises in accordance to their own wish were recruited. The levels of urinary pollutants were measured using β-glucuronidase hydrolysis followed by a high-performance liquid chromatography tandem mass spectrometry-based method. RESULTS Totally, the levels of dimethoate, BaP and BPA were reduced after physical exercises. However, the elimination of BaP in male was higher than that in female but the elimination of BPA in female was higher than that in male. Multivariate logistic regression showed that the degree of heart rate (HR) change was a protective factor affecting the improvement effect of dimethoate, BaP and BPA while BMI (body mass index) was a risk factor. Nevertheless, sex was a risk factor affecting the improvement of dimethoate and BaP but had a lower efficacy on BPA improvement. CONCLUSION The present findings indicate that physical exercises can be considered as a novel approach to eliminate pollutants level in human body and can also give suggestions for choosing specific physical exercises to male and female individuals. Moreover, those who are with higher BMI need to lose weight before eliminating pollutant level through physical exercises.
Collapse
Affiliation(s)
- Yujuan Xu
- Hohai University, Nanjing, 210098, China
| | - Hongliang Gao
- Core Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211166, China
| | - Zhixiang Du
- Department of Infectious Diseases, Taizhou People's Hospital, Taizhou, 225300, China
| | - He Liu
- General surgery department, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211166, China
| | - Qi Cheng
- Medical School of Nanjing University, Nanjing, 210093, China
| | - Furong Zhang
- Core Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211166, China
| | - Juan Ye
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | | | - Yanjun Dou
- Hohai University, Nanjing, 210098, China
| | - Bei Ma
- Hohai University, Nanjing, 210098, China
| | - Ningwei Zhao
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Feng Zhu
- General surgery department, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211166, China
| | - Xianlin Xu
- Department of Urology, Sir Run Run Hospital, Nanjing Medical University, 109 Longmian Road, Jiangning, Nanjing, 211100, Jiangsu, China
| | - Ning Shen
- China Exposomics Institute (CEI) Precision Medicine Co. Ltd, Shanghai, 200120, China
| | - Jing Wu
- Core Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211166, China
| | - Bin Xue
- Core Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
33
|
Liu L, Feng Q, Wang Y, Zhao X, Guo S, Guo L, Liu G, Jiang L, Li Q, Pan B, Nie J, Yang J. Interaction of polycyclic aromatic hydrocarbon exposure and high-fasting plasma glucose on lung function decline in coke oven workers: a cross-lagged panel analysis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 90:103811. [PMID: 35038546 DOI: 10.1016/j.etap.2022.103811] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/21/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Individuals with abnormal fasting plasma glucose (FPG) may be more susceptible to lung diseases associated with environmental pollutants. A cross-sectional survey of 629 workers in 2017 and a panel study of 304 workers from 2014 to 2019 were performed in China. The results showed that elevated total hydroxylated polycyclic aromatic hydrocarbon (ΣOH-PAH) concentration was associated with lower the percentage of predicted forced vital capacity (FVC%) among high-FPG workers (β for the cross-sectional analysis: -1.78%, 95%CI: -2.92%, -0.64%; β for the panel study: -1.10%, 95%CI: -2.19%, -0.02%). The absolute value of the cross-lagged path coefficient from FPG to FVC% (β2 = -0.096) was significantly greater than that from FVC% to FPG (β1 = 0.037). Our results suggest that FPG abnormalities may precede the lung function decline induced by PAH exposure and that high-FPG and high ΣOH-PAH levels have an interactive effect on lung function decline.
Collapse
Affiliation(s)
- Lu Liu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China
| | - Quan Feng
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China
| | - Yong Wang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China
| | - Xinyu Zhao
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China
| | - Shugang Guo
- Shanxi Provincial Center for Disease Control and Prevention, China
| | - Lan Guo
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China
| | - Gaisheng Liu
- Center of Occupational Disease Prevention, Xishan Coal Electricity (Group) Co., Ltd, China
| | - Liuquan Jiang
- Center of Occupational Disease Prevention, Xishan Coal Electricity (Group) Co., Ltd, China
| | - Qiang Li
- Center of Occupational Disease Prevention, Xishan Coal Electricity (Group) Co., Ltd, China
| | - Baolong Pan
- General Hospital of Taiyuan Iron & Steel (Group) Co., Ltd, China
| | - Jisheng Nie
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China
| | - Jin Yang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China.
| |
Collapse
|
34
|
Lou W, Zhang MD, Chen Q, Bai TY, Hu YX, Gao F, Li J, Lv XL, Zhang Q, Chang FH. Molecular mechanism of benzo [a] pyrene regulating lipid metabolism via aryl hydrocarbon receptor. Lipids Health Dis 2022; 21:13. [PMID: 35057794 PMCID: PMC8772151 DOI: 10.1186/s12944-022-01627-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/07/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Benzo [a] pyrene (BaP), a potent carcinogen, has been proved that it has toxicological effects via activation the aryl hydrocarbon receptor (AhR) pathway. AhR can participate in regulating lipogenesis and lipolysis. This topic will verify whether BaP regulates lipid metabolism via AhR. METHODS (1) C57BL/6 mice were gavaged with BaP for 12 weeks to detect serum lipids, glucose tolerance, and insulin resistance. Morphological changes in white adipose tissue (WAT) were detected by Hematoxylin and Eosin staining. The mRNA expression levels of adipogenesis-related factors included recombinant human CCAAT/enhancer binding protein alpha (C/EBPα), peroxisome proliferator-activated receptor gamma (PPARγ), and fatty acid binding protein 4 (FABP4) and inflammatory factors included nuclear factor kappa-B (NF-κB), monocyte chemotactic protein-1 (MCP-1), and tumor necrosis factor alpha (TNF-α) were detected using PCR. (2) Neutral lipid content changes in differentiated 3 T3-L1 adipocytes treated with BaP with and w/o AhR inhibitor were detected by Oil red staining. The protein expression levels of adipogenesis- and decomposition-related factors included PPARγ coactivator-1 alpha (PGC-1α), and peroxisome proliferation-activated receptor alpha (PPARα) were detected using western blotting. The mRNA expression levels of inflammatory factors were detected using PCR. RESULTS (1) BaP inhibited body weight gain, decreased lipid content, increased lipid levels, and decreased glucose tolerance and insulin tolerance in mice; (2) BaP reduced the expressions of C/EBPα, PPARγ, FABP4, PGC-1α, and PPARα and increased the expressions of NF-κB, MCP-1, and TNF-α by activating AhR. CONCLUSION BaP inhibit fat synthesis and oxidation while inducing inflammation by activating AhR, leading to WAT dysfunction and causing metabolic complications.
Collapse
Affiliation(s)
- Wei Lou
- Department of Pharmacology of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, 010010, China
- Department of Pharmacy, Inner Mongolia Autonomous Region Hospital of Traditional Chinese Medicine, Hohhot, 010010, China
| | - Meng-di Zhang
- Department of Pharmacology of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, 010010, China
- Inner Mongolia Research Center for Drug Screening, Inner Mongolia Medical University, Hohhot, 010110, China
| | - Qi Chen
- Department of Pharmacology of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, 010010, China
| | - Tu-Ya Bai
- Department of Pharmacology of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, 010010, China
- Inner Mongolia Research Center for Drug Screening, Inner Mongolia Medical University, Hohhot, 010110, China
| | - Yu-Xia Hu
- Department of Pharmacology of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, 010010, China
- Inner Mongolia Research Center for Drug Screening, Inner Mongolia Medical University, Hohhot, 010110, China
- The Center for New Drug Safety Evaluation and Research, Inner Mongolia Medical University, Hohhot, 010010, China
| | - Feng Gao
- Department of Pharmacology of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, 010010, China
- Inner Mongolia Research Center for Drug Screening, Inner Mongolia Medical University, Hohhot, 010110, China
| | - Jun Li
- Department of Pharmacology of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, 010010, China
- Inner Mongolia Research Center for Drug Screening, Inner Mongolia Medical University, Hohhot, 010110, China
- The Center for New Drug Safety Evaluation and Research, Inner Mongolia Medical University, Hohhot, 010010, China
| | - Xiao-Li Lv
- Department of Pharmacology of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, 010010, China
- Inner Mongolia Research Center for Drug Screening, Inner Mongolia Medical University, Hohhot, 010110, China
| | - Qian Zhang
- Department of Pharmacology of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, 010010, China
- Inner Mongolia Research Center for Drug Screening, Inner Mongolia Medical University, Hohhot, 010110, China
- The Center for New Drug Safety Evaluation and Research, Inner Mongolia Medical University, Hohhot, 010010, China
| | - Fu-Hou Chang
- Department of Pharmacology of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, 010010, China.
- Inner Mongolia Research Center for Drug Screening, Inner Mongolia Medical University, Hohhot, 010110, China.
- The Center for New Drug Safety Evaluation and Research, Inner Mongolia Medical University, Hohhot, 010010, China.
| |
Collapse
|
35
|
Tarasco M, Gavaia PJ, Bensimon-Brito A, Cardeira-da-Silva J, Ramkumar S, Cordelières FP, Günther S, Bebianno MJ, Stainier DYR, Cancela ML, Laizé V. New insights into benzo[⍺]pyrene osteotoxicity in zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 226:112838. [PMID: 34607190 DOI: 10.1016/j.ecoenv.2021.112838] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Persistent and ubiquitous organic pollutants, such as the polycyclic aromatic hydrocarbon benzo[⍺]pyrene (BaP), represent a major threat to aquatic organisms and human health. Beside some well-documented adverse effects on the development and reproduction of aquatic organisms, BaP was recently shown to affect fish bone formation and skeletal development through mechanisms that remain poorly understood. In this work, zebrafish bone-related in vivo assays were used to evaluate the osteotoxic effects of BaP during bone development and regeneration. Acute exposure of zebrafish larvae to BaP from 3 to 6 days post-fertilization (dpf) induced a dose-dependent reduction of the opercular bone size and a depletion of osteocalcin-positive cells, indicating an effect on osteoblast maturation. Chronic exposure of zebrafish larvae to BaP from 3 to 30 dpf affected the development of the axial skeleton and increased the incidence and severity of skeletal deformities. In young adults, BaP affected the mineralization of newly formed fin rays and scales, and impaired fin ray patterning and scale shape, through mechanisms that involve an imbalanced bone remodeling. Gene expression analyses indicated that BaP induced the activation of xenobiotic and metabolic pathways, while negatively impacting extracellular matrix formation and organization. Interestingly, BaP exposure positively regulated inflammation markers in larvae and increased the recruitment of neutrophils. A direct interaction between neutrophils and bone extracellular matrix or bone forming cells was observed in vivo, suggesting a role for neutrophils in the mechanisms underlying BaP osteotoxicity. Our work provides novel data on the cellular and molecular players involved in BaP osteotoxicity and brings new insights into a possible role for neutrophils in inflammatory bone reduction.
Collapse
Affiliation(s)
- Marco Tarasco
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
| | - Paulo J Gavaia
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal; Faculty of Medicine and Biomedical Sciences (FMCB) and Algarve Biomedical Center (ABC), University of Algarve, Faro, Portugal
| | - Anabela Bensimon-Brito
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany; DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany; INSERM, ATIP-Avenir, Aix Marseille University, Marseille Medical Genetics, Marseille, France
| | - João Cardeira-da-Silva
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
| | - Srinath Ramkumar
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany; Department of Life Sciences, Goethe University, Frankfurt am Main, Germany
| | - Fabrice P Cordelières
- Bordeaux Imaging Center (BIC), UMS 3420 CNRS - Université de Bordeaux - US4 INSERM, Pôle d'imagerie photonique, Centre Broca Nouvelle-Aquitaine, Bordeaux, France
| | - Stefan Günther
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany; Max Planck Institute for Heart and Lung Research, Bioinformatics and Deep Sequencing Platform, Bad Nauheim, Germany
| | - Maria J Bebianno
- Centre of Marine and Environmental Research (CIMA), University of Algarve, Faro, Portugal
| | - Didier Y R Stainier
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
| | - M Leonor Cancela
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal; Faculty of Medicine and Biomedical Sciences (FMCB) and Algarve Biomedical Center (ABC), University of Algarve, Faro, Portugal
| | - Vincent Laizé
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal.
| |
Collapse
|
36
|
Protective effects of piperlongumin in the prevention of inflammatory damage caused by pulmonary exposure to benzopyrene carcinogen. Int Immunopharmacol 2021; 101:108285. [PMID: 34802947 DOI: 10.1016/j.intimp.2021.108285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/09/2021] [Accepted: 10/18/2021] [Indexed: 12/31/2022]
Abstract
Benzopyrene is one of the main polycyclic aromatic hydrocarbons with carcinogenic capacity. Research has shown that anti-inflammatory drugs can reduce the incidence of lung cancer. In this scenario, we highlight piperlongumin (PL), an alkaloid from Piper longum with anti-inflammatory properties. Therefore, our aim was to study the effect of PL administration in a model of pulmonary carcinogenesis induced by benzopyrene in Balb/c mice. Animals were divided into 3 groups (n = 10/group): sham (10% DMSO), induced by benzopyrene (100 mg/kg, diluted in DMSO) without treatment (BaP) for 12 weeks and induced by benzopyrene and treated with PL (BaP/PL) (2 mg/kg in 10% DMSO) from the eighth week post-induction. Animals were weighed daily and pletsmography was performed in the 12th week. Genotoxicity and hemoglobin levels were analyzed in blood and quantification of leukocytes in bronchoalveolar lavage (BAL). Lungs were collected for histopathological evaluation, immunohistochemical studies of annexin A1 (AnxA1), cyclooxygenase 2 (COX-2), anti-apoptotic protein Bcl-2 and nuclear transcription factor (NF-kB) and also the measurement of interleukin cytokines (IL)-1β, IL-17 and tumor necrosis factor (TNF) -α. Treatment with PL reduced the pulmonary parameters (p < 0,001) of frequency, volume and pulmonary ventilation, decreased lymphocytes, monocytes and neutrophils in BAL (p < 0,05) as well as blood hemoglobin levels (p < 0,01). PL administration also reduced DNA damage and preserved the pulmonary architecture compared to the BaP group. Moreover, the anti-inflammatory effect of PL was evidenced by the maintenance of AnxA1 levels, reduction of COX-2 (p < 0,05), Bcl-2 (p < 0,01) and NF-kB (p < 0,001) expressions and decreased IL-1β, IL-17 (p < 0,01) and TNF-α (p < 0,05) levels. The results show the therapeutic potential of PL in the treatment of pulmonary anti-inflammatory and anti-tumor diseases with promising therapeutic implications.
Collapse
|
37
|
Kuang H, Dai Y, Ding X, Li Y, Cha C, Jiang W, Zhang H, Zhou W, Zeng Y, Pang Q, Fan R. Association among blood BPDE-DNA adduct, serum interleukin-8 (IL-8) and DNA strand breaks for children with pulmonary diseases. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2021; 31:823-834. [PMID: 31722538 DOI: 10.1080/09603123.2019.1690638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
Exposure to benzo[a]pyrene (B[a]P) may be a risk factor for pulmonary diseases. To investigate the correlations among B[a]P exposure level, DNA strand breaks and pulmonary inflammation, we recruited 83 children diagnosed with pulmonary diseases and 63 healthy children from Guangzhou, China. Results showed that the levels of Benzo[a]pyrene diol epoxide (BPDE) DNA adduct in blood and IL-8 in serum in case group were significantly higher than those in control group (p < 0.01). Moreover, levels of atmospheric B[a]P in case group was about twice of those in control group, which was consistent with the levels of BPDE-DNA adduct in blood. Significant positive correlations were observed among the levels of BPDE-DNA adduct, IL-8 and DNA strand breaks (p < 0.05). Our findings indicate that environmental air is an important exposure source of B[a]P and higher B[a]P exposure may contribute to the occurrence of pulmonary inflammation and lead to high health risks.
Collapse
Affiliation(s)
- Hongxuan Kuang
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, China
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yanyan Dai
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xiang Ding
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Yonghong Li
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Caihui Cha
- Department of Psychology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Wenhui Jiang
- Department of Respiration, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Haibin Zhang
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Wenji Zhou
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yingwei Zeng
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Qihua Pang
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Ruifang Fan
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, China
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
38
|
Gargaro M, Manni G, Scalisi G, Puccetti P, Fallarino F. Tryptophan Metabolites at the Crossroad of Immune-Cell Interaction via the Aryl Hydrocarbon Receptor: Implications for Tumor Immunotherapy. Int J Mol Sci 2021; 22:ijms22094644. [PMID: 33924971 PMCID: PMC8125364 DOI: 10.3390/ijms22094644] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/25/2021] [Accepted: 04/25/2021] [Indexed: 02/07/2023] Open
Abstract
The Aryl hydrocarbon receptor (AhR) is a critical regulator of both innate and adaptive immune responses, with potent immunomodulatory effects that makes this receptor an attractive molecular target for novel therapeutics. Accumulating evidence indicates that diverse—both host’s and microbial—tryptophan metabolites profoundly regulate the immune system in the host via AhR, promoting either tolerance or immunity, largely as a function of the qualitative and quantitative nature of the metabolites being contributed by either source. Additional findings indicate that host and microbiota-derived tryptophan metabolic pathways can influence the outcome of immune responses to tumors. Here, we review recent studies on the role and modalities of AhR activation by various ligands, derived from either host-cell or microbial-cell tryptophan metabolic pathways, in the regulation of immune responses. Moreover, we highlight potential implications of those ligands and pathways in tumor immunotherapy, with particular relevance to checkpoint-blockade immune intervention strategies.
Collapse
|
39
|
Fishbein A, Hammock BD, Serhan CN, Panigrahy D. Carcinogenesis: Failure of resolution of inflammation? Pharmacol Ther 2021; 218:107670. [PMID: 32891711 PMCID: PMC7470770 DOI: 10.1016/j.pharmthera.2020.107670] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2020] [Indexed: 02/06/2023]
Abstract
Inflammation in the tumor microenvironment is a hallmark of cancer and is recognized as a key characteristic of carcinogens. However, the failure of resolution of inflammation in cancer is only recently being understood. Products of arachidonic acid and related fatty acid metabolism called eicosanoids, including prostaglandins, leukotrienes, lipoxins, and epoxyeicosanoids, critically regulate inflammation, as well as its resolution. The resolution of inflammation is now appreciated to be an active biochemical process regulated by endogenous specialized pro-resolving lipid autacoid mediators which combat infections and stimulate tissue repair/regeneration. Environmental and chemical human carcinogens, including aflatoxins, asbestos, nitrosamines, alcohol, and tobacco, induce tumor-promoting inflammation and can disrupt the resolution of inflammation contributing to a devastating global cancer burden. While mechanisms of carcinogenesis have focused on genotoxic activity to induce mutations, nongenotoxic mechanisms such as inflammation and oxidative stress promote genotoxicity, proliferation, and mutations. Moreover, carcinogens initiate oxidative stress to synergize with inflammation and DNA damage to fuel a vicious feedback loop of cell death, tissue damage, and carcinogenesis. In contrast, stimulation of resolution of inflammation may prevent carcinogenesis by clearance of cellular debris via macrophage phagocytosis and inhibition of an eicosanoid/cytokine storm of pro-inflammatory mediators. Controlling the host inflammatory response and its resolution in carcinogen-induced cancers will be critical to reducing carcinogen-induced morbidity and mortality. Here we review the recent evidence that stimulation of resolution of inflammation, including pro-resolution lipid mediators and soluble epoxide hydrolase inhibitors, may be a new chemopreventive approach to prevent carcinogen-induced cancer that should be evaluated in humans.
Collapse
Affiliation(s)
- Anna Fishbein
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Bruce D. Hammock
- Department of Entomology and Nematology, and UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Charles N. Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Dipak Panigrahy
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
40
|
Kuang H, Liu J, Zeng Y, Zhou W, Wu P, Tan J, Li Y, Pang Q, Jiang W, Fan R. Co-exposure to polycyclic aromatic hydrocarbons, benzene and toluene may impair lung function by increasing oxidative damage and airway inflammation in asthmatic children. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115220. [PMID: 32707352 DOI: 10.1016/j.envpol.2020.115220] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/05/2020] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
As previous studies found that the direct associations between urinary polycyclic aromatic hydrocarbon (PAH), benzene and toluene (BT) metabolites and the decreased lung function were not conclusive, we further investigated relationship of oxidative damage and airway inflammation induced by PAHs and BTs exposure with lung function. A total of 262 children diagnosed with asthma and 72 heathy children were recruited. Results showed that asthmatic children had higher levels of PAHs and BTs exposure, as well as Malonaldehyde (MDA) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) compared with healthy children. Furthermore, binary logistic regression showed that each unit increases in level of urinary 2-&3-hydroxyfluorene (2-&3-OHF), 2-hydroxyphenanthrene (2-OHPhe), 1-hydroxyphenanthrene (1-OHP) and S-phenylmercapturic acid (S-PMA) were significantly associated with an elevated risk of asthma in children with odds ratios of 1.5, 2.3, 1.7 and 1.4, respectively, suggesting that PAHs and BTs exposure could increase the risk of asthma for children. Neither PAH nor BT metabolite could comprehensively indicate the decreased lung function as only 2-&3-OHF and 1-OHP were significantly and negatively correlated with forced vital capacity (FVC). Moreover, levels of most individual PAH and BT metabolite were significantly correlated to MDA and 8-OHdG. Further hierarchical regression analysis indicated that MDA and 8-OHdG levels did not show significant effects on the decreased lung function, suggesting that they are not the suitable biomarkers to indirectly indicate the altered lung function induced by PAHs and BTs. Urinary 2-OHPhe and 1-&9-hydroxyphenanthrene (1-&9-OHPhe) were significantly correlated with fractional exhaled nitric oxide (FeNO). Moreover, FeNO significantly contributed to decreased lung function and explained 7.7% of variance in ratio of forced expiratory volume in 1 s (FEV1) and FVC (FEV1/FVC%). Hence, FeNO, rather than oxidative damage indicators or any urinary PAH and BT metabolite, is more sensitive to indirectly reflect the decreased lung function induced by PAHs and BTs exposure for asthmatic children.
Collapse
Affiliation(s)
- Hongxuan Kuang
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Jian Liu
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Yingwei Zeng
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Wenji Zhou
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Peiqiong Wu
- Guangzhou Women and Children's Medical Center, Guangzhou, 510120, China
| | - Jianhua Tan
- Guangzhou Quality Supervision and Testing Institute, Guangzhou, 511447, China
| | - Yonghong Li
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Qihua Pang
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Wenhui Jiang
- Guangzhou Women and Children's Medical Center, Guangzhou, 510120, China.
| | - Ruifang Fan
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
41
|
Wang R, Wang SY, Wang Y, Xin R, Xia B, Xin Y, Zhang T, Wu YH. The Warburg effect promoted the activation of the NLRP3 inflammasome induced by Ni-refining fumes in BEAS-2B cells. Toxicol Ind Health 2020; 36:580-590. [PMID: 33064063 DOI: 10.1177/0748233720937197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Nickel (Ni) is a known human carcinogen that has an adverse effect on various human organs in occupational workers during Ni refinement and smelting. In the present study, we used real-time polymerase chain reactions, Western blot analysis, and a lactate production assay to investigate whether an increase in the NLRP3 inflammasome induced by Ni-refining fumes was associated with the Warburg effect in BEAS-2B cells, a nonmalignant pulmonary epithelial line. Exposure to Ni-refining fumes suppressed cell proliferation and increased lactate production compared with those in an untreated control group in a dose- and time-dependent manner. Ni-refining fumes induced the Warburg effect, which was observed based on increases in the levels of hypoxia-inducible factor-1α, hexokinase 2, pyruvate kinase isozyme type M2, and lactate dehydrogenase A. In addition, Ni-refining fumes promoted increased expression of NLRP3 at both the gene and protein levels. Furthermore, inhibition of the Warburg effect by 2-Deoxy-d-glucose reversed the increased expression of NLRP3 induced by Ni-refining fumes. Collectively, our data demonstrated that the Warburg effect can promote the expression of the NLRP3 inflammasome induced by the Ni-refining fumes in BEAS-2B cells. This indicates a new phenomenon in which alterations in energy production in human cells induced by Ni-refining fumes regulate the inflammatory response.
Collapse
Affiliation(s)
- Rui Wang
- Department of Occupational Health, School of Public Health, 34707Harbin Medical University, Harbin City, Heilongjiang Province, China
| | - Sheng-Yuan Wang
- Department of Occupational Health, School of Public Health, 34707Harbin Medical University, Harbin City, Heilongjiang Province, China
| | - Yue Wang
- Department of Occupational Health, School of Public Health, 34707Harbin Medical University, Harbin City, Heilongjiang Province, China
| | - Rui Xin
- Department of Occupational Health, School of Public Health, 34707Harbin Medical University, Harbin City, Heilongjiang Province, China
| | - Bing Xia
- Department of Occupational Health, School of Public Health, 34707Harbin Medical University, Harbin City, Heilongjiang Province, China
| | - Ye Xin
- Department of Occupational Health, School of Public Health, 34707Harbin Medical University, Harbin City, Heilongjiang Province, China
| | - Tong Zhang
- Department of Occupational Health, School of Public Health, 34707Harbin Medical University, Harbin City, Heilongjiang Province, China
| | - Yong-Hui Wu
- Department of Occupational Health, School of Public Health, 34707Harbin Medical University, Harbin City, Heilongjiang Province, China
| |
Collapse
|
42
|
Filippov SV, Yarushkin AA, Yakovleva AK, Kozlov VV, Gulyaeva LF. [Effect of benzo(a)pyrene on the expression of AhR-regulated microRNA in female and male rat lungs]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2020; 66:224-232. [PMID: 32588828 DOI: 10.18097/pbmc20206603224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Smoking is the main risk factor for lung cancer, mainly due to presence of nitrosamines and polycyclic aromatic hydrocarbons, including benzo[a]pyrene (BP) in tobacco smoke composition. The genotoxic effect of BP is based on the high DNA-binding ability of its metabolites, while the epigenetic effects are mediated by a change in the expression of cancer related genes or regulatory RNAs. It has been shown that women have a higher risk to develop lung cancer upon smoking rather than men. We hypothesized that crosstalk between signaling pathways activated by BP and estrogens could underlie the sex-dependent differences in miRNAs expression. To test this hypothesis, male and female rats were subjected to short-term or long-term BP exposure. Using in silico analysis, miRNAs containing the ER- and AhR-binding sites in the promoters of the genes (or host genes) were selected. During chronic exposure of BP the expression of miR-22-3p, -29a-3p, -126a-3p, -193b-5p in the lungs of male rats were significantly increased, while the level of miRNA-483-3p were decreased. Expression of miRNA-483-3p was up-regulated during chronic BP exposure in the lungs of female rats and the levels of other studied miRNAs were unchanged. In turn, changes in the expression of miRNAs were followed by changes in the expression of their target genes, including PTEN, EMP2, IGF1, ITGA6, SLC34A2, and the observed changes in female and male rat lungs were varied. Thus, our results suggest that sex-dependent epigenetic effects of BP may be based on different expression of AhR- and ER- regulated miRNAs.
Collapse
Affiliation(s)
- S V Filippov
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia; Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A A Yarushkin
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia; Novosibirsk State University, Novosibirsk, Russia
| | - A K Yakovleva
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia; Novosibirsk State University, Novosibirsk, Russia
| | - V V Kozlov
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia; Novosibirsk Regional Oncology Center, Novosibirsk, Russia
| | - L F Gulyaeva
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia; Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
43
|
Baicalein Inhibits Benzo[a]pyrene-Induced Toxic Response by Downregulating Src Phosphorylation and by Upregulating NRF2-HMOX1 System. Antioxidants (Basel) 2020; 9:antiox9060507. [PMID: 32526964 PMCID: PMC7346154 DOI: 10.3390/antiox9060507] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 06/08/2020] [Indexed: 12/17/2022] Open
Abstract
Benzo[a]pyrene (BaP), a major environmental pollutant, activates aryl hydrocarbon receptor (AHR), induces its cytoplasmic-to-nuclear translocation and upregulates the production of cytochrome P450 1A1 (CYP1A1), a xenobiotic metabolizing enzyme which metabolize BaP. The BaP-AHR-CYP1A1 axis generates reactive oxygen species (ROS) and induces proinflammatory cytokines. Although the anti-inflammatory phytochemical baicalein (BAI) is known to inhibit the BaP-AHR-mediated CYP1A1 expression, its subcellular signaling remains elusive. In this study, normal human epidermal keratinocytes and HaCaT keratinocytes were treated with BAI, BaP, or BAI + BaP, and assessed for the CYP1A1 expression, antioxidative pathways, ROS generation, and proinflammatory cytokine expressions. BAI and BAI-containing herbal medicine Wogon and Oren-gedoku-to could inhibit the BaP-induced CYP1A1 expression. In addition, BAI activated antioxidative system nuclear factor-erythroid 2-related factor-2 (NRF2) and heme oxygenase 1 (HMOX1), leading the reduction of BaP-induced ROS production. The BaP-induced IL1A and IL1B was also downregulated by BAI. BAI inhibited the phosphorylation of Src, a component of AHR cytoplasmic complex, which eventually interfered with the cytoplasmic-to-nuclear translocation of AHR. These results indicate that BAI and BAI-containing herbal drugs may be useful for inhibiting the toxic effects of BaP via dual AHR-CYP1A1-inhibiting and NRF2-HMOX1-activating activities.
Collapse
|
44
|
Donini CF, El Helou M, Wierinckx A, Győrffy B, Aires S, Escande A, Croze S, Clezardin P, Lachuer J, Diab-Assaf M, Ghayad SE, Fervers B, Cavaillès V, Maguer-Satta V, Cohen PA. Long-Term Exposure of Early-Transformed Human Mammary Cells to Low Doses of Benzo[a]pyrene and/or Bisphenol A Enhances Their Cancerous Phenotype via an AhR/GPR30 Interplay. Front Oncol 2020; 10:712. [PMID: 32670863 PMCID: PMC7326103 DOI: 10.3389/fonc.2020.00712] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 04/15/2020] [Indexed: 12/12/2022] Open
Abstract
It is of utmost importance to decipher the role of chronic exposure to low doses of environmental carcinogens on breast cancer progression. The early-transformed triple-negative human mammary MCF10AT1 cells were chronically (60 days) exposed to low doses (10−10 M) of Benzo[a]pyrene (B[a]P), a genotoxic agent, and/or Bisphenol A (BPA), an endocrine disruptor. Our study revealed that exposed MCF10AT1 cells developed, in a time-dependent manner, an acquired phenotype characterized by an increase in cancerous properties (anchorage independent growth and stem-like phenotype). Co-exposure of MCF10AT1 cells to B[a]P and BPA led to a significantly greater aggressive phenotype compared to B[a]P or BPA alone. This study provided new insights into the existence of a functional interplay between the aryl hydrocarbon receptor (AhR) and the G protein-coupled receptor 30 (GPR30) by which chronic and low-dose exposure of B[a]P and/or BPA fosters the progression of MCF10AT1 cells into a more aggressive substage. Experiments using AhR or GPR30 antagonists, siRNA strategies, and RNAseq analysis led us to propose a model in which AhR signaling plays a “driver role” in the AhR/GPR30 cross-talk in mediating long-term and low-dose exposure of B[a]P and/or BPA. Retrospective analysis of two independent breast cancer cohorts revealed that the AhR/GPR30 mRNA expression signature resulted in poor breast cancer prognosis, in particular in the ER-negative and the triple-negative subtypes. Finally, the study identified targeting AhR and/or GPR30 with specific antagonists as a strategy capable of inhibiting carcinogenesis associated with chronic exposure to low doses of B[a]P and BPA in MCF10AT1 cells. Altogether, our results indicate that the engagement of both AhR and GPR30 functions, in particular in an ER-negative/triple-negative context of breast cells, favors tumor progression and leads to poor prognosis.
Collapse
Affiliation(s)
- Caterina F Donini
- Université Lyon 1, Lyon, France.,CRCL-Centre de Recherche en Cancérologie de Lyon-Inserm U1052-CNRS U5286, Lyon, France.,Département Cancer et Environnement, Centre Léon Bérard, Lyon, France
| | - Myriam El Helou
- Université Lyon 1, Lyon, France.,CRCL-Centre de Recherche en Cancérologie de Lyon-Inserm U1052-CNRS U5286, Lyon, France.,Faculty of sciences II, Lebanese University, Fanar, Lebanon
| | - Anne Wierinckx
- Université Lyon 1, Lyon, France.,CRCL-Centre de Recherche en Cancérologie de Lyon-Inserm U1052-CNRS U5286, Lyon, France.,ProfileXpert, SFR-Est, CNRS UMR-S3453, INSERM US7, Lyon, France
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University and TTK Lendület Cancer Biomarker Research Group, Budapest, Hungary
| | - Sophie Aires
- Université Lyon 1, Lyon, France.,CRCL-Centre de Recherche en Cancérologie de Lyon-Inserm U1052-CNRS U5286, Lyon, France
| | | | - Séverine Croze
- Université Lyon 1, Lyon, France.,ProfileXpert, SFR-Est, CNRS UMR-S3453, INSERM US7, Lyon, France
| | | | - Joël Lachuer
- Université Lyon 1, Lyon, France.,CRCL-Centre de Recherche en Cancérologie de Lyon-Inserm U1052-CNRS U5286, Lyon, France.,ProfileXpert, SFR-Est, CNRS UMR-S3453, INSERM US7, Lyon, France
| | | | | | - Béatrice Fervers
- Université Lyon 1, Lyon, France.,CRCL-Centre de Recherche en Cancérologie de Lyon-Inserm U1052-CNRS U5286, Lyon, France.,Département Cancer et Environnement, Centre Léon Bérard, Lyon, France
| | - Vincent Cavaillès
- IRCM - Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, CNRS, Montpellier, France
| | | | - Pascale A Cohen
- Université Lyon 1, Lyon, France.,CRCL-Centre de Recherche en Cancérologie de Lyon-Inserm U1052-CNRS U5286, Lyon, France.,Département Cancer et Environnement, Centre Léon Bérard, Lyon, France.,ProfileXpert, SFR-Est, CNRS UMR-S3453, INSERM US7, Lyon, France.,INSERM, UMR1033 LYOS, Lyon, France
| |
Collapse
|
45
|
Guerin MV, Finisguerra V, Van den Eynde BJ, Bercovici N, Trautmann A. Preclinical murine tumor models: a structural and functional perspective. eLife 2020; 9:e50740. [PMID: 31990272 PMCID: PMC6986875 DOI: 10.7554/elife.50740] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 01/06/2020] [Indexed: 12/14/2022] Open
Abstract
The goal of this review is to pinpoint the specific features, including the weaknesses, of various tumor models, and to discuss the reasons why treatments that are efficient in murine tumor models often do not work in clinics. In a detailed comparison of transplanted and spontaneous tumor models, we focus on structure-function relationships in the tumor microenvironment. For instance, the architecture of the vascular tree, which depends on whether tumor cells have gone through epithelial-mesenchymal transition, is determinant for the extension of the spontaneous necrosis, and for the intratumoral localization of the immune infiltrate. Another key point is the model-dependent abundance of TGFβ in the tumor, which controls the variable susceptibility of different tumor models to treatments. Grounded in a historical perspective, this review provides a rationale for checking factors that will be key for the transition between preclinical murine models and clinical applications.
Collapse
Affiliation(s)
- Marion V Guerin
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, F-75014ParisFrance
| | - Veronica Finisguerra
- Ludwig Institute for Cancer Research, de Duve Institute WELBIOUCLouvainBrusselsBelgium
| | | | - Nadege Bercovici
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, F-75014ParisFrance
| | - Alain Trautmann
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, F-75014ParisFrance
| |
Collapse
|
46
|
Mousa AM, El-Sammad NM, Abdel-Halim AH, Anwar N, Khalil WKB, Nawwar M, Hashim AN, Elsayed EA, Hassan SK. Lagerstroemia speciosa (L.) Pers Leaf Extract Attenuates Lung Tumorigenesis via Alleviating Oxidative Stress, Inflammation and Apoptosis. Biomolecules 2019; 9:E871. [PMID: 31842482 PMCID: PMC6995620 DOI: 10.3390/biom9120871] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 02/07/2023] Open
Abstract
One of the major etiological factors that account for lung cancer is tobacco use. Benzo(a)pyrene [B(a)P], one of the main constituents of tobacco smoke, has a key role in lung carcinogenesis. The present study was conducted to investigate the cytotoxicity of an aqueous ethanolic extract of Lagerstroemia speciosa (L.) Pers leaves (LLE) on human lung adenocarcinoma cells (A549), as well as its in vivo antitumor effect on a lung tumorigenesis mice model. Our results revealed that LLE possesses cytotoxic activity against the A549 cell line. Mice orally administered B(a)P (50 mg/kg body weight) showed an increase in relative lung weight with subsequent decrease in final body weight. Serum levels of tumor marker enzymes AHH, ADA and LDH and the inflammatory mediator NF-κB increased, while total antioxidant capacity (TAC) decreased. In addition, we observed the increased activity of metalloproteinases (MMP-2 and MMP-12) and levels of the tumor angiogenesis marker VEFG and the lipid peroxidation marker MDA, as well as decreased levels of the non-enzymatic antioxidant GSH and enzymatic antioxidants CAT and GSH-Px in lung tissues. Moreover, B(a)P administration up-regulated the expression of the COX-2 gene, pro-inflammatory cytokines TNF-α and IL-6, and an anti-apoptotic gene Bcl-2, and at the same time down-regulated expression of pro-apoptotic genes BAX and caspase-3 and the p53 gene. Pre- and post-treatment with LLE (250 mg/kg body weight) attenuated all these abnormalities. Histopathological observations verified the protective effect of LLE. Overall, the present data positively confirm the potent antitumor effect of L. speciosa leaves against lung tumorigenesis.
Collapse
Affiliation(s)
- Amria M. Mousa
- Biochemistry Department, National Research Centre, Dokki, Cairo 12622, Egypt; (A.M.M.); (N.M.E.-S.); (A.H.A.-H.); (S.K.H.)
| | - Nermin M. El-Sammad
- Biochemistry Department, National Research Centre, Dokki, Cairo 12622, Egypt; (A.M.M.); (N.M.E.-S.); (A.H.A.-H.); (S.K.H.)
| | - Abeer H. Abdel-Halim
- Biochemistry Department, National Research Centre, Dokki, Cairo 12622, Egypt; (A.M.M.); (N.M.E.-S.); (A.H.A.-H.); (S.K.H.)
| | - Nayera Anwar
- Pathology Department, National Cancer Institute, Cairo University, Cairo 12796, Egypt
| | - Wagdy K. B. Khalil
- Cell Biology Department, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Mahmoud Nawwar
- Phytochemistry and Plant Systematics Department, National Research Centre, Cairo 12622, Egypt
| | - Amani N. Hashim
- Phytochemistry and Plant Systematics Department, National Research Centre, Cairo 12622, Egypt
| | - Elsayed A. Elsayed
- Zoology Department, Bioproducts Research Chair, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Chemistry of Natural and Microbial Products Department, National Research Centre, Cairo 12622, Egypt
| | - Sherien K. Hassan
- Biochemistry Department, National Research Centre, Dokki, Cairo 12622, Egypt; (A.M.M.); (N.M.E.-S.); (A.H.A.-H.); (S.K.H.)
| |
Collapse
|
47
|
Araujo CDS, Brito LD, Tarifa MO, Silva NJFD, Rodrigues KS, Cavalcante DGSM, Gomes AS, Zocoler MA, Yoshihara E, Camparoto ML, Job AE, Kerche LE. Protective effects of bark ethanolic extract from Spondias dulcis Forst F. against DNA damage induced by benzo[a]pyrene and cyclophosphamide. Genet Mol Biol 2019; 42:643-654. [PMID: 31188923 PMCID: PMC6905452 DOI: 10.1590/1678-4685-gmb-2018-0038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 01/15/2019] [Indexed: 12/27/2022] Open
Abstract
This study evaluated the genotoxicity, mutagenicity, antigenotoxicity, and
antimutagenicity effects on biochemical parameters of oxidative stress of the
Spondias dulcis bark ethanolic extract on mice. The extract
was evaluated in the doses of 500, 1000, and 1500 mg/kg bw via gavage. To
evaluate the protective effects of the extract, benzo[a]pyrene
(B[a]P) and cyclophosphamide (CP) were chosen as DNA damage
inducers. Genotoxicity and antigenotoxicity were evaluated by the comet assay.
Cytotoxicity, mutagenicity, and antimutagenicity were evaluated by the
micronucleus test in bone marrow and peripheral blood. The biochemical
parameters of oxidative stress were evaluated by the quantification of catalase
activity (CAT) and reduced glutathione (GSH) in total blood, liver and kidney,
and malondialdehyde (MDA), in liver and kidney. No genotoxic, cytotoxic, or
mutagenic effect was found on mice exposed to the extract. The extract depleted
the number of damaged nucleoids in total blood and the number of micronucleus
(MN) in both cell types. The extract was able to increase CAT activity and GSH
levels and decrease MDA levels after treatment with B[a]P and CP. The results
indicate that the S. dulcis extract has potential to be used as
preventive compound against DNA damage caused by CP and B[a]P.
Collapse
Affiliation(s)
- Caroline de S Araujo
- Faculdade de Artes, Ciências, Letras e Educação, Universidade do Oeste Paulista, Presidente Prudente, SP, Brazil
| | - Lorrane D Brito
- Faculdade de Artes, Ciências, Letras e Educação, Universidade do Oeste Paulista, Presidente Prudente, SP, Brazil
| | - Marina O Tarifa
- Faculdade de Medicina, Universidade do Oeste Paulista, Presidente Prudente, SP, Brazil
| | | | - Karoline S Rodrigues
- Faculdade de Farmácia, Universidade do Oeste Paulista, Presidente Prudente, SP, Brazil
| | - Dalita G S M Cavalcante
- Departmento de Física, Química e Biologia, Universidade Estadual Paulista "Júlio de Mesquita Filho", Presidente Prudente, SP, Brazil
| | - Andressa S Gomes
- Departmento de Física, Química e Biologia, Universidade Estadual Paulista "Júlio de Mesquita Filho", Presidente Prudente, SP, Brazil
| | - Marcos A Zocoler
- Faculdade de Farmácia, Universidade do Oeste Paulista, Presidente Prudente, SP, Brazil
| | - Eidi Yoshihara
- Agência Paulista de Tecnologia dos Agronegócios (APTA), Presidente Prudente, SP, Brazil
| | - Marjori L Camparoto
- Faculdade de Medicina, Universidade do Oeste Paulista, Presidente Prudente, SP, Brazil
| | - Aldo E Job
- Departmento de Física, Química e Biologia, Universidade Estadual Paulista "Júlio de Mesquita Filho", Presidente Prudente, SP, Brazil
| | - Leandra E Kerche
- Faculdade de Artes, Ciências, Letras e Educação, Universidade do Oeste Paulista, Presidente Prudente, SP, Brazil.,Faculdade de Medicina, Universidade do Oeste Paulista, Presidente Prudente, SP, Brazil
| |
Collapse
|
48
|
Chang Y, Siddens LK, Heine LK, Sampson DA, Yu Z, Fischer KA, Löhr CV, Tilton SC. Comparative mechanisms of PAH toxicity by benzo[a]pyrene and dibenzo[def,p]chrysene in primary human bronchial epithelial cells cultured at air-liquid interface. Toxicol Appl Pharmacol 2019; 379:114644. [PMID: 31255691 DOI: 10.1016/j.taap.2019.114644] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/14/2019] [Accepted: 06/26/2019] [Indexed: 01/08/2023]
Abstract
Current assumption for assessing carcinogenic risk of polycyclic aromatic hydrocarbons (PAHs) is that they function through a common mechanism of action; however, recent studies demonstrate that PAHs can act through unique mechanisms potentially contributing to cancer outcomes in a non-additive manner. Using a primary human 3D bronchial epithelial culture (HBEC) model, we assessed potential differences in mechanism of toxicity for two PAHs, benzo[a]pyrene (BAP) and dibenzo[def,p]chrysene (DBC), compared to a complex PAH mixture based on short-term biosignatures identified from transcriptional profiling. Differentiated bronchial epithelial cells were treated with BAP (100-500 μg/ml), DBC (10 μg/ml), and coal tar extract (CTE 500-1500 μg/ml, SRM1597a) for 48 h and gene expression was measured by RNA sequencing or quantitative PCR. Comparison of BAP and DBC gene signatures showed that the majority of genes (~60%) were uniquely regulated by treatment, including signaling pathways for inflammation and DNA damage by DBC and processes for cell cycle, hypoxia and oxidative stress by BAP. Specifically, BAP upregulated targets of AhR, NRF2, and KLF4, while DBC downregulated these same targets, suggesting a chemical-specific pattern in transcriptional regulation involved in antioxidant response, potentially contributing to differences in PAH potency. Other processes were regulated in common by all PAH treatments, BAP, DBC and CTE, including downregulation of genes involved in cell adhesion and reduced functional measurements of barrier integrity. This work supports prior in vivo studies and demonstrates the utility of profiling short-term biosignatures in an organotypic 3D model to identify mechanisms linked to carcinogenic risk of PAHs in humans.
Collapse
Affiliation(s)
- Yvonne Chang
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR, USA; Superfund Research Program, Oregon State University, Corvallis, OR, USA
| | - Lisbeth K Siddens
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR, USA; Superfund Research Program, Oregon State University, Corvallis, OR, USA
| | - Lauren K Heine
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR, USA
| | - David A Sampson
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR, USA
| | - Zhen Yu
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR, USA
| | - Kay A Fischer
- College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - Christiane V Löhr
- College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - Susan C Tilton
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR, USA; Superfund Research Program, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
49
|
Zhu Y, Chen K, Ding Y, Situ D, Li Y, Long Y, Wang L, Ye J. Metabolic and proteomic mechanism of benzo[a]pyrene degradation by Brevibacillus brevis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 172:1-10. [PMID: 30665150 DOI: 10.1016/j.ecoenv.2019.01.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/07/2019] [Accepted: 01/10/2019] [Indexed: 06/09/2023]
Abstract
Benzo[a]pyrene (BaP) is a model compound of polycyclic aromatic hydrocarbons. The relationship between its toxicity and some target biomolecules has been investigated. To reveal the interactions of BaP biodegradation and metabolic network, BaP intermediates, proteome, carbon metabolism and ion transport were analyzed. The results show that 76% BaP was degraded by Brevibacillus brevis within 7 d through the cleavage of aromatic rings with the production of 1-naphthol and 2-naphthol. During this process, the expression of xylose isomerase was induced for xylose metabolism, whereas, α-cyclodextrin could no longer be metabolized. Lactic acid, acetic acid and oxalic acid at 0.1-1.2 mg dm-3 were released stemming from their enhanced biosynthesis in the pathways of pyruvate metabolism and citrate cycle, while 5-7 mg dm-3 of PO43- were transported for energy metabolism. The relative abundance of 43 proteins was significantly increased for pyruvate metabolism, citrate cycle, amino acid metabolism, purine metabolism, ribosome metabolism and protein synthesis.
Collapse
Affiliation(s)
- Yueping Zhu
- Technology Research Center for Petrochemical Resources Clean Utilization of Guangdong Province, Faculty of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China
| | - Kaiyun Chen
- Child Developmental-Behavioral Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Yingqi Ding
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, Guangdong, China
| | - Donglin Situ
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, Guangdong, China
| | - Yi Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, Guangdong, China
| | - Yan Long
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, Guangdong, China
| | - Lili Wang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, Guangdong, China
| | - Jinshao Ye
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, Guangdong, China.
| |
Collapse
|
50
|
Lu Q, Chen K, Long Y, Liang X, He B, Yu L, Ye J. Benzo(a)pyrene degradation by cytochrome P450 hydroxylase and the functional metabolism network of Bacillus thuringiensis. JOURNAL OF HAZARDOUS MATERIALS 2019; 366:329-337. [PMID: 30530025 DOI: 10.1016/j.jhazmat.2018.12.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/21/2018] [Accepted: 12/01/2018] [Indexed: 06/09/2023]
Abstract
The relationship between benzo(a)pyrene biodegradation and certain target biomolecules has been investigated. To regulate the degradation process, the associated metabolism network must be clarified. To this end, benzo(a)pyrene degradation, carbon substrate metabolism and exometabolomic mechanism of Bacillus thuringiensis were analyzed. Benzo(a)pyrene was degraded through hydroxylation catalyzed by cytochrome P450 hydroxylase. After the treatment of 0.5 mg L-1 of benzo(a)pyrene by 0.2 g L-1 of cells for 9 d, biosorption and degradation efficiencies were measured at approximately 90% and 80%, respectively. During this process, phospholipid synthesis, glycogen, asparagine, arginine, itaconate and xylose metabolism were significantly downregulated, while glycolysis, pentose phosphate pathway, citrate cycle, amino sugar and nucleotide sugar metabolism were significantly upregulated. These findings offer insight into the biotransformation regulation of polycyclic aromatic hydrocarbons.
Collapse
Affiliation(s)
- Qiying Lu
- College of Biology and Food Engineering, Guangdong University of Education, Guangzhou, 510303, Guangdong, China
| | - Kaiyun Chen
- Child Developmental-Behavioral Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Yan Long
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Xujun Liang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Baoyan He
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Lehuan Yu
- College of Biology and Food Engineering, Guangdong University of Education, Guangzhou, 510303, Guangdong, China
| | - Jinshao Ye
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|