1
|
Moore JR, Nemera MT, D'Souza RD, Hamagami N, Clemens AW, Beard DC, Urman A, Razia Y, Rodriguez Mendoza V, Law TE, Edwards JR, Gabel HW. MeCP2 and non-CG DNA methylation stabilize the expression of long genes that distinguish closely related neuron types. Nat Neurosci 2025; 28:1185-1198. [PMID: 40355611 DOI: 10.1038/s41593-025-01947-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/14/2025] [Indexed: 05/14/2025]
Abstract
The diversity of mammalian neurons is delineated by subtle gene expression differences that may require specialized mechanisms to be maintained. Neurons uniquely express the longest genes in the genome and use non-CG DNA methylation (mCA), together with the Rett syndrome protein methyl-CpG-binding protein 2 (MeCP2), to control gene expression. However, whether these distinctive gene structures and molecular machinery regulate neuronal diversity remains unexplored. Here, we use genomic and spatial transcriptomic analyses to show that MeCP2 maintains transcriptomic diversity across closely related neuron types. We uncover differential susceptibility of neuronal populations to MeCP2 loss according to global mCA levels and dissect methylation patterns driving shared and distinct MeCP2 gene regulation. We show that MeCP2 regulates long, mCA-enriched, 'repeatedly tuned' genes, that is, genes differentially expressed between many closely related neuron types, including across spatially distinct, vision-dependent gene programs in the visual cortex. Thus, MeCP2 maintains neuron type-specific gene programs to facilitate cellular diversity in the brain.
Collapse
Affiliation(s)
- J Russell Moore
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Mati T Nemera
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Rinaldo D D'Souza
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Nicole Hamagami
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Adam W Clemens
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Diana C Beard
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Alaina Urman
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Division of Oncology, Washington University, St. Louis, MO, USA
| | - Yasmin Razia
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Victoria Rodriguez Mendoza
- Opportunities in Genomic Research Program, McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Travis E Law
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Division of Oncology, Washington University, St. Louis, MO, USA
| | - John R Edwards
- Department of Medicine, Division of Oncology, Washington University, St. Louis, MO, USA
| | - Harrison W Gabel
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
2
|
Furlanis E, Dai M, Leyva Garcia B, Tran T, Vergara J, Pereira A, Gorissen BL, Wills S, Vlachos A, Hairston A, Dwivedi D, Du S, McMahon J, Huang S, Morabito A, Vazquez A, Kim S, Lee AT, Chang EF, Razzaq T, Qazi A, Vargish G, Yuan X, Caccavano A, Hunt S, Chittajallu R, McLean N, Hewitt L, Paranzino E, Rice H, Cummins AC, Plotnikova A, Mohanty A, Tangen AC, Shin JH, Azadi R, Eldridge MAG, Alvarez VA, Averbeck BB, Alyahyay M, Vallejo TR, Soheib M, Vattino LG, MacGregor CP, Chatain CP, Banks E, Olah VJ, Naskar S, Hill S, Liebergall S, Badiani R, Hyde L, Hanley E, Xu Q, Allaway KC, Goldberg EM, Rowan MJM, Nowakowski TJ, Lee S, Favuzzi E, Kaeser PS, Sjulson L, Batista-Brito R, Takesian AE, Ibrahim LA, Iqbal A, Pelkey KA, McBain CJ, Dimidschstein J, Fishell G, Wang Y. An enhancer-AAV toolbox to target and manipulate distinct interneuron subtypes. Neuron 2025; 113:1525-1547.e15. [PMID: 40403705 DOI: 10.1016/j.neuron.2025.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 03/18/2025] [Accepted: 05/01/2025] [Indexed: 05/24/2025]
Abstract
In recent years, we and others have identified a number of enhancers that, when incorporated into rAAV vectors, can restrict the transgene expression to particular neuronal populations. Yet, viral tools to access and manipulate specific neuronal subtypes are still limited. Here, we performed systematic analysis of single-cell genomic data to identify enhancer candidates for each of the telencephalic interneuron subtypes. We established a set of enhancer-AAV tools that are highly specific for distinct cortical interneuron populations and striatal cholinergic interneurons. These enhancers, when used in the context of different effectors, can target (fluorescent proteins), observe activity (GCaMP), and manipulate (opto-genetics) specific neuronal subtypes. We also validated our enhancer-AAV tools across species. Thus, we provide the field with a powerful set of tools to study neural circuits and functions and to develop precise and targeted therapy.
Collapse
Affiliation(s)
- Elisabetta Furlanis
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Min Dai
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Brenda Leyva Garcia
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Thien Tran
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Josselyn Vergara
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ana Pereira
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Bram L Gorissen
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sara Wills
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Anna Vlachos
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Ariel Hairston
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA
| | - Deepanjali Dwivedi
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sarah Du
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Justin McMahon
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Shuhan Huang
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA
| | - Annunziato Morabito
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA
| | - Arenski Vazquez
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Soyoun Kim
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Anthony T Lee
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Edward F Chang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | | | | | - Geoffrey Vargish
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Xiaoqing Yuan
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Adam Caccavano
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Steven Hunt
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Ramesh Chittajallu
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Nadiya McLean
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Lauren Hewitt
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Emily Paranzino
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Haley Rice
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Alex C Cummins
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892-4415, USA
| | - Anya Plotnikova
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892-4415, USA
| | - Arya Mohanty
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892-4415, USA
| | - Anne Claire Tangen
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892-4415, USA
| | - Jung Hoon Shin
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892-4415, USA
| | - Reza Azadi
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892-4415, USA
| | - Mark A G Eldridge
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892-4415, USA
| | - Veronica A Alvarez
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892-4415, USA
| | - Bruno B Averbeck
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892-4415, USA
| | - Mansour Alyahyay
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Tania Reyes Vallejo
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Mohammed Soheib
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Lucas G Vattino
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA, USA; Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Cathryn P MacGregor
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA, USA; Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Carolina Piletti Chatain
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Wu Tsai Institute, Yale University, New Haven, CT 06510, USA
| | - Emmie Banks
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Viktor Janos Olah
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Shovan Naskar
- Unit of Functional Neural Circuit, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sophie Hill
- Department of Neuroscience, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Sophie Liebergall
- Department of Neuroscience, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Rohan Badiani
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Lili Hyde
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ella Hanley
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Qing Xu
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia; Genomics & Systems Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Kathryn C Allaway
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ethan M Goldberg
- Department of Neuroscience, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Matthew J M Rowan
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Tomasz J Nowakowski
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Soohyun Lee
- Unit of Functional Neural Circuit, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Emilia Favuzzi
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Wu Tsai Institute, Yale University, New Haven, CT 06510, USA
| | - Pascal S Kaeser
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA
| | - Lucas Sjulson
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA; Dominick P. Purpura Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Renata Batista-Brito
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA; Dominick P. Purpura Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Anne E Takesian
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA, USA; Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Leena A Ibrahim
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | | | - Kenneth A Pelkey
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Chris J McBain
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Jordane Dimidschstein
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Gord Fishell
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Yating Wang
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
3
|
Dellal S, Zurita H, Kruglikov I, Valero M, Abad-Perez P, Geron E, Meng JH, Pronneke A, Hanson JL, Mir E, Ongaro M, Wang XJ, Buzsaki G, Machold RP, Rudy B. Inhibitory and disinhibitory VIP IN-mediated circuits in neocortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.26.640383. [PMID: 40060562 PMCID: PMC11888407 DOI: 10.1101/2025.02.26.640383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Cortical GABAergic interneurons (INs) expressing the neuropeptide vasoactive-intestinal peptide (VIP) predominantly function by inhibiting dendritic-targeting somato-statin (SST) expressing INs, thereby disinhibiting pyramidal cells (PCs) and facilitating cortical circuit plasticity. VIP INs are a molecularly heterogeneous group, but the physiological significance of this diversity is unclear at present. Here, we have characterized the functional diversity of VIP INs in the primary somatosensory cortex (vS1) using intersectional genetic approaches. We found that VIP INs are comprised of four primary populations that exhibit different laminar distributions, axonal and dendritic arbors, intrinsic electrophysiological properties, and efferent connectivity. Furthermore, we observe that these populations are differentially activated by long-range inputs, and display distinct responses to neuromodulation by endocannabinoids, acetylcholine and noradrenaline. Stimulation of VIP IN subpopulations in vivo results in differential effects on the cortical network, thus providing evidence for specialized modes of VIP IN-mediated regulation of PC activity during cortical information processing.
Collapse
|
4
|
Jézéquel J, Condomitti G, Kroon T, Hamid F, Sanalidou S, Garcés T, Maeso P, Balia M, Hu Z, Sahara S, Rico B. Cadherins orchestrate specific patterns of perisomatic inhibition onto distinct pyramidal cell populations. Nat Commun 2025; 16:4481. [PMID: 40368888 PMCID: PMC12078473 DOI: 10.1038/s41467-025-59635-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 04/28/2025] [Indexed: 05/16/2025] Open
Abstract
GABAergic interneurons were thought to regulate excitatory networks by establishing unselective connections onto diverse pyramidal cell populations, but recent studies demonstrate the existence of a cell type-specific inhibitory connectome. How and when interneurons establish precise connectivity patterns among intermingled populations of excitatory neurons remains enigmatic. We explore the molecular mechanisms orchestrating the emergence of cell type-specific inhibition in the mouse cerebral cortex. We demonstrate that layer 5 intra- (L5 IT) and extra-telencephalic (L5 ET) neurons express unique transcriptional programs, allowing them to shape parvalbumin- (PV+) and cholecystokinin-positive (CCK+) interneuron wiring. We identified Cdh12 and Cdh13, two cadherin superfamily members, as underpinnings of cell type- and input-specific inhibitory patterns of L5 pyramidal cell populations. Multiplex monosynaptic tracing revealed a minimal overlap between IT and ET presynaptic inhibitory networks and suggests that different PV+ basket cell populations innervate distinct L5 pyramidal cell types. Here, we unravel the contribution of cadherins in shaping cell-type-specific cortical interneuron wiring.
Collapse
Affiliation(s)
- Julie Jézéquel
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Giuseppe Condomitti
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Tim Kroon
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Fursham Hamid
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Stella Sanalidou
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Teresa Garcés
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Patricia Maeso
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Maddalena Balia
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Zhaohui Hu
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Setsuko Sahara
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Beatriz Rico
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom.
| |
Collapse
|
5
|
Furlanis E, Dai M, Garcia BL, Tran T, Vergara J, Pereira A, Gorissen BL, Wills S, Vlachos A, Hairston A, Dwivedi D, Du S, McMahon J, Huang S, Morabito A, Vazquez A, Kim S, Lee AT, Chang EF, Razzaq T, Qazi A, Vargish G, Yuan X, Caccavano A, Hunt S, Chittajallu R, McLean N, Hewitt L, Paranzino E, Rice H, Cummins AC, Plotnikova A, Mohanty A, Tangen AC, Shin JH, Azadi R, Eldridge MAG, Alvarez VA, Averbeck BB, Alyahyay M, Vallejo TR, Soheib M, Vattino LG, MacGregor CP, Chatain CP, Banks E, Olah VJ, Naskar S, Hill S, Liebergall S, Badiani R, Hyde L, Hanley E, Xu Q, Allaway KC, Goldberg EM, Rowan MJM, Nowakowski TJ, Lee S, Favuzzi E, Kaeser PS, Sjulson L, Batista-Brito R, Takesian AE, Ibrahim LA, Iqbal A, Pelkey KA, McBain CJ, Dimidschstein J, Fishell G, Wang Y. An enhancer-AAV toolbox to target and manipulate distinct interneuron subtypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.07.17.603924. [PMID: 39091835 PMCID: PMC11291062 DOI: 10.1101/2024.07.17.603924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
In recent years, we and others have identified a number of enhancers that, when incorporated into rAAV vectors, can restrict the transgene expression to particular neuronal populations. Yet, viral tools to access and manipulate specific neuronal subtypes are still limited. Here, we performed systematic analysis of single cell genomic data to identify enhancer candidates for each of the telencephalic interneuron subtypes. We established a set of enhancer-AAV tools that are highly specific for distinct cortical interneuron populations and striatal cholinergic interneurons. These enhancers, when used in the context of different effectors, can target (fluorescent proteins), observe activity (GCaMP) and manipulate (opto-genetics) specific neuronal subtypes. We also validated our enhancer-AAV tools across species. Thus, we provide the field with a powerful set of tools to study neural circuits and functions and to develop precise and targeted therapy.
Collapse
|
6
|
Park E, Kuljis DA, Swindell RA, Ray A, Zhu M, Christian JA, Barth AL. Somatostatin neurons detect stimulus-reward contingencies to reduce neocortical inhibition during learning. Cell Rep 2025; 44:115606. [PMID: 40257862 DOI: 10.1016/j.celrep.2025.115606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 12/02/2024] [Accepted: 04/01/2025] [Indexed: 04/23/2025] Open
Abstract
Learning involves the association of discrete events in the world to infer causality, likely through a cascade of changes at input- and target-specific synapses. Transient or sustained disinhibition may initiate cortical circuit plasticity important for association learning, but the cellular networks involved have not been well defined. Using recordings in acute brain slices, we show that whisker-dependent sensory association learning drives a durable, target-specific reduction in inhibition from somatostatin (SST)-expressing GABAergic neurons onto pyramidal (Pyr) neurons in superficial but not deep layers of mouse somatosensory cortex. Critically, SST output was not altered when stimuli and rewards were unpaired, indicating that these neurons are sensitive to stimulus-reward contingency. Depression of SST output onto Pyr neurons could be phenocopied by chemogenetic suppression of SST activity outside of the training context. Thus, neocortical SST neuron output can undergo long-lasting modifications to selectively disinhibit superficial layers of sensory neocortex during learning.
Collapse
Affiliation(s)
- Eunsol Park
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15232, USA
| | - Dika A Kuljis
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15232, USA
| | - Rachel A Swindell
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15232, USA
| | - Ajit Ray
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15232, USA
| | - Mo Zhu
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15232, USA
| | - Joseph A Christian
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15232, USA
| | - Alison L Barth
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15232, USA.
| |
Collapse
|
7
|
Shao LX, Liao C, Davoudian PA, Savalia NK, Jiang Q, Wojtasiewicz C, Tan D, Nothnagel JD, Liu RJ, Woodburn SC, Bilash OM, Kim H, Che A, Kwan AC. Psilocybin's lasting action requires pyramidal cell types and 5-HT 2A receptors. Nature 2025:10.1038/s41586-025-08813-6. [PMID: 40175553 DOI: 10.1038/s41586-025-08813-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 02/19/2025] [Indexed: 04/04/2025]
Abstract
Psilocybin is a serotonergic psychedelic with therapeutic potential for treating mental illnesses1-4. At the cellular level, psychedelics induce structural neural plasticity5,6, exemplified by the drug-evoked growth and remodelling of dendritic spines in cortical pyramidal cells7-9. A key question is how these cellular modifications map onto cell-type-specific circuits to produce the psychedelics' behavioural actions10. Here we use in vivo optical imaging, chemogenetic perturbation and cell-type-specific electrophysiology to investigate the impact of psilocybin on the two main types of pyramidal cells in the mouse medial frontal cortex. We find that a single dose of psilocybin increases the density of dendritic spines in both the subcortical-projecting, pyramidal tract (PT) and intratelencephalic (IT) cell types. Behaviourally, silencing the PT neurons eliminates psilocybin's ability to ameliorate stress-related phenotypes, whereas silencing IT neurons has no detectable effect. In PT neurons only, psilocybin boosts synaptic calcium transients and elevates firing rates acutely after administration. Targeted knockout of 5-HT2A receptors abolishes psilocybin's effects on stress-related behaviour and structural plasticity. Collectively, these results identify that a pyramidal cell type and the 5-HT2A receptor in the medial frontal cortex have essential roles in psilocybin's long-term drug action.
Collapse
Affiliation(s)
- Ling-Xiao Shao
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Clara Liao
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, USA
| | - Pasha A Davoudian
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, USA
- Medical Scientist Training Program, Yale University School of Medicine, New Haven, CT, USA
| | - Neil K Savalia
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, USA
- Medical Scientist Training Program, Yale University School of Medicine, New Haven, CT, USA
| | - Quan Jiang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | | | - Diran Tan
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Jack D Nothnagel
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Rong-Jian Liu
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Samuel C Woodburn
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Olesia M Bilash
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Hail Kim
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Alicia Che
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Alex C Kwan
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
8
|
Velica A, Henriksson K, Malfatti T, Ciralli B, Nogueira I, Asimakidou E, Kullander K. Layer-Specific Connectivity and Functional Interference of Chrna2+ Layer 5 Martinotti Cells in the Primary Motor Cortex. Eur J Neurosci 2025; 61:e70086. [PMID: 40170286 PMCID: PMC11962176 DOI: 10.1111/ejn.70086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 03/11/2025] [Accepted: 03/14/2025] [Indexed: 04/03/2025]
Abstract
The cortical somatostatin interneuron population includes several diverse cell types, among them the Martinotti cells. Layer-specific differences in connectivity and function between different subtypes of Martinotti cells are becoming apparent, which require contemporary studies to investigate cortical interneurons in a layer and subtype-specific manner. In this study, we investigate the connectivity of a subtype of Chrna2+ layer 5 Martinotti cells in the primary motor cortex, using a monosynaptic retrograde rabies viral tracer. We found direct input from pyramidal cells and local parvalbumin interneurons. In addition, we found long-range direct inputs from the motor thalamus, substantia innominata of the basal forebrain, and globus pallidus. Based on the observed input pattern, we tested and found an increased number of falls in the hanging wire test upon temporary overexcitation of Chrna2+ layer 5 Martinotti cells, suggesting that Chrna2+ Martinotti cells in the motor cortex can interfere with sensorimotor integration. In summary, our study provides novel insights into the connectivity and functional role of Mα2 cells in the M1 forelimb area, highlighting their unique integration of local and long-range inputs critical for sensorimotor processing, which lay the groundwork for further exploration of their role in cortical plasticity and motor learning.
Collapse
Affiliation(s)
- Anna Velica
- Department of Immunology, Genetics and PathologyUppsala UniversityUppsalaSweden
| | | | - Thawann Malfatti
- Department of Immunology, Genetics and PathologyUppsala UniversityUppsalaSweden
| | - Barbara Ciralli
- Department of Immunology, Genetics and PathologyUppsala UniversityUppsalaSweden
| | - Ingrid Nogueira
- Brain InstituteFederal University of Rio Grande do NorteNatalRNBrazil
| | - Evridiki Asimakidou
- Department of Immunology, Genetics and PathologyUppsala UniversityUppsalaSweden
- Department of Clinical NeurosciencesUniversity of CambridgeUK
| | - Klas Kullander
- Department of Immunology, Genetics and PathologyUppsala UniversityUppsalaSweden
| |
Collapse
|
9
|
Arkhipov A, da Costa N, de Vries S, Bakken T, Bennett C, Bernard A, Berg J, Buice M, Collman F, Daigle T, Garrett M, Gouwens N, Groblewski PA, Harris J, Hawrylycz M, Hodge R, Jarsky T, Kalmbach B, Lecoq J, Lee B, Lein E, Levi B, Mihalas S, Ng L, Olsen S, Reid C, Siegle JH, Sorensen S, Tasic B, Thompson C, Ting JT, van Velthoven C, Yao S, Yao Z, Koch C, Zeng H. Integrating multimodal data to understand cortical circuit architecture and function. Nat Neurosci 2025; 28:717-730. [PMID: 40128391 DOI: 10.1038/s41593-025-01904-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/21/2025] [Indexed: 03/26/2025]
Abstract
In recent years there has been a tremendous growth in new technologies that allow large-scale investigation of different characteristics of the nervous system at an unprecedented level of detail. There is a growing trend to use combinations of these new techniques to determine direct links between different modalities. In this Perspective, we focus on the mouse visual cortex, as this is one of the model systems in which much progress has been made in the integration of multimodal data to advance understanding. We review several approaches that allow integration of data regarding various properties of cortical cell types, connectivity at the level of brain areas, cell types and individual cells, and functional neural activity in vivo. The increasingly crucial contributions of computation and theory in analyzing and systematically modeling data are also highlighted. Together with open sharing of data, tools and models, integrative approaches are essential tools in modern neuroscience for improving our understanding of the brain architecture, mechanisms and function.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jim Berg
- Allen Institute, Seattle, WA, USA
| | | | | | | | | | | | | | - Julie Harris
- Allen Institute, Seattle, WA, USA
- Cure Alzheimer's Fund, Wellesley Hills, MA, USA
| | | | | | | | | | | | | | - Ed Lein
- Allen Institute, Seattle, WA, USA
| | | | | | - Lydia Ng
- Allen Institute, Seattle, WA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Del Rosario J, Coletta S, Kim SH, Mobille Z, Peelman K, Williams B, Otsuki AJ, Del Castillo Valerio A, Worden K, Blanpain LT, Lovell L, Choi H, Haider B. Lateral inhibition in V1 controls neural and perceptual contrast sensitivity. Nat Neurosci 2025; 28:836-847. [PMID: 40033123 DOI: 10.1038/s41593-025-01888-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/06/2025] [Indexed: 03/05/2025]
Abstract
Lateral inhibition is a central principle in sensory system function. It is thought to operate by the activation of inhibitory neurons that restrict the spatial spread of sensory excitation. However, the neurons, computations and mechanisms underlying cortical lateral inhibition remain debated, and its importance for perception remains unknown. Here we show that lateral inhibition from parvalbumin neurons in mouse primary visual cortex reduced neural and perceptual sensitivity to visual contrast in a uniform subtractive manner, whereas lateral inhibition from somatostatin neurons more effectively changed the slope (or gain) of neural and perceptual contrast sensitivity. A neural circuit model, anatomical tracing and direct subthreshold measurements indicated that the larger spatial footprint for somatostatin versus parvalbumin synaptic inhibition explains this difference. Together, these results define cell-type-specific computational roles for lateral inhibition in primary visual cortex, and establish their unique consequences on sensitivity to contrast, a fundamental aspect of the visual world.
Collapse
Affiliation(s)
- Joseph Del Rosario
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Stefano Coletta
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Soon Ho Kim
- School of Mathematics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Zach Mobille
- School of Mathematics, Georgia Institute of Technology, Atlanta, GA, USA
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Kayla Peelman
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Brice Williams
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Alan J Otsuki
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | | | - Kendell Worden
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Lou T Blanpain
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Lyndah Lovell
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Hannah Choi
- School of Mathematics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Bilal Haider
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
| |
Collapse
|
11
|
Gamlin CR, Schneider-Mizell CM, Mallory M, Elabbady L, Gouwens N, Williams G, Mukora A, Dalley R, Bodor AL, Brittain D, Buchanan J, Bumbarger DJ, Joyce E, Kapner D, Kinn S, Mahalingam G, Seshamani S, Takeno M, Torres R, Yin W, Nicovich PR, Bae JA, Castro MA, Dorkenwald S, Halageri A, Jia Z, Jordan C, Kemnitz N, Lee K, Li K, Lu R, Macrina T, Mitchell E, Mondal SS, Mu S, Nehoran B, Popovych S, Silversmith W, Turner NL, Wong W, Wu J, Yu SC, Berg J, Jarsky T, Lee B, Seung HS, Zeng H, Reid RC, Collman F, da Costa NM, Sorensen SA. Connectomics of predicted Sst transcriptomic types in mouse visual cortex. Nature 2025; 640:497-505. [PMID: 40205210 PMCID: PMC11981948 DOI: 10.1038/s41586-025-08805-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 02/18/2025] [Indexed: 04/11/2025]
Abstract
Neural circuit function is shaped both by the cell types that comprise the circuit and the connections between them1. Neural cell types have previously been defined by morphology2,3, electrophysiology4, transcriptomic expression5,6, connectivity7-9 or a combination of such modalities10-12. The Patch-seq technique enables the characterization of morphology, electrophysiology and transcriptomic properties from individual cells13-15. These properties were integrated to define 28 inhibitory, morpho-electric-transcriptomic (MET) cell types in mouse visual cortex16, which do not include synaptic connectivity. Conversely, large-scale electron microscopy (EM) enables morphological reconstruction and a near-complete description of a neuron's local synaptic connectivity, but does not include transcriptomic or electrophysiological information. Here, we leveraged morphological information from Patch-seq to predict the transcriptomically defined cell subclass and/or MET-type of inhibitory neurons within a large-scale EM dataset. We further analysed Martinotti cells-a somatostatin (Sst)-positive17 morphological cell type18,19-which were classified successfully into Sst MET-types with distinct axon myelination and synaptic output connectivity patterns. We demonstrate that morphological features can be used to link cell types across experimental modalities, enabling further comparison of connectivity to gene expression and electrophysiology. We observe unique connectivity rules for predicted Sst cell types.
Collapse
Affiliation(s)
| | | | | | - Leila Elabbady
- Allen Institute for Brain Science, Seattle, WA, USA
- Department of Neurobiology and Biophysics, University of Washington, Seattle, WA, USA
| | | | | | - Alice Mukora
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | | | | | - Emily Joyce
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Sam Kinn
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Marc Takeno
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Wenjing Yin
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - J Alexander Bae
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Electrical and Computer Engineering Department, Princeton University, Princeton, NJ, USA
| | - Manuel A Castro
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Sven Dorkenwald
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Computer Science Department, Princeton University, Princeton, NJ, USA
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Akhilesh Halageri
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Zhen Jia
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | - Chris Jordan
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Nico Kemnitz
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Kisuk Lee
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Brain and Cognitive Sciences Department, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kai Li
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | - Ran Lu
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Thomas Macrina
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | - Eric Mitchell
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Shanka Subhra Mondal
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Electrical and Computer Engineering Department, Princeton University, Princeton, NJ, USA
| | - Shang Mu
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Barak Nehoran
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | - Sergiy Popovych
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | | | - Nicholas L Turner
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | - William Wong
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Jingpeng Wu
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Szi-Chieh Yu
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Jim Berg
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Tim Jarsky
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Brian Lee
- Allen Institute for Brain Science, Seattle, WA, USA
| | - H Sebastian Seung
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, USA
| | - R Clay Reid
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | |
Collapse
|
12
|
Schneider-Mizell CM, Bodor AL, Brittain D, Buchanan J, Bumbarger DJ, Elabbady L, Gamlin C, Kapner D, Kinn S, Mahalingam G, Seshamani S, Suckow S, Takeno M, Torres R, Yin W, Dorkenwald S, Bae JA, Castro MA, Halageri A, Jia Z, Jordan C, Kemnitz N, Lee K, Li K, Lu R, Macrina T, Mitchell E, Mondal SS, Mu S, Nehoran B, Popovych S, Silversmith W, Turner NL, Wong W, Wu J, Reimer J, Tolias AS, Seung HS, Reid RC, Collman F, da Costa NM. Inhibitory specificity from a connectomic census of mouse visual cortex. Nature 2025; 640:448-458. [PMID: 40205209 PMCID: PMC11981935 DOI: 10.1038/s41586-024-07780-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/03/2024] [Indexed: 04/11/2025]
Abstract
Mammalian cortex features a vast diversity of neuronal cell types, each with characteristic anatomical, molecular and functional properties1. Synaptic connectivity shapes how each cell type participates in the cortical circuit, but mapping connectivity rules at the resolution of distinct cell types remains difficult. Here we used millimetre-scale volumetric electron microscopy2 to investigate the connectivity of all inhibitory neurons across a densely segmented neuronal population of 1,352 cells spanning all layers of mouse visual cortex, producing a wiring diagram of inhibition with more than 70,000 synapses. Inspired by classical neuroanatomy, we classified inhibitory neurons based on targeting of dendritic compartments and developed an excitatory neuron classification based on dendritic reconstructions with whole-cell maps of synaptic input. Single-cell connectivity showed a class of disinhibitory specialist that targets basket cells. Analysis of inhibitory connectivity onto excitatory neurons found widespread specificity, with many interneurons exhibiting differential targeting of spatially intermingled subpopulations. Inhibitory targeting was organized into 'motif groups', diverse sets of cells that collectively target both perisomatic and dendritic compartments of the same excitatory targets. Collectively, our analysis identified new organizing principles for cortical inhibition and will serve as a foundation for linking contemporary multimodal neuronal atlases with the cortical wiring diagram.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Clare Gamlin
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Sam Kinn
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | - Marc Takeno
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Wenjing Yin
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Sven Dorkenwald
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | - J Alexander Bae
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Electrical and Computer Engineering Department, Princeton University, Princeton, NJ, USA
| | - Manuel A Castro
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Akhilesh Halageri
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Zhen Jia
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | - Chris Jordan
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Nico Kemnitz
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Kisuk Lee
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Kai Li
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | - Ran Lu
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Thomas Macrina
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | - Eric Mitchell
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Shanka Subhra Mondal
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Electrical and Computer Engineering Department, Princeton University, Princeton, NJ, USA
| | - Shang Mu
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Barak Nehoran
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | - Sergiy Popovych
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | | | - Nicholas L Turner
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | - William Wong
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Jingpeng Wu
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Jacob Reimer
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
| | - Andreas S Tolias
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Brain & Cognitive Sciences Department, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - H Sebastian Seung
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | - R Clay Reid
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | |
Collapse
|
13
|
Meier AM, D'Souza RD, Ji W, Han EB, Burkhalter A. Interdigitating Modules for Visual Processing During Locomotion and Rest in Mouse V1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.21.639505. [PMID: 40060542 PMCID: PMC11888233 DOI: 10.1101/2025.02.21.639505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Layer 1 of V1 has been shown to receive locomotion-related signals from the dorsal lateral geniculate (dLGN) and lateral posterior (LP) thalamic nuclei (Roth et al., 2016). Inputs from the dLGN terminate in M2+ patches while inputs from LP target M2- interpatches (D'Souza et al., 2019) suggesting that motion related signals are processed in distinct networks. Here, we investigated by calcium imaging in head-fixed awake mice whether L2/3 neurons underneath L1 M2+ and M2- modules are differentially activated by locomotion, and whether distinct networks of feedback connections from higher cortical areas to L1 may contribute to these differences. We found that strongly locomotion-modulated cell clusters during visual stimulation were aligned with M2- interpatches, while weakly modulated cells clustered under M2+ patches. Unlike M2+ patch cells, pairs of M2- interpatch cells showed increased correlated variability of calcium transients when the sites in the visuotopic map were far apart, suggesting that activity is integrated across large parts of the visual field. Pathway tracing further suggests that strong locomotion modulation in L2/3 M2- interpatch cells of V1 relies on looped, like-to-like networks between apical dendrites of MOs-, PM- and RSP-projecting neurons and feedback input from these areas to L1. M2- interpatches receive strong inputs from SST neurons, suggesting that during locomotion these interneurons influence the firing of specific subnetworks by controlling the excitability of apical dendrites in M2- interpatches.
Collapse
Affiliation(s)
- A M Meier
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110; USA
| | - R D D'Souza
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110; USA
| | - W Ji
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110; USA
| | - E B Han
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110; USA
| | - A Burkhalter
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110; USA
| |
Collapse
|
14
|
Alexander RPD, Bender KJ. Delta opioid receptors engage multiple signaling cascades to differentially modulate prefrontal GABA release with input and target specificity. Cell Rep 2025; 44:115293. [PMID: 39923239 PMCID: PMC11938346 DOI: 10.1016/j.celrep.2025.115293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/22/2024] [Accepted: 01/20/2025] [Indexed: 02/11/2025] Open
Abstract
Opioids regulate circuits associated with motivation and reward across the brain. Of the opioid receptor types, delta opioid receptors (DORs) appear to have a unique role in regulating the activity of circuits related to reward without liability for abuse. In neocortex, DORs are expressed primarily in interneurons, including parvalbumin- and somatostatin-expressing interneurons that inhibit somatic and dendritic compartments of excitatory pyramidal cells, respectively. But how DORs regulate transmission from these key interneuron classes is unclear. We found that DORs regulate inhibition from these interneuron classes using different G-protein signaling pathways that both converge on presynaptic calcium channels but regulate distinct aspects of calcium channel function. This imposes different temporal filtering effects, via short-term plasticity, that depend on how calcium channels are regulated. Thus, DORs engage differential signaling cascades to regulate inhibition depending on the postsynaptic target compartment, with different effects on synaptic information transfer in somatic and dendritic domains.
Collapse
Affiliation(s)
- Ryan P D Alexander
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Kevin J Bender
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
15
|
Choi J, Lee YB, So D, Kim JY, Choi S, Kim S, Keum S. Cortical representations of affective pain shape empathic fear in male mice. Nat Commun 2025; 16:1937. [PMID: 39994222 PMCID: PMC11850870 DOI: 10.1038/s41467-025-57230-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 02/05/2025] [Indexed: 02/26/2025] Open
Abstract
Affect sharing, the ability to vicariously feel others' emotions, constitutes the primary component of empathy. However, the neural basis for encoding others' distress and representing shared affective experiences remains poorly understood. Here, using miniature endoscopic calcium imaging, we identify distinct and dynamic neural ensembles in the anterior cingulate cortex (ACC) that encode observational fear across both excitatory and inhibitory neurons in male mice. Notably, we discover that the population dynamics encoding vicarious freezing information are conserved in ACC pyramidal neurons and are specifically represented by affective, rather than sensory, responses to direct pain experience. Furthermore, using circuit-specific imaging and optogenetic manipulations, we demonstrate that distinct populations of ACC neurons projecting to the periaqueductal gray (PAG), but not to the basolateral amygdala (BLA), selectively convey affective pain information and regulate observational fear. Taken together, our findings highlight the critical role of ACC neural representations in shaping empathic freezing through the encoding of affective pain.
Collapse
Affiliation(s)
- Jiye Choi
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, 34126, South Korea
| | - Young-Beom Lee
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, 34126, South Korea
| | - Dahm So
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, 34126, South Korea
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Jee Yeon Kim
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, 34126, South Korea
| | - Sungjoon Choi
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, 34126, South Korea
| | - Sowon Kim
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, 34126, South Korea
| | - Sehoon Keum
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, 34126, South Korea.
| |
Collapse
|
16
|
Micoli E, Ferrero Restelli F, Barbiera G, Moors R, Nouboers E, Du JX, Bertels H, Liu M, Konstantopoulos D, Takeoka A, Lippi G, Lim L. A single-cell transcriptomic atlas of developing inhibitory neurons reveals expanding and contracting modes of diversification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.19.636192. [PMID: 40027755 PMCID: PMC11870569 DOI: 10.1101/2025.02.19.636192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
The cerebral cortex relies on vastly different types of inhibitory neurons to compute. How this diversity emerges during development remains an open question. The rarity of individual inhibitory neuron types often leads to their underrepresentation in single-cell RNA sequencing (scRNAseq) datasets, limiting insights into their developmental trajectories. To address this problem, we developed a computational pipeline to enrich and integrate rare cell types across multiple datasets. Applying this approach to somatostatin-expressing (SST+) inhibitory neurons-the most diverse inhibitory cell class in the cortex-we constructed the Dev-SST-Atlas, a comprehensive resource containing mouse transcriptomic data of over 51,000 SST+ neurons. We identify three principal groups-Martinotti cells (MCs), non-Martinotti cells (nMCs), and long-range projecting neurons (LRPs)-each following distinct diversification trajectories. MCs commit early, with distinct embryonic and neonatal clusters that map directly to adult counterparts. In contrast, nMCs diversify gradually, with each developmental cluster giving rise to multiple adult cell types. LRPs follow a unique 'contracting' mode. Initially, two clusters are present until postnatal day 5 (P5), but by P7, one type is eliminated through programmed cell death, leaving a single surviving population. This transient LRP type is also found in the fetal human cortex, revealing an evolutionarily conserved feature of cortical development. Together, these findings highlight three distinct modes of SST+ neuron diversification-invariant, expanding, and contracting-offering a new framework to understand how the large repertoire of inhibitory neurons emerges during development.
Collapse
Affiliation(s)
- Elia Micoli
- VIB Center for Brain and Disease, 3000, Leuven, Belgium
- Department of Neurosciences, Katholieke Universiteit (KU) Leuven, 3000, Leuven, Belgium
- These authors contributed equally
| | - Facundo Ferrero Restelli
- VIB Center for Brain and Disease, 3000, Leuven, Belgium
- Department of Neurosciences, Katholieke Universiteit (KU) Leuven, 3000, Leuven, Belgium
- These authors contributed equally
| | | | - Rani Moors
- VIB Center for Brain and Disease, 3000, Leuven, Belgium
- Department of Neurosciences, Katholieke Universiteit (KU) Leuven, 3000, Leuven, Belgium
| | - Evelien Nouboers
- VIB Center for Brain and Disease, 3000, Leuven, Belgium
- Department of Neurosciences, Katholieke Universiteit (KU) Leuven, 3000, Leuven, Belgium
| | - Jessica Xinyun Du
- Department of Neuroscience, Scripps Research Institute, La Jolla, United States of America
| | - Hannah Bertels
- Department of Neurosciences, Katholieke Universiteit (KU) Leuven, 3000, Leuven, Belgium
| | - Minhui Liu
- VIB Center for Brain and Disease, 3000, Leuven, Belgium
- Department of Neurosciences, Katholieke Universiteit (KU) Leuven, 3000, Leuven, Belgium
| | | | - Aya Takeoka
- RIKEN Center for Brain Science, Saitama, 351-0198, Japan
| | - Giordiano Lippi
- Department of Neuroscience, Scripps Research Institute, La Jolla, United States of America
| | - Lynette Lim
- VIB Center for Brain and Disease, 3000, Leuven, Belgium
- Department of Neurosciences, Katholieke Universiteit (KU) Leuven, 3000, Leuven, Belgium
- Lead contact
| |
Collapse
|
17
|
Hozhabri E, Corredera Asensio A, Elmaleh M, Kim JW, Phillips MB, Frazel PW, Dimidschstein J, Fishell G, Long MA. Differential behavioral engagement of inhibitory interneuron subtypes in the zebra finch brain. Neuron 2025; 113:460-470.e7. [PMID: 39644901 PMCID: PMC11802303 DOI: 10.1016/j.neuron.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/30/2024] [Accepted: 11/07/2024] [Indexed: 12/09/2024]
Abstract
Inhibitory interneurons are highly heterogeneous circuit elements often characterized by cell biological properties, but how these factors relate to specific roles underlying complex behavior remains poorly understood. Using chronic silicon probe recordings, we demonstrate that distinct interneuron groups perform different inhibitory roles within HVC, a song production circuit in the zebra finch forebrain. To link these functional subtypes to molecular identity, we performed two-photon targeted electrophysiological recordings of HVC interneurons followed by post hoc immunohistochemistry of subtype-specific markers. We find that parvalbumin-expressing interneurons are highly modulated by sensory input and likely mediate auditory gating, whereas a more heterogeneous set of somatostatin-expressing interneurons can strongly regulate activity based on arousal. Using this strategy, we uncover important cell-type-specific network functions in the context of an ethologically relevant motor skill.
Collapse
Affiliation(s)
- Ellie Hozhabri
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY, USA; Center for Neural Science, New York University, New York, NY, USA
| | - Ariadna Corredera Asensio
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY, USA; Center for Neural Science, New York University, New York, NY, USA
| | - Margot Elmaleh
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY, USA; Center for Neural Science, New York University, New York, NY, USA
| | - Jeong Woo Kim
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY, USA; Center for Neural Science, New York University, New York, NY, USA
| | - Matthew B Phillips
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY, USA; Center for Neural Science, New York University, New York, NY, USA
| | - Paul W Frazel
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY, USA; Center for Neural Science, New York University, New York, NY, USA
| | - Jordane Dimidschstein
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Gord Fishell
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA; Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Michael A Long
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY, USA; Center for Neural Science, New York University, New York, NY, USA.
| |
Collapse
|
18
|
Zhang X, Wu M, Cheng L, Cao W, Liu Z, Yang SB, Kim MS. Fast-spiking parvalbumin-positive interneurons: new perspectives of treatment and future challenges in dementia. Mol Psychiatry 2025; 30:693-704. [PMID: 39695324 DOI: 10.1038/s41380-024-02756-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/26/2024] [Accepted: 09/12/2024] [Indexed: 12/20/2024]
Abstract
Central nervous system parvalbumin-positive interneurons (PV-INs) are crucial and highly vulnerable to various stressors. They also play a significant role in the pathological processes of many neuropsychiatric diseases, especially those associated with cognitive impairment, such as Alzheimer's disease (AD), vascular dementia (VD), Lewy body dementia, and schizophrenia. Although accumulating evidence suggests that the loss of PV-INs is associated with memory impairment in dementia, the precise molecular mechanisms remain elusive. In this review, we delve into the current evidence regarding the physiological properties of PV-INs and summarize the latest insights into how their loss contributes to cognitive decline in dementia, particularly focusing on AD and VD. Additionally, we discuss the influence of PV-INs on brain development, the variations in their characteristics across different types of dementia, and how their loss affects the etiology and progression of cognitive impairments. Ultimately, our goal is to provide a comprehensive overview of PV-INs and to consider their potential as novel therapeutic targets in dementia treatment.
Collapse
Affiliation(s)
- Xiaorong Zhang
- Department of Pathology, Affiliated Hospital of Jiujiang University, Jiujiang, China
- Jiujiang Clinical Precision Clinical Medicine Research Center, Jiujiang, Jiangxi, China
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Moxin Wu
- Jiujiang Clinical Precision Clinical Medicine Research Center, Jiujiang, Jiangxi, China
| | - Lin Cheng
- Jiujiang Clinical Precision Clinical Medicine Research Center, Jiujiang, Jiangxi, China
| | - Wa Cao
- Jiujiang Clinical Precision Clinical Medicine Research Center, Jiujiang, Jiangxi, China
| | - Ziying Liu
- Jiujiang Clinical Precision Clinical Medicine Research Center, Jiujiang, Jiangxi, China
| | - Seung-Bum Yang
- Department of Paramedicine, Wonkwang Health Science University, Iksan, Republic of Korea
| | - Min-Sun Kim
- Center for Nitric Oxide Metabolite, Wonkwang University, Iksan, Republic of Korea.
| |
Collapse
|
19
|
Park E, Mosso MB, Barth AL. Neocortical somatostatin neuron diversity in cognition and learning. Trends Neurosci 2025; 48:140-155. [PMID: 39824710 DOI: 10.1016/j.tins.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/13/2024] [Accepted: 12/12/2024] [Indexed: 01/20/2025]
Abstract
Somatostatin-expressing (SST) neurons are a major class of electrophysiologically and morphologically distinct inhibitory cells in the mammalian neocortex. Transcriptomic data suggest that this class can be divided into multiple subtypes that are correlated with morpho-electric properties. At the same time, availability of transgenic tools to identify and record from SST neurons in awake, behaving mice has stimulated insights about their response properties and computational function. Neocortical SST neurons are regulated by sleep and arousal, attention, and novelty detection, and show marked response plasticity during learning. Recent studies suggest that subtype-specific analysis of SST neurons may be critical for understanding their complex roles in cortical function. In this review, we discuss and synthesize recent advances in understanding the diversity, circuit integration, and functional properties of this important group of GABAergic neurons.
Collapse
Affiliation(s)
- Eunsol Park
- Department of Biological Sciences and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Matthew B Mosso
- Department of Biological Sciences and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Alison L Barth
- Department of Biological Sciences and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
20
|
Haviv D, Remšík J, Gatie M, Snopkowski C, Takizawa M, Pereira N, Bashkin J, Jovanovich S, Nawy T, Chaligne R, Boire A, Hadjantonakis AK, Pe'er D. The covariance environment defines cellular niches for spatial inference. Nat Biotechnol 2025; 43:269-280. [PMID: 38565973 PMCID: PMC11445396 DOI: 10.1038/s41587-024-02193-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 02/28/2024] [Indexed: 04/04/2024]
Abstract
A key challenge of analyzing data from high-resolution spatial profiling technologies is to suitably represent the features of cellular neighborhoods or niches. Here we introduce the covariance environment (COVET), a representation that leverages the gene-gene covariate structure across cells in the niche to capture the multivariate nature of cellular interactions within it. We define a principled optimal transport-based distance metric between COVET niches that scales to millions of cells. Using COVET to encode spatial context, we developed environmental variational inference (ENVI), a conditional variational autoencoder that jointly embeds spatial and single-cell RNA sequencing data into a latent space. ENVI includes two decoders: one to impute gene expression across the spatial modality and a second to project spatial information onto single-cell data. ENVI can confer spatial context to genomics data from single dissociated cells and outperforms alternatives for imputing gene expression on diverse spatial datasets.
Collapse
Affiliation(s)
- Doron Haviv
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tri-Institutional Training Program in Computational Biology and Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Ján Remšík
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mohamed Gatie
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Catherine Snopkowski
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Meril Takizawa
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | | | - Tal Nawy
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ronan Chaligne
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Adrienne Boire
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dana Pe'er
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Howard Hughes Medical Institute, New York, NY, USA.
| |
Collapse
|
21
|
Shi S, Chen T, Su H, Zhao M. Exploring Cortical Interneurons in Substance Use Disorder: From Mechanisms to Therapeutic Perspectives. Neuroscientist 2025:10738584241310156. [PMID: 39772845 DOI: 10.1177/10738584241310156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Interneurons (INs) play a crucial role in the regulation of neural activity within the medial prefrontal cortex (mPFC), a brain region critically involved in executive functions and behavioral control. In recent preclinical studies, dysregulation of INs in the mPFC has been implicated in the pathophysiology of substance use disorder, characterized by vulnerability to chronic drug use. Here, we explore the diversity of mPFC INs and their connectivity and roles in vulnerability to addiction. We also discuss how these INs change over time with drug exposure. Finally, we focus on noninvasive brain stimulation as a therapeutic approach for targeting INs in substance use disorder, highlighting its potential to restore neural circuits.
Collapse
Affiliation(s)
- Sai Shi
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianzhen Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hang Su
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Zhao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
22
|
Kaplan HS, Horvath PM, Rahman MM, Dulac C. The neurobiology of parenting and infant-evoked aggression. Physiol Rev 2025; 105:315-381. [PMID: 39146250 DOI: 10.1152/physrev.00036.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 07/19/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024] Open
Abstract
Parenting behavior comprises a variety of adult-infant and adult-adult interactions across multiple timescales. The state transition from nonparent to parent requires an extensive reorganization of individual priorities and physiology and is facilitated by combinatorial hormone action on specific cell types that are integrated throughout interconnected and brainwide neuronal circuits. In this review, we take a comprehensive approach to integrate historical and current literature on each of these topics across multiple species, with a focus on rodents. New and emerging molecular, circuit-based, and computational technologies have recently been used to address outstanding gaps in our current framework of knowledge on infant-directed behavior. This work is raising fundamental questions about the interplay between instinctive and learned components of parenting and the mutual regulation of affiliative versus agonistic infant-directed behaviors in health and disease. Whenever possible, we point to how these technologies have helped gain novel insights and opened new avenues of research into the neurobiology of parenting. We hope this review will serve as an introduction for those new to the field, a comprehensive resource for those already studying parenting, and a guidepost for designing future studies.
Collapse
Affiliation(s)
- Harris S Kaplan
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Patricia M Horvath
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Mohammed Mostafizur Rahman
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Catherine Dulac
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| |
Collapse
|
23
|
Patiño M, Rossa MA, Lagos WN, Patne NS, Callaway EM. Transcriptomic cell-type specificity of local cortical circuits. Neuron 2024; 112:3851-3866.e4. [PMID: 39353431 PMCID: PMC11624072 DOI: 10.1016/j.neuron.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/02/2024] [Accepted: 09/04/2024] [Indexed: 10/04/2024]
Abstract
Complex neocortical functions rely on networks of diverse excitatory and inhibitory neurons. While local connectivity rules between major neuronal subclasses have been established, the specificity of connections at the level of transcriptomic subtypes remains unclear. We introduce single transcriptome assisted rabies tracing (START), a method combining monosynaptic rabies tracing and single-nuclei RNA sequencing to identify transcriptomic cell types, providing inputs to defined neuron populations. We employ START to transcriptomically characterize inhibitory neurons providing monosynaptic input to 5 different layer-specific excitatory cortical neuron populations in mouse primary visual cortex (V1). At the subclass level, we observe results consistent with findings from prior studies that resolve neuronal subclasses using antibody staining, transgenic mouse lines, and morphological reconstruction. With improved neuronal subtype granularity achieved with START, we demonstrate transcriptomic subtype specificity of inhibitory inputs to various excitatory neuron subclasses. These results establish local connectivity rules at the resolution of transcriptomic inhibitory cell types.
Collapse
Affiliation(s)
- Maribel Patiño
- Systems Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA; Medical Scientist Training Program, University of California, San Diego, La Jolla, CA, USA
| | - Marley A Rossa
- Systems Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA; Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Willian Nuñez Lagos
- Systems Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Neelakshi S Patne
- Systems Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA; Neuroscience Graduate Program, Boston University, Boston, MA, USA
| | - Edward M Callaway
- Systems Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
24
|
Bonev B, Castelo-Branco G, Chen F, Codeluppi S, Corces MR, Fan J, Heiman M, Harris K, Inoue F, Kellis M, Levine A, Lotfollahi M, Luo C, Maynard KR, Nitzan M, Ramani V, Satijia R, Schirmer L, Shen Y, Sun N, Green GS, Theis F, Wang X, Welch JD, Gokce O, Konopka G, Liddelow S, Macosko E, Ali Bayraktar O, Habib N, Nowakowski TJ. Opportunities and challenges of single-cell and spatially resolved genomics methods for neuroscience discovery. Nat Neurosci 2024; 27:2292-2309. [PMID: 39627587 PMCID: PMC11999325 DOI: 10.1038/s41593-024-01806-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 09/23/2024] [Indexed: 12/13/2024]
Abstract
Over the past decade, single-cell genomics technologies have allowed scalable profiling of cell-type-specific features, which has substantially increased our ability to study cellular diversity and transcriptional programs in heterogeneous tissues. Yet our understanding of mechanisms of gene regulation or the rules that govern interactions between cell types is still limited. The advent of new computational pipelines and technologies, such as single-cell epigenomics and spatially resolved transcriptomics, has created opportunities to explore two new axes of biological variation: cell-intrinsic regulation of cell states and expression programs and interactions between cells. Here, we summarize the most promising and robust technologies in these areas, discuss their strengths and limitations and discuss key computational approaches for analysis of these complex datasets. We highlight how data sharing and integration, documentation, visualization and benchmarking of results contribute to transparency, reproducibility, collaboration and democratization in neuroscience, and discuss needs and opportunities for future technology development and analysis.
Collapse
Affiliation(s)
- Boyan Bonev
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Gonçalo Castelo-Branco
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Fei Chen
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - M Ryan Corces
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Jean Fan
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Myriam Heiman
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- The Picower Institute for Learning and Memory, MIT, Cambridge, MA, USA
| | - Kenneth Harris
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Fumitaka Inoue
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Manolis Kellis
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ariel Levine
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Mo Lotfollahi
- Institute of Computational Biology, Helmholtz Center Munich - German Research Center for Environmental Health, Neuherberg, Germany
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Chongyuan Luo
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kristen R Maynard
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Mor Nitzan
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
- Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Vijay Ramani
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, San Francisco, CA, USA
| | - Rahul Satijia
- New York Genome Center, New York, NY, USA
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Lucas Schirmer
- Department of Neurology, Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Yin Shen
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Na Sun
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Gilad S Green
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Fabian Theis
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xiao Wang
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Joshua D Welch
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Ozgun Gokce
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany.
| | - Genevieve Konopka
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA.
- Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Shane Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA.
- Department of Neuroscience & Physiology, NYU Grossman School of Medicine, New York, NY, USA.
- Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, NY, USA.
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY, USA.
| | - Evan Macosko
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.
| | | | - Naomi Habib
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Tomasz J Nowakowski
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA.
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA.
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA.
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
25
|
Zhu M, Mosso MB, Ma X, Park E, Barth AL. Long-lasting, subtype-specific regulation of somatostatin interneurons during sensory learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.19.624383. [PMID: 39605654 PMCID: PMC11601575 DOI: 10.1101/2024.11.19.624383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Somatostatin (SST)-expressing inhibitory neurons are a major class of neocortical γ-amino butyric acid (GABA) neurons, where morphological, electrophysiological, and transcriptomic analyses indicate more than a dozen different subtypes. However, whether this diversity is related to specific roles in cortical computations and plasticity remains unclear. Here we identify learning-dependent, subtype-specific plasticity in layer 2/3 SST neurons of the mouse somatosensory cortex. Martinotti-type, SST neurons expressing calbindin-2 show a selective decrease in excitatory synaptic input and stimulus-evoked calcium responses as mice learn a stimulus-reward association. Using these insights, we develop a label-free classifier using basal activity from in vivo imaging that accurately predicts learning-associated response plasticity. Our data indicate that molecularly-defined SST neuron subtypes play specific and highly-regulated roles in sensory information processing and learning.
Collapse
Affiliation(s)
- Mo Zhu
- Department of Biological Sciences, Carnegie Mellon University; Pittsburgh 15213 U.S.A
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh 15213 U.S.A
| | - Matthew B. Mosso
- Department of Biological Sciences, Carnegie Mellon University; Pittsburgh 15213 U.S.A
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh 15213 U.S.A
| | - Xiaoyang Ma
- Department of Biological Sciences, Carnegie Mellon University; Pittsburgh 15213 U.S.A
| | - Eunsol Park
- Department of Biological Sciences, Carnegie Mellon University; Pittsburgh 15213 U.S.A
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh 15213 U.S.A
| | - Alison L. Barth
- Department of Biological Sciences, Carnegie Mellon University; Pittsburgh 15213 U.S.A
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh 15213 U.S.A
| |
Collapse
|
26
|
Shao LX, Liao C, Davoudian PA, Savalia NK, Jiang Q, Wojtasiewicz C, Tan D, Nothnagel JD, Liu RJ, Woodburn SC, Bilash OM, Kim H, Che A, Kwan AC. Pyramidal cell types and 5-HT 2A receptors are essential for psilocybin's lasting drug action. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.02.621692. [PMID: 39554087 PMCID: PMC11566025 DOI: 10.1101/2024.11.02.621692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Psilocybin is a serotonergic psychedelic with therapeutic potential for treating mental illnesses1-4. At the cellular level, psychedelics induce structural neural plasticity5,6, exemplified by the drug-evoked growth and remodeling of dendritic spines in cortical pyramidal cells7-9. A key question is how these cellular modifications map onto cell type-specific circuits to produce psychedelics' behavioral actions10. Here, we use in vivo optical imaging, chemogenetic perturbation, and cell type-specific electrophysiology to investigate the impact of psilocybin on the two main types of pyramidal cells in the mouse medial frontal cortex. We find that a single dose of psilocybin increased the density of dendritic spines in both the subcortical-projecting, pyramidal tract (PT) and intratelencephalic (IT) cell types. Behaviorally, silencing the PT neurons eliminates psilocybin's ability to ameliorate stress-related phenotypes, whereas silencing IT neurons has no detectable effect. In PT neurons only, psilocybin boosts synaptic calcium transients and elevates firing rates acutely after administration. Targeted knockout of 5-HT2A receptors abolishes psilocybin's effects on stress-related behavior and structural plasticity. Collectively these results identify a pyramidal cell type and the 5-HT2A receptor in the medial frontal cortex as playing essential roles for psilocybin's long-term drug action.
Collapse
Affiliation(s)
- Ling-Xiao Shao
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, 06511, USA
| | - Clara Liao
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, Connecticut, 06511, USA
| | - Pasha A. Davoudian
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, Connecticut, 06511, USA
- Medical Scientist Training Program, Yale University School of Medicine, New Haven, Connecticut, 06511, USA
| | - Neil K. Savalia
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, Connecticut, 06511, USA
- Medical Scientist Training Program, Yale University School of Medicine, New Haven, Connecticut, 06511, USA
| | - Quan Jiang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | | | - Diran Tan
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Jack D. Nothnagel
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Rong-Jian Liu
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, 06511, USA
| | - Samuel C. Woodburn
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Olesia M. Bilash
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Hail Kim
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Alicia Che
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, 06511, USA
| | - Alex C. Kwan
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, 06511, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, 10065, USA
| |
Collapse
|
27
|
Keijser J, Hertäg L, Sprekeler H. Transcriptomic Correlates of State Modulation in GABAergic Interneurons: A Cross-Species Analysis. J Neurosci 2024; 44:e2371232024. [PMID: 39299800 PMCID: PMC11529809 DOI: 10.1523/jneurosci.2371-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 06/06/2024] [Accepted: 08/13/2024] [Indexed: 09/22/2024] Open
Abstract
GABAergic inhibitory interneurons comprise many subtypes that differ in their molecular, anatomical, and functional properties. In mouse visual cortex, they also differ in their modulation with an animal's behavioral state, and this state modulation can be predicted from the first principal component (PC) of the gene expression matrix. Here, we ask whether this link between transcriptome and state-dependent processing generalizes across species. To this end, we analysed seven single-cell and single-nucleus RNA sequencing datasets from mouse, human, songbird, and turtle forebrains. Despite homology at the level of cell types, we found clear differences between transcriptomic PCs, with greater dissimilarities between evolutionarily distant species. These dissimilarities arise from two factors: divergence in gene expression within homologous cell types and divergence in cell-type abundance. We also compare the expression of cholinergic receptors, which are thought to causally link transcriptome and state modulation. Several cholinergic receptors predictive of state modulation in mouse interneurons are differentially expressed between species. Circuit modelling and mathematical analyses suggest conditions under which these expression differences could translate into functional differences.
Collapse
Affiliation(s)
- Joram Keijser
- Modelling of Cognitive Processes, Technical University of Berlin, 10587 Berlin, Germany
- Charité-Universitätsmedizin Berlin, Einstein Center for Neurosciences Berlin, 10117 Berlin, Germany
| | - Loreen Hertäg
- Modelling of Cognitive Processes, Technical University of Berlin, 10587 Berlin, Germany
| | - Henning Sprekeler
- Modelling of Cognitive Processes, Technical University of Berlin, 10587 Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, 10115 Berlin, Germany
| |
Collapse
|
28
|
McCollum M, Manning A, Bender PTR, Mendelson BZ, Anderson CT. Cell-type-specific enhancement of deviance detection by synaptic zinc in the mouse auditory cortex. Proc Natl Acad Sci U S A 2024; 121:e2405615121. [PMID: 39312661 PMCID: PMC11459170 DOI: 10.1073/pnas.2405615121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/15/2024] [Indexed: 09/25/2024] Open
Abstract
Stimulus-specific adaptation is a hallmark of sensory processing in which a repeated stimulus results in diminished successive neuronal responses, but a deviant stimulus will still elicit robust responses from the same neurons. Recent work has established that synaptically released zinc is an endogenous mechanism that shapes neuronal responses to sounds in the auditory cortex. Here, to understand the contributions of synaptic zinc to deviance detection of specific neurons, we performed wide-field and 2-photon calcium imaging of multiple classes of cortical neurons. We find that intratelencephalic (IT) neurons in both layers 2/3 and 5 as well as corticocollicular neurons in layer 5 all demonstrate deviance detection; however, we find a specific enhancement of deviance detection in corticocollicular neurons that arises from ZnT3-dependent synaptic zinc in layer 2/3 IT neurons. Genetic deletion of ZnT3 from layer 2/3 IT neurons removes the enhancing effects of synaptic zinc on corticocollicular neuron deviance detection and results in poorer acuity of detecting deviant sounds by behaving mice.
Collapse
Affiliation(s)
- Mason McCollum
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV26505
| | - Abbey Manning
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV26505
| | - Philip T. R. Bender
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV26505
| | - Benjamin Z. Mendelson
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV26505
| | - Charles T. Anderson
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV26505
| |
Collapse
|
29
|
Choi J, Jung S, Kim J, So D, Kim A, Kim S, Choi S, Yoo E, Kim JY, Jang YC, Lee H, Kim J, Shin HS, Chae S, Keum S. ARNT2 controls prefrontal somatostatin interneurons mediating affective empathy. Cell Rep 2024; 43:114659. [PMID: 39180750 DOI: 10.1016/j.celrep.2024.114659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/01/2024] [Accepted: 08/05/2024] [Indexed: 08/26/2024] Open
Abstract
Empathy, crucial for social interaction, is impaired across various neuropsychiatric conditions. However, the genetic and neural underpinnings of empathy variability remain elusive. By combining forward genetic mapping with transcriptome analysis, we discover that aryl hydrocarbon receptor nuclear translocator 2 (ARNT2) is a key driver modulating observational fear, a basic form of affective empathy. Disrupted ARNT2 expression in the anterior cingulate cortex (ACC) reduces affect sharing in mice. Specifically, selective ARNT2 ablation in somatostatin (SST)-expressing interneurons leads to decreased pyramidal cell excitability, increased spontaneous firing, aberrant Ca2+ dynamics, and disrupted theta oscillations in the ACC, resulting in reduced vicarious freezing. We further demonstrate that ARNT2-expressing SST interneurons govern affective state discrimination, uncovering a potential mechanism by which ARNT2 polymorphisms associate with emotion recognition in humans. Our findings advance our understanding of the molecular mechanism controlling empathic capacity and highlight the neural substrates underlying social affective dysfunctions in psychiatric disorders.
Collapse
Affiliation(s)
- Jiye Choi
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, South Korea
| | - Seungmoon Jung
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, South Korea
| | - Jieun Kim
- Department of Bio-Health Technology, College of Biomedicine Science, Kangwon National University, Chuncheon 24341, South Korea; Multidimensional Genomics Research Center, Kangwon National University, Chuncheon 24341, South Korea
| | - Dahm So
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, South Korea; Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Arie Kim
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, South Korea
| | - Sowon Kim
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, South Korea
| | - Sungjoon Choi
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, South Korea
| | - Eunsu Yoo
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, South Korea
| | - Jee Yeon Kim
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, South Korea
| | - Yoon Cheol Jang
- Research Solution Center, Institute for Basic Science, Daejeon 34126, South Korea
| | - Hyoin Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, South Korea
| | - Jeongyeon Kim
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu 41062, South Korea
| | - Hee-Sup Shin
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, South Korea
| | - Sehyun Chae
- Multidimensional Genomics Research Center, Kangwon National University, Chuncheon 24341, South Korea; Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon 24341, South Korea.
| | - Sehoon Keum
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, South Korea.
| |
Collapse
|
30
|
Borjas NC, Anstötz M, Maccaferri G. Multiple layers of diversity govern the cell type specificity of GABAergic input received by mouse subicular pyramidal neurons. J Physiol 2024; 602:4195-4213. [PMID: 39141819 PMCID: PMC11665487 DOI: 10.1113/jp286679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/23/2024] [Indexed: 08/16/2024] Open
Abstract
The subiculum is a key region of the brain involved in the initiation of pathological activity in temporal lobe epilepsy, and local GABAergic inhibition is essential to prevent subicular-originated epileptiform discharges. Subicular pyramidal cells may be easily distinguished into two classes based on their different firing patterns. Here, we have compared the strength of the GABAa receptor-mediated inhibitory postsynaptic currents received by regular- vs. burst-firing subicular neurons and their dynamic modulation by the activation of μ opioid receptors. We have taken advantage of the sequential re-patching of the same cell to initially classify pyramidal neurons according to their firing patters, and then to measure GABAergic events triggered by the optogenetic stimulation of parvalbumin- and somatostatin-expressing interneurons. Activation of parvalbumin-expressing cells generated larger responses in postsynaptic burst-firing neurons whereas the opposite was observed for currents evoked by the stimulation of somatostatin-expressing interneurons. In all cases, events depended critically on ω-agatoxin IVA- but not on ω-conotoxin GVIA-sensitive calcium channels. Optogenetic GABAergic input originating from both parvalbumin- and somatostatin-expressing cells was reduced in amplitude following the exposure to a μ opioid receptor agonist. The kinetics of this pharmacological sensitivity was different in regular- vs. burst-firing neurons, but only when responses were evoked by the activation of parvalbumin-expressing neurons, whereas no differences were observed when somatostatin-expressing cells were stimulated. In conclusion, our results show that a high degree of complexity regulates the organizing principles of subicular GABAergic inhibition, with the interaction of pre- and postsynaptic diversity at multiple levels. KEY POINTS: Optogenetic stimulation of parvalbumin- and somatostatin-expressing interneurons (PVs and SOMs) triggers inhibitory postsynaptic currents (IPSCs) in both regular- and burst-firing (RFs and BFs) subicular pyramidal cells. The amplitude of optogenetically evoked IPSCs from PVs (PV-opto IPSCs) is larger in BFs whereas IPSCs generated by the light activation of SOMs (SOM-opto IPSCs) are larger in RFs. Both PV- and SOM-opto IPSCs critically depend on ω-agatoxin IVA-sensitive P/Q type voltage-gated calcium channels, whereas no major effects are observed following exposure to ω-conotoxin GVIA, suggesting no significant involvement of N-type channels. The amplitude of both PV- and SOM-opto IPSCs is reduced by the probable pharmacological activation of presynaptic μ opioid receptors, with a faster kinetics of the effect observed in PV-opto IPSCs from RFs vs. BFs, but not in SOM-opto IPSCs. These results help us understand the complex interactions between different layers of diversity regulating GABAergic input onto subicular microcircuits.
Collapse
Affiliation(s)
- Nancy Castro Borjas
- Department of Neuroscience, Feinberg School of MedicineNorthwestern UniversityChicagoUSA
| | - Max Anstötz
- Institute of Anatomy II, Medical FacultyHeinrich‐Heine‐UniversityDüsseldorfGermany
| | - Gianmaria Maccaferri
- Department of Neuroscience, Feinberg School of MedicineNorthwestern UniversityChicagoUSA
| |
Collapse
|
31
|
Ramos-Prats A, Matulewicz P, Edenhofer ML, Wang KY, Yeh CW, Fajardo-Serrano A, Kress M, Kummer K, Lien CC, Ferraguti F. Loss of mGlu 5 receptors in somatostatin-expressing neurons alters negative emotional states. Mol Psychiatry 2024; 29:2774-2786. [PMID: 38575807 PMCID: PMC11420089 DOI: 10.1038/s41380-024-02541-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/06/2024]
Abstract
Subtype 5 metabotropic glutamate receptors (mGlu5) are known to play an important role in regulating cognitive, social and valence systems. However, it remains largely unknown at which circuits and neuronal types mGlu5 act to influence these behavioral domains. Altered tissue- or cell-specific expression or function of mGlu5 has been proposed to contribute to the exacerbation of neuropsychiatric disorders. Here, we examined how these receptors regulate the activity of somatostatin-expressing (SST+) neurons, as well as their influence on behavior and brain rhythmic activity. Loss of mGlu5 in SST+ neurons elicited excitatory synaptic dysfunction in a region and sex-specific manner together with a range of emotional imbalances including diminished social novelty preference, reduced anxiety-like behavior and decreased freezing during retrieval of fear memories. In addition, the absence of mGlu5 in SST+ neurons during fear processing impaired theta frequency oscillatory activity in the medial prefrontal cortex and ventral hippocampus. These findings reveal a critical role of mGlu5 in controlling SST+ neurons excitability necessary for regulating negative emotional states.
Collapse
Affiliation(s)
- Arnau Ramos-Prats
- Institute of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Pawel Matulewicz
- Institute of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Kai-Yi Wang
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chia-Wei Yeh
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ana Fajardo-Serrano
- Institute of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Michaela Kress
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Kai Kummer
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Cheng-Chang Lien
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Francesco Ferraguti
- Institute of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
32
|
Tuñon-Ortiz A, Tränkner D, Brockway SN, Raines O, Mahnke A, Grega M, Zelikowsky M, Williams ME. Inhibitory neurons marked by a connectivity molecule regulate memory precision. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.05.602304. [PMID: 39005261 PMCID: PMC11245094 DOI: 10.1101/2024.07.05.602304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The CA3 region is central to hippocampal function during learning and memory and has a unique connectivity. CA3 pyramidal neurons are the targets of huge, excitatory mossy fiber synapses from DG axons and have a high degree of excitatory recurrent connectivity. Thus, inhibition likely plays an outsized importance in constraining excitation and shaping CA3 ensembles during learning and memory. Here, we investigate the function of a never-before studied set of dendrite-targeting, GABAergic neurons defined by expression of the synaptic adhesion molecule, Kirrel3. We discovered that activating Kirrel3-expressing GABAergic neurons specifically impairs memory discrimination and inhibits CA3 pyramidal neurons in novel contexts. Kirrel3 is required for DG-to-GABA synapse formation and variants in Kirrel3 are strong risk factors for neurodevelopmental disorders. Thus, our work suggests that Kirrel3-GABA neurons are a critical source of feed-forward inhibition from DG to CA3 during the encoding and retrieval of contextual memories, a function which may be specifically disrupted in some brain disorders.
Collapse
Affiliation(s)
- Arnulfo Tuñon-Ortiz
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Dimitri Tränkner
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Sarah N Brockway
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Olivia Raines
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Abbey Mahnke
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Matthew Grega
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Moriel Zelikowsky
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Megan E Williams
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT 84112
| |
Collapse
|
33
|
Alexander RPD, Bender KJ. Delta opioid receptors engage multiple signaling cascades to differentially modulate prefrontal GABA release with input and target specificity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.08.607246. [PMID: 39149233 PMCID: PMC11326311 DOI: 10.1101/2024.08.08.607246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Opioids regulate circuits associated with motivation and reward across the brain. Of the opioid receptor types, delta opioid receptors (DORs) appear to have a unique role in regulating the activity of circuits related to reward without a liability for abuse. In neocortex, DORs are expressed primarily in interneurons, including parvalbumin- and somatostatin-expressing interneurons that inhibit somatic and dendritic compartments of excitatory pyramidal cells, respectively. But how DORs regulate transmission from these key interneuron classes is unclear. We found that DORs regulate inhibition from these interneuron classes using different G-protein signaling pathways that both converge on presynaptic calcium channels, but regulate distinct aspects of calcium channel function. This imposes different temporal filtering effects, via short-term plasticity, that depend on how calcium channels are regulated. Thus, DORs engage differential signaling cascades to regulate inhibition depending on the postsynaptic target compartment, with different effects on synaptic information transfer in somatic and dendritic domains.
Collapse
Affiliation(s)
- Ryan P. D. Alexander
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Kevin J. Bender
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
34
|
Goode TD, Alipio JB, Besnard A, Pathak D, Kritzer-Cheren MD, Chung A, Duan X, Sahay A. A dorsal hippocampus-prodynorphinergic dorsolateral septum-to-lateral hypothalamus circuit mediates contextual gating of feeding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.02.606427. [PMID: 39149322 PMCID: PMC11326193 DOI: 10.1101/2024.08.02.606427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Adaptive regulation of feeding depends on linkage of internal states and food outcomes with contextual cues. Human brain imaging has identified dysregulation of a hippocampal-lateral hypothalamic area (LHA) network in binge eating, but mechanistic instantiation of underlying cell-types and circuitry is lacking. Here, we identify an evolutionary conserved and discrete Prodynorphin (Pdyn)-expressing subpopulation of Somatostatin (Sst)-expressing inhibitory neurons in the dorsolateral septum (DLS) that receives primarily dorsal, but not ventral, hippocampal inputs. DLS(Pdyn) neurons inhibit LHA GABAergic neurons and confer context- and internal state-dependent calibration of feeding. Viral deletion of Pdyn in the DLS mimicked effects seen with optogenetic silencing of DLS Pdyn INs, suggesting a potential role for DYNORPHIN-KAPPA OPIOID RECEPTOR signaling in contextual regulation of food-seeking. Together, our findings illustrate how the dorsal hippocampus has evolved to recruit an ancient LHA feeding circuit module through Pdyn DLS inhibitory neurons to link contextual information with regulation of food consumption.
Collapse
Affiliation(s)
- Travis D Goode
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- BROAD Institute of Harvard and MIT, Cambridge, MA
| | - Jason Bondoc Alipio
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- BROAD Institute of Harvard and MIT, Cambridge, MA
| | - Antoine Besnard
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- BROAD Institute of Harvard and MIT, Cambridge, MA
| | - Devesh Pathak
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- BROAD Institute of Harvard and MIT, Cambridge, MA
| | - Michael D Kritzer-Cheren
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- BROAD Institute of Harvard and MIT, Cambridge, MA
| | - Ain Chung
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- BROAD Institute of Harvard and MIT, Cambridge, MA
| | - Xin Duan
- Department of Ophthalmology, University of California, San Francisco, CA
- Department of Physiology, University of California, San Francisco, CA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA
| | - Amar Sahay
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- BROAD Institute of Harvard and MIT, Cambridge, MA
| |
Collapse
|
35
|
Machold R, Rudy B. Genetic approaches to elucidating cortical and hippocampal GABAergic interneuron diversity. Front Cell Neurosci 2024; 18:1414955. [PMID: 39113758 PMCID: PMC11303334 DOI: 10.3389/fncel.2024.1414955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
GABAergic interneurons (INs) in the mammalian forebrain represent a diverse population of cells that provide specialized forms of local inhibition to regulate neural circuit activity. Over the last few decades, the development of a palette of genetic tools along with the generation of single-cell transcriptomic data has begun to reveal the molecular basis of IN diversity, thereby providing deep insights into how different IN subtypes function in the forebrain. In this review, we outline the emerging picture of cortical and hippocampal IN speciation as defined by transcriptomics and developmental origin and summarize the genetic strategies that have been utilized to target specific IN subtypes, along with the technical considerations inherent to each approach. Collectively, these methods have greatly facilitated our understanding of how IN subtypes regulate forebrain circuitry via cell type and compartment-specific inhibition and thus have illuminated a path toward potential therapeutic interventions for a variety of neurocognitive disorders.
Collapse
Affiliation(s)
- Robert Machold
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, United States
| | - Bernardo Rudy
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, United States
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, United States
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
36
|
Wu SJ, Dai M, Yang SP, McCann C, Qiu Y, Marrero GJ, Stogsdill JA, Di Bella DJ, Xu Q, Farhi SL, Macosko EZ, Chen F, Fishell G. Pyramidal neurons proportionately alter the identity and survival of specific cortical interneuron subtypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.20.604399. [PMID: 39071350 PMCID: PMC11275907 DOI: 10.1101/2024.07.20.604399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The mammalian cerebral cortex comprises a complex neuronal network that maintains a delicate balance between excitatory neurons and inhibitory interneurons. Previous studies, including our own research, have shown that specific interneuron subtypes are closely associated with particular pyramidal neuron types, forming stereotyped local inhibitory microcircuits. However, the developmental processes that establish these precise networks are not well understood. Here we show that pyramidal neuron types are instrumental in driving the terminal differentiation and maintaining the survival of specific associated interneuron subtypes. In a wild-type cortex, the relative abundance of different interneuron subtypes aligns precisely with the pyramidal neuron types to which they synaptically target. In Fezf2 mutant cortex, characterized by the absence of layer 5 pyramidal tract neurons and an expansion of layer 6 intratelencephalic neurons, we observed a corresponding decrease in associated layer 5b interneurons and an increase in layer 6 subtypes. Interestingly, these shifts in composition are achieved through mechanisms specific to different interneuron types. While SST interneurons adjust their abundance to the change in pyramidal neuron prevalence through the regulation of programmed cell death, parvalbumin interneurons alter their identity. These findings illustrate two key strategies by which the dynamic interplay between pyramidal neurons and interneurons allows local microcircuits to be sculpted precisely. These insights underscore the precise roles of extrinsic signals from pyramidal cells in the establishment of interneuron diversity and their subsequent integration into local cortical microcircuits.
Collapse
Affiliation(s)
- Sherry Jingjing Wu
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Min Dai
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Shang-Po Yang
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Cai McCann
- Spatial Technology Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Yanjie Qiu
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Jeffrey A. Stogsdill
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Daniela J. Di Bella
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Qing Xu
- Center for Genomics & Systems Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Samouil L. Farhi
- Spatial Technology Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Evan Z. Macosko
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Fei Chen
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Gord Fishell
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
37
|
Agmon A, Barth AL. A brief history of somatostatin interneuron taxonomy or: how many somatostatin subtypes are there, really? Front Neural Circuits 2024; 18:1436915. [PMID: 39091993 PMCID: PMC11292610 DOI: 10.3389/fncir.2024.1436915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/28/2024] [Indexed: 08/04/2024] Open
Abstract
We provide a brief (and unabashedly biased) overview of the pre-transcriptomic history of somatostatin interneuron taxonomy, followed by a chronological summary of the large-scale, NIH-supported effort over the last ten years to generate a comprehensive, single-cell RNA-seq-based taxonomy of cortical neurons. Focusing on somatostatin interneurons, we present the perspective of experimental neuroscientists trying to incorporate the new classification schemes into their own research while struggling to keep up with the ever-increasing number of proposed cell types, which seems to double every two years. We suggest that for experimental analysis, the most useful taxonomic level is the subdivision of somatostatin interneurons into ten or so "supertypes," which closely agrees with their more traditional classification by morphological, electrophysiological and neurochemical features. We argue that finer subdivisions ("t-types" or "clusters"), based on slight variations in gene expression profiles but lacking clear phenotypic differences, are less useful to researchers and may actually defeat the purpose of classifying neurons to begin with. We end by stressing the need for generating novel tools (mouse lines, viral vectors) for genetically targeting distinct supertypes for expression of fluorescent reporters, calcium sensors and excitatory or inhibitory opsins, allowing neuroscientists to chart the input and output synaptic connections of each proposed subtype, reveal the position they occupy in the cortical network and examine experimentally their roles in sensorimotor behaviors and cognitive brain functions.
Collapse
Affiliation(s)
- Ariel Agmon
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
| | - Alison L. Barth
- Department of Biological Sciences, Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, United States
| |
Collapse
|
38
|
Di Bella DJ, Domínguez-Iturza N, Brown JR, Arlotta P. Making Ramón y Cajal proud: Development of cell identity and diversity in the cerebral cortex. Neuron 2024; 112:2091-2111. [PMID: 38754415 PMCID: PMC11771131 DOI: 10.1016/j.neuron.2024.04.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/28/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024]
Abstract
Since the beautiful images of Santiago Ramón y Cajal provided a first glimpse into the immense diversity and complexity of cell types found in the cerebral cortex, neuroscience has been challenged and inspired to understand how these diverse cells are generated and how they interact with each other to orchestrate the development of this remarkable tissue. Some fundamental questions drive the field's quest to understand cortical development: what are the mechanistic principles that govern the emergence of neuronal diversity? How do extrinsic and intrinsic signals integrate with physical forces and activity to shape cell identity? How do the diverse populations of neurons and glia influence each other during development to guarantee proper integration and function? The advent of powerful new technologies to profile and perturb cortical development at unprecedented resolution and across a variety of modalities has offered a new opportunity to integrate past knowledge with brand new data. Here, we review some of this progress using cortical excitatory projection neurons as a system to draw out general principles of cell diversification and the role of cell-cell interactions during cortical development.
Collapse
Affiliation(s)
- Daniela J Di Bella
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Nuria Domínguez-Iturza
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Juliana R Brown
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Paola Arlotta
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
39
|
Dwivedi D, Dumontier D, Sherer M, Lin S, Mirow AMC, Qiu Y, Xu Q, Liebman SA, Joseph D, Datta SR, Fishell G, Pouchelon G. Metabotropic signaling within somatostatin interneurons controls transient thalamocortical inputs during development. Nat Commun 2024; 15:5421. [PMID: 38926335 PMCID: PMC11208423 DOI: 10.1038/s41467-024-49732-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
During brain development, neural circuits undergo major activity-dependent restructuring. Circuit wiring mainly occurs through synaptic strengthening following the Hebbian "fire together, wire together" precept. However, select connections, essential for circuit development, are transient. They are effectively connected early in development, but strongly diminish during maturation. The mechanisms by which transient connectivity recedes are unknown. To investigate this process, we characterize transient thalamocortical inputs, which depress onto somatostatin inhibitory interneurons during development, by employing optogenetics, chemogenetics, transcriptomics and CRISPR-based strategies in mice. We demonstrate that in contrast to typical activity-dependent mechanisms, transient thalamocortical connectivity onto somatostatin interneurons is non-canonical and involves metabotropic signaling. Specifically, metabotropic-mediated transcription, of guidance molecules in particular, supports the elimination of this connectivity. Remarkably, we found that this process impacts the development of normal exploratory behaviors of adult mice.
Collapse
Affiliation(s)
- Deepanjali Dwivedi
- Harvard Medical School, Department of Neurobiology, Boston, MA, USA
- Broad Institute, Stanley Center for Psychiatric Research, Cambridge, MA, USA
| | | | - Mia Sherer
- Harvard Medical School, Department of Neurobiology, Boston, MA, USA
- Broad Institute, Stanley Center for Psychiatric Research, Cambridge, MA, USA
| | - Sherry Lin
- Harvard Medical School, Department of Neurobiology, Boston, MA, USA
| | - Andrea M C Mirow
- Harvard Medical School, Department of Neurobiology, Boston, MA, USA
- Broad Institute, Stanley Center for Psychiatric Research, Cambridge, MA, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, Harbor, NY, USA
| | - Yanjie Qiu
- Harvard Medical School, Department of Neurobiology, Boston, MA, USA
- Broad Institute, Stanley Center for Psychiatric Research, Cambridge, MA, USA
| | - Qing Xu
- Harvard Medical School, Department of Neurobiology, Boston, MA, USA
- Broad Institute, Stanley Center for Psychiatric Research, Cambridge, MA, USA
- Center for Genomics & Systems Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Samuel A Liebman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, Harbor, NY, USA
| | - Djeckby Joseph
- Cold Spring Harbor Laboratory, Cold Spring Harbor, Harbor, NY, USA
| | - Sandeep R Datta
- Harvard Medical School, Department of Neurobiology, Boston, MA, USA
| | - Gord Fishell
- Harvard Medical School, Department of Neurobiology, Boston, MA, USA.
- Broad Institute, Stanley Center for Psychiatric Research, Cambridge, MA, USA.
| | - Gabrielle Pouchelon
- Harvard Medical School, Department of Neurobiology, Boston, MA, USA.
- Broad Institute, Stanley Center for Psychiatric Research, Cambridge, MA, USA.
- Cold Spring Harbor Laboratory, Cold Spring Harbor, Harbor, NY, USA.
| |
Collapse
|
40
|
Ratliff JM, Terral G, Lutzu S, Heiss J, Mota J, Stith B, Lechuga AV, Ramakrishnan C, Fenno LE, Daigle T, Deisseroth K, Zeng H, Ngai J, Tasic B, Sjulson L, Rudolph S, Kilduff TS, Batista-Brito R. Neocortical long-range inhibition promotes cortical synchrony and sleep. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.20.599756. [PMID: 38948753 PMCID: PMC11213009 DOI: 10.1101/2024.06.20.599756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Behavioral states such as sleep and wake are highly correlated with specific patterns of rhythmic activity in the cortex. During low arousal states such as slow wave sleep, the cortex is synchronized and dominated by low frequency rhythms coordinated across multiple regions. Although recent evidence suggests that GABAergic inhibitory neurons are key players in cortical state modulation, the in vivo circuit mechanisms coordinating synchronized activity among local and distant neocortical networks are not well understood. Here, we show that somatostatin and chondrolectin co-expressing cells (Sst-Chodl cells), a sparse and unique class of neocortical inhibitory neurons, are selectively active during low arousal states and are largely silent during periods of high arousal. In contrast to other neocortical inhibitory neurons, we show these neurons have long-range axons that project across neocortical areas. Activation of Sst-Chodl cells is sufficient to promote synchronized cortical states characteristic of low arousal, with increased spike co-firing and low frequency brain rhythms, and to alter behavioral states by promoting sleep. Contrary to the prevailing belief that sleep is exclusively driven by subcortical mechanisms, our findings reveal that these long-range inhibitory neurons not only track changes in behavioral state but are sufficient to induce both sleep-like cortical states and sleep behavior, establishing a crucial circuit component in regulating behavioral states.
Collapse
Affiliation(s)
- Jacob M Ratliff
- Albert Einstein College of Medicine, New York City, NY, United States
| | - Geoffrey Terral
- Albert Einstein College of Medicine, New York City, NY, United States
| | - Stefano Lutzu
- Albert Einstein College of Medicine, New York City, NY, United States
| | - Jaime Heiss
- Biosciences Division, SRI International, Menlo Park, CA 94025, United States
| | - Julie Mota
- Albert Einstein College of Medicine, New York City, NY, United States
| | - Bianca Stith
- Albert Einstein College of Medicine, New York City, NY, United States
| | | | | | - Lief E Fenno
- The University of Texas at Austin, Austin, TX, United States
| | - Tanya Daigle
- Allen Institute for Brain Science, Seattle, WA, United States
| | | | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, United States
| | - John Ngai
- National Institute of Neurological Disease and Stroke, Bethesda, MD, United States
| | - Bosiljka Tasic
- Allen Institute for Brain Science, Seattle, WA, United States
| | - Lucas Sjulson
- Albert Einstein College of Medicine, New York City, NY, United States
| | - Stephanie Rudolph
- Albert Einstein College of Medicine, New York City, NY, United States
| | - Thomas S. Kilduff
- Biosciences Division, SRI International, Menlo Park, CA 94025, United States
| | | |
Collapse
|
41
|
Huang M, Pieraut S, Cao J, de Souza Polli F, Roncace V, Shen G, Ramos-Medina C, Lee H, Maximov A. Nr4a1 regulates cell-specific transcriptional programs in inhibitory GABAergic interneurons. Neuron 2024; 112:2031-2044.e7. [PMID: 38754414 PMCID: PMC11189749 DOI: 10.1016/j.neuron.2024.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/29/2024] [Accepted: 03/14/2024] [Indexed: 05/18/2024]
Abstract
The patterns of synaptic connectivity and physiological properties of diverse neuron types are shaped by distinct gene sets. Our study demonstrates that, in the mouse forebrain, the transcriptional profiles of inhibitory GABAergic interneurons are regulated by Nr4a1, an orphan nuclear receptor whose expression is transiently induced by sensory experiences and is required for normal learning. Nr4a1 exerts contrasting effects on the local axonal wiring of parvalbumin- and somatostatin-positive interneurons, which innervate different subcellular domains of their postsynaptic partners. The loss of Nr4a1 activity in these interneurons results in bidirectional, cell-type-specific transcriptional switches across multiple gene families, including those involved in surface adhesion and repulsion. Our findings reveal that combinatorial synaptic organizing codes are surprisingly flexible and highlight a mechanism by which inducible transcription factors can influence neural circuit structure and function.
Collapse
Affiliation(s)
- Min Huang
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA; The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA; The Kellogg School of Science and Technology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Simon Pieraut
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA; The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jasmine Cao
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA; The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Filip de Souza Polli
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA; The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Vincenzo Roncace
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA; The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Gloria Shen
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA; The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Carlos Ramos-Medina
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA; The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - HeeYang Lee
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA; The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA; The Kellogg School of Science and Technology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Anton Maximov
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA; The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
42
|
Granato A, Phillips WA, Schulz JM, Suzuki M, Larkum ME. Dysfunctions of cellular context-sensitivity in neurodevelopmental learning disabilities. Neurosci Biobehav Rev 2024; 161:105688. [PMID: 38670298 DOI: 10.1016/j.neubiorev.2024.105688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/17/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
Pyramidal neurons have a pivotal role in the cognitive capabilities of neocortex. Though they have been predominantly modeled as integrate-and-fire point processors, many of them have another point of input integration in their apical dendrites that is central to mechanisms endowing them with the sensitivity to context that underlies basic cognitive capabilities. Here we review evidence implicating impairments of those mechanisms in three major neurodevelopmental disabilities, fragile X, Down syndrome, and fetal alcohol spectrum disorders. Multiple dysfunctions of the mechanisms by which pyramidal cells are sensitive to context are found to be implicated in all three syndromes. Further deciphering of these cellular mechanisms would lead to the understanding of and therapies for learning disabilities beyond any that are currently available.
Collapse
Affiliation(s)
- Alberto Granato
- Dept. of Veterinary Sciences. University of Turin, Grugliasco, Turin 10095, Italy.
| | - William A Phillips
- Psychology, Faculty of Natural Sciences, University of Stirling, Scotland FK9 4LA, UK
| | - Jan M Schulz
- Roche Pharma Research & Early Development, Neuroscience & Rare Diseases Discovery, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Mototaka Suzuki
- Dept. of Cognitive and Systems Neuroscience, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam 1098 XH, the Netherlands
| | - Matthew E Larkum
- Neurocure Center for Excellence, Charité Universitätsmedizin Berlin, Berlin 10117, Germany; Institute of Biology, Humboldt University Berlin, Berlin, Germany
| |
Collapse
|
43
|
de Brito Van Velze M, Dhanasobhon D, Martinez M, Morabito A, Berthaux E, Pinho CM, Zerlaut Y, Rebola N. Feedforward and disinhibitory circuits differentially control activity of cortical somatostatin interneurons during behavioral state transitions. Cell Rep 2024; 43:114197. [PMID: 38733587 DOI: 10.1016/j.celrep.2024.114197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 03/26/2024] [Accepted: 04/21/2024] [Indexed: 05/13/2024] Open
Abstract
Interneurons (INs), specifically those in disinhibitory circuits like somatostatin (SST) and vasoactive intestinal peptide (VIP)-INs, are strongly modulated by the behavioral context. Yet, the mechanisms by which these INs are recruited during active states and whether their activity is consistent across sensory cortices remain unclear. We now report that in mice, locomotor activity strongly recruits SST-INs in the primary somatosensory (S1) but not the visual (V1) cortex. This diverse engagement of SST-INs cannot be explained by differences in VIP-IN function but is absent in the presence of visual input, suggesting the involvement of feedforward sensory pathways. Accordingly, inactivating the somatosensory thalamus, but not decreasing VIP-IN activity, significantly reduces the modulation of SST-INs by locomotion. Model simulations suggest that the differences in SST-INs across behavioral states can be explained by varying ratios of VIP- and thalamus-driven activity. By integrating feedforward activity with neuromodulation, SST-INs are anticipated to be crucial for adapting sensory processing to behavioral states.
Collapse
Affiliation(s)
- Marcel de Brito Van Velze
- ICM, Paris Brain Institute, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, INSERM, CNRS, 75013 Paris, France
| | - Dhanasak Dhanasobhon
- ICM, Paris Brain Institute, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, INSERM, CNRS, 75013 Paris, France
| | - Marie Martinez
- ICM, Paris Brain Institute, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, INSERM, CNRS, 75013 Paris, France
| | - Annunziato Morabito
- ICM, Paris Brain Institute, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, INSERM, CNRS, 75013 Paris, France
| | - Emmanuelle Berthaux
- ICM, Paris Brain Institute, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, INSERM, CNRS, 75013 Paris, France
| | - Cibele Martins Pinho
- ICM, Paris Brain Institute, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, INSERM, CNRS, 75013 Paris, France
| | - Yann Zerlaut
- ICM, Paris Brain Institute, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, INSERM, CNRS, 75013 Paris, France.
| | - Nelson Rebola
- ICM, Paris Brain Institute, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, INSERM, CNRS, 75013 Paris, France.
| |
Collapse
|
44
|
Hartung J, Schroeder A, Péréz Vázquez RA, Poorthuis RB, Letzkus JJ. Layer 1 NDNF interneurons are specialized top-down master regulators of cortical circuits. Cell Rep 2024; 43:114212. [PMID: 38743567 DOI: 10.1016/j.celrep.2024.114212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/10/2024] [Accepted: 04/23/2024] [Indexed: 05/16/2024] Open
Abstract
Diverse types of inhibitory interneurons (INs) impart computational power and flexibility to neocortical circuits. Whereas markers for different IN types in cortical layers 2-6 (L2-L6) have been instrumental for generating a wealth of functional insights, only the recent identification of a selective marker (neuron-derived neurotrophic factor [NDNF]) has opened comparable opportunities for INs in L1 (L1INs). However, at present we know very little about the connectivity of NDNF L1INs with other IN types, their input-output conversion, and the existence of potential NDNF L1IN subtypes. Here, we report pervasive inhibition of L2/3 INs (including parvalbumin INs and vasoactive intestinal peptide INs) by NDNF L1INs. Intersectional genetics revealed similar physiology and connectivity in the NDNF L1IN subpopulation co-expressing neuropeptide Y. Finally, NDNF L1INs prominently and selectively engage in persistent firing, a physiological hallmark disconnecting their output from the current input. Collectively, our work therefore identifies NDNF L1INs as specialized master regulators of superficial neocortex according to their pervasive top-down afferents.
Collapse
Affiliation(s)
- Jan Hartung
- Institute for Physiology, Faculty of Medicine, University of Freiburg, 79108 Freiburg, Germany; BrainLinks-BrainTools, IMBIT (Institute for Machine-Brain Interfacing Technology), University of Freiburg, Georges-Köhler-Allee 201, 79110 Freiburg, Germany.
| | - Anna Schroeder
- Institute for Physiology, Faculty of Medicine, University of Freiburg, 79108 Freiburg, Germany
| | | | - Rogier B Poorthuis
- Department of Translational Neuroscience, UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Johannes J Letzkus
- Institute for Physiology, Faculty of Medicine, University of Freiburg, 79108 Freiburg, Germany; BrainLinks-BrainTools, IMBIT (Institute for Machine-Brain Interfacing Technology), University of Freiburg, Georges-Köhler-Allee 201, 79110 Freiburg, Germany; Center for Basics in NeuroModulation (NeuroModul Basics), University of Freiburg, 79106 Freiburg, Germany.
| |
Collapse
|
45
|
Bragg-Gonzalo L, Aguilera A, González-Arias C, De León Reyes NS, Sánchez-Cruz A, Carballeira P, Leroy F, Perea G, Nieto M. Early cortical GABAergic interneurons determine the projection patterns of L4 excitatory neurons. SCIENCE ADVANCES 2024; 10:eadj9911. [PMID: 38728406 PMCID: PMC11086621 DOI: 10.1126/sciadv.adj9911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 04/09/2024] [Indexed: 05/12/2024]
Abstract
During cerebral cortex development, excitatory pyramidal neurons (PNs) establish specific projection patterns while receiving inputs from GABAergic inhibitory interneurons (INs). Whether these inhibitory inputs can shape PNs' projection patterns is, however, unknown. While layer 4 (L4) PNs of the primary somatosensory (S1) cortex are all born as long-range callosal projection neurons (CPNs), most of them acquire local connectivity upon activity-dependent elimination of their interhemispheric axons during postnatal development. Here, we demonstrate that precise developmental regulation of inhibition is key for the retraction of S1L4 PNs' callosal projections. Ablation of somatostatin INs leads to premature inhibition from parvalbumin INs onto S1L4 PNs and prevents them from acquiring their barrel-restricted local connectivity pattern. As a result, adult S1L4 PNs retain interhemispheric projections responding to tactile stimuli, and the mice lose whisker-based texture discrimination. Overall, we show that temporally ordered IN activity during development is key to shaping local ipsilateral S1L4 PNs' projection pattern, which is required for fine somatosensory processing.
Collapse
Affiliation(s)
- Lorena Bragg-Gonzalo
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid 28049, Spain
| | - Alfonso Aguilera
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid 28049, Spain
| | - Candela González-Arias
- Functional and Systems Neurobiology Department, Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid 28002, Spain
| | - Noelia S. De León Reyes
- Instituto de Neurociencias (CSIC-UMH), Av. Ramón y Cajal s/n, San Juan de Alicante, Alicante, Spain
| | - Alonso Sánchez-Cruz
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid 28049, Spain
| | - Paula Carballeira
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid 28049, Spain
| | - Félix Leroy
- Instituto de Neurociencias (CSIC-UMH), Av. Ramón y Cajal s/n, San Juan de Alicante, Alicante, Spain
| | - Gertrudis Perea
- Functional and Systems Neurobiology Department, Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid 28002, Spain
| | - Marta Nieto
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid 28049, Spain
| |
Collapse
|
46
|
Scheper M, Sørensen FNF, Ruffolo G, Gaeta A, Lissner LJ, Anink JJ, Korshunova I, Jansen FE, Riney K, van Hecke W, Mühlebner A, Khodosevich K, Schubert D, Palma E, Mills JD, Aronica E. Impaired GABAergic regulation and developmental immaturity in interneurons derived from the medial ganglionic eminence in the tuberous sclerosis complex. Acta Neuropathol 2024; 147:80. [PMID: 38714540 PMCID: PMC11076412 DOI: 10.1007/s00401-024-02737-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/10/2024]
Abstract
GABAergic interneurons play a critical role in maintaining neural circuit balance, excitation-inhibition regulation, and cognitive function modulation. In tuberous sclerosis complex (TSC), GABAergic neuron dysfunction contributes to disrupted network activity and associated neurological symptoms, assumingly in a cell type-specific manner. This GABAergic centric study focuses on identifying specific interneuron subpopulations within TSC, emphasizing the unique characteristics of medial ganglionic eminence (MGE)- and caudal ganglionic eminence (CGE)-derived interneurons. Using single-nuclei RNA sequencing in TSC patient material, we identify somatostatin-expressing (SST+) interneurons as a unique and immature subpopulation in TSC. The disrupted maturation of SST+ interneurons may undergo an incomplete switch from excitatory to inhibitory GABAergic signaling during development, resulting in reduced inhibitory properties. Notably, this study reveals markers of immaturity specifically in SST+ interneurons, including an abnormal NKCC1/KCC2 ratio, indicating an imbalance in chloride homeostasis crucial for the postsynaptic consequences of GABAergic signaling as well as the downregulation of GABAA receptor subunits, GABRA1, and upregulation of GABRA2. Further exploration of SST+ interneurons revealed altered localization patterns of SST+ interneurons in TSC brain tissue, concentrated in deeper cortical layers, possibly linked to cortical dyslamination. In the epilepsy context, our research underscores the diverse cell type-specific roles of GABAergic interneurons in shaping seizures, advocating for precise therapeutic considerations. Moreover, this study illuminates the potential contribution of SST+ interneurons to TSC pathophysiology, offering insights for targeted therapeutic interventions.
Collapse
Affiliation(s)
- Mirte Scheper
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.
| | - Frederik N F Sørensen
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Gabriele Ruffolo
- Department of Physiology and Pharmacology, University of Rome Sapienza, 00185, Rome, Italy
- IRCCS San Raffaele Roma, 00163, Rome, Italy
| | - Alessandro Gaeta
- Department of Physiology and Pharmacology, University of Rome Sapienza, 00185, Rome, Italy
| | - Lilian J Lissner
- Department of Physiology and Pharmacology, University of Rome Sapienza, 00185, Rome, Italy
| | - Jasper J Anink
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Irina Korshunova
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Floor E Jansen
- Department of Child Neurology, Brain Center University Medical Center, Member of ERN EpiCare, 3584 BA, Utrecht, The Netherlands
| | - Kate Riney
- Faculty of Medicine, The University of Queensland, St Lucia, QLD, 4067, Australia
- Neurosciences Unit, Queensland Children's Hospital, South Brisbane, QLD, 4101, Australia
| | - Wim van Hecke
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Angelika Mühlebner
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Konstantin Khodosevich
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Dirk Schubert
- Department of Cognitive Neurosciences, Radboudumc, Donders Institute for Brain Cognition and Behaviour, 6525 HR, Nijmegen, The Netherlands
| | - Eleonora Palma
- Department of Physiology and Pharmacology, University of Rome Sapienza, 00185, Rome, Italy
- IRCCS San Raffaele Roma, 00163, Rome, Italy
| | - James D Mills
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- Chalfont Centre for Epilepsy, Bucks, SL9 0RJ, UK
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands
| |
Collapse
|
47
|
Cole RH, Moussawi K, Joffe ME. Opioid modulation of prefrontal cortex cells and circuits. Neuropharmacology 2024; 248:109891. [PMID: 38417545 PMCID: PMC10939756 DOI: 10.1016/j.neuropharm.2024.109891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/30/2024] [Accepted: 02/26/2024] [Indexed: 03/01/2024]
Abstract
Several neurochemical systems converge in the prefrontal cortex (PFC) to regulate cognitive and motivated behaviors. A rich network of endogenous opioid peptides and receptors spans multiple PFC cell types and circuits, and this extensive opioid system has emerged as a key substrate underlying reward, motivation, affective behaviors, and adaptations to stress. Here, we review the current evidence for dysregulated cortical opioid signaling in the pathogenesis of psychiatric disorders. We begin by providing an introduction to the basic anatomy and function of the cortical opioid system, followed by a discussion of endogenous and exogenous opioid modulation of PFC function at the behavioral, cellular, and synaptic level. Finally, we highlight the therapeutic potential of endogenous opioid targets in the treatment of psychiatric disorders, synthesizing clinical reports of altered opioid peptide and receptor expression and activity in human patients and summarizing new developments in opioid-based medications. This article is part of the Special Issue on "PFC circuit function in psychiatric disease and relevant models".
Collapse
Affiliation(s)
- Rebecca H Cole
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA; Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience University of Pittsburgh, Pittsburgh, PA, USA
| | - Khaled Moussawi
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA; Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience University of Pittsburgh, Pittsburgh, PA, USA
| | - Max E Joffe
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA; Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
48
|
Mao X, Staiger JF. Multimodal cortical neuronal cell type classification. Pflugers Arch 2024; 476:721-733. [PMID: 38376567 PMCID: PMC11033238 DOI: 10.1007/s00424-024-02923-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/21/2024]
Abstract
Since more than a century, neuroscientists have distinguished excitatory (glutamatergic) neurons with long-distance projections from inhibitory (GABAergic) neurons with local projections and established layer-dependent schemes for the ~ 80% excitatory (principal) cells as well as the ~ 20% inhibitory neurons. Whereas, in the early days, mainly morphological criteria were used to define cell types, later supplemented by electrophysiological and neurochemical properties, nowadays. single-cell transcriptomics is the method of choice for cell type classification. Bringing recent insight together, we conclude that despite all established layer- and area-dependent differences, there is a set of reliably identifiable cortical cell types that were named (among others) intratelencephalic (IT), extratelencephalic (ET), and corticothalamic (CT) for the excitatory cells, which altogether comprise ~ 56 transcriptomic cell types (t-types). By the same means, inhibitory neurons were subdivided into parvalbumin (PV), somatostatin (SST), vasoactive intestinal polypeptide (VIP), and "other (i.e. Lamp5/Sncg)" subpopulations, which altogether comprise ~ 60 t-types. The coming years will show which t-types actually translate into "real" cell types that show a common set of multimodal features, including not only transcriptome but also physiology and morphology as well as connectivity and ultimately function. Only with the better knowledge of clear-cut cell types and experimental access to them, we will be able to reveal their specific functions, a task which turned out to be difficult in a part of the brain being so much specialized for cognition as the cerebral cortex.
Collapse
Affiliation(s)
- Xiaoyi Mao
- Institute for Neuroanatomy, University Medical Center Göttingen, Georg-August-University, Kreuzbergring 36, 37075, Göttingen, Germany
| | - Jochen F Staiger
- Institute for Neuroanatomy, University Medical Center Göttingen, Georg-August-University, Kreuzbergring 36, 37075, Göttingen, Germany.
| |
Collapse
|
49
|
Chamberland S, Grant G, Machold R, Nebet ER, Tian G, Stich J, Hanani M, Kullander K, Tsien RW. Functional specialization of hippocampal somatostatin-expressing interneurons. Proc Natl Acad Sci U S A 2024; 121:e2306382121. [PMID: 38640347 PMCID: PMC11047068 DOI: 10.1073/pnas.2306382121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 02/27/2024] [Indexed: 04/21/2024] Open
Abstract
Hippocampal somatostatin-expressing (Sst) GABAergic interneurons (INs) exhibit considerable anatomical and functional heterogeneity. Recent single-cell transcriptome analyses have provided a comprehensive Sst-IN subpopulations census, a plausible molecular ground truth of neuronal identity whose links to specific functionality remain incomplete. Here, we designed an approach to identify and access subpopulations of Sst-INs based on transcriptomic features. Four mouse models based on single or combinatorial Cre- and Flp- expression differentiated functionally distinct subpopulations of CA1 hippocampal Sst-INs that largely tiled the morpho-functional parameter space of the Sst-INs superfamily. Notably, the Sst;;Tac1 intersection revealed a population of bistratified INs that preferentially synapsed onto fast-spiking interneurons (FS-INs) and were sufficient to interrupt their firing. In contrast, the Ndnf;;Nkx2-1 intersection identified a population of oriens lacunosum-moleculare INs that predominantly targeted CA1 pyramidal neurons, avoiding FS-INs. Overall, our results provide a framework to translate neuronal transcriptomic identity into discrete functional subtypes that capture the diverse specializations of hippocampal Sst-INs.
Collapse
Affiliation(s)
- Simon Chamberland
- New York University Neuroscience Institute, New York University Grossman School of Medicine, New York University, New York, NY10016
- Department of Neuroscience and Physiology, New York University, New York, NY10016
| | - Gariel Grant
- New York University Neuroscience Institute, New York University Grossman School of Medicine, New York University, New York, NY10016
- Department of Neuroscience and Physiology, New York University, New York, NY10016
| | - Robert Machold
- New York University Neuroscience Institute, New York University Grossman School of Medicine, New York University, New York, NY10016
- Department of Neuroscience and Physiology, New York University, New York, NY10016
| | - Erica R. Nebet
- New York University Neuroscience Institute, New York University Grossman School of Medicine, New York University, New York, NY10016
- Department of Neuroscience and Physiology, New York University, New York, NY10016
| | - Guoling Tian
- New York University Neuroscience Institute, New York University Grossman School of Medicine, New York University, New York, NY10016
- Department of Neuroscience and Physiology, New York University, New York, NY10016
| | - Joshua Stich
- New York University Neuroscience Institute, New York University Grossman School of Medicine, New York University, New York, NY10016
- Department of Neuroscience and Physiology, New York University, New York, NY10016
| | - Monica Hanani
- New York University Neuroscience Institute, New York University Grossman School of Medicine, New York University, New York, NY10016
- Department of Neuroscience and Physiology, New York University, New York, NY10016
| | - Klas Kullander
- Developmental Genetics, Department of Neuroscience, Uppsala University, Uppsala, Uppsala län752 37, Sweden
| | - Richard W. Tsien
- New York University Neuroscience Institute, New York University Grossman School of Medicine, New York University, New York, NY10016
- Center for Neural Science, New York University, New York, NY10003
| |
Collapse
|
50
|
Dummer PD, Lee DI, Hossain S, Wang R, Evard A, Newman G, Ho C, Schneider-Mizell CM, Menon V, Au E. Multidimensional analysis of cortical interneuron synaptic features reveals underlying synaptic heterogeneity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.22.586340. [PMID: 38659827 PMCID: PMC11042224 DOI: 10.1101/2024.03.22.586340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Cortical interneurons represent a diverse set of neuronal subtypes characterized in part by their striking degree of synaptic specificity. However, little is known about the extent of synaptic diversity because of the lack of unbiased methods to extract synaptic features among interneuron subtypes. Here, we develop an approach to aggregate image features from fluorescent confocal images of interneuron synapses and their post-synaptic targets, in order to characterize the heterogeneity of synapses at fine scale. We started by training a model that recognizes pre- and post-synaptic compartments and then determines the target of each genetically-identified interneuron synapse in vitro and in vivo. Our model extracts hundreds of spatial and intensity features from each analyzed synapse, constructing a multidimensional data set, consisting of millions of synapses, which allowed us to perform an unsupervised analysis on this dataset, uncovering novel synaptic subgroups. The subgroups were spatially distributed in a highly structured manner that revealed the local underlying topology of the postsynaptic environment. Dendrite-targeting subgroups were clustered onto subdomains of the dendrite along the proximal to distal axis. Soma-targeting subgroups were enriched onto different postsynaptic cell types. We also find that the two main subclasses of interneurons, basket cells and somatostatin interneurons, utilize distinct strategies to enact inhibitory coverage. Thus, our analysis of multidimensional synaptic features establishes a conceptual framework for studying interneuron synaptic diversity.
Collapse
Affiliation(s)
- Patrick D. Dummer
- Department of Pathology and Cell Biology, Columbia Irving Medical Center, New York NY, 10032
| | - Dylan I. Lee
- Department of Neurology, Columbia Irving Medical Center, New York NY, 10032
| | - Sakib Hossain
- Department of Pathology and Cell Biology, Columbia Irving Medical Center, New York NY, 10032
| | - Runsheng Wang
- Department of Pathology and Cell Biology, Columbia Irving Medical Center, New York NY, 10032
| | - Andre Evard
- Department of Pathology and Cell Biology, Columbia Irving Medical Center, New York NY, 10032
| | - Gabriel Newman
- Department of Pathology and Cell Biology, Columbia Irving Medical Center, New York NY, 10032
| | - Claire Ho
- Department of Pathology and Cell Biology, Columbia Irving Medical Center, New York NY, 10032
| | | | - Vilas Menon
- Department of Neurology, Columbia Irving Medical Center, New York NY, 10032
| | - Edmund Au
- Department of Pathology and Cell Biology, Columbia Irving Medical Center, New York NY, 10032
- Columbia Translation Neuroscience Initiative Fellow, Columbia Irving Medical Center, New York NY, 10032
| |
Collapse
|