1
|
Padilla-Ferrer A, Carrete A, Simon A, Meffre D, Jafarian-Tehrani M. A Disintegrin And Metalloprotease 10 expression within the murine central nervous system. Brain Res 2024; 1834:148888. [PMID: 38548249 DOI: 10.1016/j.brainres.2024.148888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 03/12/2024] [Accepted: 03/23/2024] [Indexed: 04/08/2024]
Abstract
A Disintegrin And Metalloprotease 10 (ADAM10), is able to control several important physiopathological processes through the shedding of a large number of protein substrates. Although ADAM10 plays a crucial role in the central nervous system (CNS) development and function, its protein distribution in the CNS has not been fully addressed. Here, we described the regional and cellular ADAM10 protein expression in C57BL/6 mice examined by immunofluorescence 1) throughout the adult mouse brain, cerebellum and spinal cord in vivo and 2) in different cell types as neurons, astrocytes, oligodendrocytes and microglia in vitro. We observed ADAM10 expression through the whole CNS, with a strong expression in the hippocampus, in the hypothalamus and in the cerebral and piriform cortex in the brain, in the Purkinje and in granular cell layers in the cerebellum and in the spinal cord to a lower extent. In vivo, ADAM10 protein expression was mainly found in neurons and in some oligodendroglial cell populations. However, in primary cultures we observed ADAM10 expression in neurons, oligodendrocytes, astrocytes and microglia. Interestingly, ADAM10 was not only found in the membrane but also in cytoplasmic vesicles and in the nucleus of primary cultured cells. Overall, this work highlights a wide distribution of ADAM10 throughout the CNS. The nuclear localization of ADAM10, probably due to its intracellular domain, emphasizes its role in cell signalling in physiological and pathological conditions. Further investigations are required to better elucidate the role of ADAM10 in glial cells.
Collapse
Affiliation(s)
| | - Alex Carrete
- Université Paris Cité and Inserm, UMR-S 1124, Paris, France
| | - Anne Simon
- Université Paris Cité and Inserm, UMR-S 1124, Paris, France
| | | | | |
Collapse
|
2
|
A Disintegrin and Metalloproteinase 10 (ADAM10) Is Essential for Oligodendrocyte Precursor Development and Myelination in the Mouse Brain. Mol Neurobiol 2023; 60:1675-1689. [PMID: 36550333 PMCID: PMC9899191 DOI: 10.1007/s12035-022-03163-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
A disintegrin and metalloproteinase 10 (ADAM10) plays an essential role in the regulation of survival, proliferation, migration, and differentiation of various neural cells. Nevertheless, the role of ADAM10 in oligodendrocyte precursors (OPCs) and myelination in the central nervous system (CNS) of developing and adult mouse brains is still unknown. We generated ADAM10 conditional knockout (ADAM10 cKO) mice lacking the ADAM10 gene primarily in OPCs by crossing NG2-Cre mice with ADAM10 loxp/loxp mice. We found that OPCs expressed ADAM10 in the mouse corpus callosum and the hippocampus. ADAM10 cKO mice showed significant loss of back hair and reduction in weight and length on postnatal (30 ± 2.1) day, died at (65 ± 5) days after birth, and exhibited the "anxiety and depression-like" performances. Conditional knockout of ADAM10 in OPCs resulted in a prominent increase in myelination and a decrease in the number of OPCs in the corpus callosum at P30 owing to premyelination and lack of proliferation of OPCs. Moreover, the number of proliferating OPCs and mature oligodendrocytes (OLs) also decreased with age in the corpus callosum of ADAM10 cKO mice from P30 to P60. Western blot and RT-PCR results showed that the activation of Notch-1 and its four target genes, Hes1, Hes5, Hey1, and Hey2, was inhibited in the corpus callosum tissue of ADAM10 knockout mice. In our study, we provided experimental evidence to demonstrate that ADAM10 is essential for modulating CNS myelination and OPC development by activating Notch-1 signaling in the developing and adult mouse brain.
Collapse
|
3
|
Busch L, Eggert S, Endres K, Bufe B. The Hidden Role of Non-Canonical Amyloid β Isoforms in Alzheimer's Disease. Cells 2022; 11:3421. [PMID: 36359817 PMCID: PMC9654995 DOI: 10.3390/cells11213421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 09/08/2024] Open
Abstract
Recent advances have placed the pro-inflammatory activity of amyloid β (Aβ) on microglia cells as the focus of research on Alzheimer's Disease (AD). Researchers are confronted with an astonishing spectrum of over 100 different Aβ variants with variable length and chemical modifications. With the exception of Aβ1-42 and Aβ1-40, the biological significance of most peptides for AD is as yet insufficiently understood. We therefore aim to provide a comprehensive overview of the contributions of these neglected Aβ variants to microglia activation. First, the impact of Aβ receptors, signaling cascades, scavenger mechanisms, and genetic variations on the physiological responses towards various Aβ species is described. Furthermore, we discuss the importance of different types of amyloid precursor protein processing for the generation of these Aβ variants in microglia, astrocytes, oligodendrocytes, and neurons, and highlight how alterations in secondary structures and oligomerization affect Aβ neurotoxicity. In sum, the data indicate that gene polymorphisms in Aβ-driven signaling pathways in combination with the production and activity of different Aβ variants might be crucial factors for the initiation and progression of different forms of AD. A deeper assessment of their interplay with glial cells may pave the way towards novel therapeutic strategies for individualized medicine.
Collapse
Affiliation(s)
- Lukas Busch
- Department of Informatics and Microsystems Technology, University of Applied Sciences Kaiserslautern, D-66482 Zweibruecken, Germany
| | - Simone Eggert
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, D-37075 Goettingen, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Centre of the Johannes Gutenberg University, D-55131 Mainz, Germany
| | - Bernd Bufe
- Department of Informatics and Microsystems Technology, University of Applied Sciences Kaiserslautern, D-66482 Zweibruecken, Germany
| |
Collapse
|
4
|
Zhu X, Yao Y, Yang J, Zhang C, Li X, Zhang A, Liu X, Zhang C, Gan G. ADAM10 suppresses demyelination and reduces seizure susceptibility in cuprizone-induced demyelination model. Free Radic Biol Med 2021; 171:26-41. [PMID: 33965566 DOI: 10.1016/j.freeradbiomed.2021.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/18/2021] [Accepted: 05/02/2021] [Indexed: 02/06/2023]
Abstract
The metalloproteinase ADAM10 is the most important amyloid precursor protein (APP) α-secretase, preventing the deposit of neurotoxic amyloid β (Aβ) peptide and generating a soluble APP fragment (sAPPα) with neurotrophic functions. Recent studies have suggested that ADAM10 also play a role in the pathogenesis of inflammatory CNS diseases, such as multiple sclerosis (MS). Demyelination is the hallmarks of MS but the mechanisms involved remain unclear. Here in this study, we examined the role that ADAM10 might play in the cuprizone-induced demyelination model. Our results demonstrated that ADAM10 expression and sAPPα production were significantly reduced in the corpus callosum in response to cuprizone treatment. Overexpression of ADAM10 increased sAPPα production and suppressed demyelination as well as neuroinflammation and oxidative stress in cuprizone-induced demyelination model. Pharmacological inhibition of ADAM10 activity, however, abrogates the protective effect of ADAM10 against demyelination, neuroinflammation and oxidative stress. It has been reported that CNS demyelination may induce seizure activity. Here, we found that overexpression of ADAM10 reduced seizure susceptibility in cuprizone-induced demyelination model, suggesting that ADAM10-derived sAPPα suppresses demyelination and reduces seizure susceptibility via ameliorating neuroinflammation and oxidative stress in cuprizone-induced demyelination model.
Collapse
Affiliation(s)
- Xinjian Zhu
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China.
| | - Yuanyuan Yao
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China
| | - Jiurong Yang
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China
| | - Canyu Zhang
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China
| | - Xinyan Li
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China
| | - Aifeng Zhang
- Department of Pathology, Medical School of Southeast University, Nanjing, China
| | - Xiufang Liu
- Department of Pathogenic Biology and Immunology, Medical School of Southeast University, Nanjing, China
| | - Chenchen Zhang
- Transmission Electron Microscopy Center, Medical School of Southeast University, Nanjing, China
| | - Guangming Gan
- Transmission Electron Microscopy Center, Medical School of Southeast University, Nanjing, China; Department of Genetics and Developmental Biology, Medical School of Southeast University, Nanjing, China
| |
Collapse
|
5
|
Bernstein HG, Keilhoff G, Dobrowolny H, Lendeckel U, Steiner J. From putative brain tumor marker to high cognitive abilities: Emerging roles of a disintegrin and metalloprotease (ADAM) 12 in the brain. J Chem Neuroanat 2020; 109:101846. [PMID: 32622867 DOI: 10.1016/j.jchemneu.2020.101846] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/15/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022]
Abstract
ADAM (a disintergin and metalloprotease) 12 is a member of the large family of multidomain metalloprotease-disintegrins, which possess cell-binding and metalloprotease properties. The enzyme is responsible for the shedding of a number of membrane-bound proteins (heparin-binding-EGF, insulin-like growth factor 2-binding proteins 3 and 5, oxytocinase, glycoprotein non-metastatic melanoma protein B and basigin). In rat and human CNS, ADAM12 is predominantly localized in white and gray matter oligodendrocytes. In addition it can be detected in astrocytes, neurons and endothelial cells. Its function in healthy brain is not well established yet, but prominent roles in CNS development, myelination and high cognitive abilities are discussed. There is increasing evidence that ADAM12 is involved in numerous major diseases of the CNS, which are summarized in the present review (brain tumors, multiple sclerosis, amyotrophic lateral sclerosis, Alzheimer´s disease, stroke, schizophrenia, autism and bipolar disorder).
Collapse
Affiliation(s)
| | - Gerburg Keilhoff
- Institute of Biochemistry and Cell Biology, Faculty of Medicine, Otto-von-Guericke University, Magdeburg, Germany
| | - Henrik Dobrowolny
- Department of Psychiatry, Otto-von-Guericke University, Magdeburg, Germany
| | - Uwe Lendeckel
- Institute of Medical Biochemistry and Molecular Biology, University Medicine, University of Greifswald, Germany
| | - Johann Steiner
- Department of Psychiatry, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
6
|
Chioccarelli T, Manfrevola F, Ferraro B, Sellitto C, Cobellis G, Migliaccio M, Fasano S, Pierantoni R, Chianese R. Expression Patterns of Circular RNAs in High Quality and Poor Quality Human Spermatozoa. Front Endocrinol (Lausanne) 2019; 10:435. [PMID: 31338066 PMCID: PMC6626923 DOI: 10.3389/fendo.2019.00435] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/17/2019] [Indexed: 12/12/2022] Open
Abstract
Circular RNAs (circRNAs) are expressed in human testis and seminal plasma. Until today, there is missing information about a possible payload of circRNAs in human spermatozoa (SPZ). With this in mind, we carried out a circRNA microarray identifying a total of 10.726 transcripts, 28% novel based and 84.6% with exonic structure; their potential contribution in molecular pathways was evaluated by KEGG analysis. Whether circRNAs may be related to SPZ quality was speculated evaluating two different populations of SPZ (A SPZ = good quality, B SPZ = low quality), separated on the basis of morphology and motility parameters, by Percoll gradient. Thus, 148 differentially expressed (DE)-circRNAs were identified and the expression of selected specific SPZ-derived circRNAs was evaluated in SPZ head/tail-enriched preparations, to check the preservation of these molecules during SPZ maturation and their transfer into oocyte during fertilization. Lastly, circRNA/miRNA/mRNA network was built by bioinformatics approach.
Collapse
Affiliation(s)
- Teresa Chioccarelli
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania L. Vanvitelli, Naples, Italy
| | - Francesco Manfrevola
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania L. Vanvitelli, Naples, Italy
| | - Bruno Ferraro
- UOSD di Fisiopatologia della Riproduzione, Presidio Ospedaliero di Marcianise, Caserta, Italy
| | - Carolina Sellitto
- UOSD di Fisiopatologia della Riproduzione, Presidio Ospedaliero di Marcianise, Caserta, Italy
| | - Gilda Cobellis
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania L. Vanvitelli, Naples, Italy
| | - Marina Migliaccio
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania L. Vanvitelli, Naples, Italy
| | - Silvia Fasano
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania L. Vanvitelli, Naples, Italy
| | - Riccardo Pierantoni
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania L. Vanvitelli, Naples, Italy
- *Correspondence: Riccardo Pierantoni
| | - Rosanna Chianese
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania L. Vanvitelli, Naples, Italy
| |
Collapse
|
7
|
Borgonovo ZL, Ribeiro CF, Costa MD, Souza IL, Rossi GR, Alcantara MV, Ingberman M, Braga LG, Mercadante AF, Nakao LS, Zanata SM. Monoclonal Antibody DL11C8 Identifies ADAM23 as a Component of Lipid Raft Microdomains. Neuroscience 2018; 384:165-177. [DOI: 10.1016/j.neuroscience.2018.05.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/25/2018] [Accepted: 05/13/2018] [Indexed: 11/16/2022]
|
8
|
Llufriu-Dabén G, Carrete A, Chierto E, Mailleux J, Camand E, Simon A, Vanmierlo T, Rose C, Allinquant B, Hendriks JJ, Massaad C, Meffre D, Jafarian-Tehrani M. Targeting demyelination via α-secretases promoting sAPPα release to enhance remyelination in central nervous system. Neurobiol Dis 2018; 109:11-24. [DOI: 10.1016/j.nbd.2017.09.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 09/07/2017] [Accepted: 09/14/2017] [Indexed: 12/01/2022] Open
|
9
|
Markus-Koch A, Schmitt O, Seemann S, Lukas J, Koczan D, Ernst M, Fuellen G, Wree A, Rolfs A, Luo J. ADAM23 promotes neuronal differentiation of human neural progenitor cells. Cell Mol Biol Lett 2017; 22:16. [PMID: 28828010 PMCID: PMC5562998 DOI: 10.1186/s11658-017-0045-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 07/24/2017] [Indexed: 11/10/2022] Open
Abstract
Background ADAM23 is widely expressed in the embryonic central nervous system and plays an important role in tissue formation. Results In this study, we showed that ADAM23 contributes to cell survival and is involved in neuronal differentiation during the differentiation of human neural progenitor cells (hNPCs). Upregulation of ADAM23 in hNPCs was found to increase the number of neurons and the length of neurite, while its downregulation decreases them and triggers cell apoptosis. RNA microarray analysis revealed mechanistic insights into genes and pathways that may become involved in multiple cellular processes upon up- or downregulation of ADAM23. Conclusions Our results suggest that ADAM23 regulates neuronal differentiation by triggering specific signaling pathways during hNPC differentiation. Electronic supplementary material The online version of this article (doi:10.1186/s11658-017-0045-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Annett Markus-Koch
- Albrecht-Kossel-Institute for Neuroregeneration, Rostock University Medical Center, Gehlsheimer Straße 20, 18147 Rostock, Germany
| | - Oliver Schmitt
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrsse 9, 18055 Rostock, Germany
| | - Susanne Seemann
- Albrecht-Kossel-Institute for Neuroregeneration, Rostock University Medical Center, Gehlsheimer Straße 20, 18147 Rostock, Germany
| | - Jan Lukas
- Albrecht-Kossel-Institute for Neuroregeneration, Rostock University Medical Center, Gehlsheimer Straße 20, 18147 Rostock, Germany
| | - Dirk Koczan
- Institute for Immunology, Rostock University Medical Center, Schillingallee 70, 18055 Rostock, Germany
| | - Mathias Ernst
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Ernst-Heydemann-Str. 8, 18057 Rostock, Germany
| | - Georg Fuellen
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Ernst-Heydemann-Str. 8, 18057 Rostock, Germany
| | - Andreas Wree
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrsse 9, 18055 Rostock, Germany
| | - Arndt Rolfs
- Albrecht-Kossel-Institute for Neuroregeneration, Rostock University Medical Center, Gehlsheimer Straße 20, 18147 Rostock, Germany
| | - Jiankai Luo
- Albrecht-Kossel-Institute for Neuroregeneration, Rostock University Medical Center, Gehlsheimer Straße 20, 18147 Rostock, Germany
| |
Collapse
|
10
|
Endres K, Deller T. Regulation of Alpha-Secretase ADAM10 In vitro and In vivo: Genetic, Epigenetic, and Protein-Based Mechanisms. Front Mol Neurosci 2017; 10:56. [PMID: 28367112 PMCID: PMC5355436 DOI: 10.3389/fnmol.2017.00056] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/20/2017] [Indexed: 12/21/2022] Open
Abstract
ADAM10 (A Disintegrin and Metalloproteinase 10) has been identified as the major physiological alpha-secretase in neurons, responsible for cleaving APP in a non-amyloidogenic manner. This cleavage results in the production of a neuroprotective APP-derived fragment, APPs-alpha, and an attenuated production of neurotoxic A-beta peptides. An increase in ADAM10 activity shifts the balance of APP processing toward APPs-alpha and protects the brain from amyloid deposition and disease. Thus, increasing ADAM10 activity has been proposed an attractive target for the treatment of neurodegenerative diseases and it appears to be timely to investigate the physiological mechanisms regulating ADAM10 expression. Therefore, in this article, we will (1) review reports on the physiological regulation of ADAM10 at the transcriptional level, by epigenetic factors, miRNAs and/or protein interactions, (2) describe conditions, which change ADAM10 expression in vitro and in vivo, (3) report how neuronal ADAM10 expression may be regulated in humans, and (4) discuss how this knowledge on the physiological and pathophysiological regulation of ADAM10 may help to preserve or restore brain function.
Collapse
Affiliation(s)
- Kristina Endres
- Clinic of Psychiatry and Psychotherapy, University Medical Center Johannes Gutenberg-University Mainz Mainz, Germany
| | - Thomas Deller
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University Frankfurt/Main, Germany
| |
Collapse
|
11
|
Guo ZB, Su YY, Wang YH, Wang W, Guo DZ. The expression pattern of Adam10 in the central nervous system of adult mice: Detection by in situ hybridization combined with immunohistochemistry staining. Mol Med Rep 2016; 14:2038-44. [PMID: 27431484 PMCID: PMC4991692 DOI: 10.3892/mmr.2016.5501] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 06/23/2016] [Indexed: 11/09/2022] Open
Abstract
ADAM10 (a disintegrin and metalloprotease 10) is a member of the ADAMs family, which is key in the development of the nervous system, by regulating proliferation, migration, differentiation and survival of various cells, including axonal growth and myelination. Previous studies have investigated the embryonic or postnatal expression of ADAM10, however, detailed information regarding its cellular distribution in the adult stage, to the best of our knowledge, is not available. The present study investigated the expression pattern of the ADAM10 gene in the adult mouse central nervous system (CNS) using an ADAM10 complementary RNA probe for in situ hybridization (ISH). Immunohistochemical staining was used to identify the type of the ISH staining-positive cells with neuron- or astrocyte-specific antibodies. The results of the current study demonstrated that the ADAM10 gene was predominantly expressed in the neurons of the cerebral cortex, hippocampus, thalamus and cerebellar granular cells in adult mouse CNS.
Collapse
Affiliation(s)
- Zhi-Bao Guo
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Ying-Ying Su
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Yi-Hui Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Da-Zhi Guo
- Department of Hyperbaric Oxygen, Navy General Hospital, Beijing 100048, P.R. China
| |
Collapse
|
12
|
The alpha secretase ADAM10: A metalloprotease with multiple functions in the brain. Prog Neurobiol 2015; 135:1-20. [PMID: 26522965 DOI: 10.1016/j.pneurobio.2015.10.003] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/23/2015] [Accepted: 10/26/2015] [Indexed: 01/07/2023]
Abstract
Proteins belonging to the 'A Disintegrin And Metalloproteinase' (ADAM) family are membrane-anchored proteases that are able to cleave the extracellular domains of several membrane-bound proteins in a process known as 'ectodomain shedding'. In the central nervous system, ADAM10 has attracted the most attention, since it was described as the amyloid precursor protein α-secretase over ten years ago. Despite the excitement over the potential of ADAM10 as a novel drug target in Alzheimer disease, the physiological functions of ADAM10 in the brain are not yet well understood. This is largely because of the embryonic lethality of ADAM10-deficient mice, which results from the loss of cleavage and signaling of the Notch receptor, another ADAM10 substrate. However, the recent generation of conditional ADAM10-deficient mice and the identification of further ADAM10 substrates in the brain has revealed surprisingly numerous and fundamental functions of ADAM10 in the development of the embryonic brain and also in the homeostasis of adult neuronal networks. Mechanistically, ADAM10 controls these functions by utilizing unique postsynaptic substrates in the central nervous system, in particular synaptic cell adhesion molecules, such as neuroligin-1, N-cadherin, NCAM, Ephrin A2 and A5. Consequently, a dysregulation of ADAM10 activity is linked to psychiatric and neurological diseases, such as epilepsy, fragile X syndrome and Huntington disease. This review highlights the recent progress in understanding the substrates and function as well as the regulation and cell biology of ADAM10 in the central nervous system and discusses the value of ADAM10 as a drug target in brain diseases.
Collapse
|
13
|
Olson CR, Hodges LK, Mello CV. Dynamic gene expression in the song system of zebra finches during the song learning period. Dev Neurobiol 2015; 75:1315-38. [PMID: 25787707 DOI: 10.1002/dneu.22286] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/09/2015] [Indexed: 01/03/2023]
Abstract
The brain circuitry that controls song learning and production undergoes marked changes in morphology and connectivity during the song learning period in juvenile zebra finches, in parallel to the acquisition, practice and refinement of song. Yet, the genetic programs and timing of regulatory change that establish the neuronal connectivity and plasticity during this critical learning period remain largely undetermined. To address this question, we used in situ hybridization to compare the expression patterns of a set of 30 known robust molecular markers of HVC and/or area X, major telencephalic song nuclei, between adult and juvenile male zebra finches at different ages during development (20, 35, 50 days post-hatch, dph). We found that several of the genes examined undergo substantial changes in expression within HVC or its surrounds, and/or in other song nuclei. They fit into broad patterns of regulation, including those whose expression within HVC during this period increases (COL12A1, COL 21A1, MPZL1, PVALB, and CXCR7) or decreases (e.g., KCNT2, SAP30L), as well as some that show decreased expression in the surrounding tissue with little change within song nuclei (e.g. SV2B, TAC1). These results reveal a broad range of molecular changes that occur in the song system in concert with the song learning period. Some of the genes and pathways identified are potential modulators of the developmental changes associated with the emergence of the adult properties of the song control system, and/or the acquisition of learned vocalizations in songbirds.
Collapse
Affiliation(s)
- Christopher R Olson
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road L470, Portland, Oregon, 97239-3098
| | - Lisa K Hodges
- Biology Department, Lewis and Clark College, 0615 S.W. Palatine Hill Road, Portland, Oregon 97219
| | - Claudio V Mello
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road L470, Portland, Oregon, 97239-3098
| |
Collapse
|
14
|
Shao Y, Sha XY, Bai YX, Quan F, Wu SL. Effect of A disintegrin and metalloproteinase 10 gene silencing on the proliferation, invasion and migration of the human tongue squamous cell carcinoma cell line TCA8113. Mol Med Rep 2014; 11:212-8. [PMID: 25333745 PMCID: PMC4237091 DOI: 10.3892/mmr.2014.2717] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 09/18/2014] [Indexed: 01/05/2023] Open
Abstract
The present study aimed to investigate the effect of A disintegrin and metalloproteinase 10 (ADAM10) gene silencing on the proliferation, migration and invasion of the human tongue squamous cell carcinoma cell line TCA8113. RNA interference was used to knock down the expression of ADAM10 in the TCA8113 cell line and the proliferation, migration and invasive ability of the treated cells were observed in vitro. The expression levels of epidermal growth factor receptor (EGFR) and E-cadherin in the treated cells were determined by western blot analysis. The proliferation, migration and invasion abilities of cells in the ADAM10 siRNA-treated group were significantly lower than those in the control groups (P<0.05). In addition, compared with the control groups, the expression levels of EGFR and E-cadherin in the ADAM10 siRNA-treated cells were significantly decreased (P<0.05) and increased (P<0.05), respectively. These results suggested that ADAM10 is important in regulating the proliferation, invasion and migration of the human tongue squamous cell carcinoma cell line TCA8113 and that the mechanism may, at least in part, be associated with the upregulation of EGFR and the downregulation of E-cadherin.
Collapse
Affiliation(s)
- Yuan Shao
- Department of Otorhinolaryngology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xiao-Ying Sha
- The Sixth Hepatic Disease Ward, The Affiliated Xi'an Eighth Hospital, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yan-Xia Bai
- Department of Otorhinolaryngology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Fang Quan
- Department of Otorhinolaryngology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Sheng-Li Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
15
|
Yan X, Lin J, Talabattula VAN, Mußmann C, Yang F, Wree A, Rolfs A, Luo J. ADAM10 negatively regulates neuronal differentiation during spinal cord development. PLoS One 2014; 9:e84617. [PMID: 24404179 PMCID: PMC3880303 DOI: 10.1371/journal.pone.0084617] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 11/15/2013] [Indexed: 12/22/2022] Open
Abstract
Members of the ADAM (a disintegrin and metalloprotease) family are involved in embryogenesis and tissue formation via their proteolytic function, cell-cell and cell-matrix interactions. ADAM10 is expressed temporally and spatially in the developing chicken spinal cord, but its function remains elusive. In the present study, we address this question by electroporating ADAM10 specific morpholino antisense oligonucleotides (ADAM10-mo) or dominant-negative ADAM10 (dn-ADAM10) plasmid into the developing chicken spinal cord as well as by in vitro cell culture investigation. Our results show that downregulation of ADAM10 drives precocious differentiation of neural progenitor cells and radial glial cells, resulting in an increase of neurons in the developing spinal cord, even in the prospective ventricular zone. Remarkably, overexpression of the dn-ADAM10 plasmid mutated in the metalloprotease domain (dn-ADAM10-me) mimics the phenotype as found by the ADAM10-mo transfection. Furthermore, in vitro experiments on cultured cells demonstrate that downregulation of ADAM10 decreases the amount of the cleaved intracellular part of Notch1 receptor and its target, and increases the number of βIII-tubulin-positive cells during neural progenitor cell differentiation. Taken together, our data suggest that ADAM10 negatively regulates neuronal differentiation, possibly via its proteolytic effect on the Notch signaling during development of the spinal cord.
Collapse
Affiliation(s)
- Xin Yan
- Albrecht-Kossel-Institute for Neuroregeneration, School of Medicine University of Rostock, Rostock, Germany
| | - Juntang Lin
- Key Laboratory for Medical Tissue Regeneration of Henan Province, Xinxiang Medical University, Xinxiang, P.R. China
- Institute of Anatomy I, School of Medicine University of Jena, Jena, Germany
| | | | - Carolin Mußmann
- Albrecht-Kossel-Institute for Neuroregeneration, School of Medicine University of Rostock, Rostock, Germany
| | - Fan Yang
- Albrecht-Kossel-Institute for Neuroregeneration, School of Medicine University of Rostock, Rostock, Germany
| | - Andreas Wree
- Institute of Anatomy, School of Medicine University of Rostock, Rostock, Germany
| | - Arndt Rolfs
- Albrecht-Kossel-Institute for Neuroregeneration, School of Medicine University of Rostock, Rostock, Germany
| | - Jiankai Luo
- Albrecht-Kossel-Institute for Neuroregeneration, School of Medicine University of Rostock, Rostock, Germany
- * E-mail:
| |
Collapse
|
16
|
Paudel S, Kim YH, Huh MI, Kim SJ, Chang Y, Park YJ, Lee KW, Jung JC. ADAM10 mediates N-cadherin ectodomain shedding during retinal ganglion cell differentiation in primary cultured retinal cells from the developing chick retina. J Cell Biochem 2013; 114:942-54. [PMID: 23129104 DOI: 10.1002/jcb.24435] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 10/22/2012] [Indexed: 01/28/2023]
Abstract
Here, we examined the role of ADAM10 during retinal cell differentiation in retinal sections and in vitro cultures of developing chick retinal cells from embryonic day 6 (ED6). Immunohistochemistry showed that ADAM10 is abundantly expressed in the inner zone of neuroblastic layer at ED5, and it becomes more highly expressed in the ganglion cell layer at ED7 and ED9. Western blotting confirmed that ADAM10 was expressed as an inactive pro-form that was processed to a shorter, active form in control cultured cells, but in cultures treated with an ADAM10 inhibitor (GI254023X) and ADAM10-specific siRNA, the level of mature ADAM10 decreased. Phase-contrast microscopy showed that long neurite extensions were present in untreated cultures 24 h after plating, whereas cultures treated with GI254023X showed significant decreases in neurite extension. Immunofluorescence staining revealed that there were far fewer differentiated ganglion cells in ADAM10 siRNA and GI254023X-treated cultures compared to controls, whereas the photoreceptor cells were unaltered. The Pax6 protein was more strongly detected in the differentiated ganglion cells of control cultures compared to ADAM10 siRNA and GI254023X-treated cultures. N-cadherin ectodomain shedding was apparent in control cultures after 24 h, when ganglion cell differentiation was observed, but ADAM10 siRNA and GI254023X treatment inhibited these processes. In contrast, N-cadherin staining was strongly detected in photoreceptor cells regardless of ADAM10 siRNA and GI254023X treatment. Taken together, these data indicate that the inhibition of ADAM10 can inhibit Pax6 expression and N-cadherin ectodomain shedding in retinal cells, possibly affecting neurite outgrowth and ganglion cell differentiation.
Collapse
Affiliation(s)
- Sharada Paudel
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu 702-701, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Lin J, Yan X, Wang C, Talabattula VAN, Guo Z, Rolfs A, Luo J. Expression patterns of the ADAMs in early developing chicken cochlea. Dev Growth Differ 2013; 55:368-76. [PMID: 23496030 DOI: 10.1111/dgd.12051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 01/29/2013] [Accepted: 02/04/2013] [Indexed: 12/30/2022]
Abstract
Members of the ADAM (a disintegrin and metalloprotease) family are type I transmembrane proteins involved in biological processes of proteolysis, cell adhesion, cell-matrix interaction, as well as in the intracellular signaling transduction. In the present study, expression patterns of seven members of the ADAM family were investigated at the early stages of the developing cochlea by in situ hybridization. The results show that each individual ADAM is expressed and regulated in the early developing cochlea. ADAM9, ADAM10, ADAM17, and ADAM23 are initially and widely expressed in the otic vesicle at embryonic day 2.5 (E2.5) and in the differential elements of the cochlear duct at E9, while ADAM12 is expressed in acoustic ganglion cells at E7. ADAM22 is detectable in cochlear ganglion cells as early as from E4 and in the basilar papilla from E7. Therefore, the present study extends our previous results and suggests that ADAMs also play a role in the early cochlear development.
Collapse
Affiliation(s)
- Juntang Lin
- Key Laboratory for Medical Tissue Regeneration of Henan Province, Xinxiang Medical University, Xinxiang City, 453003, Henan, China
| | | | | | | | | | | | | |
Collapse
|
18
|
Prox J, Willenbrock M, Weber S, Lehmann T, Schmidt-Arras D, Schwanbeck R, Saftig P, Schwake M. Tetraspanin15 regulates cellular trafficking and activity of the ectodomain sheddase ADAM10. Cell Mol Life Sci 2012; 69:2919-32. [PMID: 22446748 PMCID: PMC11114675 DOI: 10.1007/s00018-012-0960-2] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 02/18/2012] [Accepted: 03/08/2012] [Indexed: 10/28/2022]
Abstract
A disintegrin and metalloproteinase10 (ADAM10) has been implicated as a major sheddase responsible for the ectodomain shedding of a number of important surface molecules including the amyloid precursor protein and cadherins. Despite a well-documented role of ADAM10 in health and disease, little is known about the regulation of this protease. To address this issue we conducted a split-ubiquitin yeast two-hybrid screen to identify membrane proteins that interact with ADAM10. The yeast experiments and co-immunoprecipitation studies in mammalian cell lines revealed tetraspanin15 (TSPAN15) to specifically associate with ADAM10. Overexpression of TSPAN15 or RNAi-mediated knockdown of TSPAN15 led to significant changes in the maturation process and surface expression of ADAM10. Expression of an endoplasmic reticulum (ER) retention mutant of TSPAN15 demonstrated an interaction with ADAM10 already in the ER. Pulse-chase experiments confirmed that TSPAN15 accelerates the ER-exit of the ADAM10-TSPAN15 complex and stabilizes the active form of ADAM10 at the cell surface. Importantly, TSPAN15 also showed the ability to mediate the regulation of ADAM10 protease activity exemplified by an increased shedding of N-cadherin and the amyloid precursor protein. In conclusion, our data show that TSPAN15 is a central modulator of ADAM10-mediated ectodomain shedding. Therapeutic manipulation of its expression levels may be an additional approach to specifically regulate the activity of the amyloid precursor protein alpha-secretase ADAM10.
Collapse
Affiliation(s)
- Johannes Prox
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, 24098 Kiel, Germany
| | - Michael Willenbrock
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, 24098 Kiel, Germany
| | - Silvio Weber
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, 24098 Kiel, Germany
| | - Tobias Lehmann
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, 24098 Kiel, Germany
| | - Dirk Schmidt-Arras
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, 24098 Kiel, Germany
| | - Ralf Schwanbeck
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, 24098 Kiel, Germany
| | - Paul Saftig
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, 24098 Kiel, Germany
| | - Michael Schwake
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, 24098 Kiel, Germany
| |
Collapse
|
19
|
Downing C, Balderrama-Durbin C, Kimball A, Biers J, Wright H, Gilliam D, Johnson TE. Quantitative trait locus mapping for ethanol teratogenesis in BXD recombinant inbred mice. Alcohol Clin Exp Res 2012; 36:1340-54. [PMID: 22413943 DOI: 10.1111/j.1530-0277.2012.01754.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 12/13/2011] [Indexed: 11/30/2022]
Abstract
BACKGROUND Individual differences in susceptibility to the detrimental effects of prenatal ethanol (EtOH) exposure have been demonstrated. Many factors, including genetics, play a role in susceptibility and resistance. We have previously shown that C57BL/6J (B6) mice display a number of morphological malformations following an acute dose of EtOH in utero, while DBA/2J (D2) mice are relatively resistant. Here, we present the results of quantitative trait locus (QTL) mapping for EtOH teratogenesis in recombinant inbred strains derived from a cross between B6 and D2 (BXD RIs). METHODS Pregnant dams were intubated with either maltose-dextrin or 5.8 g/kg EtOH on day 9 of gestation (GD9). On GD 18, dams were sacrificed and fetuses and placentae were removed. Placentae and fetuses were weighed; fetuses were sexed and examined for gross morphological malformations. Fetuses were then either placed in Bouin's fixative for subsequent soft-tissue analyses or eviscerated and placed in EtOH for subsequent skeletal examinations. QTL mapping for maternal weight gain (MWG), prenatal mortality, fetal weight (FW) at c-section, placental weight (PW), and several morphological malformations was performed using WebQTL. RESULTS Heritability for our traits ranged from 0.06 for PW to 0.39 for MWG. We found suggestive QTLs mediating all phenotypes and significant QTLs for FW and digit and rib malformations. While most QTL regions are large, several intriguing candidate genes emerged based on polymorphisms between B6 and D2 and gene function. CONCLUSIONS In this first mapping study for EtOH teratogenesis, several QTLs were identified. Future studies will further characterize these regions. Identification of genes and epigenetic modifications mediating susceptibility to the teratogenic effects of alcohol in mice will provide targets to examine in human populations.
Collapse
Affiliation(s)
- Chris Downing
- Institute for Behavioral Genetics, University of Colorado, Boulder, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Gómez-Gaviro MV, Scott CE, Sesay AK, Matheu A, Booth S, Galichet C, Lovell-Badge R. Betacellulin promotes cell proliferation in the neural stem cell niche and stimulates neurogenesis. Proc Natl Acad Sci U S A 2012; 109:1317-22. [PMID: 22232668 PMCID: PMC3268286 DOI: 10.1073/pnas.1016199109] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neural stem cells (NSCs) reside in specialized niches in the adult mammalian brain, including the subventricular zone and the dentate gyrus, which act to control NSC behavior. Among other cell types within these niches, NSCs are found in close proximity to blood vessels. We carried out an analysis of the interaction between endothelial cells and NSCs, and show that betacellulin (BTC), a member of the EGF family and one of several signaling molecules made by the former, induces NSC proliferation and prevents spontaneous differentiation in culture. When infused into the lateral ventricle, BTC induces expansion of NSCs and neuroblasts, and promotes neurogenesis in the olfactory bulb and dentate gyrus, whereas specific blocking antibodies reduce the number of stem/progenitor cells. BTC-null mice are less able to regenerate neuroblast numbers compared with WT littermates following depletion of proliferating cells using cytosine-β-d-arabinofuranoside. BTC acts via both the EGF receptor, located on NSCs, and ErbB4, located on neuroblasts, with the latter explaining why its effects are distinct from those of EGF itself. Our results suggest that BTC could be a good candidate to aid regenerative therapies.
Collapse
Affiliation(s)
| | - Charlotte E. Scott
- Division of Stem Cell Biology and Developmental Genetics, MRC National Institute for Medical Research, London NW7 1AA, United Kingdom
| | - Abdul K. Sesay
- Division of Stem Cell Biology and Developmental Genetics, MRC National Institute for Medical Research, London NW7 1AA, United Kingdom
| | - Ander Matheu
- Division of Stem Cell Biology and Developmental Genetics, MRC National Institute for Medical Research, London NW7 1AA, United Kingdom
| | - Sarah Booth
- Division of Stem Cell Biology and Developmental Genetics, MRC National Institute for Medical Research, London NW7 1AA, United Kingdom
| | - Christophe Galichet
- Division of Stem Cell Biology and Developmental Genetics, MRC National Institute for Medical Research, London NW7 1AA, United Kingdom
| | - Robin Lovell-Badge
- Division of Stem Cell Biology and Developmental Genetics, MRC National Institute for Medical Research, London NW7 1AA, United Kingdom
| |
Collapse
|
21
|
Yan X, Lin J, Rolfs A, Luo J. Expression patterns of ADAMs in the developing chicken lens. J Mol Histol 2012; 43:121-35. [PMID: 22246534 DOI: 10.1007/s10735-011-9389-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 12/30/2011] [Indexed: 11/25/2022]
Abstract
In the present study the expression patterns of ADAM (a disintegrin and metalloprotease) genes in the chicken developing lens were analyzed. Using in situ hybridization, we found that seven members of the ADAM family including ADAM9, ADAM10, ADAM12, ADAM13, ADAM17, ADAM22, and ADAM23 are expressed in the developing embryonic lens. From embryonic incubation day (E) 2 to E3, most of the ADAMs investigated here are expressed in the lens placode and lens vesicle. From E5 to E7, all seven ADAMs, but predominantly ADAM9 and ADAM10, are throughly expressed in the central epithelium, as well as in the proliferating lens epithelium and the equatorial lens epithelium. From E9 to E14, expression of ADAM9, ADAM10, and ADAM17 decreases moderately in these regions. ADAM12 and ADAM13 are weakly expressed in the central epithelium and the lens epithelium, and are not detectable from E14 onward. ADAM22 and ADAM23 are expressed in the central epithelium, the lens epithelium and the equatorial lens epithelium at E5 and decrease gradually afterwards in the same regions. At E16, only weak ADAM9, ADAM10 and ADAM17 signals are found in the anterior lens epithelium. The changing spatiotemporal expression of the seven ADAMs suggests a regulatory role for these molecules during chicken lens development.
Collapse
Affiliation(s)
- Xin Yan
- Albrecht-Kossel-Institute for Neuroregeneration, School of Medicine University of Rostock, Gehlsheimer Strasse 20, 18147, Rostock, Germany
| | | | | | | |
Collapse
|
22
|
Yan X, Lin J, Rolfs A, Luo J. Differential expression of the ADAMs in developing chicken retina. Dev Growth Differ 2011; 53:726-39. [PMID: 21671920 DOI: 10.1111/j.1440-169x.2011.01282.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The expression patterns of the seven members of the ADAM (a disintegrin and metalloprotease) family, ADAM9, ADAM10, ADAM12, ADAM13, ADAM17, ADAM22, and ADAM23 were analyzed in the developing chicken retina by in situ hybridization and immunohistochemistry. Results show that each individual ADAM is expressed and regulated spatiotemporally in the developing retinal layers. ADAM9, ADAM10 and ADAM17 are widely expressed in the differential layers of the retina throughout the whole embryonic period, while ADAM12 and ADAM13 are mainly expressed in the ganglion cell layer at a later stage. ADAM22 and ADAM23 are restricted to the inner nuclear layer and the ganglion cell layer at a later stage. Furthermore, ADAM10 protein is co-expressed with the four members of the classic cadherins, N-cadherin, R-cadherin, cadherin-6B and cadherin-7 in distinct retinal layers. Therefore, the differential expression of the investigated ADAMs in the developing retina suggests the contribution of them to the retina development.
Collapse
Affiliation(s)
- Xin Yan
- Albrecht-Kossel-Institute for Neuroregeneration, School of Medicine University of Rostock, D-18147 Rostock, Germany
| | | | | | | |
Collapse
|
23
|
Yan X, Lin J, Markus A, Rolfs A, Luo J. Regional expression of ADAM19 during chicken embryonic development. Dev Growth Differ 2011; 53:333-46. [PMID: 21492148 DOI: 10.1111/j.1440-169x.2010.01238.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
ADAM19 (also named meltrin β) is a member of the ADAM (a disintegrin and metalloprotease) family of metalloproteases and is involved in morphogenesis and tissue formation during embryonic development. In the present study, chicken ADAM19 is cloned by reverse transcription-polymerase chain reaction and identified by sequencing. Its expression patterns in different parts of the developing chicken embryo are investigated by Western blot analysis and immunohistochemistry. Results show that ADAM19 protein is widely expressed in chicken embryos. It is detectable in the central nervous system, including the brain, spinal cord, cochlea, and retina. Furthermore, ADAM19 protein is also found in other tissues and organs such as digestive organs, the thymus, the lung bud, the dorsal aorta, the kidney, the gonad, muscles, and in the feather buds. All these data suggest that ADAM19 plays an important role in the embryonic development of chicken.
Collapse
Affiliation(s)
- Xin Yan
- Albrecht-Kossel-Institute for Neuroregeneration, School of Medicine University of Rostock, Gehlsheimer Strasse 20, D-18147 Rostock, Germany
| | | | | | | | | |
Collapse
|
24
|
Lin J, Luo J, Redies C. Differential regional expression of multiple ADAMs during feather bud formation. Dev Dyn 2011; 240:2142-52. [DOI: 10.1002/dvdy.22703] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2011] [Indexed: 01/02/2023] Open
|
25
|
Quantitative and dynamic expression profile of premature and active forms of the regional ADAM proteins during chicken brain development. Cell Mol Biol Lett 2011; 16:431-51. [PMID: 21786032 PMCID: PMC6276021 DOI: 10.2478/s11658-011-0016-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 06/09/2011] [Indexed: 01/28/2023] Open
Abstract
The ADAM (A Disintegrin and Metalloprotease) family of transmembrane proteins plays important roles in embryogenesis and tissue formation based on their multiple functional domains. In the present study, for the first time, the expression patterns of the premature and the active forms of six members of the ADAM proteins — ADAM9, ADAM10, ADAM12, ADAM17, ADAM22 and ADAM23 — in distinct parts of the developing chicken brain were investigated by quantitative Western blot analysis from embryonic incubation day (E) 10 to E20. The results show that the premature and the active forms of various ADAM proteins are spatiotemporally regulated in different parts of the brain during development, suggesting that the ADAMs play a very important role during embryonic development.
Collapse
|
26
|
Lin J, Luo J, Redies C. Molecular characterization and expression analysis of ADAM12 during chicken embryonic development. Dev Growth Differ 2011; 52:757-69. [PMID: 21158755 DOI: 10.1111/j.1440-169x.2010.01212.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
ADAM12 is a member of the disintegrin and metalloprotease (ADAM) family of molecules, which consist of multiple domains. ADAM12 is involved in different physiological and pathological processes. In the present study, full-length sequences of two chicken ADAM12 isoforms were cloned and identified by reverse transcription-polymerase chain reaction (RT-PCR), rapid amplification of cDNA ends methods and bioinformatics analysis. The long isoform consists of all domains characteristic for ADAMs and is strongly expressed in different tissues, whereas the short isoform lacks large parts of the metalloprotease and disintegrin domains and is only expressed weakly. Results from semi-quantitative RT-PCR show that the complete ADAM12 is stably expressed throughout chicken embryonic development, while the short isoform is only regionally detectable in the lung and brain. Results from in situ hybridization show that chicken ADAM12 is expressed exclusively in tissues and organs derived from the neural tube, the neural crest or the mesoderm, with a highly regulated spatiotemporal expression pattern. Our data confirm and extend studies of ADAM12 in other species, and suggest that ADAM12 may play a role in the development of several organs, including the formation of feather buds.
Collapse
Affiliation(s)
- Juntang Lin
- Institute of Anatomy I, University of Jena School of Medicine, Jena University Hospital, Teichgraben 7, D-07743 Jena, Germany
| | | | | |
Collapse
|
27
|
Ploeger A, Galis F. Evo Devo and cognitive science. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2011; 2:429-440. [PMID: 26302202 DOI: 10.1002/wcs.137] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Evo Devo (evolutionary developmental) biology forges a synthesis of evolutionary and developmental processes. Evo Devo is the result of collaborative work of evolutionary and developmental biologists after the discovery of regulatory genes that human beings share with many other animals, including fruit flies, frogs, and rats. Compared to traditional evolutionary biologists, Evo Devo biologists focus on processes underlying the generation of evolutionary novelties, rather than on how natural selection changes gene frequencies in populations and how organisms are adapted to their environment. Evo Devo biologists try to answer questions such as: How do novel structures arise? Which mechanisms facilitate or constrain evolutionary change? In this article we argue that insights from Evo Devo research can contribute to the understanding of the evolution and development of cognition, and of the origin of neurocognitive disorders. We discuss three major Evo Devo topics: modularity, evolvability, and developmental constraints. We argue that each of these topics are relevant for research in cognitive science, and we argue that interdisciplinary research is necessary in order to unravel the evolutionary and developmental mechanisms of cognitive traits and disorders. WIREs Cogni Sci 2011 2 429-440 DOI: 10.1002/wcs.137 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Annemie Ploeger
- Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
| | - Frietson Galis
- Department of Biology, Leiden University, Leiden, The Netherlands
| |
Collapse
|
28
|
Yan X, Lin J, Wang H, Markus A, Wree A, Rolfs A, Luo J. Regional expression of the ADAMs in developing chicken cochlea. Dev Dyn 2010; 239:2256-65. [PMID: 20658692 DOI: 10.1002/dvdy.22360] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The expression patterns of five members of the ADAM (a disintegrin and metalloprotease) family including ADAM9, ADAM10, ADAM17, ADAM22, and ADAM23 were analyzed in different anatomical structures of the developing chicken cochlea by in situ hybridization and immunohistochemistry. Results show that ADAM9, ADAM10, and ADAM17 are widely expressed in the sensory epithelium of the basilar papilla, by homogene cells, spindle-shaped cells, and acoustic ganglion cells, and in the tegmentum vasculosum, each with a different pattern. ADAM22 expression is restricted to spindle-shaped cells and acoustic ganglion cells, while ADAM23 is prominently expressed by hair cells and acoustic ganglion cells. Furthermore, ADAM10 protein is coexpressed with several members of the classic cadherins, including cadherin-7, N-cadherin, and R-cadherin in distinct anatomical regions of the cochlea except for acoustic ganglion cells. The expression of the ADAMs in the developing cochlea suggests a contribution of the ADAMs to the development of distinct cochlear structures.
Collapse
Affiliation(s)
- Xin Yan
- Albrecht-Kossel-Institute for Neuroregeneration, School of Medicine, University of Rostock, D-18147 Rostock, Germany
| | | | | | | | | | | | | |
Collapse
|
29
|
Lin J, Yan X, Markus A, Redies C, Rolfs A, Luo J. Expression of seven members of the ADAM family in developing chicken spinal cord. Dev Dyn 2010; 239:1246-54. [PMID: 20235233 DOI: 10.1002/dvdy.22272] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The expression patterns of seven members of the ADAM (a disintegrin and metalloprotease) family, including ADAM9, ADAM10, ADAM12, ADAM13, ADAM17, ADAM22, and ADAM23, were analyzed in the developing chicken lumbar spinal cord by in situ hybridization and immunohistochemistry. Results show that each individual ADAM is expressed and regulated spatiotemporally in the lumbar cord and its surrounding tissues. ADAM9, ADAM10, ADAM22, and ADAM23 are expressed predominantly by motoneurons in the motor column and by sensory neurons in the dorsal root ganglia, each with a different expression pattern. ADAM12 and ADAM13 are mainly expressed in the meninges around the lumbar cord and in the condensed sheets of chondroblasts around the vertebrae. ADAM17 expression is strong in the ventricular layer and limited to early stages. The differential expression of the ADAMs in the lumbar cord suggests that the ADAMs play a regulatory role in development of the spinal cord.
Collapse
Affiliation(s)
- Juntang Lin
- Institute of Anatomy I, Friedrich Schiller University Jena, Jena, Germany
| | | | | | | | | | | |
Collapse
|
30
|
Baertling F, Kokozidou M, Pufe T, Clarner T, Windoffer R, Wruck CJ, Brandenburg LO, Beyer C, Kipp M. ADAM12 is expressed by astrocytes during experimental demyelination. Brain Res 2010; 1326:1-14. [PMID: 20176000 DOI: 10.1016/j.brainres.2010.02.049] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2009] [Revised: 02/07/2010] [Accepted: 02/14/2010] [Indexed: 12/18/2022]
Abstract
A disintegrin and metalloproteinase (ADAM) 12 represents a member of a large family of similarly structured multi-domain proteins. In the central nervous system (CNS), ADAM12 has been suggested to play a role in brain development, glioblastoma cell proliferation, and in experimental autoimmune encephalomyelitis. Furthermore, ADAM12 was reported to be almost exclusively expressed by oligodendrocytes and could, therefore, be considered as suitable marker for this cell type. In the present study, we investigated ADAM12 expression in the healthy and pathologically altered murine CNS. As pathological paradigm, we used the cuprizone demyelination model in which myelin loss during multiple sclerosis is imitated. Besides APC(+) oligodendrocytes, SMI311(+) neurons and GFAP(+) astrocytes express ADAM12 in the adult mouse brain. ADAM12 expression was further analyzed in vitro. After the induction of demyelination, we observed that activated astrocytes are the main source of ADAM12 in brain regions affected by oligodendrocyte loss. Exposure of astrocytes in vitro to either lipopolysaccharides (LPS), tumor necrosis factor alpha (TNFalpha), glutamate, or hydrogen peroxide revealed a highly stimulus-specific regulation of ADAM12 expression which was not seen in microglial BV2 cells. It appears that LPS- and TNFalpha-induced ADAM12 expression is mediated via the classic NFkappaB pathway. In summary, we demonstrated that ADAM12 is not a suitable marker for oligodendrocytes. Our results further suggest that ADAM12 might be implicated in the course of distinct CNS diseases such as demyelinating disorders.
Collapse
Affiliation(s)
- Fabian Baertling
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Jorissen E, Prox J, Bernreuther C, Weber S, Schwanbeck R, Serneels L, Snellinx A, Craessaerts K, Thathiah A, Tesseur I, Bartsch U, Weskamp G, Blobel CP, Glatzel M, De Strooper B, Saftig P. The disintegrin/metalloproteinase ADAM10 is essential for the establishment of the brain cortex. J Neurosci 2010; 30:4833-44. [PMID: 20371803 PMCID: PMC2921981 DOI: 10.1523/jneurosci.5221-09.2010] [Citation(s) in RCA: 290] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 02/15/2010] [Accepted: 02/23/2010] [Indexed: 01/02/2023] Open
Abstract
The metalloproteinase and major amyloid precursor protein (APP) alpha-secretase candidate ADAM10 is responsible for the shedding of proteins important for brain development, such as cadherins, ephrins, and Notch receptors. Adam10(-/-) mice die at embryonic day 9.5, due to major defects in development of somites and vasculogenesis. To investigate the function of ADAM10 in brain, we generated Adam10 conditional knock-out (cKO) mice using a Nestin-Cre promotor, limiting ADAM10 inactivation to neural progenitor cells (NPCs) and NPC-derived neurons and glial cells. The cKO mice die perinatally with a disrupted neocortex and a severely reduced ganglionic eminence, due to precocious neuronal differentiation resulting in an early depletion of progenitor cells. Premature neuronal differentiation is associated with aberrant neuronal migration and a disorganized laminar architecture in the neocortex. Neurospheres derived from Adam10 cKO mice have a disrupted sphere organization and segregated more neurons at the expense of astrocytes. We found that Notch-1 processing was affected, leading to downregulation of several Notch-regulated genes in Adam10 cKO brains, in accordance with the central role of ADAM10 in this signaling pathway and explaining the neurogenic phenotype. Finally, we found that alpha-secretase-mediated processing of APP was largely reduced in these neurons, demonstrating that ADAM10 represents the most important APP alpha-secretase in brain. Our study reveals that ADAM10 plays a central role in the developing brain by controlling mainly Notch-dependent pathways but likely also by reducing surface shedding of other neuronal membrane proteins including APP.
Collapse
Affiliation(s)
- Ellen Jorissen
- Center for Human Genetics, Katholieke Universiteit Leuven and
- Department for Developmental and Molecular Genetics, Vlaams Instituut voor Biotechnologie (VIB), 3000 Leuven, Belgium
| | - Johannes Prox
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, D-24098 Kiel, Germany
| | - Christian Bernreuther
- Institute of Neuropathology, University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Silvio Weber
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, D-24098 Kiel, Germany
| | - Ralf Schwanbeck
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, D-24098 Kiel, Germany
| | - Lutgarde Serneels
- Center for Human Genetics, Katholieke Universiteit Leuven and
- Department for Developmental and Molecular Genetics, Vlaams Instituut voor Biotechnologie (VIB), 3000 Leuven, Belgium
| | - An Snellinx
- Center for Human Genetics, Katholieke Universiteit Leuven and
- Department for Developmental and Molecular Genetics, Vlaams Instituut voor Biotechnologie (VIB), 3000 Leuven, Belgium
| | - Katleen Craessaerts
- Center for Human Genetics, Katholieke Universiteit Leuven and
- Department for Developmental and Molecular Genetics, Vlaams Instituut voor Biotechnologie (VIB), 3000 Leuven, Belgium
| | - Amantha Thathiah
- Center for Human Genetics, Katholieke Universiteit Leuven and
- Department for Developmental and Molecular Genetics, Vlaams Instituut voor Biotechnologie (VIB), 3000 Leuven, Belgium
| | - Ina Tesseur
- Center for Human Genetics, Katholieke Universiteit Leuven and
- Department for Developmental and Molecular Genetics, Vlaams Instituut voor Biotechnologie (VIB), 3000 Leuven, Belgium
| | - Udo Bartsch
- Department of Ophthalmology, University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany, and
| | - Gisela Weskamp
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, and Departments of Medicine and of Physiology, Systems Biology and Biophysics, Weill Medical College of Cornell University, New York, New York 10021
| | - Carl P. Blobel
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, and Departments of Medicine and of Physiology, Systems Biology and Biophysics, Weill Medical College of Cornell University, New York, New York 10021
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Bart De Strooper
- Center for Human Genetics, Katholieke Universiteit Leuven and
- Department for Developmental and Molecular Genetics, Vlaams Instituut voor Biotechnologie (VIB), 3000 Leuven, Belgium
| | - Paul Saftig
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, D-24098 Kiel, Germany
| |
Collapse
|
32
|
Farkas N, Lendeckel U, Dobrowolny H, Funke S, Steiner J, Keilhoff G, Schmitt A, Bogerts B, Bernstein HG. Reduced density of ADAM 12-immunoreactive oligodendrocytes in the anterior cingulate white matter of patients with schizophrenia. World J Biol Psychiatry 2010; 11:556-66. [PMID: 20218926 DOI: 10.3109/15622970903497936] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Abnormalities of brain white matter and oligodendroglia are replicated findings in schizophrenia research. The largely oligodendroglia-associated enzyme ADAM (A disintegrin and metalloprotease) 12 might be involved in the patho-physiology of schizophrenia, because the gene coding for human ADAM12 is located on chromosome 10q26.3, a gene locus which has been linked to schizophrenia, and some of its putative substrates are altered in schizophrenia. METHODS We studied the numerical density of ADAM12 expressing oligodendrocytes in post-mortem prefrontal brains of patients with haloperidol treated, chronic schizophrenia and matched controls. RESULTS A significantly reduced numerical density of ADAM12 immunoreactive oligodendrocytes was found in the white matter of the anterior cingulate cortex of schizophrenic patients. CONCLUSIONS Although the pathophysiological implications of this finding are currently unknown, it is well conveyable that reduced ADAM12 protein contributes to a deviant metabolism of some of its substrates. These substrates are either parts of important signalling cascades (EGF, betacellulin, TGF-beta) or chemical components of myelin (neurofascin-ankyrin) known to be compromised in schizophrenia.
Collapse
Affiliation(s)
- Nadine Farkas
- Department of Psychiatry, University of Magdeburg, Leipziger Strasse 44, Magdeburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|