1
|
Li QY, Tan XL, Xu HW, Zeng YX, Huang XY. Inhibition of IGF-1Rα affects the differentiation fate of rat optic cup-derived retinal stem cells to retinal ganglion cells in vitro. Int J Ophthalmol 2025; 18:582-589. [PMID: 40256021 PMCID: PMC11947540 DOI: 10.18240/ijo.2025.04.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 12/18/2024] [Indexed: 04/22/2025] Open
Abstract
AIM To explore the impact of insulin-like growth factor-1 receptor α (IGF-1Rα) on the differentiation fate of optic-cup-derived retinal stem cells (OC-RSCs) into retinal ganglion cells (RGCs) in vitro. METHODS OC-RSCs were isolated from optic cups of rats on embryonic day 12.5, and high-purity OC-RSCs were obtained by conditioned culture and passage. Differentiation of OC-RSCs into RGCs under different serum concentrations was examined using flow cytometry, and the serum concentration with high interference with differentiation ratio was selected. Furthermore, the effect of blocking IGF-1Rα on the differentiation of OC-RSCs into RGCs was analyzed through immunocytochemistry and Western blotting. RESULTS Immunohistochemical analysis revealed IGF-1Rα was highly expressed in rat embryos at day 12.5. OC-RSCs were isolated and purified, and high-purity OC-RSCs were obtained. When 2.5% serum was administered, the ratio of differentiated RGCs (Thy-1.1 positive) decreased significantly, and the results of immunoblotting also confirmed the blockade of IGF-1Rα reduced Thy-1.1 protein expression. CONCLUSION IGF-1Rα blocking can reduce the differentiation of OC-RSCs into RGCs.
Collapse
Affiliation(s)
- Qi-You Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Xiao-Ling Tan
- Department of Frigid Zone Medicine, College of High Altitude Military Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Hai-Wei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Yu-Xiao Zeng
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Xiao-Yong Huang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| |
Collapse
|
2
|
Drabbe E, Pelaez D, Agarwal A. Retinal organoid chip: engineering a physiomimetic oxygen gradient for optimizing long term culture of human retinal organoids. LAB ON A CHIP 2025; 25:1626-1636. [PMID: 39659219 PMCID: PMC11632457 DOI: 10.1039/d4lc00771a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/02/2024] [Indexed: 12/12/2024]
Abstract
An oxygen gradient across the retina plays a crucial role in its development and function. The inner retina resides in a hypoxic environment (2% O2) adjacent to the vitreous cavity. Oxygenation levels rapidly increase towards the outer retina (18% O2) at the choroid. In addition to retinal stratification, oxygen levels are critical for the health of retinal ganglion cells (RGCs), which relay visual information from the retina to the brain. Human stem cell derived retinal organoids are being engineered to mimic the structure and function of human retina for applications such as disease modeling, development of therapeutics, and cell replacement therapies. However, rapid degeneration of the retinal ganglion cell layers are a common limitation of human retinal organoid platforms. We report the design of a novel retinal organoid chip (ROC) that maintains a physiologically relevant oxygen gradient and allows the maturation of inner and outer retinal cell phenotypes for human retinal organoids. Our PDMS-free ROC holds 55 individual retinal organoids that were manually seeded, cultured for extended periods (over 150 days), imaged in situ, and retrieved. ROC was designed from first principles of liquid and gas mass transport, and fabricated from biologically- and chemically inert materials using rapid prototyping techniques such as micromachining, laser cutting, 3D printing and bonding. After computational and experimental validation of oxygen gradients, human induced pluripotent stem cell derived retinal organoids were transferred into the ROC, differentiated, cultured and imaged within the chip. ROCs that maintained active perfusion and stable oxygen gradients were successful in inducing higher viability of RGCs within retinal organoids than static controls, or ROC without oxygen gradients. Our physiologically relevant and higher-throughput retinal organoid culture system is well suited for applications in studying developmental perturbations to primate retinogenesis, including those driven by inherited traits, fetal environmental exposure to toxic agents, or acquired by genetic mutations, such as retinoblastoma.
Collapse
Affiliation(s)
- Emma Drabbe
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, 1638 NW 10th Ave., Miami, FL 33136, USA.
| | - Daniel Pelaez
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, 1638 NW 10th Ave., Miami, FL 33136, USA.
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, 1951 NW 7th Ave #475, Miami, FL 33136, USA.
| | - Ashutosh Agarwal
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, 1951 NW 7th Ave #475, Miami, FL 33136, USA.
- Desai Sethi Urology Institute, University of Miami Miller School of Medicine, Miami, USA
| |
Collapse
|
3
|
Engel-Pizcueta C, Hevia CF, Voltes A, Livet J, Pujades C. Her9 controls the stemness properties of hindbrain boundary cells. Development 2025; 152:dev203164. [PMID: 39628452 PMCID: PMC11829766 DOI: 10.1242/dev.203164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/26/2024] [Indexed: 01/03/2025]
Abstract
The different spatiotemporal distribution of progenitor and neurogenic capacities permits that brain regions engage asynchronously in neurogenesis. In the hindbrain, rhombomere progenitor cells contribute to neurons during the first neurogenic phase, whereas boundary cells participate later. To analyze what maintains boundary cells as non-neurogenic progenitors, we addressed the role of Her9, a zebrafish Hes1-related protein. her9 expression is temporarily sustained in boundary cells independently of Notch at early embryonic stages, while they are non-neurogenic progenitors. Complementary functional approaches show that Her9 inhibits the onset of Notch signaling and the neurogenic program, keeping boundary cells as progenitors. Multicolor clonal analysis combined with genetic perturbations reveal that Her9 expands boundary progenitors by promoting symmetric proliferative and preventing neurogenic cell divisions. Her9 also regulates the proliferation of boundary cells by inhibiting the cell cycle arrest gene cdkn1ca and interplaying with Cyclin D1. Moreover, her9 is enriched in hindbrain radial glial cells at late embryonic stages independently of Notch. Together these data demonstrate that Her9 maintains the stemness properties of hindbrain boundary progenitors and late radial glial cells, ensuring the different temporal distribution of neurogenic capacities within the hindbrain.
Collapse
Affiliation(s)
- Carolyn Engel-Pizcueta
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Covadonga F. Hevia
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Adrià Voltes
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Jean Livet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Cristina Pujades
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| |
Collapse
|
4
|
Heilman SA, Kostka D, Schriever H, Gross JM. Isolation and Preparation of Embryonic Zebrafish Retinal Cells for Single-Cell RNA Sequencing. Methods Mol Biol 2025; 2848:85-103. [PMID: 39240518 PMCID: PMC12097695 DOI: 10.1007/978-1-0716-4087-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Recent technological advances in single-cell RNA sequencing (scRNA-Seq) have enabled scientists to answer novel questions in biology with unparalleled precision. Indeed, in the field of ocular development and regeneration, scRNA-Seq studies have resulted in a number of exciting discoveries that have begun to revolutionize the way we think about these processes. Despite the widespread success of scRNA-Seq, many scientists are wary to perform scRNA-Seq experiments due to the uncertainty of obtaining high-quality viable cell populations that are necessary for the generation of usable data that enable rigorous computational analyses. Here, we describe methodology to reproducibility generate high-quality single-cell suspensions from embryonic zebrafish eyes. These single-cell suspensions served as inputs to the 10× Genomics v3.1 system and yielded high-quality scRNA-Seq data in proof-of-principle studies. In describing methodology to quantitatively assess cell yields, cell viability, and other critical quality control parameters, this protocol can serve as a useful starting point for others in designing their scRNA-Seq experiments in the zebrafish eye and in other developing or regenerating tissues in zebrafish or other model systems.
Collapse
Affiliation(s)
- Shea A Heilman
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Dennis Kostka
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Computational Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Hannah Schriever
- Department of Computational Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jeffrey M Gross
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
5
|
Hammer J, Röppenack P, Yousuf S, Machate A, Fischer M, Hans S, Brand M. Blind But Alive - Congenital Loss of atoh7 Disrupts the Visual System of Adult Zebrafish. Invest Ophthalmol Vis Sci 2024; 65:42. [PMID: 39565303 PMCID: PMC11583992 DOI: 10.1167/iovs.65.13.42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/30/2024] [Indexed: 11/21/2024] Open
Abstract
Purpose Vision is the predominant sense in most animal species. Loss of vision can be caused by a multitude of factors resulting in anatomic as well as behavioral changes. In mice and zebrafish, atoh7 mutants are completely blind as they fail to generate retinal ganglion cells (RGCs) during development. In contrast to mice, raising blind zebrafish to adulthood is challenging and this important model is currently missing in the field. Here, we report the phenotype of homozygous mutant adult zebrafish atoh7 mutants that have been raised using adjusted feeding and holding conditions. Methods The phenotype of adult mutants was characterized using classical histology and immunohistochemistry as well as optical coherence tomography. In addition, the optokinetic response was characterized. Results Adult atoh7 mutants display dark body pigmentation and significantly reduced body length. They fail to form RGCs, the resulting nerve fiber layer as well as the optic nerve, and consequently behave completely blindly. In contrast, increased amounts of other retinal neurons and Müller glia are formed. In addition, the optic tectum is anatomically reduced in size, presumably due to the missing retinal input. Conclusions Taken together, we provide a comprehensive characterization of a completely blind adult zebrafish mutant with focus on retinal and tectal morphology, as a useful model for glaucoma and optic nerve aplasia.
Collapse
Affiliation(s)
- Juliane Hammer
- Center for Regenerative Therapies at TU Dresden(CRTD), Dresden, Germany
| | - Paul Röppenack
- Center for Regenerative Therapies at TU Dresden(CRTD), Dresden, Germany
| | - Sarah Yousuf
- Center for Regenerative Therapies at TU Dresden(CRTD), Dresden, Germany
| | - Anja Machate
- Center for Regenerative Therapies at TU Dresden(CRTD), Dresden, Germany
| | - Marika Fischer
- Center for Regenerative Therapies at TU Dresden(CRTD), Dresden, Germany
| | - Stefan Hans
- Center for Regenerative Therapies at TU Dresden(CRTD), Dresden, Germany
| | - Michael Brand
- Center for Regenerative Therapies at TU Dresden(CRTD), Dresden, Germany
- Cluster of Excellence Physics of Life (PoL), TU Dresden, Dresden, Germany
| |
Collapse
|
6
|
Blackshaw S, Qian J, Hyde DR. New pathways to neurogenesis: Insights from injury-induced retinal regeneration. Bioessays 2024; 46:e2400133. [PMID: 38990084 PMCID: PMC11897919 DOI: 10.1002/bies.202400133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024]
Abstract
The vertebrate retina is a tractable system for studying control of cell neurogenesis and cell fate specification. During embryonic development, retinal neurogenesis is under strict temporal regulation, with cell types generated in fixed but overlapping temporal intervals. The temporal sequence and relative numbers of retinal cell types generated during development are robust and show minimal experience-dependent variation. In many cold-blooded vertebrates, acute retinal injury induces a different form of neurogenesis, where Müller glia reprogram into retinal progenitor-like cells that selectively regenerate retinal neurons lost to injury. The extent to which the molecular mechanisms controlling developmental and injury-induced neurogenesis resemble one another has long been unclear. However, a recent study in zebrafish has shed new light on this question, using single-cell multiomic analysis to show that selective loss of different retinal cell types induces the formation of fate-restricted Müller glia-derived progenitors that differ both from one another and from progenitors in developing retina. Here, we discuss the broader implications of these findings, and their possible therapeutic relevance.
Collapse
Affiliation(s)
- Seth Blackshaw
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jiang Qian
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - David R. Hyde
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
- Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, Indiana, USA
- Center for Zebrafish Research, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
7
|
Tran M, Askary A, Elowitz MB. Lineage motifs as developmental modules for control of cell type proportions. Dev Cell 2024; 59:812-826.e3. [PMID: 38359830 DOI: 10.1016/j.devcel.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/10/2023] [Accepted: 01/19/2024] [Indexed: 02/17/2024]
Abstract
In multicellular organisms, cell types must be produced and maintained in appropriate proportions. One way this is achieved is through committed progenitor cells or extrinsic interactions that produce specific patterns of descendant cell types on lineage trees. However, cell fate commitment is probabilistic in most contexts, making it difficult to infer these dynamics and understand how they establish overall cell type proportions. Here, we introduce Lineage Motif Analysis (LMA), a method that recursively identifies statistically overrepresented patterns of cell fates on lineage trees as potential signatures of committed progenitor states or extrinsic interactions. Applying LMA to published datasets reveals spatial and temporal organization of cell fate commitment in zebrafish and rat retina and early mouse embryonic development. Comparative analysis of vertebrate species suggests that lineage motifs facilitate adaptive evolutionary variation of retinal cell type proportions. LMA thus provides insight into complex developmental processes by decomposing them into simpler underlying modules.
Collapse
Affiliation(s)
- Martin Tran
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Amjad Askary
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Michael B Elowitz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
8
|
Zi H, Peng X, Cao J, Xie T, Liu T, Li H, Bu J, Du J, Li J. Piezo1-dependent regulation of pericyte proliferation by blood flow during brain vascular development. Cell Rep 2024; 43:113652. [PMID: 38175750 DOI: 10.1016/j.celrep.2023.113652] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/19/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024] Open
Abstract
Blood flow is known to regulate cerebrovascular development through acting on vascular endothelial cells (ECs). As an indispensable component of the neurovascular unit, brain pericytes physically couple with ECs and play vital roles in blood-brain barrier integrity maintenance and neurovascular coupling. However, it remains unclear whether blood flow affects brain pericyte development. Using in vivo time-lapse imaging of larval zebrafish, we monitored the developmental dynamics of brain pericytes and found that they proliferate to expand their population and increase their coverage to brain vessels. In combination with pharmacological and genetic approaches, we demonstrated that blood flow enhances brain pericyte proliferation through Piezo1 expressed in ECs. Moreover, we identified that EC-intrinsic Notch signaling is downstream of Piezo1 to promote the activation of Notch signaling in pericytes. Thus, our findings reveal a role of blood flow in pericyte proliferation, extending the functional spectrum of hemodynamics on cerebrovascular development.
Collapse
Affiliation(s)
- Huaxing Zi
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China; University of Chinese Academy of Sciences, 19A Yu-Quan Road, Beijing 100049, China
| | - Xiaolan Peng
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Jianbin Cao
- Department of Anesthesiology, Taizhou Hospital of Zhejiang Province affiliated with Wenzhou Medical University, Linhai 317000, China
| | - Tianyi Xie
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, 319 Yue-Yang Road, Shanghai 200031, China
| | - Tingting Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China; University of Chinese Academy of Sciences, 19A Yu-Quan Road, Beijing 100049, China
| | - Hongyu Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China; University of Chinese Academy of Sciences, 19A Yu-Quan Road, Beijing 100049, China
| | - Jiwen Bu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Jiulin Du
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China; University of Chinese Academy of Sciences, 19A Yu-Quan Road, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, 319 Yue-Yang Road, Shanghai 200031, China.
| | - Jia Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China.
| |
Collapse
|
9
|
Cheung G, Pauler FM, Koppensteiner P, Krausgruber T, Streicher C, Schrammel M, Gutmann-Özgen N, Ivec AE, Bock C, Shigemoto R, Hippenmeyer S. Multipotent progenitors instruct ontogeny of the superior colliculus. Neuron 2024; 112:230-246.e11. [PMID: 38096816 DOI: 10.1016/j.neuron.2023.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/06/2023] [Accepted: 11/10/2023] [Indexed: 01/21/2024]
Abstract
The superior colliculus (SC) in the mammalian midbrain is essential for multisensory integration and is composed of a rich diversity of excitatory and inhibitory neurons and glia. However, the developmental principles directing the generation of SC cell-type diversity are not understood. Here, we pursued systematic cell lineage tracing in silico and in vivo, preserving full spatial information, using genetic mosaic analysis with double markers (MADM)-based clonal analysis with single-cell sequencing (MADM-CloneSeq). The analysis of clonally related cell lineages revealed that radial glial progenitors (RGPs) in SC are exceptionally multipotent. Individual resident RGPs have the capacity to produce all excitatory and inhibitory SC neuron types, even at the stage of terminal division. While individual clonal units show no pre-defined cellular composition, the establishment of appropriate relative proportions of distinct neuronal types occurs in a PTEN-dependent manner. Collectively, our findings provide an inaugural framework at the single-RGP/-cell level of the mammalian SC ontogeny.
Collapse
Affiliation(s)
- Giselle Cheung
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Florian M Pauler
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Peter Koppensteiner
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Thomas Krausgruber
- CeMM Research Center for Molecular Medicine, Austrian Academy of Sciences; 1090 Vienna, Austria; Medical University of Vienna, Institute of Artificial Intelligence, Center for Medical Data Science, 1090 Vienna, Austria
| | - Carmen Streicher
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Martin Schrammel
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Natalie Gutmann-Özgen
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Alexis E Ivec
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine, Austrian Academy of Sciences; 1090 Vienna, Austria; Medical University of Vienna, Institute of Artificial Intelligence, Center for Medical Data Science, 1090 Vienna, Austria
| | - Ryuichi Shigemoto
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Simon Hippenmeyer
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria.
| |
Collapse
|
10
|
Qu Z, Batz Z, Singh N, Marchal C, Swaroop A. Stage-specific dynamic reorganization of genome topology shapes transcriptional neighborhoods in developing human retinal organoids. Cell Rep 2023; 42:113543. [PMID: 38048222 PMCID: PMC10790351 DOI: 10.1016/j.celrep.2023.113543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/21/2023] [Accepted: 11/17/2023] [Indexed: 12/06/2023] Open
Abstract
We have generated a high-resolution Hi-C map of developing human retinal organoids to elucidate spatiotemporal dynamics of genomic architecture and its relationship with gene expression patterns. We demonstrate progressive stage-specific alterations in DNA topology and correlate these changes with transcription of cell-type-restricted gene markers during retinal differentiation. Temporal Hi-C reveals a shift toward A compartment for protein-coding genes and B compartment for non-coding RNAs, displaying high and low expression, respectively. Notably, retina-enriched genes are clustered near lost boundaries of topologically associated domains (TADs), and higher-order assemblages (i.e., TAD cliques) localize in active chromatin regions with binding sites for eye-field transcription factors. These genes gain chromatin contacts at their transcription start site as organoid differentiation proceeds. Our study provides a global view of chromatin architecture dynamics associated with diversification of cell types during retinal development and serves as a foundational resource for in-depth functional investigations of retinal developmental traits.
Collapse
Affiliation(s)
- Zepeng Qu
- Neurobiology, Neurodegeneration, and Repair Laboratory, National Eye Institute, National Institutes of Health, MSC0610, 6 Center Drive, Bethesda, MD 20892, USA
| | - Zachary Batz
- Neurobiology, Neurodegeneration, and Repair Laboratory, National Eye Institute, National Institutes of Health, MSC0610, 6 Center Drive, Bethesda, MD 20892, USA
| | - Nivedita Singh
- Neurobiology, Neurodegeneration, and Repair Laboratory, National Eye Institute, National Institutes of Health, MSC0610, 6 Center Drive, Bethesda, MD 20892, USA
| | - Claire Marchal
- Neurobiology, Neurodegeneration, and Repair Laboratory, National Eye Institute, National Institutes of Health, MSC0610, 6 Center Drive, Bethesda, MD 20892, USA; In silichrom Ltd, 15 Digby Road, Newbury RG14 1TS, UK
| | - Anand Swaroop
- Neurobiology, Neurodegeneration, and Repair Laboratory, National Eye Institute, National Institutes of Health, MSC0610, 6 Center Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
11
|
Rocha-Martins M. Cell behaviors that pattern developing tissues: the case of the vertebrate nervous system. Curr Top Dev Biol 2023; 159:30-58. [PMID: 38729679 DOI: 10.1016/bs.ctdb.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Morphogenesis from cells to tissue gives rise to the complex architectures that make our organs. How cells and their dynamic behavior are translated into functional spatial patterns is only starting to be understood. Recent advances in quantitative imaging revealed that, although highly heterogeneous, cellular behaviors make reproducible tissue patterns. Emerging evidence suggests that mechanisms of cellular coordination, intrinsic variability and plasticity are critical for robust pattern formation. While pattern development shows a high level of fidelity, tissue organization has undergone drastic changes throughout the course of evolution. In addition, alterations in cell behavior, if unregulated, can cause developmental malformations that disrupt function. Therefore, comparative studies of different species and of disease models offer a powerful approach for understanding how novel spatial configurations arise from variations in cell behavior and the fundamentals of successful pattern formation. In this chapter, I dive into the development of the vertebrate nervous system to explore efforts to dissect pattern formation beyond molecules, the emerging core principles and open questions.
Collapse
|
12
|
Zhang X, Leavey P, Appel H, Makrides N, Blackshaw S. Molecular mechanisms controlling vertebrate retinal patterning, neurogenesis, and cell fate specification. Trends Genet 2023; 39:736-757. [PMID: 37423870 PMCID: PMC10529299 DOI: 10.1016/j.tig.2023.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023]
Abstract
This review covers recent advances in understanding the molecular mechanisms controlling neurogenesis and specification of the developing retina, with a focus on insights obtained from comparative single cell multiomic analysis. We discuss recent advances in understanding the mechanisms by which extrinsic factors trigger transcriptional changes that spatially pattern the optic cup (OC) and control the initiation and progression of retinal neurogenesis. We also discuss progress in unraveling the core evolutionarily conserved gene regulatory networks (GRNs) that specify early- and late-state retinal progenitor cells (RPCs) and neurogenic progenitors and that control the final steps in determining cell identity. Finally, we discuss findings that provide insight into regulation of species-specific aspects of retinal patterning and neurogenesis, including consideration of key outstanding questions in the field.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Ophthalmology, Columbia University School of Medicine, New York, NY, USA; Department of Pathology and Cell Biology, Columbia University School of Medicine, New York, NY, USA.
| | - Patrick Leavey
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Haley Appel
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Neoklis Makrides
- Department of Ophthalmology, Columbia University School of Medicine, New York, NY, USA
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
13
|
Casas Gimeno G, Dvorianinova E, Lembke CS, Dijkstra ESC, Abbas H, Liu Y, Paridaen JTML. A quantitative characterization of early neuron generation in the developing zebrafish telencephalon. Dev Neurobiol 2023; 83:237-254. [PMID: 37679904 DOI: 10.1002/dneu.22926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/28/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023]
Abstract
The adult brain is made up of anatomically and functionally distinct regions with specific neuronal compositions. At the root of this neuronal diversity are neural stem and progenitor cells (NPCs) that produce many neurons throughout embryonic development. During development, NPCs switch from initial expanding divisions to neurogenic divisions, which marks the onset of neurogenesis. Here, we aimed to understand when NPCs switch division modes to generate the first neurons in the anterior-most part of the zebrafish brain, the telencephalon. To this end, we used the deep learning-based segmentation method Cellpose and clonal analysis of individual NPCs to assess the production of neurons by NPCs in the first 24 h of zebrafish telencephalon development. Our results provide a quantitative atlas detailing the production of telencephalic neurons and NPC division modes between 14 and 24 h postfertilization. We find that within this timeframe, the switch to neurogenesis is gradual, with considerable heterogeneity in individual NPC neurogenic potential and division rates. This quantitative characterization of initial neurogenesis in the zebrafish telencephalon establishes a basis for future studies aimed at illuminating the molecular mechanisms and regulators of early neurogenesis.
Collapse
Affiliation(s)
- Glòria Casas Gimeno
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| | - Ekaterina Dvorianinova
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| | - Carla-Sophie Lembke
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| | - Emma S C Dijkstra
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| | - Hussam Abbas
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| | - Yuanyuan Liu
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| | - Judith T M L Paridaen
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| |
Collapse
|
14
|
Nerli E, Kretzschmar J, Bianucci T, Rocha‐Martins M, Zechner C, Norden C. Deterministic and probabilistic fate decisions co-exist in a single retinal lineage. EMBO J 2023; 42:e112657. [PMID: 37184124 PMCID: PMC10350840 DOI: 10.15252/embj.2022112657] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 04/04/2023] [Accepted: 04/20/2023] [Indexed: 05/16/2023] Open
Abstract
Correct nervous system development depends on the timely differentiation of progenitor cells into neurons. While the output of progenitor differentiation is well investigated at the population and clonal level, how stereotypic or variable fate decisions are during development is still more elusive. To fill this gap, we here follow the fate outcome of single neurogenic progenitors in the zebrafish retina over time using live imaging. We find that neurogenic progenitor divisions produce two daughter cells, one of deterministic and one of probabilistic fate. Interference with the deterministic branch of the lineage affects lineage progression. In contrast, interference with fate probabilities of the probabilistic branch results in a broader range of fate possibilities than in wild-type and involves the production of any neuronal cell type even at non-canonical developmental stages. Combining the interference data with stochastic modelling of fate probabilities revealed that a simple gene regulatory network is able to predict the observed fate decision probabilities during wild-type development. These findings unveil unexpected lineage flexibility that could ensure robust development of the retina and other tissues.
Collapse
Affiliation(s)
- Elisa Nerli
- Instituto Gulbenkian de CiênciaOeirasPortugal
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Center for Systems Biology DresdenDresdenGermany
| | | | - Tommaso Bianucci
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Center for Systems Biology DresdenDresdenGermany
- Physics of Life, Cluster of ExcellenceTU DresdenDresdenGermany
| | - Mauricio Rocha‐Martins
- Instituto Gulbenkian de CiênciaOeirasPortugal
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Christoph Zechner
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Center for Systems Biology DresdenDresdenGermany
- Physics of Life, Cluster of ExcellenceTU DresdenDresdenGermany
| | - Caren Norden
- Instituto Gulbenkian de CiênciaOeirasPortugal
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| |
Collapse
|
15
|
Tran M, Askary A, Elowitz MB. Lineage motifs: developmental modules for control of cell type proportions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.06.543925. [PMID: 37333085 PMCID: PMC10274800 DOI: 10.1101/2023.06.06.543925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
In multicellular organisms, cell types must be produced and maintained in appropriate proportions. One way this is achieved is through committed progenitor cells that produce specific sets of descendant cell types. However, cell fate commitment is probabilistic in most contexts, making it difficult to infer progenitor states and understand how they establish overall cell type proportions. Here, we introduce Lineage Motif Analysis (LMA), a method that recursively identifies statistically overrepresented patterns of cell fates on lineage trees as potential signatures of committed progenitor states. Applying LMA to published datasets reveals spatial and temporal organization of cell fate commitment in zebrafish and rat retina and early mouse embryo development. Comparative analysis of vertebrate species suggests that lineage motifs facilitate adaptive evolutionary variation of retinal cell type proportions. LMA thus provides insight into complex developmental processes by decomposing them into simpler underlying modules.
Collapse
Affiliation(s)
- Martin Tran
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Amjad Askary
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Michael B. Elowitz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lead contact
| |
Collapse
|
16
|
Li Y, Xu B, Jin M, Zhang H, Ren N, Hu J, He J. Homophilic interaction of cell adhesion molecule 3 coordinates retina neuroepithelial cell proliferation. J Cell Biol 2023; 222:e202204098. [PMID: 37022761 PMCID: PMC10082328 DOI: 10.1083/jcb.202204098] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 01/07/2023] [Accepted: 03/07/2023] [Indexed: 04/07/2023] Open
Abstract
Correct cell number generation is central to tissue development. However, in vivo roles of coordinated proliferation of individual neural progenitors in regulating cell numbers of developing neural tissues and the underlying molecular mechanism remain mostly elusive. Here, we showed that wild-type (WT) donor retinal progenitor cells (RPCs) generated significantly expanded clones in host retinae with G1-lengthening by p15 (cdkn2a/b) overexpression (p15+) in zebrafish. Further analysis showed that cell adhesion molecule 3 (cadm3) was reduced in p15+ host retinae, and overexpression of either full-length or ectodomains of Cadm3 in p15+ host retinae markedly suppressed the clonal expansion of WT donor RPCs. Notably, WT donor RPCs in retinae with cadm3 disruption recapitulated expanded clones that were found in p15+ retinae. More strikingly, overexpression of Cadm3 without extracellular ig1 domain in RPCs resulted in expanded clones and increased retinal total cell number. Thus, homophilic interaction of Cadm3 provides an intercellular mechanism underlying coordinated cell proliferation to ensure cell number homeostasis of the developing neuroepithelia.
Collapse
Affiliation(s)
- Yanan Li
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Baijie Xu
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mengmeng Jin
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hui Zhang
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ningxin Ren
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Jinhui Hu
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Jie He
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
17
|
Santos-França PL, David LA, Kassem F, Meng XQ, Cayouette M. Time to see: How temporal identity factors specify the developing mammalian retina. Semin Cell Dev Biol 2023; 142:36-42. [PMID: 35760728 DOI: 10.1016/j.semcdb.2022.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/30/2022]
Abstract
Understanding how retinal progenitor cells (RPCs) give rise to the variety of neural cell types of the retina has been a question of major interest over the last few decades. While environmental cues and transcription factor networks have been shown to control specific cell fate decisions, how RPCs alter fate output over time to control proper histogenesis remains poorly understood. In recent years, the identification of "temporal identity factors (TIFs)", which control RPC competence states to ensure that the right cell types are produced at the right time, has contributed to increasing our understanding of temporal patterning in the retina. Here, we review the different TIFs identified to date in the mammalian retina and discuss the underlying mechanisms by which they are thought to operate. We conclude by speculating on how identification of temporal patterning mechanisms might support the development of new therapeutic approaches against visual impairments.
Collapse
Affiliation(s)
- Pedro L Santos-França
- Cellular Neurobiology Research Unit, Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, Canada; Molecular Biology Program, Université de Montréal, Montréal, QC, Canada
| | - Luke Ajay David
- Cellular Neurobiology Research Unit, Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, Canada; Integrated Program in Neuroscience, Faculty of Medicine, McGill University, Montréal, QC, Canada
| | - Fatima Kassem
- Cellular Neurobiology Research Unit, Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, Canada; Integrated Program in Neuroscience, Faculty of Medicine, McGill University, Montréal, QC, Canada
| | - Xiang Qi Meng
- Integrated Program in Neuroscience, Faculty of Medicine, McGill University, Montréal, QC, Canada
| | - Michel Cayouette
- Cellular Neurobiology Research Unit, Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, Canada; Molecular Biology Program, Université de Montréal, Montréal, QC, Canada; Integrated Program in Neuroscience, Faculty of Medicine, McGill University, Montréal, QC, Canada; Department of Medicine, Université de Montréal, QC, Canada; Department of Anatomy and Cell Biology and Division of Experimental Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
18
|
Sen SQ. Generating neural diversity through spatial and temporal patterning. Semin Cell Dev Biol 2023; 142:54-66. [PMID: 35738966 DOI: 10.1016/j.semcdb.2022.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 11/19/2022]
Abstract
The nervous system consists of a vast diversity of neurons and glia that are accurately assembled into functional circuits. What are the mechanisms that generate these diverse cell types? During development, an epithelial sheet with neurogenic potential is initially regionalised into spatially restricted domains of gene expression. From this, pools of neural stem cells (NSCs) with distinct molecular profiles and the potential to generate different neuron types, are specified. These NSCs then divide asymmetrically to self-renew and generate post-mitotic neurons or glia. As NSCs age, they experience transitions in gene expression, which further allows them to generate different neurons or glia over time. Versions of this general template of spatial and temporal patterning operate during the development of different parts of different nervous systems. Here, I cover our current knowledge of Drosophila brain and optic lobe development as well as the development of the vertebrate cortex and spinal cord within the framework of this above template. I highlight where our knowledge is lacking, where mechanisms beyond these might operate, and how the emergence of new technologies might help address unanswered questions.
Collapse
Affiliation(s)
- Sonia Q Sen
- Tata Institute for Genetics and Society, UAS-GKVK Campus, Bellary Road, Bangalore, India.
| |
Collapse
|
19
|
Javed A, Santos-França PL, Mattar P, Cui A, Kassem F, Cayouette M. Ikaros family proteins redundantly regulate temporal patterning in the developing mouse retina. Development 2023; 150:286611. [PMID: 36537580 DOI: 10.1242/dev.200436] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
Temporal identity factors regulate competence of neural progenitors to generate specific cell types in a time-dependent manner, but how they operate remains poorly defined. In the developing mouse retina, the Ikaros zinc-finger transcription factor Ikzf1 regulates production of early-born cell types, except cone photoreceptors. In this study we show that, during early stages of retinal development, another Ikaros family protein, Ikzf4, functions redundantly with Ikzf1 to regulate cone photoreceptor production. Using CUT&RUN and functional assays, we show that Ikzf4 binds and represses genes involved in late-born rod photoreceptor specification, hence favoring cone production. At late stages, when Ikzf1 is no longer expressed in progenitors, we show that Ikzf4 re-localizes to target genes involved in gliogenesis and is required for Müller glia production. We report that Ikzf4 regulates Notch signaling genes and is sufficient to activate the Hes1 promoter through two Ikzf GGAA-binding motifs, suggesting a mechanism by which Ikzf4 may influence gliogenesis. These results uncover a combinatorial role for Ikaros family members during nervous system development and provide mechanistic insights on how they temporally regulate cell fate output.
Collapse
Affiliation(s)
- Awais Javed
- Cellular Neurobiology Research Unit, Institut de recherches cliniques de Montréal (IRCM), Montreal H2W 1R7, Canada
- Molecular Biology Program, Université de Montréal, Montreal H3T 1J4, Canada
| | - Pedro L Santos-França
- Cellular Neurobiology Research Unit, Institut de recherches cliniques de Montréal (IRCM), Montreal H2W 1R7, Canada
- Molecular Biology Program, Université de Montréal, Montreal H3T 1J4, Canada
| | - Pierre Mattar
- Cellular Neurobiology Research Unit, Institut de recherches cliniques de Montréal (IRCM), Montreal H2W 1R7, Canada
| | - Allie Cui
- Cellular Neurobiology Research Unit, Institut de recherches cliniques de Montréal (IRCM), Montreal H2W 1R7, Canada
| | - Fatima Kassem
- Cellular Neurobiology Research Unit, Institut de recherches cliniques de Montréal (IRCM), Montreal H2W 1R7, Canada
- Integrated Program in Neuroscience, McGill University, Montreal H3A 0G4, Canada
| | - Michel Cayouette
- Cellular Neurobiology Research Unit, Institut de recherches cliniques de Montréal (IRCM), Montreal H2W 1R7, Canada
- Molecular Biology Program, Université de Montréal, Montreal H3T 1J4, Canada
- Integrated Program in Neuroscience, McGill University, Montreal H3A 0G4, Canada
- Department of Medicine, Université de Montréal, Montreal H3T 1J4, Canada
- Department of Anatomy and Cell Biology, Division of Experimental Medicine, McGill University, Montreal H3A 0G4, Canada
| |
Collapse
|
20
|
Adeyinka DA, Egger B. Embryonic Neurogenesis in the Mammalian Brain. Neurogenetics 2023. [DOI: 10.1007/978-3-031-07793-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Su H, Xie T, Liu YU, Cui Y, Wen W, Tang BZ, Qin W. Facile synthesis of ultrabright luminogens with specific lipid droplets targeting feature for in vivo two-photon fluorescence retina imaging. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Chen C, Liao Y, Peng G. Connecting past and present: single-cell lineage tracing. Protein Cell 2022; 13:790-807. [PMID: 35441356 PMCID: PMC9237189 DOI: 10.1007/s13238-022-00913-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/06/2022] [Indexed: 01/16/2023] Open
Abstract
Central to the core principle of cell theory, depicting cells' history, state and fate is a fundamental goal in modern biology. By leveraging clonal analysis and single-cell RNA-seq technologies, single-cell lineage tracing provides new opportunities to interrogate both cell states and lineage histories. During the past few years, many strategies to achieve lineage tracing at single-cell resolution have been developed, and three of them (integration barcodes, polylox barcodes, and CRISPR barcodes) are noteworthy as they are amenable in experimentally tractable systems. Although the above strategies have been demonstrated in animal development and stem cell research, much care and effort are still required to implement these methods. Here we review the development of single-cell lineage tracing, major characteristics of the cell barcoding strategies, applications, as well as technical considerations and limitations, providing a guide to choose or improve the single-cell barcoding lineage tracing.
Collapse
Affiliation(s)
- Cheng Chen
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yuanxin Liao
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangdun Peng
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Center for Cell Lineage and Atlas, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
23
|
Olmos-Carreño CL, Figueres-Oñate M, Scicolone GE, López-Mascaraque L. Cell Fate of Retinal Progenitor Cells: In Ovo UbC-StarTrack Analysis. Int J Mol Sci 2022; 23:ijms232012388. [PMID: 36293245 PMCID: PMC9604099 DOI: 10.3390/ijms232012388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/28/2022] Open
Abstract
Clonal cell analysis outlines the ontogenic potential of single progenitor cells, allowing the elucidation of the neural heterogeneity among different cell types and their lineages. In this work, we analyze the potency of retinal stem/progenitor cells through development using the chick embryo as a model. We implemented in ovo the clonal genetic tracing strategy UbC-StarTrack for tracking retinal cell lineages derived from individual progenitors of the ciliary margin at E3.5 (HH21-22). The clonal assignment of the derived-cell progeny was performed in the neural retina at E11.5-12 (HH38) through the identification of sibling cells as cells expressing the same combination of fluorophores. Moreover, cell types were assessed based on their cellular morphology and laminar location. Ciliary margin derived-cell progenies are organized in columnar associations distributed along the peripheral retina with a limited tangential dispersion. The analysis revealed that, at the early stages of development, this region harbors multipotent and committed progenitor cells.
Collapse
Affiliation(s)
- Cindy L. Olmos-Carreño
- Instituto de Biología Celular y Neurociencias “Prof. E. De Robertis” (IBCN), CONICET and Departamento de Biología Celular, Histología, Embriología y Genética, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires 1121, Argentina
- Instituto Cajal-CSIC, Molecular, Cellular and Developmental Neurobiology Department, 28002 Madrid, Spain
| | - María Figueres-Oñate
- Instituto Cajal-CSIC, Molecular, Cellular and Developmental Neurobiology Department, 28002 Madrid, Spain
- Correspondence: (M.F.-O.); (L.L.-M.)
| | - Gabriel E. Scicolone
- Instituto de Biología Celular y Neurociencias “Prof. E. De Robertis” (IBCN), CONICET and Departamento de Biología Celular, Histología, Embriología y Genética, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires 1121, Argentina
| | - Laura López-Mascaraque
- Instituto Cajal-CSIC, Molecular, Cellular and Developmental Neurobiology Department, 28002 Madrid, Spain
- Correspondence: (M.F.-O.); (L.L.-M.)
| |
Collapse
|
24
|
A Spacetime Odyssey of Neural Progenitors to Generate Neuronal Diversity. Neurosci Bull 2022; 39:645-658. [PMID: 36214963 PMCID: PMC10073374 DOI: 10.1007/s12264-022-00956-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/29/2022] [Indexed: 10/17/2022] Open
Abstract
To understand how the nervous system develops from a small pool of progenitors during early embryonic development, it is fundamentally important to identify the diversity of neuronal subtypes, decode the origin of neuronal diversity, and uncover the principles governing neuronal specification across different regions. Recent single-cell analyses have systematically identified neuronal diversity at unprecedented scale and speed, leaving the deconstruction of spatiotemporal mechanisms for generating neuronal diversity an imperative and paramount challenge. In this review, we highlight three distinct strategies deployed by neural progenitors to produce diverse neuronal subtypes, including predetermined, stochastic, and cascade diversifying models, and elaborate how these strategies are implemented in distinct regions such as the neocortex, spinal cord, retina, and hypothalamus. Importantly, the identity of neural progenitors is defined by their spatial position and temporal patterning factors, and each type of progenitor cell gives rise to distinguishable cohorts of neuronal subtypes. Microenvironmental cues, spontaneous activity, and connectional pattern further reshape and diversify the fate of unspecialized neurons in particular regions. The illumination of how neuronal diversity is generated will pave the way for producing specific brain organoids to model human disease and desired neuronal subtypes for cell therapy, as well as understanding the organization of functional neural circuits and the evolution of the nervous system.
Collapse
|
25
|
Jin M, Zhang H, Xu B, Li Y, Qin H, Yu S, He J. Jag2b-Notch3/1b-mediated neuron-to-glia crosstalk controls retinal gliogenesis. EMBO Rep 2022; 23:e54922. [PMID: 36047082 PMCID: PMC9535768 DOI: 10.15252/embr.202254922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 08/03/2022] [Accepted: 08/18/2022] [Indexed: 11/09/2022] Open
Abstract
In the developing central nervous systems (CNS), neural progenitor cells generate neurons and glia in sequential order. However, the influence of neurons on glia generation remains elusive. Here, we report that photoreceptor cell-derived Jag2b is required for Notch-dependent Müller glia (MG) generation in the developing zebrafish retina. In jab2b-/- mutants, differentiating MGs are re-specified into lineage-related bipolar neuron fate at the expense of mature MG. Single-cell transcriptome analysis and knock-in animals reveal that jab2b is specifically expressed in crx+ -photoreceptor cells during MG generation. Crx promoter-driven jag2b, but not other Notch ligands, is sufficient to rescue the loss of MGs observed in jag2b-/- mutants. Furthermore, we observe a severe and moderate decrease in the number of MGs in notch3-/- and notch1b-/- mutants, respectively, and the activation of Notch3 or Notch1b rescues the MG loss in jag2b-/- mutants. Together, our findings reveal that the interaction of Jag2b and Notch3/Notch1b mediates the crosstalk between neurons and glial cells to ensure the irreversible differentiation of MG, providing novel mechanistic insights into the temporal specification of glial cell fate in a developing vertebrate CNS structure.
Collapse
Affiliation(s)
- Mengmeng Jin
- State Key Laboratory of NeuroscienceInstitute of NeuroscienceCenter for Excellence in Brain Science and Intelligence TechnologyChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Hui Zhang
- State Key Laboratory of NeuroscienceInstitute of NeuroscienceCenter for Excellence in Brain Science and Intelligence TechnologyChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Baijie Xu
- State Key Laboratory of NeuroscienceInstitute of NeuroscienceCenter for Excellence in Brain Science and Intelligence TechnologyChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yanan Li
- State Key Laboratory of NeuroscienceInstitute of NeuroscienceCenter for Excellence in Brain Science and Intelligence TechnologyChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Huiwen Qin
- State Key Laboratory of NeuroscienceInstitute of NeuroscienceCenter for Excellence in Brain Science and Intelligence TechnologyChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Shuguang Yu
- State Key Laboratory of NeuroscienceInstitute of NeuroscienceCenter for Excellence in Brain Science and Intelligence TechnologyChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jie He
- State Key Laboratory of NeuroscienceInstitute of NeuroscienceCenter for Excellence in Brain Science and Intelligence TechnologyChinese Academy of SciencesShanghaiChina
- Shanghai Center for Brain Science and Brain‐Inspired Intelligence TechnologyShanghaiChina
| |
Collapse
|
26
|
Petridou E, Godinho L. Cellular and Molecular Determinants of Retinal Cell Fate. Annu Rev Vis Sci 2022; 8:79-99. [DOI: 10.1146/annurev-vision-100820-103154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The vertebrate retina is regarded as a simple part of the central nervous system (CNS) and thus amenable to investigations of the determinants of cell fate. Its five neuronal cell classes and one glial cell class all derive from a common pool of progenitors. Here we review how each cell class is generated. Retinal progenitors progress through different competence states, in each of which they generate only a small repertoire of cell classes. The intrinsic state of the progenitor is determined by the complement of transcription factors it expresses. Thus, although progenitors are multipotent, there is a bias in the types of fates they generate during any particular time window. Overlying these competence states are stochastic mechanisms that influence fate decisions. These mechanisms are determined by a weighted set of probabilities based on the abundance of a cell class in the retina. Deterministic mechanisms also operate, especially late in development, when preprogrammed progenitors solely generate specific fates.
Collapse
Affiliation(s)
- Eleni Petridou
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany;,
- Graduate School of Systemic Neurosciences (GSN), Ludwig Maximilian University of Munich, Planegg-Martinsried, Germany
| | - Leanne Godinho
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany;,
| |
Collapse
|
27
|
Benevento M, Hökfelt T, Harkany T. Ontogenetic rules for the molecular diversification of hypothalamic neurons. Nat Rev Neurosci 2022; 23:611-627. [PMID: 35906427 DOI: 10.1038/s41583-022-00615-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2022] [Indexed: 11/09/2022]
Abstract
The hypothalamus is an evolutionarily conserved endocrine interface that, among other roles, links central homeostatic control to adaptive bodily responses by releasing hormones and neuropeptides from its many neuronal subtypes. In its preoptic, anterior, tuberal and mammillary subdivisions, a kaleidoscope of magnocellular and parvocellular neuroendocrine command neurons, local-circuit neurons, and neurons that project to extrahypothalamic areas are intermingled in partially overlapping patches of nuclei. Molecular fingerprinting has produced data of unprecedented mass and depth to distinguish and even to predict the synaptic and endocrine competences, connectivity and stimulus selectivity of many neuronal modalities. These new insights support eminent studies from the past century but challenge others on the molecular rules that shape the developmental segregation of hypothalamic neuronal subtypes and their use of morphogenic cues for terminal differentiation. Here, we integrate single-cell RNA sequencing studies with those of mouse genetics and endocrinology to describe key stages of hypothalamus development, including local neurogenesis, the direct terminal differentiation of glutamatergic neurons, transition cascades for GABAergic and GABAergic cell-derived dopamine cells, waves of local neuronal migration, and sequential enrichment in neuropeptides and hormones. We particularly emphasize how transcription factors determine neuronal identity and, consequently, circuit architecture, and whether their deviations triggered by environmental factors and hormones provoke neuroendocrine illnesses.
Collapse
Affiliation(s)
- Marco Benevento
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Tomas Hökfelt
- Department of Neuroscience, Biomedicum 7D, Karolinska Institutet, Solna, Sweden
| | - Tibor Harkany
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria. .,Department of Neuroscience, Biomedicum 7D, Karolinska Institutet, Solna, Sweden.
| |
Collapse
|
28
|
Grigoryan EN. Self-Organization of the Retina during Eye Development, Retinal Regeneration In Vivo, and in Retinal 3D Organoids In Vitro. Biomedicines 2022; 10:1458. [PMID: 35740479 PMCID: PMC9221005 DOI: 10.3390/biomedicines10061458] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 11/23/2022] Open
Abstract
Self-organization is a process that ensures histogenesis of the eye retina. This highly intricate phenomenon is not sufficiently studied due to its biological complexity and genetic heterogeneity. The review aims to summarize the existing central theories and ideas for a better understanding of retinal self-organization, as well as to address various practical problems of retinal biomedicine. The phenomenon of self-organization is discussed in the spatiotemporal context and illustrated by key findings during vertebrate retina development in vivo and retinal regeneration in amphibians in situ. Described also are histotypic 3D structures obtained from the disaggregated retinal progenitor cells of birds and retinal 3D organoids derived from the mouse and human pluripotent stem cells. The review highlights integral parts of retinal development in these conditions. On the cellular level, these include competence, differentiation, proliferation, apoptosis, cooperative movements, and migration. On the physical level, the focus is on the mechanical properties of cell- and cell layer-derived forces and on the molecular level on factors responsible for gene regulation, such as transcription factors, signaling molecules, and epigenetic changes. Finally, the self-organization phenomenon is discussed as a basis for the production of retinal organoids, a promising model for a wide range of basic scientific and medical applications.
Collapse
Affiliation(s)
- Eleonora N Grigoryan
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
29
|
Hevia CF, Engel-Pizcueta C, Udina F, Pujades C. The neurogenic fate of the hindbrain boundaries relies on Notch3-dependent asymmetric cell divisions. Cell Rep 2022; 39:110915. [PMID: 35675784 DOI: 10.1016/j.celrep.2022.110915] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 01/16/2022] [Accepted: 05/11/2022] [Indexed: 11/19/2022] Open
Abstract
Elucidating the cellular and molecular mechanisms that regulate the balance between progenitor cell proliferation and neuronal differentiation in the construction of the embryonic brain demands the combination of cell lineage and functional approaches. Here, we generate the comprehensive lineage of hindbrain boundary cells by using a CRISPR-based knockin zebrafish transgenic line that specifically labels the boundaries. We unveil that boundary cells asynchronously engage in neurogenesis undergoing a functional transition from neuroepithelial progenitors to radial glia cells, coinciding with the onset of Notch3 signaling that triggers their asymmetrical cell division. Upon notch3 loss of function, boundary cells lose radial glia properties and symmetrically divide undergoing neuronal differentiation. Finally, we show that the fate of boundary cells is to become neurons, the subtype of which relies on their axial position, suggesting that boundary cells contribute to refine the number and proportion of the distinct neuronal populations.
Collapse
Affiliation(s)
| | | | - Frederic Udina
- Department of Economics and Business, Universitat Pompeu Fabra, 08002 Barcelona, Spain; Data Science Center, Barcelona School of Economics, 08002 Barcelona, Spain
| | - Cristina Pujades
- Department of Medicine and Life Sciences, 08003 Barcelona, Spain.
| |
Collapse
|
30
|
Casas Gimeno G, Paridaen JTML. The Symmetry of Neural Stem Cell and Progenitor Divisions in the Vertebrate Brain. Front Cell Dev Biol 2022; 10:885269. [PMID: 35693936 PMCID: PMC9174586 DOI: 10.3389/fcell.2022.885269] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/20/2022] [Indexed: 12/23/2022] Open
Abstract
Robust brain development requires the tight coordination between tissue growth, neuronal differentiation and stem cell maintenance. To achieve this, neural stem cells need to balance symmetric proliferative and terminal divisions with asymmetric divisions. In recent years, the unequal distribution of certain cellular components in mitosis has emerged as a key mechanism to regulate the symmetry of division, and the determination of equal and unequal sister cell fates. Examples of such components include polarity proteins, signaling components, and cellular structures such as endosomes and centrosomes. In several types of neural stem cells, these factors show specific patterns of inheritance that correlate to specific cell fates, albeit the underlying mechanism and the potential causal relationship is not always understood. Here, we review these examples of cellular neural stem and progenitor cell asymmetries and will discuss how they fit into our current understanding of neural stem cell function in neurogenesis in developing and adult brains. We will focus mainly on the vertebrate brain, though we will incorporate relevant examples from invertebrate organisms as well. In particular, we will highlight recent advances in our understanding of the complexities related cellular asymmetries in determining division mode outcomes, and how these mechanisms are spatiotemporally regulated to match the different needs for proliferation and differentiation as the brain forms.
Collapse
|
31
|
Davis JR, Ainslie AP, Williamson JJ, Ferreira A, Torres-Sánchez A, Hoppe A, Mangione F, Smith MB, Martin-Blanco E, Salbreux G, Tapon N. ECM degradation in the Drosophila abdominal epidermis initiates tissue growth that ceases with rapid cell-cycle exit. Curr Biol 2022; 32:1285-1300.e4. [PMID: 35167804 PMCID: PMC8967408 DOI: 10.1016/j.cub.2022.01.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 11/30/2021] [Accepted: 01/18/2022] [Indexed: 12/18/2022]
Abstract
During development, multicellular organisms undergo stereotypical patterns of tissue growth in space and time. How developmental growth is orchestrated remains unclear, largely due to the difficulty of observing and quantitating this process in a living organism. Drosophila histoblast nests are small clusters of progenitor epithelial cells that undergo extensive growth to give rise to the adult abdominal epidermis and are amenable to live imaging. Our quantitative analysis of histoblast proliferation and tissue mechanics reveals that tissue growth is driven by cell divisions initiated through basal extracellular matrix degradation by matrix metalloproteases secreted by the neighboring larval epidermal cells. Laser ablations and computational simulations show that tissue mechanical tension does not decrease as the histoblasts fill the abdominal epidermal surface. During tissue growth, the histoblasts display oscillatory cell division rates until growth termination occurs through the rapid emergence of G0/G1 arrested cells, rather than a gradual increase in cell-cycle time as observed in other systems such as the Drosophila wing and mouse postnatal epidermis. Different developing tissues can therefore achieve their final size using distinct growth termination strategies. Thus, adult abdominal epidermal development is characterized by changes in the tissue microenvironment and a rapid exit from the cell cycle.
Collapse
Affiliation(s)
- John Robert Davis
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Anna P Ainslie
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - John J Williamson
- Theoretical Physics of Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Ana Ferreira
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Alejandro Torres-Sánchez
- Theoretical Physics of Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Andreas Hoppe
- Faculty of Science, Engineering and Computing, Kingston University, Kingston-upon-Thames KT1 2EE, UK
| | - Federica Mangione
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Matthew B Smith
- Theoretical Physics of Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Enrique Martin-Blanco
- Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Parc Científic de Barcelona, C/Baldiri Reixac, 4-8, Torre R, 3era Planta, 08028 Barcelona, Spain
| | - Guillaume Salbreux
- Theoretical Physics of Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Department of Genetics and Evolution, University of Geneva, Quai Ernest Ansermet 30, 1211 Geneva, Switzerland.
| | - Nicolas Tapon
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
32
|
Zibetti C. Deciphering the Retinal Epigenome during Development, Disease and Reprogramming: Advancements, Challenges and Perspectives. Cells 2022; 11:cells11050806. [PMID: 35269428 PMCID: PMC8908986 DOI: 10.3390/cells11050806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
Retinal neurogenesis is driven by concerted actions of transcription factors, some of which are expressed in a continuum and across several cell subtypes throughout development. While seemingly redundant, many factors diversify their regulatory outcome on gene expression, by coordinating variations in chromatin landscapes to drive divergent retinal specification programs. Recent studies have furthered the understanding of the epigenetic contribution to the progression of age-related macular degeneration, a leading cause of blindness in the elderly. The knowledge of the epigenomic mechanisms that control the acquisition and stabilization of retinal cell fates and are evoked upon damage, holds the potential for the treatment of retinal degeneration. Herein, this review presents the state-of-the-art approaches to investigate the retinal epigenome during development, disease, and reprogramming. A pipeline is then reviewed to functionally interrogate the epigenetic and transcriptional networks underlying cell fate specification, relying on a truly unbiased screening of open chromatin states. The related work proposes an inferential model to identify gene regulatory networks, features the first footprinting analysis and the first tentative, systematic query of candidate pioneer factors in the retina ever conducted in any model organism, leading to the identification of previously uncharacterized master regulators of retinal cell identity, such as the nuclear factor I, NFI. This pipeline is virtually applicable to the study of genetic programs and candidate pioneer factors in any developmental context. Finally, challenges and limitations intrinsic to the current next-generation sequencing techniques are discussed, as well as recent advances in super-resolution imaging, enabling spatio-temporal resolution of the genome.
Collapse
Affiliation(s)
- Cristina Zibetti
- Department of Ophthalmology, Institute of Clinical Medicine, University of Oslo, Kirkeveien 166, Building 36, 0455 Oslo, Norway
| |
Collapse
|
33
|
Belmonte-Mateos C, Pujades C. From Cell States to Cell Fates: How Cell Proliferation and Neuronal Differentiation Are Coordinated During Embryonic Development. Front Neurosci 2022; 15:781160. [PMID: 35046768 PMCID: PMC8761814 DOI: 10.3389/fnins.2021.781160] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/29/2021] [Indexed: 12/24/2022] Open
Abstract
The central nervous system (CNS) exhibits an extraordinary diversity of neurons, with the right cell types and proportions at the appropriate sites. Thus, to produce brains with specific size and cell composition, the rates of proliferation and differentiation must be tightly coordinated and balanced during development. Early on, proliferation dominates; later on, the growth rate almost ceases as more cells differentiate and exit the cell cycle. Generation of cell diversity and morphogenesis takes place concomitantly. In the vertebrate brain, this results in dramatic changes in the position of progenitor cells and their neuronal derivatives, whereas in the spinal cord morphogenetic changes are not so important because the structure mainly grows by increasing its volume. Morphogenesis is under control of specific genetic programs that coordinately unfold over time; however, little is known about how they operate and impact in the pools of progenitor cells in the CNS. Thus, the spatiotemporal coordination of these processes is fundamental for generating functional neuronal networks. Some key aims in developmental neurobiology are to determine how cell diversity arises from pluripotent progenitor cells, and how the progenitor potential changes upon time. In this review, we will share our view on how the advance of new technologies provides novel data that challenge some of the current hypothesis. We will cover some of the latest studies on cell lineage tracing and clonal analyses addressing the role of distinct progenitor cell division modes in balancing the rate of proliferation and differentiation during brain morphogenesis. We will discuss different hypothesis proposed to explain how progenitor cell diversity is generated and how they challenged prevailing concepts and raised new questions.
Collapse
Affiliation(s)
| | - Cristina Pujades
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
34
|
Huang Z. Simplifying cell fate map by determining lineage history of core pathway activation during fate specification. TRENDS IN DEVELOPMENTAL BIOLOGY 2022; 15:53-62. [PMID: 37396969 PMCID: PMC10312135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
A fundamental question in developmental biology is how a single genome gives rise to the diversity of cell fates. In essence, each cell fate in the human body is a unique but stable output state of the genome, maintained by positive and negative feedbacks from both inside and outside the cell (a stable cell state). Traditionally, defining a cell fate means identifying a unique combination of transcriptional factors expressed by the specific cell type. The hundreds of transcriptional factors in the genome, however, have complicated the task of simplifying cell fate representation and obtaining insights into its regulation. Moreover, results from this approach provides only a mostly static picture, with each cell fate/state disconnected from one another. An alternative approach instead defines cell fates by determining their relationship to each other, through identifying the signaling pathways that control each step of their lineage transition from a common progenitor during development. Decades of studies have shown only a handful of signaling pathways are sufficient to specify all cell fates in the body, simplifying the execution of such a strategy. In this review, I will argue this alternative approach is not only feasible but also has the potential of simplifying the cell fate landscape as well as facilitating the engineering of different cell fates for regenerative medicine.
Collapse
Affiliation(s)
- Zhen Huang
- Departments of Neuroscience and Neurology, University of Wisconsin-Madison, Madison, WI 53705 USA
| |
Collapse
|
35
|
Ranawat N, Masai I. Mechanisms underlying microglial colonization of developing neural retina in zebrafish. eLife 2021; 10:70550. [PMID: 34872632 PMCID: PMC8651297 DOI: 10.7554/elife.70550] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 11/02/2021] [Indexed: 12/13/2022] Open
Abstract
Microglia are brain-resident macrophages that function as the first line of defense in brain. Embryonic microglial precursors originate in peripheral mesoderm and migrate into the brain during development. However, the mechanism by which they colonize the brain is incompletely understood. The retina is one of the first brain regions to accommodate microglia. In zebrafish, embryonic microglial precursors use intraocular hyaloid blood vessels as a pathway to migrate into the optic cup via the choroid fissure. Once retinal progenitor cells exit the cell cycle, microglial precursors associated with hyaloid blood vessels start to infiltrate the retina preferentially through neurogenic regions, suggesting that colonization of retinal tissue depends upon the neurogenic state. Along with blood vessels and retinal neurogenesis, IL34 also participates in microglial precursor colonization of the retina. Altogether, CSF receptor signaling, blood vessels, and neuronal differentiation function as cues to create an essential path for microglial migration into developing retina. The immune system is comprised of many different cells which protect our bodies from infection and other illnesses. The brain contains its own population of immune cells called microglia. Unlike neurons, these cells form outside the brain during development. They then travel to the brain and colonize specific regions like the retina, the light-sensing part of the eye in vertebrates. It is poorly understood how newly formed microglia migrate to the retina and whether their entry depends on the developmental state of nerve cells (also known as neurons) in this region. To help answer these questions, Ranawat and Masai attached fluorescent labels that can be seen under a microscope to microglia in the embryos of zebrafish. Developing zebrafish are transparent, making it easy to trace the fluorescent microglia as they travel to the retina and insert themselves among its neurons. Ranawat and Masai found that blood vessels around the retina act as a pathway that microglia move along. Once they reach the retina, the microglia remain attached and only enter the retina at sites where brain cells are starting to mature in to adult neurons. Further experiments showed that microglia fail to infiltrate and colonize the retina when blood vessels are damaged or neuron maturation is blocked. These findings reveal some of the key elements that guide microglia to the retina during development. However, further work is needed to establish the molecular and biochemical processes that allow microglia to attach to blood vessels and detect when cells in the retina are starting to mature.
Collapse
Affiliation(s)
- Nishtha Ranawat
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| | - Ichiro Masai
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| |
Collapse
|
36
|
Glasauer SMK, Triemer T, Neef AB, Neuhauss SCF, Luedtke NW. DNA template strand segregation in developing zebrafish. Cell Chem Biol 2021; 28:1638-1647.e4. [PMID: 34592171 DOI: 10.1016/j.chembiol.2021.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 06/26/2021] [Accepted: 09/10/2021] [Indexed: 12/01/2022]
Abstract
Asymmetric inheritance of sister chromatids has long been predicted to be linked to discordant fates of daughter cells and even hypothesized to minimize accumulation of mutations in stem cells. Here, we use (2'S)-2'-deoxy-2'-fluoro-5-ethynyluridine (F-ara-EdU), bromodeoxyuridine (BrdU), and light sheet microscopy to track embryonic DNA in whole zebrafish. Larval development results in rapid depletion of older DNA template strands from stem cell niches in the retina, brain, and intestine. Prolonged label retention occurs in quiescent progenitors that resume replication in later development. High-resolution microscopy reveals no evidence of asymmetric template strand segregation in >100 daughter cell pairs, making it improbable that asymmetric DNA segregation prevents mutational burden according to the immortal strand hypothesis in developing zebrafish.
Collapse
Affiliation(s)
- Stella M K Glasauer
- Department of Chemistry, University of Zurich, 8057 Zurich, Switzerland; Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara CA 93106, USA
| | - Therese Triemer
- Department of Chemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Anne B Neef
- Department of Chemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Stephan C F Neuhauss
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland.
| | - Nathan W Luedtke
- Department of Chemistry, University of Zurich, 8057 Zurich, Switzerland; Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada; Department of Chemistry, McGill University, Montreal, QC H3A 0B8, Canada.
| |
Collapse
|
37
|
Engerer P, Petridou E, Williams PR, Suzuki SC, Yoshimatsu T, Portugues R, Misgeld T, Godinho L. Notch-mediated re-specification of neuronal identity during central nervous system development. Curr Biol 2021; 31:4870-4878.e5. [PMID: 34534440 DOI: 10.1016/j.cub.2021.08.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 06/27/2021] [Accepted: 08/18/2021] [Indexed: 11/27/2022]
Abstract
Neuronal identity has long been thought of as immutable, so that once a cell acquires a specific fate, it is maintained for life.1 Studies using the overexpression of potent transcription factors to experimentally reprogram neuronal fate in the mouse neocortex2,3 and retina4,5 have challenged this notion by revealing that post-mitotic neurons can switch their identity. Whether fate reprogramming is part of normal development in the central nervous system (CNS) is unclear. While there are some reports of physiological cell fate reprogramming in invertebrates,6,7 and in the vertebrate peripheral nervous system,8 endogenous fate reprogramming in the vertebrate CNS has not been documented. Here, we demonstrate spontaneous fate re-specification in an interneuron lineage in the zebrafish retina. We show that the visual system homeobox 1 (vsx1)-expressing lineage, which has been associated exclusively with excitatory bipolar cell (BC) interneurons,9-12 also generates inhibitory amacrine cells (ACs). We identify a role for Notch signaling in conferring plasticity to nascent vsx1 BCs, allowing suitable transcription factor programs to re-specify them to an AC fate. Overstimulating Notch signaling enhances this physiological phenotype so that both daughters of a vsx1 progenitor differentiate into ACs and partially differentiated vsx1 BCs can be converted into ACs. Furthermore, this physiological re-specification can be mimicked to allow experimental induction of an entirely distinct fate, that of retinal projection neurons, from the vsx1 lineage. Our observations reveal unanticipated plasticity of cell fate during retinal development.
Collapse
Affiliation(s)
- Peter Engerer
- Institute of Neuronal Cell Biology, Technische Universität München, Biedersteiner Strasse 29, 80802 Munich, Germany
| | - Eleni Petridou
- Institute of Neuronal Cell Biology, Technische Universität München, Biedersteiner Strasse 29, 80802 Munich, Germany; Graduate School of Systemic Neurosciences (GSN), Ludwig-Maximilian University of Munich, Großhaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Philip R Williams
- Institute of Neuronal Cell Biology, Technische Universität München, Biedersteiner Strasse 29, 80802 Munich, Germany
| | - Sachihiro C Suzuki
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - Takeshi Yoshimatsu
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - Ruben Portugues
- Institute of Neuroscience, Technische Universität München, Biedersteiner Strasse 29, 80802 Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), Feodor-Lynen-Strasse 17, 81377 Munich, Germany
| | - Thomas Misgeld
- Institute of Neuronal Cell Biology, Technische Universität München, Biedersteiner Strasse 29, 80802 Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen-Strasse 17, 81377 Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), Feodor-Lynen-Strasse 17, 81377 Munich, Germany
| | - Leanne Godinho
- Institute of Neuronal Cell Biology, Technische Universität München, Biedersteiner Strasse 29, 80802 Munich, Germany.
| |
Collapse
|
38
|
Shiau F, Ruzycki PA, Clark BS. A single-cell guide to retinal development: Cell fate decisions of multipotent retinal progenitors in scRNA-seq. Dev Biol 2021; 478:41-58. [PMID: 34146533 PMCID: PMC8386138 DOI: 10.1016/j.ydbio.2021.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/20/2022]
Abstract
Recent advances in high throughput single-cell RNA sequencing (scRNA-seq) technology have enabled the simultaneous transcriptomic profiling of thousands of individual cells in a single experiment. To investigate the intrinsic process of retinal development, researchers have leveraged this technology to quantify gene expression in retinal cells across development, in multiple species, and from numerous important models of human disease. In this review, we summarize recent applications of scRNA-seq and discuss how these datasets have complemented and advanced our understanding of retinal progenitor cell competence, cell fate specification, and differentiation. Finally, we also highlight the outstanding questions in the field that advances in single-cell data generation and analysis will soon be able to answer.
Collapse
Affiliation(s)
- Fion Shiau
- John F Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Philip A Ruzycki
- John F Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Brian S Clark
- John F Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
39
|
Pérez-Dones D, Ledesma-Terrón M, Míguez DG. Quantitative Approaches to Study Retinal Neurogenesis. Biomedicines 2021; 9:1222. [PMID: 34572408 PMCID: PMC8471905 DOI: 10.3390/biomedicines9091222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/07/2021] [Accepted: 09/11/2021] [Indexed: 11/16/2022] Open
Abstract
The study of the development of the vertebrate retina can be addressed from several perspectives: from a purely qualitative to a more quantitative approach that takes into account its spatio-temporal features, its three-dimensional structure and also the regulation and properties at the systems level. Here, we review the ongoing transition toward a full four-dimensional characterization of the developing vertebrate retina, focusing on the challenges at the experimental, image acquisition, image processing and quantification. Using the developing zebrafish retina, we illustrate how quantitative data extracted from these type of highly dense, three-dimensional tissues depend strongly on the image quality, image processing and algorithms used to segment and quantify. Therefore, we propose that the scientific community that focuses on developmental systems could strongly benefit from a more detailed disclosure of the tools and pipelines used to process and analyze images from biological samples.
Collapse
Affiliation(s)
- Diego Pérez-Dones
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Física de la Materia Condensada (IFIMAC), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Mario Ledesma-Terrón
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Física de la Materia Condensada (IFIMAC), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - David G Míguez
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Física de la Materia Condensada (IFIMAC), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
40
|
Moreau MX, Saillour Y, Cwetsch AW, Pierani A, Causeret F. Single-cell transcriptomics of the early developing mouse cerebral cortex disentangle the spatial and temporal components of neuronal fate acquisition. Development 2021; 148:269283. [PMID: 34170322 DOI: 10.1242/dev.197962] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 06/21/2021] [Indexed: 01/01/2023]
Abstract
In the developing cerebral cortex, how progenitors that seemingly display limited diversity end up producing a vast array of neurons remains a puzzling question. The prevailing model suggests that temporal maturation of progenitors is a key driver in the diversification of the neuronal output. However, temporal constraints are unlikely to account for all diversity, especially in the ventral and lateral pallium where neuronal types significantly differ from their dorsal neocortical counterparts born at the same time. In this study, we implemented single-cell RNAseq to sample the diversity of progenitors and neurons along the dorso-ventral axis of the early developing pallium. We first identified neuronal types, mapped them on the tissue and determined their origin through genetic tracing. We characterised progenitor diversity and disentangled the gene modules underlying temporal versus spatial regulations of neuronal specification. Finally, we reconstructed the developmental trajectories followed by ventral and dorsal pallial neurons to identify lineage-specific gene waves. Our data suggest a model by which discrete neuronal fate acquisition from a continuous gradient of progenitors results from the superimposition of spatial information and temporal maturation.
Collapse
Affiliation(s)
- Matthieu X Moreau
- Université de Paris, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, F-75015, Paris, France.,Université de Paris, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, F-75014, Paris, France
| | - Yoann Saillour
- Université de Paris, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, F-75015, Paris, France.,Université de Paris, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, F-75014, Paris, France
| | - Andrzej W Cwetsch
- Université de Paris, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, F-75015, Paris, France.,Université de Paris, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, F-75014, Paris, France
| | - Alessandra Pierani
- Université de Paris, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, F-75015, Paris, France.,Université de Paris, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, F-75014, Paris, France
| | - Frédéric Causeret
- Université de Paris, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, F-75015, Paris, France.,Université de Paris, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, F-75014, Paris, France
| |
Collapse
|
41
|
Chen X, Emerson MM. Notch signaling represses cone photoreceptor formation through the regulation of retinal progenitor cell states. Sci Rep 2021; 11:14525. [PMID: 34267251 PMCID: PMC8282820 DOI: 10.1038/s41598-021-93692-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/25/2021] [Indexed: 11/29/2022] Open
Abstract
Notch signaling is required to repress the formation of vertebrate cone photoreceptors and to maintain the proliferative potential of multipotent retinal progenitor cells. However, the mechanism by which Notch signaling controls these processes is unknown. Recently, restricted retinal progenitor cells with limited proliferation capacity and that preferentially generate cone photoreceptors have been identified. Thus, there are several potential steps during cone genesis that Notch signaling could act. Here we use cell type specific cis-regulatory elements to localize the primary role of Notch signaling in cone genesis to the formation of restricted retinal progenitor cells from multipotent retinal progenitor cells. Localized inhibition of Notch signaling in restricted progenitor cells does not alter the number of cones derived from these cells. Cell cycle promotion is not a primary effect of Notch signaling but an indirect effect on progenitor cell state transitions that leads to depletion of the multipotent progenitor cell population. Taken together, this suggests that the role of Notch signaling in cone photoreceptor formation and proliferation are both mediated by a localized function of Notch in multipotent retinal progenitor cells to repress the formation of restricted progenitor cells.
Collapse
Affiliation(s)
- Xueqing Chen
- Biology PhD Program, The Graduate Center, The City University of New York, New York, NY, 10016, USA
- Department of Biology, The City College of New York, The City University of New York, New York, NY, 10031, USA
| | - Mark M Emerson
- Biology PhD Program, The Graduate Center, The City University of New York, New York, NY, 10016, USA.
- Department of Biology, The City College of New York, The City University of New York, New York, NY, 10031, USA.
- Biochemistry PhD Program, The Graduate Center, The City University of New York, New York, NY, 10016, USA.
| |
Collapse
|
42
|
Abstract
It has been known for over a century that the basic organization of the retina is conserved across vertebrates. It has been equally clear that retinal cells can be classified into numerous types, but only recently have methods been devised to explore this diversity in unbiased, scalable, and comprehensive ways. Advances in high-throughput single-cell RNA-sequencing (scRNA-seq) have played a pivotal role in this effort. In this article, we outline the experimental and computational components of scRNA-seq and review studies that have used them to generate retinal atlases of cell types in several vertebrate species. These atlases have enabled studies of retinal development, responses of retinal cells to injury, expression patterns of genes implicated in retinal disease, and the evolution of cell types. Recently, the inquiry has expanded to include the entire eye and visual centers in the brain. These studies have enhanced our understanding of retinal function and dysfunction and provided tools and insights for exploring neural diversity throughout the brain. Expected final online publication date for the Annual Review of Vision Science, Volume 7 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Karthik Shekhar
- Department of Chemical and Biomolecular Engineering; Helen Wills Neuroscience Institute; and California Institute for Quantitative Biosciences, QB3, University of California, Berkeley, California 94720, USA;
| | - Joshua R Sanes
- Center for Brain Science and Department of Molecular and Cell Biology, Harvard University, Cambridge, Massachusetts 02138, USA;
| |
Collapse
|
43
|
Neural specification, targeting, and circuit formation during visual system assembly. Proc Natl Acad Sci U S A 2021; 118:2101823118. [PMID: 34183440 DOI: 10.1073/pnas.2101823118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Like other sensory systems, the visual system is topographically organized: Its sensory neurons, the photoreceptors, and their targets maintain point-to-point correspondence in physical space, forming a retinotopic map. The iterative wiring of circuits in the visual system conveniently facilitates the study of its development. Over the past few decades, experiments in Drosophila have shed light on the principles that guide the specification and connectivity of visual system neurons. In this review, we describe the main findings unearthed by the study of the Drosophila visual system and compare them with similar events in mammals. We focus on how temporal and spatial patterning generates diverse cell types, how guidance molecules distribute the axons and dendrites of neurons within the correct target regions, how vertebrates and invertebrates generate their retinotopic map, and the molecules and mechanisms required for neuronal migration. We suggest that basic principles used to wire the fly visual system are broadly applicable to other systems and highlight its importance as a model to study nervous system development.
Collapse
|
44
|
Retinal Stem Cell 'Retirement Plans': Growth, Regulation and Species Adaptations in the Retinal Ciliary Marginal Zone. Int J Mol Sci 2021; 22:ijms22126528. [PMID: 34207050 PMCID: PMC8234741 DOI: 10.3390/ijms22126528] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022] Open
Abstract
The vertebrate retina develops from a specified group of precursor cells that adopt distinct identities and generate lineages of either the neural retina, retinal pigmented epithelium, or ciliary body. In some species, including teleost fish and amphibians, proliferative cells with stem-cell-like properties capable of continuously supplying new retinal cells post-embryonically have been characterized and extensively studied. This region, termed the ciliary or circumferential marginal zone (CMZ), possibly represents a conserved retinal stem cell niche. In this review, we highlight the research characterizing similar CMZ-like regions, or stem-like cells located at the peripheral margin, across multiple different species. We discuss the proliferative parameters, multipotency and growth mechanisms of these cells to understand how they behave in vivo and how different molecular factors and signalling networks converge at the CMZ niche to regulate their activity. The evidence suggests that the mature retina may have a conserved propensity for homeostatic growth and plasticity and that dysfunction in the regulation of CMZ activity may partially account for dystrophic eye growth diseases such as myopia and hyperopia. A better understanding of the properties of CMZ cells will enable important insight into how an endogenous generative tissue compartment can adapt to altered retinal physiology and potentially even restore vision loss caused by retinal degenerative conditions.
Collapse
|
45
|
A defined subset of clonal retinal stem cell spheres is biased to RPE differentiation. iScience 2021; 24:102574. [PMID: 34151227 PMCID: PMC8188557 DOI: 10.1016/j.isci.2021.102574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/24/2021] [Accepted: 05/18/2021] [Indexed: 11/19/2022] Open
Abstract
Retinal stem cells (RSCs) are rare pigmented cells found in the pigmented ciliary layer of the mammalian retina. Studies show that RSCs can replicate to maintain the stem cell pool and produce retinal progenitors that differentiate into all retinal cell types. We classified RSCs based on their level and distribution of pigment into heavily pigmented (HP), lightly pigmented (LP), and centrally pigmented (CP) spheres. We report that CP spheres are capable of generating large cobblestone lawns of retinal pigment epithelial (RPE) cells. The other clonal sphere types (HP and LP) primarily produce cells with neural morphology and fewer RPE cells. The RSCs are homogeneous, but their downstream progenitors are different. We found that CP spheres contain highly proliferative populations of early RPE progenitors that respond to proliferative signals from the surrounding non-pigmented cells. HP and LP spheres contain late RPE progenitors which are not affected by proliferative signals. Three types of clonal retinal stem cell spheres form from the same single stem cell Centrally pigmented spheres contain populations of early RPE progenitors Heavily and lightly pigmented spheres contain populations of late RPE progenitors Downstream RPE progenitors are different due to extrinsic and intrinsic factors
Collapse
|
46
|
Zhang YH, Xu M, Shi X, Sun XL, Mu W, Wu H, Wang J, Li S, Su P, Gong L, He M, Yao M, Wu QF. Cascade diversification directs generation of neuronal diversity in the hypothalamus. Cell Stem Cell 2021; 28:1483-1499.e8. [PMID: 33887179 DOI: 10.1016/j.stem.2021.03.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/02/2021] [Accepted: 03/24/2021] [Indexed: 11/28/2022]
Abstract
The hypothalamus contains an astounding heterogeneity of neurons that regulate endocrine, autonomic, and behavioral functions. However, its molecular developmental trajectory and origin of neuronal diversity remain unclear. Here, we profile the transcriptome of 43,261 cells derived from Rax+ hypothalamic neuroepithelium to map the developmental landscape of the mouse hypothalamus and trajectory of radial glial cells (RGCs), intermediate progenitor cells (IPCs), nascent neurons, and peptidergic neurons. We show that RGCs adopt a conserved strategy for multipotential differentiation but generate Ascl1+ and Neurog2+ IPCs. Ascl1+ IPCs differ from their telencephalic counterpart by displaying fate bifurcation, and postmitotic nascent neurons resolve into multiple peptidergic neuronal subtypes. Clonal analysis further demonstrates that single RGCs can produce multiple neuronal subtypes. Our study reveals that multiple cell types along the lineage hierarchy contribute to fate diversification of hypothalamic neurons in a stepwise fashion, suggesting a cascade diversification model that deconstructs the origin of neuronal diversity.
Collapse
Affiliation(s)
- Yu-Hong Zhang
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Mingrui Xu
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Xiang Shi
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Xue-Lian Sun
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Wenhui Mu
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Haoda Wu
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Jingjing Wang
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Si Li
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Pengfei Su
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Ling Gong
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - Miao He
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - Mingze Yao
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Qing-Feng Wu
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai 200031, China; Chinese Institute for Brain Research, Beijing 102206, China.
| |
Collapse
|
47
|
Lyu J, Mu X. Genetic control of retinal ganglion cell genesis. Cell Mol Life Sci 2021; 78:4417-4433. [PMID: 33782712 DOI: 10.1007/s00018-021-03814-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/27/2021] [Accepted: 03/18/2021] [Indexed: 12/18/2022]
Abstract
Retinal ganglion cells (RGCs) are the only projection neurons in the neural retina. They receive and integrate visual signals from upstream retinal neurons in the visual circuitry and transmit them to the brain. The function of RGCs is performed by the approximately 40 RGC types projecting to various central brain targets. RGCs are the first cell type to form during retinogenesis. The specification and differentiation of the RGC lineage is a stepwise process; a hierarchical gene regulatory network controlling the RGC lineage has been identified and continues to be elaborated. Recent studies with single-cell transcriptomics have led to unprecedented new insights into their types and developmental trajectory. In this review, we summarize our current understanding of the functions and relationships of the many regulators of the specification and differentiation of the RGC lineage. We emphasize the roles of these key transcription factors and pathways in different developmental steps, including the transition from retinal progenitor cells (RPCs) to RGCs, RGC differentiation, generation of diverse RGC types, and central projection of the RGC axons. We discuss critical issues that remain to be addressed for a comprehensive understanding of these different aspects of RGC genesis and emerging technologies, including single-cell techniques, novel genetic tools and resources, and high-throughput genome editing and screening assays, which can be leveraged in future studies.
Collapse
Affiliation(s)
- Jianyi Lyu
- Department of Ophthalmology/Ross Eye Institute, State University of New York At Buffalo, Buffalo, NY, 14203, USA
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Xiuqian Mu
- Department of Ophthalmology/Ross Eye Institute, State University of New York At Buffalo, Buffalo, NY, 14203, USA.
| |
Collapse
|
48
|
Wang M, Du L, Lee AC, Li Y, Qin H, He J. Different lineage contexts direct common pro-neural factors to specify distinct retinal cell subtypes. J Cell Biol 2021; 219:151968. [PMID: 32699896 PMCID: PMC7480095 DOI: 10.1083/jcb.202003026] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/13/2020] [Accepted: 06/04/2020] [Indexed: 02/08/2023] Open
Abstract
How astounding neuronal diversity arises from variable cell lineages in vertebrates remains mostly elusive. By in vivo lineage tracing of ∼1,000 single zebrafish retinal progenitors, we identified a repertoire of subtype-specific stereotyped neurogenic lineages. Remarkably, within these stereotyped lineages, GABAergic amacrine cells were born with photoreceptor cells, whereas glycinergic amacrine cells were born with OFF bipolar cells. More interestingly, post-mitotic differentiation blockage of GABAergic and glycinergic amacrine cells resulted in their respecification into photoreceptor and bipolar cells, respectively, suggesting lineage constraint in cell subtype specification. Using single-cell RNA-seq and ATAC-seq analyses, we further identified lineage-specific progenitors, each defined by specific transcription factors that exhibited characteristic chromatin accessibility dynamics. Finally, single pro-neural factors could specify different neuron types/subtypes in a lineage-dependent manner. Our findings reveal the importance of lineage context in defining neuronal subtypes and provide a demonstration of in vivo lineage-dependent induction of unique retinal neuron subtypes for treatment purposes.
Collapse
Affiliation(s)
- Mei Wang
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China.,Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| | - Lei Du
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China.,Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| | - Aih Cheun Lee
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yan Li
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China.,Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| | - Huiwen Qin
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China.,Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| | - Jie He
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| |
Collapse
|
49
|
Ma T, Wong SZH, Lee B, Ming GL, Song H. Decoding neuronal composition and ontogeny of individual hypothalamic nuclei. Neuron 2021; 109:1150-1167.e6. [PMID: 33600763 DOI: 10.1016/j.neuron.2021.01.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 10/10/2020] [Accepted: 01/26/2021] [Indexed: 01/30/2023]
Abstract
The hypothalamus plays crucial roles in regulating endocrine, autonomic, and behavioral functions via its diverse nuclei and neuronal subtypes. The developmental mechanisms underlying ontogenetic establishment of different hypothalamic nuclei and generation of neuronal diversity remain largely unknown. Here, we show that combinatorial T-box 3 (TBX3), orthopedia homeobox (OTP), and distal-less homeobox (DLX) expression delineates all arcuate nucleus (Arc) neurons and defines four distinct subpopulations, whereas combinatorial NKX2.1/SF1 and OTP/DLX expression identifies ventromedial hypothalamus (VMH) and tuberal nucleus (TuN) neuronal subpopulations, respectively. Developmental analysis indicates that all four Arc subpopulations are mosaically and simultaneously generated from embryonic Arc progenitors, whereas glutamatergic VMH neurons and GABAergic TuN neurons are sequentially generated from common embryonic VMH progenitors. Moreover, clonal lineage-tracing analysis reveals that diverse lineages from multipotent radial glia progenitors orchestrate Arc and VMH-TuN establishment. Together, our study reveals cellular mechanisms underlying generation and organization of diverse neuronal subtypes and ontogenetic establishment of individual nuclei in the mammalian hypothalamus.
Collapse
Affiliation(s)
- Tong Ma
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Samuel Zheng Hao Wong
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; The Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Bora Lee
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; The Epigenetic Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
50
|
Clark BS, Miesfeld JB, Flinn MA, Collery RF, Link BA. Dynamic Polarization of Rab11a Modulates Crb2a Localization and Impacts Signaling to Regulate Retinal Neurogenesis. Front Cell Dev Biol 2021; 8:608112. [PMID: 33634099 PMCID: PMC7900515 DOI: 10.3389/fcell.2020.608112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 12/28/2020] [Indexed: 01/31/2023] Open
Abstract
Interkinetic nuclear migration (IKNM) is the process in which pseudostratified epithelial nuclei oscillate from the apical to basal surface and in phase with the mitotic cycle. In the zebrafish retina, neuroepithelial retinal progenitor cells (RPCs) increase Notch activity with apical movement of the nuclei, and the depth of nuclear migration correlates with the probability that the next cell division will be neurogenic. This study focuses on the mechanisms underlying the relationships between IKNM, cell signaling, and neurogenesis. In particular, we have explored the role IKNM has on endosome biology within RPCs. Through genetic manipulation and live imaging in zebrafish, we find that early (Rab5-positive) and recycling (Rab11a-positive) endosomes polarize in a dynamic fashion within RPCs and with reference to nuclear position. Functional analyses suggest that dynamic polarization of recycling endosomes and their activity within the neuroepithelia modulates the subcellular localization of Crb2a, consequently affecting multiple signaling pathways that impact neurogenesis including Notch, Hippo, and Wnt activities. As nuclear migration is heterogenous and asynchronous among RPCs, Rab11a-affected signaling within the neuroepithelia is modulated in a differential manner, providing mechanistic insight to the correlation of IKNM and selection of RPCs to undergo neurogenesis.
Collapse
Affiliation(s)
- Brian S Clark
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Joel B Miesfeld
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Michael A Flinn
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Ross F Collery
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin Eye Institute, Milwaukee, WI, United States
| | - Brian A Link
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|