1
|
Wang XA, Li HX, Zheng LL, Ma SJ, Wang PL, Zhao L, Chen HY. Development and identification of porcine monoclonal antibodies against PEDV from single B cells. Vet Immunol Immunopathol 2025; 285:110951. [PMID: 40424889 DOI: 10.1016/j.vetimm.2025.110951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 04/15/2025] [Accepted: 05/18/2025] [Indexed: 05/29/2025]
Abstract
Porcine epidemic diarrhea virus (PEDV) is a swine enteropathogenic coronavirus causing severe diarrhea and high mortality in neonatal piglets. Pigs of all ages are susceptible to PEDV, and the humoral immune response plays an important role in preventing PEDV infection. However, there is little information on monoclonal antibodies (mAbs) against PEDV derived from single B cells of pigs. In this study, we aimed to develop mAbs using antigen-specific single B cells from peripheral blood mononuclear cells (PBMCs) of pigs via fluorescence-activated cell sorting (FACS). Subsequently, the variable region genes of pig-derived mAbs were amplified and cloned into the plasmid pcDNA3.4 bearing the constant region gene of porcine-derived antibody. Pig-derived mAbs were expressed by transfecting the resultant antibody plasmids into HEK293F cells and validated using indirect Enzyme-linked immunosorbent assay (ELISA), indirect immunofluorescence assay (IFA), and Western blotting. The results showed 60 double-positive (antigen+ and IgG+) single B cells were obtained by flow sorting, of which 36 were positive for PEDV and 24 were positive for the N protein of PEDV. A total of 21 mAbs were expressed and purified. Indirect ELISA results showed that 20 bound specifically to PEDV, 19 recognized the N protein, and none reacted with S1D protein. Seven mAbs reacted with PEDV HN2021, as revealed by IFA. Western blotting showed that three N protein-specific mAbs identified linear epitopes, while the remaining 16 N protein-specific mAbs may recognize conformational epitopes. This study laid a foundation for the structural analysis of PEDV and the development of diagnostic reagents and antiviral drug.
Collapse
Affiliation(s)
- Xuan-Ang Wang
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, PR China
| | - Hong-Xuan Li
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, PR China
| | - Lan-Lan Zheng
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, PR China; Key Laboratory for Animal-derived Food Safety of Henan Province, Zhengzhou 450000, PR China
| | - Shi-Jie Ma
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, PR China; Key Laboratory for Animal-derived Food Safety of Henan Province, Zhengzhou 450000, PR China
| | - Ping-Li Wang
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, PR China.
| | - Li Zhao
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, PR China.
| | - Hong-Ying Chen
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, PR China; Key Laboratory for Animal-derived Food Safety of Henan Province, Zhengzhou 450000, PR China.
| |
Collapse
|
2
|
Duan H, Tang C, Han S, Yang N, Wang S, Gao F, Zhou Y, Tong G, Zhao K, Li L. Single-B-cell cloning and recombinant antibodies generation to analyze the antigenicity of porcine reproductive and respiratory syndrome virus nonstructural protein 12. Vet Microbiol 2025; 304:110506. [PMID: 40203677 DOI: 10.1016/j.vetmic.2025.110506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/03/2025] [Accepted: 04/06/2025] [Indexed: 04/11/2025]
Abstract
The prevalence and variation of porcine reproductive and respiratory syndrome virus (PRRSV) in China are increasing. The rapid preparation of essential antibodies will effectively reveal the antigenicity, epitopes, and intracellular distribution of viral proteins. Single-B-cell antibody technology is a novel method for screening diverse functional monoclonal antibodies (mAbs). Herein, we successfully expressed PRRSV nonstructural protein 12 (Nsp12) in suspension-cultured Chinese hamster ovary (CHO) cells. Using single-B-cell antibody technology, we utilized fluorescence-activated cell sorting to collect individual immune B cells and prepared single-cell reverse transcription-polymerase chain reaction to clone the variable region of immunoglobulin heavy chain (IgH) and immunoglobulin light chain (IgK). Two recombinant mAbs were generated via transient transfection of CHO cells with the corresponding expression plasmids of IgH and IgK. A novel linear epitope (104YEFTGNGEDW113) of Nsp12 was identified using mAb1N14. This epitope was conserved in lineages 1, 5, and 8 of PRRSV-2 and was located on the surface of the Nsp12 spatial structure. The amino acid mutation in Nsp12 of lineage 3 PRRSV-2 affected the antigenicity of this linear epitope. A conserved conformational epitope was identified using mAb2S18, and the spatial structure of Nsp12 showed high similarity between PRRSV-1 and different lineages of PRRSV-2. During PRRSV infection, Nsp12 was distributed in the cytoplasm and accumulated in the nucleus. Overall, antigenicity analysis and novel epitope identification contributed to the in-depth exploration of the biological function of Nsp12 and will facilitate the development of detection assays and antiviral strategies.
Collapse
Affiliation(s)
- Hongyong Duan
- College of Life Science, Henan Normal University, Xinxiang 453007, PR China; Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Chaozhi Tang
- College of Life Science, Henan Normal University, Xinxiang 453007, PR China
| | - Song Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Nan Yang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Shumao Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Fei Gao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Yanjun Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Guangzhi Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Kuan Zhao
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071001, PR China.
| | - Liwei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou 225009, PR China.
| |
Collapse
|
3
|
Sheng L, Sheng K, Lü P. Applications of Nanobodies in Biological Imaging. Cancer Biother Radiopharm 2025. [PMID: 40274307 DOI: 10.1089/cbr.2025.0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025] Open
Abstract
Background: Nanobodies (Nbs), derived from Camelidae heavy-chain antibodies, are single-domain fragments (15 kDa) with high antigen-binding specificity, enhanced tissue penetration, and low immunogenicity. These attributes address limitations of conventional antibodies, positioning Nbs as pivotal tools for targeted molecular imaging in diagnostics and therapeutics. Methods: Nbs are screened through phage/mRNA display or single B-cell sequencing, expressed in prokaryotic or yeast systems, and humanized via CDR grafting. Functional probes are engineered by conjugating Nbs with radionuclides (68Ga, 99mTc) or fluorophores (IRDye 800CW) for compatibility with PET, SPECT, NIRF, and ultrasound modalities. Results: Clinical trials validated Nb efficacy: 68Ga-HER2-Nb PET/CT achieved tumor-specific uptake in HER2+ cancers (NCT04467515), while 99mTc-PD-L1-Nb enabled quantitative SPECT-guided immunotherapy in NSCLC. NIRF-Nb conjugates (e.g., 11A4-800CW) enhanced intraoperative tumor delineation in murine models. Dual-targeted ultrasound microbubbles demonstrated multi-biomarker imaging via acoustic pressure modulation. Conclusion: Nbs advance biological imaging through superior resolution and rapid pharmacokinetics. Challenges persist in optimizing probe stability, minimizing immunogenicity, and scaling production. Future priorities include integrating multi-modal platforms, expanding applications to neurodegenerative disorders, and refining personalized diagnostic paradigms, underscoring their transformative potential in precision medicine.
Collapse
Affiliation(s)
- Liangjü Sheng
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Kai Sheng
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Peng Lü
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
4
|
Shi P, Wang Z, Sheng W, Wang Z, Wang S, Zhang C, Zhao L, Zou J, Zhou H. Whole-canine neutralizing antibodies generated by single B cell antibody technology elicit therapeutic protection against canine distemper virus infection. Vet Microbiol 2025; 302:110412. [PMID: 39893954 DOI: 10.1016/j.vetmic.2025.110412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/23/2025] [Accepted: 01/25/2025] [Indexed: 02/04/2025]
Abstract
Canine distemper virus (CDV) causes a highly contagious and fatal disease in domestic and wild carnivores. Currently, vaccination is the primary method for preventing canine distemper. However, incidents of vaccine immunization failures continue to be reported. There are no specific and effective treatment agents available for canine distemper infection. Neutralizing antibodies offer a potential approach for the treatment of viral diseases. In this study, single B cell antibody technology was applied to obtain whole-canine antibodies against CDV. 7 monoclonal antibodies were screened and showed high binding affinity to CDV hemagglutinin (H) protein, with D16 and F53 exhibited high specificity and neutralizing activity against CDV. Furthermore, D16 exhibited effective therapeutic potential in dogs subjected to lethal dose CDV attacks in vivo. In conclusion, our study offers an alternative approach for acquiring neutralizing antibody and provides a promising new strategy for the treatment of CDV infection.
Collapse
Affiliation(s)
- Pengfei Shi
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Zhihao Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Wei Sheng
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Zhichen Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Sheng Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Chengguang Zhang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Ling Zhao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, Hubei, PR China; Hubei Hongshan Laboratory, Wuhan, Hubei, PR China
| | - Jiahui Zou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China.
| | - Hongbo Zhou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China; Department of Animal Science, Tibet Agricultural and Animal Husbandry College, Nyingchi, Tibet, PR China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, Hubei, PR China; Hubei Hongshan Laboratory, Wuhan, Hubei, PR China.
| |
Collapse
|
5
|
Gencsoy Eker S, Inetas Yengin G, Tatar C, Oktem G. A Comprehensive Review of the Mechanisms and Clinical Development of Monoclonal Antibodies in Cancer Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1479:181-203. [PMID: 39666264 DOI: 10.1007/5584_2024_838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Cancer is still the disease that ranks first in human mortality in the twenty-first century. In the last 20 years, the concept of molecular targeted therapy has come to the fore with the use of small molecule agents or signal transduction inhibitors that show anticancer effects for certain types of cancer. Monoclonal antibodies, which have a therapeutic effect, especially by providing signal transduction inhibition, are used clinically as first-line treatment in various types of cancer. Molecular targeted therapies are critical for eliminating the adverse effects and drug resistance problems that occur in traditional cancer treatments. This review summarizes current information on various targeted therapeutic agents, including the structure and classification of monoclonal antibodies, their production methods and mechanisms of action, the monoclonal antibodies used in clinical trials, the complement system mechanism and cancer relationship, and the relationship between complement-dependent cytotoxicity and monoclonal antibodies.
Collapse
Affiliation(s)
- Selen Gencsoy Eker
- Department of Stem Cell, Graduate School of Health Sciences, Ege University, Izmir, Turkey
| | - Gizem Inetas Yengin
- Department of Genetics and Bioengineering, Yeditepe University, Istanbul, Turkey
| | - Cansu Tatar
- Department of Molecular Biology and Genetics, Yildiz Technical University, Istanbul, Turkey
| | - Gulperi Oktem
- Department of Stem Cell, Graduate School of Health Sciences, Ege University, Izmir, Turkey.
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Izmir, Turkey.
| |
Collapse
|
6
|
Rubben K, Vander Plaetsen AS, Almey R, Tytgat O, Deserranno K, Debaere J, Acar DD, Meuleman P, Deforce D, Van Nieuwerburgh F. High-throughput single-cell screening of viable hybridomas and patient-derived antibody-secreting cells using punchable microwells. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2024; 52:426-436. [PMID: 39206935 DOI: 10.1080/21691401.2024.2395815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/29/2024] [Accepted: 07/12/2024] [Indexed: 09/04/2024]
Abstract
Monoclonal antibodies (mAbs) hold significant potential as therapeutic agents and are invaluable tools in biomedical research. However, the lack of efficient high-throughput screening methods for single antibody-secreting cells (ASCs) has limited the diversity of available antibodies. Here, we introduce a novel, integrated workflow employing self-seeding microwells and an automated microscope-puncher system for the swift, high-throughput screening and isolation of single ASCs. The system allows for the individual screening and isolation of up to 6,400 cells within approximately one day, with the opportunity for parallelization and efficient upscaling. We successfully applied this workflow to both hybridomas and human patient-derived B cells, enabling subsequent clonal expansion or antibody sequence analysis through an optimized, single-cell nested reverse transcription-polymerase chain reaction (RT-PCR) procedure. By providing a time-efficient and more streamlined single ASC screening and isolation process, our workflow holds promise for driving forward progress in mAb development.
Collapse
Affiliation(s)
- Kaat Rubben
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Ann-Sophie Vander Plaetsen
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Ruben Almey
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Olivier Tytgat
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Koen Deserranno
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Jamie Debaere
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Delphine Diana Acar
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Philip Meuleman
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
7
|
Omejec S, Tompa M, Kovač V, Šerbec VČ. Optimizing the method for expressing human monoclonal antibodies from a single peripheral blood cell from vaccinated donors. J Immunol Methods 2024; 534:113747. [PMID: 39214236 DOI: 10.1016/j.jim.2024.113747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Human monoclonal antibodies are essential diagnostic and research tools and one of the most promising therapeutics. In the past years, single B cell technologies have evolved and over-come conventional methods' limitations, enabling the isolation of scarce B cell populations with desirable characteristics. In this study, we describe a simple and efficient method to isolate anti-gen-specific plasmablasts and memory B cells from hepatitis B virus vaccinated donors' peripheral blood and consequently amplification of immunoglobulin variable region genes. Amplified immunoglobulin variable region genes were cloned into expression vectors and transfected into a human cell line to produce human recombinant monoclonal antibodies. Major challenges in this protocol were isolation of antigen-specific B cells based on surface markers, recovering mRNA from a single cell for efficient amplification, and cloning the correct insert into a desired expression vector. The essential feature of our protocol was the separation of B cells from peripheral blood mononuclear cells before sorting. We identified antigen-specific binding B cells based on the expression of surface markers CD19, CD27, IgG, and binding to hepatitis B surface antigen. Efficient single-cell reverse transcription and polymerase chain reaction (RT-PCR) were achieved using a random primer mix and Kapa Hifi Hot Start Polymerase. Amplification efficiency differed among heavy and light chain variable regions (highest at heavy chain (68 %) and lowest at lambda light chain (22 %)). After co-transfection of HEK293T/17 with successfully cloned heavy and light chain vectors, 70 % of transfected cells produced recombinant monoclonal antibodies at a concentration ∼ 4 μg/ml and 7 % of them showed binding to HBsAg. Human monoclonal antibodies from peripheral blood have advantages over antibodies of mouse origin or phage display libraries, because of their high specificity and self-tolerance. Using the described protocol, we can generate fully human monoclonal antibodies to any other antigen for application in immunotherapy or basic research.
Collapse
Affiliation(s)
- Sandra Omejec
- Centre for Immunology and Developement, Blood Transfusion Centre of Slovenia, Šlajmerjeva 6, SI-1000 Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia.
| | - Manuela Tompa
- Centre for Immunology and Developement, Blood Transfusion Centre of Slovenia, Šlajmerjeva 6, SI-1000 Ljubljana, Slovenia.
| | - Valerija Kovač
- Centre for Immunology and Developement, Blood Transfusion Centre of Slovenia, Šlajmerjeva 6, SI-1000 Ljubljana, Slovenia.
| | - Vladka Čurin Šerbec
- Centre for Immunology and Developement, Blood Transfusion Centre of Slovenia, Šlajmerjeva 6, SI-1000 Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia.
| |
Collapse
|
8
|
Aboul-Ella H, Gohar A, Ali AA, Ismail LM, Mahmoud AEER, Elkhatib WF, Aboul-Ella H. Monoclonal antibodies: From magic bullet to precision weapon. MOLECULAR BIOMEDICINE 2024; 5:47. [PMID: 39390211 PMCID: PMC11467159 DOI: 10.1186/s43556-024-00210-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
Monoclonal antibodies (mAbs) are used to prevent, detect, and treat a broad spectrum of non-communicable and communicable diseases. Over the past few years, the market for mAbs has grown exponentially with an expected compound annual growth rate (CAGR) of 11.07% from 2024 (237.64 billion USD estimated at the end of 2023) to 2033 (679.03 billion USD expected by the end of 2033). Ever since the advent of hybridoma technology introduced in 1975, antibody-based therapeutics were realized using murine antibodies which further progressed into humanized and fully human antibodies, reducing the risk of immunogenicity. Some benefits of using mAbs over conventional drugs include a drastic reduction in the chances of adverse reactions, interactions between drugs, and targeting specific proteins. While antibodies are very efficient, their higher production costs impede the process of commercialization. However, their cost factor has been improved by developing biosimilar antibodies as affordable versions of therapeutic antibodies. Along with the recent advancements and innovations in antibody engineering have helped and will furtherly help to design bio-better antibodies with improved efficacy than the conventional ones. These novel mAb-based therapeutics are set to revolutionize existing drug therapies targeting a wide spectrum of diseases, thereby meeting several unmet medical needs. This review provides comprehensive insights into the current fundamental landscape of mAbs development and applications and the key factors influencing the future projections, advancement, and incorporation of such promising immunotherapeutic candidates as a confrontation approach against a wide list of diseases, with a rationalistic mentioning of any limitations facing this field.
Collapse
Affiliation(s)
- Hassan Aboul-Ella
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Asmaa Gohar
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, Suez, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University (ACU), Giza, Egypt
- Egyptian Drug Authority (EDA), Giza, Egypt
| | - Aya Ahmed Ali
- Department of Microbiology and Immunology, Faculty of Pharmacy, Sinai University, Sinai, Egypt
| | - Lina M Ismail
- Department of Biotechnology and Molecular Chemistry, Faculty of Science, Cairo University, Giza, Egypt
- Creative Egyptian Biotechnologists (CEB), Giza, Egypt
| | | | - Walid F Elkhatib
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, Suez, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Heba Aboul-Ella
- Department of Pharmacognosy, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University (ECU), Cairo, Egypt
- Scientific Research Group in Egypt (SRGE), Cairo, Egypt
| |
Collapse
|
9
|
Schreiber S, Dressler LS, Loffredo-Verde E, Asen T, Färber S, Wang W, Groll T, Chakraborty A, Kolbe F, Kreer C, Kosinska AD, Simon S, Urban S, Klein F, Riddell SR, Protzer U. CARs derived from broadly neutralizing, human monoclonal antibodies identified by single B cell sorting target hepatitis B virus-positive cells. Front Immunol 2024; 15:1340619. [PMID: 38711498 PMCID: PMC11072186 DOI: 10.3389/fimmu.2024.1340619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/18/2024] [Indexed: 05/08/2024] Open
Abstract
To design new CARs targeting hepatitis B virus (HBV), we isolated human monoclonal antibodies recognizing the HBV envelope proteins from single B cells of a patient with a resolved infection. HBV-specific memory B cells were isolated by incubating peripheral blood mononuclear cells with biotinylated hepatitis B surface antigen (HBsAg), followed by single-cell flow cytometry-based sorting of live, CD19+ IgG+ HBsAg+ cells. Amplification and sequencing of immunoglobulin genes from single memory B cells identified variable heavy and light chain sequences. Corresponding immunoglobulin chains were cloned into IgG1 expression vectors and expressed in mammalian cells. Two antibodies named 4D06 and 4D08 were found to be highly specific for HBsAg, recognized a conformational and a linear epitope, respectively, and showed broad reactivity and neutralization capacity against all major HBV genotypes. 4D06 and 4D08 variable chain fragments were cloned into a 2nd generation CAR format with CD28 and CD3zeta intracellular signaling domains. The new CAR constructs displayed a high functional avidity when expressed on primary human T cells. CAR-grafted T cells proved to be polyfunctional regarding cytokine secretion and killed HBV-positive target cells. Interestingly, background activation of the 4D08-CAR recognizing a linear instead of a conformational epitope was consistently low. In a preclinical model of chronic HBV infection, murine T cells grafted with the 4D06 and the 4D08 CAR showed on target activity indicated by a transient increase in serum transaminases, and a lower number of HBV-positive hepatocytes in the mice treated. This study demonstrates an efficient and fast approach to identifying pathogen-specific monoclonal human antibodies from small donor cell numbers for the subsequent generation of new CARs.
Collapse
Affiliation(s)
- Sophia Schreiber
- Institute of Virology, School of Medicine, Technical University of Munich / Helmholtz Munich, Munich, Germany
- German Center for Infection Research, Munich Partner Site, Munich, Germany
| | - Lisa S. Dressler
- Institute of Virology, School of Medicine, Technical University of Munich / Helmholtz Munich, Munich, Germany
| | - Eva Loffredo-Verde
- Institute of Virology, School of Medicine, Technical University of Munich / Helmholtz Munich, Munich, Germany
| | - Theresa Asen
- Institute of Virology, School of Medicine, Technical University of Munich / Helmholtz Munich, Munich, Germany
| | - Stephanie Färber
- Institute of Virology, School of Medicine, Technical University of Munich / Helmholtz Munich, Munich, Germany
| | - Wenshi Wang
- Department of Infectious Diseases, Molecular Virology, University Hospital, Heidelberg, Germany
| | - Tanja Groll
- Institute of Pathology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Anindita Chakraborty
- Institute of Virology, School of Medicine, Technical University of Munich / Helmholtz Munich, Munich, Germany
| | - Fenna Kolbe
- Institute of Virology, School of Medicine, Technical University of Munich / Helmholtz Munich, Munich, Germany
| | - Christoph Kreer
- Laboratory of Experimental Immunology, Institute of Virology, University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Anna D. Kosinska
- Institute of Virology, School of Medicine, Technical University of Munich / Helmholtz Munich, Munich, Germany
- German Center for Infection Research, Munich Partner Site, Munich, Germany
| | - Sylvain Simon
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, University Hospital, Heidelberg, Germany
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Stanley R. Riddell
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Ulrike Protzer
- Institute of Virology, School of Medicine, Technical University of Munich / Helmholtz Munich, Munich, Germany
- German Center for Infection Research, Munich Partner Site, Munich, Germany
| |
Collapse
|
10
|
Strazza V, Rossi M, Avati A, Tiseo G, Falcone M, Cusi MG, Menichetti F, Ricciardi-Castagnoli P, Tinti C, Pileri P. Rapid generation of human recombinant monoclonal antibodies from antibody-secreting cells using ferrofluid-based technology. Front Immunol 2024; 15:1341389. [PMID: 38698845 PMCID: PMC11064063 DOI: 10.3389/fimmu.2024.1341389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/06/2024] [Indexed: 05/05/2024] Open
Abstract
Monoclonal antibodies (mAbs) are one of the most important classes of biologics with high therapeutic and diagnostic value, but traditional methods for mAbs generation, such as hybridoma screening and phage display, have limitations, including low efficiency and loss of natural chain pairing. To overcome these challenges, novel single B cell antibody technologies have emerged, but they also have limitations such as in vitro differentiation of memory B cells and expensive cell sorters. In this study, we present a rapid and efficient workflow for obtaining human recombinant monoclonal antibodies directly from single antigen-specific antibody secreting cells (ASCs) in the peripheral blood of convalescent COVID-19 patients using ferrofluid technology. This process allows the identification and expression of recombinant antigen-specific mAbs in less than 10 days, using RT-PCR to generate linear Ig heavy and light chain gene expression cassettes, called "minigenes", for rapid expression of recombinant antibodies without cloning procedures. This approach has several advantages. First, it saves time and resources by eliminating the need for in vitro differentiation. It also allows individual antigen-specific ASCs to be screened for effector function prior to recombinant antibody cloning, enabling the selection of mAbs with desired characteristics and functional activity. In addition, the method allows comprehensive analysis of variable region repertoires in combination with functional assays to evaluate the specificity and function of the generated antigen-specific antibodies. Our approach, which rapidly generates recombinant monoclonal antibodies from single antigen-specific ASCs, could help to identify functional antibodies and deepen our understanding of antibody dynamics in the immune response through combined antibody repertoire sequence analysis and functional reactivity testing.
Collapse
Affiliation(s)
- Veronica Strazza
- Hyper Antibody Research & Development (HARD) -Lab, Toscana Life Sciences Foundation, Siena, Italy
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Marco Rossi
- Hyper Antibody Research & Development (HARD) -Lab, Toscana Life Sciences Foundation, Siena, Italy
| | - Andrea Avati
- Hyper Antibody Research & Development (HARD) -Lab, Toscana Life Sciences Foundation, Siena, Italy
| | - Giusy Tiseo
- Infectious Diseases Unit, Department of Clinical and Experimental Medicine, Azienda Ospedaliero Universitaria Pisana, University of Pisa, Pisa, Italy
| | - Marco Falcone
- Infectious Diseases Unit, Department of Clinical and Experimental Medicine, Azienda Ospedaliero Universitaria Pisana, University of Pisa, Pisa, Italy
| | - Maria Grazia Cusi
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Francesco Menichetti
- Infectious Diseases Unit, Department of Clinical and Experimental Medicine, Azienda Ospedaliero Universitaria Pisana, University of Pisa, Pisa, Italy
| | | | - Cristina Tinti
- Hyper Antibody Research & Development (HARD) -Lab, Toscana Life Sciences Foundation, Siena, Italy
| | - Piero Pileri
- Hyper Antibody Research & Development (HARD) -Lab, Toscana Life Sciences Foundation, Siena, Italy
| |
Collapse
|
11
|
Jiang M, Wang Y, Yu X, He Y, Zheng X, Qin J, Gu Y, Li X, Shi Y, Ma X, Li J, Pu K. An image-based Abplex method for high-throughput GPCRs antibody discovery. Biotechnol J 2024; 19:e2300336. [PMID: 37941478 DOI: 10.1002/biot.202300336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 11/10/2023]
Abstract
As the field of antibody therapeutics advances rapidly, membrane proteins, particularly G protein-coupled receptors (GPCRs), have emerged as highly sought-after drug targets. However, the challenges associated with extracting membrane proteins have created a demand for effective antibody screening systems targeting these proteins. In this study, we propose developing an innovative antibody screening strategy (Abplex) based on high-content imaging. This approach leverages intact cells that express target membrane proteins, facilitating the presentation of proteins in their native conformation. Furthermore, it acquires both specific and non-specific binding signals in a single well, thereby bolstering the robustness of the outcomes. The technique involves just one step and can be completed within 50 min, enabling the analysis of a single sample in just one second. The amalgamation of dependable experimental findings, a simplified workflow, reduced hands-on time, and a swift analytical pace positions our method for superior throughput and precision when juxtaposed with traditional techniques such as CbELISA and FACS. Moreover, we introduce the concept of cell barcoding, wherein cells are labeled with different fluorescence spatial patterns. This feature allows for multiplexed detection to meet the needs of various experiments. The characteristics of Abplex promise to expedite GPCR-targeting antibody discovery, advance therapeutics and enable new disease treatments.
Collapse
Affiliation(s)
- Min Jiang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, China
- Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, China
| | - Yuanyuan Wang
- Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, China
| | - Xinke Yu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) & Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Yiran He
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, China
- Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, China
| | - Xuewen Zheng
- Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, China
| | - Jingyi Qin
- Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, China
| | - Yayun Gu
- Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, China
| | - Xin Li
- Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, China
| | - Ying Shi
- Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, China
| | - Xiaochuan Ma
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) & Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Jiong Li
- Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, China
| | - Kefeng Pu
- Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, China
| |
Collapse
|
12
|
Wang S, Wang Z, Li Y, Tu S, Zou J, Cheng Y, Zhang H, Suolang S, Zhou H. Generation of whole-porcine neutralizing antibodies of an alphacoronavirus by single B cell antibody technology. Antiviral Res 2023; 220:105754. [PMID: 37967753 DOI: 10.1016/j.antiviral.2023.105754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/17/2023] [Accepted: 11/08/2023] [Indexed: 11/17/2023]
Abstract
Porcine epidemic diarrhea virus (PEDV) is an alphacoronavirus that causes severe morbidity and mortality in piglets, resulting in substantial economic losses to the swine industry. While vaccination is currently the most effective preventive measure, existing vaccines fail to provide complete and reliable protection against PEDV infection. Consequently, there is a need to explore alternative or complementary strategies to address this issue. In this study, we utilized single B cell antibody technology to obtain a potent neutralizing antibody, C62, which specifically targets the receptor binding domain S1B of the PEDV-S1 protein. C62 exhibited potent neutralizing activity against PEDV and inhibited viral attachment to the cell surface in vitro. Furthermore, the effectiveness of C62 in mitigating PEDV infection was demonstrated in vivo, as evidenced by the delayed onset of diarrhea and reduced mortality rates observed in piglets following oral administration of C62. Our study provides an alternative approach for controlling PEDV infection. Meanwhile, C62 holds promise as a therapeutic biological agent to complement existing vaccines. More importantly, our study forms a solid foundation for the development of whole-porcine neutralizing antibodies against other swine coronaviruses, thus contributing to the overall improvement of swine health.
Collapse
Affiliation(s)
- Sheng Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China.
| | - Zhichen Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China.
| | - Ying Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China.
| | - Shaoyu Tu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China.
| | - Jiahui Zou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China.
| | - Yanqing Cheng
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China.
| | - Huawei Zhang
- Wuhan Keqian Biological Co., Ltd, Wuhan, Hubei, PR China.
| | - Sizhu Suolang
- Department of Animal Science, Tibet Agricultural and Animal Husbandry College, Nyingchi, Tibet, PR China.
| | - Hongbo Zhou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China; Department of Animal Science, Tibet Agricultural and Animal Husbandry College, Nyingchi, Tibet, PR China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, Hubei, PR China; Hubei Hongshan Laboratory, Wuhan, Hubei, PR China.
| |
Collapse
|
13
|
Singh R, Chandley P, Rohatgi S. Recent Advances in the Development of Monoclonal Antibodies and Next-Generation Antibodies. Immunohorizons 2023; 7:886-897. [PMID: 38149884 PMCID: PMC10759153 DOI: 10.4049/immunohorizons.2300102] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/07/2023] [Indexed: 12/28/2023] Open
Abstract
mAbs are highly indispensable tools for diagnostic, prophylactic, and therapeutic applications. The first technique, hybridoma technology, was based on fusion of B lymphocytes with myeloma cells, which resulted in generation of single mAbs against a specific Ag. Along with hybridoma technology, several novel and alternative methods have been developed to improve mAb generation, ranging from electrofusion to the discovery of completely novel technologies such as B cell immortalization; phage, yeast, bacterial, ribosome, and mammalian display systems; DNA/RNA encoded Abs; single B cell technology; transgenic animals; and artificial intelligence/machine learning. This commentary outlines the evolution, methodology, advantages, and limitations of various mAb production techniques. Furthermore, with the advent of next-generation Ab technologies such as single-chain variable fragments, nanobodies, bispecific Abs, Fc-engineered Abs, Ab biosimilars, Ab mimetics, and Ab-drug conjugates, the healthcare and pharmaceutical sectors have become resourceful to develop highly specific mAb treatments against various diseases such as cancer and autoimmune and infectious diseases.
Collapse
Affiliation(s)
- Rohit Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Pankaj Chandley
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Soma Rohatgi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| |
Collapse
|
14
|
Wang L, Madera R, Li Y, Gladue DP, Borca MV, McIntosh MT, Shi J. Development of Porcine Monoclonal Antibodies with In Vitro Neutralizing Activity against Classical Swine Fever Virus from C-Strain E2-Specific Single B Cells. Viruses 2023; 15:v15040863. [PMID: 37112845 PMCID: PMC10145741 DOI: 10.3390/v15040863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023] Open
Abstract
Neutralizing antibodies (nAbs) can be used before or after infection to prevent or treat viral diseases. However, there are few efficacious nAbs against classical swine fever virus (CSFV) that have been produced, especially the porcine-originated nAbs. In this study, we generated three porcine monoclonal antibodies (mAbs) with in vitro neutralizing activity against CSFV, aiming to facilitate the development of passive antibody vaccines or antiviral drugs against CSFV that offer the advantages of stability and low immunogenicity. Pigs were immunized with the C-strain E2 (CE2) subunit vaccine, KNB-E2. At 42 days post vaccination (DPV), CE2-specific single B cells were isolated via fluorescent-activated cell sorting (FACS) baited by Alexa Fluor™ 647-labeled CE2 (positive), goat anti-porcine IgG (H + L)-FITC antibody (positive), PE mouse anti-pig CD3ε (negative) and PE mouse anti-pig CD8a (negative). The full coding region of IgG heavy (H) chains and light (L) chains was amplified by reverse transcription-polymerase chain reaction (RT-PCR). Overall, we obtained 3 IgG H chains, 9 kappa L chains and 36 lambda L chains, which include three paired chains (two H + κ and one H + λ). CE2-specific mAbs were successfully expressed in 293T cells with the three paired chains. The mAbs exhibit potent neutralizing activity against CSFVs. They can protect ST cells from infections in vitro with potent IC50 values from 14.43 µg/mL to 25.98 µg/mL for the CSFV C-strain, and 27.66 µg/mL to 42.61 µg/mL for the CSFV Alfort strain. This study is the first report to describe the amplification of whole-porcine IgG genes from single B cells of KNB-E2-vaccinated pig. The method is versatile, sensitive, and reliable. The generated natural porcine nAbs can be used to develop long-acting and low-immunogenicity passive antibody vaccine or anti-CSFV agents for CSF control and prevention.
Collapse
Affiliation(s)
- Lihua Wang
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (R.M.); (Y.L.)
- Correspondence: (L.W.); (J.S.); Tel.: +1-(785)-706-3796 (L.W.); +1-(785)-532-4506 (J.S.)
| | - Rachel Madera
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (R.M.); (Y.L.)
| | - Yuzhen Li
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (R.M.); (Y.L.)
| | - Douglas P. Gladue
- Department of Agriculture, Agricultural Research Service, Plum Island Animal Disease Center, Greenport, NY 11944, USA; (D.P.G.); (M.V.B.)
| | - Manuel V. Borca
- Department of Agriculture, Agricultural Research Service, Plum Island Animal Disease Center, Greenport, NY 11944, USA; (D.P.G.); (M.V.B.)
| | - Michael T. McIntosh
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32611, USA;
- Child Health Research Institute, Department of Pediatrics, University of Florida, Gainesville, FL 32611, USA
| | - Jishu Shi
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (R.M.); (Y.L.)
- Correspondence: (L.W.); (J.S.); Tel.: +1-(785)-706-3796 (L.W.); +1-(785)-532-4506 (J.S.)
| |
Collapse
|
15
|
Abstract
As a natural function, antibodies defend the host from infected cells and pathogens by recognizing their pathogenic determinants. Antibodies (Abs) gained wide acceptance with an enormous impact on human health and have predominantly captured the arena of bio-therapeutics and bio-diagnostics. The scope of Ab-based biologics is vast, and it is likely to solve many unmet clinical needs in future. The majority of attention is now devoted to developing innovative technologies for manufacturing and engineering Abs, better suited to satisfy human needs. The advent of Ab engineering technologies (AET) led to phenomenal developments leading to the generation of Abs-/Ab-derived molecules with desirable functional properties proportional to their expanding requirements. Evolution brought by AET, from the naturally occurring Ab forms to several advanced Ab formats and derivatives, was much needed as it is of great interest to the pharmaceutical industry. Thus, numerous advancements in AET have propelled success in therapeutic Ab development, along with the potential for ever-increasing improvements. Unique characteristics of Abs, such as its diversity, specificity, structural integrity and an array of possible applications, together inspire continuous innovation in the field. Overall, the AET could assist in conquer of several limitations of Abs in terms of their applicability in the field of therapeutics, diagnostics and research; AET has so far led to the production of next-generation Abs, which have revolutionized these arenas. Here in this review, we discuss the various distinguished engineering platforms for Ab development and the progress in modern therapeutics by the so-called "next-generation Abs."
Collapse
Affiliation(s)
- Divya Kandari
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Rakesh Bhatnagar
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.,Banaras Hindu University, Varanasi, India.,Amity University Rajasthan, Jaipur, India
| |
Collapse
|
16
|
Pirkalkhoran S, Grabowska WR, Kashkoli HH, Mirhassani R, Guiliano D, Dolphin C, Khalili H. Bioengineering of Antibody Fragments: Challenges and Opportunities. Bioengineering (Basel) 2023; 10:bioengineering10020122. [PMID: 36829616 PMCID: PMC9952581 DOI: 10.3390/bioengineering10020122] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Antibody fragments are used in the clinic as important therapeutic proteins for treatment of indications where better tissue penetration and less immunogenic molecules are needed. Several expression platforms have been employed for the production of these recombinant proteins, from which E. coli and CHO cell-based systems have emerged as the most promising hosts for higher expression. Because antibody fragments such as Fabs and scFvs are smaller than traditional antibody structures and do not require specific patterns of glycosylation decoration for therapeutic efficacy, it is possible to express them in systems with reduced post-translational modification capacity and high expression yield, for example, in plant and insect cell-based systems. In this review, we describe different bioengineering technologies along with their opportunities and difficulties to manufacture antibody fragments with consideration of stability, efficacy and safety for humans. There is still potential for a new production technology with a view of being simple, fast and cost-effective while maintaining the stability and efficacy of biotherapeutic fragments.
Collapse
Affiliation(s)
- Sama Pirkalkhoran
- School of Biomedical Science, University of West London, London W5 5RF, UK
| | | | | | | | - David Guiliano
- School of Life Science, College of Liberal Arts and Sciences, University of Westminster, London W1W 6UW, UK
| | - Colin Dolphin
- School of Biomedical Science, University of West London, London W5 5RF, UK
| | - Hanieh Khalili
- School of Biomedical Science, University of West London, London W5 5RF, UK
- School of Pharmacy, University College London, London WC1N 1AX, UK
- Correspondence:
| |
Collapse
|
17
|
Protective Human Anti-Poxvirus Monoclonal Antibodies Are Generated from Rare Memory B Cells Isolated by Multicolor Antigen Tetramers. Vaccines (Basel) 2022; 10:vaccines10071084. [PMID: 35891248 PMCID: PMC9319751 DOI: 10.3390/vaccines10071084] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 12/18/2022] Open
Abstract
Smallpox, an epidemic disease caused by Orthopoxvirus variola, was eradicated worldwide through immunization. The immunization against smallpox was discontinued in 1980. However, incidences of monkeypox virus infection in humans have occurred sporadically, and there is also great fear that engineered forms of poxvirus could be used as biological weapons. Therefore, monoclonal antibodies against poxvirus are urgently needed for the detection and treatment of poxvirus infection. The vaccinia virus’ extracellular envelope protein A33 is a potential candidate for a subunit vaccine. We used multi-fluorescence-labeled tetrameric A33 antigen to identify rare poxvirus-specific memory B cells from the PBMC of volunteers with vaccinia virus immunization more than 40 years ago. Despite extremely low frequencies of the poxvirus-specific memory B cells, we successfully sorted A33 tetramer-labeled single memory B cells and reconstructed the antibodies with the single-cell RT-PCR of the B-cell receptor. Among the monoclonal antibodies, one clone H2 exhibited high specificity and affinity with A33. H2 efficiently inhibited viral infection and spread in cells. Passive immunotherapy of H2 in mice protected mice from lethal infection when administered either prophylactically or therapeutically. These results suggest the potential of anti-A33 human-antibody-based detection and therapeutics for poxvirus infection.
Collapse
|
18
|
Fiebig D, Bogen JP, Carrara SC, Deweid L, Zielonka S, Grzeschik J, Hock B, Kolmar H. Streamlining the Transition From Yeast Surface Display of Antibody Fragment Immune Libraries to the Production as IgG Format in Mammalian Cells. Front Bioeng Biotechnol 2022; 10:794389. [PMID: 35620472 PMCID: PMC9127228 DOI: 10.3389/fbioe.2022.794389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 04/20/2022] [Indexed: 01/18/2023] Open
Abstract
Yeast-surface display (YSD) is commonly applied to screen Fab immune or naïve libraries for binders of predefined target molecules. However, reformatting of isolated variants represents a time-intensive bottleneck. Herein, we present a novel approach to facilitate a lean transition from antibody screening using YSD Fab libraries to the production of full-length IgG antibodies in Expi293-F cells. In this study, utilizing Golden Gate Cloning (GGC) and a bidirectional promoter system, an exemplary Fab-displaying YSD library was generated based on immunised transgene rats. After subsequent screening for antigen-specific antibody candidates by fluorescence-activated cell sorting (FACS), the Fab-encoding genes were subcloned into a bidirectional mammalian expression vector, exhibiting CH2-CH3 encoding genes, in a GGC-mediated, PCR-free manner. This novel, straightforward and time-saving workflow allows the VH/VL pairing to be preserved. This study resulted in antibody variants exhibiting suitable biophysical properties and covered a broad VH diversity after two rounds of FACS screening, as revealed by NGS analysis. Ultimately, we demonstrate that the implication of such a gene transfer system streamlines antibody hit discovery efforts, allowing the faster characterisation of antibodies against a plethora of targets that may lead to new therapeutic agents.
Collapse
Affiliation(s)
- David Fiebig
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany.,Ferring Darmstadt Laboratories, Darmstadt, Germany
| | - Jan P Bogen
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany.,Ferring Darmstadt Laboratories, Darmstadt, Germany
| | - Stefania C Carrara
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany.,Ferring Darmstadt Laboratories, Darmstadt, Germany
| | - Lukas Deweid
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany.,Ferring Darmstadt Laboratories, Darmstadt, Germany
| | - Stefan Zielonka
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
| | | | - Björn Hock
- Ferring Biologics Innovation Centre, Epalinges, Switzerland
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany.,Centre for Synthetic Biology, Technical University of Darmstadt, Darmstadt, Germany
| |
Collapse
|
19
|
Sun H, Hu N, Wang J. Application of Microfluidic Technology in Antibody Screening. Biotechnol J 2022; 17:e2100623. [PMID: 35481726 DOI: 10.1002/biot.202100623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/13/2022] [Accepted: 04/23/2022] [Indexed: 11/07/2022]
Abstract
Specific antibodies are widely used in the biomedical field. Current screening methods for specific antibodies mainly involve hybridoma technology and antibody engineering techniques. However, these technologies suffer from tedious screening processes, long preparation periods, high costs, low efficiency, and a degree of automation, which have become a bottleneck for the screening of specific antibodies. To overcome these difficulties, microfluidics has been developed as a promising technology for high-throughput screening and high purity of antibody. In this review, we provide an overview of the recent advances in microfluidic applications for specific antibody screening. In particular, hybridoma technology and four antibody engineering techniques (including phage display, single B cell antibody screening, antibody expression, and cell-free protein synthesis) based on microfluidics have been introduced, challenges, and the future outlook of these technologies are also discussed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Heng Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Ning Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Jianhua Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
20
|
Li Y, Li P, Ke Y, Yu X, Yu W, Wen K, Shen J, Wang Z. Monoclonal Antibody Discovery Based on Precise Selection of Single Transgenic Hybridomas with an On-Cell-Surface and Antigen-Specific Anchor. ACS APPLIED MATERIALS & INTERFACES 2022; 14:17128-17141. [PMID: 35385643 DOI: 10.1021/acsami.2c02299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hybridoma technology is widely used for monoclonal antibody (mAb) discovery, whereas the generation and identification of single hybridomas by the limiting dilution method (LDM) are tedious, inefficient, and time- and cost-consuming, especially for hapten molecules. Here, we describe a single transgenic hybridoma selection method (STHSM) that employs a transgenic Sp2/0 with an artificial and stable on-cell-surface anchor. The anchor was designed by combining the truncated variant transmembrane domain of EGFR with a biotin acceptor peptide AVI-tag, which was stably integrated into the genome of Sp2/0 via a piggyBac transposon. To ensure the subsequent precise selection of the hybridoma, the number of on-cell-surface anchors of the transfected Sp2/0 for fusion with immunized splenocytes was further normalized by flow cytometry at the single cell level. Then the single antigen-specific transgenic hybridomas were precisely identified and automatically selected using a CellenONE platform based on the fluorescence assay of the on-cell-surface anchor with the corresponding secreted antigen-specific mAb. The STHSM produced 579 single chloramphenicol (CAP)-specific transgenic hybridomas with a positive rate of 62.7% in 10 plates within 2 h by one-step selection, while only 12 single CAP-specific hybridomas with a positive rate of 6.3% in 40 plates required at least 32 days using the LDM with multiple subcloning steps. The best affinity of mAbs from the STHSM was more than 2-fold higher than that of those from the LDM, and this was mainly due to the preaffinity selection based on the on-cell-surface anchors and more interactions between the mAb and CAP. Then the mAbs from the STHSM and LDM were used to develop an immunoassay for CAP in spiked and natural biological samples. The method displayed satisfactory sensitivity, accuracy, and precision, demonstrating that the STHSM we developed is a versatile, practical, and efficient method for mAb discovery.
Collapse
Affiliation(s)
- Yuan Li
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, China
| | - Peipei Li
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, China
| | - Yuebin Ke
- Key Laboratory of Molecular Epidemiology of Shenzhen, Shenzhen Center for Disease Control and Prevention, 518000 Shenzhen, China
| | - Xuezhi Yu
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, China
| | - Wenbo Yu
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, China
| | - Kai Wen
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, China
| | - Jianzhong Shen
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, China
| | - Zhanhui Wang
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, China
| |
Collapse
|
21
|
Dou L, Zhang Y, Bai Y, Li Y, Liu M, Shao S, Li Q, Yu W, Shen J, Wang Z. Advances in Chicken IgY-Based Immunoassays for the Detection of Chemical and Biological Hazards in Food Samples. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:976-991. [PMID: 34990134 DOI: 10.1021/acs.jafc.1c06750] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
As antibodies are the main biological binder for hazards in food samples, their performance directly determines the sensitivity, specificity, and reproducibility of the developed immunoassay. The overwhelmingly used mammalian-derived antibodies usually suffer from complicated preparation, high cost, frequent bleeding of animals, and sometimes low titer and affinity. Chicken yolk antibody (IgY) has recently attracted considerable attention in the bioanalytical field owing to its advantages in productivity, animal welfare, comparable affinity, and high specificity. However, a broad understanding of the application of IgY-based immunoassay for the detection of chemical and biological hazards in food samples remains limited. Here, we briefly summarized the diversity, structure, and production of IgY including polyclonal and monoclonal formats. Then, a comprehensive overview of the principles, designs, and applications of IgY-based immunoassays for these hazards was reviewed and discussed, including food-borne pathogens, food allergens, veterinary drugs, pesticides, toxins, endocrine disrupting chemicals, etc. Thus, the trend of IgY-based immunoassays is expected, and more IgY types, higher sensitivity, and diversification of recognition-to-signal manners are necessary in the future.
Collapse
Affiliation(s)
- Leina Dou
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| | - Yingjie Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| | - Yuchen Bai
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| | - Yuan Li
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| | - Minggang Liu
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| | - Shibei Shao
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| | - Qing Li
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| | - Wenbo Yu
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| | - Jianzhong Shen
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| | - Zhanhui Wang
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| |
Collapse
|
22
|
Lu J, Ding J, Liu Z, Chen T. Retrospective analysis of the preparation and application of immunotherapy in cancer treatment (Review). Int J Oncol 2022; 60:12. [PMID: 34981814 PMCID: PMC8759346 DOI: 10.3892/ijo.2022.5302] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/20/2021] [Indexed: 12/11/2022] Open
Abstract
Monoclonal antibody technology plays a vital role in biomedical and immunotherapy, which greatly promotes the study of the structure and function of genes and proteins. To date, monoclonal antibodies have gone through four stages: murine monoclonal antibody, chimeric monoclonal antibody, humanised monoclonal antibody and fully human monoclonal antibody; thousands of monoclonal antibodies have been used in the fields of biology and medicine, playing a special role in the pathogenesis, diagnosis and treatment of disease. In this review, we compare the advantages and disadvantages of hybridoma technology, phage display technology, ribosome display technology, transgenic mouse technology, single B cell monoclonal antibody generation technologies, and forecast the promising applications of these technologies in clinical medicine, disease diagnosis and tumour treatment.
Collapse
Affiliation(s)
- Jiachen Lu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jianing Ding
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhaoxia Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Tingtao Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
23
|
Zhou D, Zhou R, Chen Z. Human neutralizing antibodies for SARS-CoV-2 prevention and immunotherapy. IMMUNOTHERAPY ADVANCES 2021; 2:ltab027. [PMID: 35915816 PMCID: PMC8755319 DOI: 10.1093/immadv/ltab027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/29/2021] [Indexed: 11/14/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19). SARS-CoV-2 has been spreading worldwide since December 2019, resulting in the ongoing COVID-19 pandemic with 237 million infections and 4.8 million deaths by 11 October 2021. While there are great efforts of global vaccination, ending this pandemic has been challenged by issues of exceptionally high viral transmissibility, re-infection, vaccine-breakthrough infection, and immune escape variants of concern. Besides the record-breaking speed of vaccine research and development, antiviral drugs including SARS-CoV-2-specific human neutralizing antibodies (HuNAbs) have been actively explored for passive immunization. In support of HuNAb-based immunotherapy, passive immunization using convalescent patients' plasma has generated promising evidence on clinical benefits for both mild and severe COVID-19 patients. Since the source of convalescent plasma is limited, the discovery of broadly reactive HuNAbs may have significant impacts on the fight against the COVID-19 pandemic. In this review, therefore, we discuss the current technologies of gene cloning, modes of action, in vitro and in vivo potency and breadth, and clinical development for potent SARS-CoV-2-specific HuNAbs.
Collapse
Affiliation(s)
- Dongyan Zhou
- AIDS Institute and Department of Microbiology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR, People’s Republic of China
| | - Runhong Zhou
- AIDS Institute and Department of Microbiology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Zhiwei Chen
- AIDS Institute and Department of Microbiology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People’s Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR, People’s Republic of China
| |
Collapse
|
24
|
Ghanemi A, Yoshioka M, St-Amand J. Impact of Adiposity and Fat Distribution, Rather Than Obesity, on Antibodies as an Illustration of Weight-Loss-Independent Exercise Benefits. MEDICINES 2021; 8:medicines8100057. [PMID: 34677486 PMCID: PMC8537631 DOI: 10.3390/medicines8100057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/28/2021] [Accepted: 10/02/2021] [Indexed: 12/12/2022]
Abstract
Obesity represents a risk factor for a variety of diseases because of its inflammatory component, among other biological patterns. Recently, with the ongoing COVID-19 crisis, a special focus has been put on obesity as a status in which antibody production, among other immune functions, is impaired, which would impact both disease pathogenesis and vaccine efficacy. Within this piece of writing, we illustrate that such patterns would be due to the increased adiposity and fat distribution pattern rather than obesity (as defined by the body mass index) itself. Within this context, we also highlight the importance of the weight-loss-independent effects of exercise.
Collapse
Affiliation(s)
- Abdelaziz Ghanemi
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada; (A.G.); (M.Y.)
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada
| | - Mayumi Yoshioka
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada; (A.G.); (M.Y.)
| | - Jonny St-Amand
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada; (A.G.); (M.Y.)
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada
- Correspondence:
| |
Collapse
|
25
|
Van Lent J, Breukers J, Ven K, Ampofo L, Horta S, Pollet F, Imbrechts M, Geukens N, Vanhoorelbeke K, Declerck P, Lammertyn J. Miniaturized single-cell technologies for monoclonal antibody discovery. LAB ON A CHIP 2021; 21:3627-3654. [PMID: 34505611 DOI: 10.1039/d1lc00243k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Antibodies (Abs) are among the most important class of biologicals, showcasing a high therapeutic and diagnostic value. In the global therapeutic Ab market, fully-human monoclonal Abs (FH-mAbs) are flourishing thanks to their low immunogenicity and high specificity. The rapidly emerging field of single-cell technologies has paved the way to efficiently discover mAbs by facilitating a fast screening of the antigen (Ag)-specificity and functionality of Abs expressed by B cells. This review summarizes the principles and challenges of the four key concepts to discover mAbs using these technologies, being confinement of single cells using either droplet microfluidics or microstructure arrays, identification of the cells of interest, retrieval of those cells and single-cell sequence determination required for mAb production. This review reveals the enormous potential for mix-and-matching of the above-mentioned strategies, which is illustrated by the plethora of established, highly integrated devices. Lastly, an outlook is given on the many opportunities and challenges that still lie ahead to fully exploit miniaturized single-cell technologies for mAb discovery.
Collapse
Affiliation(s)
- Julie Van Lent
- Department of Biosystems, Biosensors Group, KU Leuven, Leuven 3001, Belgium.
| | - Jolien Breukers
- Department of Biosystems, Biosensors Group, KU Leuven, Leuven 3001, Belgium.
| | - Karen Ven
- Department of Biosystems, Biosensors Group, KU Leuven, Leuven 3001, Belgium.
| | - Louanne Ampofo
- Department of Biosystems, Biosensors Group, KU Leuven, Leuven 3001, Belgium.
- Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven, Leuven 3000, Belgium
| | - Sara Horta
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk 8500, Belgium
| | - Francesca Pollet
- Department of Biosystems, Biosensors Group, KU Leuven, Leuven 3001, Belgium.
| | - Maya Imbrechts
- Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven, Leuven 3000, Belgium
- PharmAbs, The KU Leuven Antibody Center, KU Leuven, Leuven 3000, Belgium
| | - Nick Geukens
- PharmAbs, The KU Leuven Antibody Center, KU Leuven, Leuven 3000, Belgium
| | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk 8500, Belgium
- PharmAbs, The KU Leuven Antibody Center, KU Leuven, Leuven 3000, Belgium
| | - Paul Declerck
- Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven, Leuven 3000, Belgium
- PharmAbs, The KU Leuven Antibody Center, KU Leuven, Leuven 3000, Belgium
| | - Jeroen Lammertyn
- Department of Biosystems, Biosensors Group, KU Leuven, Leuven 3001, Belgium.
| |
Collapse
|
26
|
Prabakaran P, Rao SP, Wendt M. Animal immunization merges with innovative technologies: A new paradigm shift in antibody discovery. MAbs 2021; 13:1924347. [PMID: 33947305 PMCID: PMC8118498 DOI: 10.1080/19420862.2021.1924347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Animal-derived antibody sources, particularly, transgenic mice that are engineered with human immunoglobulin loci, along with advanced antibody generation technology platforms have facilitated the discoveries of human antibody therapeutics. For example, isolation of antigen-specific B cells, microfluidics, and next-generation sequencing have emerged as powerful tools for identifying and developing monoclonal antibodies (mAbs). These technologies enable not only antibody drug discovery but also lead to the understanding of B cell biology, immune mechanisms and immunogenetics of antibodies. In this perspective article, we discuss the scientific merits of animal immunization combined with advanced methods for antibody generation as compared to animal-free alternatives through in-vitro-generated antibody libraries. The knowledge gained from animal-derived antibodies concerning the recombinational diversity, somatic hypermutation patterns, and physiochemical properties is found more valuable and prerequisite for developing in vitro libraries, as well as artificial intelligence/machine learning methods to discover safe and effective mAbs.
Collapse
Affiliation(s)
- Ponraj Prabakaran
- Biologics Research US, Global Large Molecules Research, Sanofi, Framingham, MA, USA
| | - Sambasiva P Rao
- Biologics Research US, Global Large Molecules Research, Sanofi, Framingham, MA, USA
| | - Maria Wendt
- Biologics Research US, Global Large Molecules Research, Sanofi, Framingham, MA, USA
| |
Collapse
|
27
|
Zhang R, Prabakaran P, Yu X, Mackness BC, Boudanova E, Hopke J, Sancho J, Saleh J, Cho H, Zhang N, Simonds-Mannes H, Stimple SD, Hoffmann D, Park A, Chowdhury PS, Rao SP. A platform-agnostic, function first-based antibody discovery strategy using plasmid-free mammalian expression of antibodies. MAbs 2021; 13:1904546. [PMID: 33899674 PMCID: PMC8078661 DOI: 10.1080/19420862.2021.1904546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hybridoma technology has been valuable in the development of therapeutic antibodies. More recently, antigen-specific B-cell selection and display technologies are also gaining importance. A major limitation of these approaches used for antibody discovery is the extensive process of cloning and expression involved in transitioning from antibody identification to validating the function, which compromises the throughput of antibody discovery. In this study, we describe a process to identify and rapidly re-format and express antibodies for functional characterization. We used two different approaches to isolate antibodies to five different targets: 1) flow cytometry to identify antigen-specific single B cells from the spleen of immunized human immunoglobulin transgenic mice; and 2) panning of phage libraries. PCR amplification allowed recovery of paired VH and VL sequences from 79% to 96% of antigen-specific B cells. All cognate VH and VL transcripts were formatted into transcription and translation compatible linear DNA expression cassettes (LEC) encoding whole IgG or Fab. Between 92% and 100% of paired VH and VL transcripts could be converted to LECs, and nearly 100% of them expressed as antibodies when transfected into Expi293F cells. The concentration of IgG in the cell culture supernatants ranged from 0.05 µg/ml to 145.8 µg/ml (mean = 18.4 µg/ml). Antigen-specific binding was displayed by 78–100% of antibodies. High throughput functional screening allowed the rapid identification of several functional antibodies. In summary, we describe a plasmid-free system for cloning and expressing antibodies isolated by different approaches, in any format of choice for deep functional screening that can be applied in any research setting during antibody discovery.
Collapse
Affiliation(s)
- Ruijun Zhang
- Therapeutic Antibody Discovery, Sanofi Genzyme, Framingham, MA, USA
| | | | - Xiaocong Yu
- Therapeutic Antibody Discovery, Sanofi Genzyme, Framingham, MA, USA
| | - Brian C Mackness
- Therapeutic Antibody Discovery, Sanofi Genzyme, Framingham, MA, USA
| | - Ekaterina Boudanova
- Protein Engineering, Biologics Research, Sanofi Genzyme, Framingham, MA, USA
| | - Joern Hopke
- Molecular Expression and Screening Technologies, Sanofi Genzyme, Framingham, MA, USA
| | - Jose Sancho
- Neuroinflammation, Sanofi Genzyme, Framingham, MA, USA
| | | | - HyunSuk Cho
- Therapeutic Antibody Discovery, Sanofi Genzyme, Framingham, MA, USA
| | - Ningning Zhang
- Therapeutic Antibody Discovery, Sanofi Genzyme, Framingham, MA, USA
| | | | - Samuel D Stimple
- Therapeutic Antibody Discovery, Sanofi Genzyme, Framingham, MA, USA
| | - Dietmar Hoffmann
- Molecular Expression and Screening Technologies, Sanofi Genzyme, Framingham, MA, USA
| | - Anna Park
- Protein Engineering, Biologics Research, Sanofi Genzyme, Framingham, MA, USA
| | | | - Sambasiva P Rao
- Therapeutic Antibody Discovery, Sanofi Genzyme, Framingham, MA, USA
| |
Collapse
|
28
|
Critical reagent generation, characterization, handling and storage workflows: impact on ligand binding assays. Bioanalysis 2021; 13:847-860. [PMID: 33890503 DOI: 10.4155/bio-2020-0252] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The foundation of pharmacokinetics and antidrug antibodies assay robustness relies on the use of high-quality reagents. Over the past decade, there has been increasing interest within the pharmaceutical industry, as well as regulators, on defining best practices and scientific approaches for generation, characterization and handling of critical reagents. In this review, we will discuss current knowledge and practices on critical reagent workflows and state-of-the-art approaches for characterization, generation, stability and storage and how each of these steps can impact ligand-binding assay robustness.
Collapse
|
29
|
Rapid identification of anti-idiotypic mAbs with high affinity and diverse epitopes by rabbit single B-cell sorting-culture and cloning technology. PLoS One 2020; 15:e0244158. [PMID: 33347473 PMCID: PMC7751967 DOI: 10.1371/journal.pone.0244158] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/04/2020] [Indexed: 11/19/2022] Open
Abstract
The proactive generation of anti-idiotypic antibodies (anti-IDs) against therapeutic antibodies with desirable properties is an important step in pre-clinical and clinical assay development supporting their bioanalytical programs. Here, we describe a robust platform to generate anti-IDs using rabbit single B cell sorting-culture and cloning technology by immunizing rabbits with therapeutic drug Fab fragment and sorting complementarity determining regions (CDRs) specific B cells using designed framework control as a negative gate to exclude non-CDRs-specific B cells. The supernatants of cultured B cells were subsequently screened for binding to drug-molecule by enzyme-linked immunosorbent assay and the positive hits of B cell lysates were selected for cloning of their immunoglobulin G (IgG) variable regions. The recombinant monoclonal anti-IDs generated with this method have high affinity and specificity with broad epitope coverage and different types. The recombinant anti-IDs were available for assay development to support pharmacokinetic (PK) and immunogenicity studies within 12 weeks from the start of rabbit immunization. Using this novel rapid and efficient in-house approach we have generated a large panel of anti-IDs against a series of 11 therapeutic antibody drugs and successfully applied them to the clinical assay development.
Collapse
|
30
|
Ali MG, Zhang Z, Gao Q, Pan M, Rowan EG, Zhang J. Recent advances in therapeutic applications of neutralizing antibodies for virus infections: an overview. Immunol Res 2020; 68:325-339. [PMID: 33161557 PMCID: PMC7648849 DOI: 10.1007/s12026-020-09159-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/21/2020] [Indexed: 12/14/2022]
Abstract
Antibodies are considered as an excellent foundation to neutralize pathogens and as highly specific therapeutic agents. Antibodies are generated in response to a vaccine but little use as immunotherapy to combat virus infections. A new generation of broadly cross-reactive and highly potent antibodies has led to a unique chance for them to be used as a medical intervention. Neutralizing antibodies (monoclonal and polyclonal antibodies) are desirable for pharmaceutical products because of their ability to target specific epitopes with their variable domains by precise neutralization mechanisms. The isolation of neutralizing antiviral antibodies has been achieved by Phage displayed antibody libraries, transgenic mice, B cell approaches, and hybridoma technology. Antibody engineering technologies have led to efficacy improvements, to further boost antibody in vivo activities. "Although neutralizing antiviral antibodies have some limitations that hinder their full development as therapeutic agents, the potential for prevention and treatment of infections, including a range of viruses (HIV, Ebola, MERS-COV, CHIKV, SARS-CoV, and SARS-CoV2), are being actively pursued in human clinical trials."
Collapse
Affiliation(s)
- Manasik Gumah Ali
- Antibody Engineering Laboratory, School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Zhening Zhang
- Antibody Engineering Laboratory, School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Qi Gao
- Antibody Engineering Laboratory, School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Mingzhu Pan
- Antibody Engineering Laboratory, School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Edward G Rowan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University Strathclyde, Glasgow, UK
| | - Juan Zhang
- Antibody Engineering Laboratory, School of Life Science & Technology, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
31
|
Hamamichi S, Fukuhara T, Hattori N. Immunotoxin Screening System: A Rapid and Direct Approach to Obtain Functional Antibodies with Internalization Capacities. Toxins (Basel) 2020; 12:toxins12100658. [PMID: 33076544 PMCID: PMC7602748 DOI: 10.3390/toxins12100658] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/24/2022] Open
Abstract
Toxins, while harmful and potentially lethal, have been engineered to develop potent therapeutics including cytotoxins and immunotoxins (ITs), which are modalities with highly selective targeting capabilities. Currently, three cytotoxins and IT are FDA-approved for treatment of multiple forms of hematological cancer, and additional ITs are tested in the clinical trials or at the preclinical level. For next generation of ITs, as well as antibody-mediated drug delivery systems, specific targeting by monoclonal antibodies is critical to enhance efficacies and reduce side effects, and this methodological field remains open to discover potent therapeutic monoclonal antibodies. Here, we describe our application of engineered toxin termed a cell-based IT screening system. This unique screening strategy offers the following advantages: (1) identification of monoclonal antibodies that recognize cell-surface molecules, (2) selection of the antibodies that are internalized into the cells, (3) selection of the antibodies that induce cytotoxicity since they are linked with toxins, and (4) determination of state-specific activities of the antibodies by differential screening under multiple experimental conditions. Since the functional monoclonal antibodies with internalization capacities have been identified successfully, we have pursued their subsequent modifications beyond antibody drug conjugates, resulting in development of immunoliposomes. Collectively, this screening system by using engineered toxin is a versatile platform, which enables straight-forward and rapid selection for discovery of novel functional antibodies.
Collapse
Affiliation(s)
- Shusei Hamamichi
- Research Institute for Diseases of Old Age, Juntendo University School of Medicine, Tokyo 113-8421, Japan;
| | - Takeshi Fukuhara
- Department of Neurology, Juntendo University School of Medicine, Tokyo 113-8421, Japan;
- Department of Research for Parkinson’s Disease, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Neurodegenerative Disorders Collaborative Laboratory, RIKEN Center for Brain Science, Saitama 351-0198, Japan
- Correspondence: ; Tel.: +81-3-5802-2731; Fax: +81-3-5800-0547
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Tokyo 113-8421, Japan;
- Department of Research for Parkinson’s Disease, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Neurodegenerative Disorders Collaborative Laboratory, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| |
Collapse
|
32
|
Flicker S, Zettl I, Tillib SV. Nanobodies-Useful Tools for Allergy Treatment? Front Immunol 2020; 11:576255. [PMID: 33117377 PMCID: PMC7561424 DOI: 10.3389/fimmu.2020.576255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/15/2020] [Indexed: 11/13/2022] Open
Abstract
In the last decade single domain antibodies (nanobodies, VHH) qualified through their unique characteristics have emerged as accepted and even advantageous alternative to conventional antibodies and have shown great potential as diagnostic and therapeutic tools. Currently nanobodies find their main medical application area in the fields of oncology and neurodegenerative diseases. According to late-breaking information, nanobodies specific for coronavirus spikes have been generated these days to test their suitability as useful therapeutics for future outbreaks. Their superior properties such as chemical stability, high affinity to a broad spectrum of epitopes, low immunogenicity, ease of their generation, selection and production proved nanobodies also to be remarkable to investigate their efficacy for passive treatment of type I allergy, an exaggerated immune reaction to foreign antigens with increasing global prevalence.
Collapse
Affiliation(s)
- Sabine Flicker
- Division of Immunopathology, Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ines Zettl
- Division of Immunopathology, Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Sergei V. Tillib
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
33
|
Liu Y, Song Z, Ge S, Zhang J, Xu L, Yang F, Lu D, Luo P, Gu J, Zou Q, Zeng H. Determining the immunological characteristics of a novel human monoclonal antibody developed against staphylococcal enterotoxin B. Hum Vaccin Immunother 2020; 16:1708-1718. [PMID: 32275466 DOI: 10.1080/21645515.2020.1744362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Staphylococci are the main cause of nosocomial infections globally. The exotoxin staphylococcal enterotoxin B (SEB) produced by methicillin-resistant Staphylococcus aureus is a major cause of pathology after a staphylococcal infection. We previously isolated an anti-SEB human monoclonal antibody designated as M0313. Here we further characterize this antibody in vitro and in vivo. Immunoblotting analysis and ELISA results indicated that M0313 accurately recognized and bound to SEB. Its binding affinity to native SEB was measured at the low nM level. M0313 effectively inhibited SEB from inducing mouse splenic lymphocyte and human peripheral blood mononuclear cell proliferation and cytokine release in cell culture. M0313 also neutralized SEB toxicity in BALB/c female mice. Most importantly, M0313 promoted the survival of mice treated with SEB-expressing bacteria. In-vivo imaging revealed that M0313 treatment significantly reduced the replication of SEB-expressing bacteria in mice. The neutralization capacity of M0313 correlated with its ability to block SEB from binding to major histocompatibility complex II and T-cell receptor by binding to the SEB residues 85-102 and 90-92. Thus, the monoclonal antibody M0313 may be developed into a therapeutic agent.
Collapse
Affiliation(s)
- Yuanyuan Liu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University , Chongqing, PR China
| | - Zhen Song
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University , Chongqing, PR China.,Clinical Laboratory Department, Army 954th Hospital, General Hospital of Tibet Military Region , Tibet, PR China
| | - Shuang Ge
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University , Chongqing, PR China
| | - Jinyong Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University , Chongqing, PR China
| | - Limin Xu
- Research and Development Department, Chengdu Olymvax Biotechnology Co., Ltd ., Chengdu, Sichuan, PR China
| | - Feng Yang
- Research and Development Department, Chengdu Olymvax Biotechnology Co., Ltd ., Chengdu, Sichuan, PR China
| | - Dongshui Lu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University , Chongqing, PR China
| | - Ping Luo
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University , Chongqing, PR China
| | - Jiang Gu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University , Chongqing, PR China
| | - Quanming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University , Chongqing, PR China
| | - Hao Zeng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University , Chongqing, PR China
| |
Collapse
|
34
|
Efficient Acquisition of Fully Human Antibody Genes against Self-Proteins by Sorting Single B Cells Stimulated with Vaccines Based on Nitrated T Helper Cell Epitopes. J Immunol Res 2020; 2019:7914326. [PMID: 32083142 PMCID: PMC7012236 DOI: 10.1155/2019/7914326] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/07/2019] [Indexed: 11/19/2022] Open
Abstract
Single B cell antibody technology is a method for isolating antigen-specific B cells from human peripheral blood and obtaining antibody genes in developing antibody drugs. However, owing to immune tolerance to autoantigen, human autoantigen-specific B cells are difficult to acquire by conventional single B cell technology. In this study, we constructed a nitrated T-cell epitope named NitraTh by incorporating p-nitrophenylalanine into a universal T helper epitope. NitraTh had enhanced ability to activate CD4+ T cells and can be recognized by CD4+ T cells with different HLA class II haplotypes. This NitraTh can also break immune tolerance to autoantigens, such as human epidermal growth factor receptor 2 (HER2) and cannabinoid receptor 1, and induce strong specific IgM+ B cell responses in vitro. HER2-NitraTh vaccine can also stimulate the generation of HER2-specific IgG+ B cells in human immune system mice, which was established by cotransplanting lymphocytes and autologous dendritic cells in immunodeficient mice. We obtained 30 fully human IgG antibody genes by sorting single B cells from the human immune system mice immunized with HER2-NitraTh vaccine. The analysis of antibody genes showed that sorted B cells underwent the extensive somatic mutation of the antibody genes. We randomly selected eight genes for cloning, six of which expressed antibodies that can bind to HER2. Hence, we provided a convenient and effective method in acquiring fully human antibody genes against self-proteins, which can be used in developing therapeutic antibody drugs.
Collapse
|
35
|
Abstract
Monoclonal antibodies are among the most significant biological tools used in medicine and biology that have revolutionized the field of diagnostics, therapeutics, and targeted drug delivery systems for many diseases. Among them, rabbit monoclonal antibodies have attracted significant attention for having high affinity and specificity. During the past few decades, different techniques have been developed to produce monoclonal antibodies. Single B cell cloning technology offers many advantages compared to other methods and has been used to generate monoclonal antibodies from different species including rabbits. This review briefly describes some of these methods, with main focus on single B cell cloning and production of rabbit monoclonal antibodies.
Collapse
|
36
|
Goulet DR, Atkins WM. Considerations for the Design of Antibody-Based Therapeutics. J Pharm Sci 2020; 109:74-103. [PMID: 31173761 PMCID: PMC6891151 DOI: 10.1016/j.xphs.2019.05.031] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/02/2019] [Accepted: 05/29/2019] [Indexed: 02/06/2023]
Abstract
Antibody-based proteins have become an important class of biologic therapeutics, due in large part to the stability, specificity, and adaptability of the antibody framework. Indeed, antibodies not only have the inherent ability to bind both antigens and endogenous immune receptors but also have proven extremely amenable to protein engineering. Thus, several derivatives of the monoclonal antibody format, including bispecific antibodies, antibody-drug conjugates, and antibody fragments, have demonstrated efficacy for treating human disease, particularly in the fields of immunology and oncology. Reviewed here are considerations for the design of antibody-based therapeutics, including immunological context, therapeutic mechanisms, and engineering strategies. First, characteristics of antibodies are introduced, with emphasis on structural domains, functionally important receptors, isotypic and allotypic differences, and modifications such as glycosylation. Then, aspects of therapeutic antibody design are discussed, including identification of antigen-specific variable regions, choice of expression system, use of multispecific formats, and design of antibody derivatives based on fragmentation, oligomerization, or conjugation to other functional moieties. Finally, strategies to enhance antibody function through protein engineering are reviewed while highlighting the impact of fundamental biophysical properties on protein developability.
Collapse
Affiliation(s)
- Dennis R Goulet
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195.
| | - William M Atkins
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195
| |
Collapse
|
37
|
Li K, Wang S, Cao Y, Bao H, Li P, Sun P, Bai X, Fu Y, Ma X, Zhang J, Li D, Chen Y, Liu X, An F, Wu F, Lu Z, Liu Z. Development of Foot-and-Mouth Disease Virus-Neutralizing Monoclonal Antibodies Derived From Plasmablasts of Infected Cattle and Their Germline Gene Usage. Front Immunol 2019; 10:2870. [PMID: 31867017 PMCID: PMC6908506 DOI: 10.3389/fimmu.2019.02870] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 11/22/2019] [Indexed: 01/27/2023] Open
Abstract
Cattle are susceptible to foot-and-mouth disease virus (FMDV), and neutralizing antibodies are critical for protection against FMDV infection in this species. However, more information is needed on the host specific antigenic structure recognized by the FMDV-specific monoclonal antibodies (mAbs) and on the functional properties of the mAb that are produced in the natural host, cattle. Herein, we characterized 55 plasmablast-derived mAbs from three FMDV-infected cattle and obtained 28 FMDV-neutralizing antibodies by the single B cell antibody technique. The neutralizing mAbs (27/28) mainly recognized conformational epitopes that differ from the well-characterized immunodominant antigenic site 1 of FMDV as defined by murine mAbs. Of these FMDV-neutralizing mAbs, 13 mAbs showed intra-type broadly neutralizing activity against the three topotypes of FMDV serotype O (ME-SA, SEA, and Cathay topotypes). Moreover, all these intra-type broadly neutralizing antibodies competed with sera from FMDV infected or vaccinated cattle, which indicates their binding to native dominant epitopes, as revealed by a blocking ELISA. We further analyzed the germline V(D)J gene usage of the 55 FMDV-specific mAbs and found cattle IgG antibodies containing ultralong HCDR3 were exclusively restricted to usage of the germline gene segment VH 1-7*02. In addition, the restricted germline gene segments of VH 1-7*02 and VL1-47*01 or 1-52*01 pairing were observed in all IgG antibodies with ultralong HCDR3. Furthermore, antibodies with longer HCDR3 were more inclined to display FMDV-neutralizing activity. This study presents a novel method for screening FMDV-specific cattle mAbs which then provide the most useful tools for studying FMDV antigenic structure and variation.
Collapse
Affiliation(s)
- Kun Li
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Sheng Wang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yimei Cao
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Huifang Bao
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Pinghua Li
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Pu Sun
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xingwen Bai
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yuanfang Fu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xueqing Ma
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jing Zhang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Dong Li
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yingli Chen
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xuerong Liu
- China Agricultural Vet Biology and Technology Co. Ltd., Lanzhou, China
| | - Fanglan An
- China Agricultural Vet Biology and Technology Co. Ltd., Lanzhou, China
| | - Faju Wu
- China Agricultural Vet Biology and Technology Co. Ltd., Lanzhou, China
| | - Zengjun Lu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zaixin Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
38
|
Li K, Bai J, Du L, Wang X, Ke C, Yan W, Li C, Ren L, Han H, Zhao Y. Generation of porcine monoclonal antibodies based on single cell technologies. Vet Immunol Immunopathol 2019; 215:109913. [PMID: 31420069 DOI: 10.1016/j.vetimm.2019.109913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/17/2019] [Accepted: 07/30/2019] [Indexed: 01/03/2023]
Abstract
The development of a rapid and efficient system to generate porcine monoclonal antibodies (mAbs) is an important step toward the discovery of critical neutralizing targets for designing rational vaccines against porcine viruses. In this study, we established a platform for producing porcine mAbs based on single cell technologies. First, we singled out an optimal donor from 507 pigs based on serum antibody neutralizing activity against porcine reproductive and respiratory syndrome virus (PRRSV). After identifying the contribution of IgG to the neutralizing activity, single CD45R+IgG+Ag+ B cells were sorted from peripheral blood mononuclear cells (PBMCs). Single B cell RT-PCR was performed using primers designed to cover the germline repertoire of the porcine VH/VL gene segments. Paired VH/VLs were cloned into a eukaryotic expression vector and transfected into 293T cells. We demonstrate that full-length porcine mAbs were produced, and antigen-specific mAbs were obtained after further validation. The approach reported in this study can be applied to generate porcine mAbs against any given antigen and may help with the screening of neutralizing antibodies against porcine pathogens.
Collapse
Affiliation(s)
- Kongpan Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, People's Republic of China
| | - Jianhui Bai
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, People's Republic of China
| | - Lijuan Du
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, People's Republic of China
| | - Xifeng Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Science, Beijing, People's Republic of China
| | - Cuncun Ke
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, People's Republic of China
| | - Wei Yan
- XINDAMUYE Company, Henan, People's Republic of China
| | - Changqing Li
- XINDAMUYE Company, Henan, People's Republic of China
| | - Liming Ren
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, People's Republic of China
| | - Haitang Han
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, People's Republic of China.
| | - Yaofeng Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, People's Republic of China.
| |
Collapse
|
39
|
Winters A, McFadden K, Bergen J, Landas J, Berry KA, Gonzalez A, Salimi-Moosavi H, Murawsky CM, Tagari P, King CT. Rapid single B cell antibody discovery using nanopens and structured light. MAbs 2019; 11:1025-1035. [PMID: 31185801 PMCID: PMC6748590 DOI: 10.1080/19420862.2019.1624126] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Accelerated development of monoclonal antibody (mAb) tool reagents is an essential requirement for the successful advancement of therapeutic antibodies in today’s fast-paced and competitive drug development marketplace. Here, we describe a direct, flexible, and rapid nanofluidic optoelectronic single B lymphocyte antibody screening technique (NanOBlast) applied to the generation of anti-idiotypic reagent antibodies. Selectively enriched, antigen-experienced murine antibody secreting cells (ASCs) were harvested from spleen and lymph nodes. Subsequently, secreted mAbs from individually isolated, single ASCs were screened directly using a novel, integrated, high-content culture, and assay platform capable of manipulating living cells within microfluidic chip nanopens using structured light. Single-cell polymerase chain reaction–based molecular recovery on select anti-idiotypic ASCs followed by recombinant IgG expression and enzyme-linked immunosorbent assay (ELISA) characterization resulted in the recovery and identification of a diverse and high-affinity panel of anti-idiotypic reagent mAbs. Combinatorial ELISA screening identified both capture and detection mAbs, and enabled the development of a sensitive and highly specific ligand binding assay capable of quantifying free therapeutic IgG molecules directly from human patient serum, thereby facilitating important drug development decision-making. The ASC import, screening, and export discovery workflow on the chip was completed within 5 h, while the overall discovery workflow from immunization to recombinantly expressed IgG was completed in under 60 days.
Collapse
Affiliation(s)
- Aaron Winters
- a Department of Therapeutic Discovery, Amgen Research , Thousand Oaks , CA , USA
| | - Karyn McFadden
- a Department of Therapeutic Discovery, Amgen Research , Thousand Oaks , CA , USA
| | - John Bergen
- b Department of Therapeutic Discovery, Amgen Research , Burnaby , Canada
| | - Julius Landas
- b Department of Therapeutic Discovery, Amgen Research , Burnaby , Canada.,c Department of Pharmacokinetics & Drug Metabolism, University of British Columbia , Vancouver , Canada
| | - Kelly A Berry
- b Department of Therapeutic Discovery, Amgen Research , Burnaby , Canada
| | - Anthony Gonzalez
- a Department of Therapeutic Discovery, Amgen Research , Thousand Oaks , CA , USA
| | - Hossein Salimi-Moosavi
- a Department of Therapeutic Discovery, Amgen Research , Thousand Oaks , CA , USA.,c Department of Pharmacokinetics & Drug Metabolism, University of British Columbia , Vancouver , Canada
| | | | - Philip Tagari
- a Department of Therapeutic Discovery, Amgen Research , Thousand Oaks , CA , USA
| | - Chadwick T King
- b Department of Therapeutic Discovery, Amgen Research , Burnaby , Canada
| |
Collapse
|
40
|
Tong Y, Fang X, Tian H, Zhong S, Jin L, Gao X, Yao W. De novo generation of specific human IgGs by in vitro immunization using autologous proteins containing immunogenic p-nitrophenylalanine. MAbs 2018; 11:401-410. [PMID: 30569818 DOI: 10.1080/19420862.2018.1537580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
In vitro immunization can to used to produce monoclonal antibodies(mAbs), but this technology is limited by poor reproducibility and the requirement of pre-immunized lymphocytes. To improve this approach, we recently developed a method for rapid generation of antigen-specific B cells. Here, we report the application of this system to the production of human IgGs against tumor necrosis factor (TNF). We expressed mutant proteins with site-specific incorporated p-nitrophenylalanine (pNO2Phe), which stimulated an in vitro immune response in human immune cells. After constructing an antigen-specific antibody library from in vitro immunized B cells identified by fluorescence-activated cell sorting, we demonstrated that many point mutation events of the variable region occurred in our step-by-step co-cultivation system for affinity maturation in vitro. To mimic the class switching, we panned for high-affinity antigen-binding fragments by the phage display method, assembled them and identified hTNF-neutralizing human IgGs. This approach may provide a general method for raising high-affinity monoclonal antibodies against self-proteins. Furthermore, it supports mechanistic understanding in breaking human self-tolerance with pNO2Phe.
Collapse
Affiliation(s)
- Yue Tong
- a Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology , China Pharmaceutical University , Nanjing , China
| | - Xu Fang
- a Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology , China Pharmaceutical University , Nanjing , China
| | - Hong Tian
- a Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology , China Pharmaceutical University , Nanjing , China
| | - Shengwei Zhong
- a Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology , China Pharmaceutical University , Nanjing , China
| | - Liang Jin
- a Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology , China Pharmaceutical University , Nanjing , China
| | - Xiangdong Gao
- a Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology , China Pharmaceutical University , Nanjing , China
| | - Wenbing Yao
- a Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology , China Pharmaceutical University , Nanjing , China
| |
Collapse
|
41
|
Rudkin FM, Raziunaite I, Workman H, Essono S, Belmonte R, MacCallum DM, Johnson EM, Silva LM, Palma AS, Feizi T, Jensen A, Erwig LP, Gow NAR. Single human B cell-derived monoclonal anti-Candida antibodies enhance phagocytosis and protect against disseminated candidiasis. Nat Commun 2018; 9:5288. [PMID: 30538246 PMCID: PMC6290022 DOI: 10.1038/s41467-018-07738-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 11/13/2018] [Indexed: 01/10/2023] Open
Abstract
The high global burden of over one million annual lethal fungal infections reflects a lack of protective vaccines, late diagnosis and inadequate chemotherapy. Here, we have generated a unique set of fully human anti-Candida monoclonal antibodies (mAbs) with diagnostic and therapeutic potential by expressing recombinant antibodies from genes cloned from the B cells of patients suffering from candidiasis. Single class switched memory B cells isolated from donors serum-positive for anti-Candida IgG were differentiated in vitro and screened against recombinant Candida albicans Hyr1 cell wall protein and whole fungal cell wall preparations. Antibody genes from Candida-reactive B cell cultures were cloned and expressed in Expi293F human embryonic kidney cells to generate a panel of human recombinant anti-Candida mAbs that demonstrate morphology-specific, high avidity binding to the cell wall. The species-specific and pan-Candida mAbs generated through this technology display favourable properties for diagnostics, strong opsono-phagocytic activity of macrophages in vitro, and protection in a murine model of disseminated candidiasis. Late diagnosis and ineffective treatment of fungal infections lead to high mortality. Here, Rudkin et al. generate anti-Candida human monoclonal antibodies with diagnostic and therapeutic potential, by expressing recombinant antibodies from genes cloned from B cells of patients suffering candidiasis.
Collapse
Affiliation(s)
- Fiona M Rudkin
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Ingrida Raziunaite
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Aberdeen, AB25 2ZD, UK.,Division of Infection and Immunity, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Hillary Workman
- Global Biotherapeutic Technologies, Pfizer Inc, Cambridge Kendall Square, Cambridge, MA, 02139, USA
| | - Sosthene Essono
- Global Biotherapeutic Technologies, Pfizer Inc, Cambridge Kendall Square, Cambridge, MA, 02139, USA.,HiFiBiO, 325 Vassar Street, Cambridge, MA, 02139, USA
| | - Rodrigo Belmonte
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Aberdeen, AB25 2ZD, UK.,MSD Animal Health Innovation AS, Thormøhlensgate 55, N-5006, Bergen, Norway
| | - Donna M MacCallum
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Elizabeth M Johnson
- National Infection Service, PHE South West Laboratory, Science Quarter, Southmead Hospital, Bristol, BS10 5NB, UK
| | - Lisete M Silva
- Glycosciences Laboratory, Department of Medicine, Imperial College London, Du Cane Road, W12 0NN, UK
| | - Angelina S Palma
- UCIBIO-REQUIMTE, Department of Chemistry, Faculty of Science and Technology, NOVA University of Lisbon, Lisbon, 1099-085, Portugal
| | - Ten Feizi
- Glycosciences Laboratory, Department of Medicine, Imperial College London, Du Cane Road, W12 0NN, UK
| | - Allan Jensen
- Global Biotherapeutic Technologies, Pfizer Inc, Cambridge Kendall Square, Cambridge, MA, 02139, USA.,H. Lundbeck, Ottiliavej 9, 2500, Valby, Denmark
| | - Lars P Erwig
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Aberdeen, AB25 2ZD, UK.,Galvani Bioelectronics, 980 Great West Road, Brentford, TW8 9GS, UK
| | - Neil A R Gow
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Aberdeen, AB25 2ZD, UK. .,School of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, EX4 4QD, UK.
| |
Collapse
|
42
|
Ojima-Kato T, Morishita S, Uchida Y, Nagai S, Kojima T, Nakano H. Rapid Generation of Monoclonal Antibodies from Single B Cells by Ecobody Technology. Antibodies (Basel) 2018; 7:antib7040038. [PMID: 31544888 PMCID: PMC6698955 DOI: 10.3390/antib7040038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/25/2018] [Accepted: 10/31/2018] [Indexed: 02/04/2023] Open
Abstract
Single B cell sampling following to direct gene amplification and transient expression in animal cells has been recognized as powerful monoclonal antibodies (mAbs) screening strategies. Here we report Ecobody technology which allows mAbs screening from single B cells in two days This technology uses Escherichia coli cell-free protein synthesis (CFPS) for mAb expression. In the CFPS step, we employed our original techniques: (1) ‘Zipbody’ as a modified Fab (fragment of antigen binding) format, in which the active Fab formation is facilitated by adhesive leucine zipper peptides fused at the C-termini of the light and heavy chains; and (2) an N-terminal SKIK peptide tag that can markedly increase protein production. By the Ecobody technology, we demonstrated rapid screening of antigen specific mAbs from immunized rabbits and Epstein-Barr Virus infected human B cells. We further obtained rabbit mAbs in E. coli expression system yielding to 8.5 mg of purified proteins from 1 L bacterial culture.
Collapse
Affiliation(s)
- Teruyo Ojima-Kato
- iBody Inc., Furo-cho 1, Chikusa-ku, Nagoya 464-0814, Japan.
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| | - Shiomi Morishita
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| | - Yoshino Uchida
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| | - Satomi Nagai
- iBody Inc., Furo-cho 1, Chikusa-ku, Nagoya 464-0814, Japan.
| | - Takaaki Kojima
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| | - Hideo Nakano
- iBody Inc., Furo-cho 1, Chikusa-ku, Nagoya 464-0814, Japan.
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| |
Collapse
|
43
|
Chen WC, Murawsky CM. Strategies for Generating Diverse Antibody Repertoires Using Transgenic Animals Expressing Human Antibodies. Front Immunol 2018; 9:460. [PMID: 29563917 PMCID: PMC5845867 DOI: 10.3389/fimmu.2018.00460] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 02/21/2018] [Indexed: 01/14/2023] Open
Abstract
Therapeutic molecules derived from antibodies have become a dominant class of drugs used to treat human disease. Increasingly, therapeutic antibodies are discovered using transgenic animal systems that have been engineered to express human antibodies. While the engineering details differ, these platforms share the ability to raise an immune response that is comprised of antibodies with fully human idiotypes. Although the predominant transgenic host species has been mouse, the genomes of rats, rabbits, chickens, and cows have also been modified to express human antibodies. The creation of transgenic animal platforms expressing human antibody repertoires has revolutionized therapeutic antibody drug discovery. The observation that the immune systems of these animals are able to recognize and respond to a wide range of therapeutically relevant human targets has led to a surge in antibody-derived drugs in current development. While the clinical success of fully human monoclonal antibodies derived from transgenic animals is well established, recent trends have seen increasingly stringent functional design goals and a shift in difficulty as the industry attempts to tackle the next generation of disease-associated targets. These challenges have been met with a number of novel approaches focused on the generation of large, high-quality, and diverse antibody repertoires. In this perspective, we describe some of the strategies and considerations we use for manipulating the immune systems of transgenic animal platforms (such as XenoMouse®) with a focus on maximizing the diversity of the primary response and steering the ensuing antibody repertoire toward a desired outcome.
Collapse
Affiliation(s)
- Weihsu C Chen
- Biologics Discovery, Department of Therapeutic Discovery, Amgen British Columbia Inc., Burnaby, BC, Canada
| | - Christopher M Murawsky
- Biologics Discovery, Department of Therapeutic Discovery, Amgen British Columbia Inc., Burnaby, BC, Canada
| |
Collapse
|
44
|
Recombinant human B cell repertoires enable screening for rare, specific, and natively paired antibodies. Commun Biol 2018; 1:5. [PMID: 30271892 PMCID: PMC6123710 DOI: 10.1038/s42003-017-0006-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 11/07/2017] [Indexed: 11/09/2022] Open
Abstract
The human antibody repertoire is increasingly being recognized as a valuable source of therapeutic grade antibodies. However, methods for mining primary antibody-expressing B cells are limited in their ability to rapidly isolate rare and antigen-specific binders. Here we show the encapsulation of two million primary B cells into picoliter-sized droplets, where their cognate V genes are fused in-frame to form a library of scFv cassettes. We used this approach to construct natively paired phage-display libraries from healthy donors and drove selection towards cross-reactive antibodies targeting influenza hemagglutinin. Within 4 weeks we progressed from B cell isolation to a panel of unique monoclonal antibodies, including seven that displayed broad reactivity to different clinically relevant influenza hemagglutinin subtypes. Most isolated antibody sequences were not detected by next-generation sequencing of the paired repertoire, illustrating how this method can isolate extremely rare leads not likely found by existing technologies. Saravanan Rajan et al. describe a high-throughput method for isolating unique human monoclonal antibodies using picoliter sized droplets containing primary B cells. They show this approach can rapidly drive selection towards novel antibodies against clinically-relevant influenza hemagglutinin subtypes.
Collapse
|
45
|
Pinder CL, Kratochvil S, Cizmeci D, Muir L, Guo Y, Shattock RJ, McKay PF. Isolation and Characterization of Antigen-Specific Plasmablasts Using a Novel Flow Cytometry-Based Ig Capture Assay. THE JOURNAL OF IMMUNOLOGY 2017; 199:4180-4188. [PMID: 29118244 DOI: 10.4049/jimmunol.1701253] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/10/2017] [Indexed: 11/19/2022]
Abstract
We report the development of a novel flow cytometry-based Ig capture assay (ICA) for the identification and sorting of individual Ab-secreting cells based on their Ag reactivity. The ICA represents a fast and versatile tool for single-cell sorting of peripheral plasmablasts, streamlining subsequent Ab analysis, and cloning. We demonstrate the utility of the assay by isolating Ag-reactive plasmablasts from cryopreserved PBMC obtained from volunteers vaccinated with a recombinant HIV envelope protein. To show the specificity of the ICA, we produced Ag-specific Abs from these cells and subsequently verified their Ag reactivity via ELISA. Furthermore, we used the ICA to track Ag-specific plasmablast responses in HIV-vaccine recipients over a period of 42 d and performed a head-to-head comparison with a conventional B cell ELISpot. Results were highly comparable, highlighting that this assay is a viable alternative for monitoring Ag-specific plasmablast responses at early time points after infection or vaccination. The ICA provides important added benefits in that phenotypic information can be obtained from the identified Ag-specific cells that can then be captured for downstream applications such as B cell sequencing and/or Ab cloning. We envisage the ICA as being a useful tool in Ab repertoire analysis for future clinical trials.
Collapse
Affiliation(s)
- Christopher L Pinder
- Division of Medicine, Department of Infectious Diseases, Imperial College London, London W2 1PG, United Kingdom; and
| | - Sven Kratochvil
- Division of Medicine, Department of Infectious Diseases, Imperial College London, London W2 1PG, United Kingdom; and
| | - Deniz Cizmeci
- Division of Medicine, Department of Infectious Diseases, Imperial College London, London W2 1PG, United Kingdom; and
| | - Luke Muir
- Division of Medicine, Department of Infectious Diseases, Imperial College London, London W2 1PG, United Kingdom; and
| | - Yanping Guo
- Flow Cytometry Core Facility, National Heart and Lung Institute, Imperial College London, London W2 1PG, United Kingdom
| | - Robin J Shattock
- Division of Medicine, Department of Infectious Diseases, Imperial College London, London W2 1PG, United Kingdom; and
| | - Paul F McKay
- Division of Medicine, Department of Infectious Diseases, Imperial College London, London W2 1PG, United Kingdom; and
| |
Collapse
|
46
|
Ojima-Kato T, Nagai S, Nakano H. Ecobody technology: rapid monoclonal antibody screening method from single B cells using cell-free protein synthesis for antigen-binding fragment formation. Sci Rep 2017; 7:13979. [PMID: 29070795 PMCID: PMC5656612 DOI: 10.1038/s41598-017-14277-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/09/2017] [Indexed: 12/14/2022] Open
Abstract
We report a rapid and cost-effective monoclonal antibody screening method from single animal B cells using reverse transcription (RT)-PCR and Escherichia coli cell-free protein synthesis (CFPS), which allows evaluation of antibodies within 2 working days. This process is named "Ecobody technology". The method includes strategies to isolate B cells that specifically bind an antigen from the peripheral blood of immunised animals, and single-cell RT-PCR to generate DNA fragments of the VH and VL genes, followed by CFPS for production of fragments of antigen binding (Fab). In the CFPS step, we employed our techniques: 1) 'Zipbody' as a method for producing Fab, in which the association of heavy and light chains is facilitated by adhesive leucine zipper peptides fused at the C-termini of the Fab; and 2) an N-terminal SKIK peptide tag that can increase protein expression levels. Using Ecobody technology, we obtained highly-specific monoclonal antibodies for the antigens Vibrio parahaemolyticus and E. coli O26. The anti-V. parahaemolyticus Zipbody mAb was further produced in E. coli strain SHuffle T7 Express in inclusion bodies and refolded by a conventional method, resulting in significant antigen-binding activity (K D = 469 pM) and productivity of 8.5 mg purified antibody/L-culture.
Collapse
Affiliation(s)
- Teruyo Ojima-Kato
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.
| | - Satomi Nagai
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Hideo Nakano
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.
| |
Collapse
|
47
|
Nogueira RT, Sahi V, Huang J, Tsuji M. Human IgG repertoire of malaria antigen-immunized human immune system (HIS) mice. Immunol Lett 2017; 188:46-52. [PMID: 28610800 DOI: 10.1016/j.imlet.2017.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/17/2017] [Accepted: 06/01/2017] [Indexed: 12/01/2022]
Abstract
Humanized mouse models present an important tool for preclinical evaluation of new vaccines and therapeutics. Here we show the human variable repertoire of antibody sequences cloned from a previously described human immune system (HIS) mouse model that possesses functional human CD4+ T cells and B cells, namely HIS-CD4/B mice. We sequenced variable IgG genes from single memory B-cell and plasma-cell sorted from splenocytes or whole blood lymphocytes of HIS-CD4/B mice that were vaccinated with a human plasmodial antigen, a recombinant Plasmodium falciparum circumsporozoite protein (rPfCSP). We demonstrate that rPfCSP immunization triggers a diverse B-cell IgG repertoire composed of various human VH family genes and distinct V(D)J recombinations that constitute diverse CDR3 sequences similar to humans, although low hypermutated sequences were generated. These results demonstrate the substantial genetic diversity of responding human B cells of HIS-CD4/B mice and their capacity to mount human IgG class-switched antibody response upon vaccination.
Collapse
Affiliation(s)
- Raquel Tayar Nogueira
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, 455 First Avenue, New York, NY 10016, United States
| | - Vincent Sahi
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, 455 First Avenue, New York, NY 10016, United States
| | - Jing Huang
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, 455 First Avenue, New York, NY 10016, United States
| | - Moriya Tsuji
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, 455 First Avenue, New York, NY 10016, United States.
| |
Collapse
|
48
|
Zhang Z, Liu H, Guan Q, Wang L, Yuan H. Advances in the Isolation of Specific Monoclonal Rabbit Antibodies. Front Immunol 2017; 8:494. [PMID: 28529510 PMCID: PMC5418221 DOI: 10.3389/fimmu.2017.00494] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 04/10/2017] [Indexed: 01/04/2023] Open
Abstract
The rabbit monoclonal antibodies (mAbs) have advantages in pharmaceuticals and diagnostics with high affinity and specificity. During the past decade, many techniques have been developed for isolating rabbit mAbs, including single B cell antibody technologies. This review describes the basic characterization of rabbit antibody repertoire and summarizes methods of hybridoma technologies, phage display platform, and single B cell antibody technologies. With advances in antibody function and repertoire analysis, rabbit mAbs will be widely used in therapeutic applications in the coming years.
Collapse
Affiliation(s)
- Zaibao Zhang
- Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China.,College of Life Science, Xinyang Normal University, Xinyang, China
| | - Huijuan Liu
- Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China.,College of Life Science, Xinyang Normal University, Xinyang, China
| | - Qian Guan
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Wang
- Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China.,College of Life Science, Xinyang Normal University, Xinyang, China
| | - Hongyu Yuan
- Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China.,College of Life Science, Xinyang Normal University, Xinyang, China
| |
Collapse
|
49
|
Fang X, Tong Y, Tian H, Ning H, Gao X, Yao W. Rapid de novo generation of antigen specific human B cells with expression of Blimp-1 and AID by in vitro immunization. Exp Cell Res 2017; 352:53-62. [PMID: 28153782 DOI: 10.1016/j.yexcr.2017.01.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/07/2017] [Accepted: 01/29/2017] [Indexed: 02/01/2023]
Abstract
In vitro immunization with antigens and cytokines triggers specific human B-cell response in short periods and is therefore superior to conventional in vivo immunization for antibody development. However, this new technology is limited by low efficiency, poor reproducibility, and requirement of pre-immunized lymphocytes. In this study, we demonstrate a novel method for de novo inducing antigen-specific human B cells in vitro. Unlike previous in vitro immunization of unfractionated PBMCs, we firstly optimized the conditions for inducing monocyte-derived dendritic cells (DCs) to efficiently capture, process, and present antigens. Instead of using the conventional method to activate Th2 cells for in vitro immunization, we succeeded to differentiate naïve CD4+ T cells into T follicular helper (Tfh) cells using antigen-sensitized DCs and cytokine cocktail. We discovered the differentiated T cells expressed ICOS, PD-1, BCL-6, and IL-21 at high levels. After 12 days of T-B co-culture, we observed induced T cells efficiently promoted naïve B cells to differentiate into plasmablasts secreting antigen-specific antibodies, with expression of Blimp-1 and AID related to affinity maturation and class switching. Thus, we established a new co-culture system with naïve lymphocyte populations for de novo acquisition of specifically in vitro immunized B cells potentially for development of therapeutic antibodies, which also provides novel insights into understanding the complex interactions among immune cells in lymph nodes.
Collapse
Affiliation(s)
- Xu Fang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Yue Tong
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Hong Tian
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Hongyu Ning
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Xiangdong Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.
| | - Wenbing Yao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
50
|
Kohli N, Geddie ML. Novel HPLC-Based Screening Method to Assess Developability of Antibody-Like Molecules. Methods Mol Biol 2017; 1575:189-196. [PMID: 28255881 DOI: 10.1007/978-1-4939-6857-2_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The discovery of antibodies that bind to targets with high affinity is now a routine exercise. However, it is still challenging to screen for candidates that, in addition to having excellent biological properties, also have optimal biophysical characteristics. Here, we describe a simple HPLC-based screening method to assess for developability factors earlier in the discovery process.
Collapse
Affiliation(s)
- Neeraj Kohli
- Merrimack Pharmaceuticals, Inc., Suite B7201, 1 Kendall Square, Cambridge, MA, 02139, USA.
| | - Melissa L Geddie
- Merrimack Pharmaceuticals, Inc., Suite B7201, 1 Kendall Square, Cambridge, MA, 02139, USA
| |
Collapse
|