1
|
Dehshiri M, Rezaei S, Hosseinkhani S. A novel multi-functional chimeric peptide for enhanced safe gene delivery in immunotherapy. Gene Ther 2025:10.1038/s41434-025-00538-5. [PMID: 40307468 DOI: 10.1038/s41434-025-00538-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 03/03/2025] [Accepted: 04/22/2025] [Indexed: 05/02/2025]
Abstract
Chimeric peptides hold promising potential to be introduced as an ideal gene delivery platform based on their advantages over viral carriers, including but not limited to the safety profile and specific targeting. However, their gene transfer efficiency needs improvement. Here, we designed a new multi-functional chimeric peptide for enhanced gene delivery by adding a cyclic TAT motif to a previously designed MPG2H peptide to enable the targeting of cells with independent/dependent endocytosis cell entry mechanisms. CTATMPG2H was expressed and purified using affinity chromatography; then it was characterized through a gel retardation assay, circular dichroism (CD) spectropolarimetry, transmission electron microscopy (TEM) dynamic light scattering (DLS), and zeta potential analysis. CTATMPG2H was compared with MiRGD as a chimeric peptide control in all steps. After assessing the platform stability in various conditions, its gene transfer efficiency was evaluated in the HEK293T cell line with reporter genes. Additionally, mouse bone marrow-derived dendritic cells (BMDCs) were transfected to test CTATMPG2H potential in immunotherapy. The results illustrated a safe gene transfer profile for CTATMPG2H comparable to MiRGD and Polyethyleneimine (PEI). Flow cytometry results showed up to 48% gene transfer rate for CTATMPG2H to dendritic cells with minimal toxicity (viability rate ~80%). Moreover, the in silico investigation showed that the synergistic effects of electrostatic, hydrogen, and hydrophobic interactions enhance the stability and binding affinity of peptide-pDNA complexes, ensuring robust and specific targeting of nucleic acids. This research sets a foundation for future in vivo studies and potential clinical applications, aiming for safer and more effective gene therapy strategies.
Collapse
Affiliation(s)
- Mahdiyar Dehshiri
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Shokouh Rezaei
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
2
|
Liu Q, Xie L, Chen W. Recombinant Porcine FGF1 Promotes Muscle Stem Cell Proliferation and Mitochondrial Function for Cultured Meat Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2008-2018. [PMID: 39772551 DOI: 10.1021/acs.jafc.4c09215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Cultured meat is an emerging technology with the potential to meet future protein demands while addressing the challenges associated with traditional livestock farming. The production of cultured meat requires efficient, animal component-free in vitro systems for muscle stem cell (MuSC) expansion. Fibroblast growth factor 1 (FGF1) is a critical growth factor that regulates the MuSC function. In this study, we established an efficient method for the soluble expression and purification of recombinant porcine FGF1 (rpFGF1) in Escherichia coli, achieving a yield of 48 mg of purified protein per liter of culture. Treatment with rpFGF1 significantly enhanced the proliferation of porcine MuSC under serum-free conditions. Furthermore, rpFGF1 induced mitochondrial fission and mitophagy by activating the ERK-dependent phosphorylation of DRP1 at Ser616, resulting in improved mitochondrial function and proliferation capacity in porcine MuSC. These findings highlight the potential of rpFGF1 in the development of serum-free media for scalable and sustainable cultured meat production.
Collapse
Affiliation(s)
- Qingying Liu
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Lianghua Xie
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Wei Chen
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
3
|
He X, Fan K, Gong H, Huang M, Zeng Q, Huang J, Peng X, Lai P, Lu Y, Wang H. Mechanism study of cross presentation of exogenous antigen induced by cholera toxin-like chimeric protein. Vaccine 2024; 42:1549-1560. [PMID: 38320931 DOI: 10.1016/j.vaccine.2024.01.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 12/09/2023] [Accepted: 01/23/2024] [Indexed: 02/08/2024]
Abstract
Tumor subunit vaccines have great potential in personalized cancer immunotherapy. They are usually administered with adjuvant owing to their low immunogenicity. Cholera toxin (CT) is a biological adjuvant with diverse biological functions and a long history of use. Our earlier study revealed that a CT-like chimeric protein co-delivered with murine granulocyte-macrophage colony stimulating factor (mGM-CSF) and prostate cancer antigen epitope could co-stimulate dendritic cells (DCs) and enhance cross presentation of tumor epitope. To further study the molecular mechanism of CT-like chimeric protein in cross presentation, major histocompatibility complex class I (MHC I)-restricted epitope 257-264 of ovalbumin (OVAT) was used as a model antigen peptide in this study. Recombinant A subunit and pentameric B subunit of CT protein were respectively genetically constructed and purified. Then both assembled into AB5 chimeric protein in vitro. Three different chimeric biomacromolecules containing mGM-CSF and OVAT were constructed according to the different fusion sites and whether the endoplasmic reticulum (ER) retention sequence was included. It was found that A2 domain and B subunit of CT were both available for loading epitopes and retaining GM1 affinity. The binding activity of GM1 was positively correlated with antigen endocytosis. Once internalized, DCs became mature and cross-presented antigen. KDEL helped the whole molecule to be retained in the ER, and this improved the cross presentation of antigen on MHC I molecules. In conclusion, hexameric CT-like chimeric protein with dual effects of GM1 affinity and ER retention sequence were potential in improvement of cross presentation. The results laid a foundation for designing personalized tumor vaccine based on CT-like chimeric protein molecular structure.
Collapse
Affiliation(s)
- Xianying He
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, CN, China
| | - Kaixiang Fan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, CN, China
| | - Haiyan Gong
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, CN, China
| | - Mingqin Huang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, CN, China
| | - Qingsong Zeng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, CN, China
| | - Junjie Huang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, CN, China
| | - Ximing Peng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, CN, China
| | - Peifang Lai
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, CN, China
| | - Yujing Lu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, CN, China
| | - Huaqian Wang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, CN, China.
| |
Collapse
|
4
|
Kiesewetter A, Gupta A, Heinen-Kreuzig A, Greenhalgh T, Stein A. Improved endotoxin removal using ecofriendly detergents for intensified plasmid capture. Biotechnol Prog 2023; 39:e3375. [PMID: 37531318 DOI: 10.1002/btpr.3375] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/03/2023] [Accepted: 06/27/2023] [Indexed: 08/04/2023]
Abstract
Increasing plasmid demand for both production of viral and gene therapies as well as nucleic acid based vaccines has highlighted bottlenecks in production. One bottleneck is traditional bead-based chromatography as a capture step. To meet the needs of fast-growing markets, new production solutions are needed. These solutions must enable efficient capture of a diverse range of plasmid types and excellent clearance of bacterial host impurities, such as endotoxin. Enhanced endotoxin clearance during chromatographic purification has previously been demonstrated with detergents such as Triton™ X-100. However, degradation products of Triton™ X-100 are known to have a negative environmental impact, and more sustainable, environmentally benign alternatives have been identified. This work establishes an efficient, intensified plasmid capture using convective anion exchange (AEX) chromatography. The feasibility of the intensified capture approach was assessed with different membrane and a monolith AEX supports. Various detergents from different physico-chemical classes were evaluated with different AEX technologies. Purification efficiency evaluated endotoxin and host cell protein (HCP) clearance, plasmid yield, potential interference of the detergents with analytical in-process control assays, and overall process compatibility. This comprehensive screening approach provides valuable insights to intensified plasmid production.
Collapse
Affiliation(s)
- André Kiesewetter
- MilliporeSigma, The Life Science Business of Merck KGaA, Darmstadt, Germany
| | - Akshat Gupta
- MilliporeSigma, The Life Science Business of Merck KGaA, Darmstadt, Germany
| | | | - Trish Greenhalgh
- MilliporeSigma, The Life Science Business of Merck KGaA, Darmstadt, Germany
| | - Andreas Stein
- MilliporeSigma, The Life Science Business of Merck KGaA, Darmstadt, Germany
| |
Collapse
|
5
|
Zenin V, Tsedilin A, Yurkova M, Siniavin A, Fedorov A. Thermostable chaperone-based polypeptide biosynthesis: Enfuvirtide model product quality and protocol-related impurities. PLoS One 2023; 18:e0286752. [PMID: 37289764 PMCID: PMC10249821 DOI: 10.1371/journal.pone.0286752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 05/23/2023] [Indexed: 06/10/2023] Open
Abstract
Large peptide biosynthesis is a valuable alternative to conventional chemical synthesis. Enfuvirtide, the largest therapeutic peptide used in HIV infection treatment, was synthesized in our thermostable chaperone-based peptide biosynthesis system and evaluated for peptide quality as well as the profile of process-related impurities. Host cell proteins (HCPs) and BrCN cleavage-modified peptides were evaluated by LC-MS in intermediate. Cleavage modifications during the reaction were assessed after LC-MS maps were aligned by simple in-house algorithm and formylation/oxidation levels were estimated. Circular dichroism spectra of the obtained enfuvirtide were compared to the those of the chemically- synthesized standard product. Final-product endotoxin and HCPs content were assessed resulting 1.06 EU/mg and 5.58 ppm respectively. Peptide therapeutic activity was measured using the MT-4 cells HIV infection-inhibition model. The biosynthetic peptide IC50 was 0.0453 μM while the standard one had 0.0180 μM. Non-acylated C-terminus was proposed as a cause of IC50 and CD spectra difference. Otherwise, the peptide has met all the requirements of the original chemically synthesized enfuvirtide in the cell-culture and in vivo experiments.
Collapse
Affiliation(s)
- Vladimir Zenin
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Andrey Tsedilin
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Maria Yurkova
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Andrey Siniavin
- Ivanovsky Institute of Virology, N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russian Federation
| | - Alexey Fedorov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
6
|
Liu PP, Wei Z, Cheng ZH, Wang XW. Small immune effectors coordinate peptidoglycan-derived immunity to regulate intestinal bacteria in shrimp. PLoS Pathog 2022; 18:e1010967. [PMID: 36417479 PMCID: PMC9683584 DOI: 10.1371/journal.ppat.1010967] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/31/2022] [Indexed: 11/25/2022] Open
Abstract
Small antibacterial effectors, including lysozymes, lectins, and antimicrobial peptides, are key regulators of intestinal immunity. However, whether there is coordination among them during regulation is an interesting, but largely unknown, issue. In the present study, we revealed that small effectors synergistically regulate peptidoglycan-derived intestinal immunity in the kuruma shrimp, Marsupenaeus japonicus. A C-type lysozyme (LysC) was screened as a responsive factor for the intestine-bacteria interaction. LysC functions to restrict intestinal bacteria, mainly by cleaving Photobacterium damselae peptidoglycan to generate muropeptides which are powerful stimulators that induce anti-lipopolysaccharides factor B1 (AlfB1), an effective bactericidal peptide. The muropeptides also induce a C-type lectin (Ctl24), which recognizes peptidoglycan and coats bacteria. By counteracting LysC-mediated muropeptide release and AlfB1's bactericidal activity, Ctl24 prevents the continuous elimination of intestinal bacteria. Therefore, this study demonstrates a mechanism by which small immune effectors coordinate to achieve intestinal homeostasis, and provides new insights into peptidoglycan-derived intestinal immunity in invertebrates.
Collapse
Affiliation(s)
- Ping-Ping Liu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Zhe Wei
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Zi-Hua Cheng
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Xian-Wei Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
- * E-mail:
| |
Collapse
|
7
|
Venkatesan M, Semper C, Skrivergaard S, Di Leo R, Mesa N, Rasmussen MK, Young JF, Therkildsen M, Stogios PJ, Savchenko A. Recombinant production of growth factors for application in cell culture. iScience 2022; 25:105054. [PMID: 36157583 PMCID: PMC9489951 DOI: 10.1016/j.isci.2022.105054] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/07/2022] [Accepted: 08/26/2022] [Indexed: 11/04/2022] Open
Abstract
Culturing eukaryotic cells has widespread applications in research and industry, including the emerging field of cell-cultured meat production colloquially referred to as “cellular agriculture”. These applications are often restricted by the high cost of growth medium necessary for cell growth. Mitogenic protein growth factors (GFs) are essential components of growth medium and account for upwards of 90% of the total costs. Here, we present a set of expression constructs and a simplified protocol for recombinant production of functionally active GFs, including FGF2, IGF1, PDGF-BB, and TGF-β1 in Escherichia coli. Using this E. coli expression system, we produced soluble GF orthologs from species including bovine, chicken, and salmon. Bioactivity analysis revealed orthologs with improved performance compared to commercially available alternatives. We estimated that the production cost of GFs using our methodology will significantly reduce the cost of cell culture medium, facilitating low-cost protocols tailored for cultured meat production and tissue engineering. Developed methodology for low-cost production of soluble, bioactive GFs Purified GFs were active on NIH-3T3 and bovine satellite cells Some GF orthologs outperformed commercially sourced GFs Production of GFs using these methods can foster significant cost savings
Collapse
Affiliation(s)
- Meenakshi Venkatesan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E8, Canada
| | - Cameron Semper
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB T2N 4N1, Canada
| | | | - Rosa Di Leo
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E8, Canada
| | - Nathalie Mesa
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E8, Canada
| | | | | | | | - Peter J Stogios
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E8, Canada
| | - Alexei Savchenko
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E8, Canada.,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
8
|
Hong PP, Li C, Niu GJ, Zhao XF, Wang JX. White spot syndrome virus directly activates mTORC1 signaling to facilitate its replication via polymeric immunoglobulin receptor-mediated infection in shrimp. PLoS Pathog 2022; 18:e1010808. [PMID: 36067252 PMCID: PMC9481175 DOI: 10.1371/journal.ppat.1010808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 09/16/2022] [Accepted: 08/11/2022] [Indexed: 11/19/2022] Open
Abstract
Previous studies have shown that the mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway has antiviral functions or is beneficial for viral replication, however, the detail mechanisms by which mTORC1 enhances viral infection remain unclear. Here, we found that proliferation of white spot syndrome virus (WSSV) was decreased after knockdown of mTor (mechanistic target of rapamycin) or injection inhibitor of mTORC1, rapamycin, in Marsupenaeus japonicus, which suggests that mTORC1 is utilized by WSSV for its replication in shrimp. Mechanistically, WSSV infects shrimp by binding to its receptor, polymeric immunoglobulin receptor (pIgR), and induces the interaction of its intracellular domain with Calmodulin. Calmodulin then promotes the activation of protein kinase B (AKT) by interaction with the pleckstrin homology (PH) domain of AKT. Activated AKT phosphorylates mTOR and results in the activation of the mTORC1 signaling pathway to promote its downstream effectors, ribosomal protein S6 kinase (S6Ks), for viral protein translation. Moreover, mTORC1 also phosphorylates eukaryotic translation initiation factor 4E-binding protein 1 (4EBP1), which will result in the separation of 4EBP1 from eukaryotic translation initiation factor 4E (eIF4E) for the translation of viral proteins in shrimp. Our data revealed a novel pathway for WSSV proliferation in shrimp and indicated that mTORC1 may represent a potential clinical target for WSSV control in shrimp aquaculture. White spot syndrome virus (WSSV) is the causative pathogen of white spot disease (WSD) and represents the most destructive viral disease of shrimp. The virus has evolved various strategies to escape from host defenses or exploit host biological pathways for its reproduction. Studies on viral immune-escape mechanisms can provide new strategies for disease prevention and control in shrimp aquaculture. Mechanistic target of rapamycin (mTOR) plays a central role in the regulation of cell growth and metabolism, which nucleates two distinct protein complexes, mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2) with diverse functions at different levels of the signaling pathway. mTORC1 is reported to be exploited by viruses in their reproduction. However, the detail mechanism remains unclear. In this study, we identified a new mechanism of mTOR being hijacked by WSSV in shrimp (Marsupenaeus japonicus). WSSV infects shrimp by its receptor, pIgR and induces the interaction of the intracellular domain of pIgR with Calmodulin. Calmodulin subsequently promotes the activation of AKT by interaction with the pleckstrin homology domain of the kinase. Activated AKT phosphorylates mTOR and results in the activation of the mTORC1 signaling pathway to promote its downstream effectors, S6Ks, for viral protein synthesis. Moreover, mTORC1 also phosphorylates 4EBP1, which results in the separation of 4EBP1 from eIF4E for the translation of viral proteins in shrimp. Our study reveals a novel strategy for WSSV proliferation in shrimp and indicates that the components of mTORC1 may represent potential clinical targets for WSSV control in shrimp aquaculture.
Collapse
Affiliation(s)
- Pan-Pan Hong
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Cang Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Guo-Juan Niu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
- * E-mail:
| |
Collapse
|
9
|
Hsu JCK, Huang HT, Lin HJ, Chou HY, Huang PY, Prachumwat A, Chen LL. Applying Modified VP53A Recombinant Protein as an Anti-White Spot Syndrome Virus Biological Agent in Litopenaeus vannamei Farming. Viruses 2022; 14:v14071353. [PMID: 35891334 PMCID: PMC9324474 DOI: 10.3390/v14071353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 02/01/2023] Open
Abstract
Shrimp farming is an important economic activity. However, due to the spread of pathogens, shrimp aquaculture is becoming increasingly difficult. Many studies have confirmed that white spot syndrome virus (WSSV) recombinant proteins can inhibit viral infection. Among them, VP53 recombinant protein has been found to reduce mortality upon WSSV challenge. This study was conducted in Kaohsiung, Taiwan and reports the first field feeding trial to demonstrate that WSSV recombinant proteins can improve shrimp survival rates at a farming scale. Prior to the feeding trial, the shrimp were confirmed to be slightly infected with WSSV, Vibrio parahaemolyticus strains causing acute hepatopancreatic necrosis disease (AHPND), non-AHPND V. parahaemolyticus strains, and Enterocytozoon hepatopenaei (EHP), which are common pathogens that shrimp farmers often face. The shrimp were then divided into two groups: a control group (C group) fed with a commercial diet and a protein group (P group) fed with the same commercial feed with VP53 recombinant protein. Our findings indicated that the survival rate and expression of immune genes of the P group were higher than those of the C group. The intestinal microbiota of the two groups were also analysed. Collectively, our results confirmed that the recombinant WSSV envelope protein derivative can be used as an effective anti-virus biological agent in shrimp farms.
Collapse
Affiliation(s)
- Jeff Chia-Kai Hsu
- Institute of Marine Biology, National Taiwan Ocean University, Keelung 20224, Taiwan;
- Innocreate Bioscience Co., Ltd., Zhonghe District, New Taipei City 23557, Taiwan
| | - Huai-Ting Huang
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan; (H.-T.H.); (H.-Y.C.)
| | - Han-Jia Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan;
| | - Hsin-Yiu Chou
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan; (H.-T.H.); (H.-Y.C.)
| | - Po-Yu Huang
- Department of Life Science, National Taitung University, Taitung 95092, Taiwan;
| | - Anuphap Prachumwat
- Aquatic Animal Health Research Team, Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Correspondence: (A.P.); (L.-L.C.)
| | - Li-Li Chen
- Institute of Marine Biology, National Taiwan Ocean University, Keelung 20224, Taiwan;
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan
- Correspondence: (A.P.); (L.-L.C.)
| |
Collapse
|
10
|
Shen X, Lin Q, Liang Z, Wang J, Yang X, Liang Y, Liang H, Pan H, Yang J, Zhu Y, Li M, Xiang W, Zhu H. Reduction of Pre-Existing Adaptive Immune Responses Against SaCas9 in Humans Using Epitope Mapping and Identification. CRISPR J 2022; 5:445-456. [PMID: 35686980 DOI: 10.1089/crispr.2021.0142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The CRISPR-Cas9 system is increasingly being used as a gene editing therapeutic technique in complex diseases but concerns remain regarding the clinical risks of Cas9 immunogenicity. In this study, we detected antibodies against Staphylococcus aureus Cas9 (SaCas9) and anti-SaCas9 T cells in 4.8% and 70% of Chinese donors, respectively. We predicted 135 SaCas9-derived B cell epitopes and 50 SaCas9-derived CD8+ T cell epitopes for HLA-A*24:02, HLA-A*11:01, and HLA-A*02:01. We identified R338 as an immunodominant SaCas9 B cell epitope and SaCas9_200-208 as an immunodominant CD8+ T cell epitope for the three human leukocyte antigen allotypes through immunological assays using sera positive for SaCas9-specific antibodies and peripheral blood mononuclear cells positive for SaCas9-reactive T cells, respectively. We also demonstrated that an SaCas9 variant bearing an R338G substitution reduces B cell immunogenicity and retains its gene-editing function. Our study highlights the immunological risks of the CRISPR-Cas9 system and provides a solution to mitigate pre-existing adaptive immune responses against Cas9 in humans.
Collapse
Affiliation(s)
- Xiaoting Shen
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Qinru Lin
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhiming Liang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Jing Wang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Xinyi Yang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Yue Liang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Huitong Liang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Hanyu Pan
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Jinlong Yang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Yuqi Zhu
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Min Li
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Weirong Xiang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Huanzhang Zhu
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Skokowa J, Hernandez Alvarez B, Coles M, Ritter M, Nasri M, Haaf J, Aghaallaei N, Xu Y, Mir P, Krahl AC, Rogers KW, Maksymenko K, Bajoghli B, Welte K, Lupas AN, Müller P, ElGamacy M. A topological refactoring design strategy yields highly stable granulopoietic proteins. Nat Commun 2022; 13:2948. [PMID: 35618709 PMCID: PMC9135769 DOI: 10.1038/s41467-022-30157-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 04/19/2022] [Indexed: 11/09/2022] Open
Abstract
Protein therapeutics frequently face major challenges, including complicated production, instability, poor solubility, and aggregation. De novo protein design can readily address these challenges. Here, we demonstrate the utility of a topological refactoring strategy to design novel granulopoietic proteins starting from the granulocyte-colony stimulating factor (G-CSF) structure. We change a protein fold by rearranging the sequence and optimising it towards the new fold. Testing four designs, we obtain two that possess nanomolar activity, the most active of which is highly thermostable and protease-resistant, and matches its designed structure to atomic accuracy. While the designs possess starkly different sequence and structure from the native G-CSF, they show specific activity in differentiating primary human haematopoietic stem cells into mature neutrophils. The designs also show significant and specific activity in vivo. Our topological refactoring approach is largely independent of sequence or structural context, and is therefore applicable to a wide range of protein targets. Skokowa et al. reconstruct the fold of a granulopoietic cytokine, resulting in de novo, hyperstable, highly active proteins with therapeutic potential for treating several neutropenia disorders.
Collapse
Affiliation(s)
- Julia Skokowa
- Division of Translational Oncology, Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, 72076, Tübingen, Germany.
| | | | - Murray Coles
- Max Planck Institute for Biology, 72076, Tübingen, Germany
| | - Malte Ritter
- Division of Translational Oncology, Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, 72076, Tübingen, Germany
| | - Masoud Nasri
- Division of Translational Oncology, Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, 72076, Tübingen, Germany
| | - Jérémy Haaf
- Division of Translational Oncology, Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, 72076, Tübingen, Germany
| | - Narges Aghaallaei
- Division of Translational Oncology, Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, 72076, Tübingen, Germany
| | - Yun Xu
- Division of Translational Oncology, Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, 72076, Tübingen, Germany
| | - Perihan Mir
- Division of Translational Oncology, Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, 72076, Tübingen, Germany
| | - Ann-Christin Krahl
- Division of Translational Oncology, Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, 72076, Tübingen, Germany
| | - Katherine W Rogers
- Friedrich Miescher Laboratory of the Max Planck Society, 72076, Tübingen, Germany.,Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kateryna Maksymenko
- Max Planck Institute for Biology, 72076, Tübingen, Germany.,Friedrich Miescher Laboratory of the Max Planck Society, 72076, Tübingen, Germany
| | - Baubak Bajoghli
- Division of Translational Oncology, Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, 72076, Tübingen, Germany
| | - Karl Welte
- Division of Translational Oncology, Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, 72076, Tübingen, Germany
| | - Andrei N Lupas
- Max Planck Institute for Biology, 72076, Tübingen, Germany
| | - Patrick Müller
- Friedrich Miescher Laboratory of the Max Planck Society, 72076, Tübingen, Germany.,Department of Biology, University of Konstanz, 78464, Konstanz, Germany
| | - Mohammad ElGamacy
- Division of Translational Oncology, Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, 72076, Tübingen, Germany. .,Friedrich Miescher Laboratory of the Max Planck Society, 72076, Tübingen, Germany. .,Heliopolis Biotechnology Ltd, Cambridge, CB24 9RX, UK. .,Max Planck Institute for Biology, 72076, Tübingen, Germany.
| |
Collapse
|
12
|
Santos-Junior MN, Neves WS, Santos RS, Almeida PP, Fernandes JM, Guimarães BCDB, Barbosa MS, da Silva LSC, Gomes CP, Sampaio BA, Rezende IDS, Correia TML, Neres NSDM, Campos GB, Bastos BL, Timenetsky J, Marques LM. Heterologous Expression, Purification, and Immunomodulatory Effects of Recombinant Lipoprotein GUDIV-103 Isolated from Ureaplasma diversum. Microorganisms 2022; 10:microorganisms10051032. [PMID: 35630474 PMCID: PMC9147684 DOI: 10.3390/microorganisms10051032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 02/06/2023] Open
Abstract
Ureaplasma diversum is a bacterial pathogen that infects cattle and can cause severe inflammation of the genital and reproductive systems. Lipid-associated membrane proteins (LAMPs), including GUDIV-103, are the main virulence factors in this bacterium. In this study, we heterologously expressed recombinant GUDIV-103 (rGUDIV-103) in Escherichia coli, purified it, and evaluated its immunological reactivity and immunomodulatory effects in bovine peripheral blood mononuclear cells (PBMCs). Samples from rabbits inoculated with purified rGUDIV-103 were analysed using indirect enzyme-linked immunosorbent assay and dot blotting to confirm polyclonal antibody production and assess kinetics, respectively. The expression of this lipoprotein in field isolates was confirmed via Western blotting with anti-rGUDIV-103 serum and hydrophobic or hydrophilic proteins from 42 U. diversum strains. Moreover, the antibodies produced against the U. diversum ATCC 49783 strain recognised rGUDIV-103. The mitogenic potential of rGUDIV-103 was evaluated using a lymphoproliferation assay in 5(6)-carboxyfluorescein diacetate succinimidyl ester−labelled bovine PBMCs, where it induced lymphocyte proliferation. Quantitative polymerase chain reaction analysis revealed that the expression of interleukin-1β, toll-like receptor (TLR)-α, TLR2, TLR4, inducible nitric oxide synthase, and caspase-3−encoding genes increased more in rGUDIV-103−treated PBMCs than in untreated cells (p < 0.05). Treating PBMCs with rGUDIV-103 increased nitric oxide and hydrogen peroxide levels. The antigenic and immunogenic properties of rGUDIV-103 suggested its suitability for immunobiological application.
Collapse
Affiliation(s)
- Manoel Neres Santos-Junior
- Department of Biointeraction, Multidisciplinary Institute of Health, Federal University of Bahia, Vitória da Conquista 40170-110, Brazil; (M.N.S.-J.); (W.S.N.); (R.S.S.); (J.M.F.); (T.M.L.C.); (N.S.d.M.N.)
- Department of Biology, and Biotechnology of Microorganisms, State University of Santa Cruz (UESC), Ilhéus 45662-900, Brazil; (B.C.d.B.G.); (L.S.C.d.S.); (C.P.G.); (B.A.S.); (G.B.C.); (B.L.B.)
| | - Wanderson Souza Neves
- Department of Biointeraction, Multidisciplinary Institute of Health, Federal University of Bahia, Vitória da Conquista 40170-110, Brazil; (M.N.S.-J.); (W.S.N.); (R.S.S.); (J.M.F.); (T.M.L.C.); (N.S.d.M.N.)
| | - Ronaldo Silva Santos
- Department of Biointeraction, Multidisciplinary Institute of Health, Federal University of Bahia, Vitória da Conquista 40170-110, Brazil; (M.N.S.-J.); (W.S.N.); (R.S.S.); (J.M.F.); (T.M.L.C.); (N.S.d.M.N.)
| | - Palloma Porto Almeida
- Bioinformatics and Computational Biology Lab, Division of Experimental and Translational Research, Brazilian National Cancer Institute (INCA), Rio de Janeiro 20231-050, Brazil;
| | - Janaina Marinho Fernandes
- Department of Biointeraction, Multidisciplinary Institute of Health, Federal University of Bahia, Vitória da Conquista 40170-110, Brazil; (M.N.S.-J.); (W.S.N.); (R.S.S.); (J.M.F.); (T.M.L.C.); (N.S.d.M.N.)
| | - Bruna Carolina de Brito Guimarães
- Department of Biology, and Biotechnology of Microorganisms, State University of Santa Cruz (UESC), Ilhéus 45662-900, Brazil; (B.C.d.B.G.); (L.S.C.d.S.); (C.P.G.); (B.A.S.); (G.B.C.); (B.L.B.)
| | - Maysa Santos Barbosa
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, Brazil; (M.S.B.); (I.d.S.R.); (J.T.)
| | - Lucas Santana Coelho da Silva
- Department of Biology, and Biotechnology of Microorganisms, State University of Santa Cruz (UESC), Ilhéus 45662-900, Brazil; (B.C.d.B.G.); (L.S.C.d.S.); (C.P.G.); (B.A.S.); (G.B.C.); (B.L.B.)
| | - Camila Pacheco Gomes
- Department of Biology, and Biotechnology of Microorganisms, State University of Santa Cruz (UESC), Ilhéus 45662-900, Brazil; (B.C.d.B.G.); (L.S.C.d.S.); (C.P.G.); (B.A.S.); (G.B.C.); (B.L.B.)
| | - Beatriz Almeida Sampaio
- Department of Biology, and Biotechnology of Microorganisms, State University of Santa Cruz (UESC), Ilhéus 45662-900, Brazil; (B.C.d.B.G.); (L.S.C.d.S.); (C.P.G.); (B.A.S.); (G.B.C.); (B.L.B.)
| | - Izadora de Souza Rezende
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, Brazil; (M.S.B.); (I.d.S.R.); (J.T.)
| | - Thiago Macedo Lopes Correia
- Department of Biointeraction, Multidisciplinary Institute of Health, Federal University of Bahia, Vitória da Conquista 40170-110, Brazil; (M.N.S.-J.); (W.S.N.); (R.S.S.); (J.M.F.); (T.M.L.C.); (N.S.d.M.N.)
| | - Nayara Silva de Macedo Neres
- Department of Biointeraction, Multidisciplinary Institute of Health, Federal University of Bahia, Vitória da Conquista 40170-110, Brazil; (M.N.S.-J.); (W.S.N.); (R.S.S.); (J.M.F.); (T.M.L.C.); (N.S.d.M.N.)
| | - Guilherme Barreto Campos
- Department of Biology, and Biotechnology of Microorganisms, State University of Santa Cruz (UESC), Ilhéus 45662-900, Brazil; (B.C.d.B.G.); (L.S.C.d.S.); (C.P.G.); (B.A.S.); (G.B.C.); (B.L.B.)
| | - Bruno Lopes Bastos
- Department of Biology, and Biotechnology of Microorganisms, State University of Santa Cruz (UESC), Ilhéus 45662-900, Brazil; (B.C.d.B.G.); (L.S.C.d.S.); (C.P.G.); (B.A.S.); (G.B.C.); (B.L.B.)
| | - Jorge Timenetsky
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, Brazil; (M.S.B.); (I.d.S.R.); (J.T.)
| | - Lucas Miranda Marques
- Department of Biointeraction, Multidisciplinary Institute of Health, Federal University of Bahia, Vitória da Conquista 40170-110, Brazil; (M.N.S.-J.); (W.S.N.); (R.S.S.); (J.M.F.); (T.M.L.C.); (N.S.d.M.N.)
- Department of Biology, and Biotechnology of Microorganisms, State University of Santa Cruz (UESC), Ilhéus 45662-900, Brazil; (B.C.d.B.G.); (L.S.C.d.S.); (C.P.G.); (B.A.S.); (G.B.C.); (B.L.B.)
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, Brazil; (M.S.B.); (I.d.S.R.); (J.T.)
- Correspondence:
| |
Collapse
|
13
|
Zhou K, Qin Y, Song Y, Zhao K, Pan W, Nan X, Wang Y, Wang Q, Li W. A Novel Ig Domain-Containing C-Type Lectin Triggers the Intestine-Hemocyte Axis to Regulate Antibacterial Immunity in Crab. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2343-2362. [PMID: 35508356 DOI: 10.4049/jimmunol.2101027] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/06/2022] [Indexed: 12/22/2022]
Abstract
The C-type lectin family with the signature C-type lectin-like domain promotes antibacterial host defense within the animal kingdom. We examined the role of Chinese mitten crab, Eriocheir sinensis (H. Milne-Edwards) (Decapoda: Grapsidae) Ig domain-containing C-type lectin (EsIgLectin), a novel and poorly understood member of the C-type lectin family. EsIgLectin was expressed primarily by both hemocytes (E sinensis) and intestines, with significantly induced mRNA expression on intestinal or hemolymph bacterial infections. As a soluble protein, both its C-type lectin-like domain and the Ig domain were required for bacterial binding, bacterial agglutination, bacterial growth inhibition, and in vivo bacterial clearance. Polymeric EsIgLectin could be constructed via the disulfide bond in the Ig domain, significantly enhancing EsIgLectin antibacterial activity. EsIgLectin promoted bacterial phagocytosis in an Ig domain-dependent manner in hemocytes, while it controlled microbial homeostasis and protected against bacteria-induced inflammation in the intestine. Protein interaction studies revealed that the EsIgLectin Ig domain bound to the first Ig domain of the polymeric Ig receptor, which was essential for EsIgLectin-induced bacterial phagocytosis. The temporal sequence of cell interactions during intestinal inflammation is only beginning to be understood. In this article, we show that hemocyte-derived EsIgLectin entered the intestinal wall at the later phase of intestinal inflammation. Moreover, EsIgLectin protected the host against intestinal and hemolymph infections in a polymeric Ig receptor-dependent manner. Therefore, the EsIgLectin promoted bacterial clearance and protected against inflammatory disease through an independent or synergistic effect of hemocytes and intestines in invertebrates.
Collapse
Affiliation(s)
- Kaimin Zhou
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China; and
| | - Yukai Qin
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China; and
| | - Yu Song
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China; and
| | - Ke Zhao
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China; and
| | - Weijuan Pan
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Xingyu Nan
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China; and
| | - Yue Wang
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China; and
| | - Qun Wang
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China; and
| | - Weiwei Li
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China; and
| |
Collapse
|
14
|
Endosomal disentanglement of a transducible artificial transcription factor targeting endothelin receptor A. Mol Ther 2022; 30:855-867. [PMID: 34547467 PMCID: PMC8821953 DOI: 10.1016/j.ymthe.2021.09.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 08/17/2021] [Accepted: 09/14/2021] [Indexed: 02/04/2023] Open
Abstract
Cell-penetrating peptides (CPPs) hold great promise for intracellular delivery of therapeutic proteins. However, endosomal entrapment of transduced cargo is a major bottleneck hampering their successful application. While developing a transducible zinc finger protein-based artificial transcription factor targeting the expression of endothelin receptor A, we identified interaction between the CPP and the endosomal membrane or endosomal entanglement as a main culprit for endosomal entrapment. To achieve endosomal disentanglement, we utilized endosome-resident proteases to sever the artificial transcription factor from its CPP upon arrival inside the endosome. Using this approach, we greatly enhanced the correct subcellular localization of the disentangled artificial transcription factor, significantly increasing its biological activity and distribution in vivo. With rational engineering of proteolytic sensitivity, we propose a new design principle for transducible therapeutic proteins, helping CPPs attain their full potential as delivery vectors for therapeutic proteins.
Collapse
|
15
|
C-type lectin binds envelope protein of white spot syndrome virus and induces antiviral peptides in red swamp crayfish. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2021; 2:100027. [DOI: 10.1016/j.fsirep.2021.100027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/04/2021] [Accepted: 09/08/2021] [Indexed: 10/20/2022] Open
|
16
|
Huang Z, Yang P, Wang F. Shrimp Plasma CREG Is a Hemocyte Activation Factor. Front Immunol 2021; 12:707770. [PMID: 34484206 PMCID: PMC8415475 DOI: 10.3389/fimmu.2021.707770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/27/2021] [Indexed: 11/13/2022] Open
Abstract
Cytokines are a class of immunoregulatory proteins that are secreted by cells. Although vertebrate cytokine, especially mammalian cytokine has been well studied for the past decades. Much less attention has been paid to invertebrate so that only some cytokines have been identified in invertebrates. We have chosen Peaneus vannamei as a model to explore novel invertebrate cytokines. To achieve this, we previously purified shrimp plasma low abundance proteins and identified more than 400 proteins with proteomics analyses. In this study, a cellular repressor of E1A-stimulated gene (CREG)-like protein, which is highly conserved from Drosophila melanogaster to Homo sapiens, was further characterized in shrimp plasma. We found that shrimp plasma CREG was a glycoprotein which was strongly induced in hemolymph at 8 h post-LPS injection. Further function experiment unveiled that recombinant shrimp CREG protein injection significantly increased phagocytic hemocyte and lysosome-high hemocyte proportion in hemolymph. After that, hemocytes from rEGFP- and rCREG-protein injected shrimps were subjected to transcriptome analyses, which revealed that shrimp CREG protein could comprehensively promote hemocyte maturation and activation. Taken together, our data clearly indicated that shrimp plasma CREG protein is a novel hemocyte activation factor, which is probably a conserved myeloid cell lineage activation factor from invertebrate to vertebrate.
Collapse
Affiliation(s)
- Zhiqi Huang
- Department of Biology, College of Science, Shantou University, Shantou, China
| | - Peng Yang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
| | - Fan Wang
- Department of Biology, College of Science, Shantou University, Shantou, China.,Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China.,STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| |
Collapse
|
17
|
Sharbatdaralaei H, Asadi Karam MR, Ahmadi K, Habibi M. Bioinformatics analyses for the designation of a hybrid protein against urinary tract infections caused by Pseudomonas aeruginosa and investigation of the presence of pre-existing antibodies in infected humans. J Biomol Struct Dyn 2021; 40:9081-9095. [PMID: 34014146 DOI: 10.1080/07391102.2021.1924264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Pseudomonas aeruginosa is an important pathogen causing urinary tract infections (UTIs) and resistance to antibiotics has increased the need for a vaccine against this bacterium. P. aeruginosa V-antigen (PcrV), which is a component of the type III secretion system, delivers exoenzymes such as exoenzyme S (ExoS) into the host cells. In the present study, we aimed to design and express a hybrid protein composed of PcrV and ExoS from P. aeruginosa using bioinformatics. Finally, pre-existing antibodies were evaluated in sera collected from patients with UTI. The prediction results showed that the hybrid protein ExoS.PcrV had a C-score of -0.85 and Z-score of -5.55 versus C-score of -2.93 and Z-score of -2.65 for PcrV.ExoS. Based on BepiPred and ABCpred, 15 and 14 linear B-cell epitopes, as well as five conformational epitopes were identified in ExoS.PcrV. The interaction between the protein and immune receptor was validated in silico. Molecular docking indicated that the hybrid protein interacted strongly with Toll-like receptor 2. ExoS.PcrV was expressed in pET28a-BL21 and purified with a size of 57 kD by Nickel resins. The protein reacted with all sera collected from humans infected with P. aeruginosa following Western blot. The infected patients produced significantly higher IgG levels against the protein compared to the control as indicated by ELISA. The protein ExoS.PcrV was determined as a promising candidate against UTI caused by P. aeruginosa and the presence of pre-existing antibodies indicated the advantage of the hybrid protein. Evaluation of the efficacy of hybrid protein is ongoing in mice model. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | | | - Khadijeh Ahmadi
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mehri Habibi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
18
|
George R, Gsottberger F, Ammon A, Wendland K, Mellenthin L, Mackensen A, Müller F. Triton X-114 and Amine-Based Wash Strategy Reduces Lipopolysaccharides to FDA Limit and Achieves Purer, More Potent Recombinant Immunotoxin. Bioconjug Chem 2021; 32:713-720. [PMID: 33793193 DOI: 10.1021/acs.bioconjchem.1c00013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Many proteins are still routinely expressed prokaryotically in Escherichia coli, some because they are toxic to eukaryotes. Immunotoxins, which are fusion proteins of a targeting moiety and a truncated Pseudomonas exotoxin A, kill target cells by arresting protein synthesis. Thus, immunotoxins must be expressed in E. coli. Proteins expressed in E. coli are contaminated by endotoxin (also called lipopolysaccharides (LPS)). LPS binds to toll-like receptors, inducing up to life-threatening systemic inflammation in mammals. Therefore, accepted LPS limits for therapeutics as well as for substances used in immunological studies in animals are very low. Here, we report the use of Triton X-114 and polyamine-based wash strategies, which only in combination achieved LPS-contamination well below FDA limits. Resulting LPS-reduced immunotoxins were purer and up to 2.4-fold more active in vitro. Increased activity was associated with a 2.4-fold increase in affinity on cell surface expressed target antigen. The combination method maintained enzymatic function, protein stability, and in vivo efficacy and was effective for Fab as well as dsFv formats. With some modifications, the principle of this novel combination may be applied to any chromatography-based purification process.
Collapse
Affiliation(s)
- Rebekka George
- Department of Internal Medicine 5, Haematology and Oncology, University Hospital of Erlangen, 91054 Erlangen, Germany.,Friedrich-Alexander-University of Erlangen-Nurnberg (FAU), 91054 Erlangen, Germany
| | - Franziska Gsottberger
- Department of Internal Medicine 5, Haematology and Oncology, University Hospital of Erlangen, 91054 Erlangen, Germany
| | - Anna Ammon
- Department of Internal Medicine 5, Haematology and Oncology, University Hospital of Erlangen, 91054 Erlangen, Germany
| | - Kerstin Wendland
- Department of Internal Medicine 5, Haematology and Oncology, University Hospital of Erlangen, 91054 Erlangen, Germany
| | - Lisa Mellenthin
- Department of Internal Medicine 5, Haematology and Oncology, University Hospital of Erlangen, 91054 Erlangen, Germany
| | - Andreas Mackensen
- Department of Internal Medicine 5, Haematology and Oncology, University Hospital of Erlangen, 91054 Erlangen, Germany
| | - Fabian Müller
- Department of Internal Medicine 5, Haematology and Oncology, University Hospital of Erlangen, 91054 Erlangen, Germany
| |
Collapse
|
19
|
Zhang YX, Zhang ML, Wang XW. C-Type Lectin Maintains the Homeostasis of Intestinal Microbiota and Mediates Biofilm Formation by Intestinal Bacteria in Shrimp. THE JOURNAL OF IMMUNOLOGY 2021; 206:1140-1150. [PMID: 33526439 DOI: 10.4049/jimmunol.2000116] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 12/02/2020] [Indexed: 11/19/2022]
Abstract
Intestinal microbiota are closely related to host physiology. Over the long course of evolution and interaction, both commensal bacteria and their host have evolved multiple strategies to adapt to each other. However, in invertebrates, the regulatory mechanism of intestinal microbiota homeostasis is largely unknown. In the current study, a digestive tract-specific C-type lectin, designated as CTL33, was identified because of its abundance and response to bacteria in the intestine of kuruma shrimp (Marsupenaeus japonicus). Silencing of CTL33 expression led directly to intestinal dysbiosis, tissue damage, and shrimp death. CTL33 could facilitate biofilm formation by the intestinal bacteria. This function originated from its unique architecture, with a lectin domain responsible for bacteria recognition and a coiled coil region that mediated CTL33 dimerization and cross-linked the bacteria into a biofilm-like complex. By mediating the formation of a biofilm, CTL33 promoted the establishment of intestinal bacteria in intestine and maintained the homeostasis of the microbiota. Thus, to our knowledge, we demonstrated a new mechanism of C-type lectin-mediated biofilm formation by intestinal bacteria, providing new insights into intestinal homeostasis regulation in invertebrates.
Collapse
Affiliation(s)
- Yu-Xuan Zhang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, Shandong, China
| | - Ming-Lu Zhang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, Shandong, China
| | - Xian-Wei Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, Shandong, China; .,State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, Shandong, China; and.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, Shandong, China
| |
Collapse
|
20
|
Modular vaccine platform based on the norovirus-like particle. J Nanobiotechnology 2021; 19:25. [PMID: 33468139 PMCID: PMC7815183 DOI: 10.1186/s12951-021-00772-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 01/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Virus-like particle (VLP) vaccines have recently emerged as a safe and effective alternative to conventional vaccine technologies. The strong immunogenic effects of VLPs can be harnessed for making vaccines against any pathogen by decorating VLPs with antigens from the pathogen. Producing the antigenic pathogen fragments and the VLP platform separately makes vaccine development rapid and convenient. Here we decorated the norovirus-like particle with two conserved influenza antigens and tested for the immunogenicity of the vaccine candidates in BALB/c mice. RESULTS SpyTagged noro-VLP was expressed with high efficiency in insect cells and purified using industrially scalable methods. Like the native noro-VLP, SpyTagged noro-VLP is stable for months when refrigerated in a physiological buffer. The conserved influenza antigens were produced separately as SpyCatcher fusions in E. coli before covalent conjugation on the surface of noro-VLP. The noro-VLP had a high adjuvant effect, inducing high titers of antibody production against the antigens presented on its surface. CONCLUSIONS The modular noro-VLP vaccine platform presented here offers a rapid, convenient and safe method to present various soluble protein antigens to the immune system for vaccination and antibody production purposes.
Collapse
|
21
|
Sabzehali F, Rahimi H, Goudarzi H, Goudarzi M, Yoosefi Izad MH, Salimi Chirani A, Jalali SA, Faghihloo E. Functional engineering of OprF-OprI-PopB as a chimeric immunogen and its cross-protective evaluation with GM-CSF against Pseudomonas aeruginosa: A comprehensive immunoinformatics evaluation. INFORMATICS IN MEDICINE UNLOCKED 2021. [DOI: 10.1016/j.imu.2021.100673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
22
|
Jahejo AR, Jia FJ, Raza SHA, Shah MA, Yin JJ, Ahsan A, Waqas M, Niu S, Ning GB, Zhang D, Khan A, Tian WX. Screening of toll-like receptor signaling pathway-related genes and the response of recombinant glutathione S-transferase A3 protein to thiram induced apoptosis in chicken erythrocytes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 114:103831. [PMID: 32818608 DOI: 10.1016/j.dci.2020.103831] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/09/2020] [Accepted: 08/09/2020] [Indexed: 06/11/2023]
Abstract
The expression of genes related to the Toll-like receptors (TLRs) signaling pathway were determined. Group A, B and C fed with basal diet and group D, E and F induced TD by feeding a basal diet containing 100 mg·kg-1 thiram. rGSTA3 protein was injected at 20 μg·kg-1 in group B, E and at 50 μg·kg-1 in C, F. Results suggested that lameness and death of chondrocytes were significant on day 14. TLRs signaling pathway related genes were screened based on the transcriptome enrichment, and validated on qPCR. IL-7, TLR2, 3, 4, 5, 7, 15, MyD88, MHC-II, MDA5 and TRAF6 were significantly (p < 0.05) expressed in group E and F as compared to group D on day 14 and 23. IL-7, MHCII, TRAF6, TLR3, TLR5, TLR7, and TLR15 determined insignificant in group D compared to group A on day 23. TD occur in an early phase and alleviated in the later period. rGSTA3 protein can prevent apoptosis and repair degraded chondrocytes.
Collapse
Affiliation(s)
- Ali Raza Jahejo
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Fa-Jie Jia
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, China
| | | | - Mujahid Ali Shah
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| | - Jiao-Jiao Yin
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Anam Ahsan
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Muhammad Waqas
- Faculty of Veterinary and Animal Sciences, University of the Poonch, Rawalakot, District Poonch, 12350, Azad Jammu & Kashmir, Pakistan
| | - Sheng Niu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Guan-Bao Ning
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Ding Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Ajab Khan
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Wen-Xia Tian
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, China.
| |
Collapse
|
23
|
Weilhammer DR, Dunkle AD, Boone T, Gilmore SF, Khemmani M, Peters SKG, Hoeprich PD, Fischer NO, Blanchette CD, Driks A, Rasley A. Characterization of Bacillus anthracis Spore Proteins Using a Nanoscaffold Vaccine Platform. Front Immunol 2020; 11:1264. [PMID: 32714323 PMCID: PMC7344197 DOI: 10.3389/fimmu.2020.01264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/19/2020] [Indexed: 01/30/2023] Open
Abstract
Subunit vaccines are theoretically safe and easy to manufacture but require effective adjuvants and delivery systems to yield protective immunity, particularly at critical mucosal sites such as the lung. We investigated nanolipoprotein particles (NLPs) containing the Toll-like receptor 4 agonist monophosphoryl lipid A (MPLA) as a platform for intranasal vaccination against Bacillus anthracis. Modified lipids enabled attachment of disparate spore and toxin protein antigens. Intranasal vaccination of mice with B. anthracis antigen-MPLA-NLP constructs induced robust IgG and IgA responses in serum and in bronchoalveolar and nasal lavage. Typically, a single dose sufficed to induce sustained antibody titers over time. When multiple immunizations were required for sustained titers, specific antibodies were detected earlier in the boost schedule with MPLA-NLP-mediated delivery than with free MPLA. Administering combinations of constructs induced responses to multiple antigens, indicating potential for a multivalent vaccine preparation. No off-target responses to the NLP scaffold protein were detected. In summary, the NLP platform enhances humoral and mucosal responses to intranasal immunization, indicating promise for NLPs as a flexible, robust vaccine platform against B. anthracis and potentially other inhalational pathogens.
Collapse
Affiliation(s)
- Dina R Weilhammer
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Alexis D Dunkle
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Tyler Boone
- Department of Microbiology and Immunology, Loyola University Medical Center, Chicago, IL, United States
| | - Sean F Gilmore
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Mark Khemmani
- Department of Microbiology and Immunology, Loyola University Medical Center, Chicago, IL, United States
| | - Sandra K G Peters
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Paul D Hoeprich
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Nicholas O Fischer
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Craig D Blanchette
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Adam Driks
- Department of Microbiology and Immunology, Loyola University Medical Center, Chicago, IL, United States
| | - Amy Rasley
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| |
Collapse
|
24
|
Gutiérrez D, Garrido V, Fernández L, Portilla S, Rodríguez A, Grilló MJ, García P. Phage Lytic Protein LysRODI Prevents Staphylococcal Mastitis in Mice. Front Microbiol 2020; 11:7. [PMID: 32038593 PMCID: PMC6989612 DOI: 10.3389/fmicb.2020.00007] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/06/2020] [Indexed: 12/29/2022] Open
Abstract
Phage lytic proteins are promising antimicrobials that could complement conventional antibiotics and help to combat multi-drug resistant bacteria that cause important human and animal infections. Here, we report the characterization of endolysin LysRODI (encoded by staphylophage phiIPLA-RODI) and its application as a prophylactic mastitis treatment. The main properties of LysRODI were compared with those of endolysin LysA72 (encoded by staphylophage phiIPLA35) and the chimeric protein CHAPSH3b (derived from the virion-associated peptidoglycan hydrolase HydH5 and lysostaphin). Time-kill experiments performed with Staphylococcus aureus and Staphylococcus epidermidis demonstrated that the killing rate of LysRODI and CHAPSH3b is higher than that of LysA72 (0.1 μM protein removed 107 CFU/ml of S. aureus in 30 min). Of note, all proteins failed to select resistant mutants as bacterial exposure to sub-lethal concentrations of the proteins did not alter the MIC values. Additionally, LysRODI and CHAPSH3b were non-toxic in a zebrafish embryo model at concentrations near the MIC (0.5 and 0.7 μM, respectively). Moreover, these two proteins significantly reduced mortality in a zebrafish model of systemic infection. In contrast to LysRODI, the efficacy of CHAPSH3b was dose-dependent in zebrafish, requiring higher-dose treatments to achieve the maximum survival rate. For this reason, LysRODI was selected for further analysis in mice, demonstrating great efficacy to prevent mammary infections by S. aureus and S. epidermidis. Our findings strongly support the use of phage lytic proteins as a new strategy to prevent staphylococcal mastitis.
Collapse
Affiliation(s)
- Diana Gutiérrez
- DairySafe Group, Departamento de Tecnología y Biotecnología de Productos Lácteos, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Spain
| | - Victoria Garrido
- Departamento de Sanidad Animal, Instituto de Agrobiotecnología, CSIC-Gobierno de Navarra, Mutilva, Spain
| | - Lucía Fernández
- DairySafe Group, Departamento de Tecnología y Biotecnología de Productos Lácteos, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Spain
| | - Silvia Portilla
- DairySafe Group, Departamento de Tecnología y Biotecnología de Productos Lácteos, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Spain
| | - Ana Rodríguez
- DairySafe Group, Departamento de Tecnología y Biotecnología de Productos Lácteos, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Spain
| | - María Jesús Grilló
- Departamento de Sanidad Animal, Instituto de Agrobiotecnología, CSIC-Gobierno de Navarra, Mutilva, Spain
| | - Pilar García
- DairySafe Group, Departamento de Tecnología y Biotecnología de Productos Lácteos, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Spain
| |
Collapse
|
25
|
Zhang YX, Wang JX, Wang XW. First identification and characterization of a triple WAP domain containing protein in Procambarus clarkii provides new insights into the classification and evolution of WAP proteins in crustacean. FISH & SHELLFISH IMMUNOLOGY 2019; 94:592-598. [PMID: 31518688 DOI: 10.1016/j.fsi.2019.09.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/20/2019] [Accepted: 09/10/2019] [Indexed: 06/10/2023]
Abstract
Whey acidic protein domain (WAPD) is a usual motif in crustaceans, and is found mainly in the immune-related proteins. In the present study, a protein containing three tandem WAPDs was identified in red swamp crayfish Procambarus clarkii and designated as PcTWD. This is the first report of a protein of such domain architecture in crustaceans. Introducing the WAPDs of PcTWD into phylogenetic analysis led to the classification of crustacean WAP proteins into classical crustins and proteins containing solely WAPDs. PcTWD was widely expressed in multiple tissues, including hemocytes, gills, hepatopancreas, heart, stomach and intestine. Its expression could be significantly induced by Staphylococcus aureus or Aeromonas hydrophila challenge. Knockdown PcTWD expression by RNAi suppressed host resistance against A. hydrophila, while exogenous recombinant PcTWD could enhance the host immunity. The three WAPDs showed a labor division. The first two domains were responsible for the protease inhibitory activity, and the third domain contributed to the antimicrobial activity. Thus PcTWD was found as an important protein in crayfish antibacterial immunity.
Collapse
Affiliation(s)
- Yu-Xuan Zhang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Qingdao, 266237, China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Qingdao, 266237, China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Xian-Wei Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Qingdao, 266237, China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
26
|
Liu Z, Behloul N, Baha S, Wei W, Shi R, Meng J. Design and immunogenicity analysis of the combined vaccine against zoonotic hepatitis E and foot-and-mouth disease. Vaccine 2019; 37:6922-6930. [PMID: 31604580 DOI: 10.1016/j.vaccine.2019.09.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/30/2019] [Accepted: 09/02/2019] [Indexed: 02/06/2023]
Abstract
AIM Design and immunogenicity assessment of the combined vaccine candidate against zoonotic hepatitis E virus (HEV) and foot-and-mouth disease virus (FMDV). METHODS Using the molecular cloning technology, we produced and purified 9 HEV ORF2-truncated proteins (HEV genotype 4). Then, we compared their thermal stability, antigenicity, and immunogenicity to select the best HEV immunogen. Next, we used the adjuvant Montanide ISA-206 to prepare different formulations of HEV vaccine alone, FMDV vaccine alone and HEV-FMDV combined vaccine. The formulations were injected into mice and the induced humoral immune responses were monitored up 12 weeks post-immunization. RESULTS The HEV p222 protein could self-assemble into VLPs (∼34 nm) and showed higher stability and better antigenicity/immunogenicity than the other HEV antigens, thus it was selected as the best HEV immunogen. Mice immunization with the FMDV vaccine alone induced high FMDV-specific antibody titers in a dose-dependent manner; the HEV p222 protein also induced high levels of anti-HEV antibodies but in a dose-independent manner. The HEV-FMDV combination induced anti-FMDV antibody titers 7-16-fold higher than the titers induced by the FMDV vaccine alone, and HEV-specific antibody titers 2.4-fold higher than those induced by the HEV p222 antigen alone. CONCLUSION Herein, we proposed a new approach for the control of zoonotic HEV infection through its control in its main host (pig). We also designed the first HEV-FMDV combined vaccine and the preliminary analyses revealed a synergistic effect on the immunogenicity of both HEV and FMDV antigens.
Collapse
Affiliation(s)
- Zhenzhen Liu
- Department of Gastroenterology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China
| | - Nouredine Behloul
- College of Basic Medicine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Sarra Baha
- Department of Gastroenterology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China
| | - Wenjuan Wei
- Department of Gastroenterology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China
| | - Ruihua Shi
- Department of Gastroenterology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China.
| | - Jihong Meng
- Department of Gastroenterology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China; College of Basic Medicine, Shanghai University of Medicine & Health Sciences, Shanghai, China.
| |
Collapse
|
27
|
Lin CY, Liu JC. Incorporation of short, charged peptide tags affects the temperature responsiveness of positively-charged elastin-like polypeptides. J Mater Chem B 2019; 7:5245-5256. [PMID: 31384872 PMCID: PMC7098454 DOI: 10.1039/c9tb00821g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Elastin-like polypeptides (ELPs) are recombinant protein domains exhibiting lower critical solution temperature (LCST) behavior. This LCST behavior is controlled not only by intrinsic factors including amino acid composition and polypeptide chain length but also by non-ELP fusion domains. Here, we report that the presence of a composite non-ELP sequence that includes both His and T7 tags or a short Ser-Lys-Gly-Pro-Gly (SKGPG) sequence can dramatically change the LCST behavior of a positively-charged ELP domain. Both the His and T7 tags have been widely used in recombinant protein design to enable affinity chromatography and serve as epitopes for protein detection. The SKGPG sequence has been used to improve the expression of ELPs. Both the composite tag and the SKGPG sequence are <15% of the total length of the ELP fusion proteins. Despite the small size of the composite tag, its incorporation imparted pH-sensitive LCST behavior to the positively-charged ELP fusion protein. This pH sensitivity was not observed with the incorporation of the SKGPG sequence. The pH sensitivity results from both electrostatic and hydrophobic interactions between the composite tag and the positively-charged ELP domain. The hydrophobicity of the composite tag also alters the ELP interaction with Hofmeister salts by changing the overall hydrophobicity of the fusion protein. Our results suggest that incorporation of short tag sequences should be considered when designing temperature-responsive ELPs and provide insights into utilizing both electrostatic and hydrophobic interactions to design temperature-responsive recombinant proteins as well as synthetic polymers.
Collapse
Affiliation(s)
- Charng-Yu Lin
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | - Julie C Liu
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA. and Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
28
|
Gao J, Wang JX, Wang XW. MD-2 Homologue Recognizes the White Spot Syndrome Virus Lipid Component and Induces Antiviral Molecule Expression in Shrimp. THE JOURNAL OF IMMUNOLOGY 2019; 203:1131-1141. [PMID: 31331974 DOI: 10.4049/jimmunol.1900268] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 06/22/2019] [Indexed: 12/29/2022]
Abstract
The myeloid differentiation factor 2 (MD-2)-related lipid-recognition (ML) domain is found in multiple proteins, including MD-2, MD-1, Niemann-Pick disease type C2, and mite major allergen proteins. The significance of ML proteins in antibacterial signal transduction and in lipid metabolism has been well studied. However, their function in host-virus interaction remains poorly understood. In the current study, we found that the ML protein family is involved in resistance against white spot syndrome virus in kuruma shrimp, Marsupenaeus japonicus One member, which showed a high similarity to mammalian MD-2/MD-1 and was designated as ML1, participated in the antiviral response by recognizing cholesta-3,5-diene (CD), a lipid component of the white spot syndrome virus envelope. After recognizing CD, ML1 induced the translocation of Rel family NF-κB transcription factor Dorsal into the nucleus, resulting in the expression of Vago, an IFN-like antiviral cytokine in arthropods. Overall, this study revealed the significance of an MD-2 homologue as an immune recognition protein for virus lipids. The identification and characterization of CD-ML1-Dorsal-Vago signaling provided new insights into invertebrate antiviral immunity.
Collapse
Affiliation(s)
- Jie Gao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China; and.,State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Xian-Wei Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China; .,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China; and.,State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| |
Collapse
|
29
|
Yagolovich AV, Artykov AA, Dolgikh DA, Kirpichnikov MP, Gasparian ME. A New Efficient Method for Production of Recombinant Antitumor Cytokine TRAIL and Its Receptor-Selective Variant DR5-B. BIOCHEMISTRY (MOSCOW) 2019; 84:627-636. [PMID: 31238862 DOI: 10.1134/s0006297919060051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cytokine TRAIL induces apoptosis in tumor cells of various origin without affecting normal cells. Clinical trials of TRAIL-receptor (DR4 and DR5) agonists (recombinant TRAIL or death receptors antibodies) have largely failed because most human tumors were resistant to them. Currently, a second generation of agents targeted at TRAIL-R with increased efficiency has been developed. To this end, we have developed DR5-B, a variant of TRAIL selectively interacting with DR5. We have developed a new efficient method for production of TRAIL and DR5-B using expression of these proteins in Escherichia coli strain SHuffle B. The proteins were isolated from the cytoplasmic fraction of cells and purified to a high degree of homogeneity using metal-affinity and ion-exchange chromatography. The protein yield was 211 and 173 mg from one liter of cell culture for DR5-B and TRAIL, respectively, which significantly exceeded the results obtained by other methods. DR5-B killed tumor cells of different origin more efficiently and rapidly compared with TRAIL. The resulting preparations can be used for the study of TRAIL signaling pathways and in preclinical and clinical trials as antitumor agents.
Collapse
Affiliation(s)
- A V Yagolovich
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.,Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia
| | - A A Artykov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.,Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia
| | - D A Dolgikh
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.,Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia
| | - M P Kirpichnikov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.,Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia
| | - M E Gasparian
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| |
Collapse
|
30
|
Lin YC, Liao YJ, Lee YH, Tseng SF, Liu JY, Chen YS, Shui HA, Lin FZ, Lin KH, Chen YC, Tsai MC, Sytwu HK, Wang CC, Chuang YP. Staphylococcal phosphatidylinositol-specific phospholipase C potentiates lung injury via complement sensitisation. Cell Microbiol 2019; 21:e13085. [PMID: 31290210 DOI: 10.1111/cmi.13085] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 11/29/2022]
Abstract
Staphylococcus aureus is frequently isolated from patients with community-acquired pneumonia and acute respiratory distress syndrome (ARDS). ARDS is associated with staphylococcal phosphatidylinositol-specific phospholipase C (PI-PLC); however, the role of PI-PLC in the pathogenesis and progression of ARDS remains unknown. Here, we showed that recombinant staphylococcal PI-PLC possesses enzyme activity that causes shedding of glycosylphosphatidylinositol-anchored CD55 and CD59 from human umbilical vein endothelial cell surfaces and triggers cell lysis via complement activity. Intranasal infection with PI-PLC-positive S. aureus resulted in greater neutrophil infiltration and increased pulmonary oedema compared with a plc-isogenic mutant. Although indistinguishable proinflammatory genes were induced, the wild-type strain activated higher levels of C5a in lung tissue accompanied by elevated albumin instillation and increased lactate dehydrogenase release in bronchoalveolar lavage fluid compared with the plc- mutant. Following treatment with cobra venom factor to deplete complement, the wild-type strain with PI-PLC showed a reduced ability to trigger pulmonary permeability and tissue damage. PI-PLC-positive S. aureus induced the formation of membrane attack complex, mainly on type II pneumocytes, and reduced the level of CD55/CD59, indicating the importance of complement regulation in pulmonary injury. In conclusion, S. aureus PI-PLC sensitised tissue to complement activation leading to more severe tissue damage, increased pulmonary oedema, and ARDS progression.
Collapse
Affiliation(s)
- Yu-Chun Lin
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Department of Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Jou Liao
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Ying-Hsuan Lee
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Shun-Fu Tseng
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Jah-Yao Liu
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ying-Sheng Chen
- Division of Infectious Diseases, Department of Internal Medicine, Cardinal Tien Hospital, New Taipei City, Taiwan
| | - Hao-Ai Shui
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Feng-Zhi Lin
- Graduate Institute of Life Sciences, National Defense Medical Center and Academia Sinica, Taipei, Taiwan
| | - Kai-Hsuan Lin
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Yao-Chang Chen
- Department of Biomedical Engineering and Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| | - Min-Chien Tsai
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| | - Huey-Kang Sytwu
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan.,National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Chih-Chien Wang
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Ping Chuang
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
31
|
Rapid Purification of Endotoxin-Free RTX Toxins. Toxins (Basel) 2019; 11:toxins11060336. [PMID: 31212877 PMCID: PMC6628407 DOI: 10.3390/toxins11060336] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/05/2019] [Accepted: 06/07/2019] [Indexed: 12/26/2022] Open
Abstract
Cytolytic leukotoxins of the repeat in toxin (RTX) family are large proteins excreted by gram-negative bacterial pathogens through the type 1 secretion system (T1SS). Due to low yields and poor stability in cultures of the original pathogens, it is useful to purify recombinant fatty-acylated RTX cytolysins from inclusion bodies produced in E. coli. Such preparations are, however, typically contaminated by high amounts of E. coli lipopolysaccharide (LPS or endotoxin). We report a simple procedure for purification of large amounts of biologically active and endotoxin-free RTX toxins. It is based on the common feature of RTX cytolysins that are T1SS-excreted as unfolded polypeptides and fold into a biologically active toxin only upon binding of calcium ions outside of the bacterial cell. Mimicking this process, the RTX proteins are solubilized from inclusion bodies with buffered 8 M urea, bound onto a suitable chromatographic medium under denaturing conditions and the contaminating LPS is removed through extensive on-column washes with buffers containing 6 to 8 M urea and 1% Triton X-100 or Triton X-114. Extensive on-column rinsing with 8 M urea buffer removes residual detergent and the eluted highly active RTX protein preparations then contain only trace amounts of LPS. The procedure is exemplified using four prototypic RTX cytolysins, the Bordetella pertussis CyaA and the hemolysins of Escherichia coli (HlyA), Kingella kingae (RtxA), and Actinobacillus pleuropneumoniae (ApxIA).
Collapse
|
32
|
Kobayashi-Tsukumo H, Oiji K, Xie D, Sawada Y, Yamashita K, Ogata S, Kojima H, Itagaki H. Eliminating the contribution of lipopolysaccharide to protein allergenicity in the human cell-line activation test (h-CLAT). J Toxicol Sci 2019; 44:283-297. [PMID: 30944281 DOI: 10.2131/jts.44.283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
We previously developed a test for detecting naturally occurring protein-induced skin sensitization based on the markers and criteria of the human cell-line activation test (h-CLAT) and showed that the h-CLAT was useful for assessing the allergenic potency of proteins. However, test proteins were contaminated with varying amounts of lipopolysaccharide (LPS), which might have contributed to the stimulation of CD86 and CD54 expression. In this study, we developed a method to exclude the effects of LPS in the assessment of skin sensitization by naturally occurring proteins. We tested two inhibitors [the caspase-1 inhibitor acetyl-Tyr-Val-Ala-Asp-chloromethylketone (Ac-YVAD-cmk; hereafter referred to as YVAD), which can mitigate the LPS-induced increases in CD54 expression, and polymyxin B (PMB), which suppresses the effect of LPS by binding to its lipid moiety (i.e., the toxic component of LPS)]. After a 24 hr exposure, YVAD and PMB reduced LPS-induced CD86 and CD54 expression. In particular, the effect of PMB was dependent upon pre-incubation time and temperature, with the most potent effect observed following pre-incubation at 37°C for 24 hr. Moreover, only pre-incubation with cell-culture medium (CCM) at 37°C for 24 hr showed an inhibitory effect similar to that of PMB, with this result possibly caused by components of CCM binding to LPS. Similar effects were observed in the presence of ovalbumin (with 1070 EU/mg LPS) and ovomucoid, and lysozyme (with 2.82 and 0.234 EU/mg LPS, respectively) in CCM. These results indicated that PMB and CCM effectively eliminated the effects of LPS during assessment of protein allergenicity, thereby allowing a more accurate evaluation of the potential of proteins to induce skin sensitization.
Collapse
Affiliation(s)
- Hanae Kobayashi-Tsukumo
- Department of Chemical and Energy Engineering, Yokohama National University.,Division of Risk Assessment, National Institute of Health Sciences
| | - Kanami Oiji
- College of Engineering Science, Yokohama National University
| | - Dan Xie
- Department of Chemical and Energy Engineering, Yokohama National University
| | - Yuka Sawada
- Department of Chemical and Energy Engineering, Yokohama National University
| | | | - Shinichi Ogata
- Department of Environment and Information Sciences, Yokohama National University
| | - Hajime Kojima
- Division of Risk Assessment, National Institute of Health Sciences
| | - Hiroshi Itagaki
- Department of Chemical and Energy Engineering, Yokohama National University
| |
Collapse
|
33
|
Leitão ALODS, Caldas MCB, Eduardo de Araújo Padilha C, Nogueira da Costa C, Rocha PM, Canindé de Sousa Junior F, Ribeiro de Macedo G, Silvino dos Santos E. Recovery and purification of 503 antigen from Leishmania i. chagasi with simultaneous removal of lipopolysaccharides: Influence of immobilized metals and elution strategies during expanded bed adsorption (EBA). J LIQ CHROMATOGR R T 2019. [DOI: 10.1080/10826076.2019.1565829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
| | | | | | | | - Patrícia Maria Rocha
- Departamento de Engenharia Química, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Francisco Canindé de Sousa Junior
- Departamento de Engenharia Química, Universidade Federal do Rio Grande do Norte, Natal, Brazil
- Departamento de Farmácia, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | | | | |
Collapse
|
34
|
Development of Luciferase Immunoprecipitation Systems (LIPS) Assay to Detect IgG Antibodies against Human Respiratory Syncytial Virus G-Glycoprotein. Vaccines (Basel) 2019; 7:vaccines7010016. [PMID: 30717190 PMCID: PMC6466036 DOI: 10.3390/vaccines7010016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 11/25/2022] Open
Abstract
Respiratory syncytial virus (RSV) causes severe lower respiratory tract disease in infants and the elderly. Although there is no licensed vaccine, RSV-F and -G glycoproteins are targets for vaccine development and therapeutics. We developed an assay that can detect anti-RSV-G IgG antibodies, either as a biomarker of natural exposure or immunization. RSV genes encoding native and mutated G (mG) proteins from subgroups A and B strains were cloned, expressed as luciferase-tagged proteins, and tested individually to detect anti-RSV-G specific IgG antibodies using a high-throughput luciferase immunoprecipitation system (LIPS-G). RSV monoclonal antibodies and polyclonal antisera specifically bound in the LIPS-GA and/or -GB assays; whereas anti-RSV-F and -N, and antisera against measles virus or human metapneumovirus did not bind. Anti-RSV-GA and -GB IgG responses detected in mice infected intranasally with RSV-A or -B strains were subtype specific. Subtype specific anti-RSV-GA or -GB IgG responses were also detected using paired serum samples from infants while human adolescent serum samples reacted in both LIPS-GA and -GB assays, reflecting a broader experience.
Collapse
|
35
|
Charlesworth CT, Deshpande PS, Dever DP, Camarena J, Lemgart VT, Cromer MK, Vakulskas CA, Collingwood MA, Zhang L, Bode NM, Behlke MA, Dejene B, Cieniewicz B, Romano R, Lesch BJ, Gomez-Ospina N, Mantri S, Pavel-Dinu M, Weinberg KI, Porteus MH. Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nat Med 2019; 25:249-254. [PMID: 30692695 PMCID: PMC7199589 DOI: 10.1038/s41591-018-0326-x] [Citation(s) in RCA: 626] [Impact Index Per Article: 104.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 12/07/2018] [Indexed: 12/22/2022]
Abstract
The CRISPR-Cas9 system is a powerful tool for genome editing, which allows the precise modification of specific DNA sequences. Many efforts are underway to use the CRISPR-Cas9 system to therapeutically correct human genetic diseases1-6. The most widely used orthologs of Cas9 are derived from Staphylococcus aureus and Streptococcus pyogenes5,7. Given that these two bacterial species infect the human population at high frequencies8,9, we hypothesized that humans may harbor preexisting adaptive immune responses to the Cas9 orthologs derived from these bacterial species, SaCas9 (S. aureus) and SpCas9 (S. pyogenes). By probing human serum for the presence of anti-Cas9 antibodies using an enzyme-linked immunosorbent assay, we detected antibodies against both SaCas9 and SpCas9 in 78% and 58% of donors, respectively. We also found anti-SaCas9 T cells in 78% and anti-SpCas9 T cells in 67% of donors, which demonstrates a high prevalence of antigen-specific T cells against both orthologs. We confirmed that these T cells were Cas9-specific by demonstrating a Cas9-specific cytokine response following isolation, expansion, and antigen restimulation. Together, these data demonstrate that there are preexisting humoral and cell-mediated adaptive immune responses to Cas9 in humans, a finding that should be taken into account as the CRISPR-Cas9 system moves toward clinical trials.
Collapse
Affiliation(s)
| | | | - Daniel P Dever
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Joab Camarena
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Viktor T Lemgart
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - M Kyle Cromer
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | | | | | - Liyang Zhang
- Integrated DNA Technologies, Inc., Coralville, IA, USA
| | - Nicole M Bode
- Integrated DNA Technologies, Inc., Coralville, IA, USA
| | - Mark A Behlke
- Integrated DNA Technologies, Inc., Coralville, IA, USA
| | - Beruh Dejene
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | | | - Rosa Romano
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Benjamin J Lesch
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | | | - Sruthi Mantri
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Mara Pavel-Dinu
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | | | | |
Collapse
|
36
|
Shekar A, Ramlal S, Jeyabalaji JK, Sripathy MH. Intranasal co-administration of recombinant active fragment of Zonula occludens toxin and truncated recombinant EspB triggers potent systemic, mucosal immune responses and reduces span of E. coli O157:H7 fecal shedding in BALB/c mice. Med Microbiol Immunol 2019; 208:89-100. [PMID: 30209565 DOI: 10.1007/s00430-018-0559-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/29/2018] [Indexed: 12/17/2022]
Abstract
Escherichia coli O157:H7 with its traits such as intestinal colonization and fecal-oral route of transmission demands mucosal vaccine development. E. coli secreted protein B (EspB) is one of the key type III secretory system (TTSS) targets for mucosal candidate vaccine due to its indispensable role in the pathogenesis of E. coli O157:H7. However, mucosally administered recombinant proteins have low immunogenicity which could be overcome by the use of mucosal adjuvants. The quest for safe, potent mucosal adjuvant has recognized ΔG fragment of Zonula occludens toxin of Vibrio cholerae with such properties. ΔG enhances mucosal permeability via the paracellular route by altering epithelial tight junction structure in a reversible, ephemeral and non-toxic manner. Therefore, we tested whether recombinant ΔG intranasally co-administered with truncated EspB (EspB + ΔG) could serve as an effective mucosal adjuvant. Results showed that EspB + ΔG group induced higher systemic IgG and mucosal IgA than EspB alone. Moreover, EspB alone developed Th2 type response with IgG1/IgG2a ratio (1.64) and IL-4, IL-10 cytokines whereas that of EspB + ΔG group generated mixed Th1/Th2 type immune response evident from IgG1/IgG2a ratio (1.17) as well as IL-4, IL-10 and IFN-γ cytokine levels compared to control. Sera of EspB + ΔG group inhibited TTSS mediated haemolysis of murine RBCs more effectively compared to EspB, control group and sera of both EspB + ΔG, EspB group resulted in similar levels of efficacious reduction in E. coli O157:H7 adherence to Caco-2 cells compared to control. Moreover, vaccination with EspB + ΔG resulted in significant reduction in E. coli O157:H7 fecal shedding compared to EspB and control group in experimentally challenged streptomycin-treated mice. These results demonstrate mucosal adjuvanticity of ΔG co-administered with EspB in enhancing overall immunogenicity to reduce E. coli O157:H7 shedding.
Collapse
Affiliation(s)
- Aravind Shekar
- Department of Microbiology, Defence Food Research Laboratory, Siddartha Nagar, Mysuru, Karnataka State, 570011, India
| | - Shylaja Ramlal
- Department of Microbiology, Defence Food Research Laboratory, Siddartha Nagar, Mysuru, Karnataka State, 570011, India
| | - Joseph Kingston Jeyabalaji
- Department of Microbiology, Defence Food Research Laboratory, Siddartha Nagar, Mysuru, Karnataka State, 570011, India
| | - Murali Harishchandra Sripathy
- Department of Microbiology, Defence Food Research Laboratory, Siddartha Nagar, Mysuru, Karnataka State, 570011, India.
- , RCE Layout, Bogadi 2nd stage, Mysuru, Karnataka, 570026, India.
| |
Collapse
|
37
|
Delivery of BACE1 siRNA mediated by TARBP-BTP fusion protein reduces β-amyloid deposits in a transgenic mouse model of Alzheimer’s disease. J Biosci 2019. [DOI: 10.1007/s12038-018-9822-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Schubert K, Collins LE, Green P, Nagase H, Troeberg L. LRP1 Controls TNF Release via the TIMP-3/ADAM17 Axis in Endotoxin-Activated Macrophages. THE JOURNAL OF IMMUNOLOGY 2019; 202:1501-1509. [PMID: 30659107 DOI: 10.4049/jimmunol.1800834] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 12/16/2018] [Indexed: 11/19/2022]
Abstract
The metalloproteinase ADAM17 plays a pivotal role in initiating inflammation by releasing TNF from its precursor. Prolonged TNF release causes many chronic inflammatory diseases, indicating that tight regulation of ADAM17 activity is essential for resolution of inflammation. In this study, we report that the endogenous ADAM17 inhibitor TIMP-3 inhibits ADAM17 activity only when it is bound to the cell surface and that cell surface levels of TIMP-3 in endotoxin-activated human macrophages are dynamically controlled by the endocytic receptor LRP1. Pharmacological blockade of LRP1 inhibited endocytic clearance of TIMP-3, leading to an increase in cell surface levels of the inhibitor that blocked TNF release. Following LPS stimulation, TIMP-3 levels on the surface of macrophages increased 4-fold within 4 h and continued to accumulate at 6 h, before a return to baseline levels at 8 h. This dynamic regulation of cell surface TIMP-3 levels was independent of changes in TIMP-3 mRNA levels, but correlated with shedding of LRP1. These results shed light on the basic mechanisms that maintain a regulated inflammatory response and ensure its timely resolution.
Collapse
Affiliation(s)
- Kristin Schubert
- Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Laura E Collins
- Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Patricia Green
- Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Hideaki Nagase
- Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Linda Troeberg
- Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom
| |
Collapse
|
39
|
Seijsing J, Sobieraj AM, Keller N, Shen Y, Zinkernagel AS, Loessner MJ, Schmelcher M. Improved Biodistribution and Extended Serum Half-Life of a Bacteriophage Endolysin by Albumin Binding Domain Fusion. Front Microbiol 2018; 9:2927. [PMID: 30538696 PMCID: PMC6277698 DOI: 10.3389/fmicb.2018.02927] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 11/14/2018] [Indexed: 12/12/2022] Open
Abstract
The increasing number of multidrug-resistant bacteria intensifies the need to develop new antimicrobial agents. Endolysins are bacteriophage-derived enzymes that degrade the bacterial cell wall and hold promise as a new class of highly specific and versatile antimicrobials. One major limitation to the therapeutic use of endolysins is their often short serum circulation half-life, mostly due to kidney excretion and lysosomal degradation. One strategy to increase the half-life of protein drugs is fusion to the albumin-binding domain (ABD). By high-affinity binding to serum albumin, ABD creates a complex with large hydrodynamic volume, reducing kidney excretion and lysosomal degradation. The aim of this study was to investigate the in vitro antibacterial activity and in vivo biodistribution and half-life of an engineered variant of the Staphylococcus aureus phage endolysin LysK. The ABD sequence was introduced at different positions within the enzyme, and lytic activity of each variant was determined in vitro and ex vivo in human serum. Half-life and biodistribution were assessed in vivo by intravenous injection of europium-labeled proteins into C57BL/6 wild-type mice. Our data demonstrates that fusion of the endolysin to ABD improves its serum circulation half-life and reduces its deposition in the kidneys in vivo. The most active construct reduced S. aureus counts in human serum ex vivo by 3 logs within 60 min. We conclude that ABD fusions provide an effective strategy to extend the half-life of antibacterial enzymes, supporting their therapeutic potential for treatment of systemic bacterial infections.
Collapse
Affiliation(s)
- Johan Seijsing
- Laboratory of Food Microbiology, Institute of Food, Nutrition and Health, ETH Zürich, Zürich, Switzerland
| | - Anna M Sobieraj
- Laboratory of Food Microbiology, Institute of Food, Nutrition and Health, ETH Zürich, Zürich, Switzerland
| | - Nadia Keller
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zürich - University of Zürich, Zürich, Switzerland
| | - Yang Shen
- Laboratory of Food Microbiology, Institute of Food, Nutrition and Health, ETH Zürich, Zürich, Switzerland
| | - Annelies S Zinkernagel
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zürich - University of Zürich, Zürich, Switzerland
| | - Martin J Loessner
- Laboratory of Food Microbiology, Institute of Food, Nutrition and Health, ETH Zürich, Zürich, Switzerland
| | - Mathias Schmelcher
- Laboratory of Food Microbiology, Institute of Food, Nutrition and Health, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
40
|
Gadre D, Carlson M, Mullan A, Kabundi I, Pedowitz N, Rieder SA, White N, Yu K, O'Connor E. Endotoxin reduction in protein solutions using octyl β-D-1-thioglucopyranoside wash on chromatography media. J Chromatogr A 2018; 1575:49-58. [PMID: 30262393 DOI: 10.1016/j.chroma.2018.09.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/27/2018] [Accepted: 09/14/2018] [Indexed: 11/18/2022]
Abstract
Endotoxins are complex molecules and one of the most challenging impurities requiring separation in biopharmaceutical protein purification processes. Usually these contaminants are cleared during the downstream process, but if endotoxin interacts with the target protein it becomes difficult to remove. In the present study we identified a detergent, octyl-β-D-1-thioglucopyranoside (OTG), that disrupted endotoxin-protein interactions. The integration of this detergent into washes on several chromatography media was demonstrated to provide a separation tool for decreasing endotoxin from target proteins. This study also examined the mechanism of OTG endotoxin-protein disruption through phase modification incubation and chromatographic studies. The non-ionic OTG wash was shown to break both hydrophobic and electrostatic interactions between the endotoxin and protein. This mechanism contrasts with the breaking of hydrophobic interactions by washing with known endotoxin decreasing Triton X-100 detergent. The difference in mechanisms likely results in the ability of OTG to decrease endotoxin to levels less than those resulting from a detergent wash such as Triton X-100. Finally, we show the impact of the OTG endotoxin removal tool on the biopharmaceutical industry. While maintaining monomer purity and activity levels, endotoxin removal from a fusion protein allowed for decreased background levels in a T cell functional assay. The lowered baseline of T cell responses allowed for more effective detection of molecular interaction with the cells. The detergent wash can be used to both decrease the overall level of endotoxin in a purified protein solution and to enable more effective screening of lead candidate molecules.
Collapse
Affiliation(s)
- Dhanesh Gadre
- Purification Process Sciences, MedImmune, One MedImmune Way, Gaithersburg, MD, 20878, USA.
| | - Marcia Carlson
- Purification Process Sciences, MedImmune, One MedImmune Way, Gaithersburg, MD, 20878, USA
| | - Ashley Mullan
- Physiochemical Development, MedImmune, One MedImmune Way, Gaithersburg, MD, 20878, USA
| | - Ivy Kabundi
- Physiochemical Development, MedImmune, One MedImmune Way, Gaithersburg, MD, 20878, USA
| | - Nichole Pedowitz
- Department of Chemistry & Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Sadiye Amcaoglu Rieder
- Research - Inflammation and Autoimmunity, MedImmune, One MedImmune Way, Gaithersburg, MD, 20878, USA
| | - Natalie White
- Research - Inflammation and Autoimmunity, MedImmune, One MedImmune Way, Gaithersburg, MD, 20878, USA
| | - Kathy Yu
- Physiochemical Development, MedImmune, One MedImmune Way, Gaithersburg, MD, 20878, USA
| | - Ellen O'Connor
- Purification Process Sciences, MedImmune, One MedImmune Way, Gaithersburg, MD, 20878, USA
| |
Collapse
|
41
|
Lopes AM, Molino JVD, dos Santos-Ebinuma VC, Pessoa A, Valentini SR, Pereira JFB. Effect of electrolytes as adjuvants in GFP and LPS partitioning on aqueous two-phase systems: 1. Polymer-polymer systems. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2018.04.090] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
42
|
Chung E, Kim YJ, Lee MR, Cho SH, Ju JW. A 21.6 kDa tegumental protein of Clonorchis sinensis induces a Th1/Th2 mixed immune response in mice. IMMUNITY INFLAMMATION AND DISEASE 2018; 6:435-447. [PMID: 30298703 PMCID: PMC6247233 DOI: 10.1002/iid3.235] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/11/2018] [Accepted: 07/13/2018] [Indexed: 11/24/2022]
Abstract
Introduction Clonorchis sinensis is a major parasite affecting the Korea population. Despite the high infection rate and pathogenicity, very few studies have been conducted to investigate the immune responses against the proteins of C. sinensis. Methods In this study, in vitro immune response induced by a recombinant 21.6 kDa tegumental protein derived from C. sinensis (rCsTegu21.6) was confirmed in murine dendritic cells and T cells. For the in vivo analysis, each mouse was immunized three times. Total serum IgG and T cell cytokine production were determined by ELISA, while T cell proliferation was detected by a WST (Water‐Soluble Tetrazolium salt)‐1 assay. Results In vitro tests indicated that rCsTegu21.6 treatment increased the expression of surface molecules, such as CD40 (77%), CD80 (52%) and CD86 (46%), on murine dendritic cells and the secretion of cytokines (TNF‐α, IL‐6, IL‐1β, IL‐10, and IL‐12p70). Moreover, co‐culturing dendritic cells activated by rCsTegu21.6 with allogenic T cells induced T cell proliferation over time. rCsTegu21.6 also stimulated specific antibody production and cytokine secretion [IL‐2, IL‐4, and interferon (IFN)‐γ)] from T cells following immunization in vivo. Notably, rCsTegu21.6 predominantly induced IgG1 production and secretion of the Th2 cytokine IL‐4, regardless of the type of adjuvant used. Conclusion These results serve as a foundation for the development of tegumental protein‐based vaccines against C. sinensis.
Collapse
Affiliation(s)
- EunJoo Chung
- Division of Vectors and Parasitic Diseases, Center for Laboratory Control of Infectious Diseases, Korea Centers for Disease Control & Prevention, Osong, 28159, Republic of Korea
| | - Yu Jung Kim
- Division of Vectors and Parasitic Diseases, Center for Laboratory Control of Infectious Diseases, Korea Centers for Disease Control & Prevention, Osong, 28159, Republic of Korea
| | - Myoung-Ro Lee
- Division of Vectors and Parasitic Diseases, Center for Laboratory Control of Infectious Diseases, Korea Centers for Disease Control & Prevention, Osong, 28159, Republic of Korea
| | - Shin-Hyeong Cho
- Division of Vectors and Parasitic Diseases, Center for Laboratory Control of Infectious Diseases, Korea Centers for Disease Control & Prevention, Osong, 28159, Republic of Korea
| | - Jung-Won Ju
- Division of Vectors and Parasitic Diseases, Center for Laboratory Control of Infectious Diseases, Korea Centers for Disease Control & Prevention, Osong, 28159, Republic of Korea
| |
Collapse
|
43
|
Truong AD, Hong Y, Rengaraj D, Lee J, Lee K, Hong YH. Identification and functional characterization, including cytokine production modulation, of the novel chicken Interleukin-11. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 87:51-63. [PMID: 29792901 DOI: 10.1016/j.dci.2018.05.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/18/2018] [Accepted: 05/20/2018] [Indexed: 06/08/2023]
Abstract
Interleukin (IL)-11 plays an important role in the immune system. However, IL-11 has not yet been characterized in avian species, including chickens. This study is the first to clone and functionally characterize chicken IL-11 (chIL-11). Multiple alignments and phylogenetic tree comparisons of chIL-11 with IL-11 proteins from other species revealed high levels of conservation and a close relationship between chicken and Japanese quail IL-11. Our results demonstrate that chIL-11 was a functional ligand of IL-11RA and IL-6ST in chicken HD11 and OU2 cell lines, as well as activated and regulated JAK-STAT, NF-κB, PI3K/AKT, and MAPK signaling pathways in chicken cell lines. In addition, chIL-11 inhibited nitric oxide production, affected proliferation of both tested cell lines, inhibited Type 1 and 17 T helper (Th) cytokine and IL-26, IL-12, and IL-17A-induced interferon-γ production, and enhanced Th2 cytokine (IL-4 and IL-10) production. Taken together, functional analysis of chIL-11 revealed it bound to IL-11RA and IL-6ST and activated the JAK-STAT, NF-κB, and MAPK signaling pathways, which resulted in modulation of Th1/Th17 and Th2 cytokine production in chicken HD11 and OU2 cell lines. Overall, this indicates chIL-11 has a role in both the innate and adaptive immune system.
Collapse
Affiliation(s)
- Anh Duc Truong
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea; Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi, Viet Nam
| | - Yeojin Hong
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Deivendran Rengaraj
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Janggeun Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Kyungbaek Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Yeong Ho Hong
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| |
Collapse
|
44
|
Hsu CF, Hsiao CH, Tseng SF, Chen JR, Liao YJ, Chen SJ, Lin CS, Sytwu HK, Chuang YP. PrtA immunization fails to protect against pulmonary and invasive infection by Streptococcus pneumoniae. Respir Res 2018; 19:187. [PMID: 30253765 PMCID: PMC6157060 DOI: 10.1186/s12931-018-0895-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/17/2018] [Indexed: 12/27/2022] Open
Abstract
Background Streptococcus pneumoniae is a respiratory pathogen causing severe lung infection that may lead to complications such as bacteremia. Current polysaccharide vaccines have limited serotype coverage and therefore cannot provide maximal and long-term protection. Global efforts are being made to develop a conserved protein vaccine candidate. PrtA, a pneumococcal surface protein, was identified by screening a pneumococcal genomic expression library using convalescent patient serum. The prtA gene is prevalent and conserved among S. pneumoniae strains. Its protective efficacy, however, has not been described. Mucosal immunization could sensitize both local and systemic immunity, which would be an ideal scenario for preventing S. pneumoniae infection. Methods We immunized BALB/c mice intranasally with a combination of a PrtA fragment (amino acids 144–1041) and Th17 potentiated adjuvant, curdlan. We then measured the T-cell and antibody responses. The protective efficacy conferred to the immunized mice was further evaluated using a murine model of acute pneumococcal pneumonia and pneumococcal bacteremia. Results There was a profound antigen-specific IL-17A and IFN-γ response in PrtA-immunized mice compared with that of adjuvant control group. Even though PrtA-specific IgG and IgA titer in sera was elevated in immunized mice, only a moderate IgA response was observed in the bronchoalveolar lavage fluid. The PrtA-immunized antisera facilitated the activated murine macrophage, RAW264.7, to opsonophagocytose S. pneumoniae D39 strain; however, PrtA-specific immunoglobulins bound to pneumococcal surfaces with a limited potency. Finally, PrtA-induced immune reactions failed to protect mice against S. pneumoniae-induced acute pneumonia and bacterial propagation through the blood. Conclusions Immunization with recombinant PrtA combined with curdlan produced antigen-specific antibodies and elicited IL-17A response. However, it failed to protect the mice against S. pneumoniae-induced infection. Electronic supplementary material The online version of this article (10.1186/s12931-018-0895-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chen-Fang Hsu
- Department of Pediatrics, Chi Mei Medical Center, Tainan, Taiwan.,Taipei Medical University, Taipei, Taiwan.,Kaohsiung Medical University, Kaohsiung, Taiwan.,Chung Shan Medical University, Taichung, Taiwan
| | - Chen-Hao Hsiao
- Cheng Hsin General Hospital, Taipei, Taiwan.,Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | - Shun-Fu Tseng
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Jian-Ru Chen
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Jou Liao
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Sy-Jou Chen
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Graduate Institute of Injury Prevention and Control, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Chin-Sheng Lin
- Division of Cardiology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Huey-Kang Sytwu
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan.,National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Yi-Ping Chuang
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
45
|
Liao TJ, Gao J, Wang JX, Wang XW. Chicken-type lysozyme functions in the antibacterial immunity in red swamp crayfish, Procambarus clarkii. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 85:134-141. [PMID: 29680689 DOI: 10.1016/j.dci.2018.04.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 04/05/2018] [Accepted: 04/10/2018] [Indexed: 06/08/2023]
Abstract
Lysozymes possess antibacterial activities, making them crucial defense proteins in innate immunity. In this study, a chicken-type (c-type) lysozyme (designated PcLyzc) was cloned and characterized from red swamp crayfish Procambarus clarkii. The full-length cDNA had an open reading frame of 435 base pairs encoding a polypeptide of 144 amino acid residues. Multiple alignments and phylogenetic analysis revealed that PcLyzc shared high similarity to the other known invertebrate c-type lysozymes. PcLyzc transcripts were steadily expressed in a wide range of tissues in healthy crayfish, and were prominently up-regulated in the hepatopancreas and gills after Vibrio anguillarum or Aeromonas hydrophila challenge. Recombinant PcLyzc showed inhibitory activity in vitro against both Gram-positive bacteria, including Staphylococcus aureus, Micrococcus luteus and Bacillus thuringiensis, and Gram-negative bacteria, including A. hydrophila, V. anguillarum and Escherichia coli. By overexpressing PcLyzc through introducing exogenous recombinant protein, or silencing PcLyzc expression through injecting double strand RNA, it was found that PcLyzc could help eliminate the invading bacteria in crayfish hemolymph and could protect crayfish from death, possibly by promoting the hemocytic phagocytosis. These results indicated that PcLyzc played a role in the antibacterial immunity of crustaceans, and laid a foundation of developing new therapeutic agents in aquaculture.
Collapse
Affiliation(s)
- Tian-Jiang Liao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, 250100, China; School of Chemistry Engineering, Gansu Industry Polytechnic College, Tianshui, Gansu, 741025, China
| | - Jie Gao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Xian-Wei Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, 250100, China.
| |
Collapse
|
46
|
Broad application and optimization of a single wash-step for integrated endotoxin depletion during protein purification. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1091:101-107. [DOI: 10.1016/j.jchromb.2018.05.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 05/05/2018] [Accepted: 05/19/2018] [Indexed: 11/18/2022]
|
47
|
Truong AD, Hong Y, Lee J, Lee K, Kil DY, Lillehoj HS, Hong YH. Interleukin-34 Regulates Th1 and Th17 Cytokine Production by Activating Multiple Signaling Pathways through CSF-1R in Chicken Cell Lines. Int J Mol Sci 2018; 19:ijms19061665. [PMID: 29874806 PMCID: PMC6032434 DOI: 10.3390/ijms19061665] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/19/2018] [Accepted: 06/02/2018] [Indexed: 12/14/2022] Open
Abstract
Interleukin-34 (IL-34) is a newly recognized cytokine with functions similar to macrophage colony-stimulating factor 1. It is expressed in macrophages and fibroblasts, where it induces cytokine production; however, the mechanism of chicken IL-34 (chIL-34) signaling has not been identified to date. The aim of this study was to analyze the signal transduction pathways and specific biological functions associated with chIL-34 in chicken macrophage (HD11) and fibroblast (OU2) cell lines. We found that IL-34 is a functional ligand for the colony-stimulating factor receptor (CSF-1R) in chicken cell lines. Treatment with chIL-34 increased the expression of Th1 and Th17 cytokines through phosphorylation of tyrosine and serine residues in Janus kinase (JAK) 2, tyrosine kinase 2 (TYK2), signal transducer and activator of transcription (STAT) 1, STAT3, and Src homology 2-containing tyrosine phosphatase 2 (SHP-2), which also led to phosphorylation of NF-κB1, p-mitogen-activated protein kinase kinase kinase 7 (TAK1), MyD88, suppressor of cytokine signaling 1 (SOCS1), and extracellular signal-regulated kinase 1 and 2 (ERK1/2). Taken together, these results suggest that chIL-34 functions by binding to CSF-1R and activating the JAK/STAT, nuclear factor κ B (NF-κB), and mitogen-activated protein kinase signaling pathways; these signaling events regulate cytokine expression and suggest roles for chIL-34 in innate and adaptive immunity.
Collapse
Affiliation(s)
- Anh Duc Truong
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea.
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi 100000, Vietnam.
| | - Yeojin Hong
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea.
| | - Janggeun Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea.
| | - Kyungbaek Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea.
| | - Dong Yong Kil
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea.
| | - Hyun S Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Services, United States Department of Agriculture, Beltsville, MD 20705, USA.
| | - Yeong Ho Hong
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea.
| |
Collapse
|
48
|
A Phage Lysin Fused to a Cell-Penetrating Peptide Kills Intracellular Methicillin-Resistant Staphylococcus aureus in Keratinocytes and Has Potential as a Treatment for Skin Infections in Mice. Appl Environ Microbiol 2018; 84:AEM.00380-18. [PMID: 29625989 DOI: 10.1128/aem.00380-18] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 04/03/2018] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus aureus is the main pathogen that causes skin and skin structure infections and is able to survive and persist in keratinocytes of the epidermis. Since the evolution of multidrug-resistant bacteria, the use of phages and their lysins has presented a promising alternative approach to treatment. In this study, a cell wall hydrolase (also called lysin) derived from Staphylococcus phage JD007 (JDlys) was identified. JDlys showed strong lytic activity against methicillin-resistant Staphylococcus aureus (MRSA) strains from different sources and of different multilocus sequence typing (MLST) types. Furthermore, a fusion protein consisting of a cell-penetrating peptide derived from the trans-activating transcription (Tat) factor fused to JDlys (CPPTat-JDlys) was used to kill MRSA bacteria causing intracellular infections. CPPTat-JDlys, in which the fusion of CPPTat to JDlys had almost no effect on the bacteriolytic activity of JDlys, was able to effectively eliminate intracellular MRSA bacteria and alleviate the inflammatory response and cell damage caused by MRSA. Specifically, CPPTat-JDlys was able to combat MRSA-induced murine skin infections and, consequently, expedite the healing of cutaneous abscesses. These data suggest that the novel antimicrobial CPP-JDlys may be a worthwhile candidate as a treatment for skin and skin structure infections caused by MRSA.IMPORTANCES. aureus is the main cause of skin and skin structure infections due to its ability to invade and survive in the epithelial barrier. Due to the overuse of antibiotics in humans and animals, S. aureus has shown a high capacity for acquiring and accumulating mechanisms of resistance to antibiotics. Moreover, most antibiotics are usually limited in their ability to overcome the intracellular persistence of bacteria causing skin and skin structure infections. So, it is critical to seek a novel antimicrobial agent to eradicate intracellular S. aureus In this study, a cell-penetrating peptide fused to lysin (CPP-JDlys) was engineered. Our results show that CPP-JDlys can enter keratinocytes and effectively eliminate intracellular MRSA. Meanwhile, experiments with mice revealed that CPP-JDlys efficiently inhibits the proliferation of MRSA in murine skin and thus shortens the course of wound healing. Our results indicate that the CPP-fused lysin has potential for use for the treatment of skin infections caused by MRSA.
Collapse
|
49
|
Li XJ, Yang L, Li D, Zhu YT, Wang Q, Li WW. Pathogen-Specific Binding Soluble Down Syndrome Cell Adhesion Molecule (Dscam) Regulates Phagocytosis via Membrane-Bound Dscam in Crab. Front Immunol 2018; 9:801. [PMID: 29720978 PMCID: PMC5915466 DOI: 10.3389/fimmu.2018.00801] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/03/2018] [Indexed: 11/13/2022] Open
Abstract
The Down syndrome cell adhesion molecule (Dscam) gene is an extraordinary example of diversity that can produce thousands of isoforms and has so far been found only in insects and crustaceans. Cumulative evidence indicates that Dscam may contribute to the mechanistic foundations of specific immune responses in insects. However, the mechanism and functions of Dscam in relation to pathogens and immunity remain largely unknown. In this study, we identified the genome organization and alternative Dscam exons from Chinese mitten crab, Eriocheir sinensis. These variants, designated EsDscam, potentially produce 30,600 isoforms due to three alternatively spliced immunoglobulin (Ig) domains and a transmembrane domain. EsDscam was significantly upregulated after bacterial challenge at both mRNA and protein levels. Moreover, bacterial specific EsDscam isoforms were found to bind specifically with the original bacteria to facilitate efficient clearance. Furthermore, bacteria-specific binding of soluble EsDscam via the complete Ig1–Ig4 domain significantly enhanced elimination of the original bacteria via phagocytosis by hemocytes; this function was abolished by partial Ig1–Ig4 domain truncation. Further studies showed that knockdown of membrane-bound EsDscam inhibited the ability of EsDscam with the same extracellular region to promote bacterial phagocytosis. Immunocytochemistry indicated colocalization of the soluble and membrane-bound forms of EsDscam at the hemocyte surface. Far-Western and coimmunoprecipitation assays demonstrated homotypic interactions between EsDscam isoforms. This study provides insights into a mechanism by which soluble Dscam regulates hemocyte phagocytosis via bacteria-specific binding and specific interactions with membrane-bound Dscam as a phagocytic receptor.
Collapse
Affiliation(s)
- Xue-Jie Li
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Lei Yang
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Dan Li
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - You-Ting Zhu
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Qun Wang
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Wei-Wei Li
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
50
|
Ettinger RA, Liberman JA, Gunasekera D, Puranik K, James EA, Thompson AR, Pratt KP. FVIII proteins with a modified immunodominant T-cell epitope exhibit reduced immunogenicity and normal FVIII activity. Blood Adv 2018; 2:309-322. [PMID: 29444872 PMCID: PMC5858479 DOI: 10.1182/bloodadvances.2017013482] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 01/16/2018] [Indexed: 02/08/2023] Open
Abstract
Factor VIII (FVIII)-neutralizing antibodies (inhibitors) are a serious complication in hemophilia A (HA). The peptide FVIII2194-2213 contains an immunodominant HLA-DRA*01-DRB1*01:01 (DRB1*01:01)-restricted epitope recognized by CD4+ T-effector cells from HA subjects. The aim of this study was to identify amino acid substitutions to deimmunize this epitope while retaining procoagulant function and expression levels comparable to those of wild-type (WT) FVIII proteins. The shortest DRB1*01:01-binding peptide was FVIII2194-2205, and residues important for affinity were identified as F2196, M2199, A2201, and S2204. T-cell proliferation experiments with Ala-substituted FVIII2194-2205 peptides identified F2196A as a substitution that abrogated proliferation of clones specific for the WT sequence. T-cell clones that were stimulated by recombinant WT-FVIII-C2 (rWT-FVIII-C2) protein did not proliferate when cultured with rFVIII-C2-F2196A, indicating the immunogenic peptide includes a naturally processed T-cell epitope. Additional amino acid substitutions at F2196 and M2199 were evaluated by peptide-MHC class II (MHCII)-binding assays, T-cell proliferation assays, epitope prediction algorithms, and sequence homologies. Six B-domain-deleted (BDD)-FVIII proteins with substitutions F2196A, F2196L, F2196K, M2199A, M2199W, or M2199R were produced. Proliferation of T-cell clones and polyclonal lines in response to rBDD-FVIII-F2196K and rBDD-FVIII-M2199A was reduced compared with responses to WT-BDD-FVIII. The BDD-FVIII-F2196K sequence modification appears to be the most promising sequence variant tested here, due to its effectiveness at eliminating DRB1*01:01-restricted immunogenicity, low potential immunogenicity in the context of other MHCII alleles, expression level comparable to WT-BDD-FVIII, and retained procoagulant activity. These results provide proof of principle for the design of less immunogenic FVIII proteins targeted to specific subsets of HA patients.
Collapse
Affiliation(s)
- Ruth A Ettinger
- Bloodworks Northwest Research Institute, Seattle, WA
- Benaroya Research Institute, Seattle, WA
| | | | - Devi Gunasekera
- Bloodworks Northwest Research Institute, Seattle, WA
- Uniformed Services University of the Health Sciences, Bethesda, MD; and
| | - Komal Puranik
- Bloodworks Northwest Research Institute, Seattle, WA
| | | | - Arthur R Thompson
- Bloodworks Northwest Research Institute, Seattle, WA
- Division of Hematology, Department Medicine, University of Washington, Seattle, WA
| | - Kathleen P Pratt
- Bloodworks Northwest Research Institute, Seattle, WA
- Uniformed Services University of the Health Sciences, Bethesda, MD; and
- Division of Hematology, Department Medicine, University of Washington, Seattle, WA
| |
Collapse
|